1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass forwards branches to unconditional branches to make them branch 10 // directly to the target block. This pass often results in dead MBB's, which 11 // it then removes. 12 // 13 // Note that this pass must be run after register allocation, it cannot handle 14 // SSA form. It also must handle virtual registers for targets that emit virtual 15 // ISA (e.g. NVPTX). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "BranchFolding.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/ProfileSummaryInfo.h" 26 #include "llvm/CodeGen/Analysis.h" 27 #include "llvm/CodeGen/MBFIWrapper.h" 28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 29 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineJumpTableInfo.h" 35 #include "llvm/CodeGen/MachineLoopInfo.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/MachineSizeOpts.h" 39 #include "llvm/CodeGen/TargetInstrInfo.h" 40 #include "llvm/CodeGen/TargetOpcodes.h" 41 #include "llvm/CodeGen/TargetPassConfig.h" 42 #include "llvm/CodeGen/TargetRegisterInfo.h" 43 #include "llvm/CodeGen/TargetSubtargetInfo.h" 44 #include "llvm/IR/DebugInfoMetadata.h" 45 #include "llvm/IR/DebugLoc.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/InitializePasses.h" 48 #include "llvm/MC/LaneBitmask.h" 49 #include "llvm/MC/MCRegisterInfo.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/BlockFrequency.h" 52 #include "llvm/Support/BranchProbability.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Target/TargetMachine.h" 58 #include <cassert> 59 #include <cstddef> 60 #include <iterator> 61 #include <numeric> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "branch-folder" 66 67 STATISTIC(NumDeadBlocks, "Number of dead blocks removed"); 68 STATISTIC(NumBranchOpts, "Number of branches optimized"); 69 STATISTIC(NumTailMerge , "Number of block tails merged"); 70 STATISTIC(NumHoist , "Number of times common instructions are hoisted"); 71 STATISTIC(NumTailCalls, "Number of tail calls optimized"); 72 73 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge", 74 cl::init(cl::BOU_UNSET), cl::Hidden); 75 76 // Throttle for huge numbers of predecessors (compile speed problems) 77 static cl::opt<unsigned> 78 TailMergeThreshold("tail-merge-threshold", 79 cl::desc("Max number of predecessors to consider tail merging"), 80 cl::init(150), cl::Hidden); 81 82 // Heuristic for tail merging (and, inversely, tail duplication). 83 // TODO: This should be replaced with a target query. 84 static cl::opt<unsigned> 85 TailMergeSize("tail-merge-size", 86 cl::desc("Min number of instructions to consider tail merging"), 87 cl::init(3), cl::Hidden); 88 89 namespace { 90 91 /// BranchFolderPass - Wrap branch folder in a machine function pass. 92 class BranchFolderPass : public MachineFunctionPass { 93 public: 94 static char ID; 95 96 explicit BranchFolderPass(): MachineFunctionPass(ID) {} 97 98 bool runOnMachineFunction(MachineFunction &MF) override; 99 100 void getAnalysisUsage(AnalysisUsage &AU) const override { 101 AU.addRequired<MachineBlockFrequencyInfo>(); 102 AU.addRequired<MachineBranchProbabilityInfo>(); 103 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 104 AU.addRequired<TargetPassConfig>(); 105 MachineFunctionPass::getAnalysisUsage(AU); 106 } 107 108 MachineFunctionProperties getRequiredProperties() const override { 109 return MachineFunctionProperties().set( 110 MachineFunctionProperties::Property::NoPHIs); 111 } 112 }; 113 114 } // end anonymous namespace 115 116 char BranchFolderPass::ID = 0; 117 118 char &llvm::BranchFolderPassID = BranchFolderPass::ID; 119 120 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE, 121 "Control Flow Optimizer", false, false) 122 123 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) { 124 if (skipFunction(MF.getFunction())) 125 return false; 126 127 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 128 // TailMerge can create jump into if branches that make CFG irreducible for 129 // HW that requires structurized CFG. 130 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 131 PassConfig->getEnableTailMerge(); 132 MBFIWrapper MBBFreqInfo( 133 getAnalysis<MachineBlockFrequencyInfo>()); 134 BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo, 135 getAnalysis<MachineBranchProbabilityInfo>(), 136 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI()); 137 return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(), 138 MF.getSubtarget().getRegisterInfo()); 139 } 140 141 BranchFolder::BranchFolder(bool DefaultEnableTailMerge, bool CommonHoist, 142 MBFIWrapper &FreqInfo, 143 const MachineBranchProbabilityInfo &ProbInfo, 144 ProfileSummaryInfo *PSI, unsigned MinTailLength) 145 : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength), 146 MBBFreqInfo(FreqInfo), MBPI(ProbInfo), PSI(PSI) { 147 if (MinCommonTailLength == 0) 148 MinCommonTailLength = TailMergeSize; 149 switch (FlagEnableTailMerge) { 150 case cl::BOU_UNSET: 151 EnableTailMerge = DefaultEnableTailMerge; 152 break; 153 case cl::BOU_TRUE: EnableTailMerge = true; break; 154 case cl::BOU_FALSE: EnableTailMerge = false; break; 155 } 156 } 157 158 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) { 159 assert(MBB->pred_empty() && "MBB must be dead!"); 160 LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB); 161 162 MachineFunction *MF = MBB->getParent(); 163 // drop all successors. 164 while (!MBB->succ_empty()) 165 MBB->removeSuccessor(MBB->succ_end()-1); 166 167 // Avoid matching if this pointer gets reused. 168 TriedMerging.erase(MBB); 169 170 // Update call site info. 171 for (const MachineInstr &MI : *MBB) 172 if (MI.shouldUpdateCallSiteInfo()) 173 MF->eraseCallSiteInfo(&MI); 174 175 // Remove the block. 176 MF->erase(MBB); 177 EHScopeMembership.erase(MBB); 178 if (MLI) 179 MLI->removeBlock(MBB); 180 } 181 182 bool BranchFolder::OptimizeFunction(MachineFunction &MF, 183 const TargetInstrInfo *tii, 184 const TargetRegisterInfo *tri, 185 MachineLoopInfo *mli, bool AfterPlacement) { 186 if (!tii) return false; 187 188 TriedMerging.clear(); 189 190 MachineRegisterInfo &MRI = MF.getRegInfo(); 191 AfterBlockPlacement = AfterPlacement; 192 TII = tii; 193 TRI = tri; 194 MLI = mli; 195 this->MRI = &MRI; 196 197 UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF); 198 if (!UpdateLiveIns) 199 MRI.invalidateLiveness(); 200 201 bool MadeChange = false; 202 203 // Recalculate EH scope membership. 204 EHScopeMembership = getEHScopeMembership(MF); 205 206 bool MadeChangeThisIteration = true; 207 while (MadeChangeThisIteration) { 208 MadeChangeThisIteration = TailMergeBlocks(MF); 209 // No need to clean up if tail merging does not change anything after the 210 // block placement. 211 if (!AfterBlockPlacement || MadeChangeThisIteration) 212 MadeChangeThisIteration |= OptimizeBranches(MF); 213 if (EnableHoistCommonCode) 214 MadeChangeThisIteration |= HoistCommonCode(MF); 215 MadeChange |= MadeChangeThisIteration; 216 } 217 218 // See if any jump tables have become dead as the code generator 219 // did its thing. 220 MachineJumpTableInfo *JTI = MF.getJumpTableInfo(); 221 if (!JTI) 222 return MadeChange; 223 224 // Walk the function to find jump tables that are live. 225 BitVector JTIsLive(JTI->getJumpTables().size()); 226 for (const MachineBasicBlock &BB : MF) { 227 for (const MachineInstr &I : BB) 228 for (const MachineOperand &Op : I.operands()) { 229 if (!Op.isJTI()) continue; 230 231 // Remember that this JT is live. 232 JTIsLive.set(Op.getIndex()); 233 } 234 } 235 236 // Finally, remove dead jump tables. This happens when the 237 // indirect jump was unreachable (and thus deleted). 238 for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i) 239 if (!JTIsLive.test(i)) { 240 JTI->RemoveJumpTable(i); 241 MadeChange = true; 242 } 243 244 return MadeChange; 245 } 246 247 //===----------------------------------------------------------------------===// 248 // Tail Merging of Blocks 249 //===----------------------------------------------------------------------===// 250 251 /// HashMachineInstr - Compute a hash value for MI and its operands. 252 static unsigned HashMachineInstr(const MachineInstr &MI) { 253 unsigned Hash = MI.getOpcode(); 254 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 255 const MachineOperand &Op = MI.getOperand(i); 256 257 // Merge in bits from the operand if easy. We can't use MachineOperand's 258 // hash_code here because it's not deterministic and we sort by hash value 259 // later. 260 unsigned OperandHash = 0; 261 switch (Op.getType()) { 262 case MachineOperand::MO_Register: 263 OperandHash = Op.getReg(); 264 break; 265 case MachineOperand::MO_Immediate: 266 OperandHash = Op.getImm(); 267 break; 268 case MachineOperand::MO_MachineBasicBlock: 269 OperandHash = Op.getMBB()->getNumber(); 270 break; 271 case MachineOperand::MO_FrameIndex: 272 case MachineOperand::MO_ConstantPoolIndex: 273 case MachineOperand::MO_JumpTableIndex: 274 OperandHash = Op.getIndex(); 275 break; 276 case MachineOperand::MO_GlobalAddress: 277 case MachineOperand::MO_ExternalSymbol: 278 // Global address / external symbol are too hard, don't bother, but do 279 // pull in the offset. 280 OperandHash = Op.getOffset(); 281 break; 282 default: 283 break; 284 } 285 286 Hash += ((OperandHash << 3) | Op.getType()) << (i & 31); 287 } 288 return Hash; 289 } 290 291 /// HashEndOfMBB - Hash the last instruction in the MBB. 292 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) { 293 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(false); 294 if (I == MBB.end()) 295 return 0; 296 297 return HashMachineInstr(*I); 298 } 299 300 /// Whether MI should be counted as an instruction when calculating common tail. 301 static bool countsAsInstruction(const MachineInstr &MI) { 302 return !(MI.isDebugInstr() || MI.isCFIInstruction()); 303 } 304 305 /// Iterate backwards from the given iterator \p I, towards the beginning of the 306 /// block. If a MI satisfying 'countsAsInstruction' is found, return an iterator 307 /// pointing to that MI. If no such MI is found, return the end iterator. 308 static MachineBasicBlock::iterator 309 skipBackwardPastNonInstructions(MachineBasicBlock::iterator I, 310 MachineBasicBlock *MBB) { 311 while (I != MBB->begin()) { 312 --I; 313 if (countsAsInstruction(*I)) 314 return I; 315 } 316 return MBB->end(); 317 } 318 319 /// Given two machine basic blocks, return the number of instructions they 320 /// actually have in common together at their end. If a common tail is found (at 321 /// least by one instruction), then iterators for the first shared instruction 322 /// in each block are returned as well. 323 /// 324 /// Non-instructions according to countsAsInstruction are ignored. 325 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1, 326 MachineBasicBlock *MBB2, 327 MachineBasicBlock::iterator &I1, 328 MachineBasicBlock::iterator &I2) { 329 MachineBasicBlock::iterator MBBI1 = MBB1->end(); 330 MachineBasicBlock::iterator MBBI2 = MBB2->end(); 331 332 unsigned TailLen = 0; 333 while (true) { 334 MBBI1 = skipBackwardPastNonInstructions(MBBI1, MBB1); 335 MBBI2 = skipBackwardPastNonInstructions(MBBI2, MBB2); 336 if (MBBI1 == MBB1->end() || MBBI2 == MBB2->end()) 337 break; 338 if (!MBBI1->isIdenticalTo(*MBBI2) || 339 // FIXME: This check is dubious. It's used to get around a problem where 340 // people incorrectly expect inline asm directives to remain in the same 341 // relative order. This is untenable because normal compiler 342 // optimizations (like this one) may reorder and/or merge these 343 // directives. 344 MBBI1->isInlineAsm()) { 345 break; 346 } 347 if (MBBI1->getFlag(MachineInstr::NoMerge) || 348 MBBI2->getFlag(MachineInstr::NoMerge)) 349 break; 350 ++TailLen; 351 I1 = MBBI1; 352 I2 = MBBI2; 353 } 354 355 return TailLen; 356 } 357 358 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst, 359 MachineBasicBlock &NewDest) { 360 if (UpdateLiveIns) { 361 // OldInst should always point to an instruction. 362 MachineBasicBlock &OldMBB = *OldInst->getParent(); 363 LiveRegs.clear(); 364 LiveRegs.addLiveOuts(OldMBB); 365 // Move backward to the place where will insert the jump. 366 MachineBasicBlock::iterator I = OldMBB.end(); 367 do { 368 --I; 369 LiveRegs.stepBackward(*I); 370 } while (I != OldInst); 371 372 // Merging the tails may have switched some undef operand to non-undef ones. 373 // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the 374 // register. 375 for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) { 376 // We computed the liveins with computeLiveIn earlier and should only see 377 // full registers: 378 assert(P.LaneMask == LaneBitmask::getAll() && 379 "Can only handle full register."); 380 MCPhysReg Reg = P.PhysReg; 381 if (!LiveRegs.available(*MRI, Reg)) 382 continue; 383 DebugLoc DL; 384 BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg); 385 } 386 } 387 388 TII->ReplaceTailWithBranchTo(OldInst, &NewDest); 389 ++NumTailMerge; 390 } 391 392 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB, 393 MachineBasicBlock::iterator BBI1, 394 const BasicBlock *BB) { 395 if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1)) 396 return nullptr; 397 398 MachineFunction &MF = *CurMBB.getParent(); 399 400 // Create the fall-through block. 401 MachineFunction::iterator MBBI = CurMBB.getIterator(); 402 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB); 403 CurMBB.getParent()->insert(++MBBI, NewMBB); 404 405 // Move all the successors of this block to the specified block. 406 NewMBB->transferSuccessors(&CurMBB); 407 408 // Add an edge from CurMBB to NewMBB for the fall-through. 409 CurMBB.addSuccessor(NewMBB); 410 411 // Splice the code over. 412 NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end()); 413 414 // NewMBB belongs to the same loop as CurMBB. 415 if (MLI) 416 if (MachineLoop *ML = MLI->getLoopFor(&CurMBB)) 417 ML->addBasicBlockToLoop(NewMBB, MLI->getBase()); 418 419 // NewMBB inherits CurMBB's block frequency. 420 MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB)); 421 422 if (UpdateLiveIns) 423 computeAndAddLiveIns(LiveRegs, *NewMBB); 424 425 // Add the new block to the EH scope. 426 const auto &EHScopeI = EHScopeMembership.find(&CurMBB); 427 if (EHScopeI != EHScopeMembership.end()) { 428 auto n = EHScopeI->second; 429 EHScopeMembership[NewMBB] = n; 430 } 431 432 return NewMBB; 433 } 434 435 /// EstimateRuntime - Make a rough estimate for how long it will take to run 436 /// the specified code. 437 static unsigned EstimateRuntime(MachineBasicBlock::iterator I, 438 MachineBasicBlock::iterator E) { 439 unsigned Time = 0; 440 for (; I != E; ++I) { 441 if (!countsAsInstruction(*I)) 442 continue; 443 if (I->isCall()) 444 Time += 10; 445 else if (I->mayLoadOrStore()) 446 Time += 2; 447 else 448 ++Time; 449 } 450 return Time; 451 } 452 453 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these 454 // branches temporarily for tail merging). In the case where CurMBB ends 455 // with a conditional branch to the next block, optimize by reversing the 456 // test and conditionally branching to SuccMBB instead. 457 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB, 458 const TargetInstrInfo *TII) { 459 MachineFunction *MF = CurMBB->getParent(); 460 MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB)); 461 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 462 SmallVector<MachineOperand, 4> Cond; 463 DebugLoc dl = CurMBB->findBranchDebugLoc(); 464 if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) { 465 MachineBasicBlock *NextBB = &*I; 466 if (TBB == NextBB && !Cond.empty() && !FBB) { 467 if (!TII->reverseBranchCondition(Cond)) { 468 TII->removeBranch(*CurMBB); 469 TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl); 470 return; 471 } 472 } 473 } 474 TII->insertBranch(*CurMBB, SuccBB, nullptr, 475 SmallVector<MachineOperand, 0>(), dl); 476 } 477 478 bool 479 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const { 480 if (getHash() < o.getHash()) 481 return true; 482 if (getHash() > o.getHash()) 483 return false; 484 if (getBlock()->getNumber() < o.getBlock()->getNumber()) 485 return true; 486 if (getBlock()->getNumber() > o.getBlock()->getNumber()) 487 return false; 488 // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing 489 // an object with itself. 490 #ifndef _GLIBCXX_DEBUG 491 llvm_unreachable("Predecessor appears twice"); 492 #else 493 return false; 494 #endif 495 } 496 497 /// CountTerminators - Count the number of terminators in the given 498 /// block and set I to the position of the first non-terminator, if there 499 /// is one, or MBB->end() otherwise. 500 static unsigned CountTerminators(MachineBasicBlock *MBB, 501 MachineBasicBlock::iterator &I) { 502 I = MBB->end(); 503 unsigned NumTerms = 0; 504 while (true) { 505 if (I == MBB->begin()) { 506 I = MBB->end(); 507 break; 508 } 509 --I; 510 if (!I->isTerminator()) break; 511 ++NumTerms; 512 } 513 return NumTerms; 514 } 515 516 /// A no successor, non-return block probably ends in unreachable and is cold. 517 /// Also consider a block that ends in an indirect branch to be a return block, 518 /// since many targets use plain indirect branches to return. 519 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) { 520 if (!MBB->succ_empty()) 521 return false; 522 if (MBB->empty()) 523 return true; 524 return !(MBB->back().isReturn() || MBB->back().isIndirectBranch()); 525 } 526 527 /// ProfitableToMerge - Check if two machine basic blocks have a common tail 528 /// and decide if it would be profitable to merge those tails. Return the 529 /// length of the common tail and iterators to the first common instruction 530 /// in each block. 531 /// MBB1, MBB2 The blocks to check 532 /// MinCommonTailLength Minimum size of tail block to be merged. 533 /// CommonTailLen Out parameter to record the size of the shared tail between 534 /// MBB1 and MBB2 535 /// I1, I2 Iterator references that will be changed to point to the first 536 /// instruction in the common tail shared by MBB1,MBB2 537 /// SuccBB A common successor of MBB1, MBB2 which are in a canonical form 538 /// relative to SuccBB 539 /// PredBB The layout predecessor of SuccBB, if any. 540 /// EHScopeMembership map from block to EH scope #. 541 /// AfterPlacement True if we are merging blocks after layout. Stricter 542 /// thresholds apply to prevent undoing tail-duplication. 543 static bool 544 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2, 545 unsigned MinCommonTailLength, unsigned &CommonTailLen, 546 MachineBasicBlock::iterator &I1, 547 MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB, 548 MachineBasicBlock *PredBB, 549 DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, 550 bool AfterPlacement, 551 MBFIWrapper &MBBFreqInfo, 552 ProfileSummaryInfo *PSI) { 553 // It is never profitable to tail-merge blocks from two different EH scopes. 554 if (!EHScopeMembership.empty()) { 555 auto EHScope1 = EHScopeMembership.find(MBB1); 556 assert(EHScope1 != EHScopeMembership.end()); 557 auto EHScope2 = EHScopeMembership.find(MBB2); 558 assert(EHScope2 != EHScopeMembership.end()); 559 if (EHScope1->second != EHScope2->second) 560 return false; 561 } 562 563 CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2); 564 if (CommonTailLen == 0) 565 return false; 566 LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1) 567 << " and " << printMBBReference(*MBB2) << " is " 568 << CommonTailLen << '\n'); 569 570 // Move the iterators to the beginning of the MBB if we only got debug 571 // instructions before the tail. This is to avoid splitting a block when we 572 // only got debug instructions before the tail (to be invariant on -g). 573 if (skipDebugInstructionsForward(MBB1->begin(), MBB1->end(), false) == I1) 574 I1 = MBB1->begin(); 575 if (skipDebugInstructionsForward(MBB2->begin(), MBB2->end(), false) == I2) 576 I2 = MBB2->begin(); 577 578 bool FullBlockTail1 = I1 == MBB1->begin(); 579 bool FullBlockTail2 = I2 == MBB2->begin(); 580 581 // It's almost always profitable to merge any number of non-terminator 582 // instructions with the block that falls through into the common successor. 583 // This is true only for a single successor. For multiple successors, we are 584 // trading a conditional branch for an unconditional one. 585 // TODO: Re-visit successor size for non-layout tail merging. 586 if ((MBB1 == PredBB || MBB2 == PredBB) && 587 (!AfterPlacement || MBB1->succ_size() == 1)) { 588 MachineBasicBlock::iterator I; 589 unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I); 590 if (CommonTailLen > NumTerms) 591 return true; 592 } 593 594 // If these are identical non-return blocks with no successors, merge them. 595 // Such blocks are typically cold calls to noreturn functions like abort, and 596 // are unlikely to become a fallthrough target after machine block placement. 597 // Tail merging these blocks is unlikely to create additional unconditional 598 // branches, and will reduce the size of this cold code. 599 if (FullBlockTail1 && FullBlockTail2 && 600 blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2)) 601 return true; 602 603 // If one of the blocks can be completely merged and happens to be in 604 // a position where the other could fall through into it, merge any number 605 // of instructions, because it can be done without a branch. 606 // TODO: If the blocks are not adjacent, move one of them so that they are? 607 if (MBB1->isLayoutSuccessor(MBB2) && FullBlockTail2) 608 return true; 609 if (MBB2->isLayoutSuccessor(MBB1) && FullBlockTail1) 610 return true; 611 612 // If both blocks are identical and end in a branch, merge them unless they 613 // both have a fallthrough predecessor and successor. 614 // We can only do this after block placement because it depends on whether 615 // there are fallthroughs, and we don't know until after layout. 616 if (AfterPlacement && FullBlockTail1 && FullBlockTail2) { 617 auto BothFallThrough = [](MachineBasicBlock *MBB) { 618 if (!MBB->succ_empty() && !MBB->canFallThrough()) 619 return false; 620 MachineFunction::iterator I(MBB); 621 MachineFunction *MF = MBB->getParent(); 622 return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough(); 623 }; 624 if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2)) 625 return true; 626 } 627 628 // If both blocks have an unconditional branch temporarily stripped out, 629 // count that as an additional common instruction for the following 630 // heuristics. This heuristic is only accurate for single-succ blocks, so to 631 // make sure that during layout merging and duplicating don't crash, we check 632 // for that when merging during layout. 633 unsigned EffectiveTailLen = CommonTailLen; 634 if (SuccBB && MBB1 != PredBB && MBB2 != PredBB && 635 (MBB1->succ_size() == 1 || !AfterPlacement) && 636 !MBB1->back().isBarrier() && 637 !MBB2->back().isBarrier()) 638 ++EffectiveTailLen; 639 640 // Check if the common tail is long enough to be worthwhile. 641 if (EffectiveTailLen >= MinCommonTailLength) 642 return true; 643 644 // If we are optimizing for code size, 2 instructions in common is enough if 645 // we don't have to split a block. At worst we will be introducing 1 new 646 // branch instruction, which is likely to be smaller than the 2 647 // instructions that would be deleted in the merge. 648 MachineFunction *MF = MBB1->getParent(); 649 bool OptForSize = 650 MF->getFunction().hasOptSize() || 651 (llvm::shouldOptimizeForSize(MBB1, PSI, &MBBFreqInfo) && 652 llvm::shouldOptimizeForSize(MBB2, PSI, &MBBFreqInfo)); 653 return EffectiveTailLen >= 2 && OptForSize && 654 (FullBlockTail1 || FullBlockTail2); 655 } 656 657 unsigned BranchFolder::ComputeSameTails(unsigned CurHash, 658 unsigned MinCommonTailLength, 659 MachineBasicBlock *SuccBB, 660 MachineBasicBlock *PredBB) { 661 unsigned maxCommonTailLength = 0U; 662 SameTails.clear(); 663 MachineBasicBlock::iterator TrialBBI1, TrialBBI2; 664 MPIterator HighestMPIter = std::prev(MergePotentials.end()); 665 for (MPIterator CurMPIter = std::prev(MergePotentials.end()), 666 B = MergePotentials.begin(); 667 CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) { 668 for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) { 669 unsigned CommonTailLen; 670 if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(), 671 MinCommonTailLength, 672 CommonTailLen, TrialBBI1, TrialBBI2, 673 SuccBB, PredBB, 674 EHScopeMembership, 675 AfterBlockPlacement, MBBFreqInfo, PSI)) { 676 if (CommonTailLen > maxCommonTailLength) { 677 SameTails.clear(); 678 maxCommonTailLength = CommonTailLen; 679 HighestMPIter = CurMPIter; 680 SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1)); 681 } 682 if (HighestMPIter == CurMPIter && 683 CommonTailLen == maxCommonTailLength) 684 SameTails.push_back(SameTailElt(I, TrialBBI2)); 685 } 686 if (I == B) 687 break; 688 } 689 } 690 return maxCommonTailLength; 691 } 692 693 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash, 694 MachineBasicBlock *SuccBB, 695 MachineBasicBlock *PredBB) { 696 MPIterator CurMPIter, B; 697 for (CurMPIter = std::prev(MergePotentials.end()), 698 B = MergePotentials.begin(); 699 CurMPIter->getHash() == CurHash; --CurMPIter) { 700 // Put the unconditional branch back, if we need one. 701 MachineBasicBlock *CurMBB = CurMPIter->getBlock(); 702 if (SuccBB && CurMBB != PredBB) 703 FixTail(CurMBB, SuccBB, TII); 704 if (CurMPIter == B) 705 break; 706 } 707 if (CurMPIter->getHash() != CurHash) 708 CurMPIter++; 709 MergePotentials.erase(CurMPIter, MergePotentials.end()); 710 } 711 712 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB, 713 MachineBasicBlock *SuccBB, 714 unsigned maxCommonTailLength, 715 unsigned &commonTailIndex) { 716 commonTailIndex = 0; 717 unsigned TimeEstimate = ~0U; 718 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 719 // Use PredBB if possible; that doesn't require a new branch. 720 if (SameTails[i].getBlock() == PredBB) { 721 commonTailIndex = i; 722 break; 723 } 724 // Otherwise, make a (fairly bogus) choice based on estimate of 725 // how long it will take the various blocks to execute. 726 unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(), 727 SameTails[i].getTailStartPos()); 728 if (t <= TimeEstimate) { 729 TimeEstimate = t; 730 commonTailIndex = i; 731 } 732 } 733 734 MachineBasicBlock::iterator BBI = 735 SameTails[commonTailIndex].getTailStartPos(); 736 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 737 738 LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size " 739 << maxCommonTailLength); 740 741 // If the split block unconditionally falls-thru to SuccBB, it will be 742 // merged. In control flow terms it should then take SuccBB's name. e.g. If 743 // SuccBB is an inner loop, the common tail is still part of the inner loop. 744 const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ? 745 SuccBB->getBasicBlock() : MBB->getBasicBlock(); 746 MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB); 747 if (!newMBB) { 748 LLVM_DEBUG(dbgs() << "... failed!"); 749 return false; 750 } 751 752 SameTails[commonTailIndex].setBlock(newMBB); 753 SameTails[commonTailIndex].setTailStartPos(newMBB->begin()); 754 755 // If we split PredBB, newMBB is the new predecessor. 756 if (PredBB == MBB) 757 PredBB = newMBB; 758 759 return true; 760 } 761 762 static void 763 mergeOperations(MachineBasicBlock::iterator MBBIStartPos, 764 MachineBasicBlock &MBBCommon) { 765 MachineBasicBlock *MBB = MBBIStartPos->getParent(); 766 // Note CommonTailLen does not necessarily matches the size of 767 // the common BB nor all its instructions because of debug 768 // instructions differences. 769 unsigned CommonTailLen = 0; 770 for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos) 771 ++CommonTailLen; 772 773 MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin(); 774 MachineBasicBlock::reverse_iterator MBBIE = MBB->rend(); 775 MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin(); 776 MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend(); 777 778 while (CommonTailLen--) { 779 assert(MBBI != MBBIE && "Reached BB end within common tail length!"); 780 (void)MBBIE; 781 782 if (!countsAsInstruction(*MBBI)) { 783 ++MBBI; 784 continue; 785 } 786 787 while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon)) 788 ++MBBICommon; 789 790 assert(MBBICommon != MBBIECommon && 791 "Reached BB end within common tail length!"); 792 assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!"); 793 794 // Merge MMOs from memory operations in the common block. 795 if (MBBICommon->mayLoadOrStore()) 796 MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI}); 797 // Drop undef flags if they aren't present in all merged instructions. 798 for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) { 799 MachineOperand &MO = MBBICommon->getOperand(I); 800 if (MO.isReg() && MO.isUndef()) { 801 const MachineOperand &OtherMO = MBBI->getOperand(I); 802 if (!OtherMO.isUndef()) 803 MO.setIsUndef(false); 804 } 805 } 806 807 ++MBBI; 808 ++MBBICommon; 809 } 810 } 811 812 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) { 813 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 814 815 std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size()); 816 for (unsigned int i = 0 ; i != SameTails.size() ; ++i) { 817 if (i != commonTailIndex) { 818 NextCommonInsts[i] = SameTails[i].getTailStartPos(); 819 mergeOperations(SameTails[i].getTailStartPos(), *MBB); 820 } else { 821 assert(SameTails[i].getTailStartPos() == MBB->begin() && 822 "MBB is not a common tail only block"); 823 } 824 } 825 826 for (auto &MI : *MBB) { 827 if (!countsAsInstruction(MI)) 828 continue; 829 DebugLoc DL = MI.getDebugLoc(); 830 for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) { 831 if (i == commonTailIndex) 832 continue; 833 834 auto &Pos = NextCommonInsts[i]; 835 assert(Pos != SameTails[i].getBlock()->end() && 836 "Reached BB end within common tail"); 837 while (!countsAsInstruction(*Pos)) { 838 ++Pos; 839 assert(Pos != SameTails[i].getBlock()->end() && 840 "Reached BB end within common tail"); 841 } 842 assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!"); 843 DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc()); 844 NextCommonInsts[i] = ++Pos; 845 } 846 MI.setDebugLoc(DL); 847 } 848 849 if (UpdateLiveIns) { 850 LivePhysRegs NewLiveIns(*TRI); 851 computeLiveIns(NewLiveIns, *MBB); 852 LiveRegs.init(*TRI); 853 854 // The flag merging may lead to some register uses no longer using the 855 // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary. 856 for (MachineBasicBlock *Pred : MBB->predecessors()) { 857 LiveRegs.clear(); 858 LiveRegs.addLiveOuts(*Pred); 859 MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator(); 860 for (Register Reg : NewLiveIns) { 861 if (!LiveRegs.available(*MRI, Reg)) 862 continue; 863 864 // Skip the register if we are about to add one of its super registers. 865 // TODO: Common this up with the same logic in addLineIns(). 866 if (any_of(TRI->superregs(Reg), [&](MCPhysReg SReg) { 867 return NewLiveIns.contains(SReg) && !MRI->isReserved(SReg); 868 })) 869 continue; 870 871 DebugLoc DL; 872 BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF), 873 Reg); 874 } 875 } 876 877 MBB->clearLiveIns(); 878 addLiveIns(*MBB, NewLiveIns); 879 } 880 } 881 882 // See if any of the blocks in MergePotentials (which all have SuccBB as a 883 // successor, or all have no successor if it is null) can be tail-merged. 884 // If there is a successor, any blocks in MergePotentials that are not 885 // tail-merged and are not immediately before Succ must have an unconditional 886 // branch to Succ added (but the predecessor/successor lists need no 887 // adjustment). The lone predecessor of Succ that falls through into Succ, 888 // if any, is given in PredBB. 889 // MinCommonTailLength - Except for the special cases below, tail-merge if 890 // there are at least this many instructions in common. 891 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB, 892 MachineBasicBlock *PredBB, 893 unsigned MinCommonTailLength) { 894 bool MadeChange = false; 895 896 LLVM_DEBUG( 897 dbgs() << "\nTryTailMergeBlocks: "; 898 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs() 899 << printMBBReference(*MergePotentials[i].getBlock()) 900 << (i == e - 1 ? "" : ", "); 901 dbgs() << "\n"; if (SuccBB) { 902 dbgs() << " with successor " << printMBBReference(*SuccBB) << '\n'; 903 if (PredBB) 904 dbgs() << " which has fall-through from " 905 << printMBBReference(*PredBB) << "\n"; 906 } dbgs() << "Looking for common tails of at least " 907 << MinCommonTailLength << " instruction" 908 << (MinCommonTailLength == 1 ? "" : "s") << '\n';); 909 910 // Sort by hash value so that blocks with identical end sequences sort 911 // together. 912 array_pod_sort(MergePotentials.begin(), MergePotentials.end()); 913 914 // Walk through equivalence sets looking for actual exact matches. 915 while (MergePotentials.size() > 1) { 916 unsigned CurHash = MergePotentials.back().getHash(); 917 918 // Build SameTails, identifying the set of blocks with this hash code 919 // and with the maximum number of instructions in common. 920 unsigned maxCommonTailLength = ComputeSameTails(CurHash, 921 MinCommonTailLength, 922 SuccBB, PredBB); 923 924 // If we didn't find any pair that has at least MinCommonTailLength 925 // instructions in common, remove all blocks with this hash code and retry. 926 if (SameTails.empty()) { 927 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 928 continue; 929 } 930 931 // If one of the blocks is the entire common tail (and is not the entry 932 // block/an EH pad, which we can't jump to), we can treat all blocks with 933 // this same tail at once. Use PredBB if that is one of the possibilities, 934 // as that will not introduce any extra branches. 935 MachineBasicBlock *EntryBB = 936 &MergePotentials.front().getBlock()->getParent()->front(); 937 unsigned commonTailIndex = SameTails.size(); 938 // If there are two blocks, check to see if one can be made to fall through 939 // into the other. 940 if (SameTails.size() == 2 && 941 SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) && 942 SameTails[1].tailIsWholeBlock() && !SameTails[1].getBlock()->isEHPad()) 943 commonTailIndex = 1; 944 else if (SameTails.size() == 2 && 945 SameTails[1].getBlock()->isLayoutSuccessor( 946 SameTails[0].getBlock()) && 947 SameTails[0].tailIsWholeBlock() && 948 !SameTails[0].getBlock()->isEHPad()) 949 commonTailIndex = 0; 950 else { 951 // Otherwise just pick one, favoring the fall-through predecessor if 952 // there is one. 953 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 954 MachineBasicBlock *MBB = SameTails[i].getBlock(); 955 if ((MBB == EntryBB || MBB->isEHPad()) && 956 SameTails[i].tailIsWholeBlock()) 957 continue; 958 if (MBB == PredBB) { 959 commonTailIndex = i; 960 break; 961 } 962 if (SameTails[i].tailIsWholeBlock()) 963 commonTailIndex = i; 964 } 965 } 966 967 if (commonTailIndex == SameTails.size() || 968 (SameTails[commonTailIndex].getBlock() == PredBB && 969 !SameTails[commonTailIndex].tailIsWholeBlock())) { 970 // None of the blocks consist entirely of the common tail. 971 // Split a block so that one does. 972 if (!CreateCommonTailOnlyBlock(PredBB, SuccBB, 973 maxCommonTailLength, commonTailIndex)) { 974 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 975 continue; 976 } 977 } 978 979 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 980 981 // Recompute common tail MBB's edge weights and block frequency. 982 setCommonTailEdgeWeights(*MBB); 983 984 // Merge debug locations, MMOs and undef flags across identical instructions 985 // for common tail. 986 mergeCommonTails(commonTailIndex); 987 988 // MBB is common tail. Adjust all other BB's to jump to this one. 989 // Traversal must be forwards so erases work. 990 LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB) 991 << " for "); 992 for (unsigned int i=0, e = SameTails.size(); i != e; ++i) { 993 if (commonTailIndex == i) 994 continue; 995 LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock()) 996 << (i == e - 1 ? "" : ", ")); 997 // Hack the end off BB i, making it jump to BB commonTailIndex instead. 998 replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB); 999 // BB i is no longer a predecessor of SuccBB; remove it from the worklist. 1000 MergePotentials.erase(SameTails[i].getMPIter()); 1001 } 1002 LLVM_DEBUG(dbgs() << "\n"); 1003 // We leave commonTailIndex in the worklist in case there are other blocks 1004 // that match it with a smaller number of instructions. 1005 MadeChange = true; 1006 } 1007 return MadeChange; 1008 } 1009 1010 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) { 1011 bool MadeChange = false; 1012 if (!EnableTailMerge) 1013 return MadeChange; 1014 1015 // First find blocks with no successors. 1016 // Block placement may create new tail merging opportunities for these blocks. 1017 MergePotentials.clear(); 1018 for (MachineBasicBlock &MBB : MF) { 1019 if (MergePotentials.size() == TailMergeThreshold) 1020 break; 1021 if (!TriedMerging.count(&MBB) && MBB.succ_empty()) 1022 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB)); 1023 } 1024 1025 // If this is a large problem, avoid visiting the same basic blocks 1026 // multiple times. 1027 if (MergePotentials.size() == TailMergeThreshold) 1028 for (const MergePotentialsElt &Elt : MergePotentials) 1029 TriedMerging.insert(Elt.getBlock()); 1030 1031 // See if we can do any tail merging on those. 1032 if (MergePotentials.size() >= 2) 1033 MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength); 1034 1035 // Look at blocks (IBB) with multiple predecessors (PBB). 1036 // We change each predecessor to a canonical form, by 1037 // (1) temporarily removing any unconditional branch from the predecessor 1038 // to IBB, and 1039 // (2) alter conditional branches so they branch to the other block 1040 // not IBB; this may require adding back an unconditional branch to IBB 1041 // later, where there wasn't one coming in. E.g. 1042 // Bcc IBB 1043 // fallthrough to QBB 1044 // here becomes 1045 // Bncc QBB 1046 // with a conceptual B to IBB after that, which never actually exists. 1047 // With those changes, we see whether the predecessors' tails match, 1048 // and merge them if so. We change things out of canonical form and 1049 // back to the way they were later in the process. (OptimizeBranches 1050 // would undo some of this, but we can't use it, because we'd get into 1051 // a compile-time infinite loop repeatedly doing and undoing the same 1052 // transformations.) 1053 1054 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1055 I != E; ++I) { 1056 if (I->pred_size() < 2) continue; 1057 SmallPtrSet<MachineBasicBlock *, 8> UniquePreds; 1058 MachineBasicBlock *IBB = &*I; 1059 MachineBasicBlock *PredBB = &*std::prev(I); 1060 MergePotentials.clear(); 1061 MachineLoop *ML; 1062 1063 // Bail if merging after placement and IBB is the loop header because 1064 // -- If merging predecessors that belong to the same loop as IBB, the 1065 // common tail of merged predecessors may become the loop top if block 1066 // placement is called again and the predecessors may branch to this common 1067 // tail and require more branches. This can be relaxed if 1068 // MachineBlockPlacement::findBestLoopTop is more flexible. 1069 // --If merging predecessors that do not belong to the same loop as IBB, the 1070 // loop info of IBB's loop and the other loops may be affected. Calling the 1071 // block placement again may make big change to the layout and eliminate the 1072 // reason to do tail merging here. 1073 if (AfterBlockPlacement && MLI) { 1074 ML = MLI->getLoopFor(IBB); 1075 if (ML && IBB == ML->getHeader()) 1076 continue; 1077 } 1078 1079 for (MachineBasicBlock *PBB : I->predecessors()) { 1080 if (MergePotentials.size() == TailMergeThreshold) 1081 break; 1082 1083 if (TriedMerging.count(PBB)) 1084 continue; 1085 1086 // Skip blocks that loop to themselves, can't tail merge these. 1087 if (PBB == IBB) 1088 continue; 1089 1090 // Visit each predecessor only once. 1091 if (!UniquePreds.insert(PBB).second) 1092 continue; 1093 1094 // Skip blocks which may jump to a landing pad or jump from an asm blob. 1095 // Can't tail merge these. 1096 if (PBB->hasEHPadSuccessor() || PBB->mayHaveInlineAsmBr()) 1097 continue; 1098 1099 // After block placement, only consider predecessors that belong to the 1100 // same loop as IBB. The reason is the same as above when skipping loop 1101 // header. 1102 if (AfterBlockPlacement && MLI) 1103 if (ML != MLI->getLoopFor(PBB)) 1104 continue; 1105 1106 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1107 SmallVector<MachineOperand, 4> Cond; 1108 if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) { 1109 // Failing case: IBB is the target of a cbr, and we cannot reverse the 1110 // branch. 1111 SmallVector<MachineOperand, 4> NewCond(Cond); 1112 if (!Cond.empty() && TBB == IBB) { 1113 if (TII->reverseBranchCondition(NewCond)) 1114 continue; 1115 // This is the QBB case described above 1116 if (!FBB) { 1117 auto Next = ++PBB->getIterator(); 1118 if (Next != MF.end()) 1119 FBB = &*Next; 1120 } 1121 } 1122 1123 // Remove the unconditional branch at the end, if any. 1124 if (TBB && (Cond.empty() || FBB)) { 1125 DebugLoc dl = PBB->findBranchDebugLoc(); 1126 TII->removeBranch(*PBB); 1127 if (!Cond.empty()) 1128 // reinsert conditional branch only, for now 1129 TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr, 1130 NewCond, dl); 1131 } 1132 1133 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB)); 1134 } 1135 } 1136 1137 // If this is a large problem, avoid visiting the same basic blocks multiple 1138 // times. 1139 if (MergePotentials.size() == TailMergeThreshold) 1140 for (MergePotentialsElt &Elt : MergePotentials) 1141 TriedMerging.insert(Elt.getBlock()); 1142 1143 if (MergePotentials.size() >= 2) 1144 MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength); 1145 1146 // Reinsert an unconditional branch if needed. The 1 below can occur as a 1147 // result of removing blocks in TryTailMergeBlocks. 1148 PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks 1149 if (MergePotentials.size() == 1 && 1150 MergePotentials.begin()->getBlock() != PredBB) 1151 FixTail(MergePotentials.begin()->getBlock(), IBB, TII); 1152 } 1153 1154 return MadeChange; 1155 } 1156 1157 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) { 1158 SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size()); 1159 BlockFrequency AccumulatedMBBFreq; 1160 1161 // Aggregate edge frequency of successor edge j: 1162 // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)), 1163 // where bb is a basic block that is in SameTails. 1164 for (const auto &Src : SameTails) { 1165 const MachineBasicBlock *SrcMBB = Src.getBlock(); 1166 BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB); 1167 AccumulatedMBBFreq += BlockFreq; 1168 1169 // It is not necessary to recompute edge weights if TailBB has less than two 1170 // successors. 1171 if (TailMBB.succ_size() <= 1) 1172 continue; 1173 1174 auto EdgeFreq = EdgeFreqLs.begin(); 1175 1176 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1177 SuccI != SuccE; ++SuccI, ++EdgeFreq) 1178 *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI); 1179 } 1180 1181 MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq); 1182 1183 if (TailMBB.succ_size() <= 1) 1184 return; 1185 1186 auto SumEdgeFreq = 1187 std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0)) 1188 .getFrequency(); 1189 auto EdgeFreq = EdgeFreqLs.begin(); 1190 1191 if (SumEdgeFreq > 0) { 1192 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1193 SuccI != SuccE; ++SuccI, ++EdgeFreq) { 1194 auto Prob = BranchProbability::getBranchProbability( 1195 EdgeFreq->getFrequency(), SumEdgeFreq); 1196 TailMBB.setSuccProbability(SuccI, Prob); 1197 } 1198 } 1199 } 1200 1201 //===----------------------------------------------------------------------===// 1202 // Branch Optimization 1203 //===----------------------------------------------------------------------===// 1204 1205 bool BranchFolder::OptimizeBranches(MachineFunction &MF) { 1206 bool MadeChange = false; 1207 1208 // Make sure blocks are numbered in order 1209 MF.RenumberBlocks(); 1210 // Renumbering blocks alters EH scope membership, recalculate it. 1211 EHScopeMembership = getEHScopeMembership(MF); 1212 1213 for (MachineBasicBlock &MBB : 1214 llvm::make_early_inc_range(llvm::drop_begin(MF))) { 1215 MadeChange |= OptimizeBlock(&MBB); 1216 1217 // If it is dead, remove it. 1218 if (MBB.pred_empty() && !MBB.isMachineBlockAddressTaken()) { 1219 RemoveDeadBlock(&MBB); 1220 MadeChange = true; 1221 ++NumDeadBlocks; 1222 } 1223 } 1224 1225 return MadeChange; 1226 } 1227 1228 // Blocks should be considered empty if they contain only debug info; 1229 // else the debug info would affect codegen. 1230 static bool IsEmptyBlock(MachineBasicBlock *MBB) { 1231 return MBB->getFirstNonDebugInstr(true) == MBB->end(); 1232 } 1233 1234 // Blocks with only debug info and branches should be considered the same 1235 // as blocks with only branches. 1236 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) { 1237 MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr(); 1238 assert(I != MBB->end() && "empty block!"); 1239 return I->isBranch(); 1240 } 1241 1242 /// IsBetterFallthrough - Return true if it would be clearly better to 1243 /// fall-through to MBB1 than to fall through into MBB2. This has to return 1244 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will 1245 /// result in infinite loops. 1246 static bool IsBetterFallthrough(MachineBasicBlock *MBB1, 1247 MachineBasicBlock *MBB2) { 1248 assert(MBB1 && MBB2 && "Unknown MachineBasicBlock"); 1249 1250 // Right now, we use a simple heuristic. If MBB2 ends with a call, and 1251 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to 1252 // optimize branches that branch to either a return block or an assert block 1253 // into a fallthrough to the return. 1254 MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr(); 1255 MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr(); 1256 if (MBB1I == MBB1->end() || MBB2I == MBB2->end()) 1257 return false; 1258 1259 // If there is a clear successor ordering we make sure that one block 1260 // will fall through to the next 1261 if (MBB1->isSuccessor(MBB2)) return true; 1262 if (MBB2->isSuccessor(MBB1)) return false; 1263 1264 return MBB2I->isCall() && !MBB1I->isCall(); 1265 } 1266 1267 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch 1268 /// instructions on the block. 1269 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) { 1270 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1271 if (I != MBB.end() && I->isBranch()) 1272 return I->getDebugLoc(); 1273 return DebugLoc(); 1274 } 1275 1276 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII, 1277 MachineBasicBlock &MBB, 1278 MachineBasicBlock &PredMBB) { 1279 auto InsertBefore = PredMBB.getFirstTerminator(); 1280 for (MachineInstr &MI : MBB.instrs()) 1281 if (MI.isDebugInstr()) { 1282 TII->duplicate(PredMBB, InsertBefore, MI); 1283 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: " 1284 << MI); 1285 } 1286 } 1287 1288 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII, 1289 MachineBasicBlock &MBB, 1290 MachineBasicBlock &SuccMBB) { 1291 auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin()); 1292 for (MachineInstr &MI : MBB.instrs()) 1293 if (MI.isDebugInstr()) { 1294 TII->duplicate(SuccMBB, InsertBefore, MI); 1295 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: " 1296 << MI); 1297 } 1298 } 1299 1300 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such 1301 // a basic block is removed we would lose the debug information unless we have 1302 // copied the information to a predecessor/successor. 1303 // 1304 // TODO: This function only handles some simple cases. An alternative would be 1305 // to run a heavier analysis, such as the LiveDebugValues pass, before we do 1306 // branch folding. 1307 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII, 1308 MachineBasicBlock &MBB) { 1309 assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info)."); 1310 // If this MBB is the only predecessor of a successor it is legal to copy 1311 // DBG_VALUE instructions to the beginning of the successor. 1312 for (MachineBasicBlock *SuccBB : MBB.successors()) 1313 if (SuccBB->pred_size() == 1) 1314 copyDebugInfoToSuccessor(TII, MBB, *SuccBB); 1315 // If this MBB is the only successor of a predecessor it is legal to copy the 1316 // DBG_VALUE instructions to the end of the predecessor (just before the 1317 // terminators, assuming that the terminator isn't affecting the DBG_VALUE). 1318 for (MachineBasicBlock *PredBB : MBB.predecessors()) 1319 if (PredBB->succ_size() == 1) 1320 copyDebugInfoToPredecessor(TII, MBB, *PredBB); 1321 } 1322 1323 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) { 1324 bool MadeChange = false; 1325 MachineFunction &MF = *MBB->getParent(); 1326 ReoptimizeBlock: 1327 1328 MachineFunction::iterator FallThrough = MBB->getIterator(); 1329 ++FallThrough; 1330 1331 // Make sure MBB and FallThrough belong to the same EH scope. 1332 bool SameEHScope = true; 1333 if (!EHScopeMembership.empty() && FallThrough != MF.end()) { 1334 auto MBBEHScope = EHScopeMembership.find(MBB); 1335 assert(MBBEHScope != EHScopeMembership.end()); 1336 auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough); 1337 assert(FallThroughEHScope != EHScopeMembership.end()); 1338 SameEHScope = MBBEHScope->second == FallThroughEHScope->second; 1339 } 1340 1341 // Analyze the branch in the current block. As a side-effect, this may cause 1342 // the block to become empty. 1343 MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr; 1344 SmallVector<MachineOperand, 4> CurCond; 1345 bool CurUnAnalyzable = 1346 TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true); 1347 1348 // If this block is empty, make everyone use its fall-through, not the block 1349 // explicitly. Landing pads should not do this since the landing-pad table 1350 // points to this block. Blocks with their addresses taken shouldn't be 1351 // optimized away. 1352 if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() && 1353 SameEHScope) { 1354 salvageDebugInfoFromEmptyBlock(TII, *MBB); 1355 // Dead block? Leave for cleanup later. 1356 if (MBB->pred_empty()) return MadeChange; 1357 1358 if (FallThrough == MF.end()) { 1359 // TODO: Simplify preds to not branch here if possible! 1360 } else if (FallThrough->isEHPad()) { 1361 // Don't rewrite to a landing pad fallthough. That could lead to the case 1362 // where a BB jumps to more than one landing pad. 1363 // TODO: Is it ever worth rewriting predecessors which don't already 1364 // jump to a landing pad, and so can safely jump to the fallthrough? 1365 } else if (MBB->isSuccessor(&*FallThrough)) { 1366 // Rewrite all predecessors of the old block to go to the fallthrough 1367 // instead. 1368 while (!MBB->pred_empty()) { 1369 MachineBasicBlock *Pred = *(MBB->pred_end()-1); 1370 Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough); 1371 } 1372 // If MBB was the target of a jump table, update jump tables to go to the 1373 // fallthrough instead. 1374 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1375 MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough); 1376 MadeChange = true; 1377 } 1378 return MadeChange; 1379 } 1380 1381 // Check to see if we can simplify the terminator of the block before this 1382 // one. 1383 MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB)); 1384 1385 MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr; 1386 SmallVector<MachineOperand, 4> PriorCond; 1387 bool PriorUnAnalyzable = 1388 TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true); 1389 if (!PriorUnAnalyzable) { 1390 // If the previous branch is conditional and both conditions go to the same 1391 // destination, remove the branch, replacing it with an unconditional one or 1392 // a fall-through. 1393 if (PriorTBB && PriorTBB == PriorFBB) { 1394 DebugLoc dl = getBranchDebugLoc(PrevBB); 1395 TII->removeBranch(PrevBB); 1396 PriorCond.clear(); 1397 if (PriorTBB != MBB) 1398 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1399 MadeChange = true; 1400 ++NumBranchOpts; 1401 goto ReoptimizeBlock; 1402 } 1403 1404 // If the previous block unconditionally falls through to this block and 1405 // this block has no other predecessors, move the contents of this block 1406 // into the prior block. This doesn't usually happen when SimplifyCFG 1407 // has been used, but it can happen if tail merging splits a fall-through 1408 // predecessor of a block. 1409 // This has to check PrevBB->succ_size() because EH edges are ignored by 1410 // analyzeBranch. 1411 if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 && 1412 PrevBB.succ_size() == 1 && 1413 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1414 LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB 1415 << "From MBB: " << *MBB); 1416 // Remove redundant DBG_VALUEs first. 1417 if (!PrevBB.empty()) { 1418 MachineBasicBlock::iterator PrevBBIter = PrevBB.end(); 1419 --PrevBBIter; 1420 MachineBasicBlock::iterator MBBIter = MBB->begin(); 1421 // Check if DBG_VALUE at the end of PrevBB is identical to the 1422 // DBG_VALUE at the beginning of MBB. 1423 while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end() 1424 && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) { 1425 if (!MBBIter->isIdenticalTo(*PrevBBIter)) 1426 break; 1427 MachineInstr &DuplicateDbg = *MBBIter; 1428 ++MBBIter; -- PrevBBIter; 1429 DuplicateDbg.eraseFromParent(); 1430 } 1431 } 1432 PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end()); 1433 PrevBB.removeSuccessor(PrevBB.succ_begin()); 1434 assert(PrevBB.succ_empty()); 1435 PrevBB.transferSuccessors(MBB); 1436 MadeChange = true; 1437 return MadeChange; 1438 } 1439 1440 // If the previous branch *only* branches to *this* block (conditional or 1441 // not) remove the branch. 1442 if (PriorTBB == MBB && !PriorFBB) { 1443 TII->removeBranch(PrevBB); 1444 MadeChange = true; 1445 ++NumBranchOpts; 1446 goto ReoptimizeBlock; 1447 } 1448 1449 // If the prior block branches somewhere else on the condition and here if 1450 // the condition is false, remove the uncond second branch. 1451 if (PriorFBB == MBB) { 1452 DebugLoc dl = getBranchDebugLoc(PrevBB); 1453 TII->removeBranch(PrevBB); 1454 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1455 MadeChange = true; 1456 ++NumBranchOpts; 1457 goto ReoptimizeBlock; 1458 } 1459 1460 // If the prior block branches here on true and somewhere else on false, and 1461 // if the branch condition is reversible, reverse the branch to create a 1462 // fall-through. 1463 if (PriorTBB == MBB) { 1464 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1465 if (!TII->reverseBranchCondition(NewPriorCond)) { 1466 DebugLoc dl = getBranchDebugLoc(PrevBB); 1467 TII->removeBranch(PrevBB); 1468 TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl); 1469 MadeChange = true; 1470 ++NumBranchOpts; 1471 goto ReoptimizeBlock; 1472 } 1473 } 1474 1475 // If this block has no successors (e.g. it is a return block or ends with 1476 // a call to a no-return function like abort or __cxa_throw) and if the pred 1477 // falls through into this block, and if it would otherwise fall through 1478 // into the block after this, move this block to the end of the function. 1479 // 1480 // We consider it more likely that execution will stay in the function (e.g. 1481 // due to loops) than it is to exit it. This asserts in loops etc, moving 1482 // the assert condition out of the loop body. 1483 if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB && 1484 MachineFunction::iterator(PriorTBB) == FallThrough && 1485 !MBB->canFallThrough()) { 1486 bool DoTransform = true; 1487 1488 // We have to be careful that the succs of PredBB aren't both no-successor 1489 // blocks. If neither have successors and if PredBB is the second from 1490 // last block in the function, we'd just keep swapping the two blocks for 1491 // last. Only do the swap if one is clearly better to fall through than 1492 // the other. 1493 if (FallThrough == --MF.end() && 1494 !IsBetterFallthrough(PriorTBB, MBB)) 1495 DoTransform = false; 1496 1497 if (DoTransform) { 1498 // Reverse the branch so we will fall through on the previous true cond. 1499 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1500 if (!TII->reverseBranchCondition(NewPriorCond)) { 1501 LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB 1502 << "To make fallthrough to: " << *PriorTBB << "\n"); 1503 1504 DebugLoc dl = getBranchDebugLoc(PrevBB); 1505 TII->removeBranch(PrevBB); 1506 TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl); 1507 1508 // Move this block to the end of the function. 1509 MBB->moveAfter(&MF.back()); 1510 MadeChange = true; 1511 ++NumBranchOpts; 1512 return MadeChange; 1513 } 1514 } 1515 } 1516 } 1517 1518 if (!IsEmptyBlock(MBB)) { 1519 MachineInstr &TailCall = *MBB->getFirstNonDebugInstr(); 1520 if (TII->isUnconditionalTailCall(TailCall)) { 1521 SmallVector<MachineBasicBlock *> PredsChanged; 1522 for (auto &Pred : MBB->predecessors()) { 1523 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1524 SmallVector<MachineOperand, 4> PredCond; 1525 bool PredAnalyzable = 1526 !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true); 1527 1528 // Only eliminate if MBB == TBB (Taken Basic Block) 1529 if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB && 1530 PredTBB != PredFBB) { 1531 // The predecessor has a conditional branch to this block which 1532 // consists of only a tail call. Try to fold the tail call into the 1533 // conditional branch. 1534 if (TII->canMakeTailCallConditional(PredCond, TailCall)) { 1535 // TODO: It would be nice if analyzeBranch() could provide a pointer 1536 // to the branch instruction so replaceBranchWithTailCall() doesn't 1537 // have to search for it. 1538 TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall); 1539 PredsChanged.push_back(Pred); 1540 } 1541 } 1542 // If the predecessor is falling through to this block, we could reverse 1543 // the branch condition and fold the tail call into that. However, after 1544 // that we might have to re-arrange the CFG to fall through to the other 1545 // block and there is a high risk of regressing code size rather than 1546 // improving it. 1547 } 1548 if (!PredsChanged.empty()) { 1549 NumTailCalls += PredsChanged.size(); 1550 for (auto &Pred : PredsChanged) 1551 Pred->removeSuccessor(MBB); 1552 1553 return true; 1554 } 1555 } 1556 } 1557 1558 if (!CurUnAnalyzable) { 1559 // If this is a two-way branch, and the FBB branches to this block, reverse 1560 // the condition so the single-basic-block loop is faster. Instead of: 1561 // Loop: xxx; jcc Out; jmp Loop 1562 // we want: 1563 // Loop: xxx; jncc Loop; jmp Out 1564 if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) { 1565 SmallVector<MachineOperand, 4> NewCond(CurCond); 1566 if (!TII->reverseBranchCondition(NewCond)) { 1567 DebugLoc dl = getBranchDebugLoc(*MBB); 1568 TII->removeBranch(*MBB); 1569 TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl); 1570 MadeChange = true; 1571 ++NumBranchOpts; 1572 goto ReoptimizeBlock; 1573 } 1574 } 1575 1576 // If this branch is the only thing in its block, see if we can forward 1577 // other blocks across it. 1578 if (CurTBB && CurCond.empty() && !CurFBB && 1579 IsBranchOnlyBlock(MBB) && CurTBB != MBB && 1580 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1581 DebugLoc dl = getBranchDebugLoc(*MBB); 1582 // This block may contain just an unconditional branch. Because there can 1583 // be 'non-branch terminators' in the block, try removing the branch and 1584 // then seeing if the block is empty. 1585 TII->removeBranch(*MBB); 1586 // If the only things remaining in the block are debug info, remove these 1587 // as well, so this will behave the same as an empty block in non-debug 1588 // mode. 1589 if (IsEmptyBlock(MBB)) { 1590 // Make the block empty, losing the debug info (we could probably 1591 // improve this in some cases.) 1592 MBB->erase(MBB->begin(), MBB->end()); 1593 } 1594 // If this block is just an unconditional branch to CurTBB, we can 1595 // usually completely eliminate the block. The only case we cannot 1596 // completely eliminate the block is when the block before this one 1597 // falls through into MBB and we can't understand the prior block's branch 1598 // condition. 1599 if (MBB->empty()) { 1600 bool PredHasNoFallThrough = !PrevBB.canFallThrough(); 1601 if (PredHasNoFallThrough || !PriorUnAnalyzable || 1602 !PrevBB.isSuccessor(MBB)) { 1603 // If the prior block falls through into us, turn it into an 1604 // explicit branch to us to make updates simpler. 1605 if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) && 1606 PriorTBB != MBB && PriorFBB != MBB) { 1607 if (!PriorTBB) { 1608 assert(PriorCond.empty() && !PriorFBB && 1609 "Bad branch analysis"); 1610 PriorTBB = MBB; 1611 } else { 1612 assert(!PriorFBB && "Machine CFG out of date!"); 1613 PriorFBB = MBB; 1614 } 1615 DebugLoc pdl = getBranchDebugLoc(PrevBB); 1616 TII->removeBranch(PrevBB); 1617 TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl); 1618 } 1619 1620 // Iterate through all the predecessors, revectoring each in-turn. 1621 size_t PI = 0; 1622 bool DidChange = false; 1623 bool HasBranchToSelf = false; 1624 while(PI != MBB->pred_size()) { 1625 MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI); 1626 if (PMBB == MBB) { 1627 // If this block has an uncond branch to itself, leave it. 1628 ++PI; 1629 HasBranchToSelf = true; 1630 } else { 1631 DidChange = true; 1632 PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB); 1633 // If this change resulted in PMBB ending in a conditional 1634 // branch where both conditions go to the same destination, 1635 // change this to an unconditional branch. 1636 MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr; 1637 SmallVector<MachineOperand, 4> NewCurCond; 1638 bool NewCurUnAnalyzable = TII->analyzeBranch( 1639 *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true); 1640 if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) { 1641 DebugLoc pdl = getBranchDebugLoc(*PMBB); 1642 TII->removeBranch(*PMBB); 1643 NewCurCond.clear(); 1644 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl); 1645 MadeChange = true; 1646 ++NumBranchOpts; 1647 } 1648 } 1649 } 1650 1651 // Change any jumptables to go to the new MBB. 1652 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1653 MJTI->ReplaceMBBInJumpTables(MBB, CurTBB); 1654 if (DidChange) { 1655 ++NumBranchOpts; 1656 MadeChange = true; 1657 if (!HasBranchToSelf) return MadeChange; 1658 } 1659 } 1660 } 1661 1662 // Add the branch back if the block is more than just an uncond branch. 1663 TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl); 1664 } 1665 } 1666 1667 // If the prior block doesn't fall through into this block, and if this 1668 // block doesn't fall through into some other block, see if we can find a 1669 // place to move this block where a fall-through will happen. 1670 if (!PrevBB.canFallThrough()) { 1671 // Now we know that there was no fall-through into this block, check to 1672 // see if it has a fall-through into its successor. 1673 bool CurFallsThru = MBB->canFallThrough(); 1674 1675 if (!MBB->isEHPad()) { 1676 // Check all the predecessors of this block. If one of them has no fall 1677 // throughs, and analyzeBranch thinks it _could_ fallthrough to this 1678 // block, move this block right after it. 1679 for (MachineBasicBlock *PredBB : MBB->predecessors()) { 1680 // Analyze the branch at the end of the pred. 1681 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1682 SmallVector<MachineOperand, 4> PredCond; 1683 if (PredBB != MBB && !PredBB->canFallThrough() && 1684 !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) && 1685 (PredTBB == MBB || PredFBB == MBB) && 1686 (!CurFallsThru || !CurTBB || !CurFBB) && 1687 (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) { 1688 // If the current block doesn't fall through, just move it. 1689 // If the current block can fall through and does not end with a 1690 // conditional branch, we need to append an unconditional jump to 1691 // the (current) next block. To avoid a possible compile-time 1692 // infinite loop, move blocks only backward in this case. 1693 // Also, if there are already 2 branches here, we cannot add a third; 1694 // this means we have the case 1695 // Bcc next 1696 // B elsewhere 1697 // next: 1698 if (CurFallsThru) { 1699 MachineBasicBlock *NextBB = &*std::next(MBB->getIterator()); 1700 CurCond.clear(); 1701 TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc()); 1702 } 1703 MBB->moveAfter(PredBB); 1704 MadeChange = true; 1705 goto ReoptimizeBlock; 1706 } 1707 } 1708 } 1709 1710 if (!CurFallsThru) { 1711 // Check analyzable branch-successors to see if we can move this block 1712 // before one. 1713 if (!CurUnAnalyzable) { 1714 for (MachineBasicBlock *SuccBB : {CurFBB, CurTBB}) { 1715 if (!SuccBB) 1716 continue; 1717 // Analyze the branch at the end of the block before the succ. 1718 MachineFunction::iterator SuccPrev = --SuccBB->getIterator(); 1719 1720 // If this block doesn't already fall-through to that successor, and 1721 // if the succ doesn't already have a block that can fall through into 1722 // it, we can arrange for the fallthrough to happen. 1723 if (SuccBB != MBB && &*SuccPrev != MBB && 1724 !SuccPrev->canFallThrough()) { 1725 MBB->moveBefore(SuccBB); 1726 MadeChange = true; 1727 goto ReoptimizeBlock; 1728 } 1729 } 1730 } 1731 1732 // Okay, there is no really great place to put this block. If, however, 1733 // the block before this one would be a fall-through if this block were 1734 // removed, move this block to the end of the function. There is no real 1735 // advantage in "falling through" to an EH block, so we don't want to 1736 // perform this transformation for that case. 1737 // 1738 // Also, Windows EH introduced the possibility of an arbitrary number of 1739 // successors to a given block. The analyzeBranch call does not consider 1740 // exception handling and so we can get in a state where a block 1741 // containing a call is followed by multiple EH blocks that would be 1742 // rotated infinitely at the end of the function if the transformation 1743 // below were performed for EH "FallThrough" blocks. Therefore, even if 1744 // that appears not to be happening anymore, we should assume that it is 1745 // possible and not remove the "!FallThrough()->isEHPad" condition below. 1746 MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr; 1747 SmallVector<MachineOperand, 4> PrevCond; 1748 if (FallThrough != MF.end() && 1749 !FallThrough->isEHPad() && 1750 !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) && 1751 PrevBB.isSuccessor(&*FallThrough)) { 1752 MBB->moveAfter(&MF.back()); 1753 MadeChange = true; 1754 return MadeChange; 1755 } 1756 } 1757 } 1758 1759 return MadeChange; 1760 } 1761 1762 //===----------------------------------------------------------------------===// 1763 // Hoist Common Code 1764 //===----------------------------------------------------------------------===// 1765 1766 bool BranchFolder::HoistCommonCode(MachineFunction &MF) { 1767 bool MadeChange = false; 1768 for (MachineBasicBlock &MBB : llvm::make_early_inc_range(MF)) 1769 MadeChange |= HoistCommonCodeInSuccs(&MBB); 1770 1771 return MadeChange; 1772 } 1773 1774 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given 1775 /// its 'true' successor. 1776 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 1777 MachineBasicBlock *TrueBB) { 1778 for (MachineBasicBlock *SuccBB : BB->successors()) 1779 if (SuccBB != TrueBB) 1780 return SuccBB; 1781 return nullptr; 1782 } 1783 1784 template <class Container> 1785 static void addRegAndItsAliases(Register Reg, const TargetRegisterInfo *TRI, 1786 Container &Set) { 1787 if (Reg.isPhysical()) { 1788 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1789 Set.insert(*AI); 1790 } else { 1791 Set.insert(Reg); 1792 } 1793 } 1794 1795 /// findHoistingInsertPosAndDeps - Find the location to move common instructions 1796 /// in successors to. The location is usually just before the terminator, 1797 /// however if the terminator is a conditional branch and its previous 1798 /// instruction is the flag setting instruction, the previous instruction is 1799 /// the preferred location. This function also gathers uses and defs of the 1800 /// instructions from the insertion point to the end of the block. The data is 1801 /// used by HoistCommonCodeInSuccs to ensure safety. 1802 static 1803 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB, 1804 const TargetInstrInfo *TII, 1805 const TargetRegisterInfo *TRI, 1806 SmallSet<Register, 4> &Uses, 1807 SmallSet<Register, 4> &Defs) { 1808 MachineBasicBlock::iterator Loc = MBB->getFirstTerminator(); 1809 if (!TII->isUnpredicatedTerminator(*Loc)) 1810 return MBB->end(); 1811 1812 for (const MachineOperand &MO : Loc->operands()) { 1813 if (!MO.isReg()) 1814 continue; 1815 Register Reg = MO.getReg(); 1816 if (!Reg) 1817 continue; 1818 if (MO.isUse()) { 1819 addRegAndItsAliases(Reg, TRI, Uses); 1820 } else { 1821 if (!MO.isDead()) 1822 // Don't try to hoist code in the rare case the terminator defines a 1823 // register that is later used. 1824 return MBB->end(); 1825 1826 // If the terminator defines a register, make sure we don't hoist 1827 // the instruction whose def might be clobbered by the terminator. 1828 addRegAndItsAliases(Reg, TRI, Defs); 1829 } 1830 } 1831 1832 if (Uses.empty()) 1833 return Loc; 1834 // If the terminator is the only instruction in the block and Uses is not 1835 // empty (or we would have returned above), we can still safely hoist 1836 // instructions just before the terminator as long as the Defs/Uses are not 1837 // violated (which is checked in HoistCommonCodeInSuccs). 1838 if (Loc == MBB->begin()) 1839 return Loc; 1840 1841 // The terminator is probably a conditional branch, try not to separate the 1842 // branch from condition setting instruction. 1843 MachineBasicBlock::iterator PI = prev_nodbg(Loc, MBB->begin()); 1844 1845 bool IsDef = false; 1846 for (const MachineOperand &MO : PI->operands()) { 1847 // If PI has a regmask operand, it is probably a call. Separate away. 1848 if (MO.isRegMask()) 1849 return Loc; 1850 if (!MO.isReg() || MO.isUse()) 1851 continue; 1852 Register Reg = MO.getReg(); 1853 if (!Reg) 1854 continue; 1855 if (Uses.count(Reg)) { 1856 IsDef = true; 1857 break; 1858 } 1859 } 1860 if (!IsDef) 1861 // The condition setting instruction is not just before the conditional 1862 // branch. 1863 return Loc; 1864 1865 // Be conservative, don't insert instruction above something that may have 1866 // side-effects. And since it's potentially bad to separate flag setting 1867 // instruction from the conditional branch, just abort the optimization 1868 // completely. 1869 // Also avoid moving code above predicated instruction since it's hard to 1870 // reason about register liveness with predicated instruction. 1871 bool DontMoveAcrossStore = true; 1872 if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI)) 1873 return MBB->end(); 1874 1875 // Find out what registers are live. Note this routine is ignoring other live 1876 // registers which are only used by instructions in successor blocks. 1877 for (const MachineOperand &MO : PI->operands()) { 1878 if (!MO.isReg()) 1879 continue; 1880 Register Reg = MO.getReg(); 1881 if (!Reg) 1882 continue; 1883 if (MO.isUse()) { 1884 addRegAndItsAliases(Reg, TRI, Uses); 1885 } else { 1886 if (Uses.erase(Reg)) { 1887 if (Reg.isPhysical()) { 1888 for (MCPhysReg SubReg : TRI->subregs(Reg)) 1889 Uses.erase(SubReg); // Use sub-registers to be conservative 1890 } 1891 } 1892 addRegAndItsAliases(Reg, TRI, Defs); 1893 } 1894 } 1895 1896 return PI; 1897 } 1898 1899 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) { 1900 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1901 SmallVector<MachineOperand, 4> Cond; 1902 if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty()) 1903 return false; 1904 1905 if (!FBB) FBB = findFalseBlock(MBB, TBB); 1906 if (!FBB) 1907 // Malformed bcc? True and false blocks are the same? 1908 return false; 1909 1910 // Restrict the optimization to cases where MBB is the only predecessor, 1911 // it is an obvious win. 1912 if (TBB->pred_size() > 1 || FBB->pred_size() > 1) 1913 return false; 1914 1915 // Find a suitable position to hoist the common instructions to. Also figure 1916 // out which registers are used or defined by instructions from the insertion 1917 // point to the end of the block. 1918 SmallSet<Register, 4> Uses, Defs; 1919 MachineBasicBlock::iterator Loc = 1920 findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs); 1921 if (Loc == MBB->end()) 1922 return false; 1923 1924 bool HasDups = false; 1925 SmallSet<Register, 4> ActiveDefsSet, AllDefsSet; 1926 MachineBasicBlock::iterator TIB = TBB->begin(); 1927 MachineBasicBlock::iterator FIB = FBB->begin(); 1928 MachineBasicBlock::iterator TIE = TBB->end(); 1929 MachineBasicBlock::iterator FIE = FBB->end(); 1930 while (TIB != TIE && FIB != FIE) { 1931 // Skip dbg_value instructions. These do not count. 1932 TIB = skipDebugInstructionsForward(TIB, TIE, false); 1933 FIB = skipDebugInstructionsForward(FIB, FIE, false); 1934 if (TIB == TIE || FIB == FIE) 1935 break; 1936 1937 if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead)) 1938 break; 1939 1940 if (TII->isPredicated(*TIB)) 1941 // Hard to reason about register liveness with predicated instruction. 1942 break; 1943 1944 bool IsSafe = true; 1945 for (MachineOperand &MO : TIB->operands()) { 1946 // Don't attempt to hoist instructions with register masks. 1947 if (MO.isRegMask()) { 1948 IsSafe = false; 1949 break; 1950 } 1951 if (!MO.isReg()) 1952 continue; 1953 Register Reg = MO.getReg(); 1954 if (!Reg) 1955 continue; 1956 if (MO.isDef()) { 1957 if (Uses.count(Reg)) { 1958 // Avoid clobbering a register that's used by the instruction at 1959 // the point of insertion. 1960 IsSafe = false; 1961 break; 1962 } 1963 1964 if (Defs.count(Reg) && !MO.isDead()) { 1965 // Don't hoist the instruction if the def would be clobber by the 1966 // instruction at the point insertion. FIXME: This is overly 1967 // conservative. It should be possible to hoist the instructions 1968 // in BB2 in the following example: 1969 // BB1: 1970 // r1, eflag = op1 r2, r3 1971 // brcc eflag 1972 // 1973 // BB2: 1974 // r1 = op2, ... 1975 // = op3, killed r1 1976 IsSafe = false; 1977 break; 1978 } 1979 } else if (!ActiveDefsSet.count(Reg)) { 1980 if (Defs.count(Reg)) { 1981 // Use is defined by the instruction at the point of insertion. 1982 IsSafe = false; 1983 break; 1984 } 1985 1986 if (MO.isKill() && Uses.count(Reg)) 1987 // Kills a register that's read by the instruction at the point of 1988 // insertion. Remove the kill marker. 1989 MO.setIsKill(false); 1990 } 1991 } 1992 if (!IsSafe) 1993 break; 1994 1995 bool DontMoveAcrossStore = true; 1996 if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore)) 1997 break; 1998 1999 // Remove kills from ActiveDefsSet, these registers had short live ranges. 2000 for (const MachineOperand &MO : TIB->all_uses()) { 2001 if (!MO.isKill()) 2002 continue; 2003 Register Reg = MO.getReg(); 2004 if (!Reg) 2005 continue; 2006 if (!AllDefsSet.count(Reg)) { 2007 continue; 2008 } 2009 if (Reg.isPhysical()) { 2010 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 2011 ActiveDefsSet.erase(*AI); 2012 } else { 2013 ActiveDefsSet.erase(Reg); 2014 } 2015 } 2016 2017 // Track local defs so we can update liveins. 2018 for (const MachineOperand &MO : TIB->all_defs()) { 2019 if (MO.isDead()) 2020 continue; 2021 Register Reg = MO.getReg(); 2022 if (!Reg || Reg.isVirtual()) 2023 continue; 2024 addRegAndItsAliases(Reg, TRI, ActiveDefsSet); 2025 addRegAndItsAliases(Reg, TRI, AllDefsSet); 2026 } 2027 2028 HasDups = true; 2029 ++TIB; 2030 ++FIB; 2031 } 2032 2033 if (!HasDups) 2034 return false; 2035 2036 MBB->splice(Loc, TBB, TBB->begin(), TIB); 2037 FBB->erase(FBB->begin(), FIB); 2038 2039 if (UpdateLiveIns) { 2040 recomputeLiveIns(*TBB); 2041 recomputeLiveIns(*FBB); 2042 } 2043 2044 ++NumHoist; 2045 return true; 2046 } 2047