1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DwarfCompileUnit.h" 17 #include "DwarfExpression.h" 18 #include "DwarfUnit.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/CodeGen/AsmPrinter.h" 24 #include "llvm/CodeGen/DIE.h" 25 #include "llvm/CodeGen/LexicalScopes.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/CodeGen/TargetRegisterInfo.h" 33 #include "llvm/CodeGen/TargetSubtargetInfo.h" 34 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 35 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/MC/MCAsmInfo.h" 41 #include "llvm/MC/MCContext.h" 42 #include "llvm/MC/MCSection.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/MC/MCTargetOptions.h" 46 #include "llvm/MC/MachineLocation.h" 47 #include "llvm/MC/SectionKind.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MD5.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/Timer.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Target/TargetLoweringObjectFile.h" 58 #include "llvm/Target/TargetMachine.h" 59 #include <algorithm> 60 #include <cstddef> 61 #include <iterator> 62 #include <string> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "dwarfdebug" 67 68 STATISTIC(NumCSParams, "Number of dbg call site params created"); 69 70 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 71 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 72 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 73 74 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 75 cl::Hidden, 76 cl::desc("Generate dwarf aranges"), 77 cl::init(false)); 78 79 static cl::opt<bool> 80 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 81 cl::desc("Generate DWARF4 type units."), 82 cl::init(false)); 83 84 static cl::opt<bool> SplitDwarfCrossCuReferences( 85 "split-dwarf-cross-cu-references", cl::Hidden, 86 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 87 88 enum DefaultOnOff { Default, Enable, Disable }; 89 90 static cl::opt<DefaultOnOff> UnknownLocations( 91 "use-unknown-locations", cl::Hidden, 92 cl::desc("Make an absence of debug location information explicit."), 93 cl::values(clEnumVal(Default, "At top of block or after label"), 94 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 95 cl::init(Default)); 96 97 static cl::opt<AccelTableKind> AccelTables( 98 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 99 cl::values(clEnumValN(AccelTableKind::Default, "Default", 100 "Default for platform"), 101 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 102 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 103 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 104 cl::init(AccelTableKind::Default)); 105 106 static cl::opt<DefaultOnOff> 107 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 108 cl::desc("Use inlined strings rather than string section."), 109 cl::values(clEnumVal(Default, "Default for platform"), 110 clEnumVal(Enable, "Enabled"), 111 clEnumVal(Disable, "Disabled")), 112 cl::init(Default)); 113 114 static cl::opt<bool> 115 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 116 cl::desc("Disable emission .debug_ranges section."), 117 cl::init(false)); 118 119 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 120 "dwarf-sections-as-references", cl::Hidden, 121 cl::desc("Use sections+offset as references rather than labels."), 122 cl::values(clEnumVal(Default, "Default for platform"), 123 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 124 cl::init(Default)); 125 126 static cl::opt<bool> 127 UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden, 128 cl::desc("Emit the GNU .debug_macro format with DWARF <5"), 129 cl::init(false)); 130 131 static cl::opt<DefaultOnOff> DwarfOpConvert( 132 "dwarf-op-convert", cl::Hidden, 133 cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"), 134 cl::values(clEnumVal(Default, "Default for platform"), 135 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 136 cl::init(Default)); 137 138 enum LinkageNameOption { 139 DefaultLinkageNames, 140 AllLinkageNames, 141 AbstractLinkageNames 142 }; 143 144 static cl::opt<LinkageNameOption> 145 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 146 cl::desc("Which DWARF linkage-name attributes to emit."), 147 cl::values(clEnumValN(DefaultLinkageNames, "Default", 148 "Default for platform"), 149 clEnumValN(AllLinkageNames, "All", "All"), 150 clEnumValN(AbstractLinkageNames, "Abstract", 151 "Abstract subprograms")), 152 cl::init(DefaultLinkageNames)); 153 154 static cl::opt<DwarfDebug::MinimizeAddrInV5> MinimizeAddrInV5Option( 155 "minimize-addr-in-v5", cl::Hidden, 156 cl::desc("Always use DW_AT_ranges in DWARFv5 whenever it could allow more " 157 "address pool entry sharing to reduce relocations/object size"), 158 cl::values(clEnumValN(DwarfDebug::MinimizeAddrInV5::Default, "Default", 159 "Default address minimization strategy"), 160 clEnumValN(DwarfDebug::MinimizeAddrInV5::Ranges, "Ranges", 161 "Use rnglists for contiguous ranges if that allows " 162 "using a pre-existing base address"), 163 clEnumValN(DwarfDebug::MinimizeAddrInV5::Expressions, 164 "Expressions", 165 "Use exprloc addrx+offset expressions for any " 166 "address with a prior base address"), 167 clEnumValN(DwarfDebug::MinimizeAddrInV5::Form, "Form", 168 "Use addrx+offset extension form for any address " 169 "with a prior base address"), 170 clEnumValN(DwarfDebug::MinimizeAddrInV5::Disabled, "Disabled", 171 "Stuff")), 172 cl::init(DwarfDebug::MinimizeAddrInV5::Default)); 173 174 static constexpr unsigned ULEB128PadSize = 4; 175 176 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 177 getActiveStreamer().emitInt8( 178 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 179 : dwarf::OperationEncodingString(Op)); 180 } 181 182 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 183 getActiveStreamer().emitSLEB128(Value, Twine(Value)); 184 } 185 186 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 187 getActiveStreamer().emitULEB128(Value, Twine(Value)); 188 } 189 190 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 191 getActiveStreamer().emitInt8(Value, Twine(Value)); 192 } 193 194 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 195 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 196 getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize); 197 } 198 199 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 200 llvm::Register MachineReg) { 201 // This information is not available while emitting .debug_loc entries. 202 return false; 203 } 204 205 void DebugLocDwarfExpression::enableTemporaryBuffer() { 206 assert(!IsBuffering && "Already buffering?"); 207 if (!TmpBuf) 208 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 209 IsBuffering = true; 210 } 211 212 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 213 214 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 215 return TmpBuf ? TmpBuf->Bytes.size() : 0; 216 } 217 218 void DebugLocDwarfExpression::commitTemporaryBuffer() { 219 if (!TmpBuf) 220 return; 221 for (auto Byte : enumerate(TmpBuf->Bytes)) { 222 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 223 ? TmpBuf->Comments[Byte.index()].c_str() 224 : ""; 225 OutBS.emitInt8(Byte.value(), Comment); 226 } 227 TmpBuf->Bytes.clear(); 228 TmpBuf->Comments.clear(); 229 } 230 231 const DIType *DbgVariable::getType() const { 232 return getVariable()->getType(); 233 } 234 235 /// Get .debug_loc entry for the instruction range starting at MI. 236 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 237 const DIExpression *Expr = MI->getDebugExpression(); 238 const bool IsVariadic = MI->isDebugValueList(); 239 assert(MI->getNumOperands() >= 3); 240 SmallVector<DbgValueLocEntry, 4> DbgValueLocEntries; 241 for (const MachineOperand &Op : MI->debug_operands()) { 242 if (Op.isReg()) { 243 MachineLocation MLoc(Op.getReg(), 244 MI->isNonListDebugValue() && MI->isDebugOffsetImm()); 245 DbgValueLocEntries.push_back(DbgValueLocEntry(MLoc)); 246 } else if (Op.isTargetIndex()) { 247 DbgValueLocEntries.push_back( 248 DbgValueLocEntry(TargetIndexLocation(Op.getIndex(), Op.getOffset()))); 249 } else if (Op.isImm()) 250 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getImm())); 251 else if (Op.isFPImm()) 252 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getFPImm())); 253 else if (Op.isCImm()) 254 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getCImm())); 255 else 256 llvm_unreachable("Unexpected debug operand in DBG_VALUE* instruction!"); 257 } 258 return DbgValueLoc(Expr, DbgValueLocEntries, IsVariadic); 259 } 260 261 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 262 assert(FrameIndexExprs.empty() && "Already initialized?"); 263 assert(!ValueLoc.get() && "Already initialized?"); 264 265 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 266 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 267 "Wrong inlined-at"); 268 269 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 270 if (auto *E = DbgValue->getDebugExpression()) 271 if (E->getNumElements()) 272 FrameIndexExprs.push_back({0, E}); 273 } 274 275 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 276 if (FrameIndexExprs.size() == 1) 277 return FrameIndexExprs; 278 279 assert(llvm::all_of(FrameIndexExprs, 280 [](const FrameIndexExpr &A) { 281 return A.Expr->isFragment(); 282 }) && 283 "multiple FI expressions without DW_OP_LLVM_fragment"); 284 llvm::sort(FrameIndexExprs, 285 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 286 return A.Expr->getFragmentInfo()->OffsetInBits < 287 B.Expr->getFragmentInfo()->OffsetInBits; 288 }); 289 290 return FrameIndexExprs; 291 } 292 293 void DbgVariable::addMMIEntry(const DbgVariable &V) { 294 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 295 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 296 assert(V.getVariable() == getVariable() && "conflicting variable"); 297 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 298 299 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 300 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 301 302 // FIXME: This logic should not be necessary anymore, as we now have proper 303 // deduplication. However, without it, we currently run into the assertion 304 // below, which means that we are likely dealing with broken input, i.e. two 305 // non-fragment entries for the same variable at different frame indices. 306 if (FrameIndexExprs.size()) { 307 auto *Expr = FrameIndexExprs.back().Expr; 308 if (!Expr || !Expr->isFragment()) 309 return; 310 } 311 312 for (const auto &FIE : V.FrameIndexExprs) 313 // Ignore duplicate entries. 314 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 315 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 316 })) 317 FrameIndexExprs.push_back(FIE); 318 319 assert((FrameIndexExprs.size() == 1 || 320 llvm::all_of(FrameIndexExprs, 321 [](FrameIndexExpr &FIE) { 322 return FIE.Expr && FIE.Expr->isFragment(); 323 })) && 324 "conflicting locations for variable"); 325 } 326 327 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 328 bool GenerateTypeUnits, 329 DebuggerKind Tuning, 330 const Triple &TT) { 331 // Honor an explicit request. 332 if (AccelTables != AccelTableKind::Default) 333 return AccelTables; 334 335 // Accelerator tables with type units are currently not supported. 336 if (GenerateTypeUnits) 337 return AccelTableKind::None; 338 339 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 340 // always implies debug_names. For lower standard versions we use apple 341 // accelerator tables on apple platforms and debug_names elsewhere. 342 if (DwarfVersion >= 5) 343 return AccelTableKind::Dwarf; 344 if (Tuning == DebuggerKind::LLDB) 345 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 346 : AccelTableKind::Dwarf; 347 return AccelTableKind::None; 348 } 349 350 DwarfDebug::DwarfDebug(AsmPrinter *A) 351 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 352 InfoHolder(A, "info_string", DIEValueAllocator), 353 SkeletonHolder(A, "skel_string", DIEValueAllocator), 354 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 355 const Triple &TT = Asm->TM.getTargetTriple(); 356 357 // Make sure we know our "debugger tuning". The target option takes 358 // precedence; fall back to triple-based defaults. 359 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 360 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 361 else if (IsDarwin) 362 DebuggerTuning = DebuggerKind::LLDB; 363 else if (TT.isPS4CPU()) 364 DebuggerTuning = DebuggerKind::SCE; 365 else if (TT.isOSAIX()) 366 DebuggerTuning = DebuggerKind::DBX; 367 else 368 DebuggerTuning = DebuggerKind::GDB; 369 370 if (DwarfInlinedStrings == Default) 371 UseInlineStrings = TT.isNVPTX() || tuneForDBX(); 372 else 373 UseInlineStrings = DwarfInlinedStrings == Enable; 374 375 UseLocSection = !TT.isNVPTX(); 376 377 HasAppleExtensionAttributes = tuneForLLDB(); 378 379 // Handle split DWARF. 380 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 381 382 // SCE defaults to linkage names only for abstract subprograms. 383 if (DwarfLinkageNames == DefaultLinkageNames) 384 UseAllLinkageNames = !tuneForSCE(); 385 else 386 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 387 388 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 389 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 390 : MMI->getModule()->getDwarfVersion(); 391 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 392 DwarfVersion = 393 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 394 395 bool Dwarf64 = DwarfVersion >= 3 && // DWARF64 was introduced in DWARFv3. 396 TT.isArch64Bit(); // DWARF64 requires 64-bit relocations. 397 398 // Support DWARF64 399 // 1: For ELF when requested. 400 // 2: For XCOFF64: the AIX assembler will fill in debug section lengths 401 // according to the DWARF64 format for 64-bit assembly, so we must use 402 // DWARF64 in the compiler too for 64-bit mode. 403 Dwarf64 &= 404 ((Asm->TM.Options.MCOptions.Dwarf64 || MMI->getModule()->isDwarf64()) && 405 TT.isOSBinFormatELF()) || 406 TT.isOSBinFormatXCOFF(); 407 408 if (!Dwarf64 && TT.isArch64Bit() && TT.isOSBinFormatXCOFF()) 409 report_fatal_error("XCOFF requires DWARF64 for 64-bit mode!"); 410 411 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 412 413 // Use sections as references. Force for NVPTX. 414 if (DwarfSectionsAsReferences == Default) 415 UseSectionsAsReferences = TT.isNVPTX(); 416 else 417 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 418 419 // Don't generate type units for unsupported object file formats. 420 GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() || 421 A->TM.getTargetTriple().isOSBinFormatWasm()) && 422 GenerateDwarfTypeUnits; 423 424 TheAccelTableKind = computeAccelTableKind( 425 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 426 427 // Work around a GDB bug. GDB doesn't support the standard opcode; 428 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 429 // is defined as of DWARF 3. 430 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 431 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 432 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 433 434 // GDB does not fully support the DWARF 4 representation for bitfields. 435 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 436 437 // The DWARF v5 string offsets table has - possibly shared - contributions 438 // from each compile and type unit each preceded by a header. The string 439 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 440 // a monolithic string offsets table without any header. 441 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 442 443 // Emit call-site-param debug info for GDB and LLDB, if the target supports 444 // the debug entry values feature. It can also be enabled explicitly. 445 EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues(); 446 447 // It is unclear if the GCC .debug_macro extension is well-specified 448 // for split DWARF. For now, do not allow LLVM to emit it. 449 UseDebugMacroSection = 450 DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf()); 451 if (DwarfOpConvert == Default) 452 EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO())); 453 else 454 EnableOpConvert = (DwarfOpConvert == Enable); 455 456 // Split DWARF would benefit object size significantly by trading reductions 457 // in address pool usage for slightly increased range list encodings. 458 if (DwarfVersion >= 5) { 459 MinimizeAddr = MinimizeAddrInV5Option; 460 // FIXME: In the future, enable this by default for Split DWARF where the 461 // tradeoff is more pronounced due to being able to offload the range 462 // lists to the dwo file and shrink object files/reduce relocations there. 463 if (MinimizeAddr == MinimizeAddrInV5::Default) 464 MinimizeAddr = MinimizeAddrInV5::Disabled; 465 } 466 467 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 468 Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64 469 : dwarf::DWARF32); 470 } 471 472 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 473 DwarfDebug::~DwarfDebug() = default; 474 475 static bool isObjCClass(StringRef Name) { 476 return Name.startswith("+") || Name.startswith("-"); 477 } 478 479 static bool hasObjCCategory(StringRef Name) { 480 if (!isObjCClass(Name)) 481 return false; 482 483 return Name.find(") ") != StringRef::npos; 484 } 485 486 static void getObjCClassCategory(StringRef In, StringRef &Class, 487 StringRef &Category) { 488 if (!hasObjCCategory(In)) { 489 Class = In.slice(In.find('[') + 1, In.find(' ')); 490 Category = ""; 491 return; 492 } 493 494 Class = In.slice(In.find('[') + 1, In.find('(')); 495 Category = In.slice(In.find('[') + 1, In.find(' ')); 496 } 497 498 static StringRef getObjCMethodName(StringRef In) { 499 return In.slice(In.find(' ') + 1, In.find(']')); 500 } 501 502 // Add the various names to the Dwarf accelerator table names. 503 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 504 const DISubprogram *SP, DIE &Die) { 505 if (getAccelTableKind() != AccelTableKind::Apple && 506 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 507 return; 508 509 if (!SP->isDefinition()) 510 return; 511 512 if (SP->getName() != "") 513 addAccelName(CU, SP->getName(), Die); 514 515 // If the linkage name is different than the name, go ahead and output that as 516 // well into the name table. Only do that if we are going to actually emit 517 // that name. 518 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 519 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 520 addAccelName(CU, SP->getLinkageName(), Die); 521 522 // If this is an Objective-C selector name add it to the ObjC accelerator 523 // too. 524 if (isObjCClass(SP->getName())) { 525 StringRef Class, Category; 526 getObjCClassCategory(SP->getName(), Class, Category); 527 addAccelObjC(CU, Class, Die); 528 if (Category != "") 529 addAccelObjC(CU, Category, Die); 530 // Also add the base method name to the name table. 531 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 532 } 533 } 534 535 /// Check whether we should create a DIE for the given Scope, return true 536 /// if we don't create a DIE (the corresponding DIE is null). 537 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 538 if (Scope->isAbstractScope()) 539 return false; 540 541 // We don't create a DIE if there is no Range. 542 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 543 if (Ranges.empty()) 544 return true; 545 546 if (Ranges.size() > 1) 547 return false; 548 549 // We don't create a DIE if we have a single Range and the end label 550 // is null. 551 return !getLabelAfterInsn(Ranges.front().second); 552 } 553 554 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 555 F(CU); 556 if (auto *SkelCU = CU.getSkeleton()) 557 if (CU.getCUNode()->getSplitDebugInlining()) 558 F(*SkelCU); 559 } 560 561 bool DwarfDebug::shareAcrossDWOCUs() const { 562 return SplitDwarfCrossCuReferences; 563 } 564 565 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 566 LexicalScope *Scope) { 567 assert(Scope && Scope->getScopeNode()); 568 assert(Scope->isAbstractScope()); 569 assert(!Scope->getInlinedAt()); 570 571 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 572 573 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 574 // was inlined from another compile unit. 575 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 576 // Avoid building the original CU if it won't be used 577 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 578 else { 579 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 580 if (auto *SkelCU = CU.getSkeleton()) { 581 (shareAcrossDWOCUs() ? CU : SrcCU) 582 .constructAbstractSubprogramScopeDIE(Scope); 583 if (CU.getCUNode()->getSplitDebugInlining()) 584 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 585 } else 586 CU.constructAbstractSubprogramScopeDIE(Scope); 587 } 588 } 589 590 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) { 591 DICompileUnit *Unit = SP->getUnit(); 592 assert(SP->isDefinition() && "Subprogram not a definition"); 593 assert(Unit && "Subprogram definition without parent unit"); 594 auto &CU = getOrCreateDwarfCompileUnit(Unit); 595 return *CU.getOrCreateSubprogramDIE(SP); 596 } 597 598 /// Represents a parameter whose call site value can be described by applying a 599 /// debug expression to a register in the forwarded register worklist. 600 struct FwdRegParamInfo { 601 /// The described parameter register. 602 unsigned ParamReg; 603 604 /// Debug expression that has been built up when walking through the 605 /// instruction chain that produces the parameter's value. 606 const DIExpression *Expr; 607 }; 608 609 /// Register worklist for finding call site values. 610 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>; 611 612 /// Append the expression \p Addition to \p Original and return the result. 613 static const DIExpression *combineDIExpressions(const DIExpression *Original, 614 const DIExpression *Addition) { 615 std::vector<uint64_t> Elts = Addition->getElements().vec(); 616 // Avoid multiple DW_OP_stack_values. 617 if (Original->isImplicit() && Addition->isImplicit()) 618 erase_value(Elts, dwarf::DW_OP_stack_value); 619 const DIExpression *CombinedExpr = 620 (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original; 621 return CombinedExpr; 622 } 623 624 /// Emit call site parameter entries that are described by the given value and 625 /// debug expression. 626 template <typename ValT> 627 static void finishCallSiteParams(ValT Val, const DIExpression *Expr, 628 ArrayRef<FwdRegParamInfo> DescribedParams, 629 ParamSet &Params) { 630 for (auto Param : DescribedParams) { 631 bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0; 632 633 // TODO: Entry value operations can currently not be combined with any 634 // other expressions, so we can't emit call site entries in those cases. 635 if (ShouldCombineExpressions && Expr->isEntryValue()) 636 continue; 637 638 // If a parameter's call site value is produced by a chain of 639 // instructions we may have already created an expression for the 640 // parameter when walking through the instructions. Append that to the 641 // base expression. 642 const DIExpression *CombinedExpr = 643 ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr) 644 : Expr; 645 assert((!CombinedExpr || CombinedExpr->isValid()) && 646 "Combined debug expression is invalid"); 647 648 DbgValueLoc DbgLocVal(CombinedExpr, DbgValueLocEntry(Val)); 649 DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal); 650 Params.push_back(CSParm); 651 ++NumCSParams; 652 } 653 } 654 655 /// Add \p Reg to the worklist, if it's not already present, and mark that the 656 /// given parameter registers' values can (potentially) be described using 657 /// that register and an debug expression. 658 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg, 659 const DIExpression *Expr, 660 ArrayRef<FwdRegParamInfo> ParamsToAdd) { 661 auto I = Worklist.insert({Reg, {}}); 662 auto &ParamsForFwdReg = I.first->second; 663 for (auto Param : ParamsToAdd) { 664 assert(none_of(ParamsForFwdReg, 665 [Param](const FwdRegParamInfo &D) { 666 return D.ParamReg == Param.ParamReg; 667 }) && 668 "Same parameter described twice by forwarding reg"); 669 670 // If a parameter's call site value is produced by a chain of 671 // instructions we may have already created an expression for the 672 // parameter when walking through the instructions. Append that to the 673 // new expression. 674 const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr); 675 ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr}); 676 } 677 } 678 679 /// Interpret values loaded into registers by \p CurMI. 680 static void interpretValues(const MachineInstr *CurMI, 681 FwdRegWorklist &ForwardedRegWorklist, 682 ParamSet &Params) { 683 684 const MachineFunction *MF = CurMI->getMF(); 685 const DIExpression *EmptyExpr = 686 DIExpression::get(MF->getFunction().getContext(), {}); 687 const auto &TRI = *MF->getSubtarget().getRegisterInfo(); 688 const auto &TII = *MF->getSubtarget().getInstrInfo(); 689 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 690 691 // If an instruction defines more than one item in the worklist, we may run 692 // into situations where a worklist register's value is (potentially) 693 // described by the previous value of another register that is also defined 694 // by that instruction. 695 // 696 // This can for example occur in cases like this: 697 // 698 // $r1 = mov 123 699 // $r0, $r1 = mvrr $r1, 456 700 // call @foo, $r0, $r1 701 // 702 // When describing $r1's value for the mvrr instruction, we need to make sure 703 // that we don't finalize an entry value for $r0, as that is dependent on the 704 // previous value of $r1 (123 rather than 456). 705 // 706 // In order to not have to distinguish between those cases when finalizing 707 // entry values, we simply postpone adding new parameter registers to the 708 // worklist, by first keeping them in this temporary container until the 709 // instruction has been handled. 710 FwdRegWorklist TmpWorklistItems; 711 712 // If the MI is an instruction defining one or more parameters' forwarding 713 // registers, add those defines. 714 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 715 SmallSetVector<unsigned, 4> &Defs) { 716 if (MI.isDebugInstr()) 717 return; 718 719 for (const MachineOperand &MO : MI.operands()) { 720 if (MO.isReg() && MO.isDef() && 721 Register::isPhysicalRegister(MO.getReg())) { 722 for (auto &FwdReg : ForwardedRegWorklist) 723 if (TRI.regsOverlap(FwdReg.first, MO.getReg())) 724 Defs.insert(FwdReg.first); 725 } 726 } 727 }; 728 729 // Set of worklist registers that are defined by this instruction. 730 SmallSetVector<unsigned, 4> FwdRegDefs; 731 732 getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs); 733 if (FwdRegDefs.empty()) 734 return; 735 736 for (auto ParamFwdReg : FwdRegDefs) { 737 if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) { 738 if (ParamValue->first.isImm()) { 739 int64_t Val = ParamValue->first.getImm(); 740 finishCallSiteParams(Val, ParamValue->second, 741 ForwardedRegWorklist[ParamFwdReg], Params); 742 } else if (ParamValue->first.isReg()) { 743 Register RegLoc = ParamValue->first.getReg(); 744 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 745 Register FP = TRI.getFrameRegister(*MF); 746 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 747 if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 748 MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP); 749 finishCallSiteParams(MLoc, ParamValue->second, 750 ForwardedRegWorklist[ParamFwdReg], Params); 751 } else { 752 // ParamFwdReg was described by the non-callee saved register 753 // RegLoc. Mark that the call site values for the parameters are 754 // dependent on that register instead of ParamFwdReg. Since RegLoc 755 // may be a register that will be handled in this iteration, we 756 // postpone adding the items to the worklist, and instead keep them 757 // in a temporary container. 758 addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second, 759 ForwardedRegWorklist[ParamFwdReg]); 760 } 761 } 762 } 763 } 764 765 // Remove all registers that this instruction defines from the worklist. 766 for (auto ParamFwdReg : FwdRegDefs) 767 ForwardedRegWorklist.erase(ParamFwdReg); 768 769 // Now that we are done handling this instruction, add items from the 770 // temporary worklist to the real one. 771 for (auto &New : TmpWorklistItems) 772 addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second); 773 TmpWorklistItems.clear(); 774 } 775 776 static bool interpretNextInstr(const MachineInstr *CurMI, 777 FwdRegWorklist &ForwardedRegWorklist, 778 ParamSet &Params) { 779 // Skip bundle headers. 780 if (CurMI->isBundle()) 781 return true; 782 783 // If the next instruction is a call we can not interpret parameter's 784 // forwarding registers or we finished the interpretation of all 785 // parameters. 786 if (CurMI->isCall()) 787 return false; 788 789 if (ForwardedRegWorklist.empty()) 790 return false; 791 792 // Avoid NOP description. 793 if (CurMI->getNumOperands() == 0) 794 return true; 795 796 interpretValues(CurMI, ForwardedRegWorklist, Params); 797 798 return true; 799 } 800 801 /// Try to interpret values loaded into registers that forward parameters 802 /// for \p CallMI. Store parameters with interpreted value into \p Params. 803 static void collectCallSiteParameters(const MachineInstr *CallMI, 804 ParamSet &Params) { 805 const MachineFunction *MF = CallMI->getMF(); 806 const auto &CalleesMap = MF->getCallSitesInfo(); 807 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 808 809 // There is no information for the call instruction. 810 if (CallFwdRegsInfo == CalleesMap.end()) 811 return; 812 813 const MachineBasicBlock *MBB = CallMI->getParent(); 814 815 // Skip the call instruction. 816 auto I = std::next(CallMI->getReverseIterator()); 817 818 FwdRegWorklist ForwardedRegWorklist; 819 820 const DIExpression *EmptyExpr = 821 DIExpression::get(MF->getFunction().getContext(), {}); 822 823 // Add all the forwarding registers into the ForwardedRegWorklist. 824 for (const auto &ArgReg : CallFwdRegsInfo->second) { 825 bool InsertedReg = 826 ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}}) 827 .second; 828 assert(InsertedReg && "Single register used to forward two arguments?"); 829 (void)InsertedReg; 830 } 831 832 // Do not emit CSInfo for undef forwarding registers. 833 for (auto &MO : CallMI->uses()) 834 if (MO.isReg() && MO.isUndef()) 835 ForwardedRegWorklist.erase(MO.getReg()); 836 837 // We erase, from the ForwardedRegWorklist, those forwarding registers for 838 // which we successfully describe a loaded value (by using 839 // the describeLoadedValue()). For those remaining arguments in the working 840 // list, for which we do not describe a loaded value by 841 // the describeLoadedValue(), we try to generate an entry value expression 842 // for their call site value description, if the call is within the entry MBB. 843 // TODO: Handle situations when call site parameter value can be described 844 // as the entry value within basic blocks other than the first one. 845 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 846 847 // Search for a loading value in forwarding registers inside call delay slot. 848 if (CallMI->hasDelaySlot()) { 849 auto Suc = std::next(CallMI->getIterator()); 850 // Only one-instruction delay slot is supported. 851 auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator()); 852 (void)BundleEnd; 853 assert(std::next(Suc) == BundleEnd && 854 "More than one instruction in call delay slot"); 855 // Try to interpret value loaded by instruction. 856 if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params)) 857 return; 858 } 859 860 // Search for a loading value in forwarding registers. 861 for (; I != MBB->rend(); ++I) { 862 // Try to interpret values loaded by instruction. 863 if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params)) 864 return; 865 } 866 867 // Emit the call site parameter's value as an entry value. 868 if (ShouldTryEmitEntryVals) { 869 // Create an expression where the register's entry value is used. 870 DIExpression *EntryExpr = DIExpression::get( 871 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 872 for (auto &RegEntry : ForwardedRegWorklist) { 873 MachineLocation MLoc(RegEntry.first); 874 finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params); 875 } 876 } 877 } 878 879 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 880 DwarfCompileUnit &CU, DIE &ScopeDIE, 881 const MachineFunction &MF) { 882 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 883 // the subprogram is required to have one. 884 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 885 return; 886 887 // Use DW_AT_call_all_calls to express that call site entries are present 888 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 889 // because one of its requirements is not met: call site entries for 890 // optimized-out calls are elided. 891 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 892 893 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 894 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 895 896 // Delay slot support check. 897 auto delaySlotSupported = [&](const MachineInstr &MI) { 898 if (!MI.isBundledWithSucc()) 899 return false; 900 auto Suc = std::next(MI.getIterator()); 901 auto CallInstrBundle = getBundleStart(MI.getIterator()); 902 (void)CallInstrBundle; 903 auto DelaySlotBundle = getBundleStart(Suc); 904 (void)DelaySlotBundle; 905 // Ensure that label after call is following delay slot instruction. 906 // Ex. CALL_INSTRUCTION { 907 // DELAY_SLOT_INSTRUCTION } 908 // LABEL_AFTER_CALL 909 assert(getLabelAfterInsn(&*CallInstrBundle) == 910 getLabelAfterInsn(&*DelaySlotBundle) && 911 "Call and its successor instruction don't have same label after."); 912 return true; 913 }; 914 915 // Emit call site entries for each call or tail call in the function. 916 for (const MachineBasicBlock &MBB : MF) { 917 for (const MachineInstr &MI : MBB.instrs()) { 918 // Bundles with call in them will pass the isCall() test below but do not 919 // have callee operand information so skip them here. Iterator will 920 // eventually reach the call MI. 921 if (MI.isBundle()) 922 continue; 923 924 // Skip instructions which aren't calls. Both calls and tail-calling jump 925 // instructions (e.g TAILJMPd64) are classified correctly here. 926 if (!MI.isCandidateForCallSiteEntry()) 927 continue; 928 929 // Skip instructions marked as frame setup, as they are not interesting to 930 // the user. 931 if (MI.getFlag(MachineInstr::FrameSetup)) 932 continue; 933 934 // Check if delay slot support is enabled. 935 if (MI.hasDelaySlot() && !delaySlotSupported(*&MI)) 936 return; 937 938 // If this is a direct call, find the callee's subprogram. 939 // In the case of an indirect call find the register that holds 940 // the callee. 941 const MachineOperand &CalleeOp = TII->getCalleeOperand(MI); 942 if (!CalleeOp.isGlobal() && 943 (!CalleeOp.isReg() || 944 !Register::isPhysicalRegister(CalleeOp.getReg()))) 945 continue; 946 947 unsigned CallReg = 0; 948 DIE *CalleeDIE = nullptr; 949 const Function *CalleeDecl = nullptr; 950 if (CalleeOp.isReg()) { 951 CallReg = CalleeOp.getReg(); 952 if (!CallReg) 953 continue; 954 } else { 955 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 956 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 957 continue; 958 const DISubprogram *CalleeSP = CalleeDecl->getSubprogram(); 959 960 if (CalleeSP->isDefinition()) { 961 // Ensure that a subprogram DIE for the callee is available in the 962 // appropriate CU. 963 CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP); 964 } else { 965 // Create the declaration DIE if it is missing. This is required to 966 // support compilation of old bitcode with an incomplete list of 967 // retained metadata. 968 CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP); 969 } 970 assert(CalleeDIE && "Must have a DIE for the callee"); 971 } 972 973 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 974 975 bool IsTail = TII->isTailCall(MI); 976 977 // If MI is in a bundle, the label was created after the bundle since 978 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI 979 // to search for that label below. 980 const MachineInstr *TopLevelCallMI = 981 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; 982 983 // For non-tail calls, the return PC is needed to disambiguate paths in 984 // the call graph which could lead to some target function. For tail 985 // calls, no return PC information is needed, unless tuning for GDB in 986 // DWARF4 mode in which case we fake a return PC for compatibility. 987 const MCSymbol *PCAddr = 988 (!IsTail || CU.useGNUAnalogForDwarf5Feature()) 989 ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)) 990 : nullptr; 991 992 // For tail calls, it's necessary to record the address of the branch 993 // instruction so that the debugger can show where the tail call occurred. 994 const MCSymbol *CallAddr = 995 IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr; 996 997 assert((IsTail || PCAddr) && "Non-tail call without return PC"); 998 999 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 1000 << (CalleeDecl ? CalleeDecl->getName() 1001 : StringRef(MF.getSubtarget() 1002 .getRegisterInfo() 1003 ->getName(CallReg))) 1004 << (IsTail ? " [IsTail]" : "") << "\n"); 1005 1006 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE( 1007 ScopeDIE, CalleeDIE, IsTail, PCAddr, CallAddr, CallReg); 1008 1009 // Optionally emit call-site-param debug info. 1010 if (emitDebugEntryValues()) { 1011 ParamSet Params; 1012 // Try to interpret values of call site parameters. 1013 collectCallSiteParameters(&MI, Params); 1014 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 1015 } 1016 } 1017 } 1018 } 1019 1020 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 1021 if (!U.hasDwarfPubSections()) 1022 return; 1023 1024 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 1025 } 1026 1027 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 1028 DwarfCompileUnit &NewCU) { 1029 DIE &Die = NewCU.getUnitDie(); 1030 StringRef FN = DIUnit->getFilename(); 1031 1032 StringRef Producer = DIUnit->getProducer(); 1033 StringRef Flags = DIUnit->getFlags(); 1034 if (!Flags.empty() && !useAppleExtensionAttributes()) { 1035 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 1036 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 1037 } else 1038 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 1039 1040 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 1041 DIUnit->getSourceLanguage()); 1042 NewCU.addString(Die, dwarf::DW_AT_name, FN); 1043 StringRef SysRoot = DIUnit->getSysRoot(); 1044 if (!SysRoot.empty()) 1045 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot); 1046 StringRef SDK = DIUnit->getSDK(); 1047 if (!SDK.empty()) 1048 NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK); 1049 1050 // Add DW_str_offsets_base to the unit DIE, except for split units. 1051 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 1052 NewCU.addStringOffsetsStart(); 1053 1054 if (!useSplitDwarf()) { 1055 NewCU.initStmtList(); 1056 1057 // If we're using split dwarf the compilation dir is going to be in the 1058 // skeleton CU and so we don't need to duplicate it here. 1059 if (!CompilationDir.empty()) 1060 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 1061 addGnuPubAttributes(NewCU, Die); 1062 } 1063 1064 if (useAppleExtensionAttributes()) { 1065 if (DIUnit->isOptimized()) 1066 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 1067 1068 StringRef Flags = DIUnit->getFlags(); 1069 if (!Flags.empty()) 1070 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 1071 1072 if (unsigned RVer = DIUnit->getRuntimeVersion()) 1073 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 1074 dwarf::DW_FORM_data1, RVer); 1075 } 1076 1077 if (DIUnit->getDWOId()) { 1078 // This CU is either a clang module DWO or a skeleton CU. 1079 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 1080 DIUnit->getDWOId()); 1081 if (!DIUnit->getSplitDebugFilename().empty()) { 1082 // This is a prefabricated skeleton CU. 1083 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1084 ? dwarf::DW_AT_dwo_name 1085 : dwarf::DW_AT_GNU_dwo_name; 1086 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); 1087 } 1088 } 1089 } 1090 // Create new DwarfCompileUnit for the given metadata node with tag 1091 // DW_TAG_compile_unit. 1092 DwarfCompileUnit & 1093 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 1094 if (auto *CU = CUMap.lookup(DIUnit)) 1095 return *CU; 1096 1097 CompilationDir = DIUnit->getDirectory(); 1098 1099 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 1100 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 1101 DwarfCompileUnit &NewCU = *OwnedUnit; 1102 InfoHolder.addUnit(std::move(OwnedUnit)); 1103 1104 for (auto *IE : DIUnit->getImportedEntities()) 1105 NewCU.addImportedEntity(IE); 1106 1107 // LTO with assembly output shares a single line table amongst multiple CUs. 1108 // To avoid the compilation directory being ambiguous, let the line table 1109 // explicitly describe the directory of all files, never relying on the 1110 // compilation directory. 1111 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 1112 Asm->OutStreamer->emitDwarfFile0Directive( 1113 CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()), 1114 DIUnit->getSource(), NewCU.getUniqueID()); 1115 1116 if (useSplitDwarf()) { 1117 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 1118 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 1119 } else { 1120 finishUnitAttributes(DIUnit, NewCU); 1121 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 1122 } 1123 1124 CUMap.insert({DIUnit, &NewCU}); 1125 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 1126 return NewCU; 1127 } 1128 1129 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 1130 const DIImportedEntity *N) { 1131 if (isa<DILocalScope>(N->getScope())) 1132 return; 1133 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 1134 D->addChild(TheCU.constructImportedEntityDIE(N)); 1135 } 1136 1137 /// Sort and unique GVEs by comparing their fragment offset. 1138 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 1139 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 1140 llvm::sort( 1141 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 1142 // Sort order: first null exprs, then exprs without fragment 1143 // info, then sort by fragment offset in bits. 1144 // FIXME: Come up with a more comprehensive comparator so 1145 // the sorting isn't non-deterministic, and so the following 1146 // std::unique call works correctly. 1147 if (!A.Expr || !B.Expr) 1148 return !!B.Expr; 1149 auto FragmentA = A.Expr->getFragmentInfo(); 1150 auto FragmentB = B.Expr->getFragmentInfo(); 1151 if (!FragmentA || !FragmentB) 1152 return !!FragmentB; 1153 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 1154 }); 1155 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 1156 [](DwarfCompileUnit::GlobalExpr A, 1157 DwarfCompileUnit::GlobalExpr B) { 1158 return A.Expr == B.Expr; 1159 }), 1160 GVEs.end()); 1161 return GVEs; 1162 } 1163 1164 // Emit all Dwarf sections that should come prior to the content. Create 1165 // global DIEs and emit initial debug info sections. This is invoked by 1166 // the target AsmPrinter. 1167 void DwarfDebug::beginModule(Module *M) { 1168 DebugHandlerBase::beginModule(M); 1169 1170 if (!Asm || !MMI->hasDebugInfo()) 1171 return; 1172 1173 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 1174 M->debug_compile_units_end()); 1175 assert(NumDebugCUs > 0 && "Asm unexpectedly initialized"); 1176 assert(MMI->hasDebugInfo() && 1177 "DebugInfoAvailabilty unexpectedly not initialized"); 1178 SingleCU = NumDebugCUs == 1; 1179 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 1180 GVMap; 1181 for (const GlobalVariable &Global : M->globals()) { 1182 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1183 Global.getDebugInfo(GVs); 1184 for (auto *GVE : GVs) 1185 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 1186 } 1187 1188 // Create the symbol that designates the start of the unit's contribution 1189 // to the string offsets table. In a split DWARF scenario, only the skeleton 1190 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 1191 if (useSegmentedStringOffsetsTable()) 1192 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 1193 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 1194 1195 1196 // Create the symbols that designates the start of the DWARF v5 range list 1197 // and locations list tables. They are located past the table headers. 1198 if (getDwarfVersion() >= 5) { 1199 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1200 Holder.setRnglistsTableBaseSym( 1201 Asm->createTempSymbol("rnglists_table_base")); 1202 1203 if (useSplitDwarf()) 1204 InfoHolder.setRnglistsTableBaseSym( 1205 Asm->createTempSymbol("rnglists_dwo_table_base")); 1206 } 1207 1208 // Create the symbol that points to the first entry following the debug 1209 // address table (.debug_addr) header. 1210 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 1211 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1212 1213 for (DICompileUnit *CUNode : M->debug_compile_units()) { 1214 // FIXME: Move local imported entities into a list attached to the 1215 // subprogram, then this search won't be needed and a 1216 // getImportedEntities().empty() test should go below with the rest. 1217 bool HasNonLocalImportedEntities = llvm::any_of( 1218 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 1219 return !isa<DILocalScope>(IE->getScope()); 1220 }); 1221 1222 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 1223 CUNode->getRetainedTypes().empty() && 1224 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 1225 continue; 1226 1227 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 1228 1229 // Global Variables. 1230 for (auto *GVE : CUNode->getGlobalVariables()) { 1231 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1232 // already know about the variable and it isn't adding a constant 1233 // expression. 1234 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1235 auto *Expr = GVE->getExpression(); 1236 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1237 GVMapEntry.push_back({nullptr, Expr}); 1238 } 1239 1240 DenseSet<DIGlobalVariable *> Processed; 1241 for (auto *GVE : CUNode->getGlobalVariables()) { 1242 DIGlobalVariable *GV = GVE->getVariable(); 1243 if (Processed.insert(GV).second) 1244 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1245 } 1246 1247 for (auto *Ty : CUNode->getEnumTypes()) { 1248 // The enum types array by design contains pointers to 1249 // MDNodes rather than DIRefs. Unique them here. 1250 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1251 } 1252 for (auto *Ty : CUNode->getRetainedTypes()) { 1253 // The retained types array by design contains pointers to 1254 // MDNodes rather than DIRefs. Unique them here. 1255 if (DIType *RT = dyn_cast<DIType>(Ty)) 1256 // There is no point in force-emitting a forward declaration. 1257 CU.getOrCreateTypeDIE(RT); 1258 } 1259 // Emit imported_modules last so that the relevant context is already 1260 // available. 1261 for (auto *IE : CUNode->getImportedEntities()) 1262 constructAndAddImportedEntityDIE(CU, IE); 1263 } 1264 } 1265 1266 void DwarfDebug::finishEntityDefinitions() { 1267 for (const auto &Entity : ConcreteEntities) { 1268 DIE *Die = Entity->getDIE(); 1269 assert(Die); 1270 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1271 // in the ConcreteEntities list, rather than looking it up again here. 1272 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1273 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1274 assert(Unit); 1275 Unit->finishEntityDefinition(Entity.get()); 1276 } 1277 } 1278 1279 void DwarfDebug::finishSubprogramDefinitions() { 1280 for (const DISubprogram *SP : ProcessedSPNodes) { 1281 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1282 forBothCUs( 1283 getOrCreateDwarfCompileUnit(SP->getUnit()), 1284 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1285 } 1286 } 1287 1288 void DwarfDebug::finalizeModuleInfo() { 1289 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1290 1291 finishSubprogramDefinitions(); 1292 1293 finishEntityDefinitions(); 1294 1295 // Include the DWO file name in the hash if there's more than one CU. 1296 // This handles ThinLTO's situation where imported CUs may very easily be 1297 // duplicate with the same CU partially imported into another ThinLTO unit. 1298 StringRef DWOName; 1299 if (CUMap.size() > 1) 1300 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1301 1302 // Handle anything that needs to be done on a per-unit basis after 1303 // all other generation. 1304 for (const auto &P : CUMap) { 1305 auto &TheCU = *P.second; 1306 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1307 continue; 1308 // Emit DW_AT_containing_type attribute to connect types with their 1309 // vtable holding type. 1310 TheCU.constructContainingTypeDIEs(); 1311 1312 // Add CU specific attributes if we need to add any. 1313 // If we're splitting the dwarf out now that we've got the entire 1314 // CU then add the dwo id to it. 1315 auto *SkCU = TheCU.getSkeleton(); 1316 1317 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); 1318 1319 if (HasSplitUnit) { 1320 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1321 ? dwarf::DW_AT_dwo_name 1322 : dwarf::DW_AT_GNU_dwo_name; 1323 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1324 TheCU.addString(TheCU.getUnitDie(), attrDWOName, 1325 Asm->TM.Options.MCOptions.SplitDwarfFile); 1326 SkCU->addString(SkCU->getUnitDie(), attrDWOName, 1327 Asm->TM.Options.MCOptions.SplitDwarfFile); 1328 // Emit a unique identifier for this CU. 1329 uint64_t ID = 1330 DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie()); 1331 if (getDwarfVersion() >= 5) { 1332 TheCU.setDWOId(ID); 1333 SkCU->setDWOId(ID); 1334 } else { 1335 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1336 dwarf::DW_FORM_data8, ID); 1337 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1338 dwarf::DW_FORM_data8, ID); 1339 } 1340 1341 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1342 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1343 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1344 Sym, Sym); 1345 } 1346 } else if (SkCU) { 1347 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1348 } 1349 1350 // If we have code split among multiple sections or non-contiguous 1351 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1352 // remain in the .o file, otherwise add a DW_AT_low_pc. 1353 // FIXME: We should use ranges allow reordering of code ala 1354 // .subsections_via_symbols in mach-o. This would mean turning on 1355 // ranges for all subprogram DIEs for mach-o. 1356 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1357 1358 if (unsigned NumRanges = TheCU.getRanges().size()) { 1359 if (NumRanges > 1 && useRangesSection()) 1360 // A DW_AT_low_pc attribute may also be specified in combination with 1361 // DW_AT_ranges to specify the default base address for use in 1362 // location lists (see Section 2.6.2) and range lists (see Section 1363 // 2.17.3). 1364 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1365 else 1366 U.setBaseAddress(TheCU.getRanges().front().Begin); 1367 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1368 } 1369 1370 // We don't keep track of which addresses are used in which CU so this 1371 // is a bit pessimistic under LTO. 1372 if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty()) 1373 U.addAddrTableBase(); 1374 1375 if (getDwarfVersion() >= 5) { 1376 if (U.hasRangeLists()) 1377 U.addRnglistsBase(); 1378 1379 if (!DebugLocs.getLists().empty()) { 1380 if (!useSplitDwarf()) 1381 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1382 DebugLocs.getSym(), 1383 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1384 } 1385 } 1386 1387 auto *CUNode = cast<DICompileUnit>(P.first); 1388 // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros" 1389 // attribute. 1390 if (CUNode->getMacros()) { 1391 if (UseDebugMacroSection) { 1392 if (useSplitDwarf()) 1393 TheCU.addSectionDelta( 1394 TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(), 1395 TLOF.getDwarfMacroDWOSection()->getBeginSymbol()); 1396 else { 1397 dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5 1398 ? dwarf::DW_AT_macros 1399 : dwarf::DW_AT_GNU_macros; 1400 U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(), 1401 TLOF.getDwarfMacroSection()->getBeginSymbol()); 1402 } 1403 } else { 1404 if (useSplitDwarf()) 1405 TheCU.addSectionDelta( 1406 TheCU.getUnitDie(), dwarf::DW_AT_macro_info, 1407 U.getMacroLabelBegin(), 1408 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); 1409 else 1410 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1411 U.getMacroLabelBegin(), 1412 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1413 } 1414 } 1415 } 1416 1417 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1418 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1419 if (CUNode->getDWOId()) 1420 getOrCreateDwarfCompileUnit(CUNode); 1421 1422 // Compute DIE offsets and sizes. 1423 InfoHolder.computeSizeAndOffsets(); 1424 if (useSplitDwarf()) 1425 SkeletonHolder.computeSizeAndOffsets(); 1426 } 1427 1428 // Emit all Dwarf sections that should come after the content. 1429 void DwarfDebug::endModule() { 1430 assert(CurFn == nullptr); 1431 assert(CurMI == nullptr); 1432 1433 for (const auto &P : CUMap) { 1434 auto &CU = *P.second; 1435 CU.createBaseTypeDIEs(); 1436 } 1437 1438 // If we aren't actually generating debug info (check beginModule - 1439 // conditionalized on the presence of the llvm.dbg.cu metadata node) 1440 if (!Asm || !MMI->hasDebugInfo()) 1441 return; 1442 1443 // Finalize the debug info for the module. 1444 finalizeModuleInfo(); 1445 1446 if (useSplitDwarf()) 1447 // Emit debug_loc.dwo/debug_loclists.dwo section. 1448 emitDebugLocDWO(); 1449 else 1450 // Emit debug_loc/debug_loclists section. 1451 emitDebugLoc(); 1452 1453 // Corresponding abbreviations into a abbrev section. 1454 emitAbbreviations(); 1455 1456 // Emit all the DIEs into a debug info section. 1457 emitDebugInfo(); 1458 1459 // Emit info into a debug aranges section. 1460 if (GenerateARangeSection) 1461 emitDebugARanges(); 1462 1463 // Emit info into a debug ranges section. 1464 emitDebugRanges(); 1465 1466 if (useSplitDwarf()) 1467 // Emit info into a debug macinfo.dwo section. 1468 emitDebugMacinfoDWO(); 1469 else 1470 // Emit info into a debug macinfo/macro section. 1471 emitDebugMacinfo(); 1472 1473 emitDebugStr(); 1474 1475 if (useSplitDwarf()) { 1476 emitDebugStrDWO(); 1477 emitDebugInfoDWO(); 1478 emitDebugAbbrevDWO(); 1479 emitDebugLineDWO(); 1480 emitDebugRangesDWO(); 1481 } 1482 1483 emitDebugAddr(); 1484 1485 // Emit info into the dwarf accelerator table sections. 1486 switch (getAccelTableKind()) { 1487 case AccelTableKind::Apple: 1488 emitAccelNames(); 1489 emitAccelObjC(); 1490 emitAccelNamespaces(); 1491 emitAccelTypes(); 1492 break; 1493 case AccelTableKind::Dwarf: 1494 emitAccelDebugNames(); 1495 break; 1496 case AccelTableKind::None: 1497 break; 1498 case AccelTableKind::Default: 1499 llvm_unreachable("Default should have already been resolved."); 1500 } 1501 1502 // Emit the pubnames and pubtypes sections if requested. 1503 emitDebugPubSections(); 1504 1505 // clean up. 1506 // FIXME: AbstractVariables.clear(); 1507 } 1508 1509 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1510 const DINode *Node, 1511 const MDNode *ScopeNode) { 1512 if (CU.getExistingAbstractEntity(Node)) 1513 return; 1514 1515 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1516 cast<DILocalScope>(ScopeNode))); 1517 } 1518 1519 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1520 const DINode *Node, const MDNode *ScopeNode) { 1521 if (CU.getExistingAbstractEntity(Node)) 1522 return; 1523 1524 if (LexicalScope *Scope = 1525 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1526 CU.createAbstractEntity(Node, Scope); 1527 } 1528 1529 // Collect variable information from side table maintained by MF. 1530 void DwarfDebug::collectVariableInfoFromMFTable( 1531 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1532 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1533 LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n"); 1534 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1535 if (!VI.Var) 1536 continue; 1537 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1538 "Expected inlined-at fields to agree"); 1539 1540 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1541 Processed.insert(Var); 1542 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1543 1544 // If variable scope is not found then skip this variable. 1545 if (!Scope) { 1546 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() 1547 << ", no variable scope found\n"); 1548 continue; 1549 } 1550 1551 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1552 auto RegVar = std::make_unique<DbgVariable>( 1553 cast<DILocalVariable>(Var.first), Var.second); 1554 RegVar->initializeMMI(VI.Expr, VI.Slot); 1555 LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName() 1556 << "\n"); 1557 1558 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1559 DbgVar->addMMIEntry(*RegVar); 1560 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1561 MFVars.insert({Var, RegVar.get()}); 1562 ConcreteEntities.push_back(std::move(RegVar)); 1563 } 1564 } 1565 } 1566 1567 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1568 /// enclosing lexical scope. The check ensures there are no other instructions 1569 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1570 /// either open or otherwise rolls off the end of the scope. 1571 static bool validThroughout(LexicalScopes &LScopes, 1572 const MachineInstr *DbgValue, 1573 const MachineInstr *RangeEnd, 1574 const InstructionOrdering &Ordering) { 1575 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1576 auto MBB = DbgValue->getParent(); 1577 auto DL = DbgValue->getDebugLoc(); 1578 auto *LScope = LScopes.findLexicalScope(DL); 1579 // Scope doesn't exist; this is a dead DBG_VALUE. 1580 if (!LScope) 1581 return false; 1582 auto &LSRange = LScope->getRanges(); 1583 if (LSRange.size() == 0) 1584 return false; 1585 1586 const MachineInstr *LScopeBegin = LSRange.front().first; 1587 // If the scope starts before the DBG_VALUE then we may have a negative 1588 // result. Otherwise the location is live coming into the scope and we 1589 // can skip the following checks. 1590 if (!Ordering.isBefore(DbgValue, LScopeBegin)) { 1591 // Exit if the lexical scope begins outside of the current block. 1592 if (LScopeBegin->getParent() != MBB) 1593 return false; 1594 1595 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1596 for (++Pred; Pred != MBB->rend(); ++Pred) { 1597 if (Pred->getFlag(MachineInstr::FrameSetup)) 1598 break; 1599 auto PredDL = Pred->getDebugLoc(); 1600 if (!PredDL || Pred->isMetaInstruction()) 1601 continue; 1602 // Check whether the instruction preceding the DBG_VALUE is in the same 1603 // (sub)scope as the DBG_VALUE. 1604 if (DL->getScope() == PredDL->getScope()) 1605 return false; 1606 auto *PredScope = LScopes.findLexicalScope(PredDL); 1607 if (!PredScope || LScope->dominates(PredScope)) 1608 return false; 1609 } 1610 } 1611 1612 // If the range of the DBG_VALUE is open-ended, report success. 1613 if (!RangeEnd) 1614 return true; 1615 1616 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1617 // throughout the function. This is a hack, presumably for DWARF v2 and not 1618 // necessarily correct. It would be much better to use a dbg.declare instead 1619 // if we know the constant is live throughout the scope. 1620 if (MBB->pred_empty() && 1621 all_of(DbgValue->debug_operands(), 1622 [](const MachineOperand &Op) { return Op.isImm(); })) 1623 return true; 1624 1625 // Test if the location terminates before the end of the scope. 1626 const MachineInstr *LScopeEnd = LSRange.back().second; 1627 if (Ordering.isBefore(RangeEnd, LScopeEnd)) 1628 return false; 1629 1630 // There's a single location which starts at the scope start, and ends at or 1631 // after the scope end. 1632 return true; 1633 } 1634 1635 /// Build the location list for all DBG_VALUEs in the function that 1636 /// describe the same variable. The resulting DebugLocEntries will have 1637 /// strict monotonically increasing begin addresses and will never 1638 /// overlap. If the resulting list has only one entry that is valid 1639 /// throughout variable's scope return true. 1640 // 1641 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1642 // different kinds of history map entries. One thing to be aware of is that if 1643 // a debug value is ended by another entry (rather than being valid until the 1644 // end of the function), that entry's instruction may or may not be included in 1645 // the range, depending on if the entry is a clobbering entry (it has an 1646 // instruction that clobbers one or more preceding locations), or if it is an 1647 // (overlapping) debug value entry. This distinction can be seen in the example 1648 // below. The first debug value is ended by the clobbering entry 2, and the 1649 // second and third debug values are ended by the overlapping debug value entry 1650 // 4. 1651 // 1652 // Input: 1653 // 1654 // History map entries [type, end index, mi] 1655 // 1656 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1657 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1658 // 2 | | [Clobber, $reg0 = [...], -, -] 1659 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1660 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1661 // 1662 // Output [start, end) [Value...]: 1663 // 1664 // [0-1) [(reg0, fragment 0, 32)] 1665 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1666 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1667 // [4-) [(@g, fragment 0, 96)] 1668 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 1669 const DbgValueHistoryMap::Entries &Entries) { 1670 using OpenRange = 1671 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1672 SmallVector<OpenRange, 4> OpenRanges; 1673 bool isSafeForSingleLocation = true; 1674 const MachineInstr *StartDebugMI = nullptr; 1675 const MachineInstr *EndMI = nullptr; 1676 1677 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1678 const MachineInstr *Instr = EI->getInstr(); 1679 1680 // Remove all values that are no longer live. 1681 size_t Index = std::distance(EB, EI); 1682 erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1683 1684 // If we are dealing with a clobbering entry, this iteration will result in 1685 // a location list entry starting after the clobbering instruction. 1686 const MCSymbol *StartLabel = 1687 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1688 assert(StartLabel && 1689 "Forgot label before/after instruction starting a range!"); 1690 1691 const MCSymbol *EndLabel; 1692 if (std::next(EI) == Entries.end()) { 1693 const MachineBasicBlock &EndMBB = Asm->MF->back(); 1694 EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel; 1695 if (EI->isClobber()) 1696 EndMI = EI->getInstr(); 1697 } 1698 else if (std::next(EI)->isClobber()) 1699 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1700 else 1701 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1702 assert(EndLabel && "Forgot label after instruction ending a range!"); 1703 1704 if (EI->isDbgValue()) 1705 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1706 1707 // If this history map entry has a debug value, add that to the list of 1708 // open ranges and check if its location is valid for a single value 1709 // location. 1710 if (EI->isDbgValue()) { 1711 // Do not add undef debug values, as they are redundant information in 1712 // the location list entries. An undef debug results in an empty location 1713 // description. If there are any non-undef fragments then padding pieces 1714 // with empty location descriptions will automatically be inserted, and if 1715 // all fragments are undef then the whole location list entry is 1716 // redundant. 1717 if (!Instr->isUndefDebugValue()) { 1718 auto Value = getDebugLocValue(Instr); 1719 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1720 1721 // TODO: Add support for single value fragment locations. 1722 if (Instr->getDebugExpression()->isFragment()) 1723 isSafeForSingleLocation = false; 1724 1725 if (!StartDebugMI) 1726 StartDebugMI = Instr; 1727 } else { 1728 isSafeForSingleLocation = false; 1729 } 1730 } 1731 1732 // Location list entries with empty location descriptions are redundant 1733 // information in DWARF, so do not emit those. 1734 if (OpenRanges.empty()) 1735 continue; 1736 1737 // Omit entries with empty ranges as they do not have any effect in DWARF. 1738 if (StartLabel == EndLabel) { 1739 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1740 continue; 1741 } 1742 1743 SmallVector<DbgValueLoc, 4> Values; 1744 for (auto &R : OpenRanges) 1745 Values.push_back(R.second); 1746 1747 // With Basic block sections, it is posssible that the StartLabel and the 1748 // Instr are not in the same section. This happens when the StartLabel is 1749 // the function begin label and the dbg value appears in a basic block 1750 // that is not the entry. In this case, the range needs to be split to 1751 // span each individual section in the range from StartLabel to EndLabel. 1752 if (Asm->MF->hasBBSections() && StartLabel == Asm->getFunctionBegin() && 1753 !Instr->getParent()->sameSection(&Asm->MF->front())) { 1754 const MCSymbol *BeginSectionLabel = StartLabel; 1755 1756 for (const MachineBasicBlock &MBB : *Asm->MF) { 1757 if (MBB.isBeginSection() && &MBB != &Asm->MF->front()) 1758 BeginSectionLabel = MBB.getSymbol(); 1759 1760 if (MBB.sameSection(Instr->getParent())) { 1761 DebugLoc.emplace_back(BeginSectionLabel, EndLabel, Values); 1762 break; 1763 } 1764 if (MBB.isEndSection()) 1765 DebugLoc.emplace_back(BeginSectionLabel, MBB.getEndSymbol(), Values); 1766 } 1767 } else { 1768 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1769 } 1770 1771 // Attempt to coalesce the ranges of two otherwise identical 1772 // DebugLocEntries. 1773 auto CurEntry = DebugLoc.rbegin(); 1774 LLVM_DEBUG({ 1775 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1776 for (auto &Value : CurEntry->getValues()) 1777 Value.dump(); 1778 dbgs() << "-----\n"; 1779 }); 1780 1781 auto PrevEntry = std::next(CurEntry); 1782 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1783 DebugLoc.pop_back(); 1784 } 1785 1786 if (!isSafeForSingleLocation || 1787 !validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering())) 1788 return false; 1789 1790 if (DebugLoc.size() == 1) 1791 return true; 1792 1793 if (!Asm->MF->hasBBSections()) 1794 return false; 1795 1796 // Check here to see if loclist can be merged into a single range. If not, 1797 // we must keep the split loclists per section. This does exactly what 1798 // MergeRanges does without sections. We don't actually merge the ranges 1799 // as the split ranges must be kept intact if this cannot be collapsed 1800 // into a single range. 1801 const MachineBasicBlock *RangeMBB = nullptr; 1802 if (DebugLoc[0].getBeginSym() == Asm->getFunctionBegin()) 1803 RangeMBB = &Asm->MF->front(); 1804 else 1805 RangeMBB = Entries.begin()->getInstr()->getParent(); 1806 auto *CurEntry = DebugLoc.begin(); 1807 auto *NextEntry = std::next(CurEntry); 1808 while (NextEntry != DebugLoc.end()) { 1809 // Get the last machine basic block of this section. 1810 while (!RangeMBB->isEndSection()) 1811 RangeMBB = RangeMBB->getNextNode(); 1812 if (!RangeMBB->getNextNode()) 1813 return false; 1814 // CurEntry should end the current section and NextEntry should start 1815 // the next section and the Values must match for these two ranges to be 1816 // merged. 1817 if (CurEntry->getEndSym() != RangeMBB->getEndSymbol() || 1818 NextEntry->getBeginSym() != RangeMBB->getNextNode()->getSymbol() || 1819 CurEntry->getValues() != NextEntry->getValues()) 1820 return false; 1821 RangeMBB = RangeMBB->getNextNode(); 1822 CurEntry = NextEntry; 1823 NextEntry = std::next(CurEntry); 1824 } 1825 return true; 1826 } 1827 1828 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1829 LexicalScope &Scope, 1830 const DINode *Node, 1831 const DILocation *Location, 1832 const MCSymbol *Sym) { 1833 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1834 if (isa<const DILocalVariable>(Node)) { 1835 ConcreteEntities.push_back( 1836 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1837 Location)); 1838 InfoHolder.addScopeVariable(&Scope, 1839 cast<DbgVariable>(ConcreteEntities.back().get())); 1840 } else if (isa<const DILabel>(Node)) { 1841 ConcreteEntities.push_back( 1842 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1843 Location, Sym)); 1844 InfoHolder.addScopeLabel(&Scope, 1845 cast<DbgLabel>(ConcreteEntities.back().get())); 1846 } 1847 return ConcreteEntities.back().get(); 1848 } 1849 1850 // Find variables for each lexical scope. 1851 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1852 const DISubprogram *SP, 1853 DenseSet<InlinedEntity> &Processed) { 1854 // Grab the variable info that was squirreled away in the MMI side-table. 1855 collectVariableInfoFromMFTable(TheCU, Processed); 1856 1857 for (const auto &I : DbgValues) { 1858 InlinedEntity IV = I.first; 1859 if (Processed.count(IV)) 1860 continue; 1861 1862 // Instruction ranges, specifying where IV is accessible. 1863 const auto &HistoryMapEntries = I.second; 1864 1865 // Try to find any non-empty variable location. Do not create a concrete 1866 // entity if there are no locations. 1867 if (!DbgValues.hasNonEmptyLocation(HistoryMapEntries)) 1868 continue; 1869 1870 LexicalScope *Scope = nullptr; 1871 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1872 if (const DILocation *IA = IV.second) 1873 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1874 else 1875 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1876 // If variable scope is not found then skip this variable. 1877 if (!Scope) 1878 continue; 1879 1880 Processed.insert(IV); 1881 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1882 *Scope, LocalVar, IV.second)); 1883 1884 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1885 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1886 1887 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1888 // If the history map contains a single debug value, there may be an 1889 // additional entry which clobbers the debug value. 1890 size_t HistSize = HistoryMapEntries.size(); 1891 bool SingleValueWithClobber = 1892 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1893 if (HistSize == 1 || SingleValueWithClobber) { 1894 const auto *End = 1895 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1896 if (validThroughout(LScopes, MInsn, End, getInstOrdering())) { 1897 RegVar->initializeDbgValue(MInsn); 1898 continue; 1899 } 1900 } 1901 1902 // Do not emit location lists if .debug_loc secton is disabled. 1903 if (!useLocSection()) 1904 continue; 1905 1906 // Handle multiple DBG_VALUE instructions describing one variable. 1907 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1908 1909 // Build the location list for this variable. 1910 SmallVector<DebugLocEntry, 8> Entries; 1911 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); 1912 1913 // Check whether buildLocationList managed to merge all locations to one 1914 // that is valid throughout the variable's scope. If so, produce single 1915 // value location. 1916 if (isValidSingleLocation) { 1917 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1918 continue; 1919 } 1920 1921 // If the variable has a DIBasicType, extract it. Basic types cannot have 1922 // unique identifiers, so don't bother resolving the type with the 1923 // identifier map. 1924 const DIBasicType *BT = dyn_cast<DIBasicType>( 1925 static_cast<const Metadata *>(LocalVar->getType())); 1926 1927 // Finalize the entry by lowering it into a DWARF bytestream. 1928 for (auto &Entry : Entries) 1929 Entry.finalize(*Asm, List, BT, TheCU); 1930 } 1931 1932 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1933 // DWARF-related DbgLabel. 1934 for (const auto &I : DbgLabels) { 1935 InlinedEntity IL = I.first; 1936 const MachineInstr *MI = I.second; 1937 if (MI == nullptr) 1938 continue; 1939 1940 LexicalScope *Scope = nullptr; 1941 const DILabel *Label = cast<DILabel>(IL.first); 1942 // The scope could have an extra lexical block file. 1943 const DILocalScope *LocalScope = 1944 Label->getScope()->getNonLexicalBlockFileScope(); 1945 // Get inlined DILocation if it is inlined label. 1946 if (const DILocation *IA = IL.second) 1947 Scope = LScopes.findInlinedScope(LocalScope, IA); 1948 else 1949 Scope = LScopes.findLexicalScope(LocalScope); 1950 // If label scope is not found then skip this label. 1951 if (!Scope) 1952 continue; 1953 1954 Processed.insert(IL); 1955 /// At this point, the temporary label is created. 1956 /// Save the temporary label to DbgLabel entity to get the 1957 /// actually address when generating Dwarf DIE. 1958 MCSymbol *Sym = getLabelBeforeInsn(MI); 1959 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1960 } 1961 1962 // Collect info for variables/labels that were optimized out. 1963 for (const DINode *DN : SP->getRetainedNodes()) { 1964 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1965 continue; 1966 LexicalScope *Scope = nullptr; 1967 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1968 Scope = LScopes.findLexicalScope(DV->getScope()); 1969 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1970 Scope = LScopes.findLexicalScope(DL->getScope()); 1971 } 1972 1973 if (Scope) 1974 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1975 } 1976 } 1977 1978 // Process beginning of an instruction. 1979 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1980 const MachineFunction &MF = *MI->getMF(); 1981 const auto *SP = MF.getFunction().getSubprogram(); 1982 bool NoDebug = 1983 !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug; 1984 1985 // Delay slot support check. 1986 auto delaySlotSupported = [](const MachineInstr &MI) { 1987 if (!MI.isBundledWithSucc()) 1988 return false; 1989 auto Suc = std::next(MI.getIterator()); 1990 (void)Suc; 1991 // Ensure that delay slot instruction is successor of the call instruction. 1992 // Ex. CALL_INSTRUCTION { 1993 // DELAY_SLOT_INSTRUCTION } 1994 assert(Suc->isBundledWithPred() && 1995 "Call bundle instructions are out of order"); 1996 return true; 1997 }; 1998 1999 // When describing calls, we need a label for the call instruction. 2000 if (!NoDebug && SP->areAllCallsDescribed() && 2001 MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) && 2002 (!MI->hasDelaySlot() || delaySlotSupported(*MI))) { 2003 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 2004 bool IsTail = TII->isTailCall(*MI); 2005 // For tail calls, we need the address of the branch instruction for 2006 // DW_AT_call_pc. 2007 if (IsTail) 2008 requestLabelBeforeInsn(MI); 2009 // For non-tail calls, we need the return address for the call for 2010 // DW_AT_call_return_pc. Under GDB tuning, this information is needed for 2011 // tail calls as well. 2012 requestLabelAfterInsn(MI); 2013 } 2014 2015 DebugHandlerBase::beginInstruction(MI); 2016 if (!CurMI) 2017 return; 2018 2019 if (NoDebug) 2020 return; 2021 2022 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 2023 // If the instruction is part of the function frame setup code, do not emit 2024 // any line record, as there is no correspondence with any user code. 2025 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 2026 return; 2027 const DebugLoc &DL = MI->getDebugLoc(); 2028 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 2029 // the last line number actually emitted, to see if it was line 0. 2030 unsigned LastAsmLine = 2031 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 2032 2033 if (DL == PrevInstLoc) { 2034 // If we have an ongoing unspecified location, nothing to do here. 2035 if (!DL) 2036 return; 2037 // We have an explicit location, same as the previous location. 2038 // But we might be coming back to it after a line 0 record. 2039 if (LastAsmLine == 0 && DL.getLine() != 0) { 2040 // Reinstate the source location but not marked as a statement. 2041 const MDNode *Scope = DL.getScope(); 2042 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 2043 } 2044 return; 2045 } 2046 2047 if (!DL) { 2048 // We have an unspecified location, which might want to be line 0. 2049 // If we have already emitted a line-0 record, don't repeat it. 2050 if (LastAsmLine == 0) 2051 return; 2052 // If user said Don't Do That, don't do that. 2053 if (UnknownLocations == Disable) 2054 return; 2055 // See if we have a reason to emit a line-0 record now. 2056 // Reasons to emit a line-0 record include: 2057 // - User asked for it (UnknownLocations). 2058 // - Instruction has a label, so it's referenced from somewhere else, 2059 // possibly debug information; we want it to have a source location. 2060 // - Instruction is at the top of a block; we don't want to inherit the 2061 // location from the physically previous (maybe unrelated) block. 2062 if (UnknownLocations == Enable || PrevLabel || 2063 (PrevInstBB && PrevInstBB != MI->getParent())) { 2064 // Preserve the file and column numbers, if we can, to save space in 2065 // the encoded line table. 2066 // Do not update PrevInstLoc, it remembers the last non-0 line. 2067 const MDNode *Scope = nullptr; 2068 unsigned Column = 0; 2069 if (PrevInstLoc) { 2070 Scope = PrevInstLoc.getScope(); 2071 Column = PrevInstLoc.getCol(); 2072 } 2073 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 2074 } 2075 return; 2076 } 2077 2078 // We have an explicit location, different from the previous location. 2079 // Don't repeat a line-0 record, but otherwise emit the new location. 2080 // (The new location might be an explicit line 0, which we do emit.) 2081 if (DL.getLine() == 0 && LastAsmLine == 0) 2082 return; 2083 unsigned Flags = 0; 2084 if (DL == PrologEndLoc) { 2085 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 2086 PrologEndLoc = DebugLoc(); 2087 } 2088 // If the line changed, we call that a new statement; unless we went to 2089 // line 0 and came back, in which case it is not a new statement. 2090 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 2091 if (DL.getLine() && DL.getLine() != OldLine) 2092 Flags |= DWARF2_FLAG_IS_STMT; 2093 2094 const MDNode *Scope = DL.getScope(); 2095 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 2096 2097 // If we're not at line 0, remember this location. 2098 if (DL.getLine()) 2099 PrevInstLoc = DL; 2100 } 2101 2102 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 2103 // First known non-DBG_VALUE and non-frame setup location marks 2104 // the beginning of the function body. 2105 for (const auto &MBB : *MF) 2106 for (const auto &MI : MBB) 2107 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 2108 MI.getDebugLoc()) 2109 return MI.getDebugLoc(); 2110 return DebugLoc(); 2111 } 2112 2113 /// Register a source line with debug info. Returns the unique label that was 2114 /// emitted and which provides correspondence to the source line list. 2115 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 2116 const MDNode *S, unsigned Flags, unsigned CUID, 2117 uint16_t DwarfVersion, 2118 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 2119 StringRef Fn; 2120 unsigned FileNo = 1; 2121 unsigned Discriminator = 0; 2122 if (auto *Scope = cast_or_null<DIScope>(S)) { 2123 Fn = Scope->getFilename(); 2124 if (Line != 0 && DwarfVersion >= 4) 2125 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 2126 Discriminator = LBF->getDiscriminator(); 2127 2128 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 2129 .getOrCreateSourceID(Scope->getFile()); 2130 } 2131 Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 2132 Discriminator, Fn); 2133 } 2134 2135 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 2136 unsigned CUID) { 2137 // Get beginning of function. 2138 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 2139 // Ensure the compile unit is created if the function is called before 2140 // beginFunction(). 2141 (void)getOrCreateDwarfCompileUnit( 2142 MF.getFunction().getSubprogram()->getUnit()); 2143 // We'd like to list the prologue as "not statements" but GDB behaves 2144 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 2145 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 2146 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 2147 CUID, getDwarfVersion(), getUnits()); 2148 return PrologEndLoc; 2149 } 2150 return DebugLoc(); 2151 } 2152 2153 // Gather pre-function debug information. Assumes being called immediately 2154 // after the function entry point has been emitted. 2155 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 2156 CurFn = MF; 2157 2158 auto *SP = MF->getFunction().getSubprogram(); 2159 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 2160 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 2161 return; 2162 2163 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 2164 2165 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 2166 // belongs to so that we add to the correct per-cu line table in the 2167 // non-asm case. 2168 if (Asm->OutStreamer->hasRawTextSupport()) 2169 // Use a single line table if we are generating assembly. 2170 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2171 else 2172 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID()); 2173 2174 // Record beginning of function. 2175 PrologEndLoc = emitInitialLocDirective( 2176 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 2177 } 2178 2179 void DwarfDebug::skippedNonDebugFunction() { 2180 // If we don't have a subprogram for this function then there will be a hole 2181 // in the range information. Keep note of this by setting the previously used 2182 // section to nullptr. 2183 PrevCU = nullptr; 2184 CurFn = nullptr; 2185 } 2186 2187 // Gather and emit post-function debug information. 2188 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 2189 const DISubprogram *SP = MF->getFunction().getSubprogram(); 2190 2191 assert(CurFn == MF && 2192 "endFunction should be called with the same function as beginFunction"); 2193 2194 // Set DwarfDwarfCompileUnitID in MCContext to default value. 2195 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2196 2197 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 2198 assert(!FnScope || SP == FnScope->getScopeNode()); 2199 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 2200 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 2201 PrevLabel = nullptr; 2202 CurFn = nullptr; 2203 return; 2204 } 2205 2206 DenseSet<InlinedEntity> Processed; 2207 collectEntityInfo(TheCU, SP, Processed); 2208 2209 // Add the range of this function to the list of ranges for the CU. 2210 // With basic block sections, add ranges for all basic block sections. 2211 for (const auto &R : Asm->MBBSectionRanges) 2212 TheCU.addRange({R.second.BeginLabel, R.second.EndLabel}); 2213 2214 // Under -gmlt, skip building the subprogram if there are no inlined 2215 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 2216 // is still needed as we need its source location. 2217 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 2218 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 2219 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 2220 assert(InfoHolder.getScopeVariables().empty()); 2221 PrevLabel = nullptr; 2222 CurFn = nullptr; 2223 return; 2224 } 2225 2226 #ifndef NDEBUG 2227 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 2228 #endif 2229 // Construct abstract scopes. 2230 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 2231 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 2232 for (const DINode *DN : SP->getRetainedNodes()) { 2233 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 2234 continue; 2235 2236 const MDNode *Scope = nullptr; 2237 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 2238 Scope = DV->getScope(); 2239 else if (auto *DL = dyn_cast<DILabel>(DN)) 2240 Scope = DL->getScope(); 2241 else 2242 llvm_unreachable("Unexpected DI type!"); 2243 2244 // Collect info for variables/labels that were optimized out. 2245 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 2246 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 2247 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 2248 } 2249 constructAbstractSubprogramScopeDIE(TheCU, AScope); 2250 } 2251 2252 ProcessedSPNodes.insert(SP); 2253 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 2254 if (auto *SkelCU = TheCU.getSkeleton()) 2255 if (!LScopes.getAbstractScopesList().empty() && 2256 TheCU.getCUNode()->getSplitDebugInlining()) 2257 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 2258 2259 // Construct call site entries. 2260 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 2261 2262 // Clear debug info 2263 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 2264 // DbgVariables except those that are also in AbstractVariables (since they 2265 // can be used cross-function) 2266 InfoHolder.getScopeVariables().clear(); 2267 InfoHolder.getScopeLabels().clear(); 2268 PrevLabel = nullptr; 2269 CurFn = nullptr; 2270 } 2271 2272 // Register a source line with debug info. Returns the unique label that was 2273 // emitted and which provides correspondence to the source line list. 2274 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 2275 unsigned Flags) { 2276 ::recordSourceLine(*Asm, Line, Col, S, Flags, 2277 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 2278 getDwarfVersion(), getUnits()); 2279 } 2280 2281 //===----------------------------------------------------------------------===// 2282 // Emit Methods 2283 //===----------------------------------------------------------------------===// 2284 2285 // Emit the debug info section. 2286 void DwarfDebug::emitDebugInfo() { 2287 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2288 Holder.emitUnits(/* UseOffsets */ false); 2289 } 2290 2291 // Emit the abbreviation section. 2292 void DwarfDebug::emitAbbreviations() { 2293 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2294 2295 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 2296 } 2297 2298 void DwarfDebug::emitStringOffsetsTableHeader() { 2299 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2300 Holder.getStringPool().emitStringOffsetsTableHeader( 2301 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 2302 Holder.getStringOffsetsStartSym()); 2303 } 2304 2305 template <typename AccelTableT> 2306 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 2307 StringRef TableName) { 2308 Asm->OutStreamer->SwitchSection(Section); 2309 2310 // Emit the full data. 2311 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 2312 } 2313 2314 void DwarfDebug::emitAccelDebugNames() { 2315 // Don't emit anything if we have no compilation units to index. 2316 if (getUnits().empty()) 2317 return; 2318 2319 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 2320 } 2321 2322 // Emit visible names into a hashed accelerator table section. 2323 void DwarfDebug::emitAccelNames() { 2324 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 2325 "Names"); 2326 } 2327 2328 // Emit objective C classes and categories into a hashed accelerator table 2329 // section. 2330 void DwarfDebug::emitAccelObjC() { 2331 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 2332 "ObjC"); 2333 } 2334 2335 // Emit namespace dies into a hashed accelerator table. 2336 void DwarfDebug::emitAccelNamespaces() { 2337 emitAccel(AccelNamespace, 2338 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 2339 "namespac"); 2340 } 2341 2342 // Emit type dies into a hashed accelerator table. 2343 void DwarfDebug::emitAccelTypes() { 2344 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 2345 "types"); 2346 } 2347 2348 // Public name handling. 2349 // The format for the various pubnames: 2350 // 2351 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 2352 // for the DIE that is named. 2353 // 2354 // gnu pubnames - offset/index value/name tuples where the offset is the offset 2355 // into the CU and the index value is computed according to the type of value 2356 // for the DIE that is named. 2357 // 2358 // For type units the offset is the offset of the skeleton DIE. For split dwarf 2359 // it's the offset within the debug_info/debug_types dwo section, however, the 2360 // reference in the pubname header doesn't change. 2361 2362 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 2363 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 2364 const DIE *Die) { 2365 // Entities that ended up only in a Type Unit reference the CU instead (since 2366 // the pub entry has offsets within the CU there's no real offset that can be 2367 // provided anyway). As it happens all such entities (namespaces and types, 2368 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2369 // not to be true it would be necessary to persist this information from the 2370 // point at which the entry is added to the index data structure - since by 2371 // the time the index is built from that, the original type/namespace DIE in a 2372 // type unit has already been destroyed so it can't be queried for properties 2373 // like tag, etc. 2374 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2375 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2376 dwarf::GIEL_EXTERNAL); 2377 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2378 2379 // We could have a specification DIE that has our most of our knowledge, 2380 // look for that now. 2381 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2382 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2383 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2384 Linkage = dwarf::GIEL_EXTERNAL; 2385 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2386 Linkage = dwarf::GIEL_EXTERNAL; 2387 2388 switch (Die->getTag()) { 2389 case dwarf::DW_TAG_class_type: 2390 case dwarf::DW_TAG_structure_type: 2391 case dwarf::DW_TAG_union_type: 2392 case dwarf::DW_TAG_enumeration_type: 2393 return dwarf::PubIndexEntryDescriptor( 2394 dwarf::GIEK_TYPE, 2395 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2396 ? dwarf::GIEL_EXTERNAL 2397 : dwarf::GIEL_STATIC); 2398 case dwarf::DW_TAG_typedef: 2399 case dwarf::DW_TAG_base_type: 2400 case dwarf::DW_TAG_subrange_type: 2401 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2402 case dwarf::DW_TAG_namespace: 2403 return dwarf::GIEK_TYPE; 2404 case dwarf::DW_TAG_subprogram: 2405 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2406 case dwarf::DW_TAG_variable: 2407 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2408 case dwarf::DW_TAG_enumerator: 2409 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2410 dwarf::GIEL_STATIC); 2411 default: 2412 return dwarf::GIEK_NONE; 2413 } 2414 } 2415 2416 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2417 /// pubtypes sections. 2418 void DwarfDebug::emitDebugPubSections() { 2419 for (const auto &NU : CUMap) { 2420 DwarfCompileUnit *TheU = NU.second; 2421 if (!TheU->hasDwarfPubSections()) 2422 continue; 2423 2424 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2425 DICompileUnit::DebugNameTableKind::GNU; 2426 2427 Asm->OutStreamer->SwitchSection( 2428 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2429 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2430 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2431 2432 Asm->OutStreamer->SwitchSection( 2433 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2434 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2435 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2436 } 2437 } 2438 2439 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2440 if (useSectionsAsReferences()) 2441 Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(), 2442 CU.getDebugSectionOffset()); 2443 else 2444 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2445 } 2446 2447 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2448 DwarfCompileUnit *TheU, 2449 const StringMap<const DIE *> &Globals) { 2450 if (auto *Skeleton = TheU->getSkeleton()) 2451 TheU = Skeleton; 2452 2453 // Emit the header. 2454 MCSymbol *EndLabel = Asm->emitDwarfUnitLength( 2455 "pub" + Name, "Length of Public " + Name + " Info"); 2456 2457 Asm->OutStreamer->AddComment("DWARF Version"); 2458 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2459 2460 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2461 emitSectionReference(*TheU); 2462 2463 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2464 Asm->emitDwarfLengthOrOffset(TheU->getLength()); 2465 2466 // Emit the pubnames for this compilation unit. 2467 for (const auto &GI : Globals) { 2468 const char *Name = GI.getKeyData(); 2469 const DIE *Entity = GI.second; 2470 2471 Asm->OutStreamer->AddComment("DIE offset"); 2472 Asm->emitDwarfLengthOrOffset(Entity->getOffset()); 2473 2474 if (GnuStyle) { 2475 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2476 Asm->OutStreamer->AddComment( 2477 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2478 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2479 Asm->emitInt8(Desc.toBits()); 2480 } 2481 2482 Asm->OutStreamer->AddComment("External Name"); 2483 Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2484 } 2485 2486 Asm->OutStreamer->AddComment("End Mark"); 2487 Asm->emitDwarfLengthOrOffset(0); 2488 Asm->OutStreamer->emitLabel(EndLabel); 2489 } 2490 2491 /// Emit null-terminated strings into a debug str section. 2492 void DwarfDebug::emitDebugStr() { 2493 MCSection *StringOffsetsSection = nullptr; 2494 if (useSegmentedStringOffsetsTable()) { 2495 emitStringOffsetsTableHeader(); 2496 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2497 } 2498 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2499 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2500 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2501 } 2502 2503 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2504 const DebugLocStream::Entry &Entry, 2505 const DwarfCompileUnit *CU) { 2506 auto &&Comments = DebugLocs.getComments(Entry); 2507 auto Comment = Comments.begin(); 2508 auto End = Comments.end(); 2509 2510 // The expressions are inserted into a byte stream rather early (see 2511 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2512 // need to reference a base_type DIE the offset of that DIE is not yet known. 2513 // To deal with this we instead insert a placeholder early and then extract 2514 // it here and replace it with the real reference. 2515 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2516 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2517 DebugLocs.getBytes(Entry).size()), 2518 Asm->getDataLayout().isLittleEndian(), PtrSize); 2519 DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat()); 2520 2521 using Encoding = DWARFExpression::Operation::Encoding; 2522 uint64_t Offset = 0; 2523 for (auto &Op : Expr) { 2524 assert(Op.getCode() != dwarf::DW_OP_const_type && 2525 "3 operand ops not yet supported"); 2526 Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2527 Offset++; 2528 for (unsigned I = 0; I < 2; ++I) { 2529 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2530 continue; 2531 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2532 uint64_t Offset = 2533 CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2534 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2535 Streamer.emitULEB128(Offset, "", ULEB128PadSize); 2536 // Make sure comments stay aligned. 2537 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2538 if (Comment != End) 2539 Comment++; 2540 } else { 2541 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2542 Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2543 } 2544 Offset = Op.getOperandEndOffset(I); 2545 } 2546 assert(Offset == Op.getEndOffset()); 2547 } 2548 } 2549 2550 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2551 const DbgValueLoc &Value, 2552 DwarfExpression &DwarfExpr) { 2553 auto *DIExpr = Value.getExpression(); 2554 DIExpressionCursor ExprCursor(DIExpr); 2555 DwarfExpr.addFragmentOffset(DIExpr); 2556 2557 // If the DIExpr is is an Entry Value, we want to follow the same code path 2558 // regardless of whether the DBG_VALUE is variadic or not. 2559 if (DIExpr && DIExpr->isEntryValue()) { 2560 // Entry values can only be a single register with no additional DIExpr, 2561 // so just add it directly. 2562 assert(Value.getLocEntries().size() == 1); 2563 assert(Value.getLocEntries()[0].isLocation()); 2564 MachineLocation Location = Value.getLocEntries()[0].getLoc(); 2565 DwarfExpr.setLocation(Location, DIExpr); 2566 2567 DwarfExpr.beginEntryValueExpression(ExprCursor); 2568 2569 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2570 if (!DwarfExpr.addMachineRegExpression(TRI, ExprCursor, Location.getReg())) 2571 return; 2572 return DwarfExpr.addExpression(std::move(ExprCursor)); 2573 } 2574 2575 // Regular entry. 2576 auto EmitValueLocEntry = [&DwarfExpr, &BT, 2577 &AP](const DbgValueLocEntry &Entry, 2578 DIExpressionCursor &Cursor) -> bool { 2579 if (Entry.isInt()) { 2580 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2581 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2582 DwarfExpr.addSignedConstant(Entry.getInt()); 2583 else 2584 DwarfExpr.addUnsignedConstant(Entry.getInt()); 2585 } else if (Entry.isLocation()) { 2586 MachineLocation Location = Entry.getLoc(); 2587 if (Location.isIndirect()) 2588 DwarfExpr.setMemoryLocationKind(); 2589 2590 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2591 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2592 return false; 2593 } else if (Entry.isTargetIndexLocation()) { 2594 TargetIndexLocation Loc = Entry.getTargetIndexLocation(); 2595 // TODO TargetIndexLocation is a target-independent. Currently only the 2596 // WebAssembly-specific encoding is supported. 2597 assert(AP.TM.getTargetTriple().isWasm()); 2598 DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset)); 2599 } else if (Entry.isConstantFP()) { 2600 if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() && 2601 !Cursor) { 2602 DwarfExpr.addConstantFP(Entry.getConstantFP()->getValueAPF(), AP); 2603 } else if (Entry.getConstantFP() 2604 ->getValueAPF() 2605 .bitcastToAPInt() 2606 .getBitWidth() <= 64 /*bits*/) { 2607 DwarfExpr.addUnsignedConstant( 2608 Entry.getConstantFP()->getValueAPF().bitcastToAPInt()); 2609 } else { 2610 LLVM_DEBUG( 2611 dbgs() << "Skipped DwarfExpression creation for ConstantFP of size" 2612 << Entry.getConstantFP() 2613 ->getValueAPF() 2614 .bitcastToAPInt() 2615 .getBitWidth() 2616 << " bits\n"); 2617 return false; 2618 } 2619 } 2620 return true; 2621 }; 2622 2623 if (!Value.isVariadic()) { 2624 if (!EmitValueLocEntry(Value.getLocEntries()[0], ExprCursor)) 2625 return; 2626 DwarfExpr.addExpression(std::move(ExprCursor)); 2627 return; 2628 } 2629 2630 // If any of the location entries are registers with the value 0, then the 2631 // location is undefined. 2632 if (any_of(Value.getLocEntries(), [](const DbgValueLocEntry &Entry) { 2633 return Entry.isLocation() && !Entry.getLoc().getReg(); 2634 })) 2635 return; 2636 2637 DwarfExpr.addExpression( 2638 std::move(ExprCursor), 2639 [EmitValueLocEntry, &Value](unsigned Idx, 2640 DIExpressionCursor &Cursor) -> bool { 2641 return EmitValueLocEntry(Value.getLocEntries()[Idx], Cursor); 2642 }); 2643 } 2644 2645 void DebugLocEntry::finalize(const AsmPrinter &AP, 2646 DebugLocStream::ListBuilder &List, 2647 const DIBasicType *BT, 2648 DwarfCompileUnit &TheCU) { 2649 assert(!Values.empty() && 2650 "location list entries without values are redundant"); 2651 assert(Begin != End && "unexpected location list entry with empty range"); 2652 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2653 BufferByteStreamer Streamer = Entry.getStreamer(); 2654 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2655 const DbgValueLoc &Value = Values[0]; 2656 if (Value.isFragment()) { 2657 // Emit all fragments that belong to the same variable and range. 2658 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2659 return P.isFragment(); 2660 }) && "all values are expected to be fragments"); 2661 assert(llvm::is_sorted(Values) && "fragments are expected to be sorted"); 2662 2663 for (const auto &Fragment : Values) 2664 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2665 2666 } else { 2667 assert(Values.size() == 1 && "only fragments may have >1 value"); 2668 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2669 } 2670 DwarfExpr.finalize(); 2671 if (DwarfExpr.TagOffset) 2672 List.setTagOffset(*DwarfExpr.TagOffset); 2673 } 2674 2675 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2676 const DwarfCompileUnit *CU) { 2677 // Emit the size. 2678 Asm->OutStreamer->AddComment("Loc expr size"); 2679 if (getDwarfVersion() >= 5) 2680 Asm->emitULEB128(DebugLocs.getBytes(Entry).size()); 2681 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2682 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2683 else { 2684 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2685 // can do. 2686 Asm->emitInt16(0); 2687 return; 2688 } 2689 // Emit the entry. 2690 APByteStreamer Streamer(*Asm); 2691 emitDebugLocEntry(Streamer, Entry, CU); 2692 } 2693 2694 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2695 // that designates the end of the table for the caller to emit when the table is 2696 // complete. 2697 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2698 const DwarfFile &Holder) { 2699 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2700 2701 Asm->OutStreamer->AddComment("Offset entry count"); 2702 Asm->emitInt32(Holder.getRangeLists().size()); 2703 Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym()); 2704 2705 for (const RangeSpanList &List : Holder.getRangeLists()) 2706 Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 2707 Asm->getDwarfOffsetByteSize()); 2708 2709 return TableEnd; 2710 } 2711 2712 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2713 // designates the end of the table for the caller to emit when the table is 2714 // complete. 2715 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2716 const DwarfDebug &DD) { 2717 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2718 2719 const auto &DebugLocs = DD.getDebugLocs(); 2720 2721 Asm->OutStreamer->AddComment("Offset entry count"); 2722 Asm->emitInt32(DebugLocs.getLists().size()); 2723 Asm->OutStreamer->emitLabel(DebugLocs.getSym()); 2724 2725 for (const auto &List : DebugLocs.getLists()) 2726 Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 2727 Asm->getDwarfOffsetByteSize()); 2728 2729 return TableEnd; 2730 } 2731 2732 template <typename Ranges, typename PayloadEmitter> 2733 static void emitRangeList( 2734 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2735 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2736 unsigned StartxLength, unsigned EndOfList, 2737 StringRef (*StringifyEnum)(unsigned), 2738 bool ShouldUseBaseAddress, 2739 PayloadEmitter EmitPayload) { 2740 2741 auto Size = Asm->MAI->getCodePointerSize(); 2742 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2743 2744 // Emit our symbol so we can find the beginning of the range. 2745 Asm->OutStreamer->emitLabel(Sym); 2746 2747 // Gather all the ranges that apply to the same section so they can share 2748 // a base address entry. 2749 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2750 2751 for (const auto &Range : R) 2752 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2753 2754 const MCSymbol *CUBase = CU.getBaseAddress(); 2755 bool BaseIsSet = false; 2756 for (const auto &P : SectionRanges) { 2757 auto *Base = CUBase; 2758 if (!Base && ShouldUseBaseAddress) { 2759 const MCSymbol *Begin = P.second.front()->Begin; 2760 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2761 if (!UseDwarf5) { 2762 Base = NewBase; 2763 BaseIsSet = true; 2764 Asm->OutStreamer->emitIntValue(-1, Size); 2765 Asm->OutStreamer->AddComment(" base address"); 2766 Asm->OutStreamer->emitSymbolValue(Base, Size); 2767 } else if (NewBase != Begin || P.second.size() > 1) { 2768 // Only use a base address if 2769 // * the existing pool address doesn't match (NewBase != Begin) 2770 // * or, there's more than one entry to share the base address 2771 Base = NewBase; 2772 BaseIsSet = true; 2773 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2774 Asm->emitInt8(BaseAddressx); 2775 Asm->OutStreamer->AddComment(" base address index"); 2776 Asm->emitULEB128(DD.getAddressPool().getIndex(Base)); 2777 } 2778 } else if (BaseIsSet && !UseDwarf5) { 2779 BaseIsSet = false; 2780 assert(!Base); 2781 Asm->OutStreamer->emitIntValue(-1, Size); 2782 Asm->OutStreamer->emitIntValue(0, Size); 2783 } 2784 2785 for (const auto *RS : P.second) { 2786 const MCSymbol *Begin = RS->Begin; 2787 const MCSymbol *End = RS->End; 2788 assert(Begin && "Range without a begin symbol?"); 2789 assert(End && "Range without an end symbol?"); 2790 if (Base) { 2791 if (UseDwarf5) { 2792 // Emit offset_pair when we have a base. 2793 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2794 Asm->emitInt8(OffsetPair); 2795 Asm->OutStreamer->AddComment(" starting offset"); 2796 Asm->emitLabelDifferenceAsULEB128(Begin, Base); 2797 Asm->OutStreamer->AddComment(" ending offset"); 2798 Asm->emitLabelDifferenceAsULEB128(End, Base); 2799 } else { 2800 Asm->emitLabelDifference(Begin, Base, Size); 2801 Asm->emitLabelDifference(End, Base, Size); 2802 } 2803 } else if (UseDwarf5) { 2804 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2805 Asm->emitInt8(StartxLength); 2806 Asm->OutStreamer->AddComment(" start index"); 2807 Asm->emitULEB128(DD.getAddressPool().getIndex(Begin)); 2808 Asm->OutStreamer->AddComment(" length"); 2809 Asm->emitLabelDifferenceAsULEB128(End, Begin); 2810 } else { 2811 Asm->OutStreamer->emitSymbolValue(Begin, Size); 2812 Asm->OutStreamer->emitSymbolValue(End, Size); 2813 } 2814 EmitPayload(*RS); 2815 } 2816 } 2817 2818 if (UseDwarf5) { 2819 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2820 Asm->emitInt8(EndOfList); 2821 } else { 2822 // Terminate the list with two 0 values. 2823 Asm->OutStreamer->emitIntValue(0, Size); 2824 Asm->OutStreamer->emitIntValue(0, Size); 2825 } 2826 } 2827 2828 // Handles emission of both debug_loclist / debug_loclist.dwo 2829 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2830 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), 2831 *List.CU, dwarf::DW_LLE_base_addressx, 2832 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, 2833 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, 2834 /* ShouldUseBaseAddress */ true, 2835 [&](const DebugLocStream::Entry &E) { 2836 DD.emitDebugLocEntryLocation(E, List.CU); 2837 }); 2838 } 2839 2840 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { 2841 if (DebugLocs.getLists().empty()) 2842 return; 2843 2844 Asm->OutStreamer->SwitchSection(Sec); 2845 2846 MCSymbol *TableEnd = nullptr; 2847 if (getDwarfVersion() >= 5) 2848 TableEnd = emitLoclistsTableHeader(Asm, *this); 2849 2850 for (const auto &List : DebugLocs.getLists()) 2851 emitLocList(*this, Asm, List); 2852 2853 if (TableEnd) 2854 Asm->OutStreamer->emitLabel(TableEnd); 2855 } 2856 2857 // Emit locations into the .debug_loc/.debug_loclists section. 2858 void DwarfDebug::emitDebugLoc() { 2859 emitDebugLocImpl( 2860 getDwarfVersion() >= 5 2861 ? Asm->getObjFileLowering().getDwarfLoclistsSection() 2862 : Asm->getObjFileLowering().getDwarfLocSection()); 2863 } 2864 2865 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. 2866 void DwarfDebug::emitDebugLocDWO() { 2867 if (getDwarfVersion() >= 5) { 2868 emitDebugLocImpl( 2869 Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); 2870 2871 return; 2872 } 2873 2874 for (const auto &List : DebugLocs.getLists()) { 2875 Asm->OutStreamer->SwitchSection( 2876 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2877 Asm->OutStreamer->emitLabel(List.Label); 2878 2879 for (const auto &Entry : DebugLocs.getEntries(List)) { 2880 // GDB only supports startx_length in pre-standard split-DWARF. 2881 // (in v5 standard loclists, it currently* /only/ supports base_address + 2882 // offset_pair, so the implementations can't really share much since they 2883 // need to use different representations) 2884 // * as of October 2018, at least 2885 // 2886 // In v5 (see emitLocList), this uses SectionLabels to reuse existing 2887 // addresses in the address pool to minimize object size/relocations. 2888 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2889 unsigned idx = AddrPool.getIndex(Entry.Begin); 2890 Asm->emitULEB128(idx); 2891 // Also the pre-standard encoding is slightly different, emitting this as 2892 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. 2893 Asm->emitLabelDifference(Entry.End, Entry.Begin, 4); 2894 emitDebugLocEntryLocation(Entry, List.CU); 2895 } 2896 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2897 } 2898 } 2899 2900 struct ArangeSpan { 2901 const MCSymbol *Start, *End; 2902 }; 2903 2904 // Emit a debug aranges section, containing a CU lookup for any 2905 // address we can tie back to a CU. 2906 void DwarfDebug::emitDebugARanges() { 2907 // Provides a unique id per text section. 2908 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2909 2910 // Filter labels by section. 2911 for (const SymbolCU &SCU : ArangeLabels) { 2912 if (SCU.Sym->isInSection()) { 2913 // Make a note of this symbol and it's section. 2914 MCSection *Section = &SCU.Sym->getSection(); 2915 if (!Section->getKind().isMetadata()) 2916 SectionMap[Section].push_back(SCU); 2917 } else { 2918 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2919 // appear in the output. This sucks as we rely on sections to build 2920 // arange spans. We can do it without, but it's icky. 2921 SectionMap[nullptr].push_back(SCU); 2922 } 2923 } 2924 2925 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2926 2927 for (auto &I : SectionMap) { 2928 MCSection *Section = I.first; 2929 SmallVector<SymbolCU, 8> &List = I.second; 2930 if (List.size() < 1) 2931 continue; 2932 2933 // If we have no section (e.g. common), just write out 2934 // individual spans for each symbol. 2935 if (!Section) { 2936 for (const SymbolCU &Cur : List) { 2937 ArangeSpan Span; 2938 Span.Start = Cur.Sym; 2939 Span.End = nullptr; 2940 assert(Cur.CU); 2941 Spans[Cur.CU].push_back(Span); 2942 } 2943 continue; 2944 } 2945 2946 // Sort the symbols by offset within the section. 2947 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2948 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 2949 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 2950 2951 // Symbols with no order assigned should be placed at the end. 2952 // (e.g. section end labels) 2953 if (IA == 0) 2954 return false; 2955 if (IB == 0) 2956 return true; 2957 return IA < IB; 2958 }); 2959 2960 // Insert a final terminator. 2961 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2962 2963 // Build spans between each label. 2964 const MCSymbol *StartSym = List[0].Sym; 2965 for (size_t n = 1, e = List.size(); n < e; n++) { 2966 const SymbolCU &Prev = List[n - 1]; 2967 const SymbolCU &Cur = List[n]; 2968 2969 // Try and build the longest span we can within the same CU. 2970 if (Cur.CU != Prev.CU) { 2971 ArangeSpan Span; 2972 Span.Start = StartSym; 2973 Span.End = Cur.Sym; 2974 assert(Prev.CU); 2975 Spans[Prev.CU].push_back(Span); 2976 StartSym = Cur.Sym; 2977 } 2978 } 2979 } 2980 2981 // Start the dwarf aranges section. 2982 Asm->OutStreamer->SwitchSection( 2983 Asm->getObjFileLowering().getDwarfARangesSection()); 2984 2985 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2986 2987 // Build a list of CUs used. 2988 std::vector<DwarfCompileUnit *> CUs; 2989 for (const auto &it : Spans) { 2990 DwarfCompileUnit *CU = it.first; 2991 CUs.push_back(CU); 2992 } 2993 2994 // Sort the CU list (again, to ensure consistent output order). 2995 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 2996 return A->getUniqueID() < B->getUniqueID(); 2997 }); 2998 2999 // Emit an arange table for each CU we used. 3000 for (DwarfCompileUnit *CU : CUs) { 3001 std::vector<ArangeSpan> &List = Spans[CU]; 3002 3003 // Describe the skeleton CU's offset and length, not the dwo file's. 3004 if (auto *Skel = CU->getSkeleton()) 3005 CU = Skel; 3006 3007 // Emit size of content not including length itself. 3008 unsigned ContentSize = 3009 sizeof(int16_t) + // DWARF ARange version number 3010 Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info 3011 // section 3012 sizeof(int8_t) + // Pointer Size (in bytes) 3013 sizeof(int8_t); // Segment Size (in bytes) 3014 3015 unsigned TupleSize = PtrSize * 2; 3016 3017 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 3018 unsigned Padding = offsetToAlignment( 3019 Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize)); 3020 3021 ContentSize += Padding; 3022 ContentSize += (List.size() + 1) * TupleSize; 3023 3024 // For each compile unit, write the list of spans it covers. 3025 Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set"); 3026 Asm->OutStreamer->AddComment("DWARF Arange version number"); 3027 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 3028 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 3029 emitSectionReference(*CU); 3030 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 3031 Asm->emitInt8(PtrSize); 3032 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 3033 Asm->emitInt8(0); 3034 3035 Asm->OutStreamer->emitFill(Padding, 0xff); 3036 3037 for (const ArangeSpan &Span : List) { 3038 Asm->emitLabelReference(Span.Start, PtrSize); 3039 3040 // Calculate the size as being from the span start to it's end. 3041 if (Span.End) { 3042 Asm->emitLabelDifference(Span.End, Span.Start, PtrSize); 3043 } else { 3044 // For symbols without an end marker (e.g. common), we 3045 // write a single arange entry containing just that one symbol. 3046 uint64_t Size = SymSize[Span.Start]; 3047 if (Size == 0) 3048 Size = 1; 3049 3050 Asm->OutStreamer->emitIntValue(Size, PtrSize); 3051 } 3052 } 3053 3054 Asm->OutStreamer->AddComment("ARange terminator"); 3055 Asm->OutStreamer->emitIntValue(0, PtrSize); 3056 Asm->OutStreamer->emitIntValue(0, PtrSize); 3057 } 3058 } 3059 3060 /// Emit a single range list. We handle both DWARF v5 and earlier. 3061 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 3062 const RangeSpanList &List) { 3063 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, 3064 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 3065 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 3066 llvm::dwarf::RangeListEncodingString, 3067 List.CU->getCUNode()->getRangesBaseAddress() || 3068 DD.getDwarfVersion() >= 5, 3069 [](auto) {}); 3070 } 3071 3072 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { 3073 if (Holder.getRangeLists().empty()) 3074 return; 3075 3076 assert(useRangesSection()); 3077 assert(!CUMap.empty()); 3078 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 3079 return !Pair.second->getCUNode()->isDebugDirectivesOnly(); 3080 })); 3081 3082 Asm->OutStreamer->SwitchSection(Section); 3083 3084 MCSymbol *TableEnd = nullptr; 3085 if (getDwarfVersion() >= 5) 3086 TableEnd = emitRnglistsTableHeader(Asm, Holder); 3087 3088 for (const RangeSpanList &List : Holder.getRangeLists()) 3089 emitRangeList(*this, Asm, List); 3090 3091 if (TableEnd) 3092 Asm->OutStreamer->emitLabel(TableEnd); 3093 } 3094 3095 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 3096 /// .debug_rnglists section. 3097 void DwarfDebug::emitDebugRanges() { 3098 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3099 3100 emitDebugRangesImpl(Holder, 3101 getDwarfVersion() >= 5 3102 ? Asm->getObjFileLowering().getDwarfRnglistsSection() 3103 : Asm->getObjFileLowering().getDwarfRangesSection()); 3104 } 3105 3106 void DwarfDebug::emitDebugRangesDWO() { 3107 emitDebugRangesImpl(InfoHolder, 3108 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 3109 } 3110 3111 /// Emit the header of a DWARF 5 macro section, or the GNU extension for 3112 /// DWARF 4. 3113 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD, 3114 const DwarfCompileUnit &CU, uint16_t DwarfVersion) { 3115 enum HeaderFlagMask { 3116 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID, 3117 #include "llvm/BinaryFormat/Dwarf.def" 3118 }; 3119 Asm->OutStreamer->AddComment("Macro information version"); 3120 Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4); 3121 // We emit the line offset flag unconditionally here, since line offset should 3122 // be mostly present. 3123 if (Asm->isDwarf64()) { 3124 Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present"); 3125 Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET); 3126 } else { 3127 Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present"); 3128 Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET); 3129 } 3130 Asm->OutStreamer->AddComment("debug_line_offset"); 3131 if (DD.useSplitDwarf()) 3132 Asm->emitDwarfLengthOrOffset(0); 3133 else 3134 Asm->emitDwarfSymbolReference(CU.getLineTableStartSym()); 3135 } 3136 3137 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 3138 for (auto *MN : Nodes) { 3139 if (auto *M = dyn_cast<DIMacro>(MN)) 3140 emitMacro(*M); 3141 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 3142 emitMacroFile(*F, U); 3143 else 3144 llvm_unreachable("Unexpected DI type!"); 3145 } 3146 } 3147 3148 void DwarfDebug::emitMacro(DIMacro &M) { 3149 StringRef Name = M.getName(); 3150 StringRef Value = M.getValue(); 3151 3152 // There should be one space between the macro name and the macro value in 3153 // define entries. In undef entries, only the macro name is emitted. 3154 std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str(); 3155 3156 if (UseDebugMacroSection) { 3157 if (getDwarfVersion() >= 5) { 3158 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3159 ? dwarf::DW_MACRO_define_strx 3160 : dwarf::DW_MACRO_undef_strx; 3161 Asm->OutStreamer->AddComment(dwarf::MacroString(Type)); 3162 Asm->emitULEB128(Type); 3163 Asm->OutStreamer->AddComment("Line Number"); 3164 Asm->emitULEB128(M.getLine()); 3165 Asm->OutStreamer->AddComment("Macro String"); 3166 Asm->emitULEB128( 3167 InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex()); 3168 } else { 3169 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3170 ? dwarf::DW_MACRO_GNU_define_indirect 3171 : dwarf::DW_MACRO_GNU_undef_indirect; 3172 Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type)); 3173 Asm->emitULEB128(Type); 3174 Asm->OutStreamer->AddComment("Line Number"); 3175 Asm->emitULEB128(M.getLine()); 3176 Asm->OutStreamer->AddComment("Macro String"); 3177 Asm->emitDwarfSymbolReference( 3178 InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol()); 3179 } 3180 } else { 3181 Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType())); 3182 Asm->emitULEB128(M.getMacinfoType()); 3183 Asm->OutStreamer->AddComment("Line Number"); 3184 Asm->emitULEB128(M.getLine()); 3185 Asm->OutStreamer->AddComment("Macro String"); 3186 Asm->OutStreamer->emitBytes(Str); 3187 Asm->emitInt8('\0'); 3188 } 3189 } 3190 3191 void DwarfDebug::emitMacroFileImpl( 3192 DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile, 3193 StringRef (*MacroFormToString)(unsigned Form)) { 3194 3195 Asm->OutStreamer->AddComment(MacroFormToString(StartFile)); 3196 Asm->emitULEB128(StartFile); 3197 Asm->OutStreamer->AddComment("Line Number"); 3198 Asm->emitULEB128(MF.getLine()); 3199 Asm->OutStreamer->AddComment("File Number"); 3200 DIFile &F = *MF.getFile(); 3201 if (useSplitDwarf()) 3202 Asm->emitULEB128(getDwoLineTable(U)->getFile( 3203 F.getDirectory(), F.getFilename(), getMD5AsBytes(&F), 3204 Asm->OutContext.getDwarfVersion(), F.getSource())); 3205 else 3206 Asm->emitULEB128(U.getOrCreateSourceID(&F)); 3207 handleMacroNodes(MF.getElements(), U); 3208 Asm->OutStreamer->AddComment(MacroFormToString(EndFile)); 3209 Asm->emitULEB128(EndFile); 3210 } 3211 3212 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 3213 // DWARFv5 macro and DWARFv4 macinfo share some common encodings, 3214 // so for readibility/uniformity, We are explicitly emitting those. 3215 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 3216 if (UseDebugMacroSection) 3217 emitMacroFileImpl( 3218 F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file, 3219 (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString); 3220 else 3221 emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file, 3222 dwarf::DW_MACINFO_end_file, dwarf::MacinfoString); 3223 } 3224 3225 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { 3226 for (const auto &P : CUMap) { 3227 auto &TheCU = *P.second; 3228 auto *SkCU = TheCU.getSkeleton(); 3229 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 3230 auto *CUNode = cast<DICompileUnit>(P.first); 3231 DIMacroNodeArray Macros = CUNode->getMacros(); 3232 if (Macros.empty()) 3233 continue; 3234 Asm->OutStreamer->SwitchSection(Section); 3235 Asm->OutStreamer->emitLabel(U.getMacroLabelBegin()); 3236 if (UseDebugMacroSection) 3237 emitMacroHeader(Asm, *this, U, getDwarfVersion()); 3238 handleMacroNodes(Macros, U); 3239 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 3240 Asm->emitInt8(0); 3241 } 3242 } 3243 3244 /// Emit macros into a debug macinfo/macro section. 3245 void DwarfDebug::emitDebugMacinfo() { 3246 auto &ObjLower = Asm->getObjFileLowering(); 3247 emitDebugMacinfoImpl(UseDebugMacroSection 3248 ? ObjLower.getDwarfMacroSection() 3249 : ObjLower.getDwarfMacinfoSection()); 3250 } 3251 3252 void DwarfDebug::emitDebugMacinfoDWO() { 3253 auto &ObjLower = Asm->getObjFileLowering(); 3254 emitDebugMacinfoImpl(UseDebugMacroSection 3255 ? ObjLower.getDwarfMacroDWOSection() 3256 : ObjLower.getDwarfMacinfoDWOSection()); 3257 } 3258 3259 // DWARF5 Experimental Separate Dwarf emitters. 3260 3261 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 3262 std::unique_ptr<DwarfCompileUnit> NewU) { 3263 3264 if (!CompilationDir.empty()) 3265 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 3266 addGnuPubAttributes(*NewU, Die); 3267 3268 SkeletonHolder.addUnit(std::move(NewU)); 3269 } 3270 3271 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 3272 3273 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 3274 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, 3275 UnitKind::Skeleton); 3276 DwarfCompileUnit &NewCU = *OwnedUnit; 3277 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 3278 3279 NewCU.initStmtList(); 3280 3281 if (useSegmentedStringOffsetsTable()) 3282 NewCU.addStringOffsetsStart(); 3283 3284 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 3285 3286 return NewCU; 3287 } 3288 3289 // Emit the .debug_info.dwo section for separated dwarf. This contains the 3290 // compile units that would normally be in debug_info. 3291 void DwarfDebug::emitDebugInfoDWO() { 3292 assert(useSplitDwarf() && "No split dwarf debug info?"); 3293 // Don't emit relocations into the dwo file. 3294 InfoHolder.emitUnits(/* UseOffsets */ true); 3295 } 3296 3297 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 3298 // abbreviations for the .debug_info.dwo section. 3299 void DwarfDebug::emitDebugAbbrevDWO() { 3300 assert(useSplitDwarf() && "No split dwarf?"); 3301 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 3302 } 3303 3304 void DwarfDebug::emitDebugLineDWO() { 3305 assert(useSplitDwarf() && "No split dwarf?"); 3306 SplitTypeUnitFileTable.Emit( 3307 *Asm->OutStreamer, MCDwarfLineTableParams(), 3308 Asm->getObjFileLowering().getDwarfLineDWOSection()); 3309 } 3310 3311 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 3312 assert(useSplitDwarf() && "No split dwarf?"); 3313 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 3314 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 3315 InfoHolder.getStringOffsetsStartSym()); 3316 } 3317 3318 // Emit the .debug_str.dwo section for separated dwarf. This contains the 3319 // string section and is identical in format to traditional .debug_str 3320 // sections. 3321 void DwarfDebug::emitDebugStrDWO() { 3322 if (useSegmentedStringOffsetsTable()) 3323 emitStringOffsetsTableHeaderDWO(); 3324 assert(useSplitDwarf() && "No split dwarf?"); 3325 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 3326 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 3327 OffSec, /* UseRelativeOffsets = */ false); 3328 } 3329 3330 // Emit address pool. 3331 void DwarfDebug::emitDebugAddr() { 3332 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 3333 } 3334 3335 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 3336 if (!useSplitDwarf()) 3337 return nullptr; 3338 const DICompileUnit *DIUnit = CU.getCUNode(); 3339 SplitTypeUnitFileTable.maybeSetRootFile( 3340 DIUnit->getDirectory(), DIUnit->getFilename(), 3341 getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 3342 return &SplitTypeUnitFileTable; 3343 } 3344 3345 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 3346 MD5 Hash; 3347 Hash.update(Identifier); 3348 // ... take the least significant 8 bytes and return those. Our MD5 3349 // implementation always returns its results in little endian, so we actually 3350 // need the "high" word. 3351 MD5::MD5Result Result; 3352 Hash.final(Result); 3353 return Result.high(); 3354 } 3355 3356 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 3357 StringRef Identifier, DIE &RefDie, 3358 const DICompositeType *CTy) { 3359 // Fast path if we're building some type units and one has already used the 3360 // address pool we know we're going to throw away all this work anyway, so 3361 // don't bother building dependent types. 3362 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 3363 return; 3364 3365 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 3366 if (!Ins.second) { 3367 CU.addDIETypeSignature(RefDie, Ins.first->second); 3368 return; 3369 } 3370 3371 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 3372 AddrPool.resetUsedFlag(); 3373 3374 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 3375 getDwoLineTable(CU)); 3376 DwarfTypeUnit &NewTU = *OwnedUnit; 3377 DIE &UnitDie = NewTU.getUnitDie(); 3378 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 3379 3380 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 3381 CU.getLanguage()); 3382 3383 uint64_t Signature = makeTypeSignature(Identifier); 3384 NewTU.setTypeSignature(Signature); 3385 Ins.first->second = Signature; 3386 3387 if (useSplitDwarf()) { 3388 MCSection *Section = 3389 getDwarfVersion() <= 4 3390 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 3391 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 3392 NewTU.setSection(Section); 3393 } else { 3394 MCSection *Section = 3395 getDwarfVersion() <= 4 3396 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 3397 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 3398 NewTU.setSection(Section); 3399 // Non-split type units reuse the compile unit's line table. 3400 CU.applyStmtList(UnitDie); 3401 } 3402 3403 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 3404 // units. 3405 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 3406 NewTU.addStringOffsetsStart(); 3407 3408 NewTU.setType(NewTU.createTypeDIE(CTy)); 3409 3410 if (TopLevelType) { 3411 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 3412 TypeUnitsUnderConstruction.clear(); 3413 3414 // Types referencing entries in the address table cannot be placed in type 3415 // units. 3416 if (AddrPool.hasBeenUsed()) { 3417 3418 // Remove all the types built while building this type. 3419 // This is pessimistic as some of these types might not be dependent on 3420 // the type that used an address. 3421 for (const auto &TU : TypeUnitsToAdd) 3422 TypeSignatures.erase(TU.second); 3423 3424 // Construct this type in the CU directly. 3425 // This is inefficient because all the dependent types will be rebuilt 3426 // from scratch, including building them in type units, discovering that 3427 // they depend on addresses, throwing them out and rebuilding them. 3428 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 3429 return; 3430 } 3431 3432 // If the type wasn't dependent on fission addresses, finish adding the type 3433 // and all its dependent types. 3434 for (auto &TU : TypeUnitsToAdd) { 3435 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 3436 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 3437 } 3438 } 3439 CU.addDIETypeSignature(RefDie, Signature); 3440 } 3441 3442 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 3443 : DD(DD), 3444 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)), AddrPoolUsed(DD->AddrPool.hasBeenUsed()) { 3445 DD->TypeUnitsUnderConstruction.clear(); 3446 DD->AddrPool.resetUsedFlag(); 3447 } 3448 3449 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 3450 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 3451 DD->AddrPool.resetUsedFlag(AddrPoolUsed); 3452 } 3453 3454 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 3455 return NonTypeUnitContext(this); 3456 } 3457 3458 // Add the Name along with its companion DIE to the appropriate accelerator 3459 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 3460 // AccelTableKind::Apple, we use the table we got as an argument). If 3461 // accelerator tables are disabled, this function does nothing. 3462 template <typename DataT> 3463 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 3464 AccelTable<DataT> &AppleAccel, StringRef Name, 3465 const DIE &Die) { 3466 if (getAccelTableKind() == AccelTableKind::None) 3467 return; 3468 3469 if (getAccelTableKind() != AccelTableKind::Apple && 3470 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 3471 return; 3472 3473 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3474 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3475 3476 switch (getAccelTableKind()) { 3477 case AccelTableKind::Apple: 3478 AppleAccel.addName(Ref, Die); 3479 break; 3480 case AccelTableKind::Dwarf: 3481 AccelDebugNames.addName(Ref, Die); 3482 break; 3483 case AccelTableKind::Default: 3484 llvm_unreachable("Default should have already been resolved."); 3485 case AccelTableKind::None: 3486 llvm_unreachable("None handled above"); 3487 } 3488 } 3489 3490 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3491 const DIE &Die) { 3492 addAccelNameImpl(CU, AccelNames, Name, Die); 3493 } 3494 3495 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3496 const DIE &Die) { 3497 // ObjC names go only into the Apple accelerator tables. 3498 if (getAccelTableKind() == AccelTableKind::Apple) 3499 addAccelNameImpl(CU, AccelObjC, Name, Die); 3500 } 3501 3502 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3503 const DIE &Die) { 3504 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3505 } 3506 3507 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3508 const DIE &Die, char Flags) { 3509 addAccelNameImpl(CU, AccelTypes, Name, Die); 3510 } 3511 3512 uint16_t DwarfDebug::getDwarfVersion() const { 3513 return Asm->OutStreamer->getContext().getDwarfVersion(); 3514 } 3515 3516 dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const { 3517 if (Asm->getDwarfVersion() >= 4) 3518 return dwarf::Form::DW_FORM_sec_offset; 3519 assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) && 3520 "DWARF64 is not defined prior DWARFv3"); 3521 return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8 3522 : dwarf::Form::DW_FORM_data4; 3523 } 3524 3525 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3526 auto I = SectionLabels.find(S); 3527 if (I == SectionLabels.end()) 3528 return nullptr; 3529 return I->second; 3530 } 3531 void DwarfDebug::insertSectionLabel(const MCSymbol *S) { 3532 if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second) 3533 if (useSplitDwarf() || getDwarfVersion() >= 5) 3534 AddrPool.getIndex(S); 3535 } 3536 3537 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const { 3538 assert(File); 3539 if (getDwarfVersion() < 5) 3540 return None; 3541 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum(); 3542 if (!Checksum || Checksum->Kind != DIFile::CSK_MD5) 3543 return None; 3544 3545 // Convert the string checksum to an MD5Result for the streamer. 3546 // The verifier validates the checksum so we assume it's okay. 3547 // An MD5 checksum is 16 bytes. 3548 std::string ChecksumString = fromHex(Checksum->Value); 3549 MD5::MD5Result CKMem; 3550 std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.Bytes.data()); 3551 return CKMem; 3552 } 3553