1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DwarfCompileUnit.h" 17 #include "DwarfExpression.h" 18 #include "DwarfUnit.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/CodeGen/AsmPrinter.h" 24 #include "llvm/CodeGen/DIE.h" 25 #include "llvm/CodeGen/LexicalScopes.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/CodeGen/TargetRegisterInfo.h" 33 #include "llvm/CodeGen/TargetSubtargetInfo.h" 34 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 35 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/MC/MCAsmInfo.h" 41 #include "llvm/MC/MCContext.h" 42 #include "llvm/MC/MCSection.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/MC/MCTargetOptions.h" 46 #include "llvm/MC/MachineLocation.h" 47 #include "llvm/MC/SectionKind.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MD5.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/Timer.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Target/TargetLoweringObjectFile.h" 58 #include "llvm/Target/TargetMachine.h" 59 #include <algorithm> 60 #include <cstddef> 61 #include <iterator> 62 #include <string> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "dwarfdebug" 67 68 STATISTIC(NumCSParams, "Number of dbg call site params created"); 69 70 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 71 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 72 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 73 74 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 75 cl::Hidden, 76 cl::desc("Generate dwarf aranges"), 77 cl::init(false)); 78 79 static cl::opt<bool> 80 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 81 cl::desc("Generate DWARF4 type units."), 82 cl::init(false)); 83 84 static cl::opt<bool> SplitDwarfCrossCuReferences( 85 "split-dwarf-cross-cu-references", cl::Hidden, 86 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 87 88 enum DefaultOnOff { Default, Enable, Disable }; 89 90 static cl::opt<DefaultOnOff> UnknownLocations( 91 "use-unknown-locations", cl::Hidden, 92 cl::desc("Make an absence of debug location information explicit."), 93 cl::values(clEnumVal(Default, "At top of block or after label"), 94 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 95 cl::init(Default)); 96 97 static cl::opt<AccelTableKind> AccelTables( 98 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 99 cl::values(clEnumValN(AccelTableKind::Default, "Default", 100 "Default for platform"), 101 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 102 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 103 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 104 cl::init(AccelTableKind::Default)); 105 106 static cl::opt<DefaultOnOff> 107 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 108 cl::desc("Use inlined strings rather than string section."), 109 cl::values(clEnumVal(Default, "Default for platform"), 110 clEnumVal(Enable, "Enabled"), 111 clEnumVal(Disable, "Disabled")), 112 cl::init(Default)); 113 114 static cl::opt<bool> 115 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 116 cl::desc("Disable emission .debug_ranges section."), 117 cl::init(false)); 118 119 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 120 "dwarf-sections-as-references", cl::Hidden, 121 cl::desc("Use sections+offset as references rather than labels."), 122 cl::values(clEnumVal(Default, "Default for platform"), 123 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 124 cl::init(Default)); 125 126 static cl::opt<bool> 127 UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden, 128 cl::desc("Emit the GNU .debug_macro format with DWARF <5"), 129 cl::init(false)); 130 131 static cl::opt<DefaultOnOff> DwarfOpConvert( 132 "dwarf-op-convert", cl::Hidden, 133 cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"), 134 cl::values(clEnumVal(Default, "Default for platform"), 135 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 136 cl::init(Default)); 137 138 enum LinkageNameOption { 139 DefaultLinkageNames, 140 AllLinkageNames, 141 AbstractLinkageNames 142 }; 143 144 static cl::opt<LinkageNameOption> 145 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 146 cl::desc("Which DWARF linkage-name attributes to emit."), 147 cl::values(clEnumValN(DefaultLinkageNames, "Default", 148 "Default for platform"), 149 clEnumValN(AllLinkageNames, "All", "All"), 150 clEnumValN(AbstractLinkageNames, "Abstract", 151 "Abstract subprograms")), 152 cl::init(DefaultLinkageNames)); 153 154 static cl::opt<DwarfDebug::MinimizeAddrInV5> MinimizeAddrInV5Option( 155 "minimize-addr-in-v5", cl::Hidden, 156 cl::desc("Always use DW_AT_ranges in DWARFv5 whenever it could allow more " 157 "address pool entry sharing to reduce relocations/object size"), 158 cl::values(clEnumValN(DwarfDebug::MinimizeAddrInV5::Default, "Default", 159 "Default address minimization strategy"), 160 clEnumValN(DwarfDebug::MinimizeAddrInV5::Ranges, "Ranges", 161 "Use rnglists for contiguous ranges if that allows " 162 "using a pre-existing base address"), 163 clEnumValN(DwarfDebug::MinimizeAddrInV5::Expressions, 164 "Expressions", 165 "Use exprloc addrx+offset expressions for any " 166 "address with a prior base address"), 167 clEnumValN(DwarfDebug::MinimizeAddrInV5::Form, "Form", 168 "Use addrx+offset extension form for any address " 169 "with a prior base address"), 170 clEnumValN(DwarfDebug::MinimizeAddrInV5::Disabled, "Disabled", 171 "Stuff")), 172 cl::init(DwarfDebug::MinimizeAddrInV5::Default)); 173 174 static constexpr unsigned ULEB128PadSize = 4; 175 176 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 177 getActiveStreamer().emitInt8( 178 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 179 : dwarf::OperationEncodingString(Op)); 180 } 181 182 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 183 getActiveStreamer().emitSLEB128(Value, Twine(Value)); 184 } 185 186 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 187 getActiveStreamer().emitULEB128(Value, Twine(Value)); 188 } 189 190 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 191 getActiveStreamer().emitInt8(Value, Twine(Value)); 192 } 193 194 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 195 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 196 getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize); 197 } 198 199 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 200 llvm::Register MachineReg) { 201 // This information is not available while emitting .debug_loc entries. 202 return false; 203 } 204 205 void DebugLocDwarfExpression::enableTemporaryBuffer() { 206 assert(!IsBuffering && "Already buffering?"); 207 if (!TmpBuf) 208 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 209 IsBuffering = true; 210 } 211 212 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 213 214 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 215 return TmpBuf ? TmpBuf->Bytes.size() : 0; 216 } 217 218 void DebugLocDwarfExpression::commitTemporaryBuffer() { 219 if (!TmpBuf) 220 return; 221 for (auto Byte : enumerate(TmpBuf->Bytes)) { 222 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 223 ? TmpBuf->Comments[Byte.index()].c_str() 224 : ""; 225 OutBS.emitInt8(Byte.value(), Comment); 226 } 227 TmpBuf->Bytes.clear(); 228 TmpBuf->Comments.clear(); 229 } 230 231 const DIType *DbgVariable::getType() const { 232 return getVariable()->getType(); 233 } 234 235 /// Get .debug_loc entry for the instruction range starting at MI. 236 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 237 const DIExpression *Expr = MI->getDebugExpression(); 238 const bool IsVariadic = MI->isDebugValueList(); 239 assert(MI->getNumOperands() >= 3); 240 SmallVector<DbgValueLocEntry, 4> DbgValueLocEntries; 241 for (const MachineOperand &Op : MI->debug_operands()) { 242 if (Op.isReg()) { 243 MachineLocation MLoc(Op.getReg(), 244 MI->isNonListDebugValue() && MI->isDebugOffsetImm()); 245 DbgValueLocEntries.push_back(DbgValueLocEntry(MLoc)); 246 } else if (Op.isTargetIndex()) { 247 DbgValueLocEntries.push_back( 248 DbgValueLocEntry(TargetIndexLocation(Op.getIndex(), Op.getOffset()))); 249 } else if (Op.isImm()) 250 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getImm())); 251 else if (Op.isFPImm()) 252 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getFPImm())); 253 else if (Op.isCImm()) 254 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getCImm())); 255 else 256 llvm_unreachable("Unexpected debug operand in DBG_VALUE* instruction!"); 257 } 258 return DbgValueLoc(Expr, DbgValueLocEntries, IsVariadic); 259 } 260 261 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 262 assert(FrameIndexExprs.empty() && "Already initialized?"); 263 assert(!ValueLoc.get() && "Already initialized?"); 264 265 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 266 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 267 "Wrong inlined-at"); 268 269 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 270 if (auto *E = DbgValue->getDebugExpression()) 271 if (E->getNumElements()) 272 FrameIndexExprs.push_back({0, E}); 273 } 274 275 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 276 if (FrameIndexExprs.size() == 1) 277 return FrameIndexExprs; 278 279 assert(llvm::all_of(FrameIndexExprs, 280 [](const FrameIndexExpr &A) { 281 return A.Expr->isFragment(); 282 }) && 283 "multiple FI expressions without DW_OP_LLVM_fragment"); 284 llvm::sort(FrameIndexExprs, 285 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 286 return A.Expr->getFragmentInfo()->OffsetInBits < 287 B.Expr->getFragmentInfo()->OffsetInBits; 288 }); 289 290 return FrameIndexExprs; 291 } 292 293 void DbgVariable::addMMIEntry(const DbgVariable &V) { 294 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 295 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 296 assert(V.getVariable() == getVariable() && "conflicting variable"); 297 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 298 299 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 300 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 301 302 // FIXME: This logic should not be necessary anymore, as we now have proper 303 // deduplication. However, without it, we currently run into the assertion 304 // below, which means that we are likely dealing with broken input, i.e. two 305 // non-fragment entries for the same variable at different frame indices. 306 if (FrameIndexExprs.size()) { 307 auto *Expr = FrameIndexExprs.back().Expr; 308 if (!Expr || !Expr->isFragment()) 309 return; 310 } 311 312 for (const auto &FIE : V.FrameIndexExprs) 313 // Ignore duplicate entries. 314 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 315 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 316 })) 317 FrameIndexExprs.push_back(FIE); 318 319 assert((FrameIndexExprs.size() == 1 || 320 llvm::all_of(FrameIndexExprs, 321 [](FrameIndexExpr &FIE) { 322 return FIE.Expr && FIE.Expr->isFragment(); 323 })) && 324 "conflicting locations for variable"); 325 } 326 327 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 328 bool GenerateTypeUnits, 329 DebuggerKind Tuning, 330 const Triple &TT) { 331 // Honor an explicit request. 332 if (AccelTables != AccelTableKind::Default) 333 return AccelTables; 334 335 // Accelerator tables with type units are currently not supported. 336 if (GenerateTypeUnits) 337 return AccelTableKind::None; 338 339 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 340 // always implies debug_names. For lower standard versions we use apple 341 // accelerator tables on apple platforms and debug_names elsewhere. 342 if (DwarfVersion >= 5) 343 return AccelTableKind::Dwarf; 344 if (Tuning == DebuggerKind::LLDB) 345 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 346 : AccelTableKind::Dwarf; 347 return AccelTableKind::None; 348 } 349 350 DwarfDebug::DwarfDebug(AsmPrinter *A) 351 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 352 InfoHolder(A, "info_string", DIEValueAllocator), 353 SkeletonHolder(A, "skel_string", DIEValueAllocator), 354 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 355 const Triple &TT = Asm->TM.getTargetTriple(); 356 357 // Make sure we know our "debugger tuning". The target option takes 358 // precedence; fall back to triple-based defaults. 359 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 360 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 361 else if (IsDarwin) 362 DebuggerTuning = DebuggerKind::LLDB; 363 else if (TT.isPS4CPU()) 364 DebuggerTuning = DebuggerKind::SCE; 365 else if (TT.isOSAIX()) 366 DebuggerTuning = DebuggerKind::DBX; 367 else 368 DebuggerTuning = DebuggerKind::GDB; 369 370 if (DwarfInlinedStrings == Default) 371 UseInlineStrings = TT.isNVPTX() || tuneForDBX(); 372 else 373 UseInlineStrings = DwarfInlinedStrings == Enable; 374 375 UseLocSection = !TT.isNVPTX(); 376 377 HasAppleExtensionAttributes = tuneForLLDB(); 378 379 // Handle split DWARF. 380 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 381 382 // SCE defaults to linkage names only for abstract subprograms. 383 if (DwarfLinkageNames == DefaultLinkageNames) 384 UseAllLinkageNames = !tuneForSCE(); 385 else 386 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 387 388 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 389 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 390 : MMI->getModule()->getDwarfVersion(); 391 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 392 DwarfVersion = 393 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 394 395 bool Dwarf64 = DwarfVersion >= 3 && // DWARF64 was introduced in DWARFv3. 396 TT.isArch64Bit(); // DWARF64 requires 64-bit relocations. 397 398 // Support DWARF64 399 // 1: For ELF when requested. 400 // 2: For XCOFF64: the AIX assembler will fill in debug section lengths 401 // according to the DWARF64 format for 64-bit assembly, so we must use 402 // DWARF64 in the compiler too for 64-bit mode. 403 Dwarf64 &= 404 ((Asm->TM.Options.MCOptions.Dwarf64 || MMI->getModule()->isDwarf64()) && 405 TT.isOSBinFormatELF()) || 406 TT.isOSBinFormatXCOFF(); 407 408 if (!Dwarf64 && TT.isArch64Bit() && TT.isOSBinFormatXCOFF()) 409 report_fatal_error("XCOFF requires DWARF64 for 64-bit mode!"); 410 411 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 412 413 // Use sections as references. Force for NVPTX. 414 if (DwarfSectionsAsReferences == Default) 415 UseSectionsAsReferences = TT.isNVPTX(); 416 else 417 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 418 419 // Don't generate type units for unsupported object file formats. 420 GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() || 421 A->TM.getTargetTriple().isOSBinFormatWasm()) && 422 GenerateDwarfTypeUnits; 423 424 TheAccelTableKind = computeAccelTableKind( 425 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 426 427 // Work around a GDB bug. GDB doesn't support the standard opcode; 428 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 429 // is defined as of DWARF 3. 430 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 431 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 432 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 433 434 // GDB does not fully support the DWARF 4 representation for bitfields. 435 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 436 437 // The DWARF v5 string offsets table has - possibly shared - contributions 438 // from each compile and type unit each preceded by a header. The string 439 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 440 // a monolithic string offsets table without any header. 441 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 442 443 // Emit call-site-param debug info for GDB and LLDB, if the target supports 444 // the debug entry values feature. It can also be enabled explicitly. 445 EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues(); 446 447 // It is unclear if the GCC .debug_macro extension is well-specified 448 // for split DWARF. For now, do not allow LLVM to emit it. 449 UseDebugMacroSection = 450 DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf()); 451 if (DwarfOpConvert == Default) 452 EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO())); 453 else 454 EnableOpConvert = (DwarfOpConvert == Enable); 455 456 // Split DWARF would benefit object size significantly by trading reductions 457 // in address pool usage for slightly increased range list encodings. 458 if (DwarfVersion >= 5) { 459 MinimizeAddr = MinimizeAddrInV5Option; 460 // FIXME: In the future, enable this by default for Split DWARF where the 461 // tradeoff is more pronounced due to being able to offload the range 462 // lists to the dwo file and shrink object files/reduce relocations there. 463 if (MinimizeAddr == MinimizeAddrInV5::Default) 464 MinimizeAddr = MinimizeAddrInV5::Disabled; 465 } 466 467 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 468 Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64 469 : dwarf::DWARF32); 470 } 471 472 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 473 DwarfDebug::~DwarfDebug() = default; 474 475 static bool isObjCClass(StringRef Name) { 476 return Name.startswith("+") || Name.startswith("-"); 477 } 478 479 static bool hasObjCCategory(StringRef Name) { 480 if (!isObjCClass(Name)) 481 return false; 482 483 return Name.contains(") "); 484 } 485 486 static void getObjCClassCategory(StringRef In, StringRef &Class, 487 StringRef &Category) { 488 if (!hasObjCCategory(In)) { 489 Class = In.slice(In.find('[') + 1, In.find(' ')); 490 Category = ""; 491 return; 492 } 493 494 Class = In.slice(In.find('[') + 1, In.find('(')); 495 Category = In.slice(In.find('[') + 1, In.find(' ')); 496 } 497 498 static StringRef getObjCMethodName(StringRef In) { 499 return In.slice(In.find(' ') + 1, In.find(']')); 500 } 501 502 // Add the various names to the Dwarf accelerator table names. 503 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 504 const DISubprogram *SP, DIE &Die) { 505 if (getAccelTableKind() != AccelTableKind::Apple && 506 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 507 return; 508 509 if (!SP->isDefinition()) 510 return; 511 512 if (SP->getName() != "") 513 addAccelName(CU, SP->getName(), Die); 514 515 // If the linkage name is different than the name, go ahead and output that as 516 // well into the name table. Only do that if we are going to actually emit 517 // that name. 518 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 519 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 520 addAccelName(CU, SP->getLinkageName(), Die); 521 522 // If this is an Objective-C selector name add it to the ObjC accelerator 523 // too. 524 if (isObjCClass(SP->getName())) { 525 StringRef Class, Category; 526 getObjCClassCategory(SP->getName(), Class, Category); 527 addAccelObjC(CU, Class, Die); 528 if (Category != "") 529 addAccelObjC(CU, Category, Die); 530 // Also add the base method name to the name table. 531 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 532 } 533 } 534 535 /// Check whether we should create a DIE for the given Scope, return true 536 /// if we don't create a DIE (the corresponding DIE is null). 537 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 538 if (Scope->isAbstractScope()) 539 return false; 540 541 // We don't create a DIE if there is no Range. 542 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 543 if (Ranges.empty()) 544 return true; 545 546 if (Ranges.size() > 1) 547 return false; 548 549 // We don't create a DIE if we have a single Range and the end label 550 // is null. 551 return !getLabelAfterInsn(Ranges.front().second); 552 } 553 554 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 555 F(CU); 556 if (auto *SkelCU = CU.getSkeleton()) 557 if (CU.getCUNode()->getSplitDebugInlining()) 558 F(*SkelCU); 559 } 560 561 bool DwarfDebug::shareAcrossDWOCUs() const { 562 return SplitDwarfCrossCuReferences; 563 } 564 565 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 566 LexicalScope *Scope) { 567 assert(Scope && Scope->getScopeNode()); 568 assert(Scope->isAbstractScope()); 569 assert(!Scope->getInlinedAt()); 570 571 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 572 573 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 574 // was inlined from another compile unit. 575 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 576 // Avoid building the original CU if it won't be used 577 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 578 else { 579 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 580 if (auto *SkelCU = CU.getSkeleton()) { 581 (shareAcrossDWOCUs() ? CU : SrcCU) 582 .constructAbstractSubprogramScopeDIE(Scope); 583 if (CU.getCUNode()->getSplitDebugInlining()) 584 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 585 } else 586 CU.constructAbstractSubprogramScopeDIE(Scope); 587 } 588 } 589 590 /// Represents a parameter whose call site value can be described by applying a 591 /// debug expression to a register in the forwarded register worklist. 592 struct FwdRegParamInfo { 593 /// The described parameter register. 594 unsigned ParamReg; 595 596 /// Debug expression that has been built up when walking through the 597 /// instruction chain that produces the parameter's value. 598 const DIExpression *Expr; 599 }; 600 601 /// Register worklist for finding call site values. 602 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>; 603 604 /// Append the expression \p Addition to \p Original and return the result. 605 static const DIExpression *combineDIExpressions(const DIExpression *Original, 606 const DIExpression *Addition) { 607 std::vector<uint64_t> Elts = Addition->getElements().vec(); 608 // Avoid multiple DW_OP_stack_values. 609 if (Original->isImplicit() && Addition->isImplicit()) 610 erase_value(Elts, dwarf::DW_OP_stack_value); 611 const DIExpression *CombinedExpr = 612 (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original; 613 return CombinedExpr; 614 } 615 616 /// Emit call site parameter entries that are described by the given value and 617 /// debug expression. 618 template <typename ValT> 619 static void finishCallSiteParams(ValT Val, const DIExpression *Expr, 620 ArrayRef<FwdRegParamInfo> DescribedParams, 621 ParamSet &Params) { 622 for (auto Param : DescribedParams) { 623 bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0; 624 625 // TODO: Entry value operations can currently not be combined with any 626 // other expressions, so we can't emit call site entries in those cases. 627 if (ShouldCombineExpressions && Expr->isEntryValue()) 628 continue; 629 630 // If a parameter's call site value is produced by a chain of 631 // instructions we may have already created an expression for the 632 // parameter when walking through the instructions. Append that to the 633 // base expression. 634 const DIExpression *CombinedExpr = 635 ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr) 636 : Expr; 637 assert((!CombinedExpr || CombinedExpr->isValid()) && 638 "Combined debug expression is invalid"); 639 640 DbgValueLoc DbgLocVal(CombinedExpr, DbgValueLocEntry(Val)); 641 DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal); 642 Params.push_back(CSParm); 643 ++NumCSParams; 644 } 645 } 646 647 /// Add \p Reg to the worklist, if it's not already present, and mark that the 648 /// given parameter registers' values can (potentially) be described using 649 /// that register and an debug expression. 650 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg, 651 const DIExpression *Expr, 652 ArrayRef<FwdRegParamInfo> ParamsToAdd) { 653 auto I = Worklist.insert({Reg, {}}); 654 auto &ParamsForFwdReg = I.first->second; 655 for (auto Param : ParamsToAdd) { 656 assert(none_of(ParamsForFwdReg, 657 [Param](const FwdRegParamInfo &D) { 658 return D.ParamReg == Param.ParamReg; 659 }) && 660 "Same parameter described twice by forwarding reg"); 661 662 // If a parameter's call site value is produced by a chain of 663 // instructions we may have already created an expression for the 664 // parameter when walking through the instructions. Append that to the 665 // new expression. 666 const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr); 667 ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr}); 668 } 669 } 670 671 /// Interpret values loaded into registers by \p CurMI. 672 static void interpretValues(const MachineInstr *CurMI, 673 FwdRegWorklist &ForwardedRegWorklist, 674 ParamSet &Params) { 675 676 const MachineFunction *MF = CurMI->getMF(); 677 const DIExpression *EmptyExpr = 678 DIExpression::get(MF->getFunction().getContext(), {}); 679 const auto &TRI = *MF->getSubtarget().getRegisterInfo(); 680 const auto &TII = *MF->getSubtarget().getInstrInfo(); 681 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 682 683 // If an instruction defines more than one item in the worklist, we may run 684 // into situations where a worklist register's value is (potentially) 685 // described by the previous value of another register that is also defined 686 // by that instruction. 687 // 688 // This can for example occur in cases like this: 689 // 690 // $r1 = mov 123 691 // $r0, $r1 = mvrr $r1, 456 692 // call @foo, $r0, $r1 693 // 694 // When describing $r1's value for the mvrr instruction, we need to make sure 695 // that we don't finalize an entry value for $r0, as that is dependent on the 696 // previous value of $r1 (123 rather than 456). 697 // 698 // In order to not have to distinguish between those cases when finalizing 699 // entry values, we simply postpone adding new parameter registers to the 700 // worklist, by first keeping them in this temporary container until the 701 // instruction has been handled. 702 FwdRegWorklist TmpWorklistItems; 703 704 // If the MI is an instruction defining one or more parameters' forwarding 705 // registers, add those defines. 706 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 707 SmallSetVector<unsigned, 4> &Defs) { 708 if (MI.isDebugInstr()) 709 return; 710 711 for (const MachineOperand &MO : MI.operands()) { 712 if (MO.isReg() && MO.isDef() && 713 Register::isPhysicalRegister(MO.getReg())) { 714 for (auto &FwdReg : ForwardedRegWorklist) 715 if (TRI.regsOverlap(FwdReg.first, MO.getReg())) 716 Defs.insert(FwdReg.first); 717 } 718 } 719 }; 720 721 // Set of worklist registers that are defined by this instruction. 722 SmallSetVector<unsigned, 4> FwdRegDefs; 723 724 getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs); 725 if (FwdRegDefs.empty()) 726 return; 727 728 for (auto ParamFwdReg : FwdRegDefs) { 729 if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) { 730 if (ParamValue->first.isImm()) { 731 int64_t Val = ParamValue->first.getImm(); 732 finishCallSiteParams(Val, ParamValue->second, 733 ForwardedRegWorklist[ParamFwdReg], Params); 734 } else if (ParamValue->first.isReg()) { 735 Register RegLoc = ParamValue->first.getReg(); 736 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 737 Register FP = TRI.getFrameRegister(*MF); 738 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 739 if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 740 MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP); 741 finishCallSiteParams(MLoc, ParamValue->second, 742 ForwardedRegWorklist[ParamFwdReg], Params); 743 } else { 744 // ParamFwdReg was described by the non-callee saved register 745 // RegLoc. Mark that the call site values for the parameters are 746 // dependent on that register instead of ParamFwdReg. Since RegLoc 747 // may be a register that will be handled in this iteration, we 748 // postpone adding the items to the worklist, and instead keep them 749 // in a temporary container. 750 addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second, 751 ForwardedRegWorklist[ParamFwdReg]); 752 } 753 } 754 } 755 } 756 757 // Remove all registers that this instruction defines from the worklist. 758 for (auto ParamFwdReg : FwdRegDefs) 759 ForwardedRegWorklist.erase(ParamFwdReg); 760 761 // Now that we are done handling this instruction, add items from the 762 // temporary worklist to the real one. 763 for (auto &New : TmpWorklistItems) 764 addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second); 765 TmpWorklistItems.clear(); 766 } 767 768 static bool interpretNextInstr(const MachineInstr *CurMI, 769 FwdRegWorklist &ForwardedRegWorklist, 770 ParamSet &Params) { 771 // Skip bundle headers. 772 if (CurMI->isBundle()) 773 return true; 774 775 // If the next instruction is a call we can not interpret parameter's 776 // forwarding registers or we finished the interpretation of all 777 // parameters. 778 if (CurMI->isCall()) 779 return false; 780 781 if (ForwardedRegWorklist.empty()) 782 return false; 783 784 // Avoid NOP description. 785 if (CurMI->getNumOperands() == 0) 786 return true; 787 788 interpretValues(CurMI, ForwardedRegWorklist, Params); 789 790 return true; 791 } 792 793 /// Try to interpret values loaded into registers that forward parameters 794 /// for \p CallMI. Store parameters with interpreted value into \p Params. 795 static void collectCallSiteParameters(const MachineInstr *CallMI, 796 ParamSet &Params) { 797 const MachineFunction *MF = CallMI->getMF(); 798 const auto &CalleesMap = MF->getCallSitesInfo(); 799 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 800 801 // There is no information for the call instruction. 802 if (CallFwdRegsInfo == CalleesMap.end()) 803 return; 804 805 const MachineBasicBlock *MBB = CallMI->getParent(); 806 807 // Skip the call instruction. 808 auto I = std::next(CallMI->getReverseIterator()); 809 810 FwdRegWorklist ForwardedRegWorklist; 811 812 const DIExpression *EmptyExpr = 813 DIExpression::get(MF->getFunction().getContext(), {}); 814 815 // Add all the forwarding registers into the ForwardedRegWorklist. 816 for (const auto &ArgReg : CallFwdRegsInfo->second) { 817 bool InsertedReg = 818 ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}}) 819 .second; 820 assert(InsertedReg && "Single register used to forward two arguments?"); 821 (void)InsertedReg; 822 } 823 824 // Do not emit CSInfo for undef forwarding registers. 825 for (auto &MO : CallMI->uses()) 826 if (MO.isReg() && MO.isUndef()) 827 ForwardedRegWorklist.erase(MO.getReg()); 828 829 // We erase, from the ForwardedRegWorklist, those forwarding registers for 830 // which we successfully describe a loaded value (by using 831 // the describeLoadedValue()). For those remaining arguments in the working 832 // list, for which we do not describe a loaded value by 833 // the describeLoadedValue(), we try to generate an entry value expression 834 // for their call site value description, if the call is within the entry MBB. 835 // TODO: Handle situations when call site parameter value can be described 836 // as the entry value within basic blocks other than the first one. 837 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 838 839 // Search for a loading value in forwarding registers inside call delay slot. 840 if (CallMI->hasDelaySlot()) { 841 auto Suc = std::next(CallMI->getIterator()); 842 // Only one-instruction delay slot is supported. 843 auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator()); 844 (void)BundleEnd; 845 assert(std::next(Suc) == BundleEnd && 846 "More than one instruction in call delay slot"); 847 // Try to interpret value loaded by instruction. 848 if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params)) 849 return; 850 } 851 852 // Search for a loading value in forwarding registers. 853 for (; I != MBB->rend(); ++I) { 854 // Try to interpret values loaded by instruction. 855 if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params)) 856 return; 857 } 858 859 // Emit the call site parameter's value as an entry value. 860 if (ShouldTryEmitEntryVals) { 861 // Create an expression where the register's entry value is used. 862 DIExpression *EntryExpr = DIExpression::get( 863 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 864 for (auto &RegEntry : ForwardedRegWorklist) { 865 MachineLocation MLoc(RegEntry.first); 866 finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params); 867 } 868 } 869 } 870 871 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 872 DwarfCompileUnit &CU, DIE &ScopeDIE, 873 const MachineFunction &MF) { 874 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 875 // the subprogram is required to have one. 876 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 877 return; 878 879 // Use DW_AT_call_all_calls to express that call site entries are present 880 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 881 // because one of its requirements is not met: call site entries for 882 // optimized-out calls are elided. 883 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 884 885 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 886 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 887 888 // Delay slot support check. 889 auto delaySlotSupported = [&](const MachineInstr &MI) { 890 if (!MI.isBundledWithSucc()) 891 return false; 892 auto Suc = std::next(MI.getIterator()); 893 auto CallInstrBundle = getBundleStart(MI.getIterator()); 894 (void)CallInstrBundle; 895 auto DelaySlotBundle = getBundleStart(Suc); 896 (void)DelaySlotBundle; 897 // Ensure that label after call is following delay slot instruction. 898 // Ex. CALL_INSTRUCTION { 899 // DELAY_SLOT_INSTRUCTION } 900 // LABEL_AFTER_CALL 901 assert(getLabelAfterInsn(&*CallInstrBundle) == 902 getLabelAfterInsn(&*DelaySlotBundle) && 903 "Call and its successor instruction don't have same label after."); 904 return true; 905 }; 906 907 // Emit call site entries for each call or tail call in the function. 908 for (const MachineBasicBlock &MBB : MF) { 909 for (const MachineInstr &MI : MBB.instrs()) { 910 // Bundles with call in them will pass the isCall() test below but do not 911 // have callee operand information so skip them here. Iterator will 912 // eventually reach the call MI. 913 if (MI.isBundle()) 914 continue; 915 916 // Skip instructions which aren't calls. Both calls and tail-calling jump 917 // instructions (e.g TAILJMPd64) are classified correctly here. 918 if (!MI.isCandidateForCallSiteEntry()) 919 continue; 920 921 // Skip instructions marked as frame setup, as they are not interesting to 922 // the user. 923 if (MI.getFlag(MachineInstr::FrameSetup)) 924 continue; 925 926 // Check if delay slot support is enabled. 927 if (MI.hasDelaySlot() && !delaySlotSupported(*&MI)) 928 return; 929 930 // If this is a direct call, find the callee's subprogram. 931 // In the case of an indirect call find the register that holds 932 // the callee. 933 const MachineOperand &CalleeOp = TII->getCalleeOperand(MI); 934 if (!CalleeOp.isGlobal() && 935 (!CalleeOp.isReg() || 936 !Register::isPhysicalRegister(CalleeOp.getReg()))) 937 continue; 938 939 unsigned CallReg = 0; 940 const DISubprogram *CalleeSP = nullptr; 941 const Function *CalleeDecl = nullptr; 942 if (CalleeOp.isReg()) { 943 CallReg = CalleeOp.getReg(); 944 if (!CallReg) 945 continue; 946 } else { 947 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 948 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 949 continue; 950 CalleeSP = CalleeDecl->getSubprogram(); 951 } 952 953 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 954 955 bool IsTail = TII->isTailCall(MI); 956 957 // If MI is in a bundle, the label was created after the bundle since 958 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI 959 // to search for that label below. 960 const MachineInstr *TopLevelCallMI = 961 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; 962 963 // For non-tail calls, the return PC is needed to disambiguate paths in 964 // the call graph which could lead to some target function. For tail 965 // calls, no return PC information is needed, unless tuning for GDB in 966 // DWARF4 mode in which case we fake a return PC for compatibility. 967 const MCSymbol *PCAddr = 968 (!IsTail || CU.useGNUAnalogForDwarf5Feature()) 969 ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)) 970 : nullptr; 971 972 // For tail calls, it's necessary to record the address of the branch 973 // instruction so that the debugger can show where the tail call occurred. 974 const MCSymbol *CallAddr = 975 IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr; 976 977 assert((IsTail || PCAddr) && "Non-tail call without return PC"); 978 979 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 980 << (CalleeDecl ? CalleeDecl->getName() 981 : StringRef(MF.getSubtarget() 982 .getRegisterInfo() 983 ->getName(CallReg))) 984 << (IsTail ? " [IsTail]" : "") << "\n"); 985 986 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE( 987 ScopeDIE, CalleeSP, IsTail, PCAddr, CallAddr, CallReg); 988 989 // Optionally emit call-site-param debug info. 990 if (emitDebugEntryValues()) { 991 ParamSet Params; 992 // Try to interpret values of call site parameters. 993 collectCallSiteParameters(&MI, Params); 994 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 995 } 996 } 997 } 998 } 999 1000 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 1001 if (!U.hasDwarfPubSections()) 1002 return; 1003 1004 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 1005 } 1006 1007 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 1008 DwarfCompileUnit &NewCU) { 1009 DIE &Die = NewCU.getUnitDie(); 1010 StringRef FN = DIUnit->getFilename(); 1011 1012 StringRef Producer = DIUnit->getProducer(); 1013 StringRef Flags = DIUnit->getFlags(); 1014 if (!Flags.empty() && !useAppleExtensionAttributes()) { 1015 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 1016 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 1017 } else 1018 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 1019 1020 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 1021 DIUnit->getSourceLanguage()); 1022 NewCU.addString(Die, dwarf::DW_AT_name, FN); 1023 StringRef SysRoot = DIUnit->getSysRoot(); 1024 if (!SysRoot.empty()) 1025 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot); 1026 StringRef SDK = DIUnit->getSDK(); 1027 if (!SDK.empty()) 1028 NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK); 1029 1030 // Add DW_str_offsets_base to the unit DIE, except for split units. 1031 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 1032 NewCU.addStringOffsetsStart(); 1033 1034 if (!useSplitDwarf()) { 1035 NewCU.initStmtList(); 1036 1037 // If we're using split dwarf the compilation dir is going to be in the 1038 // skeleton CU and so we don't need to duplicate it here. 1039 if (!CompilationDir.empty()) 1040 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 1041 addGnuPubAttributes(NewCU, Die); 1042 } 1043 1044 if (useAppleExtensionAttributes()) { 1045 if (DIUnit->isOptimized()) 1046 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 1047 1048 StringRef Flags = DIUnit->getFlags(); 1049 if (!Flags.empty()) 1050 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 1051 1052 if (unsigned RVer = DIUnit->getRuntimeVersion()) 1053 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 1054 dwarf::DW_FORM_data1, RVer); 1055 } 1056 1057 if (DIUnit->getDWOId()) { 1058 // This CU is either a clang module DWO or a skeleton CU. 1059 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 1060 DIUnit->getDWOId()); 1061 if (!DIUnit->getSplitDebugFilename().empty()) { 1062 // This is a prefabricated skeleton CU. 1063 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1064 ? dwarf::DW_AT_dwo_name 1065 : dwarf::DW_AT_GNU_dwo_name; 1066 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); 1067 } 1068 } 1069 } 1070 // Create new DwarfCompileUnit for the given metadata node with tag 1071 // DW_TAG_compile_unit. 1072 DwarfCompileUnit & 1073 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 1074 if (auto *CU = CUMap.lookup(DIUnit)) 1075 return *CU; 1076 1077 CompilationDir = DIUnit->getDirectory(); 1078 1079 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 1080 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 1081 DwarfCompileUnit &NewCU = *OwnedUnit; 1082 InfoHolder.addUnit(std::move(OwnedUnit)); 1083 1084 for (auto *IE : DIUnit->getImportedEntities()) 1085 NewCU.addImportedEntity(IE); 1086 1087 // LTO with assembly output shares a single line table amongst multiple CUs. 1088 // To avoid the compilation directory being ambiguous, let the line table 1089 // explicitly describe the directory of all files, never relying on the 1090 // compilation directory. 1091 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 1092 Asm->OutStreamer->emitDwarfFile0Directive( 1093 CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()), 1094 DIUnit->getSource(), NewCU.getUniqueID()); 1095 1096 if (useSplitDwarf()) { 1097 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 1098 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 1099 } else { 1100 finishUnitAttributes(DIUnit, NewCU); 1101 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 1102 } 1103 1104 CUMap.insert({DIUnit, &NewCU}); 1105 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 1106 return NewCU; 1107 } 1108 1109 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 1110 const DIImportedEntity *N) { 1111 if (isa<DILocalScope>(N->getScope())) 1112 return; 1113 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 1114 D->addChild(TheCU.constructImportedEntityDIE(N)); 1115 } 1116 1117 /// Sort and unique GVEs by comparing their fragment offset. 1118 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 1119 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 1120 llvm::sort( 1121 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 1122 // Sort order: first null exprs, then exprs without fragment 1123 // info, then sort by fragment offset in bits. 1124 // FIXME: Come up with a more comprehensive comparator so 1125 // the sorting isn't non-deterministic, and so the following 1126 // std::unique call works correctly. 1127 if (!A.Expr || !B.Expr) 1128 return !!B.Expr; 1129 auto FragmentA = A.Expr->getFragmentInfo(); 1130 auto FragmentB = B.Expr->getFragmentInfo(); 1131 if (!FragmentA || !FragmentB) 1132 return !!FragmentB; 1133 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 1134 }); 1135 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 1136 [](DwarfCompileUnit::GlobalExpr A, 1137 DwarfCompileUnit::GlobalExpr B) { 1138 return A.Expr == B.Expr; 1139 }), 1140 GVEs.end()); 1141 return GVEs; 1142 } 1143 1144 // Emit all Dwarf sections that should come prior to the content. Create 1145 // global DIEs and emit initial debug info sections. This is invoked by 1146 // the target AsmPrinter. 1147 void DwarfDebug::beginModule(Module *M) { 1148 DebugHandlerBase::beginModule(M); 1149 1150 if (!Asm || !MMI->hasDebugInfo()) 1151 return; 1152 1153 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 1154 M->debug_compile_units_end()); 1155 assert(NumDebugCUs > 0 && "Asm unexpectedly initialized"); 1156 assert(MMI->hasDebugInfo() && 1157 "DebugInfoAvailabilty unexpectedly not initialized"); 1158 SingleCU = NumDebugCUs == 1; 1159 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 1160 GVMap; 1161 for (const GlobalVariable &Global : M->globals()) { 1162 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1163 Global.getDebugInfo(GVs); 1164 for (auto *GVE : GVs) 1165 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 1166 } 1167 1168 // Create the symbol that designates the start of the unit's contribution 1169 // to the string offsets table. In a split DWARF scenario, only the skeleton 1170 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 1171 if (useSegmentedStringOffsetsTable()) 1172 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 1173 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 1174 1175 1176 // Create the symbols that designates the start of the DWARF v5 range list 1177 // and locations list tables. They are located past the table headers. 1178 if (getDwarfVersion() >= 5) { 1179 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1180 Holder.setRnglistsTableBaseSym( 1181 Asm->createTempSymbol("rnglists_table_base")); 1182 1183 if (useSplitDwarf()) 1184 InfoHolder.setRnglistsTableBaseSym( 1185 Asm->createTempSymbol("rnglists_dwo_table_base")); 1186 } 1187 1188 // Create the symbol that points to the first entry following the debug 1189 // address table (.debug_addr) header. 1190 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 1191 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1192 1193 for (DICompileUnit *CUNode : M->debug_compile_units()) { 1194 // FIXME: Move local imported entities into a list attached to the 1195 // subprogram, then this search won't be needed and a 1196 // getImportedEntities().empty() test should go below with the rest. 1197 bool HasNonLocalImportedEntities = llvm::any_of( 1198 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 1199 return !isa<DILocalScope>(IE->getScope()); 1200 }); 1201 1202 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 1203 CUNode->getRetainedTypes().empty() && 1204 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 1205 continue; 1206 1207 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 1208 1209 // Global Variables. 1210 for (auto *GVE : CUNode->getGlobalVariables()) { 1211 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1212 // already know about the variable and it isn't adding a constant 1213 // expression. 1214 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1215 auto *Expr = GVE->getExpression(); 1216 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1217 GVMapEntry.push_back({nullptr, Expr}); 1218 } 1219 1220 DenseSet<DIGlobalVariable *> Processed; 1221 for (auto *GVE : CUNode->getGlobalVariables()) { 1222 DIGlobalVariable *GV = GVE->getVariable(); 1223 if (Processed.insert(GV).second) 1224 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1225 } 1226 1227 for (auto *Ty : CUNode->getEnumTypes()) 1228 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1229 1230 for (auto *Ty : CUNode->getRetainedTypes()) { 1231 // The retained types array by design contains pointers to 1232 // MDNodes rather than DIRefs. Unique them here. 1233 if (DIType *RT = dyn_cast<DIType>(Ty)) 1234 // There is no point in force-emitting a forward declaration. 1235 CU.getOrCreateTypeDIE(RT); 1236 } 1237 // Emit imported_modules last so that the relevant context is already 1238 // available. 1239 for (auto *IE : CUNode->getImportedEntities()) 1240 constructAndAddImportedEntityDIE(CU, IE); 1241 } 1242 } 1243 1244 void DwarfDebug::finishEntityDefinitions() { 1245 for (const auto &Entity : ConcreteEntities) { 1246 DIE *Die = Entity->getDIE(); 1247 assert(Die); 1248 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1249 // in the ConcreteEntities list, rather than looking it up again here. 1250 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1251 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1252 assert(Unit); 1253 Unit->finishEntityDefinition(Entity.get()); 1254 } 1255 } 1256 1257 void DwarfDebug::finishSubprogramDefinitions() { 1258 for (const DISubprogram *SP : ProcessedSPNodes) { 1259 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1260 forBothCUs( 1261 getOrCreateDwarfCompileUnit(SP->getUnit()), 1262 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1263 } 1264 } 1265 1266 void DwarfDebug::finalizeModuleInfo() { 1267 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1268 1269 finishSubprogramDefinitions(); 1270 1271 finishEntityDefinitions(); 1272 1273 // Include the DWO file name in the hash if there's more than one CU. 1274 // This handles ThinLTO's situation where imported CUs may very easily be 1275 // duplicate with the same CU partially imported into another ThinLTO unit. 1276 StringRef DWOName; 1277 if (CUMap.size() > 1) 1278 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1279 1280 // Handle anything that needs to be done on a per-unit basis after 1281 // all other generation. 1282 for (const auto &P : CUMap) { 1283 auto &TheCU = *P.second; 1284 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1285 continue; 1286 // Emit DW_AT_containing_type attribute to connect types with their 1287 // vtable holding type. 1288 TheCU.constructContainingTypeDIEs(); 1289 1290 // Add CU specific attributes if we need to add any. 1291 // If we're splitting the dwarf out now that we've got the entire 1292 // CU then add the dwo id to it. 1293 auto *SkCU = TheCU.getSkeleton(); 1294 1295 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); 1296 1297 if (HasSplitUnit) { 1298 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1299 ? dwarf::DW_AT_dwo_name 1300 : dwarf::DW_AT_GNU_dwo_name; 1301 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1302 TheCU.addString(TheCU.getUnitDie(), attrDWOName, 1303 Asm->TM.Options.MCOptions.SplitDwarfFile); 1304 SkCU->addString(SkCU->getUnitDie(), attrDWOName, 1305 Asm->TM.Options.MCOptions.SplitDwarfFile); 1306 // Emit a unique identifier for this CU. 1307 uint64_t ID = 1308 DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie()); 1309 if (getDwarfVersion() >= 5) { 1310 TheCU.setDWOId(ID); 1311 SkCU->setDWOId(ID); 1312 } else { 1313 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1314 dwarf::DW_FORM_data8, ID); 1315 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1316 dwarf::DW_FORM_data8, ID); 1317 } 1318 1319 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1320 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1321 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1322 Sym, Sym); 1323 } 1324 } else if (SkCU) { 1325 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1326 } 1327 1328 // If we have code split among multiple sections or non-contiguous 1329 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1330 // remain in the .o file, otherwise add a DW_AT_low_pc. 1331 // FIXME: We should use ranges allow reordering of code ala 1332 // .subsections_via_symbols in mach-o. This would mean turning on 1333 // ranges for all subprogram DIEs for mach-o. 1334 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1335 1336 if (unsigned NumRanges = TheCU.getRanges().size()) { 1337 if (NumRanges > 1 && useRangesSection()) 1338 // A DW_AT_low_pc attribute may also be specified in combination with 1339 // DW_AT_ranges to specify the default base address for use in 1340 // location lists (see Section 2.6.2) and range lists (see Section 1341 // 2.17.3). 1342 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1343 else 1344 U.setBaseAddress(TheCU.getRanges().front().Begin); 1345 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1346 } 1347 1348 // We don't keep track of which addresses are used in which CU so this 1349 // is a bit pessimistic under LTO. 1350 if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty()) 1351 U.addAddrTableBase(); 1352 1353 if (getDwarfVersion() >= 5) { 1354 if (U.hasRangeLists()) 1355 U.addRnglistsBase(); 1356 1357 if (!DebugLocs.getLists().empty()) { 1358 if (!useSplitDwarf()) 1359 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1360 DebugLocs.getSym(), 1361 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1362 } 1363 } 1364 1365 auto *CUNode = cast<DICompileUnit>(P.first); 1366 // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros" 1367 // attribute. 1368 if (CUNode->getMacros()) { 1369 if (UseDebugMacroSection) { 1370 if (useSplitDwarf()) 1371 TheCU.addSectionDelta( 1372 TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(), 1373 TLOF.getDwarfMacroDWOSection()->getBeginSymbol()); 1374 else { 1375 dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5 1376 ? dwarf::DW_AT_macros 1377 : dwarf::DW_AT_GNU_macros; 1378 U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(), 1379 TLOF.getDwarfMacroSection()->getBeginSymbol()); 1380 } 1381 } else { 1382 if (useSplitDwarf()) 1383 TheCU.addSectionDelta( 1384 TheCU.getUnitDie(), dwarf::DW_AT_macro_info, 1385 U.getMacroLabelBegin(), 1386 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); 1387 else 1388 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1389 U.getMacroLabelBegin(), 1390 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1391 } 1392 } 1393 } 1394 1395 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1396 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1397 if (CUNode->getDWOId()) 1398 getOrCreateDwarfCompileUnit(CUNode); 1399 1400 // Compute DIE offsets and sizes. 1401 InfoHolder.computeSizeAndOffsets(); 1402 if (useSplitDwarf()) 1403 SkeletonHolder.computeSizeAndOffsets(); 1404 } 1405 1406 // Emit all Dwarf sections that should come after the content. 1407 void DwarfDebug::endModule() { 1408 // Terminate the pending line table. 1409 if (PrevCU) 1410 terminateLineTable(PrevCU); 1411 PrevCU = nullptr; 1412 assert(CurFn == nullptr); 1413 assert(CurMI == nullptr); 1414 1415 for (const auto &P : CUMap) { 1416 auto &CU = *P.second; 1417 CU.createBaseTypeDIEs(); 1418 } 1419 1420 // If we aren't actually generating debug info (check beginModule - 1421 // conditionalized on the presence of the llvm.dbg.cu metadata node) 1422 if (!Asm || !MMI->hasDebugInfo()) 1423 return; 1424 1425 // Finalize the debug info for the module. 1426 finalizeModuleInfo(); 1427 1428 if (useSplitDwarf()) 1429 // Emit debug_loc.dwo/debug_loclists.dwo section. 1430 emitDebugLocDWO(); 1431 else 1432 // Emit debug_loc/debug_loclists section. 1433 emitDebugLoc(); 1434 1435 // Corresponding abbreviations into a abbrev section. 1436 emitAbbreviations(); 1437 1438 // Emit all the DIEs into a debug info section. 1439 emitDebugInfo(); 1440 1441 // Emit info into a debug aranges section. 1442 if (GenerateARangeSection) 1443 emitDebugARanges(); 1444 1445 // Emit info into a debug ranges section. 1446 emitDebugRanges(); 1447 1448 if (useSplitDwarf()) 1449 // Emit info into a debug macinfo.dwo section. 1450 emitDebugMacinfoDWO(); 1451 else 1452 // Emit info into a debug macinfo/macro section. 1453 emitDebugMacinfo(); 1454 1455 emitDebugStr(); 1456 1457 if (useSplitDwarf()) { 1458 emitDebugStrDWO(); 1459 emitDebugInfoDWO(); 1460 emitDebugAbbrevDWO(); 1461 emitDebugLineDWO(); 1462 emitDebugRangesDWO(); 1463 } 1464 1465 emitDebugAddr(); 1466 1467 // Emit info into the dwarf accelerator table sections. 1468 switch (getAccelTableKind()) { 1469 case AccelTableKind::Apple: 1470 emitAccelNames(); 1471 emitAccelObjC(); 1472 emitAccelNamespaces(); 1473 emitAccelTypes(); 1474 break; 1475 case AccelTableKind::Dwarf: 1476 emitAccelDebugNames(); 1477 break; 1478 case AccelTableKind::None: 1479 break; 1480 case AccelTableKind::Default: 1481 llvm_unreachable("Default should have already been resolved."); 1482 } 1483 1484 // Emit the pubnames and pubtypes sections if requested. 1485 emitDebugPubSections(); 1486 1487 // clean up. 1488 // FIXME: AbstractVariables.clear(); 1489 } 1490 1491 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1492 const DINode *Node, 1493 const MDNode *ScopeNode) { 1494 if (CU.getExistingAbstractEntity(Node)) 1495 return; 1496 1497 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1498 cast<DILocalScope>(ScopeNode))); 1499 } 1500 1501 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1502 const DINode *Node, const MDNode *ScopeNode) { 1503 if (CU.getExistingAbstractEntity(Node)) 1504 return; 1505 1506 if (LexicalScope *Scope = 1507 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1508 CU.createAbstractEntity(Node, Scope); 1509 } 1510 1511 // Collect variable information from side table maintained by MF. 1512 void DwarfDebug::collectVariableInfoFromMFTable( 1513 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1514 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1515 LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n"); 1516 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1517 if (!VI.Var) 1518 continue; 1519 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1520 "Expected inlined-at fields to agree"); 1521 1522 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1523 Processed.insert(Var); 1524 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1525 1526 // If variable scope is not found then skip this variable. 1527 if (!Scope) { 1528 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() 1529 << ", no variable scope found\n"); 1530 continue; 1531 } 1532 1533 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1534 auto RegVar = std::make_unique<DbgVariable>( 1535 cast<DILocalVariable>(Var.first), Var.second); 1536 RegVar->initializeMMI(VI.Expr, VI.Slot); 1537 LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName() 1538 << "\n"); 1539 1540 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1541 DbgVar->addMMIEntry(*RegVar); 1542 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1543 MFVars.insert({Var, RegVar.get()}); 1544 ConcreteEntities.push_back(std::move(RegVar)); 1545 } 1546 } 1547 } 1548 1549 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1550 /// enclosing lexical scope. The check ensures there are no other instructions 1551 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1552 /// either open or otherwise rolls off the end of the scope. 1553 static bool validThroughout(LexicalScopes &LScopes, 1554 const MachineInstr *DbgValue, 1555 const MachineInstr *RangeEnd, 1556 const InstructionOrdering &Ordering) { 1557 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1558 auto MBB = DbgValue->getParent(); 1559 auto DL = DbgValue->getDebugLoc(); 1560 auto *LScope = LScopes.findLexicalScope(DL); 1561 // Scope doesn't exist; this is a dead DBG_VALUE. 1562 if (!LScope) 1563 return false; 1564 auto &LSRange = LScope->getRanges(); 1565 if (LSRange.size() == 0) 1566 return false; 1567 1568 const MachineInstr *LScopeBegin = LSRange.front().first; 1569 // If the scope starts before the DBG_VALUE then we may have a negative 1570 // result. Otherwise the location is live coming into the scope and we 1571 // can skip the following checks. 1572 if (!Ordering.isBefore(DbgValue, LScopeBegin)) { 1573 // Exit if the lexical scope begins outside of the current block. 1574 if (LScopeBegin->getParent() != MBB) 1575 return false; 1576 1577 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1578 for (++Pred; Pred != MBB->rend(); ++Pred) { 1579 if (Pred->getFlag(MachineInstr::FrameSetup)) 1580 break; 1581 auto PredDL = Pred->getDebugLoc(); 1582 if (!PredDL || Pred->isMetaInstruction()) 1583 continue; 1584 // Check whether the instruction preceding the DBG_VALUE is in the same 1585 // (sub)scope as the DBG_VALUE. 1586 if (DL->getScope() == PredDL->getScope()) 1587 return false; 1588 auto *PredScope = LScopes.findLexicalScope(PredDL); 1589 if (!PredScope || LScope->dominates(PredScope)) 1590 return false; 1591 } 1592 } 1593 1594 // If the range of the DBG_VALUE is open-ended, report success. 1595 if (!RangeEnd) 1596 return true; 1597 1598 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1599 // throughout the function. This is a hack, presumably for DWARF v2 and not 1600 // necessarily correct. It would be much better to use a dbg.declare instead 1601 // if we know the constant is live throughout the scope. 1602 if (MBB->pred_empty() && 1603 all_of(DbgValue->debug_operands(), 1604 [](const MachineOperand &Op) { return Op.isImm(); })) 1605 return true; 1606 1607 // Test if the location terminates before the end of the scope. 1608 const MachineInstr *LScopeEnd = LSRange.back().second; 1609 if (Ordering.isBefore(RangeEnd, LScopeEnd)) 1610 return false; 1611 1612 // There's a single location which starts at the scope start, and ends at or 1613 // after the scope end. 1614 return true; 1615 } 1616 1617 /// Build the location list for all DBG_VALUEs in the function that 1618 /// describe the same variable. The resulting DebugLocEntries will have 1619 /// strict monotonically increasing begin addresses and will never 1620 /// overlap. If the resulting list has only one entry that is valid 1621 /// throughout variable's scope return true. 1622 // 1623 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1624 // different kinds of history map entries. One thing to be aware of is that if 1625 // a debug value is ended by another entry (rather than being valid until the 1626 // end of the function), that entry's instruction may or may not be included in 1627 // the range, depending on if the entry is a clobbering entry (it has an 1628 // instruction that clobbers one or more preceding locations), or if it is an 1629 // (overlapping) debug value entry. This distinction can be seen in the example 1630 // below. The first debug value is ended by the clobbering entry 2, and the 1631 // second and third debug values are ended by the overlapping debug value entry 1632 // 4. 1633 // 1634 // Input: 1635 // 1636 // History map entries [type, end index, mi] 1637 // 1638 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1639 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1640 // 2 | | [Clobber, $reg0 = [...], -, -] 1641 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1642 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1643 // 1644 // Output [start, end) [Value...]: 1645 // 1646 // [0-1) [(reg0, fragment 0, 32)] 1647 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1648 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1649 // [4-) [(@g, fragment 0, 96)] 1650 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 1651 const DbgValueHistoryMap::Entries &Entries) { 1652 using OpenRange = 1653 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1654 SmallVector<OpenRange, 4> OpenRanges; 1655 bool isSafeForSingleLocation = true; 1656 const MachineInstr *StartDebugMI = nullptr; 1657 const MachineInstr *EndMI = nullptr; 1658 1659 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1660 const MachineInstr *Instr = EI->getInstr(); 1661 1662 // Remove all values that are no longer live. 1663 size_t Index = std::distance(EB, EI); 1664 erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1665 1666 // If we are dealing with a clobbering entry, this iteration will result in 1667 // a location list entry starting after the clobbering instruction. 1668 const MCSymbol *StartLabel = 1669 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1670 assert(StartLabel && 1671 "Forgot label before/after instruction starting a range!"); 1672 1673 const MCSymbol *EndLabel; 1674 if (std::next(EI) == Entries.end()) { 1675 const MachineBasicBlock &EndMBB = Asm->MF->back(); 1676 EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel; 1677 if (EI->isClobber()) 1678 EndMI = EI->getInstr(); 1679 } 1680 else if (std::next(EI)->isClobber()) 1681 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1682 else 1683 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1684 assert(EndLabel && "Forgot label after instruction ending a range!"); 1685 1686 if (EI->isDbgValue()) 1687 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1688 1689 // If this history map entry has a debug value, add that to the list of 1690 // open ranges and check if its location is valid for a single value 1691 // location. 1692 if (EI->isDbgValue()) { 1693 // Do not add undef debug values, as they are redundant information in 1694 // the location list entries. An undef debug results in an empty location 1695 // description. If there are any non-undef fragments then padding pieces 1696 // with empty location descriptions will automatically be inserted, and if 1697 // all fragments are undef then the whole location list entry is 1698 // redundant. 1699 if (!Instr->isUndefDebugValue()) { 1700 auto Value = getDebugLocValue(Instr); 1701 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1702 1703 // TODO: Add support for single value fragment locations. 1704 if (Instr->getDebugExpression()->isFragment()) 1705 isSafeForSingleLocation = false; 1706 1707 if (!StartDebugMI) 1708 StartDebugMI = Instr; 1709 } else { 1710 isSafeForSingleLocation = false; 1711 } 1712 } 1713 1714 // Location list entries with empty location descriptions are redundant 1715 // information in DWARF, so do not emit those. 1716 if (OpenRanges.empty()) 1717 continue; 1718 1719 // Omit entries with empty ranges as they do not have any effect in DWARF. 1720 if (StartLabel == EndLabel) { 1721 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1722 continue; 1723 } 1724 1725 SmallVector<DbgValueLoc, 4> Values; 1726 for (auto &R : OpenRanges) 1727 Values.push_back(R.second); 1728 1729 // With Basic block sections, it is posssible that the StartLabel and the 1730 // Instr are not in the same section. This happens when the StartLabel is 1731 // the function begin label and the dbg value appears in a basic block 1732 // that is not the entry. In this case, the range needs to be split to 1733 // span each individual section in the range from StartLabel to EndLabel. 1734 if (Asm->MF->hasBBSections() && StartLabel == Asm->getFunctionBegin() && 1735 !Instr->getParent()->sameSection(&Asm->MF->front())) { 1736 const MCSymbol *BeginSectionLabel = StartLabel; 1737 1738 for (const MachineBasicBlock &MBB : *Asm->MF) { 1739 if (MBB.isBeginSection() && &MBB != &Asm->MF->front()) 1740 BeginSectionLabel = MBB.getSymbol(); 1741 1742 if (MBB.sameSection(Instr->getParent())) { 1743 DebugLoc.emplace_back(BeginSectionLabel, EndLabel, Values); 1744 break; 1745 } 1746 if (MBB.isEndSection()) 1747 DebugLoc.emplace_back(BeginSectionLabel, MBB.getEndSymbol(), Values); 1748 } 1749 } else { 1750 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1751 } 1752 1753 // Attempt to coalesce the ranges of two otherwise identical 1754 // DebugLocEntries. 1755 auto CurEntry = DebugLoc.rbegin(); 1756 LLVM_DEBUG({ 1757 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1758 for (auto &Value : CurEntry->getValues()) 1759 Value.dump(); 1760 dbgs() << "-----\n"; 1761 }); 1762 1763 auto PrevEntry = std::next(CurEntry); 1764 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1765 DebugLoc.pop_back(); 1766 } 1767 1768 if (!isSafeForSingleLocation || 1769 !validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering())) 1770 return false; 1771 1772 if (DebugLoc.size() == 1) 1773 return true; 1774 1775 if (!Asm->MF->hasBBSections()) 1776 return false; 1777 1778 // Check here to see if loclist can be merged into a single range. If not, 1779 // we must keep the split loclists per section. This does exactly what 1780 // MergeRanges does without sections. We don't actually merge the ranges 1781 // as the split ranges must be kept intact if this cannot be collapsed 1782 // into a single range. 1783 const MachineBasicBlock *RangeMBB = nullptr; 1784 if (DebugLoc[0].getBeginSym() == Asm->getFunctionBegin()) 1785 RangeMBB = &Asm->MF->front(); 1786 else 1787 RangeMBB = Entries.begin()->getInstr()->getParent(); 1788 auto *CurEntry = DebugLoc.begin(); 1789 auto *NextEntry = std::next(CurEntry); 1790 while (NextEntry != DebugLoc.end()) { 1791 // Get the last machine basic block of this section. 1792 while (!RangeMBB->isEndSection()) 1793 RangeMBB = RangeMBB->getNextNode(); 1794 if (!RangeMBB->getNextNode()) 1795 return false; 1796 // CurEntry should end the current section and NextEntry should start 1797 // the next section and the Values must match for these two ranges to be 1798 // merged. 1799 if (CurEntry->getEndSym() != RangeMBB->getEndSymbol() || 1800 NextEntry->getBeginSym() != RangeMBB->getNextNode()->getSymbol() || 1801 CurEntry->getValues() != NextEntry->getValues()) 1802 return false; 1803 RangeMBB = RangeMBB->getNextNode(); 1804 CurEntry = NextEntry; 1805 NextEntry = std::next(CurEntry); 1806 } 1807 return true; 1808 } 1809 1810 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1811 LexicalScope &Scope, 1812 const DINode *Node, 1813 const DILocation *Location, 1814 const MCSymbol *Sym) { 1815 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1816 if (isa<const DILocalVariable>(Node)) { 1817 ConcreteEntities.push_back( 1818 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1819 Location)); 1820 InfoHolder.addScopeVariable(&Scope, 1821 cast<DbgVariable>(ConcreteEntities.back().get())); 1822 } else if (isa<const DILabel>(Node)) { 1823 ConcreteEntities.push_back( 1824 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1825 Location, Sym)); 1826 InfoHolder.addScopeLabel(&Scope, 1827 cast<DbgLabel>(ConcreteEntities.back().get())); 1828 } 1829 return ConcreteEntities.back().get(); 1830 } 1831 1832 // Find variables for each lexical scope. 1833 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1834 const DISubprogram *SP, 1835 DenseSet<InlinedEntity> &Processed) { 1836 // Grab the variable info that was squirreled away in the MMI side-table. 1837 collectVariableInfoFromMFTable(TheCU, Processed); 1838 1839 for (const auto &I : DbgValues) { 1840 InlinedEntity IV = I.first; 1841 if (Processed.count(IV)) 1842 continue; 1843 1844 // Instruction ranges, specifying where IV is accessible. 1845 const auto &HistoryMapEntries = I.second; 1846 1847 // Try to find any non-empty variable location. Do not create a concrete 1848 // entity if there are no locations. 1849 if (!DbgValues.hasNonEmptyLocation(HistoryMapEntries)) 1850 continue; 1851 1852 LexicalScope *Scope = nullptr; 1853 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1854 if (const DILocation *IA = IV.second) 1855 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1856 else 1857 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1858 // If variable scope is not found then skip this variable. 1859 if (!Scope) 1860 continue; 1861 1862 Processed.insert(IV); 1863 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1864 *Scope, LocalVar, IV.second)); 1865 1866 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1867 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1868 1869 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1870 // If the history map contains a single debug value, there may be an 1871 // additional entry which clobbers the debug value. 1872 size_t HistSize = HistoryMapEntries.size(); 1873 bool SingleValueWithClobber = 1874 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1875 if (HistSize == 1 || SingleValueWithClobber) { 1876 const auto *End = 1877 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1878 if (validThroughout(LScopes, MInsn, End, getInstOrdering())) { 1879 RegVar->initializeDbgValue(MInsn); 1880 continue; 1881 } 1882 } 1883 1884 // Do not emit location lists if .debug_loc secton is disabled. 1885 if (!useLocSection()) 1886 continue; 1887 1888 // Handle multiple DBG_VALUE instructions describing one variable. 1889 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1890 1891 // Build the location list for this variable. 1892 SmallVector<DebugLocEntry, 8> Entries; 1893 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); 1894 1895 // Check whether buildLocationList managed to merge all locations to one 1896 // that is valid throughout the variable's scope. If so, produce single 1897 // value location. 1898 if (isValidSingleLocation) { 1899 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1900 continue; 1901 } 1902 1903 // If the variable has a DIBasicType, extract it. Basic types cannot have 1904 // unique identifiers, so don't bother resolving the type with the 1905 // identifier map. 1906 const DIBasicType *BT = dyn_cast<DIBasicType>( 1907 static_cast<const Metadata *>(LocalVar->getType())); 1908 1909 // Finalize the entry by lowering it into a DWARF bytestream. 1910 for (auto &Entry : Entries) 1911 Entry.finalize(*Asm, List, BT, TheCU); 1912 } 1913 1914 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1915 // DWARF-related DbgLabel. 1916 for (const auto &I : DbgLabels) { 1917 InlinedEntity IL = I.first; 1918 const MachineInstr *MI = I.second; 1919 if (MI == nullptr) 1920 continue; 1921 1922 LexicalScope *Scope = nullptr; 1923 const DILabel *Label = cast<DILabel>(IL.first); 1924 // The scope could have an extra lexical block file. 1925 const DILocalScope *LocalScope = 1926 Label->getScope()->getNonLexicalBlockFileScope(); 1927 // Get inlined DILocation if it is inlined label. 1928 if (const DILocation *IA = IL.second) 1929 Scope = LScopes.findInlinedScope(LocalScope, IA); 1930 else 1931 Scope = LScopes.findLexicalScope(LocalScope); 1932 // If label scope is not found then skip this label. 1933 if (!Scope) 1934 continue; 1935 1936 Processed.insert(IL); 1937 /// At this point, the temporary label is created. 1938 /// Save the temporary label to DbgLabel entity to get the 1939 /// actually address when generating Dwarf DIE. 1940 MCSymbol *Sym = getLabelBeforeInsn(MI); 1941 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1942 } 1943 1944 // Collect info for variables/labels that were optimized out. 1945 for (const DINode *DN : SP->getRetainedNodes()) { 1946 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1947 continue; 1948 LexicalScope *Scope = nullptr; 1949 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1950 Scope = LScopes.findLexicalScope(DV->getScope()); 1951 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1952 Scope = LScopes.findLexicalScope(DL->getScope()); 1953 } 1954 1955 if (Scope) 1956 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1957 } 1958 } 1959 1960 // Process beginning of an instruction. 1961 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1962 const MachineFunction &MF = *MI->getMF(); 1963 const auto *SP = MF.getFunction().getSubprogram(); 1964 bool NoDebug = 1965 !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug; 1966 1967 // Delay slot support check. 1968 auto delaySlotSupported = [](const MachineInstr &MI) { 1969 if (!MI.isBundledWithSucc()) 1970 return false; 1971 auto Suc = std::next(MI.getIterator()); 1972 (void)Suc; 1973 // Ensure that delay slot instruction is successor of the call instruction. 1974 // Ex. CALL_INSTRUCTION { 1975 // DELAY_SLOT_INSTRUCTION } 1976 assert(Suc->isBundledWithPred() && 1977 "Call bundle instructions are out of order"); 1978 return true; 1979 }; 1980 1981 // When describing calls, we need a label for the call instruction. 1982 if (!NoDebug && SP->areAllCallsDescribed() && 1983 MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) && 1984 (!MI->hasDelaySlot() || delaySlotSupported(*MI))) { 1985 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1986 bool IsTail = TII->isTailCall(*MI); 1987 // For tail calls, we need the address of the branch instruction for 1988 // DW_AT_call_pc. 1989 if (IsTail) 1990 requestLabelBeforeInsn(MI); 1991 // For non-tail calls, we need the return address for the call for 1992 // DW_AT_call_return_pc. Under GDB tuning, this information is needed for 1993 // tail calls as well. 1994 requestLabelAfterInsn(MI); 1995 } 1996 1997 DebugHandlerBase::beginInstruction(MI); 1998 if (!CurMI) 1999 return; 2000 2001 if (NoDebug) 2002 return; 2003 2004 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 2005 // If the instruction is part of the function frame setup code, do not emit 2006 // any line record, as there is no correspondence with any user code. 2007 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 2008 return; 2009 const DebugLoc &DL = MI->getDebugLoc(); 2010 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 2011 // the last line number actually emitted, to see if it was line 0. 2012 unsigned LastAsmLine = 2013 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 2014 2015 if (DL == PrevInstLoc) { 2016 // If we have an ongoing unspecified location, nothing to do here. 2017 if (!DL) 2018 return; 2019 // We have an explicit location, same as the previous location. 2020 // But we might be coming back to it after a line 0 record. 2021 if (LastAsmLine == 0 && DL.getLine() != 0) { 2022 // Reinstate the source location but not marked as a statement. 2023 const MDNode *Scope = DL.getScope(); 2024 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 2025 } 2026 return; 2027 } 2028 2029 if (!DL) { 2030 // We have an unspecified location, which might want to be line 0. 2031 // If we have already emitted a line-0 record, don't repeat it. 2032 if (LastAsmLine == 0) 2033 return; 2034 // If user said Don't Do That, don't do that. 2035 if (UnknownLocations == Disable) 2036 return; 2037 // See if we have a reason to emit a line-0 record now. 2038 // Reasons to emit a line-0 record include: 2039 // - User asked for it (UnknownLocations). 2040 // - Instruction has a label, so it's referenced from somewhere else, 2041 // possibly debug information; we want it to have a source location. 2042 // - Instruction is at the top of a block; we don't want to inherit the 2043 // location from the physically previous (maybe unrelated) block. 2044 if (UnknownLocations == Enable || PrevLabel || 2045 (PrevInstBB && PrevInstBB != MI->getParent())) { 2046 // Preserve the file and column numbers, if we can, to save space in 2047 // the encoded line table. 2048 // Do not update PrevInstLoc, it remembers the last non-0 line. 2049 const MDNode *Scope = nullptr; 2050 unsigned Column = 0; 2051 if (PrevInstLoc) { 2052 Scope = PrevInstLoc.getScope(); 2053 Column = PrevInstLoc.getCol(); 2054 } 2055 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 2056 } 2057 return; 2058 } 2059 2060 // We have an explicit location, different from the previous location. 2061 // Don't repeat a line-0 record, but otherwise emit the new location. 2062 // (The new location might be an explicit line 0, which we do emit.) 2063 if (DL.getLine() == 0 && LastAsmLine == 0) 2064 return; 2065 unsigned Flags = 0; 2066 if (DL == PrologEndLoc) { 2067 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 2068 PrologEndLoc = DebugLoc(); 2069 } 2070 // If the line changed, we call that a new statement; unless we went to 2071 // line 0 and came back, in which case it is not a new statement. 2072 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 2073 if (DL.getLine() && DL.getLine() != OldLine) 2074 Flags |= DWARF2_FLAG_IS_STMT; 2075 2076 const MDNode *Scope = DL.getScope(); 2077 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 2078 2079 // If we're not at line 0, remember this location. 2080 if (DL.getLine()) 2081 PrevInstLoc = DL; 2082 } 2083 2084 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 2085 // First known non-DBG_VALUE and non-frame setup location marks 2086 // the beginning of the function body. 2087 DebugLoc LineZeroLoc; 2088 for (const auto &MBB : *MF) { 2089 for (const auto &MI : MBB) { 2090 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 2091 MI.getDebugLoc()) { 2092 // Scan forward to try to find a non-zero line number. The prologue_end 2093 // marks the first breakpoint in the function after the frame setup, and 2094 // a compiler-generated line 0 location is not a meaningful breakpoint. 2095 // If none is found, return the first location after the frame setup. 2096 if (MI.getDebugLoc().getLine()) 2097 return MI.getDebugLoc(); 2098 LineZeroLoc = MI.getDebugLoc(); 2099 } 2100 } 2101 } 2102 return LineZeroLoc; 2103 } 2104 2105 /// Register a source line with debug info. Returns the unique label that was 2106 /// emitted and which provides correspondence to the source line list. 2107 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 2108 const MDNode *S, unsigned Flags, unsigned CUID, 2109 uint16_t DwarfVersion, 2110 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 2111 StringRef Fn; 2112 unsigned FileNo = 1; 2113 unsigned Discriminator = 0; 2114 if (auto *Scope = cast_or_null<DIScope>(S)) { 2115 Fn = Scope->getFilename(); 2116 if (Line != 0 && DwarfVersion >= 4) 2117 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 2118 Discriminator = LBF->getDiscriminator(); 2119 2120 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 2121 .getOrCreateSourceID(Scope->getFile()); 2122 } 2123 Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 2124 Discriminator, Fn); 2125 } 2126 2127 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 2128 unsigned CUID) { 2129 // Get beginning of function. 2130 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 2131 // Ensure the compile unit is created if the function is called before 2132 // beginFunction(). 2133 (void)getOrCreateDwarfCompileUnit( 2134 MF.getFunction().getSubprogram()->getUnit()); 2135 // We'd like to list the prologue as "not statements" but GDB behaves 2136 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 2137 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 2138 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 2139 CUID, getDwarfVersion(), getUnits()); 2140 return PrologEndLoc; 2141 } 2142 return DebugLoc(); 2143 } 2144 2145 // Gather pre-function debug information. Assumes being called immediately 2146 // after the function entry point has been emitted. 2147 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 2148 CurFn = MF; 2149 2150 auto *SP = MF->getFunction().getSubprogram(); 2151 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 2152 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 2153 return; 2154 2155 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 2156 2157 Asm->OutStreamer->getContext().setDwarfCompileUnitID( 2158 getDwarfCompileUnitIDForLineTable(CU)); 2159 2160 // Record beginning of function. 2161 PrologEndLoc = emitInitialLocDirective( 2162 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 2163 } 2164 2165 unsigned 2166 DwarfDebug::getDwarfCompileUnitIDForLineTable(const DwarfCompileUnit &CU) { 2167 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 2168 // belongs to so that we add to the correct per-cu line table in the 2169 // non-asm case. 2170 if (Asm->OutStreamer->hasRawTextSupport()) 2171 // Use a single line table if we are generating assembly. 2172 return 0; 2173 else 2174 return CU.getUniqueID(); 2175 } 2176 2177 void DwarfDebug::terminateLineTable(const DwarfCompileUnit *CU) { 2178 const auto &CURanges = CU->getRanges(); 2179 auto &LineTable = Asm->OutStreamer->getContext().getMCDwarfLineTable( 2180 getDwarfCompileUnitIDForLineTable(*CU)); 2181 // Add the last range label for the given CU. 2182 LineTable.getMCLineSections().addEndEntry( 2183 const_cast<MCSymbol *>(CURanges.back().End)); 2184 } 2185 2186 void DwarfDebug::skippedNonDebugFunction() { 2187 // If we don't have a subprogram for this function then there will be a hole 2188 // in the range information. Keep note of this by setting the previously used 2189 // section to nullptr. 2190 // Terminate the pending line table. 2191 if (PrevCU) 2192 terminateLineTable(PrevCU); 2193 PrevCU = nullptr; 2194 CurFn = nullptr; 2195 } 2196 2197 // Gather and emit post-function debug information. 2198 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 2199 const DISubprogram *SP = MF->getFunction().getSubprogram(); 2200 2201 assert(CurFn == MF && 2202 "endFunction should be called with the same function as beginFunction"); 2203 2204 // Set DwarfDwarfCompileUnitID in MCContext to default value. 2205 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2206 2207 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 2208 assert(!FnScope || SP == FnScope->getScopeNode()); 2209 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 2210 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 2211 PrevLabel = nullptr; 2212 CurFn = nullptr; 2213 return; 2214 } 2215 2216 DenseSet<InlinedEntity> Processed; 2217 collectEntityInfo(TheCU, SP, Processed); 2218 2219 // Add the range of this function to the list of ranges for the CU. 2220 // With basic block sections, add ranges for all basic block sections. 2221 for (const auto &R : Asm->MBBSectionRanges) 2222 TheCU.addRange({R.second.BeginLabel, R.second.EndLabel}); 2223 2224 // Under -gmlt, skip building the subprogram if there are no inlined 2225 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 2226 // is still needed as we need its source location. 2227 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 2228 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 2229 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 2230 assert(InfoHolder.getScopeVariables().empty()); 2231 PrevLabel = nullptr; 2232 CurFn = nullptr; 2233 return; 2234 } 2235 2236 #ifndef NDEBUG 2237 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 2238 #endif 2239 // Construct abstract scopes. 2240 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 2241 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 2242 for (const DINode *DN : SP->getRetainedNodes()) { 2243 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 2244 continue; 2245 2246 const MDNode *Scope = nullptr; 2247 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 2248 Scope = DV->getScope(); 2249 else if (auto *DL = dyn_cast<DILabel>(DN)) 2250 Scope = DL->getScope(); 2251 else 2252 llvm_unreachable("Unexpected DI type!"); 2253 2254 // Collect info for variables/labels that were optimized out. 2255 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 2256 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 2257 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 2258 } 2259 constructAbstractSubprogramScopeDIE(TheCU, AScope); 2260 } 2261 2262 ProcessedSPNodes.insert(SP); 2263 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 2264 if (auto *SkelCU = TheCU.getSkeleton()) 2265 if (!LScopes.getAbstractScopesList().empty() && 2266 TheCU.getCUNode()->getSplitDebugInlining()) 2267 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 2268 2269 // Construct call site entries. 2270 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 2271 2272 // Clear debug info 2273 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 2274 // DbgVariables except those that are also in AbstractVariables (since they 2275 // can be used cross-function) 2276 InfoHolder.getScopeVariables().clear(); 2277 InfoHolder.getScopeLabels().clear(); 2278 PrevLabel = nullptr; 2279 CurFn = nullptr; 2280 } 2281 2282 // Register a source line with debug info. Returns the unique label that was 2283 // emitted and which provides correspondence to the source line list. 2284 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 2285 unsigned Flags) { 2286 ::recordSourceLine(*Asm, Line, Col, S, Flags, 2287 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 2288 getDwarfVersion(), getUnits()); 2289 } 2290 2291 //===----------------------------------------------------------------------===// 2292 // Emit Methods 2293 //===----------------------------------------------------------------------===// 2294 2295 // Emit the debug info section. 2296 void DwarfDebug::emitDebugInfo() { 2297 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2298 Holder.emitUnits(/* UseOffsets */ false); 2299 } 2300 2301 // Emit the abbreviation section. 2302 void DwarfDebug::emitAbbreviations() { 2303 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2304 2305 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 2306 } 2307 2308 void DwarfDebug::emitStringOffsetsTableHeader() { 2309 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2310 Holder.getStringPool().emitStringOffsetsTableHeader( 2311 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 2312 Holder.getStringOffsetsStartSym()); 2313 } 2314 2315 template <typename AccelTableT> 2316 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 2317 StringRef TableName) { 2318 Asm->OutStreamer->SwitchSection(Section); 2319 2320 // Emit the full data. 2321 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 2322 } 2323 2324 void DwarfDebug::emitAccelDebugNames() { 2325 // Don't emit anything if we have no compilation units to index. 2326 if (getUnits().empty()) 2327 return; 2328 2329 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 2330 } 2331 2332 // Emit visible names into a hashed accelerator table section. 2333 void DwarfDebug::emitAccelNames() { 2334 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 2335 "Names"); 2336 } 2337 2338 // Emit objective C classes and categories into a hashed accelerator table 2339 // section. 2340 void DwarfDebug::emitAccelObjC() { 2341 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 2342 "ObjC"); 2343 } 2344 2345 // Emit namespace dies into a hashed accelerator table. 2346 void DwarfDebug::emitAccelNamespaces() { 2347 emitAccel(AccelNamespace, 2348 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 2349 "namespac"); 2350 } 2351 2352 // Emit type dies into a hashed accelerator table. 2353 void DwarfDebug::emitAccelTypes() { 2354 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 2355 "types"); 2356 } 2357 2358 // Public name handling. 2359 // The format for the various pubnames: 2360 // 2361 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 2362 // for the DIE that is named. 2363 // 2364 // gnu pubnames - offset/index value/name tuples where the offset is the offset 2365 // into the CU and the index value is computed according to the type of value 2366 // for the DIE that is named. 2367 // 2368 // For type units the offset is the offset of the skeleton DIE. For split dwarf 2369 // it's the offset within the debug_info/debug_types dwo section, however, the 2370 // reference in the pubname header doesn't change. 2371 2372 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 2373 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 2374 const DIE *Die) { 2375 // Entities that ended up only in a Type Unit reference the CU instead (since 2376 // the pub entry has offsets within the CU there's no real offset that can be 2377 // provided anyway). As it happens all such entities (namespaces and types, 2378 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2379 // not to be true it would be necessary to persist this information from the 2380 // point at which the entry is added to the index data structure - since by 2381 // the time the index is built from that, the original type/namespace DIE in a 2382 // type unit has already been destroyed so it can't be queried for properties 2383 // like tag, etc. 2384 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2385 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2386 dwarf::GIEL_EXTERNAL); 2387 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2388 2389 // We could have a specification DIE that has our most of our knowledge, 2390 // look for that now. 2391 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2392 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2393 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2394 Linkage = dwarf::GIEL_EXTERNAL; 2395 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2396 Linkage = dwarf::GIEL_EXTERNAL; 2397 2398 switch (Die->getTag()) { 2399 case dwarf::DW_TAG_class_type: 2400 case dwarf::DW_TAG_structure_type: 2401 case dwarf::DW_TAG_union_type: 2402 case dwarf::DW_TAG_enumeration_type: 2403 return dwarf::PubIndexEntryDescriptor( 2404 dwarf::GIEK_TYPE, 2405 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2406 ? dwarf::GIEL_EXTERNAL 2407 : dwarf::GIEL_STATIC); 2408 case dwarf::DW_TAG_typedef: 2409 case dwarf::DW_TAG_base_type: 2410 case dwarf::DW_TAG_subrange_type: 2411 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2412 case dwarf::DW_TAG_namespace: 2413 return dwarf::GIEK_TYPE; 2414 case dwarf::DW_TAG_subprogram: 2415 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2416 case dwarf::DW_TAG_variable: 2417 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2418 case dwarf::DW_TAG_enumerator: 2419 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2420 dwarf::GIEL_STATIC); 2421 default: 2422 return dwarf::GIEK_NONE; 2423 } 2424 } 2425 2426 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2427 /// pubtypes sections. 2428 void DwarfDebug::emitDebugPubSections() { 2429 for (const auto &NU : CUMap) { 2430 DwarfCompileUnit *TheU = NU.second; 2431 if (!TheU->hasDwarfPubSections()) 2432 continue; 2433 2434 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2435 DICompileUnit::DebugNameTableKind::GNU; 2436 2437 Asm->OutStreamer->SwitchSection( 2438 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2439 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2440 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2441 2442 Asm->OutStreamer->SwitchSection( 2443 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2444 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2445 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2446 } 2447 } 2448 2449 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2450 if (useSectionsAsReferences()) 2451 Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(), 2452 CU.getDebugSectionOffset()); 2453 else 2454 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2455 } 2456 2457 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2458 DwarfCompileUnit *TheU, 2459 const StringMap<const DIE *> &Globals) { 2460 if (auto *Skeleton = TheU->getSkeleton()) 2461 TheU = Skeleton; 2462 2463 // Emit the header. 2464 MCSymbol *EndLabel = Asm->emitDwarfUnitLength( 2465 "pub" + Name, "Length of Public " + Name + " Info"); 2466 2467 Asm->OutStreamer->AddComment("DWARF Version"); 2468 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2469 2470 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2471 emitSectionReference(*TheU); 2472 2473 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2474 Asm->emitDwarfLengthOrOffset(TheU->getLength()); 2475 2476 // Emit the pubnames for this compilation unit. 2477 for (const auto &GI : Globals) { 2478 const char *Name = GI.getKeyData(); 2479 const DIE *Entity = GI.second; 2480 2481 Asm->OutStreamer->AddComment("DIE offset"); 2482 Asm->emitDwarfLengthOrOffset(Entity->getOffset()); 2483 2484 if (GnuStyle) { 2485 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2486 Asm->OutStreamer->AddComment( 2487 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2488 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2489 Asm->emitInt8(Desc.toBits()); 2490 } 2491 2492 Asm->OutStreamer->AddComment("External Name"); 2493 Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2494 } 2495 2496 Asm->OutStreamer->AddComment("End Mark"); 2497 Asm->emitDwarfLengthOrOffset(0); 2498 Asm->OutStreamer->emitLabel(EndLabel); 2499 } 2500 2501 /// Emit null-terminated strings into a debug str section. 2502 void DwarfDebug::emitDebugStr() { 2503 MCSection *StringOffsetsSection = nullptr; 2504 if (useSegmentedStringOffsetsTable()) { 2505 emitStringOffsetsTableHeader(); 2506 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2507 } 2508 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2509 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2510 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2511 } 2512 2513 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2514 const DebugLocStream::Entry &Entry, 2515 const DwarfCompileUnit *CU) { 2516 auto &&Comments = DebugLocs.getComments(Entry); 2517 auto Comment = Comments.begin(); 2518 auto End = Comments.end(); 2519 2520 // The expressions are inserted into a byte stream rather early (see 2521 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2522 // need to reference a base_type DIE the offset of that DIE is not yet known. 2523 // To deal with this we instead insert a placeholder early and then extract 2524 // it here and replace it with the real reference. 2525 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2526 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2527 DebugLocs.getBytes(Entry).size()), 2528 Asm->getDataLayout().isLittleEndian(), PtrSize); 2529 DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat()); 2530 2531 using Encoding = DWARFExpression::Operation::Encoding; 2532 uint64_t Offset = 0; 2533 for (auto &Op : Expr) { 2534 assert(Op.getCode() != dwarf::DW_OP_const_type && 2535 "3 operand ops not yet supported"); 2536 Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2537 Offset++; 2538 for (unsigned I = 0; I < 2; ++I) { 2539 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2540 continue; 2541 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2542 uint64_t Offset = 2543 CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2544 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2545 Streamer.emitULEB128(Offset, "", ULEB128PadSize); 2546 // Make sure comments stay aligned. 2547 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2548 if (Comment != End) 2549 Comment++; 2550 } else { 2551 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2552 Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2553 } 2554 Offset = Op.getOperandEndOffset(I); 2555 } 2556 assert(Offset == Op.getEndOffset()); 2557 } 2558 } 2559 2560 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2561 const DbgValueLoc &Value, 2562 DwarfExpression &DwarfExpr) { 2563 auto *DIExpr = Value.getExpression(); 2564 DIExpressionCursor ExprCursor(DIExpr); 2565 DwarfExpr.addFragmentOffset(DIExpr); 2566 2567 // If the DIExpr is is an Entry Value, we want to follow the same code path 2568 // regardless of whether the DBG_VALUE is variadic or not. 2569 if (DIExpr && DIExpr->isEntryValue()) { 2570 // Entry values can only be a single register with no additional DIExpr, 2571 // so just add it directly. 2572 assert(Value.getLocEntries().size() == 1); 2573 assert(Value.getLocEntries()[0].isLocation()); 2574 MachineLocation Location = Value.getLocEntries()[0].getLoc(); 2575 DwarfExpr.setLocation(Location, DIExpr); 2576 2577 DwarfExpr.beginEntryValueExpression(ExprCursor); 2578 2579 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2580 if (!DwarfExpr.addMachineRegExpression(TRI, ExprCursor, Location.getReg())) 2581 return; 2582 return DwarfExpr.addExpression(std::move(ExprCursor)); 2583 } 2584 2585 // Regular entry. 2586 auto EmitValueLocEntry = [&DwarfExpr, &BT, 2587 &AP](const DbgValueLocEntry &Entry, 2588 DIExpressionCursor &Cursor) -> bool { 2589 if (Entry.isInt()) { 2590 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2591 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2592 DwarfExpr.addSignedConstant(Entry.getInt()); 2593 else 2594 DwarfExpr.addUnsignedConstant(Entry.getInt()); 2595 } else if (Entry.isLocation()) { 2596 MachineLocation Location = Entry.getLoc(); 2597 if (Location.isIndirect()) 2598 DwarfExpr.setMemoryLocationKind(); 2599 2600 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2601 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2602 return false; 2603 } else if (Entry.isTargetIndexLocation()) { 2604 TargetIndexLocation Loc = Entry.getTargetIndexLocation(); 2605 // TODO TargetIndexLocation is a target-independent. Currently only the 2606 // WebAssembly-specific encoding is supported. 2607 assert(AP.TM.getTargetTriple().isWasm()); 2608 DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset)); 2609 } else if (Entry.isConstantFP()) { 2610 if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() && 2611 !Cursor) { 2612 DwarfExpr.addConstantFP(Entry.getConstantFP()->getValueAPF(), AP); 2613 } else if (Entry.getConstantFP() 2614 ->getValueAPF() 2615 .bitcastToAPInt() 2616 .getBitWidth() <= 64 /*bits*/) { 2617 DwarfExpr.addUnsignedConstant( 2618 Entry.getConstantFP()->getValueAPF().bitcastToAPInt()); 2619 } else { 2620 LLVM_DEBUG( 2621 dbgs() << "Skipped DwarfExpression creation for ConstantFP of size" 2622 << Entry.getConstantFP() 2623 ->getValueAPF() 2624 .bitcastToAPInt() 2625 .getBitWidth() 2626 << " bits\n"); 2627 return false; 2628 } 2629 } 2630 return true; 2631 }; 2632 2633 if (!Value.isVariadic()) { 2634 if (!EmitValueLocEntry(Value.getLocEntries()[0], ExprCursor)) 2635 return; 2636 DwarfExpr.addExpression(std::move(ExprCursor)); 2637 return; 2638 } 2639 2640 // If any of the location entries are registers with the value 0, then the 2641 // location is undefined. 2642 if (any_of(Value.getLocEntries(), [](const DbgValueLocEntry &Entry) { 2643 return Entry.isLocation() && !Entry.getLoc().getReg(); 2644 })) 2645 return; 2646 2647 DwarfExpr.addExpression( 2648 std::move(ExprCursor), 2649 [EmitValueLocEntry, &Value](unsigned Idx, 2650 DIExpressionCursor &Cursor) -> bool { 2651 return EmitValueLocEntry(Value.getLocEntries()[Idx], Cursor); 2652 }); 2653 } 2654 2655 void DebugLocEntry::finalize(const AsmPrinter &AP, 2656 DebugLocStream::ListBuilder &List, 2657 const DIBasicType *BT, 2658 DwarfCompileUnit &TheCU) { 2659 assert(!Values.empty() && 2660 "location list entries without values are redundant"); 2661 assert(Begin != End && "unexpected location list entry with empty range"); 2662 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2663 BufferByteStreamer Streamer = Entry.getStreamer(); 2664 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2665 const DbgValueLoc &Value = Values[0]; 2666 if (Value.isFragment()) { 2667 // Emit all fragments that belong to the same variable and range. 2668 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2669 return P.isFragment(); 2670 }) && "all values are expected to be fragments"); 2671 assert(llvm::is_sorted(Values) && "fragments are expected to be sorted"); 2672 2673 for (const auto &Fragment : Values) 2674 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2675 2676 } else { 2677 assert(Values.size() == 1 && "only fragments may have >1 value"); 2678 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2679 } 2680 DwarfExpr.finalize(); 2681 if (DwarfExpr.TagOffset) 2682 List.setTagOffset(*DwarfExpr.TagOffset); 2683 } 2684 2685 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2686 const DwarfCompileUnit *CU) { 2687 // Emit the size. 2688 Asm->OutStreamer->AddComment("Loc expr size"); 2689 if (getDwarfVersion() >= 5) 2690 Asm->emitULEB128(DebugLocs.getBytes(Entry).size()); 2691 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2692 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2693 else { 2694 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2695 // can do. 2696 Asm->emitInt16(0); 2697 return; 2698 } 2699 // Emit the entry. 2700 APByteStreamer Streamer(*Asm); 2701 emitDebugLocEntry(Streamer, Entry, CU); 2702 } 2703 2704 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2705 // that designates the end of the table for the caller to emit when the table is 2706 // complete. 2707 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2708 const DwarfFile &Holder) { 2709 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2710 2711 Asm->OutStreamer->AddComment("Offset entry count"); 2712 Asm->emitInt32(Holder.getRangeLists().size()); 2713 Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym()); 2714 2715 for (const RangeSpanList &List : Holder.getRangeLists()) 2716 Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 2717 Asm->getDwarfOffsetByteSize()); 2718 2719 return TableEnd; 2720 } 2721 2722 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2723 // designates the end of the table for the caller to emit when the table is 2724 // complete. 2725 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2726 const DwarfDebug &DD) { 2727 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2728 2729 const auto &DebugLocs = DD.getDebugLocs(); 2730 2731 Asm->OutStreamer->AddComment("Offset entry count"); 2732 Asm->emitInt32(DebugLocs.getLists().size()); 2733 Asm->OutStreamer->emitLabel(DebugLocs.getSym()); 2734 2735 for (const auto &List : DebugLocs.getLists()) 2736 Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 2737 Asm->getDwarfOffsetByteSize()); 2738 2739 return TableEnd; 2740 } 2741 2742 template <typename Ranges, typename PayloadEmitter> 2743 static void emitRangeList( 2744 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2745 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2746 unsigned StartxLength, unsigned EndOfList, 2747 StringRef (*StringifyEnum)(unsigned), 2748 bool ShouldUseBaseAddress, 2749 PayloadEmitter EmitPayload) { 2750 2751 auto Size = Asm->MAI->getCodePointerSize(); 2752 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2753 2754 // Emit our symbol so we can find the beginning of the range. 2755 Asm->OutStreamer->emitLabel(Sym); 2756 2757 // Gather all the ranges that apply to the same section so they can share 2758 // a base address entry. 2759 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2760 2761 for (const auto &Range : R) 2762 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2763 2764 const MCSymbol *CUBase = CU.getBaseAddress(); 2765 bool BaseIsSet = false; 2766 for (const auto &P : SectionRanges) { 2767 auto *Base = CUBase; 2768 if (!Base && ShouldUseBaseAddress) { 2769 const MCSymbol *Begin = P.second.front()->Begin; 2770 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2771 if (!UseDwarf5) { 2772 Base = NewBase; 2773 BaseIsSet = true; 2774 Asm->OutStreamer->emitIntValue(-1, Size); 2775 Asm->OutStreamer->AddComment(" base address"); 2776 Asm->OutStreamer->emitSymbolValue(Base, Size); 2777 } else if (NewBase != Begin || P.second.size() > 1) { 2778 // Only use a base address if 2779 // * the existing pool address doesn't match (NewBase != Begin) 2780 // * or, there's more than one entry to share the base address 2781 Base = NewBase; 2782 BaseIsSet = true; 2783 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2784 Asm->emitInt8(BaseAddressx); 2785 Asm->OutStreamer->AddComment(" base address index"); 2786 Asm->emitULEB128(DD.getAddressPool().getIndex(Base)); 2787 } 2788 } else if (BaseIsSet && !UseDwarf5) { 2789 BaseIsSet = false; 2790 assert(!Base); 2791 Asm->OutStreamer->emitIntValue(-1, Size); 2792 Asm->OutStreamer->emitIntValue(0, Size); 2793 } 2794 2795 for (const auto *RS : P.second) { 2796 const MCSymbol *Begin = RS->Begin; 2797 const MCSymbol *End = RS->End; 2798 assert(Begin && "Range without a begin symbol?"); 2799 assert(End && "Range without an end symbol?"); 2800 if (Base) { 2801 if (UseDwarf5) { 2802 // Emit offset_pair when we have a base. 2803 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2804 Asm->emitInt8(OffsetPair); 2805 Asm->OutStreamer->AddComment(" starting offset"); 2806 Asm->emitLabelDifferenceAsULEB128(Begin, Base); 2807 Asm->OutStreamer->AddComment(" ending offset"); 2808 Asm->emitLabelDifferenceAsULEB128(End, Base); 2809 } else { 2810 Asm->emitLabelDifference(Begin, Base, Size); 2811 Asm->emitLabelDifference(End, Base, Size); 2812 } 2813 } else if (UseDwarf5) { 2814 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2815 Asm->emitInt8(StartxLength); 2816 Asm->OutStreamer->AddComment(" start index"); 2817 Asm->emitULEB128(DD.getAddressPool().getIndex(Begin)); 2818 Asm->OutStreamer->AddComment(" length"); 2819 Asm->emitLabelDifferenceAsULEB128(End, Begin); 2820 } else { 2821 Asm->OutStreamer->emitSymbolValue(Begin, Size); 2822 Asm->OutStreamer->emitSymbolValue(End, Size); 2823 } 2824 EmitPayload(*RS); 2825 } 2826 } 2827 2828 if (UseDwarf5) { 2829 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2830 Asm->emitInt8(EndOfList); 2831 } else { 2832 // Terminate the list with two 0 values. 2833 Asm->OutStreamer->emitIntValue(0, Size); 2834 Asm->OutStreamer->emitIntValue(0, Size); 2835 } 2836 } 2837 2838 // Handles emission of both debug_loclist / debug_loclist.dwo 2839 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2840 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), 2841 *List.CU, dwarf::DW_LLE_base_addressx, 2842 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, 2843 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, 2844 /* ShouldUseBaseAddress */ true, 2845 [&](const DebugLocStream::Entry &E) { 2846 DD.emitDebugLocEntryLocation(E, List.CU); 2847 }); 2848 } 2849 2850 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { 2851 if (DebugLocs.getLists().empty()) 2852 return; 2853 2854 Asm->OutStreamer->SwitchSection(Sec); 2855 2856 MCSymbol *TableEnd = nullptr; 2857 if (getDwarfVersion() >= 5) 2858 TableEnd = emitLoclistsTableHeader(Asm, *this); 2859 2860 for (const auto &List : DebugLocs.getLists()) 2861 emitLocList(*this, Asm, List); 2862 2863 if (TableEnd) 2864 Asm->OutStreamer->emitLabel(TableEnd); 2865 } 2866 2867 // Emit locations into the .debug_loc/.debug_loclists section. 2868 void DwarfDebug::emitDebugLoc() { 2869 emitDebugLocImpl( 2870 getDwarfVersion() >= 5 2871 ? Asm->getObjFileLowering().getDwarfLoclistsSection() 2872 : Asm->getObjFileLowering().getDwarfLocSection()); 2873 } 2874 2875 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. 2876 void DwarfDebug::emitDebugLocDWO() { 2877 if (getDwarfVersion() >= 5) { 2878 emitDebugLocImpl( 2879 Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); 2880 2881 return; 2882 } 2883 2884 for (const auto &List : DebugLocs.getLists()) { 2885 Asm->OutStreamer->SwitchSection( 2886 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2887 Asm->OutStreamer->emitLabel(List.Label); 2888 2889 for (const auto &Entry : DebugLocs.getEntries(List)) { 2890 // GDB only supports startx_length in pre-standard split-DWARF. 2891 // (in v5 standard loclists, it currently* /only/ supports base_address + 2892 // offset_pair, so the implementations can't really share much since they 2893 // need to use different representations) 2894 // * as of October 2018, at least 2895 // 2896 // In v5 (see emitLocList), this uses SectionLabels to reuse existing 2897 // addresses in the address pool to minimize object size/relocations. 2898 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2899 unsigned idx = AddrPool.getIndex(Entry.Begin); 2900 Asm->emitULEB128(idx); 2901 // Also the pre-standard encoding is slightly different, emitting this as 2902 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. 2903 Asm->emitLabelDifference(Entry.End, Entry.Begin, 4); 2904 emitDebugLocEntryLocation(Entry, List.CU); 2905 } 2906 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2907 } 2908 } 2909 2910 struct ArangeSpan { 2911 const MCSymbol *Start, *End; 2912 }; 2913 2914 // Emit a debug aranges section, containing a CU lookup for any 2915 // address we can tie back to a CU. 2916 void DwarfDebug::emitDebugARanges() { 2917 // Provides a unique id per text section. 2918 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2919 2920 // Filter labels by section. 2921 for (const SymbolCU &SCU : ArangeLabels) { 2922 if (SCU.Sym->isInSection()) { 2923 // Make a note of this symbol and it's section. 2924 MCSection *Section = &SCU.Sym->getSection(); 2925 if (!Section->getKind().isMetadata()) 2926 SectionMap[Section].push_back(SCU); 2927 } else { 2928 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2929 // appear in the output. This sucks as we rely on sections to build 2930 // arange spans. We can do it without, but it's icky. 2931 SectionMap[nullptr].push_back(SCU); 2932 } 2933 } 2934 2935 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2936 2937 for (auto &I : SectionMap) { 2938 MCSection *Section = I.first; 2939 SmallVector<SymbolCU, 8> &List = I.second; 2940 if (List.size() < 1) 2941 continue; 2942 2943 // If we have no section (e.g. common), just write out 2944 // individual spans for each symbol. 2945 if (!Section) { 2946 for (const SymbolCU &Cur : List) { 2947 ArangeSpan Span; 2948 Span.Start = Cur.Sym; 2949 Span.End = nullptr; 2950 assert(Cur.CU); 2951 Spans[Cur.CU].push_back(Span); 2952 } 2953 continue; 2954 } 2955 2956 // Sort the symbols by offset within the section. 2957 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2958 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 2959 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 2960 2961 // Symbols with no order assigned should be placed at the end. 2962 // (e.g. section end labels) 2963 if (IA == 0) 2964 return false; 2965 if (IB == 0) 2966 return true; 2967 return IA < IB; 2968 }); 2969 2970 // Insert a final terminator. 2971 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2972 2973 // Build spans between each label. 2974 const MCSymbol *StartSym = List[0].Sym; 2975 for (size_t n = 1, e = List.size(); n < e; n++) { 2976 const SymbolCU &Prev = List[n - 1]; 2977 const SymbolCU &Cur = List[n]; 2978 2979 // Try and build the longest span we can within the same CU. 2980 if (Cur.CU != Prev.CU) { 2981 ArangeSpan Span; 2982 Span.Start = StartSym; 2983 Span.End = Cur.Sym; 2984 assert(Prev.CU); 2985 Spans[Prev.CU].push_back(Span); 2986 StartSym = Cur.Sym; 2987 } 2988 } 2989 } 2990 2991 // Start the dwarf aranges section. 2992 Asm->OutStreamer->SwitchSection( 2993 Asm->getObjFileLowering().getDwarfARangesSection()); 2994 2995 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2996 2997 // Build a list of CUs used. 2998 std::vector<DwarfCompileUnit *> CUs; 2999 for (const auto &it : Spans) { 3000 DwarfCompileUnit *CU = it.first; 3001 CUs.push_back(CU); 3002 } 3003 3004 // Sort the CU list (again, to ensure consistent output order). 3005 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 3006 return A->getUniqueID() < B->getUniqueID(); 3007 }); 3008 3009 // Emit an arange table for each CU we used. 3010 for (DwarfCompileUnit *CU : CUs) { 3011 std::vector<ArangeSpan> &List = Spans[CU]; 3012 3013 // Describe the skeleton CU's offset and length, not the dwo file's. 3014 if (auto *Skel = CU->getSkeleton()) 3015 CU = Skel; 3016 3017 // Emit size of content not including length itself. 3018 unsigned ContentSize = 3019 sizeof(int16_t) + // DWARF ARange version number 3020 Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info 3021 // section 3022 sizeof(int8_t) + // Pointer Size (in bytes) 3023 sizeof(int8_t); // Segment Size (in bytes) 3024 3025 unsigned TupleSize = PtrSize * 2; 3026 3027 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 3028 unsigned Padding = offsetToAlignment( 3029 Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize)); 3030 3031 ContentSize += Padding; 3032 ContentSize += (List.size() + 1) * TupleSize; 3033 3034 // For each compile unit, write the list of spans it covers. 3035 Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set"); 3036 Asm->OutStreamer->AddComment("DWARF Arange version number"); 3037 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 3038 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 3039 emitSectionReference(*CU); 3040 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 3041 Asm->emitInt8(PtrSize); 3042 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 3043 Asm->emitInt8(0); 3044 3045 Asm->OutStreamer->emitFill(Padding, 0xff); 3046 3047 for (const ArangeSpan &Span : List) { 3048 Asm->emitLabelReference(Span.Start, PtrSize); 3049 3050 // Calculate the size as being from the span start to it's end. 3051 if (Span.End) { 3052 Asm->emitLabelDifference(Span.End, Span.Start, PtrSize); 3053 } else { 3054 // For symbols without an end marker (e.g. common), we 3055 // write a single arange entry containing just that one symbol. 3056 uint64_t Size = SymSize[Span.Start]; 3057 if (Size == 0) 3058 Size = 1; 3059 3060 Asm->OutStreamer->emitIntValue(Size, PtrSize); 3061 } 3062 } 3063 3064 Asm->OutStreamer->AddComment("ARange terminator"); 3065 Asm->OutStreamer->emitIntValue(0, PtrSize); 3066 Asm->OutStreamer->emitIntValue(0, PtrSize); 3067 } 3068 } 3069 3070 /// Emit a single range list. We handle both DWARF v5 and earlier. 3071 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 3072 const RangeSpanList &List) { 3073 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, 3074 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 3075 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 3076 llvm::dwarf::RangeListEncodingString, 3077 List.CU->getCUNode()->getRangesBaseAddress() || 3078 DD.getDwarfVersion() >= 5, 3079 [](auto) {}); 3080 } 3081 3082 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { 3083 if (Holder.getRangeLists().empty()) 3084 return; 3085 3086 assert(useRangesSection()); 3087 assert(!CUMap.empty()); 3088 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 3089 return !Pair.second->getCUNode()->isDebugDirectivesOnly(); 3090 })); 3091 3092 Asm->OutStreamer->SwitchSection(Section); 3093 3094 MCSymbol *TableEnd = nullptr; 3095 if (getDwarfVersion() >= 5) 3096 TableEnd = emitRnglistsTableHeader(Asm, Holder); 3097 3098 for (const RangeSpanList &List : Holder.getRangeLists()) 3099 emitRangeList(*this, Asm, List); 3100 3101 if (TableEnd) 3102 Asm->OutStreamer->emitLabel(TableEnd); 3103 } 3104 3105 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 3106 /// .debug_rnglists section. 3107 void DwarfDebug::emitDebugRanges() { 3108 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3109 3110 emitDebugRangesImpl(Holder, 3111 getDwarfVersion() >= 5 3112 ? Asm->getObjFileLowering().getDwarfRnglistsSection() 3113 : Asm->getObjFileLowering().getDwarfRangesSection()); 3114 } 3115 3116 void DwarfDebug::emitDebugRangesDWO() { 3117 emitDebugRangesImpl(InfoHolder, 3118 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 3119 } 3120 3121 /// Emit the header of a DWARF 5 macro section, or the GNU extension for 3122 /// DWARF 4. 3123 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD, 3124 const DwarfCompileUnit &CU, uint16_t DwarfVersion) { 3125 enum HeaderFlagMask { 3126 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID, 3127 #include "llvm/BinaryFormat/Dwarf.def" 3128 }; 3129 Asm->OutStreamer->AddComment("Macro information version"); 3130 Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4); 3131 // We emit the line offset flag unconditionally here, since line offset should 3132 // be mostly present. 3133 if (Asm->isDwarf64()) { 3134 Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present"); 3135 Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET); 3136 } else { 3137 Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present"); 3138 Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET); 3139 } 3140 Asm->OutStreamer->AddComment("debug_line_offset"); 3141 if (DD.useSplitDwarf()) 3142 Asm->emitDwarfLengthOrOffset(0); 3143 else 3144 Asm->emitDwarfSymbolReference(CU.getLineTableStartSym()); 3145 } 3146 3147 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 3148 for (auto *MN : Nodes) { 3149 if (auto *M = dyn_cast<DIMacro>(MN)) 3150 emitMacro(*M); 3151 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 3152 emitMacroFile(*F, U); 3153 else 3154 llvm_unreachable("Unexpected DI type!"); 3155 } 3156 } 3157 3158 void DwarfDebug::emitMacro(DIMacro &M) { 3159 StringRef Name = M.getName(); 3160 StringRef Value = M.getValue(); 3161 3162 // There should be one space between the macro name and the macro value in 3163 // define entries. In undef entries, only the macro name is emitted. 3164 std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str(); 3165 3166 if (UseDebugMacroSection) { 3167 if (getDwarfVersion() >= 5) { 3168 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3169 ? dwarf::DW_MACRO_define_strx 3170 : dwarf::DW_MACRO_undef_strx; 3171 Asm->OutStreamer->AddComment(dwarf::MacroString(Type)); 3172 Asm->emitULEB128(Type); 3173 Asm->OutStreamer->AddComment("Line Number"); 3174 Asm->emitULEB128(M.getLine()); 3175 Asm->OutStreamer->AddComment("Macro String"); 3176 Asm->emitULEB128( 3177 InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex()); 3178 } else { 3179 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3180 ? dwarf::DW_MACRO_GNU_define_indirect 3181 : dwarf::DW_MACRO_GNU_undef_indirect; 3182 Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type)); 3183 Asm->emitULEB128(Type); 3184 Asm->OutStreamer->AddComment("Line Number"); 3185 Asm->emitULEB128(M.getLine()); 3186 Asm->OutStreamer->AddComment("Macro String"); 3187 Asm->emitDwarfSymbolReference( 3188 InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol()); 3189 } 3190 } else { 3191 Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType())); 3192 Asm->emitULEB128(M.getMacinfoType()); 3193 Asm->OutStreamer->AddComment("Line Number"); 3194 Asm->emitULEB128(M.getLine()); 3195 Asm->OutStreamer->AddComment("Macro String"); 3196 Asm->OutStreamer->emitBytes(Str); 3197 Asm->emitInt8('\0'); 3198 } 3199 } 3200 3201 void DwarfDebug::emitMacroFileImpl( 3202 DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile, 3203 StringRef (*MacroFormToString)(unsigned Form)) { 3204 3205 Asm->OutStreamer->AddComment(MacroFormToString(StartFile)); 3206 Asm->emitULEB128(StartFile); 3207 Asm->OutStreamer->AddComment("Line Number"); 3208 Asm->emitULEB128(MF.getLine()); 3209 Asm->OutStreamer->AddComment("File Number"); 3210 DIFile &F = *MF.getFile(); 3211 if (useSplitDwarf()) 3212 Asm->emitULEB128(getDwoLineTable(U)->getFile( 3213 F.getDirectory(), F.getFilename(), getMD5AsBytes(&F), 3214 Asm->OutContext.getDwarfVersion(), F.getSource())); 3215 else 3216 Asm->emitULEB128(U.getOrCreateSourceID(&F)); 3217 handleMacroNodes(MF.getElements(), U); 3218 Asm->OutStreamer->AddComment(MacroFormToString(EndFile)); 3219 Asm->emitULEB128(EndFile); 3220 } 3221 3222 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 3223 // DWARFv5 macro and DWARFv4 macinfo share some common encodings, 3224 // so for readibility/uniformity, We are explicitly emitting those. 3225 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 3226 if (UseDebugMacroSection) 3227 emitMacroFileImpl( 3228 F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file, 3229 (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString); 3230 else 3231 emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file, 3232 dwarf::DW_MACINFO_end_file, dwarf::MacinfoString); 3233 } 3234 3235 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { 3236 for (const auto &P : CUMap) { 3237 auto &TheCU = *P.second; 3238 auto *SkCU = TheCU.getSkeleton(); 3239 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 3240 auto *CUNode = cast<DICompileUnit>(P.first); 3241 DIMacroNodeArray Macros = CUNode->getMacros(); 3242 if (Macros.empty()) 3243 continue; 3244 Asm->OutStreamer->SwitchSection(Section); 3245 Asm->OutStreamer->emitLabel(U.getMacroLabelBegin()); 3246 if (UseDebugMacroSection) 3247 emitMacroHeader(Asm, *this, U, getDwarfVersion()); 3248 handleMacroNodes(Macros, U); 3249 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 3250 Asm->emitInt8(0); 3251 } 3252 } 3253 3254 /// Emit macros into a debug macinfo/macro section. 3255 void DwarfDebug::emitDebugMacinfo() { 3256 auto &ObjLower = Asm->getObjFileLowering(); 3257 emitDebugMacinfoImpl(UseDebugMacroSection 3258 ? ObjLower.getDwarfMacroSection() 3259 : ObjLower.getDwarfMacinfoSection()); 3260 } 3261 3262 void DwarfDebug::emitDebugMacinfoDWO() { 3263 auto &ObjLower = Asm->getObjFileLowering(); 3264 emitDebugMacinfoImpl(UseDebugMacroSection 3265 ? ObjLower.getDwarfMacroDWOSection() 3266 : ObjLower.getDwarfMacinfoDWOSection()); 3267 } 3268 3269 // DWARF5 Experimental Separate Dwarf emitters. 3270 3271 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 3272 std::unique_ptr<DwarfCompileUnit> NewU) { 3273 3274 if (!CompilationDir.empty()) 3275 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 3276 addGnuPubAttributes(*NewU, Die); 3277 3278 SkeletonHolder.addUnit(std::move(NewU)); 3279 } 3280 3281 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 3282 3283 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 3284 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, 3285 UnitKind::Skeleton); 3286 DwarfCompileUnit &NewCU = *OwnedUnit; 3287 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 3288 3289 NewCU.initStmtList(); 3290 3291 if (useSegmentedStringOffsetsTable()) 3292 NewCU.addStringOffsetsStart(); 3293 3294 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 3295 3296 return NewCU; 3297 } 3298 3299 // Emit the .debug_info.dwo section for separated dwarf. This contains the 3300 // compile units that would normally be in debug_info. 3301 void DwarfDebug::emitDebugInfoDWO() { 3302 assert(useSplitDwarf() && "No split dwarf debug info?"); 3303 // Don't emit relocations into the dwo file. 3304 InfoHolder.emitUnits(/* UseOffsets */ true); 3305 } 3306 3307 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 3308 // abbreviations for the .debug_info.dwo section. 3309 void DwarfDebug::emitDebugAbbrevDWO() { 3310 assert(useSplitDwarf() && "No split dwarf?"); 3311 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 3312 } 3313 3314 void DwarfDebug::emitDebugLineDWO() { 3315 assert(useSplitDwarf() && "No split dwarf?"); 3316 SplitTypeUnitFileTable.Emit( 3317 *Asm->OutStreamer, MCDwarfLineTableParams(), 3318 Asm->getObjFileLowering().getDwarfLineDWOSection()); 3319 } 3320 3321 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 3322 assert(useSplitDwarf() && "No split dwarf?"); 3323 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 3324 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 3325 InfoHolder.getStringOffsetsStartSym()); 3326 } 3327 3328 // Emit the .debug_str.dwo section for separated dwarf. This contains the 3329 // string section and is identical in format to traditional .debug_str 3330 // sections. 3331 void DwarfDebug::emitDebugStrDWO() { 3332 if (useSegmentedStringOffsetsTable()) 3333 emitStringOffsetsTableHeaderDWO(); 3334 assert(useSplitDwarf() && "No split dwarf?"); 3335 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 3336 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 3337 OffSec, /* UseRelativeOffsets = */ false); 3338 } 3339 3340 // Emit address pool. 3341 void DwarfDebug::emitDebugAddr() { 3342 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 3343 } 3344 3345 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 3346 if (!useSplitDwarf()) 3347 return nullptr; 3348 const DICompileUnit *DIUnit = CU.getCUNode(); 3349 SplitTypeUnitFileTable.maybeSetRootFile( 3350 DIUnit->getDirectory(), DIUnit->getFilename(), 3351 getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 3352 return &SplitTypeUnitFileTable; 3353 } 3354 3355 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 3356 MD5 Hash; 3357 Hash.update(Identifier); 3358 // ... take the least significant 8 bytes and return those. Our MD5 3359 // implementation always returns its results in little endian, so we actually 3360 // need the "high" word. 3361 MD5::MD5Result Result; 3362 Hash.final(Result); 3363 return Result.high(); 3364 } 3365 3366 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 3367 StringRef Identifier, DIE &RefDie, 3368 const DICompositeType *CTy) { 3369 // Fast path if we're building some type units and one has already used the 3370 // address pool we know we're going to throw away all this work anyway, so 3371 // don't bother building dependent types. 3372 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 3373 return; 3374 3375 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 3376 if (!Ins.second) { 3377 CU.addDIETypeSignature(RefDie, Ins.first->second); 3378 return; 3379 } 3380 3381 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 3382 AddrPool.resetUsedFlag(); 3383 3384 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 3385 getDwoLineTable(CU)); 3386 DwarfTypeUnit &NewTU = *OwnedUnit; 3387 DIE &UnitDie = NewTU.getUnitDie(); 3388 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 3389 3390 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 3391 CU.getLanguage()); 3392 3393 uint64_t Signature = makeTypeSignature(Identifier); 3394 NewTU.setTypeSignature(Signature); 3395 Ins.first->second = Signature; 3396 3397 if (useSplitDwarf()) { 3398 MCSection *Section = 3399 getDwarfVersion() <= 4 3400 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 3401 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 3402 NewTU.setSection(Section); 3403 } else { 3404 MCSection *Section = 3405 getDwarfVersion() <= 4 3406 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 3407 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 3408 NewTU.setSection(Section); 3409 // Non-split type units reuse the compile unit's line table. 3410 CU.applyStmtList(UnitDie); 3411 } 3412 3413 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 3414 // units. 3415 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 3416 NewTU.addStringOffsetsStart(); 3417 3418 NewTU.setType(NewTU.createTypeDIE(CTy)); 3419 3420 if (TopLevelType) { 3421 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 3422 TypeUnitsUnderConstruction.clear(); 3423 3424 // Types referencing entries in the address table cannot be placed in type 3425 // units. 3426 if (AddrPool.hasBeenUsed()) { 3427 3428 // Remove all the types built while building this type. 3429 // This is pessimistic as some of these types might not be dependent on 3430 // the type that used an address. 3431 for (const auto &TU : TypeUnitsToAdd) 3432 TypeSignatures.erase(TU.second); 3433 3434 // Construct this type in the CU directly. 3435 // This is inefficient because all the dependent types will be rebuilt 3436 // from scratch, including building them in type units, discovering that 3437 // they depend on addresses, throwing them out and rebuilding them. 3438 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 3439 return; 3440 } 3441 3442 // If the type wasn't dependent on fission addresses, finish adding the type 3443 // and all its dependent types. 3444 for (auto &TU : TypeUnitsToAdd) { 3445 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 3446 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 3447 } 3448 } 3449 CU.addDIETypeSignature(RefDie, Signature); 3450 } 3451 3452 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 3453 : DD(DD), 3454 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)), AddrPoolUsed(DD->AddrPool.hasBeenUsed()) { 3455 DD->TypeUnitsUnderConstruction.clear(); 3456 DD->AddrPool.resetUsedFlag(); 3457 } 3458 3459 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 3460 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 3461 DD->AddrPool.resetUsedFlag(AddrPoolUsed); 3462 } 3463 3464 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 3465 return NonTypeUnitContext(this); 3466 } 3467 3468 // Add the Name along with its companion DIE to the appropriate accelerator 3469 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 3470 // AccelTableKind::Apple, we use the table we got as an argument). If 3471 // accelerator tables are disabled, this function does nothing. 3472 template <typename DataT> 3473 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 3474 AccelTable<DataT> &AppleAccel, StringRef Name, 3475 const DIE &Die) { 3476 if (getAccelTableKind() == AccelTableKind::None) 3477 return; 3478 3479 if (getAccelTableKind() != AccelTableKind::Apple && 3480 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 3481 return; 3482 3483 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3484 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3485 3486 switch (getAccelTableKind()) { 3487 case AccelTableKind::Apple: 3488 AppleAccel.addName(Ref, Die); 3489 break; 3490 case AccelTableKind::Dwarf: 3491 AccelDebugNames.addName(Ref, Die); 3492 break; 3493 case AccelTableKind::Default: 3494 llvm_unreachable("Default should have already been resolved."); 3495 case AccelTableKind::None: 3496 llvm_unreachable("None handled above"); 3497 } 3498 } 3499 3500 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3501 const DIE &Die) { 3502 addAccelNameImpl(CU, AccelNames, Name, Die); 3503 } 3504 3505 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3506 const DIE &Die) { 3507 // ObjC names go only into the Apple accelerator tables. 3508 if (getAccelTableKind() == AccelTableKind::Apple) 3509 addAccelNameImpl(CU, AccelObjC, Name, Die); 3510 } 3511 3512 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3513 const DIE &Die) { 3514 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3515 } 3516 3517 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3518 const DIE &Die, char Flags) { 3519 addAccelNameImpl(CU, AccelTypes, Name, Die); 3520 } 3521 3522 uint16_t DwarfDebug::getDwarfVersion() const { 3523 return Asm->OutStreamer->getContext().getDwarfVersion(); 3524 } 3525 3526 dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const { 3527 if (Asm->getDwarfVersion() >= 4) 3528 return dwarf::Form::DW_FORM_sec_offset; 3529 assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) && 3530 "DWARF64 is not defined prior DWARFv3"); 3531 return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8 3532 : dwarf::Form::DW_FORM_data4; 3533 } 3534 3535 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3536 auto I = SectionLabels.find(S); 3537 if (I == SectionLabels.end()) 3538 return nullptr; 3539 return I->second; 3540 } 3541 void DwarfDebug::insertSectionLabel(const MCSymbol *S) { 3542 if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second) 3543 if (useSplitDwarf() || getDwarfVersion() >= 5) 3544 AddrPool.getIndex(S); 3545 } 3546 3547 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const { 3548 assert(File); 3549 if (getDwarfVersion() < 5) 3550 return None; 3551 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum(); 3552 if (!Checksum || Checksum->Kind != DIFile::CSK_MD5) 3553 return None; 3554 3555 // Convert the string checksum to an MD5Result for the streamer. 3556 // The verifier validates the checksum so we assume it's okay. 3557 // An MD5 checksum is 16 bytes. 3558 std::string ChecksumString = fromHex(Checksum->Value); 3559 MD5::MD5Result CKMem; 3560 std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.Bytes.data()); 3561 return CKMem; 3562 } 3563