xref: /freebsd-src/contrib/llvm-project/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing Microsoft CodeView debug info.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeViewDebug.h"
14 #include "DwarfExpression.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/TinyPtrVector.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/BinaryFormat/COFF.h"
25 #include "llvm/BinaryFormat/Dwarf.h"
26 #include "llvm/CodeGen/AsmPrinter.h"
27 #include "llvm/CodeGen/LexicalScopes.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/TargetFrameLowering.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/Config/llvm-config.h"
37 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
38 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h"
39 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
40 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
41 #include "llvm/DebugInfo/CodeView/EnumTables.h"
42 #include "llvm/DebugInfo/CodeView/Line.h"
43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
45 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
46 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
47 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalValue.h"
53 #include "llvm/IR/GlobalVariable.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/MC/MCAsmInfo.h"
57 #include "llvm/MC/MCContext.h"
58 #include "llvm/MC/MCSectionCOFF.h"
59 #include "llvm/MC/MCStreamer.h"
60 #include "llvm/MC/MCSymbol.h"
61 #include "llvm/Support/BinaryByteStream.h"
62 #include "llvm/Support/BinaryStreamReader.h"
63 #include "llvm/Support/BinaryStreamWriter.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Endian.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/FormatVariadic.h"
70 #include "llvm/Support/Path.h"
71 #include "llvm/Support/SMLoc.h"
72 #include "llvm/Support/ScopedPrinter.h"
73 #include "llvm/Target/TargetLoweringObjectFile.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cctype>
78 #include <cstddef>
79 #include <iterator>
80 #include <limits>
81 
82 using namespace llvm;
83 using namespace llvm::codeview;
84 
85 namespace {
86 class CVMCAdapter : public CodeViewRecordStreamer {
87 public:
88   CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable)
89       : OS(&OS), TypeTable(TypeTable) {}
90 
91   void emitBytes(StringRef Data) override { OS->emitBytes(Data); }
92 
93   void emitIntValue(uint64_t Value, unsigned Size) override {
94     OS->emitIntValueInHex(Value, Size);
95   }
96 
97   void emitBinaryData(StringRef Data) override { OS->emitBinaryData(Data); }
98 
99   void AddComment(const Twine &T) override { OS->AddComment(T); }
100 
101   void AddRawComment(const Twine &T) override { OS->emitRawComment(T); }
102 
103   bool isVerboseAsm() override { return OS->isVerboseAsm(); }
104 
105   std::string getTypeName(TypeIndex TI) override {
106     std::string TypeName;
107     if (!TI.isNoneType()) {
108       if (TI.isSimple())
109         TypeName = std::string(TypeIndex::simpleTypeName(TI));
110       else
111         TypeName = std::string(TypeTable.getTypeName(TI));
112     }
113     return TypeName;
114   }
115 
116 private:
117   MCStreamer *OS = nullptr;
118   TypeCollection &TypeTable;
119 };
120 } // namespace
121 
122 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
123   switch (Type) {
124   case Triple::ArchType::x86:
125     return CPUType::Pentium3;
126   case Triple::ArchType::x86_64:
127     return CPUType::X64;
128   case Triple::ArchType::thumb:
129     // LLVM currently doesn't support Windows CE and so thumb
130     // here is indiscriminately mapped to ARMNT specifically.
131     return CPUType::ARMNT;
132   case Triple::ArchType::aarch64:
133     return CPUType::ARM64;
134   default:
135     report_fatal_error("target architecture doesn't map to a CodeView CPUType");
136   }
137 }
138 
139 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
140     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {}
141 
142 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
143   std::string &Filepath = FileToFilepathMap[File];
144   if (!Filepath.empty())
145     return Filepath;
146 
147   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
148 
149   // If this is a Unix-style path, just use it as is. Don't try to canonicalize
150   // it textually because one of the path components could be a symlink.
151   if (Dir.startswith("/") || Filename.startswith("/")) {
152     if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix))
153       return Filename;
154     Filepath = std::string(Dir);
155     if (Dir.back() != '/')
156       Filepath += '/';
157     Filepath += Filename;
158     return Filepath;
159   }
160 
161   // Clang emits directory and relative filename info into the IR, but CodeView
162   // operates on full paths.  We could change Clang to emit full paths too, but
163   // that would increase the IR size and probably not needed for other users.
164   // For now, just concatenate and canonicalize the path here.
165   if (Filename.find(':') == 1)
166     Filepath = std::string(Filename);
167   else
168     Filepath = (Dir + "\\" + Filename).str();
169 
170   // Canonicalize the path.  We have to do it textually because we may no longer
171   // have access the file in the filesystem.
172   // First, replace all slashes with backslashes.
173   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
174 
175   // Remove all "\.\" with "\".
176   size_t Cursor = 0;
177   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
178     Filepath.erase(Cursor, 2);
179 
180   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
181   // path should be well-formatted, e.g. start with a drive letter, etc.
182   Cursor = 0;
183   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
184     // Something's wrong if the path starts with "\..\", abort.
185     if (Cursor == 0)
186       break;
187 
188     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
189     if (PrevSlash == std::string::npos)
190       // Something's wrong, abort.
191       break;
192 
193     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
194     // The next ".." might be following the one we've just erased.
195     Cursor = PrevSlash;
196   }
197 
198   // Remove all duplicate backslashes.
199   Cursor = 0;
200   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
201     Filepath.erase(Cursor, 1);
202 
203   return Filepath;
204 }
205 
206 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
207   StringRef FullPath = getFullFilepath(F);
208   unsigned NextId = FileIdMap.size() + 1;
209   auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId));
210   if (Insertion.second) {
211     // We have to compute the full filepath and emit a .cv_file directive.
212     ArrayRef<uint8_t> ChecksumAsBytes;
213     FileChecksumKind CSKind = FileChecksumKind::None;
214     if (F->getChecksum()) {
215       std::string Checksum = fromHex(F->getChecksum()->Value);
216       void *CKMem = OS.getContext().allocate(Checksum.size(), 1);
217       memcpy(CKMem, Checksum.data(), Checksum.size());
218       ChecksumAsBytes = ArrayRef<uint8_t>(
219           reinterpret_cast<const uint8_t *>(CKMem), Checksum.size());
220       switch (F->getChecksum()->Kind) {
221       case DIFile::CSK_MD5:
222         CSKind = FileChecksumKind::MD5;
223         break;
224       case DIFile::CSK_SHA1:
225         CSKind = FileChecksumKind::SHA1;
226         break;
227       case DIFile::CSK_SHA256:
228         CSKind = FileChecksumKind::SHA256;
229         break;
230       }
231     }
232     bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes,
233                                           static_cast<unsigned>(CSKind));
234     (void)Success;
235     assert(Success && ".cv_file directive failed");
236   }
237   return Insertion.first->second;
238 }
239 
240 CodeViewDebug::InlineSite &
241 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
242                              const DISubprogram *Inlinee) {
243   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
244   InlineSite *Site = &SiteInsertion.first->second;
245   if (SiteInsertion.second) {
246     unsigned ParentFuncId = CurFn->FuncId;
247     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
248       ParentFuncId =
249           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
250               .SiteFuncId;
251 
252     Site->SiteFuncId = NextFuncId++;
253     OS.EmitCVInlineSiteIdDirective(
254         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
255         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
256     Site->Inlinee = Inlinee;
257     InlinedSubprograms.insert(Inlinee);
258     getFuncIdForSubprogram(Inlinee);
259   }
260   return *Site;
261 }
262 
263 static StringRef getPrettyScopeName(const DIScope *Scope) {
264   StringRef ScopeName = Scope->getName();
265   if (!ScopeName.empty())
266     return ScopeName;
267 
268   switch (Scope->getTag()) {
269   case dwarf::DW_TAG_enumeration_type:
270   case dwarf::DW_TAG_class_type:
271   case dwarf::DW_TAG_structure_type:
272   case dwarf::DW_TAG_union_type:
273     return "<unnamed-tag>";
274   case dwarf::DW_TAG_namespace:
275     return "`anonymous namespace'";
276   default:
277     return StringRef();
278   }
279 }
280 
281 const DISubprogram *CodeViewDebug::collectParentScopeNames(
282     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
283   const DISubprogram *ClosestSubprogram = nullptr;
284   while (Scope != nullptr) {
285     if (ClosestSubprogram == nullptr)
286       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
287 
288     // If a type appears in a scope chain, make sure it gets emitted. The
289     // frontend will be responsible for deciding if this should be a forward
290     // declaration or a complete type.
291     if (const auto *Ty = dyn_cast<DICompositeType>(Scope))
292       DeferredCompleteTypes.push_back(Ty);
293 
294     StringRef ScopeName = getPrettyScopeName(Scope);
295     if (!ScopeName.empty())
296       QualifiedNameComponents.push_back(ScopeName);
297     Scope = Scope->getScope();
298   }
299   return ClosestSubprogram;
300 }
301 
302 static std::string formatNestedName(ArrayRef<StringRef> QualifiedNameComponents,
303                                     StringRef TypeName) {
304   std::string FullyQualifiedName;
305   for (StringRef QualifiedNameComponent :
306        llvm::reverse(QualifiedNameComponents)) {
307     FullyQualifiedName.append(std::string(QualifiedNameComponent));
308     FullyQualifiedName.append("::");
309   }
310   FullyQualifiedName.append(std::string(TypeName));
311   return FullyQualifiedName;
312 }
313 
314 struct CodeViewDebug::TypeLoweringScope {
315   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
316   ~TypeLoweringScope() {
317     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
318     // inner TypeLoweringScopes don't attempt to emit deferred types.
319     if (CVD.TypeEmissionLevel == 1)
320       CVD.emitDeferredCompleteTypes();
321     --CVD.TypeEmissionLevel;
322   }
323   CodeViewDebug &CVD;
324 };
325 
326 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Scope,
327                                                  StringRef Name) {
328   // Ensure types in the scope chain are emitted as soon as possible.
329   // This can create otherwise a situation where S_UDTs are emitted while
330   // looping in emitDebugInfoForUDTs.
331   TypeLoweringScope S(*this);
332   SmallVector<StringRef, 5> QualifiedNameComponents;
333   collectParentScopeNames(Scope, QualifiedNameComponents);
334   return formatNestedName(QualifiedNameComponents, Name);
335 }
336 
337 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Ty) {
338   const DIScope *Scope = Ty->getScope();
339   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
340 }
341 
342 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
343   // No scope means global scope and that uses the zero index.
344   //
345   // We also use zero index when the scope is a DISubprogram
346   // to suppress the emission of LF_STRING_ID for the function,
347   // which can trigger a link-time error with the linker in
348   // VS2019 version 16.11.2 or newer.
349   // Note, however, skipping the debug info emission for the DISubprogram
350   // is a temporary fix. The root issue here is that we need to figure out
351   // the proper way to encode a function nested in another function
352   // (as introduced by the Fortran 'contains' keyword) in CodeView.
353   if (!Scope || isa<DIFile>(Scope) || isa<DISubprogram>(Scope))
354     return TypeIndex();
355 
356   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
357 
358   // Check if we've already translated this scope.
359   auto I = TypeIndices.find({Scope, nullptr});
360   if (I != TypeIndices.end())
361     return I->second;
362 
363   // Build the fully qualified name of the scope.
364   std::string ScopeName = getFullyQualifiedName(Scope);
365   StringIdRecord SID(TypeIndex(), ScopeName);
366   auto TI = TypeTable.writeLeafType(SID);
367   return recordTypeIndexForDINode(Scope, TI);
368 }
369 
370 static StringRef removeTemplateArgs(StringRef Name) {
371   // Remove template args from the display name. Assume that the template args
372   // are the last thing in the name.
373   if (Name.empty() || Name.back() != '>')
374     return Name;
375 
376   int OpenBrackets = 0;
377   for (int i = Name.size() - 1; i >= 0; --i) {
378     if (Name[i] == '>')
379       ++OpenBrackets;
380     else if (Name[i] == '<') {
381       --OpenBrackets;
382       if (OpenBrackets == 0)
383         return Name.substr(0, i);
384     }
385   }
386   return Name;
387 }
388 
389 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
390   assert(SP);
391 
392   // Check if we've already translated this subprogram.
393   auto I = TypeIndices.find({SP, nullptr});
394   if (I != TypeIndices.end())
395     return I->second;
396 
397   // The display name includes function template arguments. Drop them to match
398   // MSVC. We need to have the template arguments in the DISubprogram name
399   // because they are used in other symbol records, such as S_GPROC32_IDs.
400   StringRef DisplayName = removeTemplateArgs(SP->getName());
401 
402   const DIScope *Scope = SP->getScope();
403   TypeIndex TI;
404   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
405     // If the scope is a DICompositeType, then this must be a method. Member
406     // function types take some special handling, and require access to the
407     // subprogram.
408     TypeIndex ClassType = getTypeIndex(Class);
409     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
410                                DisplayName);
411     TI = TypeTable.writeLeafType(MFuncId);
412   } else {
413     // Otherwise, this must be a free function.
414     TypeIndex ParentScope = getScopeIndex(Scope);
415     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
416     TI = TypeTable.writeLeafType(FuncId);
417   }
418 
419   return recordTypeIndexForDINode(SP, TI);
420 }
421 
422 static bool isNonTrivial(const DICompositeType *DCTy) {
423   return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial);
424 }
425 
426 static FunctionOptions
427 getFunctionOptions(const DISubroutineType *Ty,
428                    const DICompositeType *ClassTy = nullptr,
429                    StringRef SPName = StringRef("")) {
430   FunctionOptions FO = FunctionOptions::None;
431   const DIType *ReturnTy = nullptr;
432   if (auto TypeArray = Ty->getTypeArray()) {
433     if (TypeArray.size())
434       ReturnTy = TypeArray[0];
435   }
436 
437   // Add CxxReturnUdt option to functions that return nontrivial record types
438   // or methods that return record types.
439   if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy))
440     if (isNonTrivial(ReturnDCTy) || ClassTy)
441       FO |= FunctionOptions::CxxReturnUdt;
442 
443   // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison.
444   if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) {
445     FO |= FunctionOptions::Constructor;
446 
447   // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag.
448 
449   }
450   return FO;
451 }
452 
453 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
454                                                const DICompositeType *Class) {
455   // Always use the method declaration as the key for the function type. The
456   // method declaration contains the this adjustment.
457   if (SP->getDeclaration())
458     SP = SP->getDeclaration();
459   assert(!SP->getDeclaration() && "should use declaration as key");
460 
461   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
462   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
463   auto I = TypeIndices.find({SP, Class});
464   if (I != TypeIndices.end())
465     return I->second;
466 
467   // Make sure complete type info for the class is emitted *after* the member
468   // function type, as the complete class type is likely to reference this
469   // member function type.
470   TypeLoweringScope S(*this);
471   const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0;
472 
473   FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName());
474   TypeIndex TI = lowerTypeMemberFunction(
475       SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO);
476   return recordTypeIndexForDINode(SP, TI, Class);
477 }
478 
479 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
480                                                   TypeIndex TI,
481                                                   const DIType *ClassTy) {
482   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
483   (void)InsertResult;
484   assert(InsertResult.second && "DINode was already assigned a type index");
485   return TI;
486 }
487 
488 unsigned CodeViewDebug::getPointerSizeInBytes() {
489   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
490 }
491 
492 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
493                                         const LexicalScope *LS) {
494   if (const DILocation *InlinedAt = LS->getInlinedAt()) {
495     // This variable was inlined. Associate it with the InlineSite.
496     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
497     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
498     Site.InlinedLocals.emplace_back(Var);
499   } else {
500     // This variable goes into the corresponding lexical scope.
501     ScopeVariables[LS].emplace_back(Var);
502   }
503 }
504 
505 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
506                                const DILocation *Loc) {
507   if (!llvm::is_contained(Locs, Loc))
508     Locs.push_back(Loc);
509 }
510 
511 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
512                                         const MachineFunction *MF) {
513   // Skip this instruction if it has the same location as the previous one.
514   if (!DL || DL == PrevInstLoc)
515     return;
516 
517   const DIScope *Scope = DL.get()->getScope();
518   if (!Scope)
519     return;
520 
521   // Skip this line if it is longer than the maximum we can record.
522   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
523   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
524       LI.isNeverStepInto())
525     return;
526 
527   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
528   if (CI.getStartColumn() != DL.getCol())
529     return;
530 
531   if (!CurFn->HaveLineInfo)
532     CurFn->HaveLineInfo = true;
533   unsigned FileId = 0;
534   if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
535     FileId = CurFn->LastFileId;
536   else
537     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
538   PrevInstLoc = DL;
539 
540   unsigned FuncId = CurFn->FuncId;
541   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
542     const DILocation *Loc = DL.get();
543 
544     // If this location was actually inlined from somewhere else, give it the ID
545     // of the inline call site.
546     FuncId =
547         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
548 
549     // Ensure we have links in the tree of inline call sites.
550     bool FirstLoc = true;
551     while ((SiteLoc = Loc->getInlinedAt())) {
552       InlineSite &Site =
553           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
554       if (!FirstLoc)
555         addLocIfNotPresent(Site.ChildSites, Loc);
556       FirstLoc = false;
557       Loc = SiteLoc;
558     }
559     addLocIfNotPresent(CurFn->ChildSites, Loc);
560   }
561 
562   OS.emitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
563                         /*PrologueEnd=*/false, /*IsStmt=*/false,
564                         DL->getFilename(), SMLoc());
565 }
566 
567 void CodeViewDebug::emitCodeViewMagicVersion() {
568   OS.emitValueToAlignment(4);
569   OS.AddComment("Debug section magic");
570   OS.emitInt32(COFF::DEBUG_SECTION_MAGIC);
571 }
572 
573 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
574   switch (DWLang) {
575   case dwarf::DW_LANG_C:
576   case dwarf::DW_LANG_C89:
577   case dwarf::DW_LANG_C99:
578   case dwarf::DW_LANG_C11:
579   case dwarf::DW_LANG_ObjC:
580     return SourceLanguage::C;
581   case dwarf::DW_LANG_C_plus_plus:
582   case dwarf::DW_LANG_C_plus_plus_03:
583   case dwarf::DW_LANG_C_plus_plus_11:
584   case dwarf::DW_LANG_C_plus_plus_14:
585     return SourceLanguage::Cpp;
586   case dwarf::DW_LANG_Fortran77:
587   case dwarf::DW_LANG_Fortran90:
588   case dwarf::DW_LANG_Fortran95:
589   case dwarf::DW_LANG_Fortran03:
590   case dwarf::DW_LANG_Fortran08:
591     return SourceLanguage::Fortran;
592   case dwarf::DW_LANG_Pascal83:
593     return SourceLanguage::Pascal;
594   case dwarf::DW_LANG_Cobol74:
595   case dwarf::DW_LANG_Cobol85:
596     return SourceLanguage::Cobol;
597   case dwarf::DW_LANG_Java:
598     return SourceLanguage::Java;
599   case dwarf::DW_LANG_D:
600     return SourceLanguage::D;
601   case dwarf::DW_LANG_Swift:
602     return SourceLanguage::Swift;
603   default:
604     // There's no CodeView representation for this language, and CV doesn't
605     // have an "unknown" option for the language field, so we'll use MASM,
606     // as it's very low level.
607     return SourceLanguage::Masm;
608   }
609 }
610 
611 void CodeViewDebug::beginModule(Module *M) {
612   // If module doesn't have named metadata anchors or COFF debug section
613   // is not available, skip any debug info related stuff.
614   if (!M->getNamedMetadata("llvm.dbg.cu") ||
615       !Asm->getObjFileLowering().getCOFFDebugSymbolsSection()) {
616     Asm = nullptr;
617     return;
618   }
619   // Tell MMI that we have and need debug info.
620   MMI->setDebugInfoAvailability(true);
621 
622   TheCPU = mapArchToCVCPUType(Triple(M->getTargetTriple()).getArch());
623 
624   // Get the current source language.
625   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
626   const MDNode *Node = *CUs->operands().begin();
627   const auto *CU = cast<DICompileUnit>(Node);
628 
629   CurrentSourceLanguage = MapDWLangToCVLang(CU->getSourceLanguage());
630 
631   collectGlobalVariableInfo();
632 
633   // Check if we should emit type record hashes.
634   ConstantInt *GH =
635       mdconst::extract_or_null<ConstantInt>(M->getModuleFlag("CodeViewGHash"));
636   EmitDebugGlobalHashes = GH && !GH->isZero();
637 }
638 
639 void CodeViewDebug::endModule() {
640   if (!Asm || !MMI->hasDebugInfo())
641     return;
642 
643   // The COFF .debug$S section consists of several subsections, each starting
644   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
645   // of the payload followed by the payload itself.  The subsections are 4-byte
646   // aligned.
647 
648   // Use the generic .debug$S section, and make a subsection for all the inlined
649   // subprograms.
650   switchToDebugSectionForSymbol(nullptr);
651 
652   MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
653   emitCompilerInformation();
654   endCVSubsection(CompilerInfo);
655 
656   emitInlineeLinesSubsection();
657 
658   // Emit per-function debug information.
659   for (auto &P : FnDebugInfo)
660     if (!P.first->isDeclarationForLinker())
661       emitDebugInfoForFunction(P.first, *P.second);
662 
663   // Get types used by globals without emitting anything.
664   // This is meant to collect all static const data members so they can be
665   // emitted as globals.
666   collectDebugInfoForGlobals();
667 
668   // Emit retained types.
669   emitDebugInfoForRetainedTypes();
670 
671   // Emit global variable debug information.
672   setCurrentSubprogram(nullptr);
673   emitDebugInfoForGlobals();
674 
675   // Switch back to the generic .debug$S section after potentially processing
676   // comdat symbol sections.
677   switchToDebugSectionForSymbol(nullptr);
678 
679   // Emit UDT records for any types used by global variables.
680   if (!GlobalUDTs.empty()) {
681     MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
682     emitDebugInfoForUDTs(GlobalUDTs);
683     endCVSubsection(SymbolsEnd);
684   }
685 
686   // This subsection holds a file index to offset in string table table.
687   OS.AddComment("File index to string table offset subsection");
688   OS.emitCVFileChecksumsDirective();
689 
690   // This subsection holds the string table.
691   OS.AddComment("String table");
692   OS.emitCVStringTableDirective();
693 
694   // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol
695   // subsection in the generic .debug$S section at the end. There is no
696   // particular reason for this ordering other than to match MSVC.
697   emitBuildInfo();
698 
699   // Emit type information and hashes last, so that any types we translate while
700   // emitting function info are included.
701   emitTypeInformation();
702 
703   if (EmitDebugGlobalHashes)
704     emitTypeGlobalHashes();
705 
706   clear();
707 }
708 
709 static void
710 emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S,
711                              unsigned MaxFixedRecordLength = 0xF00) {
712   // The maximum CV record length is 0xFF00. Most of the strings we emit appear
713   // after a fixed length portion of the record. The fixed length portion should
714   // always be less than 0xF00 (3840) bytes, so truncate the string so that the
715   // overall record size is less than the maximum allowed.
716   SmallString<32> NullTerminatedString(
717       S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
718   NullTerminatedString.push_back('\0');
719   OS.emitBytes(NullTerminatedString);
720 }
721 
722 void CodeViewDebug::emitTypeInformation() {
723   if (TypeTable.empty())
724     return;
725 
726   // Start the .debug$T or .debug$P section with 0x4.
727   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
728   emitCodeViewMagicVersion();
729 
730   TypeTableCollection Table(TypeTable.records());
731   TypeVisitorCallbackPipeline Pipeline;
732 
733   // To emit type record using Codeview MCStreamer adapter
734   CVMCAdapter CVMCOS(OS, Table);
735   TypeRecordMapping typeMapping(CVMCOS);
736   Pipeline.addCallbackToPipeline(typeMapping);
737 
738   Optional<TypeIndex> B = Table.getFirst();
739   while (B) {
740     // This will fail if the record data is invalid.
741     CVType Record = Table.getType(*B);
742 
743     Error E = codeview::visitTypeRecord(Record, *B, Pipeline);
744 
745     if (E) {
746       logAllUnhandledErrors(std::move(E), errs(), "error: ");
747       llvm_unreachable("produced malformed type record");
748     }
749 
750     B = Table.getNext(*B);
751   }
752 }
753 
754 void CodeViewDebug::emitTypeGlobalHashes() {
755   if (TypeTable.empty())
756     return;
757 
758   // Start the .debug$H section with the version and hash algorithm, currently
759   // hardcoded to version 0, SHA1.
760   OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection());
761 
762   OS.emitValueToAlignment(4);
763   OS.AddComment("Magic");
764   OS.emitInt32(COFF::DEBUG_HASHES_SECTION_MAGIC);
765   OS.AddComment("Section Version");
766   OS.emitInt16(0);
767   OS.AddComment("Hash Algorithm");
768   OS.emitInt16(uint16_t(GlobalTypeHashAlg::SHA1_8));
769 
770   TypeIndex TI(TypeIndex::FirstNonSimpleIndex);
771   for (const auto &GHR : TypeTable.hashes()) {
772     if (OS.isVerboseAsm()) {
773       // Emit an EOL-comment describing which TypeIndex this hash corresponds
774       // to, as well as the stringified SHA1 hash.
775       SmallString<32> Comment;
776       raw_svector_ostream CommentOS(Comment);
777       CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR);
778       OS.AddComment(Comment);
779       ++TI;
780     }
781     assert(GHR.Hash.size() == 8);
782     StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()),
783                 GHR.Hash.size());
784     OS.emitBinaryData(S);
785   }
786 }
787 
788 namespace {
789 struct Version {
790   int Part[4];
791 };
792 } // end anonymous namespace
793 
794 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
795 // the version number.
796 static Version parseVersion(StringRef Name) {
797   Version V = {{0}};
798   int N = 0;
799   for (const char C : Name) {
800     if (isdigit(C)) {
801       V.Part[N] *= 10;
802       V.Part[N] += C - '0';
803     } else if (C == '.') {
804       ++N;
805       if (N >= 4)
806         return V;
807     } else if (N > 0)
808       return V;
809   }
810   return V;
811 }
812 
813 void CodeViewDebug::emitCompilerInformation() {
814   MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3);
815   uint32_t Flags = 0;
816 
817   // The low byte of the flags indicates the source language.
818   Flags = CurrentSourceLanguage;
819   // TODO:  Figure out which other flags need to be set.
820   if (MMI->getModule()->getProfileSummary(/*IsCS*/ false) != nullptr) {
821     Flags |= static_cast<uint32_t>(CompileSym3Flags::PGO);
822   }
823 
824   OS.AddComment("Flags and language");
825   OS.emitInt32(Flags);
826 
827   OS.AddComment("CPUType");
828   OS.emitInt16(static_cast<uint64_t>(TheCPU));
829 
830   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
831   const MDNode *Node = *CUs->operands().begin();
832   const auto *CU = cast<DICompileUnit>(Node);
833 
834   StringRef CompilerVersion = CU->getProducer();
835   Version FrontVer = parseVersion(CompilerVersion);
836   OS.AddComment("Frontend version");
837   for (int N : FrontVer.Part)
838     OS.emitInt16(N);
839 
840   // Some Microsoft tools, like Binscope, expect a backend version number of at
841   // least 8.something, so we'll coerce the LLVM version into a form that
842   // guarantees it'll be big enough without really lying about the version.
843   int Major = 1000 * LLVM_VERSION_MAJOR +
844               10 * LLVM_VERSION_MINOR +
845               LLVM_VERSION_PATCH;
846   // Clamp it for builds that use unusually large version numbers.
847   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
848   Version BackVer = {{ Major, 0, 0, 0 }};
849   OS.AddComment("Backend version");
850   for (int N : BackVer.Part)
851     OS.emitInt16(N);
852 
853   OS.AddComment("Null-terminated compiler version string");
854   emitNullTerminatedSymbolName(OS, CompilerVersion);
855 
856   endSymbolRecord(CompilerEnd);
857 }
858 
859 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable,
860                                     StringRef S) {
861   StringIdRecord SIR(TypeIndex(0x0), S);
862   return TypeTable.writeLeafType(SIR);
863 }
864 
865 void CodeViewDebug::emitBuildInfo() {
866   // First, make LF_BUILDINFO. It's a sequence of strings with various bits of
867   // build info. The known prefix is:
868   // - Absolute path of current directory
869   // - Compiler path
870   // - Main source file path, relative to CWD or absolute
871   // - Type server PDB file
872   // - Canonical compiler command line
873   // If frontend and backend compilation are separated (think llc or LTO), it's
874   // not clear if the compiler path should refer to the executable for the
875   // frontend or the backend. Leave it blank for now.
876   TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {};
877   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
878   const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs.
879   const auto *CU = cast<DICompileUnit>(Node);
880   const DIFile *MainSourceFile = CU->getFile();
881   BuildInfoArgs[BuildInfoRecord::CurrentDirectory] =
882       getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory());
883   BuildInfoArgs[BuildInfoRecord::SourceFile] =
884       getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename());
885   // FIXME: Path to compiler and command line. PDB is intentionally blank unless
886   // we implement /Zi type servers.
887   BuildInfoRecord BIR(BuildInfoArgs);
888   TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR);
889 
890   // Make a new .debug$S subsection for the S_BUILDINFO record, which points
891   // from the module symbols into the type stream.
892   MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
893   MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO);
894   OS.AddComment("LF_BUILDINFO index");
895   OS.emitInt32(BuildInfoIndex.getIndex());
896   endSymbolRecord(BIEnd);
897   endCVSubsection(BISubsecEnd);
898 }
899 
900 void CodeViewDebug::emitInlineeLinesSubsection() {
901   if (InlinedSubprograms.empty())
902     return;
903 
904   OS.AddComment("Inlinee lines subsection");
905   MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
906 
907   // We emit the checksum info for files.  This is used by debuggers to
908   // determine if a pdb matches the source before loading it.  Visual Studio,
909   // for instance, will display a warning that the breakpoints are not valid if
910   // the pdb does not match the source.
911   OS.AddComment("Inlinee lines signature");
912   OS.emitInt32(unsigned(InlineeLinesSignature::Normal));
913 
914   for (const DISubprogram *SP : InlinedSubprograms) {
915     assert(TypeIndices.count({SP, nullptr}));
916     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
917 
918     OS.AddBlankLine();
919     unsigned FileId = maybeRecordFile(SP->getFile());
920     OS.AddComment("Inlined function " + SP->getName() + " starts at " +
921                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
922     OS.AddBlankLine();
923     OS.AddComment("Type index of inlined function");
924     OS.emitInt32(InlineeIdx.getIndex());
925     OS.AddComment("Offset into filechecksum table");
926     OS.emitCVFileChecksumOffsetDirective(FileId);
927     OS.AddComment("Starting line number");
928     OS.emitInt32(SP->getLine());
929   }
930 
931   endCVSubsection(InlineEnd);
932 }
933 
934 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
935                                         const DILocation *InlinedAt,
936                                         const InlineSite &Site) {
937   assert(TypeIndices.count({Site.Inlinee, nullptr}));
938   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
939 
940   // SymbolRecord
941   MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE);
942 
943   OS.AddComment("PtrParent");
944   OS.emitInt32(0);
945   OS.AddComment("PtrEnd");
946   OS.emitInt32(0);
947   OS.AddComment("Inlinee type index");
948   OS.emitInt32(InlineeIdx.getIndex());
949 
950   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
951   unsigned StartLineNum = Site.Inlinee->getLine();
952 
953   OS.emitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
954                                     FI.Begin, FI.End);
955 
956   endSymbolRecord(InlineEnd);
957 
958   emitLocalVariableList(FI, Site.InlinedLocals);
959 
960   // Recurse on child inlined call sites before closing the scope.
961   for (const DILocation *ChildSite : Site.ChildSites) {
962     auto I = FI.InlineSites.find(ChildSite);
963     assert(I != FI.InlineSites.end() &&
964            "child site not in function inline site map");
965     emitInlinedCallSite(FI, ChildSite, I->second);
966   }
967 
968   // Close the scope.
969   emitEndSymbolRecord(SymbolKind::S_INLINESITE_END);
970 }
971 
972 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
973   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
974   // comdat key. A section may be comdat because of -ffunction-sections or
975   // because it is comdat in the IR.
976   MCSectionCOFF *GVSec =
977       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
978   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
979 
980   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
981       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
982   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
983 
984   OS.SwitchSection(DebugSec);
985 
986   // Emit the magic version number if this is the first time we've switched to
987   // this section.
988   if (ComdatDebugSections.insert(DebugSec).second)
989     emitCodeViewMagicVersion();
990 }
991 
992 // Emit an S_THUNK32/S_END symbol pair for a thunk routine.
993 // The only supported thunk ordinal is currently the standard type.
994 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV,
995                                           FunctionInfo &FI,
996                                           const MCSymbol *Fn) {
997   std::string FuncName =
998       std::string(GlobalValue::dropLLVMManglingEscape(GV->getName()));
999   const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind.
1000 
1001   OS.AddComment("Symbol subsection for " + Twine(FuncName));
1002   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
1003 
1004   // Emit S_THUNK32
1005   MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32);
1006   OS.AddComment("PtrParent");
1007   OS.emitInt32(0);
1008   OS.AddComment("PtrEnd");
1009   OS.emitInt32(0);
1010   OS.AddComment("PtrNext");
1011   OS.emitInt32(0);
1012   OS.AddComment("Thunk section relative address");
1013   OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
1014   OS.AddComment("Thunk section index");
1015   OS.EmitCOFFSectionIndex(Fn);
1016   OS.AddComment("Code size");
1017   OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2);
1018   OS.AddComment("Ordinal");
1019   OS.emitInt8(unsigned(ordinal));
1020   OS.AddComment("Function name");
1021   emitNullTerminatedSymbolName(OS, FuncName);
1022   // Additional fields specific to the thunk ordinal would go here.
1023   endSymbolRecord(ThunkRecordEnd);
1024 
1025   // Local variables/inlined routines are purposely omitted here.  The point of
1026   // marking this as a thunk is so Visual Studio will NOT stop in this routine.
1027 
1028   // Emit S_PROC_ID_END
1029   emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
1030 
1031   endCVSubsection(SymbolsEnd);
1032 }
1033 
1034 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
1035                                              FunctionInfo &FI) {
1036   // For each function there is a separate subsection which holds the PC to
1037   // file:line table.
1038   const MCSymbol *Fn = Asm->getSymbol(GV);
1039   assert(Fn);
1040 
1041   // Switch to the to a comdat section, if appropriate.
1042   switchToDebugSectionForSymbol(Fn);
1043 
1044   std::string FuncName;
1045   auto *SP = GV->getSubprogram();
1046   assert(SP);
1047   setCurrentSubprogram(SP);
1048 
1049   if (SP->isThunk()) {
1050     emitDebugInfoForThunk(GV, FI, Fn);
1051     return;
1052   }
1053 
1054   // If we have a display name, build the fully qualified name by walking the
1055   // chain of scopes.
1056   if (!SP->getName().empty())
1057     FuncName = getFullyQualifiedName(SP->getScope(), SP->getName());
1058 
1059   // If our DISubprogram name is empty, use the mangled name.
1060   if (FuncName.empty())
1061     FuncName = std::string(GlobalValue::dropLLVMManglingEscape(GV->getName()));
1062 
1063   // Emit FPO data, but only on 32-bit x86. No other platforms use it.
1064   if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86)
1065     OS.EmitCVFPOData(Fn);
1066 
1067   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
1068   OS.AddComment("Symbol subsection for " + Twine(FuncName));
1069   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
1070   {
1071     SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID
1072                                                 : SymbolKind::S_GPROC32_ID;
1073     MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind);
1074 
1075     // These fields are filled in by tools like CVPACK which run after the fact.
1076     OS.AddComment("PtrParent");
1077     OS.emitInt32(0);
1078     OS.AddComment("PtrEnd");
1079     OS.emitInt32(0);
1080     OS.AddComment("PtrNext");
1081     OS.emitInt32(0);
1082     // This is the important bit that tells the debugger where the function
1083     // code is located and what's its size:
1084     OS.AddComment("Code size");
1085     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
1086     OS.AddComment("Offset after prologue");
1087     OS.emitInt32(0);
1088     OS.AddComment("Offset before epilogue");
1089     OS.emitInt32(0);
1090     OS.AddComment("Function type index");
1091     OS.emitInt32(getFuncIdForSubprogram(GV->getSubprogram()).getIndex());
1092     OS.AddComment("Function section relative address");
1093     OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
1094     OS.AddComment("Function section index");
1095     OS.EmitCOFFSectionIndex(Fn);
1096     OS.AddComment("Flags");
1097     OS.emitInt8(0);
1098     // Emit the function display name as a null-terminated string.
1099     OS.AddComment("Function name");
1100     // Truncate the name so we won't overflow the record length field.
1101     emitNullTerminatedSymbolName(OS, FuncName);
1102     endSymbolRecord(ProcRecordEnd);
1103 
1104     MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC);
1105     // Subtract out the CSR size since MSVC excludes that and we include it.
1106     OS.AddComment("FrameSize");
1107     OS.emitInt32(FI.FrameSize - FI.CSRSize);
1108     OS.AddComment("Padding");
1109     OS.emitInt32(0);
1110     OS.AddComment("Offset of padding");
1111     OS.emitInt32(0);
1112     OS.AddComment("Bytes of callee saved registers");
1113     OS.emitInt32(FI.CSRSize);
1114     OS.AddComment("Exception handler offset");
1115     OS.emitInt32(0);
1116     OS.AddComment("Exception handler section");
1117     OS.emitInt16(0);
1118     OS.AddComment("Flags (defines frame register)");
1119     OS.emitInt32(uint32_t(FI.FrameProcOpts));
1120     endSymbolRecord(FrameProcEnd);
1121 
1122     emitLocalVariableList(FI, FI.Locals);
1123     emitGlobalVariableList(FI.Globals);
1124     emitLexicalBlockList(FI.ChildBlocks, FI);
1125 
1126     // Emit inlined call site information. Only emit functions inlined directly
1127     // into the parent function. We'll emit the other sites recursively as part
1128     // of their parent inline site.
1129     for (const DILocation *InlinedAt : FI.ChildSites) {
1130       auto I = FI.InlineSites.find(InlinedAt);
1131       assert(I != FI.InlineSites.end() &&
1132              "child site not in function inline site map");
1133       emitInlinedCallSite(FI, InlinedAt, I->second);
1134     }
1135 
1136     for (auto Annot : FI.Annotations) {
1137       MCSymbol *Label = Annot.first;
1138       MDTuple *Strs = cast<MDTuple>(Annot.second);
1139       MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION);
1140       OS.EmitCOFFSecRel32(Label, /*Offset=*/0);
1141       // FIXME: Make sure we don't overflow the max record size.
1142       OS.EmitCOFFSectionIndex(Label);
1143       OS.emitInt16(Strs->getNumOperands());
1144       for (Metadata *MD : Strs->operands()) {
1145         // MDStrings are null terminated, so we can do EmitBytes and get the
1146         // nice .asciz directive.
1147         StringRef Str = cast<MDString>(MD)->getString();
1148         assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString");
1149         OS.emitBytes(StringRef(Str.data(), Str.size() + 1));
1150       }
1151       endSymbolRecord(AnnotEnd);
1152     }
1153 
1154     for (auto HeapAllocSite : FI.HeapAllocSites) {
1155       const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite);
1156       const MCSymbol *EndLabel = std::get<1>(HeapAllocSite);
1157       const DIType *DITy = std::get<2>(HeapAllocSite);
1158       MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE);
1159       OS.AddComment("Call site offset");
1160       OS.EmitCOFFSecRel32(BeginLabel, /*Offset=*/0);
1161       OS.AddComment("Call site section index");
1162       OS.EmitCOFFSectionIndex(BeginLabel);
1163       OS.AddComment("Call instruction length");
1164       OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
1165       OS.AddComment("Type index");
1166       OS.emitInt32(getCompleteTypeIndex(DITy).getIndex());
1167       endSymbolRecord(HeapAllocEnd);
1168     }
1169 
1170     if (SP != nullptr)
1171       emitDebugInfoForUDTs(LocalUDTs);
1172 
1173     // We're done with this function.
1174     emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
1175   }
1176   endCVSubsection(SymbolsEnd);
1177 
1178   // We have an assembler directive that takes care of the whole line table.
1179   OS.emitCVLinetableDirective(FI.FuncId, Fn, FI.End);
1180 }
1181 
1182 CodeViewDebug::LocalVarDefRange
1183 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
1184   LocalVarDefRange DR;
1185   DR.InMemory = -1;
1186   DR.DataOffset = Offset;
1187   assert(DR.DataOffset == Offset && "truncation");
1188   DR.IsSubfield = 0;
1189   DR.StructOffset = 0;
1190   DR.CVRegister = CVRegister;
1191   return DR;
1192 }
1193 
1194 void CodeViewDebug::collectVariableInfoFromMFTable(
1195     DenseSet<InlinedEntity> &Processed) {
1196   const MachineFunction &MF = *Asm->MF;
1197   const TargetSubtargetInfo &TSI = MF.getSubtarget();
1198   const TargetFrameLowering *TFI = TSI.getFrameLowering();
1199   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1200 
1201   for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
1202     if (!VI.Var)
1203       continue;
1204     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1205            "Expected inlined-at fields to agree");
1206 
1207     Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt()));
1208     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1209 
1210     // If variable scope is not found then skip this variable.
1211     if (!Scope)
1212       continue;
1213 
1214     // If the variable has an attached offset expression, extract it.
1215     // FIXME: Try to handle DW_OP_deref as well.
1216     int64_t ExprOffset = 0;
1217     bool Deref = false;
1218     if (VI.Expr) {
1219       // If there is one DW_OP_deref element, use offset of 0 and keep going.
1220       if (VI.Expr->getNumElements() == 1 &&
1221           VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref)
1222         Deref = true;
1223       else if (!VI.Expr->extractIfOffset(ExprOffset))
1224         continue;
1225     }
1226 
1227     // Get the frame register used and the offset.
1228     Register FrameReg;
1229     StackOffset FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
1230     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
1231 
1232     assert(!FrameOffset.getScalable() &&
1233            "Frame offsets with a scalable component are not supported");
1234 
1235     // Calculate the label ranges.
1236     LocalVarDefRange DefRange =
1237         createDefRangeMem(CVReg, FrameOffset.getFixed() + ExprOffset);
1238 
1239     for (const InsnRange &Range : Scope->getRanges()) {
1240       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1241       const MCSymbol *End = getLabelAfterInsn(Range.second);
1242       End = End ? End : Asm->getFunctionEnd();
1243       DefRange.Ranges.emplace_back(Begin, End);
1244     }
1245 
1246     LocalVariable Var;
1247     Var.DIVar = VI.Var;
1248     Var.DefRanges.emplace_back(std::move(DefRange));
1249     if (Deref)
1250       Var.UseReferenceType = true;
1251 
1252     recordLocalVariable(std::move(Var), Scope);
1253   }
1254 }
1255 
1256 static bool canUseReferenceType(const DbgVariableLocation &Loc) {
1257   return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0;
1258 }
1259 
1260 static bool needsReferenceType(const DbgVariableLocation &Loc) {
1261   return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0;
1262 }
1263 
1264 void CodeViewDebug::calculateRanges(
1265     LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) {
1266   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
1267 
1268   // Calculate the definition ranges.
1269   for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) {
1270     const auto &Entry = *I;
1271     if (!Entry.isDbgValue())
1272       continue;
1273     const MachineInstr *DVInst = Entry.getInstr();
1274     assert(DVInst->isDebugValue() && "Invalid History entry");
1275     // FIXME: Find a way to represent constant variables, since they are
1276     // relatively common.
1277     Optional<DbgVariableLocation> Location =
1278         DbgVariableLocation::extractFromMachineInstruction(*DVInst);
1279     if (!Location)
1280       continue;
1281 
1282     // CodeView can only express variables in register and variables in memory
1283     // at a constant offset from a register. However, for variables passed
1284     // indirectly by pointer, it is common for that pointer to be spilled to a
1285     // stack location. For the special case of one offseted load followed by a
1286     // zero offset load (a pointer spilled to the stack), we change the type of
1287     // the local variable from a value type to a reference type. This tricks the
1288     // debugger into doing the load for us.
1289     if (Var.UseReferenceType) {
1290       // We're using a reference type. Drop the last zero offset load.
1291       if (canUseReferenceType(*Location))
1292         Location->LoadChain.pop_back();
1293       else
1294         continue;
1295     } else if (needsReferenceType(*Location)) {
1296       // This location can't be expressed without switching to a reference type.
1297       // Start over using that.
1298       Var.UseReferenceType = true;
1299       Var.DefRanges.clear();
1300       calculateRanges(Var, Entries);
1301       return;
1302     }
1303 
1304     // We can only handle a register or an offseted load of a register.
1305     if (Location->Register == 0 || Location->LoadChain.size() > 1)
1306       continue;
1307     {
1308       LocalVarDefRange DR;
1309       DR.CVRegister = TRI->getCodeViewRegNum(Location->Register);
1310       DR.InMemory = !Location->LoadChain.empty();
1311       DR.DataOffset =
1312           !Location->LoadChain.empty() ? Location->LoadChain.back() : 0;
1313       if (Location->FragmentInfo) {
1314         DR.IsSubfield = true;
1315         DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8;
1316       } else {
1317         DR.IsSubfield = false;
1318         DR.StructOffset = 0;
1319       }
1320 
1321       if (Var.DefRanges.empty() ||
1322           Var.DefRanges.back().isDifferentLocation(DR)) {
1323         Var.DefRanges.emplace_back(std::move(DR));
1324       }
1325     }
1326 
1327     // Compute the label range.
1328     const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr());
1329     const MCSymbol *End;
1330     if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) {
1331       auto &EndingEntry = Entries[Entry.getEndIndex()];
1332       End = EndingEntry.isDbgValue()
1333                 ? getLabelBeforeInsn(EndingEntry.getInstr())
1334                 : getLabelAfterInsn(EndingEntry.getInstr());
1335     } else
1336       End = Asm->getFunctionEnd();
1337 
1338     // If the last range end is our begin, just extend the last range.
1339     // Otherwise make a new range.
1340     SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
1341         Var.DefRanges.back().Ranges;
1342     if (!R.empty() && R.back().second == Begin)
1343       R.back().second = End;
1344     else
1345       R.emplace_back(Begin, End);
1346 
1347     // FIXME: Do more range combining.
1348   }
1349 }
1350 
1351 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
1352   DenseSet<InlinedEntity> Processed;
1353   // Grab the variable info that was squirreled away in the MMI side-table.
1354   collectVariableInfoFromMFTable(Processed);
1355 
1356   for (const auto &I : DbgValues) {
1357     InlinedEntity IV = I.first;
1358     if (Processed.count(IV))
1359       continue;
1360     const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first);
1361     const DILocation *InlinedAt = IV.second;
1362 
1363     // Instruction ranges, specifying where IV is accessible.
1364     const auto &Entries = I.second;
1365 
1366     LexicalScope *Scope = nullptr;
1367     if (InlinedAt)
1368       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
1369     else
1370       Scope = LScopes.findLexicalScope(DIVar->getScope());
1371     // If variable scope is not found then skip this variable.
1372     if (!Scope)
1373       continue;
1374 
1375     LocalVariable Var;
1376     Var.DIVar = DIVar;
1377 
1378     calculateRanges(Var, Entries);
1379     recordLocalVariable(std::move(Var), Scope);
1380   }
1381 }
1382 
1383 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1384   const TargetSubtargetInfo &TSI = MF->getSubtarget();
1385   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1386   const MachineFrameInfo &MFI = MF->getFrameInfo();
1387   const Function &GV = MF->getFunction();
1388   auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()});
1389   assert(Insertion.second && "function already has info");
1390   CurFn = Insertion.first->second.get();
1391   CurFn->FuncId = NextFuncId++;
1392   CurFn->Begin = Asm->getFunctionBegin();
1393 
1394   // The S_FRAMEPROC record reports the stack size, and how many bytes of
1395   // callee-saved registers were used. For targets that don't use a PUSH
1396   // instruction (AArch64), this will be zero.
1397   CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters();
1398   CurFn->FrameSize = MFI.getStackSize();
1399   CurFn->OffsetAdjustment = MFI.getOffsetAdjustment();
1400   CurFn->HasStackRealignment = TRI->hasStackRealignment(*MF);
1401 
1402   // For this function S_FRAMEPROC record, figure out which codeview register
1403   // will be the frame pointer.
1404   CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None.
1405   CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None.
1406   if (CurFn->FrameSize > 0) {
1407     if (!TSI.getFrameLowering()->hasFP(*MF)) {
1408       CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1409       CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr;
1410     } else {
1411       // If there is an FP, parameters are always relative to it.
1412       CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr;
1413       if (CurFn->HasStackRealignment) {
1414         // If the stack needs realignment, locals are relative to SP or VFRAME.
1415         CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1416       } else {
1417         // Otherwise, locals are relative to EBP, and we probably have VLAs or
1418         // other stack adjustments.
1419         CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr;
1420       }
1421     }
1422   }
1423 
1424   // Compute other frame procedure options.
1425   FrameProcedureOptions FPO = FrameProcedureOptions::None;
1426   if (MFI.hasVarSizedObjects())
1427     FPO |= FrameProcedureOptions::HasAlloca;
1428   if (MF->exposesReturnsTwice())
1429     FPO |= FrameProcedureOptions::HasSetJmp;
1430   // FIXME: Set HasLongJmp if we ever track that info.
1431   if (MF->hasInlineAsm())
1432     FPO |= FrameProcedureOptions::HasInlineAssembly;
1433   if (GV.hasPersonalityFn()) {
1434     if (isAsynchronousEHPersonality(
1435             classifyEHPersonality(GV.getPersonalityFn())))
1436       FPO |= FrameProcedureOptions::HasStructuredExceptionHandling;
1437     else
1438       FPO |= FrameProcedureOptions::HasExceptionHandling;
1439   }
1440   if (GV.hasFnAttribute(Attribute::InlineHint))
1441     FPO |= FrameProcedureOptions::MarkedInline;
1442   if (GV.hasFnAttribute(Attribute::Naked))
1443     FPO |= FrameProcedureOptions::Naked;
1444   if (MFI.hasStackProtectorIndex())
1445     FPO |= FrameProcedureOptions::SecurityChecks;
1446   FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U);
1447   FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U);
1448   if (Asm->TM.getOptLevel() != CodeGenOpt::None &&
1449       !GV.hasOptSize() && !GV.hasOptNone())
1450     FPO |= FrameProcedureOptions::OptimizedForSpeed;
1451   if (GV.hasProfileData()) {
1452     FPO |= FrameProcedureOptions::ValidProfileCounts;
1453     FPO |= FrameProcedureOptions::ProfileGuidedOptimization;
1454   }
1455   // FIXME: Set GuardCfg when it is implemented.
1456   CurFn->FrameProcOpts = FPO;
1457 
1458   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1459 
1460   // Find the end of the function prolog.  First known non-DBG_VALUE and
1461   // non-frame setup location marks the beginning of the function body.
1462   // FIXME: is there a simpler a way to do this? Can we just search
1463   // for the first instruction of the function, not the last of the prolog?
1464   DebugLoc PrologEndLoc;
1465   bool EmptyPrologue = true;
1466   for (const auto &MBB : *MF) {
1467     for (const auto &MI : MBB) {
1468       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1469           MI.getDebugLoc()) {
1470         PrologEndLoc = MI.getDebugLoc();
1471         break;
1472       } else if (!MI.isMetaInstruction()) {
1473         EmptyPrologue = false;
1474       }
1475     }
1476   }
1477 
1478   // Record beginning of function if we have a non-empty prologue.
1479   if (PrologEndLoc && !EmptyPrologue) {
1480     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1481     maybeRecordLocation(FnStartDL, MF);
1482   }
1483 
1484   // Find heap alloc sites and emit labels around them.
1485   for (const auto &MBB : *MF) {
1486     for (const auto &MI : MBB) {
1487       if (MI.getHeapAllocMarker()) {
1488         requestLabelBeforeInsn(&MI);
1489         requestLabelAfterInsn(&MI);
1490       }
1491     }
1492   }
1493 }
1494 
1495 static bool shouldEmitUdt(const DIType *T) {
1496   if (!T)
1497     return false;
1498 
1499   // MSVC does not emit UDTs for typedefs that are scoped to classes.
1500   if (T->getTag() == dwarf::DW_TAG_typedef) {
1501     if (DIScope *Scope = T->getScope()) {
1502       switch (Scope->getTag()) {
1503       case dwarf::DW_TAG_structure_type:
1504       case dwarf::DW_TAG_class_type:
1505       case dwarf::DW_TAG_union_type:
1506         return false;
1507       default:
1508           // do nothing.
1509           ;
1510       }
1511     }
1512   }
1513 
1514   while (true) {
1515     if (!T || T->isForwardDecl())
1516       return false;
1517 
1518     const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
1519     if (!DT)
1520       return true;
1521     T = DT->getBaseType();
1522   }
1523   return true;
1524 }
1525 
1526 void CodeViewDebug::addToUDTs(const DIType *Ty) {
1527   // Don't record empty UDTs.
1528   if (Ty->getName().empty())
1529     return;
1530   if (!shouldEmitUdt(Ty))
1531     return;
1532 
1533   SmallVector<StringRef, 5> ParentScopeNames;
1534   const DISubprogram *ClosestSubprogram =
1535       collectParentScopeNames(Ty->getScope(), ParentScopeNames);
1536 
1537   std::string FullyQualifiedName =
1538       formatNestedName(ParentScopeNames, getPrettyScopeName(Ty));
1539 
1540   if (ClosestSubprogram == nullptr) {
1541     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1542   } else if (ClosestSubprogram == CurrentSubprogram) {
1543     LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1544   }
1545 
1546   // TODO: What if the ClosestSubprogram is neither null or the current
1547   // subprogram?  Currently, the UDT just gets dropped on the floor.
1548   //
1549   // The current behavior is not desirable.  To get maximal fidelity, we would
1550   // need to perform all type translation before beginning emission of .debug$S
1551   // and then make LocalUDTs a member of FunctionInfo
1552 }
1553 
1554 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1555   // Generic dispatch for lowering an unknown type.
1556   switch (Ty->getTag()) {
1557   case dwarf::DW_TAG_array_type:
1558     return lowerTypeArray(cast<DICompositeType>(Ty));
1559   case dwarf::DW_TAG_typedef:
1560     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1561   case dwarf::DW_TAG_base_type:
1562     return lowerTypeBasic(cast<DIBasicType>(Ty));
1563   case dwarf::DW_TAG_pointer_type:
1564     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1565       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1566     LLVM_FALLTHROUGH;
1567   case dwarf::DW_TAG_reference_type:
1568   case dwarf::DW_TAG_rvalue_reference_type:
1569     return lowerTypePointer(cast<DIDerivedType>(Ty));
1570   case dwarf::DW_TAG_ptr_to_member_type:
1571     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1572   case dwarf::DW_TAG_restrict_type:
1573   case dwarf::DW_TAG_const_type:
1574   case dwarf::DW_TAG_volatile_type:
1575   // TODO: add support for DW_TAG_atomic_type here
1576     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1577   case dwarf::DW_TAG_subroutine_type:
1578     if (ClassTy) {
1579       // The member function type of a member function pointer has no
1580       // ThisAdjustment.
1581       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1582                                      /*ThisAdjustment=*/0,
1583                                      /*IsStaticMethod=*/false);
1584     }
1585     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1586   case dwarf::DW_TAG_enumeration_type:
1587     return lowerTypeEnum(cast<DICompositeType>(Ty));
1588   case dwarf::DW_TAG_class_type:
1589   case dwarf::DW_TAG_structure_type:
1590     return lowerTypeClass(cast<DICompositeType>(Ty));
1591   case dwarf::DW_TAG_union_type:
1592     return lowerTypeUnion(cast<DICompositeType>(Ty));
1593   case dwarf::DW_TAG_string_type:
1594     return lowerTypeString(cast<DIStringType>(Ty));
1595   case dwarf::DW_TAG_unspecified_type:
1596     if (Ty->getName() == "decltype(nullptr)")
1597       return TypeIndex::NullptrT();
1598     return TypeIndex::None();
1599   default:
1600     // Use the null type index.
1601     return TypeIndex();
1602   }
1603 }
1604 
1605 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1606   TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType());
1607   StringRef TypeName = Ty->getName();
1608 
1609   addToUDTs(Ty);
1610 
1611   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1612       TypeName == "HRESULT")
1613     return TypeIndex(SimpleTypeKind::HResult);
1614   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1615       TypeName == "wchar_t")
1616     return TypeIndex(SimpleTypeKind::WideCharacter);
1617 
1618   return UnderlyingTypeIndex;
1619 }
1620 
1621 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1622   const DIType *ElementType = Ty->getBaseType();
1623   TypeIndex ElementTypeIndex = getTypeIndex(ElementType);
1624   // IndexType is size_t, which depends on the bitness of the target.
1625   TypeIndex IndexType = getPointerSizeInBytes() == 8
1626                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1627                             : TypeIndex(SimpleTypeKind::UInt32Long);
1628 
1629   uint64_t ElementSize = getBaseTypeSize(ElementType) / 8;
1630 
1631   // Add subranges to array type.
1632   DINodeArray Elements = Ty->getElements();
1633   for (int i = Elements.size() - 1; i >= 0; --i) {
1634     const DINode *Element = Elements[i];
1635     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1636 
1637     const DISubrange *Subrange = cast<DISubrange>(Element);
1638     int64_t Count = -1;
1639 
1640     // If Subrange has a Count field, use it.
1641     // Otherwise, if it has an upperboud, use (upperbound - lowerbound + 1),
1642     // where lowerbound is from the LowerBound field of the Subrange,
1643     // or the language default lowerbound if that field is unspecified.
1644     if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt *>())
1645       Count = CI->getSExtValue();
1646     else if (auto *UI = Subrange->getUpperBound().dyn_cast<ConstantInt *>()) {
1647       // Fortran uses 1 as the default lowerbound; other languages use 0.
1648       int64_t Lowerbound = (moduleIsInFortran()) ? 1 : 0;
1649       auto *LI = Subrange->getLowerBound().dyn_cast<ConstantInt *>();
1650       Lowerbound = (LI) ? LI->getSExtValue() : Lowerbound;
1651       Count = UI->getSExtValue() - Lowerbound + 1;
1652     }
1653 
1654     // Forward declarations of arrays without a size and VLAs use a count of -1.
1655     // Emit a count of zero in these cases to match what MSVC does for arrays
1656     // without a size. MSVC doesn't support VLAs, so it's not clear what we
1657     // should do for them even if we could distinguish them.
1658     if (Count == -1)
1659       Count = 0;
1660 
1661     // Update the element size and element type index for subsequent subranges.
1662     ElementSize *= Count;
1663 
1664     // If this is the outermost array, use the size from the array. It will be
1665     // more accurate if we had a VLA or an incomplete element type size.
1666     uint64_t ArraySize =
1667         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1668 
1669     StringRef Name = (i == 0) ? Ty->getName() : "";
1670     ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1671     ElementTypeIndex = TypeTable.writeLeafType(AR);
1672   }
1673 
1674   return ElementTypeIndex;
1675 }
1676 
1677 // This function lowers a Fortran character type (DIStringType).
1678 // Note that it handles only the character*n variant (using SizeInBits
1679 // field in DIString to describe the type size) at the moment.
1680 // Other variants (leveraging the StringLength and StringLengthExp
1681 // fields in DIStringType) remain TBD.
1682 TypeIndex CodeViewDebug::lowerTypeString(const DIStringType *Ty) {
1683   TypeIndex CharType = TypeIndex(SimpleTypeKind::NarrowCharacter);
1684   uint64_t ArraySize = Ty->getSizeInBits() >> 3;
1685   StringRef Name = Ty->getName();
1686   // IndexType is size_t, which depends on the bitness of the target.
1687   TypeIndex IndexType = getPointerSizeInBytes() == 8
1688                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1689                             : TypeIndex(SimpleTypeKind::UInt32Long);
1690 
1691   // Create a type of character array of ArraySize.
1692   ArrayRecord AR(CharType, IndexType, ArraySize, Name);
1693 
1694   return TypeTable.writeLeafType(AR);
1695 }
1696 
1697 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1698   TypeIndex Index;
1699   dwarf::TypeKind Kind;
1700   uint32_t ByteSize;
1701 
1702   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1703   ByteSize = Ty->getSizeInBits() / 8;
1704 
1705   SimpleTypeKind STK = SimpleTypeKind::None;
1706   switch (Kind) {
1707   case dwarf::DW_ATE_address:
1708     // FIXME: Translate
1709     break;
1710   case dwarf::DW_ATE_boolean:
1711     switch (ByteSize) {
1712     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1713     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1714     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1715     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1716     case 16: STK = SimpleTypeKind::Boolean128; break;
1717     }
1718     break;
1719   case dwarf::DW_ATE_complex_float:
1720     switch (ByteSize) {
1721     case 2:  STK = SimpleTypeKind::Complex16;  break;
1722     case 4:  STK = SimpleTypeKind::Complex32;  break;
1723     case 8:  STK = SimpleTypeKind::Complex64;  break;
1724     case 10: STK = SimpleTypeKind::Complex80;  break;
1725     case 16: STK = SimpleTypeKind::Complex128; break;
1726     }
1727     break;
1728   case dwarf::DW_ATE_float:
1729     switch (ByteSize) {
1730     case 2:  STK = SimpleTypeKind::Float16;  break;
1731     case 4:  STK = SimpleTypeKind::Float32;  break;
1732     case 6:  STK = SimpleTypeKind::Float48;  break;
1733     case 8:  STK = SimpleTypeKind::Float64;  break;
1734     case 10: STK = SimpleTypeKind::Float80;  break;
1735     case 16: STK = SimpleTypeKind::Float128; break;
1736     }
1737     break;
1738   case dwarf::DW_ATE_signed:
1739     switch (ByteSize) {
1740     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1741     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1742     case 4:  STK = SimpleTypeKind::Int32;           break;
1743     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1744     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1745     }
1746     break;
1747   case dwarf::DW_ATE_unsigned:
1748     switch (ByteSize) {
1749     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1750     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1751     case 4:  STK = SimpleTypeKind::UInt32;            break;
1752     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1753     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1754     }
1755     break;
1756   case dwarf::DW_ATE_UTF:
1757     switch (ByteSize) {
1758     case 2: STK = SimpleTypeKind::Character16; break;
1759     case 4: STK = SimpleTypeKind::Character32; break;
1760     }
1761     break;
1762   case dwarf::DW_ATE_signed_char:
1763     if (ByteSize == 1)
1764       STK = SimpleTypeKind::SignedCharacter;
1765     break;
1766   case dwarf::DW_ATE_unsigned_char:
1767     if (ByteSize == 1)
1768       STK = SimpleTypeKind::UnsignedCharacter;
1769     break;
1770   default:
1771     break;
1772   }
1773 
1774   // Apply some fixups based on the source-level type name.
1775   // Include some amount of canonicalization from an old naming scheme Clang
1776   // used to use for integer types (in an outdated effort to be compatible with
1777   // GCC's debug info/GDB's behavior, which has since been addressed).
1778   if (STK == SimpleTypeKind::Int32 &&
1779       (Ty->getName() == "long int" || Ty->getName() == "long"))
1780     STK = SimpleTypeKind::Int32Long;
1781   if (STK == SimpleTypeKind::UInt32 && (Ty->getName() == "long unsigned int" ||
1782                                         Ty->getName() == "unsigned long"))
1783     STK = SimpleTypeKind::UInt32Long;
1784   if (STK == SimpleTypeKind::UInt16Short &&
1785       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1786     STK = SimpleTypeKind::WideCharacter;
1787   if ((STK == SimpleTypeKind::SignedCharacter ||
1788        STK == SimpleTypeKind::UnsignedCharacter) &&
1789       Ty->getName() == "char")
1790     STK = SimpleTypeKind::NarrowCharacter;
1791 
1792   return TypeIndex(STK);
1793 }
1794 
1795 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty,
1796                                           PointerOptions PO) {
1797   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1798 
1799   // Pointers to simple types without any options can use SimpleTypeMode, rather
1800   // than having a dedicated pointer type record.
1801   if (PointeeTI.isSimple() && PO == PointerOptions::None &&
1802       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1803       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1804     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1805                               ? SimpleTypeMode::NearPointer64
1806                               : SimpleTypeMode::NearPointer32;
1807     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1808   }
1809 
1810   PointerKind PK =
1811       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1812   PointerMode PM = PointerMode::Pointer;
1813   switch (Ty->getTag()) {
1814   default: llvm_unreachable("not a pointer tag type");
1815   case dwarf::DW_TAG_pointer_type:
1816     PM = PointerMode::Pointer;
1817     break;
1818   case dwarf::DW_TAG_reference_type:
1819     PM = PointerMode::LValueReference;
1820     break;
1821   case dwarf::DW_TAG_rvalue_reference_type:
1822     PM = PointerMode::RValueReference;
1823     break;
1824   }
1825 
1826   if (Ty->isObjectPointer())
1827     PO |= PointerOptions::Const;
1828 
1829   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1830   return TypeTable.writeLeafType(PR);
1831 }
1832 
1833 static PointerToMemberRepresentation
1834 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1835   // SizeInBytes being zero generally implies that the member pointer type was
1836   // incomplete, which can happen if it is part of a function prototype. In this
1837   // case, use the unknown model instead of the general model.
1838   if (IsPMF) {
1839     switch (Flags & DINode::FlagPtrToMemberRep) {
1840     case 0:
1841       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1842                               : PointerToMemberRepresentation::GeneralFunction;
1843     case DINode::FlagSingleInheritance:
1844       return PointerToMemberRepresentation::SingleInheritanceFunction;
1845     case DINode::FlagMultipleInheritance:
1846       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1847     case DINode::FlagVirtualInheritance:
1848       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1849     }
1850   } else {
1851     switch (Flags & DINode::FlagPtrToMemberRep) {
1852     case 0:
1853       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1854                               : PointerToMemberRepresentation::GeneralData;
1855     case DINode::FlagSingleInheritance:
1856       return PointerToMemberRepresentation::SingleInheritanceData;
1857     case DINode::FlagMultipleInheritance:
1858       return PointerToMemberRepresentation::MultipleInheritanceData;
1859     case DINode::FlagVirtualInheritance:
1860       return PointerToMemberRepresentation::VirtualInheritanceData;
1861     }
1862   }
1863   llvm_unreachable("invalid ptr to member representation");
1864 }
1865 
1866 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty,
1867                                                 PointerOptions PO) {
1868   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1869   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1870   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1871   TypeIndex PointeeTI =
1872       getTypeIndex(Ty->getBaseType(), IsPMF ? Ty->getClassType() : nullptr);
1873   PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1874                                                 : PointerKind::Near32;
1875   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1876                          : PointerMode::PointerToDataMember;
1877 
1878   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1879   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1880   MemberPointerInfo MPI(
1881       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1882   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1883   return TypeTable.writeLeafType(PR);
1884 }
1885 
1886 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1887 /// have a translation, use the NearC convention.
1888 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1889   switch (DwarfCC) {
1890   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1891   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1892   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1893   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1894   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1895   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1896   }
1897   return CallingConvention::NearC;
1898 }
1899 
1900 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1901   ModifierOptions Mods = ModifierOptions::None;
1902   PointerOptions PO = PointerOptions::None;
1903   bool IsModifier = true;
1904   const DIType *BaseTy = Ty;
1905   while (IsModifier && BaseTy) {
1906     // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1907     switch (BaseTy->getTag()) {
1908     case dwarf::DW_TAG_const_type:
1909       Mods |= ModifierOptions::Const;
1910       PO |= PointerOptions::Const;
1911       break;
1912     case dwarf::DW_TAG_volatile_type:
1913       Mods |= ModifierOptions::Volatile;
1914       PO |= PointerOptions::Volatile;
1915       break;
1916     case dwarf::DW_TAG_restrict_type:
1917       // Only pointer types be marked with __restrict. There is no known flag
1918       // for __restrict in LF_MODIFIER records.
1919       PO |= PointerOptions::Restrict;
1920       break;
1921     default:
1922       IsModifier = false;
1923       break;
1924     }
1925     if (IsModifier)
1926       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType();
1927   }
1928 
1929   // Check if the inner type will use an LF_POINTER record. If so, the
1930   // qualifiers will go in the LF_POINTER record. This comes up for types like
1931   // 'int *const' and 'int *__restrict', not the more common cases like 'const
1932   // char *'.
1933   if (BaseTy) {
1934     switch (BaseTy->getTag()) {
1935     case dwarf::DW_TAG_pointer_type:
1936     case dwarf::DW_TAG_reference_type:
1937     case dwarf::DW_TAG_rvalue_reference_type:
1938       return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO);
1939     case dwarf::DW_TAG_ptr_to_member_type:
1940       return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO);
1941     default:
1942       break;
1943     }
1944   }
1945 
1946   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1947 
1948   // Return the base type index if there aren't any modifiers. For example, the
1949   // metadata could contain restrict wrappers around non-pointer types.
1950   if (Mods == ModifierOptions::None)
1951     return ModifiedTI;
1952 
1953   ModifierRecord MR(ModifiedTI, Mods);
1954   return TypeTable.writeLeafType(MR);
1955 }
1956 
1957 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1958   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1959   for (const DIType *ArgType : Ty->getTypeArray())
1960     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType));
1961 
1962   // MSVC uses type none for variadic argument.
1963   if (ReturnAndArgTypeIndices.size() > 1 &&
1964       ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
1965     ReturnAndArgTypeIndices.back() = TypeIndex::None();
1966   }
1967   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1968   ArrayRef<TypeIndex> ArgTypeIndices = None;
1969   if (!ReturnAndArgTypeIndices.empty()) {
1970     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1971     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1972     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1973   }
1974 
1975   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1976   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1977 
1978   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1979 
1980   FunctionOptions FO = getFunctionOptions(Ty);
1981   ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(),
1982                             ArgListIndex);
1983   return TypeTable.writeLeafType(Procedure);
1984 }
1985 
1986 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1987                                                  const DIType *ClassTy,
1988                                                  int ThisAdjustment,
1989                                                  bool IsStaticMethod,
1990                                                  FunctionOptions FO) {
1991   // Lower the containing class type.
1992   TypeIndex ClassType = getTypeIndex(ClassTy);
1993 
1994   DITypeRefArray ReturnAndArgs = Ty->getTypeArray();
1995 
1996   unsigned Index = 0;
1997   SmallVector<TypeIndex, 8> ArgTypeIndices;
1998   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1999   if (ReturnAndArgs.size() > Index) {
2000     ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]);
2001   }
2002 
2003   // If the first argument is a pointer type and this isn't a static method,
2004   // treat it as the special 'this' parameter, which is encoded separately from
2005   // the arguments.
2006   TypeIndex ThisTypeIndex;
2007   if (!IsStaticMethod && ReturnAndArgs.size() > Index) {
2008     if (const DIDerivedType *PtrTy =
2009             dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) {
2010       if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) {
2011         ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty);
2012         Index++;
2013       }
2014     }
2015   }
2016 
2017   while (Index < ReturnAndArgs.size())
2018     ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++]));
2019 
2020   // MSVC uses type none for variadic argument.
2021   if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void())
2022     ArgTypeIndices.back() = TypeIndex::None();
2023 
2024   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
2025   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
2026 
2027   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
2028 
2029   MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO,
2030                            ArgTypeIndices.size(), ArgListIndex, ThisAdjustment);
2031   return TypeTable.writeLeafType(MFR);
2032 }
2033 
2034 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
2035   unsigned VSlotCount =
2036       Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
2037   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
2038 
2039   VFTableShapeRecord VFTSR(Slots);
2040   return TypeTable.writeLeafType(VFTSR);
2041 }
2042 
2043 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
2044   switch (Flags & DINode::FlagAccessibility) {
2045   case DINode::FlagPrivate:   return MemberAccess::Private;
2046   case DINode::FlagPublic:    return MemberAccess::Public;
2047   case DINode::FlagProtected: return MemberAccess::Protected;
2048   case 0:
2049     // If there was no explicit access control, provide the default for the tag.
2050     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
2051                                                  : MemberAccess::Public;
2052   }
2053   llvm_unreachable("access flags are exclusive");
2054 }
2055 
2056 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
2057   if (SP->isArtificial())
2058     return MethodOptions::CompilerGenerated;
2059 
2060   // FIXME: Handle other MethodOptions.
2061 
2062   return MethodOptions::None;
2063 }
2064 
2065 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
2066                                            bool Introduced) {
2067   if (SP->getFlags() & DINode::FlagStaticMember)
2068     return MethodKind::Static;
2069 
2070   switch (SP->getVirtuality()) {
2071   case dwarf::DW_VIRTUALITY_none:
2072     break;
2073   case dwarf::DW_VIRTUALITY_virtual:
2074     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
2075   case dwarf::DW_VIRTUALITY_pure_virtual:
2076     return Introduced ? MethodKind::PureIntroducingVirtual
2077                       : MethodKind::PureVirtual;
2078   default:
2079     llvm_unreachable("unhandled virtuality case");
2080   }
2081 
2082   return MethodKind::Vanilla;
2083 }
2084 
2085 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
2086   switch (Ty->getTag()) {
2087   case dwarf::DW_TAG_class_type:
2088     return TypeRecordKind::Class;
2089   case dwarf::DW_TAG_structure_type:
2090     return TypeRecordKind::Struct;
2091   default:
2092     llvm_unreachable("unexpected tag");
2093   }
2094 }
2095 
2096 /// Return ClassOptions that should be present on both the forward declaration
2097 /// and the defintion of a tag type.
2098 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
2099   ClassOptions CO = ClassOptions::None;
2100 
2101   // MSVC always sets this flag, even for local types. Clang doesn't always
2102   // appear to give every type a linkage name, which may be problematic for us.
2103   // FIXME: Investigate the consequences of not following them here.
2104   if (!Ty->getIdentifier().empty())
2105     CO |= ClassOptions::HasUniqueName;
2106 
2107   // Put the Nested flag on a type if it appears immediately inside a tag type.
2108   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
2109   // here. That flag is only set on definitions, and not forward declarations.
2110   const DIScope *ImmediateScope = Ty->getScope();
2111   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
2112     CO |= ClassOptions::Nested;
2113 
2114   // Put the Scoped flag on function-local types. MSVC puts this flag for enum
2115   // type only when it has an immediate function scope. Clang never puts enums
2116   // inside DILexicalBlock scopes. Enum types, as generated by clang, are
2117   // always in function, class, or file scopes.
2118   if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) {
2119     if (ImmediateScope && isa<DISubprogram>(ImmediateScope))
2120       CO |= ClassOptions::Scoped;
2121   } else {
2122     for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
2123          Scope = Scope->getScope()) {
2124       if (isa<DISubprogram>(Scope)) {
2125         CO |= ClassOptions::Scoped;
2126         break;
2127       }
2128     }
2129   }
2130 
2131   return CO;
2132 }
2133 
2134 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) {
2135   switch (Ty->getTag()) {
2136   case dwarf::DW_TAG_class_type:
2137   case dwarf::DW_TAG_structure_type:
2138   case dwarf::DW_TAG_union_type:
2139   case dwarf::DW_TAG_enumeration_type:
2140     break;
2141   default:
2142     return;
2143   }
2144 
2145   if (const auto *File = Ty->getFile()) {
2146     StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
2147     TypeIndex SIDI = TypeTable.writeLeafType(SIDR);
2148 
2149     UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine());
2150     TypeTable.writeLeafType(USLR);
2151   }
2152 }
2153 
2154 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
2155   ClassOptions CO = getCommonClassOptions(Ty);
2156   TypeIndex FTI;
2157   unsigned EnumeratorCount = 0;
2158 
2159   if (Ty->isForwardDecl()) {
2160     CO |= ClassOptions::ForwardReference;
2161   } else {
2162     ContinuationRecordBuilder ContinuationBuilder;
2163     ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2164     for (const DINode *Element : Ty->getElements()) {
2165       // We assume that the frontend provides all members in source declaration
2166       // order, which is what MSVC does.
2167       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
2168         // FIXME: Is it correct to always emit these as unsigned here?
2169         EnumeratorRecord ER(MemberAccess::Public,
2170                             APSInt(Enumerator->getValue(), true),
2171                             Enumerator->getName());
2172         ContinuationBuilder.writeMemberType(ER);
2173         EnumeratorCount++;
2174       }
2175     }
2176     FTI = TypeTable.insertRecord(ContinuationBuilder);
2177   }
2178 
2179   std::string FullName = getFullyQualifiedName(Ty);
2180 
2181   EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
2182                 getTypeIndex(Ty->getBaseType()));
2183   TypeIndex EnumTI = TypeTable.writeLeafType(ER);
2184 
2185   addUDTSrcLine(Ty, EnumTI);
2186 
2187   return EnumTI;
2188 }
2189 
2190 //===----------------------------------------------------------------------===//
2191 // ClassInfo
2192 //===----------------------------------------------------------------------===//
2193 
2194 struct llvm::ClassInfo {
2195   struct MemberInfo {
2196     const DIDerivedType *MemberTypeNode;
2197     uint64_t BaseOffset;
2198   };
2199   // [MemberInfo]
2200   using MemberList = std::vector<MemberInfo>;
2201 
2202   using MethodsList = TinyPtrVector<const DISubprogram *>;
2203   // MethodName -> MethodsList
2204   using MethodsMap = MapVector<MDString *, MethodsList>;
2205 
2206   /// Base classes.
2207   std::vector<const DIDerivedType *> Inheritance;
2208 
2209   /// Direct members.
2210   MemberList Members;
2211   // Direct overloaded methods gathered by name.
2212   MethodsMap Methods;
2213 
2214   TypeIndex VShapeTI;
2215 
2216   std::vector<const DIType *> NestedTypes;
2217 };
2218 
2219 void CodeViewDebug::clear() {
2220   assert(CurFn == nullptr);
2221   FileIdMap.clear();
2222   FnDebugInfo.clear();
2223   FileToFilepathMap.clear();
2224   LocalUDTs.clear();
2225   GlobalUDTs.clear();
2226   TypeIndices.clear();
2227   CompleteTypeIndices.clear();
2228   ScopeGlobals.clear();
2229   CVGlobalVariableOffsets.clear();
2230 }
2231 
2232 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
2233                                       const DIDerivedType *DDTy) {
2234   if (!DDTy->getName().empty()) {
2235     Info.Members.push_back({DDTy, 0});
2236 
2237     // Collect static const data members with values.
2238     if ((DDTy->getFlags() & DINode::FlagStaticMember) ==
2239         DINode::FlagStaticMember) {
2240       if (DDTy->getConstant() && (isa<ConstantInt>(DDTy->getConstant()) ||
2241                                   isa<ConstantFP>(DDTy->getConstant())))
2242         StaticConstMembers.push_back(DDTy);
2243     }
2244 
2245     return;
2246   }
2247 
2248   // An unnamed member may represent a nested struct or union. Attempt to
2249   // interpret the unnamed member as a DICompositeType possibly wrapped in
2250   // qualifier types. Add all the indirect fields to the current record if that
2251   // succeeds, and drop the member if that fails.
2252   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
2253   uint64_t Offset = DDTy->getOffsetInBits();
2254   const DIType *Ty = DDTy->getBaseType();
2255   bool FullyResolved = false;
2256   while (!FullyResolved) {
2257     switch (Ty->getTag()) {
2258     case dwarf::DW_TAG_const_type:
2259     case dwarf::DW_TAG_volatile_type:
2260       // FIXME: we should apply the qualifier types to the indirect fields
2261       // rather than dropping them.
2262       Ty = cast<DIDerivedType>(Ty)->getBaseType();
2263       break;
2264     default:
2265       FullyResolved = true;
2266       break;
2267     }
2268   }
2269 
2270   const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty);
2271   if (!DCTy)
2272     return;
2273 
2274   ClassInfo NestedInfo = collectClassInfo(DCTy);
2275   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
2276     Info.Members.push_back(
2277         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
2278 }
2279 
2280 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
2281   ClassInfo Info;
2282   // Add elements to structure type.
2283   DINodeArray Elements = Ty->getElements();
2284   for (auto *Element : Elements) {
2285     // We assume that the frontend provides all members in source declaration
2286     // order, which is what MSVC does.
2287     if (!Element)
2288       continue;
2289     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
2290       Info.Methods[SP->getRawName()].push_back(SP);
2291     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
2292       if (DDTy->getTag() == dwarf::DW_TAG_member) {
2293         collectMemberInfo(Info, DDTy);
2294       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
2295         Info.Inheritance.push_back(DDTy);
2296       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
2297                  DDTy->getName() == "__vtbl_ptr_type") {
2298         Info.VShapeTI = getTypeIndex(DDTy);
2299       } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
2300         Info.NestedTypes.push_back(DDTy);
2301       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
2302         // Ignore friend members. It appears that MSVC emitted info about
2303         // friends in the past, but modern versions do not.
2304       }
2305     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
2306       Info.NestedTypes.push_back(Composite);
2307     }
2308     // Skip other unrecognized kinds of elements.
2309   }
2310   return Info;
2311 }
2312 
2313 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) {
2314   // This routine is used by lowerTypeClass and lowerTypeUnion to determine
2315   // if a complete type should be emitted instead of a forward reference.
2316   return Ty->getName().empty() && Ty->getIdentifier().empty() &&
2317       !Ty->isForwardDecl();
2318 }
2319 
2320 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
2321   // Emit the complete type for unnamed structs.  C++ classes with methods
2322   // which have a circular reference back to the class type are expected to
2323   // be named by the front-end and should not be "unnamed".  C unnamed
2324   // structs should not have circular references.
2325   if (shouldAlwaysEmitCompleteClassType(Ty)) {
2326     // If this unnamed complete type is already in the process of being defined
2327     // then the description of the type is malformed and cannot be emitted
2328     // into CodeView correctly so report a fatal error.
2329     auto I = CompleteTypeIndices.find(Ty);
2330     if (I != CompleteTypeIndices.end() && I->second == TypeIndex())
2331       report_fatal_error("cannot debug circular reference to unnamed type");
2332     return getCompleteTypeIndex(Ty);
2333   }
2334 
2335   // First, construct the forward decl.  Don't look into Ty to compute the
2336   // forward decl options, since it might not be available in all TUs.
2337   TypeRecordKind Kind = getRecordKind(Ty);
2338   ClassOptions CO =
2339       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2340   std::string FullName = getFullyQualifiedName(Ty);
2341   ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
2342                  FullName, Ty->getIdentifier());
2343   TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR);
2344   if (!Ty->isForwardDecl())
2345     DeferredCompleteTypes.push_back(Ty);
2346   return FwdDeclTI;
2347 }
2348 
2349 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
2350   // Construct the field list and complete type record.
2351   TypeRecordKind Kind = getRecordKind(Ty);
2352   ClassOptions CO = getCommonClassOptions(Ty);
2353   TypeIndex FieldTI;
2354   TypeIndex VShapeTI;
2355   unsigned FieldCount;
2356   bool ContainsNestedClass;
2357   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
2358       lowerRecordFieldList(Ty);
2359 
2360   if (ContainsNestedClass)
2361     CO |= ClassOptions::ContainsNestedClass;
2362 
2363   // MSVC appears to set this flag by searching any destructor or method with
2364   // FunctionOptions::Constructor among the emitted members. Clang AST has all
2365   // the members, however special member functions are not yet emitted into
2366   // debug information. For now checking a class's non-triviality seems enough.
2367   // FIXME: not true for a nested unnamed struct.
2368   if (isNonTrivial(Ty))
2369     CO |= ClassOptions::HasConstructorOrDestructor;
2370 
2371   std::string FullName = getFullyQualifiedName(Ty);
2372 
2373   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2374 
2375   ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
2376                  SizeInBytes, FullName, Ty->getIdentifier());
2377   TypeIndex ClassTI = TypeTable.writeLeafType(CR);
2378 
2379   addUDTSrcLine(Ty, ClassTI);
2380 
2381   addToUDTs(Ty);
2382 
2383   return ClassTI;
2384 }
2385 
2386 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
2387   // Emit the complete type for unnamed unions.
2388   if (shouldAlwaysEmitCompleteClassType(Ty))
2389     return getCompleteTypeIndex(Ty);
2390 
2391   ClassOptions CO =
2392       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2393   std::string FullName = getFullyQualifiedName(Ty);
2394   UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
2395   TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR);
2396   if (!Ty->isForwardDecl())
2397     DeferredCompleteTypes.push_back(Ty);
2398   return FwdDeclTI;
2399 }
2400 
2401 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
2402   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
2403   TypeIndex FieldTI;
2404   unsigned FieldCount;
2405   bool ContainsNestedClass;
2406   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
2407       lowerRecordFieldList(Ty);
2408 
2409   if (ContainsNestedClass)
2410     CO |= ClassOptions::ContainsNestedClass;
2411 
2412   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2413   std::string FullName = getFullyQualifiedName(Ty);
2414 
2415   UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
2416                  Ty->getIdentifier());
2417   TypeIndex UnionTI = TypeTable.writeLeafType(UR);
2418 
2419   addUDTSrcLine(Ty, UnionTI);
2420 
2421   addToUDTs(Ty);
2422 
2423   return UnionTI;
2424 }
2425 
2426 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
2427 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
2428   // Manually count members. MSVC appears to count everything that generates a
2429   // field list record. Each individual overload in a method overload group
2430   // contributes to this count, even though the overload group is a single field
2431   // list record.
2432   unsigned MemberCount = 0;
2433   ClassInfo Info = collectClassInfo(Ty);
2434   ContinuationRecordBuilder ContinuationBuilder;
2435   ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2436 
2437   // Create base classes.
2438   for (const DIDerivedType *I : Info.Inheritance) {
2439     if (I->getFlags() & DINode::FlagVirtual) {
2440       // Virtual base.
2441       unsigned VBPtrOffset = I->getVBPtrOffset();
2442       // FIXME: Despite the accessor name, the offset is really in bytes.
2443       unsigned VBTableIndex = I->getOffsetInBits() / 4;
2444       auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
2445                             ? TypeRecordKind::IndirectVirtualBaseClass
2446                             : TypeRecordKind::VirtualBaseClass;
2447       VirtualBaseClassRecord VBCR(
2448           RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
2449           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
2450           VBTableIndex);
2451 
2452       ContinuationBuilder.writeMemberType(VBCR);
2453       MemberCount++;
2454     } else {
2455       assert(I->getOffsetInBits() % 8 == 0 &&
2456              "bases must be on byte boundaries");
2457       BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
2458                           getTypeIndex(I->getBaseType()),
2459                           I->getOffsetInBits() / 8);
2460       ContinuationBuilder.writeMemberType(BCR);
2461       MemberCount++;
2462     }
2463   }
2464 
2465   // Create members.
2466   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
2467     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
2468     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
2469     StringRef MemberName = Member->getName();
2470     MemberAccess Access =
2471         translateAccessFlags(Ty->getTag(), Member->getFlags());
2472 
2473     if (Member->isStaticMember()) {
2474       StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
2475       ContinuationBuilder.writeMemberType(SDMR);
2476       MemberCount++;
2477       continue;
2478     }
2479 
2480     // Virtual function pointer member.
2481     if ((Member->getFlags() & DINode::FlagArtificial) &&
2482         Member->getName().startswith("_vptr$")) {
2483       VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
2484       ContinuationBuilder.writeMemberType(VFPR);
2485       MemberCount++;
2486       continue;
2487     }
2488 
2489     // Data member.
2490     uint64_t MemberOffsetInBits =
2491         Member->getOffsetInBits() + MemberInfo.BaseOffset;
2492     if (Member->isBitField()) {
2493       uint64_t StartBitOffset = MemberOffsetInBits;
2494       if (const auto *CI =
2495               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
2496         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
2497       }
2498       StartBitOffset -= MemberOffsetInBits;
2499       BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
2500                          StartBitOffset);
2501       MemberBaseType = TypeTable.writeLeafType(BFR);
2502     }
2503     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
2504     DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
2505                          MemberName);
2506     ContinuationBuilder.writeMemberType(DMR);
2507     MemberCount++;
2508   }
2509 
2510   // Create methods
2511   for (auto &MethodItr : Info.Methods) {
2512     StringRef Name = MethodItr.first->getString();
2513 
2514     std::vector<OneMethodRecord> Methods;
2515     for (const DISubprogram *SP : MethodItr.second) {
2516       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
2517       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
2518 
2519       unsigned VFTableOffset = -1;
2520       if (Introduced)
2521         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
2522 
2523       Methods.push_back(OneMethodRecord(
2524           MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
2525           translateMethodKindFlags(SP, Introduced),
2526           translateMethodOptionFlags(SP), VFTableOffset, Name));
2527       MemberCount++;
2528     }
2529     assert(!Methods.empty() && "Empty methods map entry");
2530     if (Methods.size() == 1)
2531       ContinuationBuilder.writeMemberType(Methods[0]);
2532     else {
2533       // FIXME: Make this use its own ContinuationBuilder so that
2534       // MethodOverloadList can be split correctly.
2535       MethodOverloadListRecord MOLR(Methods);
2536       TypeIndex MethodList = TypeTable.writeLeafType(MOLR);
2537 
2538       OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
2539       ContinuationBuilder.writeMemberType(OMR);
2540     }
2541   }
2542 
2543   // Create nested classes.
2544   for (const DIType *Nested : Info.NestedTypes) {
2545     NestedTypeRecord R(getTypeIndex(Nested), Nested->getName());
2546     ContinuationBuilder.writeMemberType(R);
2547     MemberCount++;
2548   }
2549 
2550   TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder);
2551   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
2552                          !Info.NestedTypes.empty());
2553 }
2554 
2555 TypeIndex CodeViewDebug::getVBPTypeIndex() {
2556   if (!VBPType.getIndex()) {
2557     // Make a 'const int *' type.
2558     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
2559     TypeIndex ModifiedTI = TypeTable.writeLeafType(MR);
2560 
2561     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
2562                                                   : PointerKind::Near32;
2563     PointerMode PM = PointerMode::Pointer;
2564     PointerOptions PO = PointerOptions::None;
2565     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
2566     VBPType = TypeTable.writeLeafType(PR);
2567   }
2568 
2569   return VBPType;
2570 }
2571 
2572 TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) {
2573   // The null DIType is the void type. Don't try to hash it.
2574   if (!Ty)
2575     return TypeIndex::Void();
2576 
2577   // Check if we've already translated this type. Don't try to do a
2578   // get-or-create style insertion that caches the hash lookup across the
2579   // lowerType call. It will update the TypeIndices map.
2580   auto I = TypeIndices.find({Ty, ClassTy});
2581   if (I != TypeIndices.end())
2582     return I->second;
2583 
2584   TypeLoweringScope S(*this);
2585   TypeIndex TI = lowerType(Ty, ClassTy);
2586   return recordTypeIndexForDINode(Ty, TI, ClassTy);
2587 }
2588 
2589 codeview::TypeIndex
2590 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy,
2591                                       const DISubroutineType *SubroutineTy) {
2592   assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type &&
2593          "this type must be a pointer type");
2594 
2595   PointerOptions Options = PointerOptions::None;
2596   if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference)
2597     Options = PointerOptions::LValueRefThisPointer;
2598   else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference)
2599     Options = PointerOptions::RValueRefThisPointer;
2600 
2601   // Check if we've already translated this type.  If there is no ref qualifier
2602   // on the function then we look up this pointer type with no associated class
2603   // so that the TypeIndex for the this pointer can be shared with the type
2604   // index for other pointers to this class type.  If there is a ref qualifier
2605   // then we lookup the pointer using the subroutine as the parent type.
2606   auto I = TypeIndices.find({PtrTy, SubroutineTy});
2607   if (I != TypeIndices.end())
2608     return I->second;
2609 
2610   TypeLoweringScope S(*this);
2611   TypeIndex TI = lowerTypePointer(PtrTy, Options);
2612   return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy);
2613 }
2614 
2615 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) {
2616   PointerRecord PR(getTypeIndex(Ty),
2617                    getPointerSizeInBytes() == 8 ? PointerKind::Near64
2618                                                 : PointerKind::Near32,
2619                    PointerMode::LValueReference, PointerOptions::None,
2620                    Ty->getSizeInBits() / 8);
2621   return TypeTable.writeLeafType(PR);
2622 }
2623 
2624 TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) {
2625   // The null DIType is the void type. Don't try to hash it.
2626   if (!Ty)
2627     return TypeIndex::Void();
2628 
2629   // Look through typedefs when getting the complete type index. Call
2630   // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are
2631   // emitted only once.
2632   if (Ty->getTag() == dwarf::DW_TAG_typedef)
2633     (void)getTypeIndex(Ty);
2634   while (Ty->getTag() == dwarf::DW_TAG_typedef)
2635     Ty = cast<DIDerivedType>(Ty)->getBaseType();
2636 
2637   // If this is a non-record type, the complete type index is the same as the
2638   // normal type index. Just call getTypeIndex.
2639   switch (Ty->getTag()) {
2640   case dwarf::DW_TAG_class_type:
2641   case dwarf::DW_TAG_structure_type:
2642   case dwarf::DW_TAG_union_type:
2643     break;
2644   default:
2645     return getTypeIndex(Ty);
2646   }
2647 
2648   const auto *CTy = cast<DICompositeType>(Ty);
2649 
2650   TypeLoweringScope S(*this);
2651 
2652   // Make sure the forward declaration is emitted first. It's unclear if this
2653   // is necessary, but MSVC does it, and we should follow suit until we can show
2654   // otherwise.
2655   // We only emit a forward declaration for named types.
2656   if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) {
2657     TypeIndex FwdDeclTI = getTypeIndex(CTy);
2658 
2659     // Just use the forward decl if we don't have complete type info. This
2660     // might happen if the frontend is using modules and expects the complete
2661     // definition to be emitted elsewhere.
2662     if (CTy->isForwardDecl())
2663       return FwdDeclTI;
2664   }
2665 
2666   // Check if we've already translated the complete record type.
2667   // Insert the type with a null TypeIndex to signify that the type is currently
2668   // being lowered.
2669   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
2670   if (!InsertResult.second)
2671     return InsertResult.first->second;
2672 
2673   TypeIndex TI;
2674   switch (CTy->getTag()) {
2675   case dwarf::DW_TAG_class_type:
2676   case dwarf::DW_TAG_structure_type:
2677     TI = lowerCompleteTypeClass(CTy);
2678     break;
2679   case dwarf::DW_TAG_union_type:
2680     TI = lowerCompleteTypeUnion(CTy);
2681     break;
2682   default:
2683     llvm_unreachable("not a record");
2684   }
2685 
2686   // Update the type index associated with this CompositeType.  This cannot
2687   // use the 'InsertResult' iterator above because it is potentially
2688   // invalidated by map insertions which can occur while lowering the class
2689   // type above.
2690   CompleteTypeIndices[CTy] = TI;
2691   return TI;
2692 }
2693 
2694 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2695 /// and do this until fixpoint, as each complete record type typically
2696 /// references
2697 /// many other record types.
2698 void CodeViewDebug::emitDeferredCompleteTypes() {
2699   SmallVector<const DICompositeType *, 4> TypesToEmit;
2700   while (!DeferredCompleteTypes.empty()) {
2701     std::swap(DeferredCompleteTypes, TypesToEmit);
2702     for (const DICompositeType *RecordTy : TypesToEmit)
2703       getCompleteTypeIndex(RecordTy);
2704     TypesToEmit.clear();
2705   }
2706 }
2707 
2708 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI,
2709                                           ArrayRef<LocalVariable> Locals) {
2710   // Get the sorted list of parameters and emit them first.
2711   SmallVector<const LocalVariable *, 6> Params;
2712   for (const LocalVariable &L : Locals)
2713     if (L.DIVar->isParameter())
2714       Params.push_back(&L);
2715   llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) {
2716     return L->DIVar->getArg() < R->DIVar->getArg();
2717   });
2718   for (const LocalVariable *L : Params)
2719     emitLocalVariable(FI, *L);
2720 
2721   // Next emit all non-parameters in the order that we found them.
2722   for (const LocalVariable &L : Locals)
2723     if (!L.DIVar->isParameter())
2724       emitLocalVariable(FI, L);
2725 }
2726 
2727 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI,
2728                                       const LocalVariable &Var) {
2729   // LocalSym record, see SymbolRecord.h for more info.
2730   MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL);
2731 
2732   LocalSymFlags Flags = LocalSymFlags::None;
2733   if (Var.DIVar->isParameter())
2734     Flags |= LocalSymFlags::IsParameter;
2735   if (Var.DefRanges.empty())
2736     Flags |= LocalSymFlags::IsOptimizedOut;
2737 
2738   OS.AddComment("TypeIndex");
2739   TypeIndex TI = Var.UseReferenceType
2740                      ? getTypeIndexForReferenceTo(Var.DIVar->getType())
2741                      : getCompleteTypeIndex(Var.DIVar->getType());
2742   OS.emitInt32(TI.getIndex());
2743   OS.AddComment("Flags");
2744   OS.emitInt16(static_cast<uint16_t>(Flags));
2745   // Truncate the name so we won't overflow the record length field.
2746   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2747   endSymbolRecord(LocalEnd);
2748 
2749   // Calculate the on disk prefix of the appropriate def range record. The
2750   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2751   // should be big enough to hold all forms without memory allocation.
2752   SmallString<20> BytePrefix;
2753   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2754     BytePrefix.clear();
2755     if (DefRange.InMemory) {
2756       int Offset = DefRange.DataOffset;
2757       unsigned Reg = DefRange.CVRegister;
2758 
2759       // 32-bit x86 call sequences often use PUSH instructions, which disrupt
2760       // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0,
2761       // instead. In frames without stack realignment, $T0 will be the CFA.
2762       if (RegisterId(Reg) == RegisterId::ESP) {
2763         Reg = unsigned(RegisterId::VFRAME);
2764         Offset += FI.OffsetAdjustment;
2765       }
2766 
2767       // If we can use the chosen frame pointer for the frame and this isn't a
2768       // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record.
2769       // Otherwise, use S_DEFRANGE_REGISTER_REL.
2770       EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU);
2771       if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None &&
2772           (bool(Flags & LocalSymFlags::IsParameter)
2773                ? (EncFP == FI.EncodedParamFramePtrReg)
2774                : (EncFP == FI.EncodedLocalFramePtrReg))) {
2775         DefRangeFramePointerRelHeader DRHdr;
2776         DRHdr.Offset = Offset;
2777         OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2778       } else {
2779         uint16_t RegRelFlags = 0;
2780         if (DefRange.IsSubfield) {
2781           RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2782                         (DefRange.StructOffset
2783                          << DefRangeRegisterRelSym::OffsetInParentShift);
2784         }
2785         DefRangeRegisterRelHeader DRHdr;
2786         DRHdr.Register = Reg;
2787         DRHdr.Flags = RegRelFlags;
2788         DRHdr.BasePointerOffset = Offset;
2789         OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2790       }
2791     } else {
2792       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2793       if (DefRange.IsSubfield) {
2794         DefRangeSubfieldRegisterHeader DRHdr;
2795         DRHdr.Register = DefRange.CVRegister;
2796         DRHdr.MayHaveNoName = 0;
2797         DRHdr.OffsetInParent = DefRange.StructOffset;
2798         OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2799       } else {
2800         DefRangeRegisterHeader DRHdr;
2801         DRHdr.Register = DefRange.CVRegister;
2802         DRHdr.MayHaveNoName = 0;
2803         OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2804       }
2805     }
2806   }
2807 }
2808 
2809 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks,
2810                                          const FunctionInfo& FI) {
2811   for (LexicalBlock *Block : Blocks)
2812     emitLexicalBlock(*Block, FI);
2813 }
2814 
2815 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a
2816 /// lexical block scope.
2817 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block,
2818                                      const FunctionInfo& FI) {
2819   MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32);
2820   OS.AddComment("PtrParent");
2821   OS.emitInt32(0); // PtrParent
2822   OS.AddComment("PtrEnd");
2823   OS.emitInt32(0); // PtrEnd
2824   OS.AddComment("Code size");
2825   OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4);   // Code Size
2826   OS.AddComment("Function section relative address");
2827   OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0);         // Func Offset
2828   OS.AddComment("Function section index");
2829   OS.EmitCOFFSectionIndex(FI.Begin);                      // Func Symbol
2830   OS.AddComment("Lexical block name");
2831   emitNullTerminatedSymbolName(OS, Block.Name);           // Name
2832   endSymbolRecord(RecordEnd);
2833 
2834   // Emit variables local to this lexical block.
2835   emitLocalVariableList(FI, Block.Locals);
2836   emitGlobalVariableList(Block.Globals);
2837 
2838   // Emit lexical blocks contained within this block.
2839   emitLexicalBlockList(Block.Children, FI);
2840 
2841   // Close the lexical block scope.
2842   emitEndSymbolRecord(SymbolKind::S_END);
2843 }
2844 
2845 /// Convenience routine for collecting lexical block information for a list
2846 /// of lexical scopes.
2847 void CodeViewDebug::collectLexicalBlockInfo(
2848         SmallVectorImpl<LexicalScope *> &Scopes,
2849         SmallVectorImpl<LexicalBlock *> &Blocks,
2850         SmallVectorImpl<LocalVariable> &Locals,
2851         SmallVectorImpl<CVGlobalVariable> &Globals) {
2852   for (LexicalScope *Scope : Scopes)
2853     collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals);
2854 }
2855 
2856 /// Populate the lexical blocks and local variable lists of the parent with
2857 /// information about the specified lexical scope.
2858 void CodeViewDebug::collectLexicalBlockInfo(
2859     LexicalScope &Scope,
2860     SmallVectorImpl<LexicalBlock *> &ParentBlocks,
2861     SmallVectorImpl<LocalVariable> &ParentLocals,
2862     SmallVectorImpl<CVGlobalVariable> &ParentGlobals) {
2863   if (Scope.isAbstractScope())
2864     return;
2865 
2866   // Gather information about the lexical scope including local variables,
2867   // global variables, and address ranges.
2868   bool IgnoreScope = false;
2869   auto LI = ScopeVariables.find(&Scope);
2870   SmallVectorImpl<LocalVariable> *Locals =
2871       LI != ScopeVariables.end() ? &LI->second : nullptr;
2872   auto GI = ScopeGlobals.find(Scope.getScopeNode());
2873   SmallVectorImpl<CVGlobalVariable> *Globals =
2874       GI != ScopeGlobals.end() ? GI->second.get() : nullptr;
2875   const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode());
2876   const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges();
2877 
2878   // Ignore lexical scopes which do not contain variables.
2879   if (!Locals && !Globals)
2880     IgnoreScope = true;
2881 
2882   // Ignore lexical scopes which are not lexical blocks.
2883   if (!DILB)
2884     IgnoreScope = true;
2885 
2886   // Ignore scopes which have too many address ranges to represent in the
2887   // current CodeView format or do not have a valid address range.
2888   //
2889   // For lexical scopes with multiple address ranges you may be tempted to
2890   // construct a single range covering every instruction where the block is
2891   // live and everything in between.  Unfortunately, Visual Studio only
2892   // displays variables from the first matching lexical block scope.  If the
2893   // first lexical block contains exception handling code or cold code which
2894   // is moved to the bottom of the routine creating a single range covering
2895   // nearly the entire routine, then it will hide all other lexical blocks
2896   // and the variables they contain.
2897   if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second))
2898     IgnoreScope = true;
2899 
2900   if (IgnoreScope) {
2901     // This scope can be safely ignored and eliminating it will reduce the
2902     // size of the debug information. Be sure to collect any variable and scope
2903     // information from the this scope or any of its children and collapse them
2904     // into the parent scope.
2905     if (Locals)
2906       ParentLocals.append(Locals->begin(), Locals->end());
2907     if (Globals)
2908       ParentGlobals.append(Globals->begin(), Globals->end());
2909     collectLexicalBlockInfo(Scope.getChildren(),
2910                             ParentBlocks,
2911                             ParentLocals,
2912                             ParentGlobals);
2913     return;
2914   }
2915 
2916   // Create a new CodeView lexical block for this lexical scope.  If we've
2917   // seen this DILexicalBlock before then the scope tree is malformed and
2918   // we can handle this gracefully by not processing it a second time.
2919   auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()});
2920   if (!BlockInsertion.second)
2921     return;
2922 
2923   // Create a lexical block containing the variables and collect the the
2924   // lexical block information for the children.
2925   const InsnRange &Range = Ranges.front();
2926   assert(Range.first && Range.second);
2927   LexicalBlock &Block = BlockInsertion.first->second;
2928   Block.Begin = getLabelBeforeInsn(Range.first);
2929   Block.End = getLabelAfterInsn(Range.second);
2930   assert(Block.Begin && "missing label for scope begin");
2931   assert(Block.End && "missing label for scope end");
2932   Block.Name = DILB->getName();
2933   if (Locals)
2934     Block.Locals = std::move(*Locals);
2935   if (Globals)
2936     Block.Globals = std::move(*Globals);
2937   ParentBlocks.push_back(&Block);
2938   collectLexicalBlockInfo(Scope.getChildren(),
2939                           Block.Children,
2940                           Block.Locals,
2941                           Block.Globals);
2942 }
2943 
2944 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2945   const Function &GV = MF->getFunction();
2946   assert(FnDebugInfo.count(&GV));
2947   assert(CurFn == FnDebugInfo[&GV].get());
2948 
2949   collectVariableInfo(GV.getSubprogram());
2950 
2951   // Build the lexical block structure to emit for this routine.
2952   if (LexicalScope *CFS = LScopes.getCurrentFunctionScope())
2953     collectLexicalBlockInfo(*CFS,
2954                             CurFn->ChildBlocks,
2955                             CurFn->Locals,
2956                             CurFn->Globals);
2957 
2958   // Clear the scope and variable information from the map which will not be
2959   // valid after we have finished processing this routine.  This also prepares
2960   // the map for the subsequent routine.
2961   ScopeVariables.clear();
2962 
2963   // Don't emit anything if we don't have any line tables.
2964   // Thunks are compiler-generated and probably won't have source correlation.
2965   if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) {
2966     FnDebugInfo.erase(&GV);
2967     CurFn = nullptr;
2968     return;
2969   }
2970 
2971   // Find heap alloc sites and add to list.
2972   for (const auto &MBB : *MF) {
2973     for (const auto &MI : MBB) {
2974       if (MDNode *MD = MI.getHeapAllocMarker()) {
2975         CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI),
2976                                                         getLabelAfterInsn(&MI),
2977                                                         dyn_cast<DIType>(MD)));
2978       }
2979     }
2980   }
2981 
2982   CurFn->Annotations = MF->getCodeViewAnnotations();
2983 
2984   CurFn->End = Asm->getFunctionEnd();
2985 
2986   CurFn = nullptr;
2987 }
2988 
2989 // Usable locations are valid with non-zero line numbers. A line number of zero
2990 // corresponds to optimized code that doesn't have a distinct source location.
2991 // In this case, we try to use the previous or next source location depending on
2992 // the context.
2993 static bool isUsableDebugLoc(DebugLoc DL) {
2994   return DL && DL.getLine() != 0;
2995 }
2996 
2997 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2998   DebugHandlerBase::beginInstruction(MI);
2999 
3000   // Ignore DBG_VALUE and DBG_LABEL locations and function prologue.
3001   if (!Asm || !CurFn || MI->isDebugInstr() ||
3002       MI->getFlag(MachineInstr::FrameSetup))
3003     return;
3004 
3005   // If the first instruction of a new MBB has no location, find the first
3006   // instruction with a location and use that.
3007   DebugLoc DL = MI->getDebugLoc();
3008   if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) {
3009     for (const auto &NextMI : *MI->getParent()) {
3010       if (NextMI.isDebugInstr())
3011         continue;
3012       DL = NextMI.getDebugLoc();
3013       if (isUsableDebugLoc(DL))
3014         break;
3015     }
3016     // FIXME: Handle the case where the BB has no valid locations. This would
3017     // probably require doing a real dataflow analysis.
3018   }
3019   PrevInstBB = MI->getParent();
3020 
3021   // If we still don't have a debug location, don't record a location.
3022   if (!isUsableDebugLoc(DL))
3023     return;
3024 
3025   maybeRecordLocation(DL, Asm->MF);
3026 }
3027 
3028 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
3029   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
3030            *EndLabel = MMI->getContext().createTempSymbol();
3031   OS.emitInt32(unsigned(Kind));
3032   OS.AddComment("Subsection size");
3033   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
3034   OS.emitLabel(BeginLabel);
3035   return EndLabel;
3036 }
3037 
3038 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
3039   OS.emitLabel(EndLabel);
3040   // Every subsection must be aligned to a 4-byte boundary.
3041   OS.emitValueToAlignment(4);
3042 }
3043 
3044 static StringRef getSymbolName(SymbolKind SymKind) {
3045   for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames())
3046     if (EE.Value == SymKind)
3047       return EE.Name;
3048   return "";
3049 }
3050 
3051 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) {
3052   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
3053            *EndLabel = MMI->getContext().createTempSymbol();
3054   OS.AddComment("Record length");
3055   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
3056   OS.emitLabel(BeginLabel);
3057   if (OS.isVerboseAsm())
3058     OS.AddComment("Record kind: " + getSymbolName(SymKind));
3059   OS.emitInt16(unsigned(SymKind));
3060   return EndLabel;
3061 }
3062 
3063 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) {
3064   // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid
3065   // an extra copy of every symbol record in LLD. This increases object file
3066   // size by less than 1% in the clang build, and is compatible with the Visual
3067   // C++ linker.
3068   OS.emitValueToAlignment(4);
3069   OS.emitLabel(SymEnd);
3070 }
3071 
3072 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) {
3073   OS.AddComment("Record length");
3074   OS.emitInt16(2);
3075   if (OS.isVerboseAsm())
3076     OS.AddComment("Record kind: " + getSymbolName(EndKind));
3077   OS.emitInt16(uint16_t(EndKind)); // Record Kind
3078 }
3079 
3080 void CodeViewDebug::emitDebugInfoForUDTs(
3081     const std::vector<std::pair<std::string, const DIType *>> &UDTs) {
3082 #ifndef NDEBUG
3083   size_t OriginalSize = UDTs.size();
3084 #endif
3085   for (const auto &UDT : UDTs) {
3086     const DIType *T = UDT.second;
3087     assert(shouldEmitUdt(T));
3088     MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT);
3089     OS.AddComment("Type");
3090     OS.emitInt32(getCompleteTypeIndex(T).getIndex());
3091     assert(OriginalSize == UDTs.size() &&
3092            "getCompleteTypeIndex found new UDTs!");
3093     emitNullTerminatedSymbolName(OS, UDT.first);
3094     endSymbolRecord(UDTRecordEnd);
3095   }
3096 }
3097 
3098 void CodeViewDebug::collectGlobalVariableInfo() {
3099   DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
3100       GlobalMap;
3101   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
3102     SmallVector<DIGlobalVariableExpression *, 1> GVEs;
3103     GV.getDebugInfo(GVEs);
3104     for (const auto *GVE : GVEs)
3105       GlobalMap[GVE] = &GV;
3106   }
3107 
3108   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
3109   for (const MDNode *Node : CUs->operands()) {
3110     const auto *CU = cast<DICompileUnit>(Node);
3111     for (const auto *GVE : CU->getGlobalVariables()) {
3112       const DIGlobalVariable *DIGV = GVE->getVariable();
3113       const DIExpression *DIE = GVE->getExpression();
3114 
3115       if ((DIE->getNumElements() == 2) &&
3116           (DIE->getElement(0) == dwarf::DW_OP_plus_uconst))
3117         // Record the constant offset for the variable.
3118         //
3119         // A Fortran common block uses this idiom to encode the offset
3120         // of a variable from the common block's starting address.
3121         CVGlobalVariableOffsets.insert(
3122             std::make_pair(DIGV, DIE->getElement(1)));
3123 
3124       // Emit constant global variables in a global symbol section.
3125       if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) {
3126         CVGlobalVariable CVGV = {DIGV, DIE};
3127         GlobalVariables.emplace_back(std::move(CVGV));
3128       }
3129 
3130       const auto *GV = GlobalMap.lookup(GVE);
3131       if (!GV || GV->isDeclarationForLinker())
3132         continue;
3133 
3134       DIScope *Scope = DIGV->getScope();
3135       SmallVector<CVGlobalVariable, 1> *VariableList;
3136       if (Scope && isa<DILocalScope>(Scope)) {
3137         // Locate a global variable list for this scope, creating one if
3138         // necessary.
3139         auto Insertion = ScopeGlobals.insert(
3140             {Scope, std::unique_ptr<GlobalVariableList>()});
3141         if (Insertion.second)
3142           Insertion.first->second = std::make_unique<GlobalVariableList>();
3143         VariableList = Insertion.first->second.get();
3144       } else if (GV->hasComdat())
3145         // Emit this global variable into a COMDAT section.
3146         VariableList = &ComdatVariables;
3147       else
3148         // Emit this global variable in a single global symbol section.
3149         VariableList = &GlobalVariables;
3150       CVGlobalVariable CVGV = {DIGV, GV};
3151       VariableList->emplace_back(std::move(CVGV));
3152     }
3153   }
3154 }
3155 
3156 void CodeViewDebug::collectDebugInfoForGlobals() {
3157   for (const CVGlobalVariable &CVGV : GlobalVariables) {
3158     const DIGlobalVariable *DIGV = CVGV.DIGV;
3159     const DIScope *Scope = DIGV->getScope();
3160     getCompleteTypeIndex(DIGV->getType());
3161     getFullyQualifiedName(Scope, DIGV->getName());
3162   }
3163 
3164   for (const CVGlobalVariable &CVGV : ComdatVariables) {
3165     const DIGlobalVariable *DIGV = CVGV.DIGV;
3166     const DIScope *Scope = DIGV->getScope();
3167     getCompleteTypeIndex(DIGV->getType());
3168     getFullyQualifiedName(Scope, DIGV->getName());
3169   }
3170 }
3171 
3172 void CodeViewDebug::emitDebugInfoForGlobals() {
3173   // First, emit all globals that are not in a comdat in a single symbol
3174   // substream. MSVC doesn't like it if the substream is empty, so only open
3175   // it if we have at least one global to emit.
3176   switchToDebugSectionForSymbol(nullptr);
3177   if (!GlobalVariables.empty() || !StaticConstMembers.empty()) {
3178     OS.AddComment("Symbol subsection for globals");
3179     MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
3180     emitGlobalVariableList(GlobalVariables);
3181     emitStaticConstMemberList();
3182     endCVSubsection(EndLabel);
3183   }
3184 
3185   // Second, emit each global that is in a comdat into its own .debug$S
3186   // section along with its own symbol substream.
3187   for (const CVGlobalVariable &CVGV : ComdatVariables) {
3188     const GlobalVariable *GV = CVGV.GVInfo.get<const GlobalVariable *>();
3189     MCSymbol *GVSym = Asm->getSymbol(GV);
3190     OS.AddComment("Symbol subsection for " +
3191                   Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
3192     switchToDebugSectionForSymbol(GVSym);
3193     MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
3194     // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3195     emitDebugInfoForGlobal(CVGV);
3196     endCVSubsection(EndLabel);
3197   }
3198 }
3199 
3200 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
3201   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
3202   for (const MDNode *Node : CUs->operands()) {
3203     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
3204       if (DIType *RT = dyn_cast<DIType>(Ty)) {
3205         getTypeIndex(RT);
3206         // FIXME: Add to global/local DTU list.
3207       }
3208     }
3209   }
3210 }
3211 
3212 // Emit each global variable in the specified array.
3213 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) {
3214   for (const CVGlobalVariable &CVGV : Globals) {
3215     // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3216     emitDebugInfoForGlobal(CVGV);
3217   }
3218 }
3219 
3220 void CodeViewDebug::emitConstantSymbolRecord(const DIType *DTy, APSInt &Value,
3221                                              const std::string &QualifiedName) {
3222   MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT);
3223   OS.AddComment("Type");
3224   OS.emitInt32(getTypeIndex(DTy).getIndex());
3225 
3226   OS.AddComment("Value");
3227 
3228   // Encoded integers shouldn't need more than 10 bytes.
3229   uint8_t Data[10];
3230   BinaryStreamWriter Writer(Data, llvm::support::endianness::little);
3231   CodeViewRecordIO IO(Writer);
3232   cantFail(IO.mapEncodedInteger(Value));
3233   StringRef SRef((char *)Data, Writer.getOffset());
3234   OS.emitBinaryData(SRef);
3235 
3236   OS.AddComment("Name");
3237   emitNullTerminatedSymbolName(OS, QualifiedName);
3238   endSymbolRecord(SConstantEnd);
3239 }
3240 
3241 void CodeViewDebug::emitStaticConstMemberList() {
3242   for (const DIDerivedType *DTy : StaticConstMembers) {
3243     const DIScope *Scope = DTy->getScope();
3244 
3245     APSInt Value;
3246     if (const ConstantInt *CI =
3247             dyn_cast_or_null<ConstantInt>(DTy->getConstant()))
3248       Value = APSInt(CI->getValue(),
3249                      DebugHandlerBase::isUnsignedDIType(DTy->getBaseType()));
3250     else if (const ConstantFP *CFP =
3251                  dyn_cast_or_null<ConstantFP>(DTy->getConstant()))
3252       Value = APSInt(CFP->getValueAPF().bitcastToAPInt(), true);
3253     else
3254       llvm_unreachable("cannot emit a constant without a value");
3255 
3256     emitConstantSymbolRecord(DTy->getBaseType(), Value,
3257                              getFullyQualifiedName(Scope, DTy->getName()));
3258   }
3259 }
3260 
3261 static bool isFloatDIType(const DIType *Ty) {
3262   if (isa<DICompositeType>(Ty))
3263     return false;
3264 
3265   if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
3266     dwarf::Tag T = (dwarf::Tag)Ty->getTag();
3267     if (T == dwarf::DW_TAG_pointer_type ||
3268         T == dwarf::DW_TAG_ptr_to_member_type ||
3269         T == dwarf::DW_TAG_reference_type ||
3270         T == dwarf::DW_TAG_rvalue_reference_type)
3271       return false;
3272     assert(DTy->getBaseType() && "Expected valid base type");
3273     return isFloatDIType(DTy->getBaseType());
3274   }
3275 
3276   auto *BTy = cast<DIBasicType>(Ty);
3277   return (BTy->getEncoding() == dwarf::DW_ATE_float);
3278 }
3279 
3280 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) {
3281   const DIGlobalVariable *DIGV = CVGV.DIGV;
3282 
3283   const DIScope *Scope = DIGV->getScope();
3284   // For static data members, get the scope from the declaration.
3285   if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>(
3286           DIGV->getRawStaticDataMemberDeclaration()))
3287     Scope = MemberDecl->getScope();
3288   // For Fortran, the scoping portion is elided in its name so that we can
3289   // reference the variable in the command line of the VS debugger.
3290   std::string QualifiedName =
3291       (moduleIsInFortran()) ? std::string(DIGV->getName())
3292                             : getFullyQualifiedName(Scope, DIGV->getName());
3293 
3294   if (const GlobalVariable *GV =
3295           CVGV.GVInfo.dyn_cast<const GlobalVariable *>()) {
3296     // DataSym record, see SymbolRecord.h for more info. Thread local data
3297     // happens to have the same format as global data.
3298     MCSymbol *GVSym = Asm->getSymbol(GV);
3299     SymbolKind DataSym = GV->isThreadLocal()
3300                              ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32
3301                                                       : SymbolKind::S_GTHREAD32)
3302                              : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32
3303                                                       : SymbolKind::S_GDATA32);
3304     MCSymbol *DataEnd = beginSymbolRecord(DataSym);
3305     OS.AddComment("Type");
3306     OS.emitInt32(getCompleteTypeIndex(DIGV->getType()).getIndex());
3307     OS.AddComment("DataOffset");
3308 
3309     uint64_t Offset = 0;
3310     if (CVGlobalVariableOffsets.find(DIGV) != CVGlobalVariableOffsets.end())
3311       // Use the offset seen while collecting info on globals.
3312       Offset = CVGlobalVariableOffsets[DIGV];
3313     OS.EmitCOFFSecRel32(GVSym, Offset);
3314 
3315     OS.AddComment("Segment");
3316     OS.EmitCOFFSectionIndex(GVSym);
3317     OS.AddComment("Name");
3318     const unsigned LengthOfDataRecord = 12;
3319     emitNullTerminatedSymbolName(OS, QualifiedName, LengthOfDataRecord);
3320     endSymbolRecord(DataEnd);
3321   } else {
3322     const DIExpression *DIE = CVGV.GVInfo.get<const DIExpression *>();
3323     assert(DIE->isConstant() &&
3324            "Global constant variables must contain a constant expression.");
3325 
3326     // Use unsigned for floats.
3327     bool isUnsigned = isFloatDIType(DIGV->getType())
3328                           ? true
3329                           : DebugHandlerBase::isUnsignedDIType(DIGV->getType());
3330     APSInt Value(APInt(/*BitWidth=*/64, DIE->getElement(1)), isUnsigned);
3331     emitConstantSymbolRecord(DIGV->getType(), Value, QualifiedName);
3332   }
3333 }
3334