xref: /freebsd-src/contrib/llvm-project/llvm/lib/CodeGen/BranchFolding.cpp (revision 8a4dda33d67586ca2624f2a38417baa03a533a7f)
1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass forwards branches to unconditional branches to make them branch
10 // directly to the target block.  This pass often results in dead MBB's, which
11 // it then removes.
12 //
13 // Note that this pass must be run after register allocation, it cannot handle
14 // SSA form. It also must handle virtual registers for targets that emit virtual
15 // ISA (e.g. NVPTX).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "BranchFolding.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/ProfileSummaryInfo.h"
26 #include "llvm/CodeGen/Analysis.h"
27 #include "llvm/CodeGen/MBFIWrapper.h"
28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
29 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineJumpTableInfo.h"
35 #include "llvm/CodeGen/MachineLoopInfo.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/MachineSizeOpts.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetOpcodes.h"
41 #include "llvm/CodeGen/TargetPassConfig.h"
42 #include "llvm/CodeGen/TargetRegisterInfo.h"
43 #include "llvm/CodeGen/TargetSubtargetInfo.h"
44 #include "llvm/IR/DebugInfoMetadata.h"
45 #include "llvm/IR/DebugLoc.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/MC/LaneBitmask.h"
49 #include "llvm/MC/MCRegisterInfo.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/BlockFrequency.h"
52 #include "llvm/Support/BranchProbability.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetMachine.h"
58 #include <cassert>
59 #include <cstddef>
60 #include <iterator>
61 #include <numeric>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "branch-folder"
66 
67 STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
68 STATISTIC(NumBranchOpts, "Number of branches optimized");
69 STATISTIC(NumTailMerge , "Number of block tails merged");
70 STATISTIC(NumHoist     , "Number of times common instructions are hoisted");
71 STATISTIC(NumTailCalls,  "Number of tail calls optimized");
72 
73 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge",
74                               cl::init(cl::BOU_UNSET), cl::Hidden);
75 
76 // Throttle for huge numbers of predecessors (compile speed problems)
77 static cl::opt<unsigned>
78 TailMergeThreshold("tail-merge-threshold",
79           cl::desc("Max number of predecessors to consider tail merging"),
80           cl::init(150), cl::Hidden);
81 
82 // Heuristic for tail merging (and, inversely, tail duplication).
83 // TODO: This should be replaced with a target query.
84 static cl::opt<unsigned>
85 TailMergeSize("tail-merge-size",
86               cl::desc("Min number of instructions to consider tail merging"),
87               cl::init(3), cl::Hidden);
88 
89 namespace {
90 
91   /// BranchFolderPass - Wrap branch folder in a machine function pass.
92   class BranchFolderPass : public MachineFunctionPass {
93   public:
94     static char ID;
95 
96     explicit BranchFolderPass(): MachineFunctionPass(ID) {}
97 
98     bool runOnMachineFunction(MachineFunction &MF) override;
99 
100     void getAnalysisUsage(AnalysisUsage &AU) const override {
101       AU.addRequired<MachineBlockFrequencyInfo>();
102       AU.addRequired<MachineBranchProbabilityInfo>();
103       AU.addRequired<ProfileSummaryInfoWrapperPass>();
104       AU.addRequired<TargetPassConfig>();
105       MachineFunctionPass::getAnalysisUsage(AU);
106     }
107 
108     MachineFunctionProperties getRequiredProperties() const override {
109       return MachineFunctionProperties().set(
110           MachineFunctionProperties::Property::NoPHIs);
111     }
112   };
113 
114 } // end anonymous namespace
115 
116 char BranchFolderPass::ID = 0;
117 
118 char &llvm::BranchFolderPassID = BranchFolderPass::ID;
119 
120 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE,
121                 "Control Flow Optimizer", false, false)
122 
123 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
124   if (skipFunction(MF.getFunction()))
125     return false;
126 
127   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
128   // TailMerge can create jump into if branches that make CFG irreducible for
129   // HW that requires structurized CFG.
130   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
131                          PassConfig->getEnableTailMerge();
132   MBFIWrapper MBBFreqInfo(
133       getAnalysis<MachineBlockFrequencyInfo>());
134   BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo,
135                       getAnalysis<MachineBranchProbabilityInfo>(),
136                       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
137   return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(),
138                                  MF.getSubtarget().getRegisterInfo());
139 }
140 
141 BranchFolder::BranchFolder(bool DefaultEnableTailMerge, bool CommonHoist,
142                            MBFIWrapper &FreqInfo,
143                            const MachineBranchProbabilityInfo &ProbInfo,
144                            ProfileSummaryInfo *PSI, unsigned MinTailLength)
145     : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength),
146       MBBFreqInfo(FreqInfo), MBPI(ProbInfo), PSI(PSI) {
147   if (MinCommonTailLength == 0)
148     MinCommonTailLength = TailMergeSize;
149   switch (FlagEnableTailMerge) {
150   case cl::BOU_UNSET:
151     EnableTailMerge = DefaultEnableTailMerge;
152     break;
153   case cl::BOU_TRUE: EnableTailMerge = true; break;
154   case cl::BOU_FALSE: EnableTailMerge = false; break;
155   }
156 }
157 
158 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
159   assert(MBB->pred_empty() && "MBB must be dead!");
160   LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
161 
162   MachineFunction *MF = MBB->getParent();
163   // drop all successors.
164   while (!MBB->succ_empty())
165     MBB->removeSuccessor(MBB->succ_end()-1);
166 
167   // Avoid matching if this pointer gets reused.
168   TriedMerging.erase(MBB);
169 
170   // Update call site info.
171   for (const MachineInstr &MI : *MBB)
172     if (MI.shouldUpdateCallSiteInfo())
173       MF->eraseCallSiteInfo(&MI);
174 
175   // Remove the block.
176   MF->erase(MBB);
177   EHScopeMembership.erase(MBB);
178   if (MLI)
179     MLI->removeBlock(MBB);
180 }
181 
182 bool BranchFolder::OptimizeFunction(MachineFunction &MF,
183                                     const TargetInstrInfo *tii,
184                                     const TargetRegisterInfo *tri,
185                                     MachineLoopInfo *mli, bool AfterPlacement) {
186   if (!tii) return false;
187 
188   TriedMerging.clear();
189 
190   MachineRegisterInfo &MRI = MF.getRegInfo();
191   AfterBlockPlacement = AfterPlacement;
192   TII = tii;
193   TRI = tri;
194   MLI = mli;
195   this->MRI = &MRI;
196 
197   UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF);
198   if (!UpdateLiveIns)
199     MRI.invalidateLiveness();
200 
201   bool MadeChange = false;
202 
203   // Recalculate EH scope membership.
204   EHScopeMembership = getEHScopeMembership(MF);
205 
206   bool MadeChangeThisIteration = true;
207   while (MadeChangeThisIteration) {
208     MadeChangeThisIteration    = TailMergeBlocks(MF);
209     // No need to clean up if tail merging does not change anything after the
210     // block placement.
211     if (!AfterBlockPlacement || MadeChangeThisIteration)
212       MadeChangeThisIteration |= OptimizeBranches(MF);
213     if (EnableHoistCommonCode)
214       MadeChangeThisIteration |= HoistCommonCode(MF);
215     MadeChange |= MadeChangeThisIteration;
216   }
217 
218   // See if any jump tables have become dead as the code generator
219   // did its thing.
220   MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
221   if (!JTI)
222     return MadeChange;
223 
224   // Walk the function to find jump tables that are live.
225   BitVector JTIsLive(JTI->getJumpTables().size());
226   for (const MachineBasicBlock &BB : MF) {
227     for (const MachineInstr &I : BB)
228       for (const MachineOperand &Op : I.operands()) {
229         if (!Op.isJTI()) continue;
230 
231         // Remember that this JT is live.
232         JTIsLive.set(Op.getIndex());
233       }
234   }
235 
236   // Finally, remove dead jump tables.  This happens when the
237   // indirect jump was unreachable (and thus deleted).
238   for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
239     if (!JTIsLive.test(i)) {
240       JTI->RemoveJumpTable(i);
241       MadeChange = true;
242     }
243 
244   return MadeChange;
245 }
246 
247 //===----------------------------------------------------------------------===//
248 //  Tail Merging of Blocks
249 //===----------------------------------------------------------------------===//
250 
251 /// HashMachineInstr - Compute a hash value for MI and its operands.
252 static unsigned HashMachineInstr(const MachineInstr &MI) {
253   unsigned Hash = MI.getOpcode();
254   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
255     const MachineOperand &Op = MI.getOperand(i);
256 
257     // Merge in bits from the operand if easy. We can't use MachineOperand's
258     // hash_code here because it's not deterministic and we sort by hash value
259     // later.
260     unsigned OperandHash = 0;
261     switch (Op.getType()) {
262     case MachineOperand::MO_Register:
263       OperandHash = Op.getReg();
264       break;
265     case MachineOperand::MO_Immediate:
266       OperandHash = Op.getImm();
267       break;
268     case MachineOperand::MO_MachineBasicBlock:
269       OperandHash = Op.getMBB()->getNumber();
270       break;
271     case MachineOperand::MO_FrameIndex:
272     case MachineOperand::MO_ConstantPoolIndex:
273     case MachineOperand::MO_JumpTableIndex:
274       OperandHash = Op.getIndex();
275       break;
276     case MachineOperand::MO_GlobalAddress:
277     case MachineOperand::MO_ExternalSymbol:
278       // Global address / external symbol are too hard, don't bother, but do
279       // pull in the offset.
280       OperandHash = Op.getOffset();
281       break;
282     default:
283       break;
284     }
285 
286     Hash += ((OperandHash << 3) | Op.getType()) << (i & 31);
287   }
288   return Hash;
289 }
290 
291 /// HashEndOfMBB - Hash the last instruction in the MBB.
292 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) {
293   MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(false);
294   if (I == MBB.end())
295     return 0;
296 
297   return HashMachineInstr(*I);
298 }
299 
300 /// Whether MI should be counted as an instruction when calculating common tail.
301 static bool countsAsInstruction(const MachineInstr &MI) {
302   return !(MI.isDebugInstr() || MI.isCFIInstruction());
303 }
304 
305 /// Iterate backwards from the given iterator \p I, towards the beginning of the
306 /// block. If a MI satisfying 'countsAsInstruction' is found, return an iterator
307 /// pointing to that MI. If no such MI is found, return the end iterator.
308 static MachineBasicBlock::iterator
309 skipBackwardPastNonInstructions(MachineBasicBlock::iterator I,
310                                 MachineBasicBlock *MBB) {
311   while (I != MBB->begin()) {
312     --I;
313     if (countsAsInstruction(*I))
314       return I;
315   }
316   return MBB->end();
317 }
318 
319 /// Given two machine basic blocks, return the number of instructions they
320 /// actually have in common together at their end. If a common tail is found (at
321 /// least by one instruction), then iterators for the first shared instruction
322 /// in each block are returned as well.
323 ///
324 /// Non-instructions according to countsAsInstruction are ignored.
325 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
326                                         MachineBasicBlock *MBB2,
327                                         MachineBasicBlock::iterator &I1,
328                                         MachineBasicBlock::iterator &I2) {
329   MachineBasicBlock::iterator MBBI1 = MBB1->end();
330   MachineBasicBlock::iterator MBBI2 = MBB2->end();
331 
332   unsigned TailLen = 0;
333   while (true) {
334     MBBI1 = skipBackwardPastNonInstructions(MBBI1, MBB1);
335     MBBI2 = skipBackwardPastNonInstructions(MBBI2, MBB2);
336     if (MBBI1 == MBB1->end() || MBBI2 == MBB2->end())
337       break;
338     if (!MBBI1->isIdenticalTo(*MBBI2) ||
339         // FIXME: This check is dubious. It's used to get around a problem where
340         // people incorrectly expect inline asm directives to remain in the same
341         // relative order. This is untenable because normal compiler
342         // optimizations (like this one) may reorder and/or merge these
343         // directives.
344         MBBI1->isInlineAsm()) {
345       break;
346     }
347     if (MBBI1->getFlag(MachineInstr::NoMerge) ||
348         MBBI2->getFlag(MachineInstr::NoMerge))
349       break;
350     ++TailLen;
351     I1 = MBBI1;
352     I2 = MBBI2;
353   }
354 
355   return TailLen;
356 }
357 
358 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
359                                            MachineBasicBlock &NewDest) {
360   if (UpdateLiveIns) {
361     // OldInst should always point to an instruction.
362     MachineBasicBlock &OldMBB = *OldInst->getParent();
363     LiveRegs.clear();
364     LiveRegs.addLiveOuts(OldMBB);
365     // Move backward to the place where will insert the jump.
366     MachineBasicBlock::iterator I = OldMBB.end();
367     do {
368       --I;
369       LiveRegs.stepBackward(*I);
370     } while (I != OldInst);
371 
372     // Merging the tails may have switched some undef operand to non-undef ones.
373     // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
374     // register.
375     for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) {
376       // We computed the liveins with computeLiveIn earlier and should only see
377       // full registers:
378       assert(P.LaneMask == LaneBitmask::getAll() &&
379              "Can only handle full register.");
380       MCPhysReg Reg = P.PhysReg;
381       if (!LiveRegs.available(*MRI, Reg))
382         continue;
383       DebugLoc DL;
384       BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
385     }
386   }
387 
388   TII->ReplaceTailWithBranchTo(OldInst, &NewDest);
389   ++NumTailMerge;
390 }
391 
392 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
393                                             MachineBasicBlock::iterator BBI1,
394                                             const BasicBlock *BB) {
395   if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1))
396     return nullptr;
397 
398   MachineFunction &MF = *CurMBB.getParent();
399 
400   // Create the fall-through block.
401   MachineFunction::iterator MBBI = CurMBB.getIterator();
402   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB);
403   CurMBB.getParent()->insert(++MBBI, NewMBB);
404 
405   // Move all the successors of this block to the specified block.
406   NewMBB->transferSuccessors(&CurMBB);
407 
408   // Add an edge from CurMBB to NewMBB for the fall-through.
409   CurMBB.addSuccessor(NewMBB);
410 
411   // Splice the code over.
412   NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());
413 
414   // NewMBB belongs to the same loop as CurMBB.
415   if (MLI)
416     if (MachineLoop *ML = MLI->getLoopFor(&CurMBB))
417       ML->addBasicBlockToLoop(NewMBB, MLI->getBase());
418 
419   // NewMBB inherits CurMBB's block frequency.
420   MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB));
421 
422   if (UpdateLiveIns)
423     computeAndAddLiveIns(LiveRegs, *NewMBB);
424 
425   // Add the new block to the EH scope.
426   const auto &EHScopeI = EHScopeMembership.find(&CurMBB);
427   if (EHScopeI != EHScopeMembership.end()) {
428     auto n = EHScopeI->second;
429     EHScopeMembership[NewMBB] = n;
430   }
431 
432   return NewMBB;
433 }
434 
435 /// EstimateRuntime - Make a rough estimate for how long it will take to run
436 /// the specified code.
437 static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
438                                 MachineBasicBlock::iterator E) {
439   unsigned Time = 0;
440   for (; I != E; ++I) {
441     if (!countsAsInstruction(*I))
442       continue;
443     if (I->isCall())
444       Time += 10;
445     else if (I->mayLoadOrStore())
446       Time += 2;
447     else
448       ++Time;
449   }
450   return Time;
451 }
452 
453 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these
454 // branches temporarily for tail merging).  In the case where CurMBB ends
455 // with a conditional branch to the next block, optimize by reversing the
456 // test and conditionally branching to SuccMBB instead.
457 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB,
458                     const TargetInstrInfo *TII) {
459   MachineFunction *MF = CurMBB->getParent();
460   MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB));
461   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
462   SmallVector<MachineOperand, 4> Cond;
463   DebugLoc dl = CurMBB->findBranchDebugLoc();
464   if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
465     MachineBasicBlock *NextBB = &*I;
466     if (TBB == NextBB && !Cond.empty() && !FBB) {
467       if (!TII->reverseBranchCondition(Cond)) {
468         TII->removeBranch(*CurMBB);
469         TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl);
470         return;
471       }
472     }
473   }
474   TII->insertBranch(*CurMBB, SuccBB, nullptr,
475                     SmallVector<MachineOperand, 0>(), dl);
476 }
477 
478 bool
479 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const {
480   if (getHash() < o.getHash())
481     return true;
482   if (getHash() > o.getHash())
483     return false;
484   if (getBlock()->getNumber() < o.getBlock()->getNumber())
485     return true;
486   if (getBlock()->getNumber() > o.getBlock()->getNumber())
487     return false;
488   // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
489   // an object with itself.
490 #ifndef _GLIBCXX_DEBUG
491   llvm_unreachable("Predecessor appears twice");
492 #else
493   return false;
494 #endif
495 }
496 
497 /// CountTerminators - Count the number of terminators in the given
498 /// block and set I to the position of the first non-terminator, if there
499 /// is one, or MBB->end() otherwise.
500 static unsigned CountTerminators(MachineBasicBlock *MBB,
501                                  MachineBasicBlock::iterator &I) {
502   I = MBB->end();
503   unsigned NumTerms = 0;
504   while (true) {
505     if (I == MBB->begin()) {
506       I = MBB->end();
507       break;
508     }
509     --I;
510     if (!I->isTerminator()) break;
511     ++NumTerms;
512   }
513   return NumTerms;
514 }
515 
516 /// A no successor, non-return block probably ends in unreachable and is cold.
517 /// Also consider a block that ends in an indirect branch to be a return block,
518 /// since many targets use plain indirect branches to return.
519 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) {
520   if (!MBB->succ_empty())
521     return false;
522   if (MBB->empty())
523     return true;
524   return !(MBB->back().isReturn() || MBB->back().isIndirectBranch());
525 }
526 
527 /// ProfitableToMerge - Check if two machine basic blocks have a common tail
528 /// and decide if it would be profitable to merge those tails.  Return the
529 /// length of the common tail and iterators to the first common instruction
530 /// in each block.
531 /// MBB1, MBB2      The blocks to check
532 /// MinCommonTailLength  Minimum size of tail block to be merged.
533 /// CommonTailLen   Out parameter to record the size of the shared tail between
534 ///                 MBB1 and MBB2
535 /// I1, I2          Iterator references that will be changed to point to the first
536 ///                 instruction in the common tail shared by MBB1,MBB2
537 /// SuccBB          A common successor of MBB1, MBB2 which are in a canonical form
538 ///                 relative to SuccBB
539 /// PredBB          The layout predecessor of SuccBB, if any.
540 /// EHScopeMembership  map from block to EH scope #.
541 /// AfterPlacement  True if we are merging blocks after layout. Stricter
542 ///                 thresholds apply to prevent undoing tail-duplication.
543 static bool
544 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
545                   unsigned MinCommonTailLength, unsigned &CommonTailLen,
546                   MachineBasicBlock::iterator &I1,
547                   MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB,
548                   MachineBasicBlock *PredBB,
549                   DenseMap<const MachineBasicBlock *, int> &EHScopeMembership,
550                   bool AfterPlacement,
551                   MBFIWrapper &MBBFreqInfo,
552                   ProfileSummaryInfo *PSI) {
553   // It is never profitable to tail-merge blocks from two different EH scopes.
554   if (!EHScopeMembership.empty()) {
555     auto EHScope1 = EHScopeMembership.find(MBB1);
556     assert(EHScope1 != EHScopeMembership.end());
557     auto EHScope2 = EHScopeMembership.find(MBB2);
558     assert(EHScope2 != EHScopeMembership.end());
559     if (EHScope1->second != EHScope2->second)
560       return false;
561   }
562 
563   CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2);
564   if (CommonTailLen == 0)
565     return false;
566   LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1)
567                     << " and " << printMBBReference(*MBB2) << " is "
568                     << CommonTailLen << '\n');
569 
570   // Move the iterators to the beginning of the MBB if we only got debug
571   // instructions before the tail. This is to avoid splitting a block when we
572   // only got debug instructions before the tail (to be invariant on -g).
573   if (skipDebugInstructionsForward(MBB1->begin(), MBB1->end(), false) == I1)
574     I1 = MBB1->begin();
575   if (skipDebugInstructionsForward(MBB2->begin(), MBB2->end(), false) == I2)
576     I2 = MBB2->begin();
577 
578   bool FullBlockTail1 = I1 == MBB1->begin();
579   bool FullBlockTail2 = I2 == MBB2->begin();
580 
581   // It's almost always profitable to merge any number of non-terminator
582   // instructions with the block that falls through into the common successor.
583   // This is true only for a single successor. For multiple successors, we are
584   // trading a conditional branch for an unconditional one.
585   // TODO: Re-visit successor size for non-layout tail merging.
586   if ((MBB1 == PredBB || MBB2 == PredBB) &&
587       (!AfterPlacement || MBB1->succ_size() == 1)) {
588     MachineBasicBlock::iterator I;
589     unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I);
590     if (CommonTailLen > NumTerms)
591       return true;
592   }
593 
594   // If these are identical non-return blocks with no successors, merge them.
595   // Such blocks are typically cold calls to noreturn functions like abort, and
596   // are unlikely to become a fallthrough target after machine block placement.
597   // Tail merging these blocks is unlikely to create additional unconditional
598   // branches, and will reduce the size of this cold code.
599   if (FullBlockTail1 && FullBlockTail2 &&
600       blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2))
601     return true;
602 
603   // If one of the blocks can be completely merged and happens to be in
604   // a position where the other could fall through into it, merge any number
605   // of instructions, because it can be done without a branch.
606   // TODO: If the blocks are not adjacent, move one of them so that they are?
607   if (MBB1->isLayoutSuccessor(MBB2) && FullBlockTail2)
608     return true;
609   if (MBB2->isLayoutSuccessor(MBB1) && FullBlockTail1)
610     return true;
611 
612   // If both blocks are identical and end in a branch, merge them unless they
613   // both have a fallthrough predecessor and successor.
614   // We can only do this after block placement because it depends on whether
615   // there are fallthroughs, and we don't know until after layout.
616   if (AfterPlacement && FullBlockTail1 && FullBlockTail2) {
617     auto BothFallThrough = [](MachineBasicBlock *MBB) {
618       if (!MBB->succ_empty() && !MBB->canFallThrough())
619         return false;
620       MachineFunction::iterator I(MBB);
621       MachineFunction *MF = MBB->getParent();
622       return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough();
623     };
624     if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2))
625       return true;
626   }
627 
628   // If both blocks have an unconditional branch temporarily stripped out,
629   // count that as an additional common instruction for the following
630   // heuristics. This heuristic is only accurate for single-succ blocks, so to
631   // make sure that during layout merging and duplicating don't crash, we check
632   // for that when merging during layout.
633   unsigned EffectiveTailLen = CommonTailLen;
634   if (SuccBB && MBB1 != PredBB && MBB2 != PredBB &&
635       (MBB1->succ_size() == 1 || !AfterPlacement) &&
636       !MBB1->back().isBarrier() &&
637       !MBB2->back().isBarrier())
638     ++EffectiveTailLen;
639 
640   // Check if the common tail is long enough to be worthwhile.
641   if (EffectiveTailLen >= MinCommonTailLength)
642     return true;
643 
644   // If we are optimizing for code size, 2 instructions in common is enough if
645   // we don't have to split a block.  At worst we will be introducing 1 new
646   // branch instruction, which is likely to be smaller than the 2
647   // instructions that would be deleted in the merge.
648   MachineFunction *MF = MBB1->getParent();
649   bool OptForSize =
650       MF->getFunction().hasOptSize() ||
651       (llvm::shouldOptimizeForSize(MBB1, PSI, &MBBFreqInfo) &&
652        llvm::shouldOptimizeForSize(MBB2, PSI, &MBBFreqInfo));
653   return EffectiveTailLen >= 2 && OptForSize &&
654          (FullBlockTail1 || FullBlockTail2);
655 }
656 
657 unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
658                                         unsigned MinCommonTailLength,
659                                         MachineBasicBlock *SuccBB,
660                                         MachineBasicBlock *PredBB) {
661   unsigned maxCommonTailLength = 0U;
662   SameTails.clear();
663   MachineBasicBlock::iterator TrialBBI1, TrialBBI2;
664   MPIterator HighestMPIter = std::prev(MergePotentials.end());
665   for (MPIterator CurMPIter = std::prev(MergePotentials.end()),
666                   B = MergePotentials.begin();
667        CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) {
668     for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) {
669       unsigned CommonTailLen;
670       if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(),
671                             MinCommonTailLength,
672                             CommonTailLen, TrialBBI1, TrialBBI2,
673                             SuccBB, PredBB,
674                             EHScopeMembership,
675                             AfterBlockPlacement, MBBFreqInfo, PSI)) {
676         if (CommonTailLen > maxCommonTailLength) {
677           SameTails.clear();
678           maxCommonTailLength = CommonTailLen;
679           HighestMPIter = CurMPIter;
680           SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1));
681         }
682         if (HighestMPIter == CurMPIter &&
683             CommonTailLen == maxCommonTailLength)
684           SameTails.push_back(SameTailElt(I, TrialBBI2));
685       }
686       if (I == B)
687         break;
688     }
689   }
690   return maxCommonTailLength;
691 }
692 
693 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash,
694                                         MachineBasicBlock *SuccBB,
695                                         MachineBasicBlock *PredBB) {
696   MPIterator CurMPIter, B;
697   for (CurMPIter = std::prev(MergePotentials.end()),
698       B = MergePotentials.begin();
699        CurMPIter->getHash() == CurHash; --CurMPIter) {
700     // Put the unconditional branch back, if we need one.
701     MachineBasicBlock *CurMBB = CurMPIter->getBlock();
702     if (SuccBB && CurMBB != PredBB)
703       FixTail(CurMBB, SuccBB, TII);
704     if (CurMPIter == B)
705       break;
706   }
707   if (CurMPIter->getHash() != CurHash)
708     CurMPIter++;
709   MergePotentials.erase(CurMPIter, MergePotentials.end());
710 }
711 
712 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
713                                              MachineBasicBlock *SuccBB,
714                                              unsigned maxCommonTailLength,
715                                              unsigned &commonTailIndex) {
716   commonTailIndex = 0;
717   unsigned TimeEstimate = ~0U;
718   for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
719     // Use PredBB if possible; that doesn't require a new branch.
720     if (SameTails[i].getBlock() == PredBB) {
721       commonTailIndex = i;
722       break;
723     }
724     // Otherwise, make a (fairly bogus) choice based on estimate of
725     // how long it will take the various blocks to execute.
726     unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(),
727                                  SameTails[i].getTailStartPos());
728     if (t <= TimeEstimate) {
729       TimeEstimate = t;
730       commonTailIndex = i;
731     }
732   }
733 
734   MachineBasicBlock::iterator BBI =
735     SameTails[commonTailIndex].getTailStartPos();
736   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
737 
738   LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size "
739                     << maxCommonTailLength);
740 
741   // If the split block unconditionally falls-thru to SuccBB, it will be
742   // merged. In control flow terms it should then take SuccBB's name. e.g. If
743   // SuccBB is an inner loop, the common tail is still part of the inner loop.
744   const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ?
745     SuccBB->getBasicBlock() : MBB->getBasicBlock();
746   MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB);
747   if (!newMBB) {
748     LLVM_DEBUG(dbgs() << "... failed!");
749     return false;
750   }
751 
752   SameTails[commonTailIndex].setBlock(newMBB);
753   SameTails[commonTailIndex].setTailStartPos(newMBB->begin());
754 
755   // If we split PredBB, newMBB is the new predecessor.
756   if (PredBB == MBB)
757     PredBB = newMBB;
758 
759   return true;
760 }
761 
762 static void
763 mergeOperations(MachineBasicBlock::iterator MBBIStartPos,
764                 MachineBasicBlock &MBBCommon) {
765   MachineBasicBlock *MBB = MBBIStartPos->getParent();
766   // Note CommonTailLen does not necessarily matches the size of
767   // the common BB nor all its instructions because of debug
768   // instructions differences.
769   unsigned CommonTailLen = 0;
770   for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos)
771     ++CommonTailLen;
772 
773   MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin();
774   MachineBasicBlock::reverse_iterator MBBIE = MBB->rend();
775   MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin();
776   MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend();
777 
778   while (CommonTailLen--) {
779     assert(MBBI != MBBIE && "Reached BB end within common tail length!");
780     (void)MBBIE;
781 
782     if (!countsAsInstruction(*MBBI)) {
783       ++MBBI;
784       continue;
785     }
786 
787     while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon))
788       ++MBBICommon;
789 
790     assert(MBBICommon != MBBIECommon &&
791            "Reached BB end within common tail length!");
792     assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!");
793 
794     // Merge MMOs from memory operations in the common block.
795     if (MBBICommon->mayLoadOrStore())
796       MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI});
797     // Drop undef flags if they aren't present in all merged instructions.
798     for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) {
799       MachineOperand &MO = MBBICommon->getOperand(I);
800       if (MO.isReg() && MO.isUndef()) {
801         const MachineOperand &OtherMO = MBBI->getOperand(I);
802         if (!OtherMO.isUndef())
803           MO.setIsUndef(false);
804       }
805     }
806 
807     ++MBBI;
808     ++MBBICommon;
809   }
810 }
811 
812 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) {
813   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
814 
815   std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size());
816   for (unsigned int i = 0 ; i != SameTails.size() ; ++i) {
817     if (i != commonTailIndex) {
818       NextCommonInsts[i] = SameTails[i].getTailStartPos();
819       mergeOperations(SameTails[i].getTailStartPos(), *MBB);
820     } else {
821       assert(SameTails[i].getTailStartPos() == MBB->begin() &&
822           "MBB is not a common tail only block");
823     }
824   }
825 
826   for (auto &MI : *MBB) {
827     if (!countsAsInstruction(MI))
828       continue;
829     DebugLoc DL = MI.getDebugLoc();
830     for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) {
831       if (i == commonTailIndex)
832         continue;
833 
834       auto &Pos = NextCommonInsts[i];
835       assert(Pos != SameTails[i].getBlock()->end() &&
836           "Reached BB end within common tail");
837       while (!countsAsInstruction(*Pos)) {
838         ++Pos;
839         assert(Pos != SameTails[i].getBlock()->end() &&
840             "Reached BB end within common tail");
841       }
842       assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!");
843       DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc());
844       NextCommonInsts[i] = ++Pos;
845     }
846     MI.setDebugLoc(DL);
847   }
848 
849   if (UpdateLiveIns) {
850     LivePhysRegs NewLiveIns(*TRI);
851     computeLiveIns(NewLiveIns, *MBB);
852     LiveRegs.init(*TRI);
853 
854     // The flag merging may lead to some register uses no longer using the
855     // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
856     for (MachineBasicBlock *Pred : MBB->predecessors()) {
857       LiveRegs.clear();
858       LiveRegs.addLiveOuts(*Pred);
859       MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator();
860       for (Register Reg : NewLiveIns) {
861         if (!LiveRegs.available(*MRI, Reg))
862           continue;
863 
864         // Skip the register if we are about to add one of its super registers.
865         // TODO: Common this up with the same logic in addLineIns().
866         if (any_of(TRI->superregs(Reg), [&](MCPhysReg SReg) {
867               return NewLiveIns.contains(SReg) && !MRI->isReserved(SReg);
868             }))
869           continue;
870 
871         DebugLoc DL;
872         BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF),
873                 Reg);
874       }
875     }
876 
877     MBB->clearLiveIns();
878     addLiveIns(*MBB, NewLiveIns);
879   }
880 }
881 
882 // See if any of the blocks in MergePotentials (which all have SuccBB as a
883 // successor, or all have no successor if it is null) can be tail-merged.
884 // If there is a successor, any blocks in MergePotentials that are not
885 // tail-merged and are not immediately before Succ must have an unconditional
886 // branch to Succ added (but the predecessor/successor lists need no
887 // adjustment). The lone predecessor of Succ that falls through into Succ,
888 // if any, is given in PredBB.
889 // MinCommonTailLength - Except for the special cases below, tail-merge if
890 // there are at least this many instructions in common.
891 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
892                                       MachineBasicBlock *PredBB,
893                                       unsigned MinCommonTailLength) {
894   bool MadeChange = false;
895 
896   LLVM_DEBUG(
897       dbgs() << "\nTryTailMergeBlocks: ";
898       for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs()
899       << printMBBReference(*MergePotentials[i].getBlock())
900       << (i == e - 1 ? "" : ", ");
901       dbgs() << "\n"; if (SuccBB) {
902         dbgs() << "  with successor " << printMBBReference(*SuccBB) << '\n';
903         if (PredBB)
904           dbgs() << "  which has fall-through from "
905                  << printMBBReference(*PredBB) << "\n";
906       } dbgs() << "Looking for common tails of at least "
907                << MinCommonTailLength << " instruction"
908                << (MinCommonTailLength == 1 ? "" : "s") << '\n';);
909 
910   // Sort by hash value so that blocks with identical end sequences sort
911   // together.
912   array_pod_sort(MergePotentials.begin(), MergePotentials.end());
913 
914   // Walk through equivalence sets looking for actual exact matches.
915   while (MergePotentials.size() > 1) {
916     unsigned CurHash = MergePotentials.back().getHash();
917 
918     // Build SameTails, identifying the set of blocks with this hash code
919     // and with the maximum number of instructions in common.
920     unsigned maxCommonTailLength = ComputeSameTails(CurHash,
921                                                     MinCommonTailLength,
922                                                     SuccBB, PredBB);
923 
924     // If we didn't find any pair that has at least MinCommonTailLength
925     // instructions in common, remove all blocks with this hash code and retry.
926     if (SameTails.empty()) {
927       RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
928       continue;
929     }
930 
931     // If one of the blocks is the entire common tail (and is not the entry
932     // block/an EH pad, which we can't jump to), we can treat all blocks with
933     // this same tail at once.  Use PredBB if that is one of the possibilities,
934     // as that will not introduce any extra branches.
935     MachineBasicBlock *EntryBB =
936         &MergePotentials.front().getBlock()->getParent()->front();
937     unsigned commonTailIndex = SameTails.size();
938     // If there are two blocks, check to see if one can be made to fall through
939     // into the other.
940     if (SameTails.size() == 2 &&
941         SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) &&
942         SameTails[1].tailIsWholeBlock() && !SameTails[1].getBlock()->isEHPad())
943       commonTailIndex = 1;
944     else if (SameTails.size() == 2 &&
945              SameTails[1].getBlock()->isLayoutSuccessor(
946                  SameTails[0].getBlock()) &&
947              SameTails[0].tailIsWholeBlock() &&
948              !SameTails[0].getBlock()->isEHPad())
949       commonTailIndex = 0;
950     else {
951       // Otherwise just pick one, favoring the fall-through predecessor if
952       // there is one.
953       for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
954         MachineBasicBlock *MBB = SameTails[i].getBlock();
955         if ((MBB == EntryBB || MBB->isEHPad()) &&
956             SameTails[i].tailIsWholeBlock())
957           continue;
958         if (MBB == PredBB) {
959           commonTailIndex = i;
960           break;
961         }
962         if (SameTails[i].tailIsWholeBlock())
963           commonTailIndex = i;
964       }
965     }
966 
967     if (commonTailIndex == SameTails.size() ||
968         (SameTails[commonTailIndex].getBlock() == PredBB &&
969          !SameTails[commonTailIndex].tailIsWholeBlock())) {
970       // None of the blocks consist entirely of the common tail.
971       // Split a block so that one does.
972       if (!CreateCommonTailOnlyBlock(PredBB, SuccBB,
973                                      maxCommonTailLength, commonTailIndex)) {
974         RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
975         continue;
976       }
977     }
978 
979     MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
980 
981     // Recompute common tail MBB's edge weights and block frequency.
982     setCommonTailEdgeWeights(*MBB);
983 
984     // Merge debug locations, MMOs and undef flags across identical instructions
985     // for common tail.
986     mergeCommonTails(commonTailIndex);
987 
988     // MBB is common tail.  Adjust all other BB's to jump to this one.
989     // Traversal must be forwards so erases work.
990     LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB)
991                       << " for ");
992     for (unsigned int i=0, e = SameTails.size(); i != e; ++i) {
993       if (commonTailIndex == i)
994         continue;
995       LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock())
996                         << (i == e - 1 ? "" : ", "));
997       // Hack the end off BB i, making it jump to BB commonTailIndex instead.
998       replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB);
999       // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
1000       MergePotentials.erase(SameTails[i].getMPIter());
1001     }
1002     LLVM_DEBUG(dbgs() << "\n");
1003     // We leave commonTailIndex in the worklist in case there are other blocks
1004     // that match it with a smaller number of instructions.
1005     MadeChange = true;
1006   }
1007   return MadeChange;
1008 }
1009 
1010 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
1011   bool MadeChange = false;
1012   if (!EnableTailMerge)
1013     return MadeChange;
1014 
1015   // First find blocks with no successors.
1016   // Block placement may create new tail merging opportunities for these blocks.
1017   MergePotentials.clear();
1018   for (MachineBasicBlock &MBB : MF) {
1019     if (MergePotentials.size() == TailMergeThreshold)
1020       break;
1021     if (!TriedMerging.count(&MBB) && MBB.succ_empty())
1022       MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB));
1023   }
1024 
1025   // If this is a large problem, avoid visiting the same basic blocks
1026   // multiple times.
1027   if (MergePotentials.size() == TailMergeThreshold)
1028     for (const MergePotentialsElt &Elt : MergePotentials)
1029       TriedMerging.insert(Elt.getBlock());
1030 
1031   // See if we can do any tail merging on those.
1032   if (MergePotentials.size() >= 2)
1033     MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength);
1034 
1035   // Look at blocks (IBB) with multiple predecessors (PBB).
1036   // We change each predecessor to a canonical form, by
1037   // (1) temporarily removing any unconditional branch from the predecessor
1038   // to IBB, and
1039   // (2) alter conditional branches so they branch to the other block
1040   // not IBB; this may require adding back an unconditional branch to IBB
1041   // later, where there wasn't one coming in.  E.g.
1042   //   Bcc IBB
1043   //   fallthrough to QBB
1044   // here becomes
1045   //   Bncc QBB
1046   // with a conceptual B to IBB after that, which never actually exists.
1047   // With those changes, we see whether the predecessors' tails match,
1048   // and merge them if so.  We change things out of canonical form and
1049   // back to the way they were later in the process.  (OptimizeBranches
1050   // would undo some of this, but we can't use it, because we'd get into
1051   // a compile-time infinite loop repeatedly doing and undoing the same
1052   // transformations.)
1053 
1054   for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1055        I != E; ++I) {
1056     if (I->pred_size() < 2) continue;
1057     SmallPtrSet<MachineBasicBlock *, 8> UniquePreds;
1058     MachineBasicBlock *IBB = &*I;
1059     MachineBasicBlock *PredBB = &*std::prev(I);
1060     MergePotentials.clear();
1061     MachineLoop *ML;
1062 
1063     // Bail if merging after placement and IBB is the loop header because
1064     // -- If merging predecessors that belong to the same loop as IBB, the
1065     // common tail of merged predecessors may become the loop top if block
1066     // placement is called again and the predecessors may branch to this common
1067     // tail and require more branches. This can be relaxed if
1068     // MachineBlockPlacement::findBestLoopTop is more flexible.
1069     // --If merging predecessors that do not belong to the same loop as IBB, the
1070     // loop info of IBB's loop and the other loops may be affected. Calling the
1071     // block placement again may make big change to the layout and eliminate the
1072     // reason to do tail merging here.
1073     if (AfterBlockPlacement && MLI) {
1074       ML = MLI->getLoopFor(IBB);
1075       if (ML && IBB == ML->getHeader())
1076         continue;
1077     }
1078 
1079     for (MachineBasicBlock *PBB : I->predecessors()) {
1080       if (MergePotentials.size() == TailMergeThreshold)
1081         break;
1082 
1083       if (TriedMerging.count(PBB))
1084         continue;
1085 
1086       // Skip blocks that loop to themselves, can't tail merge these.
1087       if (PBB == IBB)
1088         continue;
1089 
1090       // Visit each predecessor only once.
1091       if (!UniquePreds.insert(PBB).second)
1092         continue;
1093 
1094       // Skip blocks which may jump to a landing pad or jump from an asm blob.
1095       // Can't tail merge these.
1096       if (PBB->hasEHPadSuccessor() || PBB->mayHaveInlineAsmBr())
1097         continue;
1098 
1099       // After block placement, only consider predecessors that belong to the
1100       // same loop as IBB.  The reason is the same as above when skipping loop
1101       // header.
1102       if (AfterBlockPlacement && MLI)
1103         if (ML != MLI->getLoopFor(PBB))
1104           continue;
1105 
1106       MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1107       SmallVector<MachineOperand, 4> Cond;
1108       if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) {
1109         // Failing case: IBB is the target of a cbr, and we cannot reverse the
1110         // branch.
1111         SmallVector<MachineOperand, 4> NewCond(Cond);
1112         if (!Cond.empty() && TBB == IBB) {
1113           if (TII->reverseBranchCondition(NewCond))
1114             continue;
1115           // This is the QBB case described above
1116           if (!FBB) {
1117             auto Next = ++PBB->getIterator();
1118             if (Next != MF.end())
1119               FBB = &*Next;
1120           }
1121         }
1122 
1123         // Remove the unconditional branch at the end, if any.
1124         if (TBB && (Cond.empty() || FBB)) {
1125           DebugLoc dl = PBB->findBranchDebugLoc();
1126           TII->removeBranch(*PBB);
1127           if (!Cond.empty())
1128             // reinsert conditional branch only, for now
1129             TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr,
1130                               NewCond, dl);
1131         }
1132 
1133         MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB));
1134       }
1135     }
1136 
1137     // If this is a large problem, avoid visiting the same basic blocks multiple
1138     // times.
1139     if (MergePotentials.size() == TailMergeThreshold)
1140       for (MergePotentialsElt &Elt : MergePotentials)
1141         TriedMerging.insert(Elt.getBlock());
1142 
1143     if (MergePotentials.size() >= 2)
1144       MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength);
1145 
1146     // Reinsert an unconditional branch if needed. The 1 below can occur as a
1147     // result of removing blocks in TryTailMergeBlocks.
1148     PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks
1149     if (MergePotentials.size() == 1 &&
1150         MergePotentials.begin()->getBlock() != PredBB)
1151       FixTail(MergePotentials.begin()->getBlock(), IBB, TII);
1152   }
1153 
1154   return MadeChange;
1155 }
1156 
1157 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) {
1158   SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size());
1159   BlockFrequency AccumulatedMBBFreq;
1160 
1161   // Aggregate edge frequency of successor edge j:
1162   //  edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
1163   //  where bb is a basic block that is in SameTails.
1164   for (const auto &Src : SameTails) {
1165     const MachineBasicBlock *SrcMBB = Src.getBlock();
1166     BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB);
1167     AccumulatedMBBFreq += BlockFreq;
1168 
1169     // It is not necessary to recompute edge weights if TailBB has less than two
1170     // successors.
1171     if (TailMBB.succ_size() <= 1)
1172       continue;
1173 
1174     auto EdgeFreq = EdgeFreqLs.begin();
1175 
1176     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1177          SuccI != SuccE; ++SuccI, ++EdgeFreq)
1178       *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI);
1179   }
1180 
1181   MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq);
1182 
1183   if (TailMBB.succ_size() <= 1)
1184     return;
1185 
1186   auto SumEdgeFreq =
1187       std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0))
1188           .getFrequency();
1189   auto EdgeFreq = EdgeFreqLs.begin();
1190 
1191   if (SumEdgeFreq > 0) {
1192     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1193          SuccI != SuccE; ++SuccI, ++EdgeFreq) {
1194       auto Prob = BranchProbability::getBranchProbability(
1195           EdgeFreq->getFrequency(), SumEdgeFreq);
1196       TailMBB.setSuccProbability(SuccI, Prob);
1197     }
1198   }
1199 }
1200 
1201 //===----------------------------------------------------------------------===//
1202 //  Branch Optimization
1203 //===----------------------------------------------------------------------===//
1204 
1205 bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
1206   bool MadeChange = false;
1207 
1208   // Make sure blocks are numbered in order
1209   MF.RenumberBlocks();
1210   // Renumbering blocks alters EH scope membership, recalculate it.
1211   EHScopeMembership = getEHScopeMembership(MF);
1212 
1213   for (MachineBasicBlock &MBB :
1214        llvm::make_early_inc_range(llvm::drop_begin(MF))) {
1215     MadeChange |= OptimizeBlock(&MBB);
1216 
1217     // If it is dead, remove it.
1218     if (MBB.pred_empty() && !MBB.isMachineBlockAddressTaken()) {
1219       RemoveDeadBlock(&MBB);
1220       MadeChange = true;
1221       ++NumDeadBlocks;
1222     }
1223   }
1224 
1225   return MadeChange;
1226 }
1227 
1228 // Blocks should be considered empty if they contain only debug info;
1229 // else the debug info would affect codegen.
1230 static bool IsEmptyBlock(MachineBasicBlock *MBB) {
1231   return MBB->getFirstNonDebugInstr(true) == MBB->end();
1232 }
1233 
1234 // Blocks with only debug info and branches should be considered the same
1235 // as blocks with only branches.
1236 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) {
1237   MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr();
1238   assert(I != MBB->end() && "empty block!");
1239   return I->isBranch();
1240 }
1241 
1242 /// IsBetterFallthrough - Return true if it would be clearly better to
1243 /// fall-through to MBB1 than to fall through into MBB2.  This has to return
1244 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
1245 /// result in infinite loops.
1246 static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
1247                                 MachineBasicBlock *MBB2) {
1248   assert(MBB1 && MBB2 && "Unknown MachineBasicBlock");
1249 
1250   // Right now, we use a simple heuristic.  If MBB2 ends with a call, and
1251   // MBB1 doesn't, we prefer to fall through into MBB1.  This allows us to
1252   // optimize branches that branch to either a return block or an assert block
1253   // into a fallthrough to the return.
1254   MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr();
1255   MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr();
1256   if (MBB1I == MBB1->end() || MBB2I == MBB2->end())
1257     return false;
1258 
1259   // If there is a clear successor ordering we make sure that one block
1260   // will fall through to the next
1261   if (MBB1->isSuccessor(MBB2)) return true;
1262   if (MBB2->isSuccessor(MBB1)) return false;
1263 
1264   return MBB2I->isCall() && !MBB1I->isCall();
1265 }
1266 
1267 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch
1268 /// instructions on the block.
1269 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) {
1270   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1271   if (I != MBB.end() && I->isBranch())
1272     return I->getDebugLoc();
1273   return DebugLoc();
1274 }
1275 
1276 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII,
1277                                        MachineBasicBlock &MBB,
1278                                        MachineBasicBlock &PredMBB) {
1279   auto InsertBefore = PredMBB.getFirstTerminator();
1280   for (MachineInstr &MI : MBB.instrs())
1281     if (MI.isDebugInstr()) {
1282       TII->duplicate(PredMBB, InsertBefore, MI);
1283       LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: "
1284                         << MI);
1285     }
1286 }
1287 
1288 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII,
1289                                      MachineBasicBlock &MBB,
1290                                      MachineBasicBlock &SuccMBB) {
1291   auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin());
1292   for (MachineInstr &MI : MBB.instrs())
1293     if (MI.isDebugInstr()) {
1294       TII->duplicate(SuccMBB, InsertBefore, MI);
1295       LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: "
1296                         << MI);
1297     }
1298 }
1299 
1300 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such
1301 // a basic block is removed we would lose the debug information unless we have
1302 // copied the information to a predecessor/successor.
1303 //
1304 // TODO: This function only handles some simple cases. An alternative would be
1305 // to run a heavier analysis, such as the LiveDebugValues pass, before we do
1306 // branch folding.
1307 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII,
1308                                            MachineBasicBlock &MBB) {
1309   assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info).");
1310   // If this MBB is the only predecessor of a successor it is legal to copy
1311   // DBG_VALUE instructions to the beginning of the successor.
1312   for (MachineBasicBlock *SuccBB : MBB.successors())
1313     if (SuccBB->pred_size() == 1)
1314       copyDebugInfoToSuccessor(TII, MBB, *SuccBB);
1315   // If this MBB is the only successor of a predecessor it is legal to copy the
1316   // DBG_VALUE instructions to the end of the predecessor (just before the
1317   // terminators, assuming that the terminator isn't affecting the DBG_VALUE).
1318   for (MachineBasicBlock *PredBB : MBB.predecessors())
1319     if (PredBB->succ_size() == 1)
1320       copyDebugInfoToPredecessor(TII, MBB, *PredBB);
1321 }
1322 
1323 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
1324   bool MadeChange = false;
1325   MachineFunction &MF = *MBB->getParent();
1326 ReoptimizeBlock:
1327 
1328   MachineFunction::iterator FallThrough = MBB->getIterator();
1329   ++FallThrough;
1330 
1331   // Make sure MBB and FallThrough belong to the same EH scope.
1332   bool SameEHScope = true;
1333   if (!EHScopeMembership.empty() && FallThrough != MF.end()) {
1334     auto MBBEHScope = EHScopeMembership.find(MBB);
1335     assert(MBBEHScope != EHScopeMembership.end());
1336     auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough);
1337     assert(FallThroughEHScope != EHScopeMembership.end());
1338     SameEHScope = MBBEHScope->second == FallThroughEHScope->second;
1339   }
1340 
1341   // Analyze the branch in the current block. As a side-effect, this may cause
1342   // the block to become empty.
1343   MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr;
1344   SmallVector<MachineOperand, 4> CurCond;
1345   bool CurUnAnalyzable =
1346       TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true);
1347 
1348   // If this block is empty, make everyone use its fall-through, not the block
1349   // explicitly.  Landing pads should not do this since the landing-pad table
1350   // points to this block.  Blocks with their addresses taken shouldn't be
1351   // optimized away.
1352   if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() &&
1353       SameEHScope) {
1354     salvageDebugInfoFromEmptyBlock(TII, *MBB);
1355     // Dead block?  Leave for cleanup later.
1356     if (MBB->pred_empty()) return MadeChange;
1357 
1358     if (FallThrough == MF.end()) {
1359       // TODO: Simplify preds to not branch here if possible!
1360     } else if (FallThrough->isEHPad()) {
1361       // Don't rewrite to a landing pad fallthough.  That could lead to the case
1362       // where a BB jumps to more than one landing pad.
1363       // TODO: Is it ever worth rewriting predecessors which don't already
1364       // jump to a landing pad, and so can safely jump to the fallthrough?
1365     } else if (MBB->isSuccessor(&*FallThrough)) {
1366       // Rewrite all predecessors of the old block to go to the fallthrough
1367       // instead.
1368       while (!MBB->pred_empty()) {
1369         MachineBasicBlock *Pred = *(MBB->pred_end()-1);
1370         Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough);
1371       }
1372       // If MBB was the target of a jump table, update jump tables to go to the
1373       // fallthrough instead.
1374       if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1375         MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough);
1376       MadeChange = true;
1377     }
1378     return MadeChange;
1379   }
1380 
1381   // Check to see if we can simplify the terminator of the block before this
1382   // one.
1383   MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB));
1384 
1385   MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
1386   SmallVector<MachineOperand, 4> PriorCond;
1387   bool PriorUnAnalyzable =
1388       TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true);
1389   if (!PriorUnAnalyzable) {
1390     // If the previous branch is conditional and both conditions go to the same
1391     // destination, remove the branch, replacing it with an unconditional one or
1392     // a fall-through.
1393     if (PriorTBB && PriorTBB == PriorFBB) {
1394       DebugLoc dl = getBranchDebugLoc(PrevBB);
1395       TII->removeBranch(PrevBB);
1396       PriorCond.clear();
1397       if (PriorTBB != MBB)
1398         TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1399       MadeChange = true;
1400       ++NumBranchOpts;
1401       goto ReoptimizeBlock;
1402     }
1403 
1404     // If the previous block unconditionally falls through to this block and
1405     // this block has no other predecessors, move the contents of this block
1406     // into the prior block. This doesn't usually happen when SimplifyCFG
1407     // has been used, but it can happen if tail merging splits a fall-through
1408     // predecessor of a block.
1409     // This has to check PrevBB->succ_size() because EH edges are ignored by
1410     // analyzeBranch.
1411     if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 &&
1412         PrevBB.succ_size() == 1 &&
1413         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1414       LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB
1415                         << "From MBB: " << *MBB);
1416       // Remove redundant DBG_VALUEs first.
1417       if (!PrevBB.empty()) {
1418         MachineBasicBlock::iterator PrevBBIter = PrevBB.end();
1419         --PrevBBIter;
1420         MachineBasicBlock::iterator MBBIter = MBB->begin();
1421         // Check if DBG_VALUE at the end of PrevBB is identical to the
1422         // DBG_VALUE at the beginning of MBB.
1423         while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end()
1424                && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) {
1425           if (!MBBIter->isIdenticalTo(*PrevBBIter))
1426             break;
1427           MachineInstr &DuplicateDbg = *MBBIter;
1428           ++MBBIter; -- PrevBBIter;
1429           DuplicateDbg.eraseFromParent();
1430         }
1431       }
1432       PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end());
1433       PrevBB.removeSuccessor(PrevBB.succ_begin());
1434       assert(PrevBB.succ_empty());
1435       PrevBB.transferSuccessors(MBB);
1436       MadeChange = true;
1437       return MadeChange;
1438     }
1439 
1440     // If the previous branch *only* branches to *this* block (conditional or
1441     // not) remove the branch.
1442     if (PriorTBB == MBB && !PriorFBB) {
1443       TII->removeBranch(PrevBB);
1444       MadeChange = true;
1445       ++NumBranchOpts;
1446       goto ReoptimizeBlock;
1447     }
1448 
1449     // If the prior block branches somewhere else on the condition and here if
1450     // the condition is false, remove the uncond second branch.
1451     if (PriorFBB == MBB) {
1452       DebugLoc dl = getBranchDebugLoc(PrevBB);
1453       TII->removeBranch(PrevBB);
1454       TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1455       MadeChange = true;
1456       ++NumBranchOpts;
1457       goto ReoptimizeBlock;
1458     }
1459 
1460     // If the prior block branches here on true and somewhere else on false, and
1461     // if the branch condition is reversible, reverse the branch to create a
1462     // fall-through.
1463     if (PriorTBB == MBB) {
1464       SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1465       if (!TII->reverseBranchCondition(NewPriorCond)) {
1466         DebugLoc dl = getBranchDebugLoc(PrevBB);
1467         TII->removeBranch(PrevBB);
1468         TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl);
1469         MadeChange = true;
1470         ++NumBranchOpts;
1471         goto ReoptimizeBlock;
1472       }
1473     }
1474 
1475     // If this block has no successors (e.g. it is a return block or ends with
1476     // a call to a no-return function like abort or __cxa_throw) and if the pred
1477     // falls through into this block, and if it would otherwise fall through
1478     // into the block after this, move this block to the end of the function.
1479     //
1480     // We consider it more likely that execution will stay in the function (e.g.
1481     // due to loops) than it is to exit it.  This asserts in loops etc, moving
1482     // the assert condition out of the loop body.
1483     if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB &&
1484         MachineFunction::iterator(PriorTBB) == FallThrough &&
1485         !MBB->canFallThrough()) {
1486       bool DoTransform = true;
1487 
1488       // We have to be careful that the succs of PredBB aren't both no-successor
1489       // blocks.  If neither have successors and if PredBB is the second from
1490       // last block in the function, we'd just keep swapping the two blocks for
1491       // last.  Only do the swap if one is clearly better to fall through than
1492       // the other.
1493       if (FallThrough == --MF.end() &&
1494           !IsBetterFallthrough(PriorTBB, MBB))
1495         DoTransform = false;
1496 
1497       if (DoTransform) {
1498         // Reverse the branch so we will fall through on the previous true cond.
1499         SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1500         if (!TII->reverseBranchCondition(NewPriorCond)) {
1501           LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB
1502                             << "To make fallthrough to: " << *PriorTBB << "\n");
1503 
1504           DebugLoc dl = getBranchDebugLoc(PrevBB);
1505           TII->removeBranch(PrevBB);
1506           TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl);
1507 
1508           // Move this block to the end of the function.
1509           MBB->moveAfter(&MF.back());
1510           MadeChange = true;
1511           ++NumBranchOpts;
1512           return MadeChange;
1513         }
1514       }
1515     }
1516   }
1517 
1518   if (!IsEmptyBlock(MBB)) {
1519     MachineInstr &TailCall = *MBB->getFirstNonDebugInstr();
1520     if (TII->isUnconditionalTailCall(TailCall)) {
1521       SmallVector<MachineBasicBlock *> PredsChanged;
1522       for (auto &Pred : MBB->predecessors()) {
1523         MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1524         SmallVector<MachineOperand, 4> PredCond;
1525         bool PredAnalyzable =
1526             !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true);
1527 
1528         // Only eliminate if MBB == TBB (Taken Basic Block)
1529         if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB &&
1530             PredTBB != PredFBB) {
1531           // The predecessor has a conditional branch to this block which
1532           // consists of only a tail call. Try to fold the tail call into the
1533           // conditional branch.
1534           if (TII->canMakeTailCallConditional(PredCond, TailCall)) {
1535             // TODO: It would be nice if analyzeBranch() could provide a pointer
1536             // to the branch instruction so replaceBranchWithTailCall() doesn't
1537             // have to search for it.
1538             TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall);
1539             PredsChanged.push_back(Pred);
1540           }
1541         }
1542         // If the predecessor is falling through to this block, we could reverse
1543         // the branch condition and fold the tail call into that. However, after
1544         // that we might have to re-arrange the CFG to fall through to the other
1545         // block and there is a high risk of regressing code size rather than
1546         // improving it.
1547       }
1548       if (!PredsChanged.empty()) {
1549         NumTailCalls += PredsChanged.size();
1550         for (auto &Pred : PredsChanged)
1551           Pred->removeSuccessor(MBB);
1552 
1553         return true;
1554       }
1555     }
1556   }
1557 
1558   if (!CurUnAnalyzable) {
1559     // If this is a two-way branch, and the FBB branches to this block, reverse
1560     // the condition so the single-basic-block loop is faster.  Instead of:
1561     //    Loop: xxx; jcc Out; jmp Loop
1562     // we want:
1563     //    Loop: xxx; jncc Loop; jmp Out
1564     if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
1565       SmallVector<MachineOperand, 4> NewCond(CurCond);
1566       if (!TII->reverseBranchCondition(NewCond)) {
1567         DebugLoc dl = getBranchDebugLoc(*MBB);
1568         TII->removeBranch(*MBB);
1569         TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl);
1570         MadeChange = true;
1571         ++NumBranchOpts;
1572         goto ReoptimizeBlock;
1573       }
1574     }
1575 
1576     // If this branch is the only thing in its block, see if we can forward
1577     // other blocks across it.
1578     if (CurTBB && CurCond.empty() && !CurFBB &&
1579         IsBranchOnlyBlock(MBB) && CurTBB != MBB &&
1580         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1581       DebugLoc dl = getBranchDebugLoc(*MBB);
1582       // This block may contain just an unconditional branch.  Because there can
1583       // be 'non-branch terminators' in the block, try removing the branch and
1584       // then seeing if the block is empty.
1585       TII->removeBranch(*MBB);
1586       // If the only things remaining in the block are debug info, remove these
1587       // as well, so this will behave the same as an empty block in non-debug
1588       // mode.
1589       if (IsEmptyBlock(MBB)) {
1590         // Make the block empty, losing the debug info (we could probably
1591         // improve this in some cases.)
1592         MBB->erase(MBB->begin(), MBB->end());
1593       }
1594       // If this block is just an unconditional branch to CurTBB, we can
1595       // usually completely eliminate the block.  The only case we cannot
1596       // completely eliminate the block is when the block before this one
1597       // falls through into MBB and we can't understand the prior block's branch
1598       // condition.
1599       if (MBB->empty()) {
1600         bool PredHasNoFallThrough = !PrevBB.canFallThrough();
1601         if (PredHasNoFallThrough || !PriorUnAnalyzable ||
1602             !PrevBB.isSuccessor(MBB)) {
1603           // If the prior block falls through into us, turn it into an
1604           // explicit branch to us to make updates simpler.
1605           if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) &&
1606               PriorTBB != MBB && PriorFBB != MBB) {
1607             if (!PriorTBB) {
1608               assert(PriorCond.empty() && !PriorFBB &&
1609                      "Bad branch analysis");
1610               PriorTBB = MBB;
1611             } else {
1612               assert(!PriorFBB && "Machine CFG out of date!");
1613               PriorFBB = MBB;
1614             }
1615             DebugLoc pdl = getBranchDebugLoc(PrevBB);
1616             TII->removeBranch(PrevBB);
1617             TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl);
1618           }
1619 
1620           // Iterate through all the predecessors, revectoring each in-turn.
1621           size_t PI = 0;
1622           bool DidChange = false;
1623           bool HasBranchToSelf = false;
1624           while(PI != MBB->pred_size()) {
1625             MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI);
1626             if (PMBB == MBB) {
1627               // If this block has an uncond branch to itself, leave it.
1628               ++PI;
1629               HasBranchToSelf = true;
1630             } else {
1631               DidChange = true;
1632               PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB);
1633               // If this change resulted in PMBB ending in a conditional
1634               // branch where both conditions go to the same destination,
1635               // change this to an unconditional branch.
1636               MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr;
1637               SmallVector<MachineOperand, 4> NewCurCond;
1638               bool NewCurUnAnalyzable = TII->analyzeBranch(
1639                   *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true);
1640               if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
1641                 DebugLoc pdl = getBranchDebugLoc(*PMBB);
1642                 TII->removeBranch(*PMBB);
1643                 NewCurCond.clear();
1644                 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl);
1645                 MadeChange = true;
1646                 ++NumBranchOpts;
1647               }
1648             }
1649           }
1650 
1651           // Change any jumptables to go to the new MBB.
1652           if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1653             MJTI->ReplaceMBBInJumpTables(MBB, CurTBB);
1654           if (DidChange) {
1655             ++NumBranchOpts;
1656             MadeChange = true;
1657             if (!HasBranchToSelf) return MadeChange;
1658           }
1659         }
1660       }
1661 
1662       // Add the branch back if the block is more than just an uncond branch.
1663       TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl);
1664     }
1665   }
1666 
1667   // If the prior block doesn't fall through into this block, and if this
1668   // block doesn't fall through into some other block, see if we can find a
1669   // place to move this block where a fall-through will happen.
1670   if (!PrevBB.canFallThrough()) {
1671     // Now we know that there was no fall-through into this block, check to
1672     // see if it has a fall-through into its successor.
1673     bool CurFallsThru = MBB->canFallThrough();
1674 
1675     if (!MBB->isEHPad()) {
1676       // Check all the predecessors of this block.  If one of them has no fall
1677       // throughs, and analyzeBranch thinks it _could_ fallthrough to this
1678       // block, move this block right after it.
1679       for (MachineBasicBlock *PredBB : MBB->predecessors()) {
1680         // Analyze the branch at the end of the pred.
1681         MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1682         SmallVector<MachineOperand, 4> PredCond;
1683         if (PredBB != MBB && !PredBB->canFallThrough() &&
1684             !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) &&
1685             (PredTBB == MBB || PredFBB == MBB) &&
1686             (!CurFallsThru || !CurTBB || !CurFBB) &&
1687             (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
1688           // If the current block doesn't fall through, just move it.
1689           // If the current block can fall through and does not end with a
1690           // conditional branch, we need to append an unconditional jump to
1691           // the (current) next block.  To avoid a possible compile-time
1692           // infinite loop, move blocks only backward in this case.
1693           // Also, if there are already 2 branches here, we cannot add a third;
1694           // this means we have the case
1695           // Bcc next
1696           // B elsewhere
1697           // next:
1698           if (CurFallsThru) {
1699             MachineBasicBlock *NextBB = &*std::next(MBB->getIterator());
1700             CurCond.clear();
1701             TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc());
1702           }
1703           MBB->moveAfter(PredBB);
1704           MadeChange = true;
1705           goto ReoptimizeBlock;
1706         }
1707       }
1708     }
1709 
1710     if (!CurFallsThru) {
1711       // Check analyzable branch-successors to see if we can move this block
1712       // before one.
1713       if (!CurUnAnalyzable) {
1714         for (MachineBasicBlock *SuccBB : {CurFBB, CurTBB}) {
1715           if (!SuccBB)
1716             continue;
1717           // Analyze the branch at the end of the block before the succ.
1718           MachineFunction::iterator SuccPrev = --SuccBB->getIterator();
1719 
1720           // If this block doesn't already fall-through to that successor, and
1721           // if the succ doesn't already have a block that can fall through into
1722           // it, we can arrange for the fallthrough to happen.
1723           if (SuccBB != MBB && &*SuccPrev != MBB &&
1724               !SuccPrev->canFallThrough()) {
1725             MBB->moveBefore(SuccBB);
1726             MadeChange = true;
1727             goto ReoptimizeBlock;
1728           }
1729         }
1730       }
1731 
1732       // Okay, there is no really great place to put this block.  If, however,
1733       // the block before this one would be a fall-through if this block were
1734       // removed, move this block to the end of the function. There is no real
1735       // advantage in "falling through" to an EH block, so we don't want to
1736       // perform this transformation for that case.
1737       //
1738       // Also, Windows EH introduced the possibility of an arbitrary number of
1739       // successors to a given block.  The analyzeBranch call does not consider
1740       // exception handling and so we can get in a state where a block
1741       // containing a call is followed by multiple EH blocks that would be
1742       // rotated infinitely at the end of the function if the transformation
1743       // below were performed for EH "FallThrough" blocks.  Therefore, even if
1744       // that appears not to be happening anymore, we should assume that it is
1745       // possible and not remove the "!FallThrough()->isEHPad" condition below.
1746       MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr;
1747       SmallVector<MachineOperand, 4> PrevCond;
1748       if (FallThrough != MF.end() &&
1749           !FallThrough->isEHPad() &&
1750           !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) &&
1751           PrevBB.isSuccessor(&*FallThrough)) {
1752         MBB->moveAfter(&MF.back());
1753         MadeChange = true;
1754         return MadeChange;
1755       }
1756     }
1757   }
1758 
1759   return MadeChange;
1760 }
1761 
1762 //===----------------------------------------------------------------------===//
1763 //  Hoist Common Code
1764 //===----------------------------------------------------------------------===//
1765 
1766 bool BranchFolder::HoistCommonCode(MachineFunction &MF) {
1767   bool MadeChange = false;
1768   for (MachineBasicBlock &MBB : llvm::make_early_inc_range(MF))
1769     MadeChange |= HoistCommonCodeInSuccs(&MBB);
1770 
1771   return MadeChange;
1772 }
1773 
1774 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
1775 /// its 'true' successor.
1776 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
1777                                          MachineBasicBlock *TrueBB) {
1778   for (MachineBasicBlock *SuccBB : BB->successors())
1779     if (SuccBB != TrueBB)
1780       return SuccBB;
1781   return nullptr;
1782 }
1783 
1784 template <class Container>
1785 static void addRegAndItsAliases(Register Reg, const TargetRegisterInfo *TRI,
1786                                 Container &Set) {
1787   if (Reg.isPhysical()) {
1788     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
1789       Set.insert(*AI);
1790   } else {
1791     Set.insert(Reg);
1792   }
1793 }
1794 
1795 /// findHoistingInsertPosAndDeps - Find the location to move common instructions
1796 /// in successors to. The location is usually just before the terminator,
1797 /// however if the terminator is a conditional branch and its previous
1798 /// instruction is the flag setting instruction, the previous instruction is
1799 /// the preferred location. This function also gathers uses and defs of the
1800 /// instructions from the insertion point to the end of the block. The data is
1801 /// used by HoistCommonCodeInSuccs to ensure safety.
1802 static
1803 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB,
1804                                                   const TargetInstrInfo *TII,
1805                                                   const TargetRegisterInfo *TRI,
1806                                                   SmallSet<Register, 4> &Uses,
1807                                                   SmallSet<Register, 4> &Defs) {
1808   MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
1809   if (!TII->isUnpredicatedTerminator(*Loc))
1810     return MBB->end();
1811 
1812   for (const MachineOperand &MO : Loc->operands()) {
1813     if (!MO.isReg())
1814       continue;
1815     Register Reg = MO.getReg();
1816     if (!Reg)
1817       continue;
1818     if (MO.isUse()) {
1819       addRegAndItsAliases(Reg, TRI, Uses);
1820     } else {
1821       if (!MO.isDead())
1822         // Don't try to hoist code in the rare case the terminator defines a
1823         // register that is later used.
1824         return MBB->end();
1825 
1826       // If the terminator defines a register, make sure we don't hoist
1827       // the instruction whose def might be clobbered by the terminator.
1828       addRegAndItsAliases(Reg, TRI, Defs);
1829     }
1830   }
1831 
1832   if (Uses.empty())
1833     return Loc;
1834   // If the terminator is the only instruction in the block and Uses is not
1835   // empty (or we would have returned above), we can still safely hoist
1836   // instructions just before the terminator as long as the Defs/Uses are not
1837   // violated (which is checked in HoistCommonCodeInSuccs).
1838   if (Loc == MBB->begin())
1839     return Loc;
1840 
1841   // The terminator is probably a conditional branch, try not to separate the
1842   // branch from condition setting instruction.
1843   MachineBasicBlock::iterator PI = prev_nodbg(Loc, MBB->begin());
1844 
1845   bool IsDef = false;
1846   for (const MachineOperand &MO : PI->operands()) {
1847     // If PI has a regmask operand, it is probably a call. Separate away.
1848     if (MO.isRegMask())
1849       return Loc;
1850     if (!MO.isReg() || MO.isUse())
1851       continue;
1852     Register Reg = MO.getReg();
1853     if (!Reg)
1854       continue;
1855     if (Uses.count(Reg)) {
1856       IsDef = true;
1857       break;
1858     }
1859   }
1860   if (!IsDef)
1861     // The condition setting instruction is not just before the conditional
1862     // branch.
1863     return Loc;
1864 
1865   // Be conservative, don't insert instruction above something that may have
1866   // side-effects. And since it's potentially bad to separate flag setting
1867   // instruction from the conditional branch, just abort the optimization
1868   // completely.
1869   // Also avoid moving code above predicated instruction since it's hard to
1870   // reason about register liveness with predicated instruction.
1871   bool DontMoveAcrossStore = true;
1872   if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI))
1873     return MBB->end();
1874 
1875   // Find out what registers are live. Note this routine is ignoring other live
1876   // registers which are only used by instructions in successor blocks.
1877   for (const MachineOperand &MO : PI->operands()) {
1878     if (!MO.isReg())
1879       continue;
1880     Register Reg = MO.getReg();
1881     if (!Reg)
1882       continue;
1883     if (MO.isUse()) {
1884       addRegAndItsAliases(Reg, TRI, Uses);
1885     } else {
1886       if (Uses.erase(Reg)) {
1887         if (Reg.isPhysical()) {
1888           for (MCPhysReg SubReg : TRI->subregs(Reg))
1889             Uses.erase(SubReg); // Use sub-registers to be conservative
1890         }
1891       }
1892       addRegAndItsAliases(Reg, TRI, Defs);
1893     }
1894   }
1895 
1896   return PI;
1897 }
1898 
1899 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) {
1900   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1901   SmallVector<MachineOperand, 4> Cond;
1902   if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty())
1903     return false;
1904 
1905   if (!FBB) FBB = findFalseBlock(MBB, TBB);
1906   if (!FBB)
1907     // Malformed bcc? True and false blocks are the same?
1908     return false;
1909 
1910   // Restrict the optimization to cases where MBB is the only predecessor,
1911   // it is an obvious win.
1912   if (TBB->pred_size() > 1 || FBB->pred_size() > 1)
1913     return false;
1914 
1915   // Find a suitable position to hoist the common instructions to. Also figure
1916   // out which registers are used or defined by instructions from the insertion
1917   // point to the end of the block.
1918   SmallSet<Register, 4> Uses, Defs;
1919   MachineBasicBlock::iterator Loc =
1920     findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs);
1921   if (Loc == MBB->end())
1922     return false;
1923 
1924   bool HasDups = false;
1925   SmallSet<Register, 4> ActiveDefsSet, AllDefsSet;
1926   MachineBasicBlock::iterator TIB = TBB->begin();
1927   MachineBasicBlock::iterator FIB = FBB->begin();
1928   MachineBasicBlock::iterator TIE = TBB->end();
1929   MachineBasicBlock::iterator FIE = FBB->end();
1930   while (TIB != TIE && FIB != FIE) {
1931     // Skip dbg_value instructions. These do not count.
1932     TIB = skipDebugInstructionsForward(TIB, TIE, false);
1933     FIB = skipDebugInstructionsForward(FIB, FIE, false);
1934     if (TIB == TIE || FIB == FIE)
1935       break;
1936 
1937     if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead))
1938       break;
1939 
1940     if (TII->isPredicated(*TIB))
1941       // Hard to reason about register liveness with predicated instruction.
1942       break;
1943 
1944     bool IsSafe = true;
1945     for (MachineOperand &MO : TIB->operands()) {
1946       // Don't attempt to hoist instructions with register masks.
1947       if (MO.isRegMask()) {
1948         IsSafe = false;
1949         break;
1950       }
1951       if (!MO.isReg())
1952         continue;
1953       Register Reg = MO.getReg();
1954       if (!Reg)
1955         continue;
1956       if (MO.isDef()) {
1957         if (Uses.count(Reg)) {
1958           // Avoid clobbering a register that's used by the instruction at
1959           // the point of insertion.
1960           IsSafe = false;
1961           break;
1962         }
1963 
1964         if (Defs.count(Reg) && !MO.isDead()) {
1965           // Don't hoist the instruction if the def would be clobber by the
1966           // instruction at the point insertion. FIXME: This is overly
1967           // conservative. It should be possible to hoist the instructions
1968           // in BB2 in the following example:
1969           // BB1:
1970           // r1, eflag = op1 r2, r3
1971           // brcc eflag
1972           //
1973           // BB2:
1974           // r1 = op2, ...
1975           //    = op3, killed r1
1976           IsSafe = false;
1977           break;
1978         }
1979       } else if (!ActiveDefsSet.count(Reg)) {
1980         if (Defs.count(Reg)) {
1981           // Use is defined by the instruction at the point of insertion.
1982           IsSafe = false;
1983           break;
1984         }
1985 
1986         if (MO.isKill() && Uses.count(Reg))
1987           // Kills a register that's read by the instruction at the point of
1988           // insertion. Remove the kill marker.
1989           MO.setIsKill(false);
1990       }
1991     }
1992     if (!IsSafe)
1993       break;
1994 
1995     bool DontMoveAcrossStore = true;
1996     if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore))
1997       break;
1998 
1999     // Remove kills from ActiveDefsSet, these registers had short live ranges.
2000     for (const MachineOperand &MO : TIB->all_uses()) {
2001       if (!MO.isKill())
2002         continue;
2003       Register Reg = MO.getReg();
2004       if (!Reg)
2005         continue;
2006       if (!AllDefsSet.count(Reg)) {
2007         continue;
2008       }
2009       if (Reg.isPhysical()) {
2010         for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
2011           ActiveDefsSet.erase(*AI);
2012       } else {
2013         ActiveDefsSet.erase(Reg);
2014       }
2015     }
2016 
2017     // Track local defs so we can update liveins.
2018     for (const MachineOperand &MO : TIB->all_defs()) {
2019       if (MO.isDead())
2020         continue;
2021       Register Reg = MO.getReg();
2022       if (!Reg || Reg.isVirtual())
2023         continue;
2024       addRegAndItsAliases(Reg, TRI, ActiveDefsSet);
2025       addRegAndItsAliases(Reg, TRI, AllDefsSet);
2026     }
2027 
2028     HasDups = true;
2029     ++TIB;
2030     ++FIB;
2031   }
2032 
2033   if (!HasDups)
2034     return false;
2035 
2036   MBB->splice(Loc, TBB, TBB->begin(), TIB);
2037   FBB->erase(FBB->begin(), FIB);
2038 
2039   if (UpdateLiveIns) {
2040     recomputeLiveIns(*TBB);
2041     recomputeLiveIns(*FBB);
2042   }
2043 
2044   ++NumHoist;
2045   return true;
2046 }
2047