1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "PseudoProbePrinter.h" 18 #include "WasmException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/TinyPtrVector.h" 31 #include "llvm/ADT/Triple.h" 32 #include "llvm/ADT/Twine.h" 33 #include "llvm/Analysis/ConstantFolding.h" 34 #include "llvm/Analysis/EHPersonalities.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 37 #include "llvm/BinaryFormat/COFF.h" 38 #include "llvm/BinaryFormat/Dwarf.h" 39 #include "llvm/BinaryFormat/ELF.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/GCMetadataPrinter.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineConstantPool.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineInstr.h" 49 #include "llvm/CodeGen/MachineInstrBundle.h" 50 #include "llvm/CodeGen/MachineJumpTableInfo.h" 51 #include "llvm/CodeGen/MachineLoopInfo.h" 52 #include "llvm/CodeGen/MachineModuleInfo.h" 53 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 54 #include "llvm/CodeGen/MachineOperand.h" 55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/TargetFrameLowering.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/Config/config.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/Comdat.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GCStrategy.h" 72 #include "llvm/IR/GlobalAlias.h" 73 #include "llvm/IR/GlobalIFunc.h" 74 #include "llvm/IR/GlobalObject.h" 75 #include "llvm/IR/GlobalValue.h" 76 #include "llvm/IR/GlobalVariable.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Mangler.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PseudoProbe.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/IR/ValueHandle.h" 86 #include "llvm/MC/MCAsmInfo.h" 87 #include "llvm/MC/MCContext.h" 88 #include "llvm/MC/MCDirectives.h" 89 #include "llvm/MC/MCExpr.h" 90 #include "llvm/MC/MCInst.h" 91 #include "llvm/MC/MCSection.h" 92 #include "llvm/MC/MCSectionCOFF.h" 93 #include "llvm/MC/MCSectionELF.h" 94 #include "llvm/MC/MCSectionMachO.h" 95 #include "llvm/MC/MCStreamer.h" 96 #include "llvm/MC/MCSubtargetInfo.h" 97 #include "llvm/MC/MCSymbol.h" 98 #include "llvm/MC/MCSymbolELF.h" 99 #include "llvm/MC/MCTargetOptions.h" 100 #include "llvm/MC/MCValue.h" 101 #include "llvm/MC/SectionKind.h" 102 #include "llvm/Pass.h" 103 #include "llvm/Remarks/RemarkStreamer.h" 104 #include "llvm/Support/Casting.h" 105 #include "llvm/Support/Compiler.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/FileSystem.h" 108 #include "llvm/Support/Format.h" 109 #include "llvm/Support/MathExtras.h" 110 #include "llvm/Support/Path.h" 111 #include "llvm/Support/Timer.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Target/TargetLoweringObjectFile.h" 114 #include "llvm/Target/TargetMachine.h" 115 #include "llvm/Target/TargetOptions.h" 116 #include <algorithm> 117 #include <cassert> 118 #include <cinttypes> 119 #include <cstdint> 120 #include <iterator> 121 #include <memory> 122 #include <optional> 123 #include <string> 124 #include <utility> 125 #include <vector> 126 127 using namespace llvm; 128 129 #define DEBUG_TYPE "asm-printer" 130 131 const char DWARFGroupName[] = "dwarf"; 132 const char DWARFGroupDescription[] = "DWARF Emission"; 133 const char DbgTimerName[] = "emit"; 134 const char DbgTimerDescription[] = "Debug Info Emission"; 135 const char EHTimerName[] = "write_exception"; 136 const char EHTimerDescription[] = "DWARF Exception Writer"; 137 const char CFGuardName[] = "Control Flow Guard"; 138 const char CFGuardDescription[] = "Control Flow Guard"; 139 const char CodeViewLineTablesGroupName[] = "linetables"; 140 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables"; 141 const char PPTimerName[] = "emit"; 142 const char PPTimerDescription[] = "Pseudo Probe Emission"; 143 const char PPGroupName[] = "pseudo probe"; 144 const char PPGroupDescription[] = "Pseudo Probe Emission"; 145 146 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 147 148 char AsmPrinter::ID = 0; 149 150 namespace { 151 class AddrLabelMapCallbackPtr final : CallbackVH { 152 AddrLabelMap *Map = nullptr; 153 154 public: 155 AddrLabelMapCallbackPtr() = default; 156 AddrLabelMapCallbackPtr(Value *V) : CallbackVH(V) {} 157 158 void setPtr(BasicBlock *BB) { 159 ValueHandleBase::operator=(BB); 160 } 161 162 void setMap(AddrLabelMap *map) { Map = map; } 163 164 void deleted() override; 165 void allUsesReplacedWith(Value *V2) override; 166 }; 167 } // namespace 168 169 class llvm::AddrLabelMap { 170 MCContext &Context; 171 struct AddrLabelSymEntry { 172 /// The symbols for the label. 173 TinyPtrVector<MCSymbol *> Symbols; 174 175 Function *Fn; // The containing function of the BasicBlock. 176 unsigned Index; // The index in BBCallbacks for the BasicBlock. 177 }; 178 179 DenseMap<AssertingVH<BasicBlock>, AddrLabelSymEntry> AddrLabelSymbols; 180 181 /// Callbacks for the BasicBlock's that we have entries for. We use this so 182 /// we get notified if a block is deleted or RAUWd. 183 std::vector<AddrLabelMapCallbackPtr> BBCallbacks; 184 185 /// This is a per-function list of symbols whose corresponding BasicBlock got 186 /// deleted. These symbols need to be emitted at some point in the file, so 187 /// AsmPrinter emits them after the function body. 188 DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>> 189 DeletedAddrLabelsNeedingEmission; 190 191 public: 192 AddrLabelMap(MCContext &context) : Context(context) {} 193 194 ~AddrLabelMap() { 195 assert(DeletedAddrLabelsNeedingEmission.empty() && 196 "Some labels for deleted blocks never got emitted"); 197 } 198 199 ArrayRef<MCSymbol *> getAddrLabelSymbolToEmit(BasicBlock *BB); 200 201 void takeDeletedSymbolsForFunction(Function *F, 202 std::vector<MCSymbol *> &Result); 203 204 void UpdateForDeletedBlock(BasicBlock *BB); 205 void UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New); 206 }; 207 208 ArrayRef<MCSymbol *> AddrLabelMap::getAddrLabelSymbolToEmit(BasicBlock *BB) { 209 assert(BB->hasAddressTaken() && 210 "Shouldn't get label for block without address taken"); 211 AddrLabelSymEntry &Entry = AddrLabelSymbols[BB]; 212 213 // If we already had an entry for this block, just return it. 214 if (!Entry.Symbols.empty()) { 215 assert(BB->getParent() == Entry.Fn && "Parent changed"); 216 return Entry.Symbols; 217 } 218 219 // Otherwise, this is a new entry, create a new symbol for it and add an 220 // entry to BBCallbacks so we can be notified if the BB is deleted or RAUWd. 221 BBCallbacks.emplace_back(BB); 222 BBCallbacks.back().setMap(this); 223 Entry.Index = BBCallbacks.size() - 1; 224 Entry.Fn = BB->getParent(); 225 MCSymbol *Sym = BB->hasAddressTaken() ? Context.createNamedTempSymbol() 226 : Context.createTempSymbol(); 227 Entry.Symbols.push_back(Sym); 228 return Entry.Symbols; 229 } 230 231 /// If we have any deleted symbols for F, return them. 232 void AddrLabelMap::takeDeletedSymbolsForFunction( 233 Function *F, std::vector<MCSymbol *> &Result) { 234 DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>::iterator I = 235 DeletedAddrLabelsNeedingEmission.find(F); 236 237 // If there are no entries for the function, just return. 238 if (I == DeletedAddrLabelsNeedingEmission.end()) 239 return; 240 241 // Otherwise, take the list. 242 std::swap(Result, I->second); 243 DeletedAddrLabelsNeedingEmission.erase(I); 244 } 245 246 //===- Address of Block Management ----------------------------------------===// 247 248 ArrayRef<MCSymbol *> 249 AsmPrinter::getAddrLabelSymbolToEmit(const BasicBlock *BB) { 250 // Lazily create AddrLabelSymbols. 251 if (!AddrLabelSymbols) 252 AddrLabelSymbols = std::make_unique<AddrLabelMap>(OutContext); 253 return AddrLabelSymbols->getAddrLabelSymbolToEmit( 254 const_cast<BasicBlock *>(BB)); 255 } 256 257 void AsmPrinter::takeDeletedSymbolsForFunction( 258 const Function *F, std::vector<MCSymbol *> &Result) { 259 // If no blocks have had their addresses taken, we're done. 260 if (!AddrLabelSymbols) 261 return; 262 return AddrLabelSymbols->takeDeletedSymbolsForFunction( 263 const_cast<Function *>(F), Result); 264 } 265 266 void AddrLabelMap::UpdateForDeletedBlock(BasicBlock *BB) { 267 // If the block got deleted, there is no need for the symbol. If the symbol 268 // was already emitted, we can just forget about it, otherwise we need to 269 // queue it up for later emission when the function is output. 270 AddrLabelSymEntry Entry = std::move(AddrLabelSymbols[BB]); 271 AddrLabelSymbols.erase(BB); 272 assert(!Entry.Symbols.empty() && "Didn't have a symbol, why a callback?"); 273 BBCallbacks[Entry.Index] = nullptr; // Clear the callback. 274 275 #if !LLVM_MEMORY_SANITIZER_BUILD 276 // BasicBlock is destroyed already, so this access is UB detectable by msan. 277 assert((BB->getParent() == nullptr || BB->getParent() == Entry.Fn) && 278 "Block/parent mismatch"); 279 #endif 280 281 for (MCSymbol *Sym : Entry.Symbols) { 282 if (Sym->isDefined()) 283 return; 284 285 // If the block is not yet defined, we need to emit it at the end of the 286 // function. Add the symbol to the DeletedAddrLabelsNeedingEmission list 287 // for the containing Function. Since the block is being deleted, its 288 // parent may already be removed, we have to get the function from 'Entry'. 289 DeletedAddrLabelsNeedingEmission[Entry.Fn].push_back(Sym); 290 } 291 } 292 293 void AddrLabelMap::UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New) { 294 // Get the entry for the RAUW'd block and remove it from our map. 295 AddrLabelSymEntry OldEntry = std::move(AddrLabelSymbols[Old]); 296 AddrLabelSymbols.erase(Old); 297 assert(!OldEntry.Symbols.empty() && "Didn't have a symbol, why a callback?"); 298 299 AddrLabelSymEntry &NewEntry = AddrLabelSymbols[New]; 300 301 // If New is not address taken, just move our symbol over to it. 302 if (NewEntry.Symbols.empty()) { 303 BBCallbacks[OldEntry.Index].setPtr(New); // Update the callback. 304 NewEntry = std::move(OldEntry); // Set New's entry. 305 return; 306 } 307 308 BBCallbacks[OldEntry.Index] = nullptr; // Update the callback. 309 310 // Otherwise, we need to add the old symbols to the new block's set. 311 llvm::append_range(NewEntry.Symbols, OldEntry.Symbols); 312 } 313 314 void AddrLabelMapCallbackPtr::deleted() { 315 Map->UpdateForDeletedBlock(cast<BasicBlock>(getValPtr())); 316 } 317 318 void AddrLabelMapCallbackPtr::allUsesReplacedWith(Value *V2) { 319 Map->UpdateForRAUWBlock(cast<BasicBlock>(getValPtr()), cast<BasicBlock>(V2)); 320 } 321 322 /// getGVAlignment - Return the alignment to use for the specified global 323 /// value. This rounds up to the preferred alignment if possible and legal. 324 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 325 Align InAlign) { 326 Align Alignment; 327 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 328 Alignment = DL.getPreferredAlign(GVar); 329 330 // If InAlign is specified, round it to it. 331 if (InAlign > Alignment) 332 Alignment = InAlign; 333 334 // If the GV has a specified alignment, take it into account. 335 const MaybeAlign GVAlign(GV->getAlign()); 336 if (!GVAlign) 337 return Alignment; 338 339 assert(GVAlign && "GVAlign must be set"); 340 341 // If the GVAlign is larger than NumBits, or if we are required to obey 342 // NumBits because the GV has an assigned section, obey it. 343 if (*GVAlign > Alignment || GV->hasSection()) 344 Alignment = *GVAlign; 345 return Alignment; 346 } 347 348 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 349 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 350 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)), 351 SM(*this) { 352 VerboseAsm = OutStreamer->isVerboseAsm(); 353 DwarfUsesRelocationsAcrossSections = 354 MAI->doesDwarfUseRelocationsAcrossSections(); 355 } 356 357 AsmPrinter::~AsmPrinter() { 358 assert(!DD && Handlers.size() == NumUserHandlers && 359 "Debug/EH info didn't get finalized"); 360 } 361 362 bool AsmPrinter::isPositionIndependent() const { 363 return TM.isPositionIndependent(); 364 } 365 366 /// getFunctionNumber - Return a unique ID for the current function. 367 unsigned AsmPrinter::getFunctionNumber() const { 368 return MF->getFunctionNumber(); 369 } 370 371 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 372 return *TM.getObjFileLowering(); 373 } 374 375 const DataLayout &AsmPrinter::getDataLayout() const { 376 return MMI->getModule()->getDataLayout(); 377 } 378 379 // Do not use the cached DataLayout because some client use it without a Module 380 // (dsymutil, llvm-dwarfdump). 381 unsigned AsmPrinter::getPointerSize() const { 382 return TM.getPointerSize(0); // FIXME: Default address space 383 } 384 385 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 386 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 387 return MF->getSubtarget<MCSubtargetInfo>(); 388 } 389 390 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 391 S.emitInstruction(Inst, getSubtargetInfo()); 392 } 393 394 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 395 if (DD) { 396 assert(OutStreamer->hasRawTextSupport() && 397 "Expected assembly output mode."); 398 // This is NVPTX specific and it's unclear why. 399 // PR51079: If we have code without debug information we need to give up. 400 DISubprogram *MFSP = MF.getFunction().getSubprogram(); 401 if (!MFSP) 402 return; 403 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 404 } 405 } 406 407 /// getCurrentSection() - Return the current section we are emitting to. 408 const MCSection *AsmPrinter::getCurrentSection() const { 409 return OutStreamer->getCurrentSectionOnly(); 410 } 411 412 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 413 AU.setPreservesAll(); 414 MachineFunctionPass::getAnalysisUsage(AU); 415 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 416 AU.addRequired<GCModuleInfo>(); 417 } 418 419 bool AsmPrinter::doInitialization(Module &M) { 420 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 421 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 422 HasSplitStack = false; 423 HasNoSplitStack = false; 424 425 AddrLabelSymbols = nullptr; 426 427 // Initialize TargetLoweringObjectFile. 428 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 429 .Initialize(OutContext, TM); 430 431 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 432 .getModuleMetadata(M); 433 434 OutStreamer->initSections(false, *TM.getMCSubtargetInfo()); 435 436 // Emit the version-min deployment target directive if needed. 437 // 438 // FIXME: If we end up with a collection of these sorts of Darwin-specific 439 // or ELF-specific things, it may make sense to have a platform helper class 440 // that will work with the target helper class. For now keep it here, as the 441 // alternative is duplicated code in each of the target asm printers that 442 // use the directive, where it would need the same conditionalization 443 // anyway. 444 const Triple &Target = TM.getTargetTriple(); 445 Triple TVT(M.getDarwinTargetVariantTriple()); 446 OutStreamer->emitVersionForTarget( 447 Target, M.getSDKVersion(), 448 M.getDarwinTargetVariantTriple().empty() ? nullptr : &TVT, 449 M.getDarwinTargetVariantSDKVersion()); 450 451 // Allow the target to emit any magic that it wants at the start of the file. 452 emitStartOfAsmFile(M); 453 454 // Very minimal debug info. It is ignored if we emit actual debug info. If we 455 // don't, this at least helps the user find where a global came from. 456 if (MAI->hasSingleParameterDotFile()) { 457 // .file "foo.c" 458 459 SmallString<128> FileName; 460 if (MAI->hasBasenameOnlyForFileDirective()) 461 FileName = llvm::sys::path::filename(M.getSourceFileName()); 462 else 463 FileName = M.getSourceFileName(); 464 if (MAI->hasFourStringsDotFile()) { 465 #ifdef PACKAGE_VENDOR 466 const char VerStr[] = 467 PACKAGE_VENDOR " " PACKAGE_NAME " version " PACKAGE_VERSION; 468 #else 469 const char VerStr[] = PACKAGE_NAME " version " PACKAGE_VERSION; 470 #endif 471 // TODO: Add timestamp and description. 472 OutStreamer->emitFileDirective(FileName, VerStr, "", ""); 473 } else { 474 OutStreamer->emitFileDirective(FileName); 475 } 476 } 477 478 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 479 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 480 for (const auto &I : *MI) 481 if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I)) 482 MP->beginAssembly(M, *MI, *this); 483 484 // Emit module-level inline asm if it exists. 485 if (!M.getModuleInlineAsm().empty()) { 486 OutStreamer->AddComment("Start of file scope inline assembly"); 487 OutStreamer->addBlankLine(); 488 emitInlineAsm(M.getModuleInlineAsm() + "\n", *TM.getMCSubtargetInfo(), 489 TM.Options.MCOptions); 490 OutStreamer->AddComment("End of file scope inline assembly"); 491 OutStreamer->addBlankLine(); 492 } 493 494 if (MAI->doesSupportDebugInformation()) { 495 bool EmitCodeView = M.getCodeViewFlag(); 496 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 497 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 498 DbgTimerName, DbgTimerDescription, 499 CodeViewLineTablesGroupName, 500 CodeViewLineTablesGroupDescription); 501 } 502 if (!EmitCodeView || M.getDwarfVersion()) { 503 if (MMI->hasDebugInfo()) { 504 DD = new DwarfDebug(this); 505 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 506 DbgTimerDescription, DWARFGroupName, 507 DWARFGroupDescription); 508 } 509 } 510 } 511 512 if (M.getNamedMetadata(PseudoProbeDescMetadataName)) { 513 PP = new PseudoProbeHandler(this); 514 Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName, 515 PPTimerDescription, PPGroupName, PPGroupDescription); 516 } 517 518 switch (MAI->getExceptionHandlingType()) { 519 case ExceptionHandling::None: 520 // We may want to emit CFI for debug. 521 [[fallthrough]]; 522 case ExceptionHandling::SjLj: 523 case ExceptionHandling::DwarfCFI: 524 case ExceptionHandling::ARM: 525 for (auto &F : M.getFunctionList()) { 526 if (getFunctionCFISectionType(F) != CFISection::None) 527 ModuleCFISection = getFunctionCFISectionType(F); 528 // If any function needsUnwindTableEntry(), it needs .eh_frame and hence 529 // the module needs .eh_frame. If we have found that case, we are done. 530 if (ModuleCFISection == CFISection::EH) 531 break; 532 } 533 assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI || 534 ModuleCFISection != CFISection::EH); 535 break; 536 default: 537 break; 538 } 539 540 EHStreamer *ES = nullptr; 541 switch (MAI->getExceptionHandlingType()) { 542 case ExceptionHandling::None: 543 if (!needsCFIForDebug()) 544 break; 545 [[fallthrough]]; 546 case ExceptionHandling::SjLj: 547 case ExceptionHandling::DwarfCFI: 548 ES = new DwarfCFIException(this); 549 break; 550 case ExceptionHandling::ARM: 551 ES = new ARMException(this); 552 break; 553 case ExceptionHandling::WinEH: 554 switch (MAI->getWinEHEncodingType()) { 555 default: llvm_unreachable("unsupported unwinding information encoding"); 556 case WinEH::EncodingType::Invalid: 557 break; 558 case WinEH::EncodingType::X86: 559 case WinEH::EncodingType::Itanium: 560 ES = new WinException(this); 561 break; 562 } 563 break; 564 case ExceptionHandling::Wasm: 565 ES = new WasmException(this); 566 break; 567 case ExceptionHandling::AIX: 568 ES = new AIXException(this); 569 break; 570 } 571 if (ES) 572 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 573 EHTimerDescription, DWARFGroupName, 574 DWARFGroupDescription); 575 576 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 577 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 578 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 579 CFGuardDescription, DWARFGroupName, 580 DWARFGroupDescription); 581 582 for (const HandlerInfo &HI : Handlers) { 583 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 584 HI.TimerGroupDescription, TimePassesIsEnabled); 585 HI.Handler->beginModule(&M); 586 } 587 588 return false; 589 } 590 591 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 592 if (!MAI.hasWeakDefCanBeHiddenDirective()) 593 return false; 594 595 return GV->canBeOmittedFromSymbolTable(); 596 } 597 598 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 599 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 600 switch (Linkage) { 601 case GlobalValue::CommonLinkage: 602 case GlobalValue::LinkOnceAnyLinkage: 603 case GlobalValue::LinkOnceODRLinkage: 604 case GlobalValue::WeakAnyLinkage: 605 case GlobalValue::WeakODRLinkage: 606 if (MAI->hasWeakDefDirective()) { 607 // .globl _foo 608 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 609 610 if (!canBeHidden(GV, *MAI)) 611 // .weak_definition _foo 612 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 613 else 614 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 615 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 616 // .globl _foo 617 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 618 //NOTE: linkonce is handled by the section the symbol was assigned to. 619 } else { 620 // .weak _foo 621 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 622 } 623 return; 624 case GlobalValue::ExternalLinkage: 625 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 626 return; 627 case GlobalValue::PrivateLinkage: 628 case GlobalValue::InternalLinkage: 629 return; 630 case GlobalValue::ExternalWeakLinkage: 631 case GlobalValue::AvailableExternallyLinkage: 632 case GlobalValue::AppendingLinkage: 633 llvm_unreachable("Should never emit this"); 634 } 635 llvm_unreachable("Unknown linkage type!"); 636 } 637 638 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 639 const GlobalValue *GV) const { 640 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 641 } 642 643 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 644 return TM.getSymbol(GV); 645 } 646 647 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 648 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 649 // exact definion (intersection of GlobalValue::hasExactDefinition() and 650 // !isInterposable()). These linkages include: external, appending, internal, 651 // private. It may be profitable to use a local alias for external. The 652 // assembler would otherwise be conservative and assume a global default 653 // visibility symbol can be interposable, even if the code generator already 654 // assumed it. 655 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 656 const Module &M = *GV.getParent(); 657 if (TM.getRelocationModel() != Reloc::Static && 658 M.getPIELevel() == PIELevel::Default && GV.isDSOLocal()) 659 return getSymbolWithGlobalValueBase(&GV, "$local"); 660 } 661 return TM.getSymbol(&GV); 662 } 663 664 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 665 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 666 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 667 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 668 "No emulated TLS variables in the common section"); 669 670 // Never emit TLS variable xyz in emulated TLS model. 671 // The initialization value is in __emutls_t.xyz instead of xyz. 672 if (IsEmuTLSVar) 673 return; 674 675 if (GV->hasInitializer()) { 676 // Check to see if this is a special global used by LLVM, if so, emit it. 677 if (emitSpecialLLVMGlobal(GV)) 678 return; 679 680 // Skip the emission of global equivalents. The symbol can be emitted later 681 // on by emitGlobalGOTEquivs in case it turns out to be needed. 682 if (GlobalGOTEquivs.count(getSymbol(GV))) 683 return; 684 685 if (isVerbose()) { 686 // When printing the control variable __emutls_v.*, 687 // we don't need to print the original TLS variable name. 688 GV->printAsOperand(OutStreamer->getCommentOS(), 689 /*PrintType=*/false, GV->getParent()); 690 OutStreamer->getCommentOS() << '\n'; 691 } 692 } 693 694 MCSymbol *GVSym = getSymbol(GV); 695 MCSymbol *EmittedSym = GVSym; 696 697 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 698 // attributes. 699 // GV's or GVSym's attributes will be used for the EmittedSym. 700 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 701 702 if (GV->isTagged()) { 703 Triple T = TM.getTargetTriple(); 704 705 if (T.getArch() != Triple::aarch64 || !T.isAndroid()) 706 OutContext.reportError(SMLoc(), 707 "Tagged symbols (-fsanitize=memtag-globals) are " 708 "only supported on aarch64 + Android."); 709 OutStreamer->emitSymbolAttribute(EmittedSym, MAI->getMemtagAttr()); 710 } 711 712 if (!GV->hasInitializer()) // External globals require no extra code. 713 return; 714 715 GVSym->redefineIfPossible(); 716 if (GVSym->isDefined() || GVSym->isVariable()) 717 OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) + 718 "' is already defined"); 719 720 if (MAI->hasDotTypeDotSizeDirective()) 721 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 722 723 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 724 725 const DataLayout &DL = GV->getParent()->getDataLayout(); 726 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 727 728 // If the alignment is specified, we *must* obey it. Overaligning a global 729 // with a specified alignment is a prompt way to break globals emitted to 730 // sections and expected to be contiguous (e.g. ObjC metadata). 731 const Align Alignment = getGVAlignment(GV, DL); 732 733 for (const HandlerInfo &HI : Handlers) { 734 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 735 HI.TimerGroupName, HI.TimerGroupDescription, 736 TimePassesIsEnabled); 737 HI.Handler->setSymbolSize(GVSym, Size); 738 } 739 740 // Handle common symbols 741 if (GVKind.isCommon()) { 742 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 743 // .comm _foo, 42, 4 744 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment); 745 return; 746 } 747 748 // Determine to which section this global should be emitted. 749 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 750 751 // If we have a bss global going to a section that supports the 752 // zerofill directive, do so here. 753 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 754 TheSection->isVirtualSection()) { 755 if (Size == 0) 756 Size = 1; // zerofill of 0 bytes is undefined. 757 emitLinkage(GV, GVSym); 758 // .zerofill __DATA, __bss, _foo, 400, 5 759 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment); 760 return; 761 } 762 763 // If this is a BSS local symbol and we are emitting in the BSS 764 // section use .lcomm/.comm directive. 765 if (GVKind.isBSSLocal() && 766 getObjFileLowering().getBSSSection() == TheSection) { 767 if (Size == 0) 768 Size = 1; // .comm Foo, 0 is undefined, avoid it. 769 770 // Use .lcomm only if it supports user-specified alignment. 771 // Otherwise, while it would still be correct to use .lcomm in some 772 // cases (e.g. when Align == 1), the external assembler might enfore 773 // some -unknown- default alignment behavior, which could cause 774 // spurious differences between external and integrated assembler. 775 // Prefer to simply fall back to .local / .comm in this case. 776 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 777 // .lcomm _foo, 42 778 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment); 779 return; 780 } 781 782 // .local _foo 783 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 784 // .comm _foo, 42, 4 785 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment); 786 return; 787 } 788 789 // Handle thread local data for mach-o which requires us to output an 790 // additional structure of data and mangle the original symbol so that we 791 // can reference it later. 792 // 793 // TODO: This should become an "emit thread local global" method on TLOF. 794 // All of this macho specific stuff should be sunk down into TLOFMachO and 795 // stuff like "TLSExtraDataSection" should no longer be part of the parent 796 // TLOF class. This will also make it more obvious that stuff like 797 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 798 // specific code. 799 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 800 // Emit the .tbss symbol 801 MCSymbol *MangSym = 802 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 803 804 if (GVKind.isThreadBSS()) { 805 TheSection = getObjFileLowering().getTLSBSSSection(); 806 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment); 807 } else if (GVKind.isThreadData()) { 808 OutStreamer->switchSection(TheSection); 809 810 emitAlignment(Alignment, GV); 811 OutStreamer->emitLabel(MangSym); 812 813 emitGlobalConstant(GV->getParent()->getDataLayout(), 814 GV->getInitializer()); 815 } 816 817 OutStreamer->addBlankLine(); 818 819 // Emit the variable struct for the runtime. 820 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 821 822 OutStreamer->switchSection(TLVSect); 823 // Emit the linkage here. 824 emitLinkage(GV, GVSym); 825 OutStreamer->emitLabel(GVSym); 826 827 // Three pointers in size: 828 // - __tlv_bootstrap - used to make sure support exists 829 // - spare pointer, used when mapped by the runtime 830 // - pointer to mangled symbol above with initializer 831 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 832 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 833 PtrSize); 834 OutStreamer->emitIntValue(0, PtrSize); 835 OutStreamer->emitSymbolValue(MangSym, PtrSize); 836 837 OutStreamer->addBlankLine(); 838 return; 839 } 840 841 MCSymbol *EmittedInitSym = GVSym; 842 843 OutStreamer->switchSection(TheSection); 844 845 emitLinkage(GV, EmittedInitSym); 846 emitAlignment(Alignment, GV); 847 848 OutStreamer->emitLabel(EmittedInitSym); 849 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 850 if (LocalAlias != EmittedInitSym) 851 OutStreamer->emitLabel(LocalAlias); 852 853 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 854 855 if (MAI->hasDotTypeDotSizeDirective()) 856 // .size foo, 42 857 OutStreamer->emitELFSize(EmittedInitSym, 858 MCConstantExpr::create(Size, OutContext)); 859 860 OutStreamer->addBlankLine(); 861 } 862 863 /// Emit the directive and value for debug thread local expression 864 /// 865 /// \p Value - The value to emit. 866 /// \p Size - The size of the integer (in bytes) to emit. 867 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 868 OutStreamer->emitValue(Value, Size); 869 } 870 871 void AsmPrinter::emitFunctionHeaderComment() {} 872 873 /// EmitFunctionHeader - This method emits the header for the current 874 /// function. 875 void AsmPrinter::emitFunctionHeader() { 876 const Function &F = MF->getFunction(); 877 878 if (isVerbose()) 879 OutStreamer->getCommentOS() 880 << "-- Begin function " 881 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 882 883 // Print out constants referenced by the function 884 emitConstantPool(); 885 886 // Print the 'header' of function. 887 // If basic block sections are desired, explicitly request a unique section 888 // for this function's entry block. 889 if (MF->front().isBeginSection()) 890 MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM)); 891 else 892 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 893 OutStreamer->switchSection(MF->getSection()); 894 895 if (!MAI->hasVisibilityOnlyWithLinkage()) 896 emitVisibility(CurrentFnSym, F.getVisibility()); 897 898 if (MAI->needsFunctionDescriptors()) 899 emitLinkage(&F, CurrentFnDescSym); 900 901 emitLinkage(&F, CurrentFnSym); 902 if (MAI->hasFunctionAlignment()) 903 emitAlignment(MF->getAlignment(), &F); 904 905 if (MAI->hasDotTypeDotSizeDirective()) 906 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 907 908 if (F.hasFnAttribute(Attribute::Cold)) 909 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 910 911 if (isVerbose()) { 912 F.printAsOperand(OutStreamer->getCommentOS(), 913 /*PrintType=*/false, F.getParent()); 914 emitFunctionHeaderComment(); 915 OutStreamer->getCommentOS() << '\n'; 916 } 917 918 // Emit the prefix data. 919 if (F.hasPrefixData()) { 920 if (MAI->hasSubsectionsViaSymbols()) { 921 // Preserving prefix data on platforms which use subsections-via-symbols 922 // is a bit tricky. Here we introduce a symbol for the prefix data 923 // and use the .alt_entry attribute to mark the function's real entry point 924 // as an alternative entry point to the prefix-data symbol. 925 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 926 OutStreamer->emitLabel(PrefixSym); 927 928 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 929 930 // Emit an .alt_entry directive for the actual function symbol. 931 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 932 } else { 933 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 934 } 935 } 936 937 // Emit KCFI type information before patchable-function-prefix nops. 938 emitKCFITypeId(*MF); 939 940 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 941 // place prefix data before NOPs. 942 unsigned PatchableFunctionPrefix = 0; 943 unsigned PatchableFunctionEntry = 0; 944 (void)F.getFnAttribute("patchable-function-prefix") 945 .getValueAsString() 946 .getAsInteger(10, PatchableFunctionPrefix); 947 (void)F.getFnAttribute("patchable-function-entry") 948 .getValueAsString() 949 .getAsInteger(10, PatchableFunctionEntry); 950 if (PatchableFunctionPrefix) { 951 CurrentPatchableFunctionEntrySym = 952 OutContext.createLinkerPrivateTempSymbol(); 953 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 954 emitNops(PatchableFunctionPrefix); 955 } else if (PatchableFunctionEntry) { 956 // May be reassigned when emitting the body, to reference the label after 957 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 958 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 959 } 960 961 // Emit the function descriptor. This is a virtual function to allow targets 962 // to emit their specific function descriptor. Right now it is only used by 963 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 964 // descriptors and should be converted to use this hook as well. 965 if (MAI->needsFunctionDescriptors()) 966 emitFunctionDescriptor(); 967 968 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 969 // their wild and crazy things as required. 970 emitFunctionEntryLabel(); 971 972 // If the function had address-taken blocks that got deleted, then we have 973 // references to the dangling symbols. Emit them at the start of the function 974 // so that we don't get references to undefined symbols. 975 std::vector<MCSymbol*> DeadBlockSyms; 976 takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 977 for (MCSymbol *DeadBlockSym : DeadBlockSyms) { 978 OutStreamer->AddComment("Address taken block that was later removed"); 979 OutStreamer->emitLabel(DeadBlockSym); 980 } 981 982 if (CurrentFnBegin) { 983 if (MAI->useAssignmentForEHBegin()) { 984 MCSymbol *CurPos = OutContext.createTempSymbol(); 985 OutStreamer->emitLabel(CurPos); 986 OutStreamer->emitAssignment(CurrentFnBegin, 987 MCSymbolRefExpr::create(CurPos, OutContext)); 988 } else { 989 OutStreamer->emitLabel(CurrentFnBegin); 990 } 991 } 992 993 // Emit pre-function debug and/or EH information. 994 for (const HandlerInfo &HI : Handlers) { 995 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 996 HI.TimerGroupDescription, TimePassesIsEnabled); 997 HI.Handler->beginFunction(MF); 998 } 999 for (const HandlerInfo &HI : Handlers) { 1000 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1001 HI.TimerGroupDescription, TimePassesIsEnabled); 1002 HI.Handler->beginBasicBlockSection(MF->front()); 1003 } 1004 1005 // Emit the prologue data. 1006 if (F.hasPrologueData()) 1007 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 1008 1009 // Emit the function prologue data for the indirect call sanitizer. 1010 if (const MDNode *MD = F.getMetadata(LLVMContext::MD_func_sanitize)) { 1011 assert(TM.getTargetTriple().getArch() == Triple::x86 || 1012 TM.getTargetTriple().getArch() == Triple::x86_64); 1013 assert(MD->getNumOperands() == 2); 1014 1015 auto *PrologueSig = mdconst::extract<Constant>(MD->getOperand(0)); 1016 auto *FTRTTIProxy = mdconst::extract<Constant>(MD->getOperand(1)); 1017 assert(PrologueSig && FTRTTIProxy); 1018 emitGlobalConstant(F.getParent()->getDataLayout(), PrologueSig); 1019 1020 const MCExpr *Proxy = lowerConstant(FTRTTIProxy); 1021 const MCExpr *FnExp = MCSymbolRefExpr::create(CurrentFnSym, OutContext); 1022 const MCExpr *PCRel = MCBinaryExpr::createSub(Proxy, FnExp, OutContext); 1023 // Use 32 bit since only small code model is supported. 1024 OutStreamer->emitValue(PCRel, 4u); 1025 } 1026 } 1027 1028 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 1029 /// function. This can be overridden by targets as required to do custom stuff. 1030 void AsmPrinter::emitFunctionEntryLabel() { 1031 CurrentFnSym->redefineIfPossible(); 1032 1033 // The function label could have already been emitted if two symbols end up 1034 // conflicting due to asm renaming. Detect this and emit an error. 1035 if (CurrentFnSym->isVariable()) 1036 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 1037 "' is a protected alias"); 1038 1039 OutStreamer->emitLabel(CurrentFnSym); 1040 1041 if (TM.getTargetTriple().isOSBinFormatELF()) { 1042 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 1043 if (Sym != CurrentFnSym) { 1044 cast<MCSymbolELF>(Sym)->setType(ELF::STT_FUNC); 1045 CurrentFnBeginLocal = Sym; 1046 OutStreamer->emitLabel(Sym); 1047 if (MAI->hasDotTypeDotSizeDirective()) 1048 OutStreamer->emitSymbolAttribute(Sym, MCSA_ELF_TypeFunction); 1049 } 1050 } 1051 } 1052 1053 /// emitComments - Pretty-print comments for instructions. 1054 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 1055 const MachineFunction *MF = MI.getMF(); 1056 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1057 1058 // Check for spills and reloads 1059 1060 // We assume a single instruction only has a spill or reload, not 1061 // both. 1062 std::optional<unsigned> Size; 1063 if ((Size = MI.getRestoreSize(TII))) { 1064 CommentOS << *Size << "-byte Reload\n"; 1065 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 1066 if (*Size) { 1067 if (*Size == unsigned(MemoryLocation::UnknownSize)) 1068 CommentOS << "Unknown-size Folded Reload\n"; 1069 else 1070 CommentOS << *Size << "-byte Folded Reload\n"; 1071 } 1072 } else if ((Size = MI.getSpillSize(TII))) { 1073 CommentOS << *Size << "-byte Spill\n"; 1074 } else if ((Size = MI.getFoldedSpillSize(TII))) { 1075 if (*Size) { 1076 if (*Size == unsigned(MemoryLocation::UnknownSize)) 1077 CommentOS << "Unknown-size Folded Spill\n"; 1078 else 1079 CommentOS << *Size << "-byte Folded Spill\n"; 1080 } 1081 } 1082 1083 // Check for spill-induced copies 1084 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 1085 CommentOS << " Reload Reuse\n"; 1086 } 1087 1088 /// emitImplicitDef - This method emits the specified machine instruction 1089 /// that is an implicit def. 1090 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 1091 Register RegNo = MI->getOperand(0).getReg(); 1092 1093 SmallString<128> Str; 1094 raw_svector_ostream OS(Str); 1095 OS << "implicit-def: " 1096 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 1097 1098 OutStreamer->AddComment(OS.str()); 1099 OutStreamer->addBlankLine(); 1100 } 1101 1102 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 1103 std::string Str; 1104 raw_string_ostream OS(Str); 1105 OS << "kill:"; 1106 for (const MachineOperand &Op : MI->operands()) { 1107 assert(Op.isReg() && "KILL instruction must have only register operands"); 1108 OS << ' ' << (Op.isDef() ? "def " : "killed ") 1109 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 1110 } 1111 AP.OutStreamer->AddComment(OS.str()); 1112 AP.OutStreamer->addBlankLine(); 1113 } 1114 1115 /// emitDebugValueComment - This method handles the target-independent form 1116 /// of DBG_VALUE, returning true if it was able to do so. A false return 1117 /// means the target will need to handle MI in EmitInstruction. 1118 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 1119 // This code handles only the 4-operand target-independent form. 1120 if (MI->isNonListDebugValue() && MI->getNumOperands() != 4) 1121 return false; 1122 1123 SmallString<128> Str; 1124 raw_svector_ostream OS(Str); 1125 OS << "DEBUG_VALUE: "; 1126 1127 const DILocalVariable *V = MI->getDebugVariable(); 1128 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 1129 StringRef Name = SP->getName(); 1130 if (!Name.empty()) 1131 OS << Name << ":"; 1132 } 1133 OS << V->getName(); 1134 OS << " <- "; 1135 1136 const DIExpression *Expr = MI->getDebugExpression(); 1137 // First convert this to a non-variadic expression if possible, to simplify 1138 // the output. 1139 if (auto NonVariadicExpr = DIExpression::convertToNonVariadicExpression(Expr)) 1140 Expr = *NonVariadicExpr; 1141 // Then, output the possibly-simplified expression. 1142 if (Expr->getNumElements()) { 1143 OS << '['; 1144 ListSeparator LS; 1145 for (auto &Op : Expr->expr_ops()) { 1146 OS << LS << dwarf::OperationEncodingString(Op.getOp()); 1147 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 1148 OS << ' ' << Op.getArg(I); 1149 } 1150 OS << "] "; 1151 } 1152 1153 // Register or immediate value. Register 0 means undef. 1154 for (const MachineOperand &Op : MI->debug_operands()) { 1155 if (&Op != MI->debug_operands().begin()) 1156 OS << ", "; 1157 switch (Op.getType()) { 1158 case MachineOperand::MO_FPImmediate: { 1159 APFloat APF = APFloat(Op.getFPImm()->getValueAPF()); 1160 Type *ImmTy = Op.getFPImm()->getType(); 1161 if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() || 1162 ImmTy->isDoubleTy()) { 1163 OS << APF.convertToDouble(); 1164 } else { 1165 // There is no good way to print long double. Convert a copy to 1166 // double. Ah well, it's only a comment. 1167 bool ignored; 1168 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1169 &ignored); 1170 OS << "(long double) " << APF.convertToDouble(); 1171 } 1172 break; 1173 } 1174 case MachineOperand::MO_Immediate: { 1175 OS << Op.getImm(); 1176 break; 1177 } 1178 case MachineOperand::MO_CImmediate: { 1179 Op.getCImm()->getValue().print(OS, false /*isSigned*/); 1180 break; 1181 } 1182 case MachineOperand::MO_TargetIndex: { 1183 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 1184 break; 1185 } 1186 case MachineOperand::MO_Register: 1187 case MachineOperand::MO_FrameIndex: { 1188 Register Reg; 1189 std::optional<StackOffset> Offset; 1190 if (Op.isReg()) { 1191 Reg = Op.getReg(); 1192 } else { 1193 const TargetFrameLowering *TFI = 1194 AP.MF->getSubtarget().getFrameLowering(); 1195 Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg); 1196 } 1197 if (!Reg) { 1198 // Suppress offset, it is not meaningful here. 1199 OS << "undef"; 1200 break; 1201 } 1202 // The second operand is only an offset if it's an immediate. 1203 if (MI->isIndirectDebugValue()) 1204 Offset = StackOffset::getFixed(MI->getDebugOffset().getImm()); 1205 if (Offset) 1206 OS << '['; 1207 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 1208 if (Offset) 1209 OS << '+' << Offset->getFixed() << ']'; 1210 break; 1211 } 1212 default: 1213 llvm_unreachable("Unknown operand type"); 1214 } 1215 } 1216 1217 // NOTE: Want this comment at start of line, don't emit with AddComment. 1218 AP.OutStreamer->emitRawComment(OS.str()); 1219 return true; 1220 } 1221 1222 /// This method handles the target-independent form of DBG_LABEL, returning 1223 /// true if it was able to do so. A false return means the target will need 1224 /// to handle MI in EmitInstruction. 1225 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 1226 if (MI->getNumOperands() != 1) 1227 return false; 1228 1229 SmallString<128> Str; 1230 raw_svector_ostream OS(Str); 1231 OS << "DEBUG_LABEL: "; 1232 1233 const DILabel *V = MI->getDebugLabel(); 1234 if (auto *SP = dyn_cast<DISubprogram>( 1235 V->getScope()->getNonLexicalBlockFileScope())) { 1236 StringRef Name = SP->getName(); 1237 if (!Name.empty()) 1238 OS << Name << ":"; 1239 } 1240 OS << V->getName(); 1241 1242 // NOTE: Want this comment at start of line, don't emit with AddComment. 1243 AP.OutStreamer->emitRawComment(OS.str()); 1244 return true; 1245 } 1246 1247 AsmPrinter::CFISection 1248 AsmPrinter::getFunctionCFISectionType(const Function &F) const { 1249 // Ignore functions that won't get emitted. 1250 if (F.isDeclarationForLinker()) 1251 return CFISection::None; 1252 1253 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 1254 F.needsUnwindTableEntry()) 1255 return CFISection::EH; 1256 1257 if (MMI->hasDebugInfo() || TM.Options.ForceDwarfFrameSection) 1258 return CFISection::Debug; 1259 1260 return CFISection::None; 1261 } 1262 1263 AsmPrinter::CFISection 1264 AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const { 1265 return getFunctionCFISectionType(MF.getFunction()); 1266 } 1267 1268 bool AsmPrinter::needsSEHMoves() { 1269 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 1270 } 1271 1272 bool AsmPrinter::needsCFIForDebug() const { 1273 return MAI->getExceptionHandlingType() == ExceptionHandling::None && 1274 MAI->doesUseCFIForDebug() && ModuleCFISection == CFISection::Debug; 1275 } 1276 1277 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 1278 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1279 if (!needsCFIForDebug() && 1280 ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1281 ExceptionHandlingType != ExceptionHandling::ARM) 1282 return; 1283 1284 if (getFunctionCFISectionType(*MF) == CFISection::None) 1285 return; 1286 1287 // If there is no "real" instruction following this CFI instruction, skip 1288 // emitting it; it would be beyond the end of the function's FDE range. 1289 auto *MBB = MI.getParent(); 1290 auto I = std::next(MI.getIterator()); 1291 while (I != MBB->end() && I->isTransient()) 1292 ++I; 1293 if (I == MBB->instr_end() && 1294 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1295 return; 1296 1297 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1298 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1299 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1300 emitCFIInstruction(CFI); 1301 } 1302 1303 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1304 // The operands are the MCSymbol and the frame offset of the allocation. 1305 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1306 int FrameOffset = MI.getOperand(1).getImm(); 1307 1308 // Emit a symbol assignment. 1309 OutStreamer->emitAssignment(FrameAllocSym, 1310 MCConstantExpr::create(FrameOffset, OutContext)); 1311 } 1312 1313 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a 1314 /// given basic block. This can be used to capture more precise profile 1315 /// information. We use the last 4 bits (LSBs) to encode the following 1316 /// information: 1317 /// * (1): set if return block (ret or tail call). 1318 /// * (2): set if ends with a tail call. 1319 /// * (3): set if exception handling (EH) landing pad. 1320 /// * (4): set if the block can fall through to its next. 1321 /// The remaining bits are zero. 1322 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1323 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1324 return ((unsigned)MBB.isReturnBlock()) | 1325 ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) | 1326 (MBB.isEHPad() << 2) | 1327 (const_cast<MachineBasicBlock &>(MBB).canFallThrough() << 3); 1328 } 1329 1330 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1331 MCSection *BBAddrMapSection = 1332 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1333 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); 1334 1335 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1336 1337 OutStreamer->pushSection(); 1338 OutStreamer->switchSection(BBAddrMapSection); 1339 OutStreamer->AddComment("version"); 1340 uint8_t BBAddrMapVersion = OutStreamer->getContext().getBBAddrMapVersion(); 1341 OutStreamer->emitInt8(BBAddrMapVersion); 1342 OutStreamer->AddComment("feature"); 1343 OutStreamer->emitInt8(0); 1344 OutStreamer->AddComment("function address"); 1345 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1346 OutStreamer->AddComment("number of basic blocks"); 1347 OutStreamer->emitULEB128IntValue(MF.size()); 1348 const MCSymbol *PrevMBBEndSymbol = FunctionSymbol; 1349 // Emit BB Information for each basic block in the funciton. 1350 for (const MachineBasicBlock &MBB : MF) { 1351 const MCSymbol *MBBSymbol = 1352 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); 1353 // TODO: Remove this check when version 1 is deprecated. 1354 if (BBAddrMapVersion > 1) { 1355 OutStreamer->AddComment("BB id"); 1356 // Emit the BB ID for this basic block. 1357 OutStreamer->emitULEB128IntValue(*MBB.getBBID()); 1358 } 1359 // Emit the basic block offset relative to the end of the previous block. 1360 // This is zero unless the block is padded due to alignment. 1361 emitLabelDifferenceAsULEB128(MBBSymbol, PrevMBBEndSymbol); 1362 // Emit the basic block size. When BBs have alignments, their size cannot 1363 // always be computed from their offsets. 1364 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1365 // Emit the Metadata. 1366 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1367 PrevMBBEndSymbol = MBB.getEndSymbol(); 1368 } 1369 OutStreamer->popSection(); 1370 } 1371 1372 void AsmPrinter::emitKCFITrapEntry(const MachineFunction &MF, 1373 const MCSymbol *Symbol) { 1374 MCSection *Section = 1375 getObjFileLowering().getKCFITrapSection(*MF.getSection()); 1376 if (!Section) 1377 return; 1378 1379 OutStreamer->pushSection(); 1380 OutStreamer->switchSection(Section); 1381 1382 MCSymbol *Loc = OutContext.createLinkerPrivateTempSymbol(); 1383 OutStreamer->emitLabel(Loc); 1384 OutStreamer->emitAbsoluteSymbolDiff(Symbol, Loc, 4); 1385 1386 OutStreamer->popSection(); 1387 } 1388 1389 void AsmPrinter::emitKCFITypeId(const MachineFunction &MF) { 1390 const Function &F = MF.getFunction(); 1391 if (const MDNode *MD = F.getMetadata(LLVMContext::MD_kcfi_type)) 1392 emitGlobalConstant(F.getParent()->getDataLayout(), 1393 mdconst::extract<ConstantInt>(MD->getOperand(0))); 1394 } 1395 1396 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) { 1397 if (PP) { 1398 auto GUID = MI.getOperand(0).getImm(); 1399 auto Index = MI.getOperand(1).getImm(); 1400 auto Type = MI.getOperand(2).getImm(); 1401 auto Attr = MI.getOperand(3).getImm(); 1402 DILocation *DebugLoc = MI.getDebugLoc(); 1403 PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc); 1404 } 1405 } 1406 1407 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1408 if (!MF.getTarget().Options.EmitStackSizeSection) 1409 return; 1410 1411 MCSection *StackSizeSection = 1412 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1413 if (!StackSizeSection) 1414 return; 1415 1416 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1417 // Don't emit functions with dynamic stack allocations. 1418 if (FrameInfo.hasVarSizedObjects()) 1419 return; 1420 1421 OutStreamer->pushSection(); 1422 OutStreamer->switchSection(StackSizeSection); 1423 1424 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1425 uint64_t StackSize = 1426 FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize(); 1427 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1428 OutStreamer->emitULEB128IntValue(StackSize); 1429 1430 OutStreamer->popSection(); 1431 } 1432 1433 void AsmPrinter::emitStackUsage(const MachineFunction &MF) { 1434 const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput; 1435 1436 // OutputFilename empty implies -fstack-usage is not passed. 1437 if (OutputFilename.empty()) 1438 return; 1439 1440 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1441 uint64_t StackSize = 1442 FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize(); 1443 1444 if (StackUsageStream == nullptr) { 1445 std::error_code EC; 1446 StackUsageStream = 1447 std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text); 1448 if (EC) { 1449 errs() << "Could not open file: " << EC.message(); 1450 return; 1451 } 1452 } 1453 1454 *StackUsageStream << MF.getFunction().getParent()->getName(); 1455 if (const DISubprogram *DSP = MF.getFunction().getSubprogram()) 1456 *StackUsageStream << ':' << DSP->getLine(); 1457 1458 *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t'; 1459 if (FrameInfo.hasVarSizedObjects()) 1460 *StackUsageStream << "dynamic\n"; 1461 else 1462 *StackUsageStream << "static\n"; 1463 } 1464 1465 void AsmPrinter::emitPCSectionsLabel(const MachineFunction &MF, 1466 const MDNode &MD) { 1467 MCSymbol *S = MF.getContext().createTempSymbol("pcsection"); 1468 OutStreamer->emitLabel(S); 1469 PCSectionsSymbols[&MD].emplace_back(S); 1470 } 1471 1472 void AsmPrinter::emitPCSections(const MachineFunction &MF) { 1473 const Function &F = MF.getFunction(); 1474 if (PCSectionsSymbols.empty() && !F.hasMetadata(LLVMContext::MD_pcsections)) 1475 return; 1476 1477 const CodeModel::Model CM = MF.getTarget().getCodeModel(); 1478 const unsigned RelativeRelocSize = 1479 (CM == CodeModel::Medium || CM == CodeModel::Large) ? getPointerSize() 1480 : 4; 1481 1482 // Switch to PCSection, short-circuiting the common case where the current 1483 // section is still valid (assume most MD_pcsections contain just 1 section). 1484 auto SwitchSection = [&, Prev = StringRef()](const StringRef &Sec) mutable { 1485 if (Sec == Prev) 1486 return; 1487 MCSection *S = getObjFileLowering().getPCSection(Sec, MF.getSection()); 1488 assert(S && "PC section is not initialized"); 1489 OutStreamer->switchSection(S); 1490 Prev = Sec; 1491 }; 1492 // Emit symbols into sections and data as specified in the pcsections MDNode. 1493 auto EmitForMD = [&](const MDNode &MD, ArrayRef<const MCSymbol *> Syms, 1494 bool Deltas) { 1495 // Expect the first operand to be a section name. After that, a tuple of 1496 // constants may appear, which will simply be emitted into the current 1497 // section (the user of MD_pcsections decides the format of encoded data). 1498 assert(isa<MDString>(MD.getOperand(0)) && "first operand not a string"); 1499 for (const MDOperand &MDO : MD.operands()) { 1500 if (auto *S = dyn_cast<MDString>(MDO)) { 1501 SwitchSection(S->getString()); 1502 const MCSymbol *Prev = Syms.front(); 1503 for (const MCSymbol *Sym : Syms) { 1504 if (Sym == Prev || !Deltas) { 1505 // Use the entry itself as the base of the relative offset. 1506 MCSymbol *Base = MF.getContext().createTempSymbol("pcsection_base"); 1507 OutStreamer->emitLabel(Base); 1508 // Emit relative relocation `addr - base`, which avoids a dynamic 1509 // relocation in the final binary. User will get the address with 1510 // `base + addr`. 1511 emitLabelDifference(Sym, Base, RelativeRelocSize); 1512 } else { 1513 emitLabelDifference(Sym, Prev, 4); 1514 } 1515 Prev = Sym; 1516 } 1517 } else { 1518 assert(isa<MDNode>(MDO) && "expecting either string or tuple"); 1519 const auto *AuxMDs = cast<MDNode>(MDO); 1520 for (const MDOperand &AuxMDO : AuxMDs->operands()) { 1521 assert(isa<ConstantAsMetadata>(AuxMDO) && "expecting a constant"); 1522 const auto *C = cast<ConstantAsMetadata>(AuxMDO); 1523 emitGlobalConstant(F.getParent()->getDataLayout(), C->getValue()); 1524 } 1525 } 1526 } 1527 }; 1528 1529 OutStreamer->pushSection(); 1530 // Emit PCs for function start and function size. 1531 if (const MDNode *MD = F.getMetadata(LLVMContext::MD_pcsections)) 1532 EmitForMD(*MD, {getFunctionBegin(), getFunctionEnd()}, true); 1533 // Emit PCs for instructions collected. 1534 for (const auto &MS : PCSectionsSymbols) 1535 EmitForMD(*MS.first, MS.second, false); 1536 OutStreamer->popSection(); 1537 PCSectionsSymbols.clear(); 1538 } 1539 1540 /// Returns true if function begin and end labels should be emitted. 1541 static bool needFuncLabels(const MachineFunction &MF) { 1542 MachineModuleInfo &MMI = MF.getMMI(); 1543 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || 1544 MMI.hasDebugInfo() || 1545 MF.getFunction().hasMetadata(LLVMContext::MD_pcsections)) 1546 return true; 1547 1548 // We might emit an EH table that uses function begin and end labels even if 1549 // we don't have any landingpads. 1550 if (!MF.getFunction().hasPersonalityFn()) 1551 return false; 1552 return !isNoOpWithoutInvoke( 1553 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1554 } 1555 1556 /// EmitFunctionBody - This method emits the body and trailer for a 1557 /// function. 1558 void AsmPrinter::emitFunctionBody() { 1559 emitFunctionHeader(); 1560 1561 // Emit target-specific gunk before the function body. 1562 emitFunctionBodyStart(); 1563 1564 if (isVerbose()) { 1565 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1566 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1567 if (!MDT) { 1568 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1569 OwnedMDT->getBase().recalculate(*MF); 1570 MDT = OwnedMDT.get(); 1571 } 1572 1573 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1574 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1575 if (!MLI) { 1576 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1577 OwnedMLI->getBase().analyze(MDT->getBase()); 1578 MLI = OwnedMLI.get(); 1579 } 1580 } 1581 1582 // Print out code for the function. 1583 bool HasAnyRealCode = false; 1584 int NumInstsInFunction = 0; 1585 1586 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1587 for (auto &MBB : *MF) { 1588 // Print a label for the basic block. 1589 emitBasicBlockStart(MBB); 1590 DenseMap<StringRef, unsigned> MnemonicCounts; 1591 for (auto &MI : MBB) { 1592 // Print the assembly for the instruction. 1593 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1594 !MI.isDebugInstr()) { 1595 HasAnyRealCode = true; 1596 ++NumInstsInFunction; 1597 } 1598 1599 // If there is a pre-instruction symbol, emit a label for it here. 1600 if (MCSymbol *S = MI.getPreInstrSymbol()) 1601 OutStreamer->emitLabel(S); 1602 1603 if (MDNode *MD = MI.getPCSections()) 1604 emitPCSectionsLabel(*MF, *MD); 1605 1606 for (const HandlerInfo &HI : Handlers) { 1607 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1608 HI.TimerGroupDescription, TimePassesIsEnabled); 1609 HI.Handler->beginInstruction(&MI); 1610 } 1611 1612 if (isVerbose()) 1613 emitComments(MI, OutStreamer->getCommentOS()); 1614 1615 switch (MI.getOpcode()) { 1616 case TargetOpcode::CFI_INSTRUCTION: 1617 emitCFIInstruction(MI); 1618 break; 1619 case TargetOpcode::LOCAL_ESCAPE: 1620 emitFrameAlloc(MI); 1621 break; 1622 case TargetOpcode::ANNOTATION_LABEL: 1623 case TargetOpcode::EH_LABEL: 1624 case TargetOpcode::GC_LABEL: 1625 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1626 break; 1627 case TargetOpcode::INLINEASM: 1628 case TargetOpcode::INLINEASM_BR: 1629 emitInlineAsm(&MI); 1630 break; 1631 case TargetOpcode::DBG_VALUE: 1632 case TargetOpcode::DBG_VALUE_LIST: 1633 if (isVerbose()) { 1634 if (!emitDebugValueComment(&MI, *this)) 1635 emitInstruction(&MI); 1636 } 1637 break; 1638 case TargetOpcode::DBG_INSTR_REF: 1639 // This instruction reference will have been resolved to a machine 1640 // location, and a nearby DBG_VALUE created. We can safely ignore 1641 // the instruction reference. 1642 break; 1643 case TargetOpcode::DBG_PHI: 1644 // This instruction is only used to label a program point, it's purely 1645 // meta information. 1646 break; 1647 case TargetOpcode::DBG_LABEL: 1648 if (isVerbose()) { 1649 if (!emitDebugLabelComment(&MI, *this)) 1650 emitInstruction(&MI); 1651 } 1652 break; 1653 case TargetOpcode::IMPLICIT_DEF: 1654 if (isVerbose()) emitImplicitDef(&MI); 1655 break; 1656 case TargetOpcode::KILL: 1657 if (isVerbose()) emitKill(&MI, *this); 1658 break; 1659 case TargetOpcode::PSEUDO_PROBE: 1660 emitPseudoProbe(MI); 1661 break; 1662 case TargetOpcode::ARITH_FENCE: 1663 if (isVerbose()) 1664 OutStreamer->emitRawComment("ARITH_FENCE"); 1665 break; 1666 case TargetOpcode::MEMBARRIER: 1667 OutStreamer->emitRawComment("MEMBARRIER"); 1668 break; 1669 default: 1670 emitInstruction(&MI); 1671 if (CanDoExtraAnalysis) { 1672 MCInst MCI; 1673 MCI.setOpcode(MI.getOpcode()); 1674 auto Name = OutStreamer->getMnemonic(MCI); 1675 auto I = MnemonicCounts.insert({Name, 0u}); 1676 I.first->second++; 1677 } 1678 break; 1679 } 1680 1681 // If there is a post-instruction symbol, emit a label for it here. 1682 if (MCSymbol *S = MI.getPostInstrSymbol()) 1683 OutStreamer->emitLabel(S); 1684 1685 for (const HandlerInfo &HI : Handlers) { 1686 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1687 HI.TimerGroupDescription, TimePassesIsEnabled); 1688 HI.Handler->endInstruction(); 1689 } 1690 } 1691 1692 // We must emit temporary symbol for the end of this basic block, if either 1693 // we have BBLabels enabled or if this basic blocks marks the end of a 1694 // section. 1695 if (MF->hasBBLabels() || 1696 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection())) 1697 OutStreamer->emitLabel(MBB.getEndSymbol()); 1698 1699 if (MBB.isEndSection()) { 1700 // The size directive for the section containing the entry block is 1701 // handled separately by the function section. 1702 if (!MBB.sameSection(&MF->front())) { 1703 if (MAI->hasDotTypeDotSizeDirective()) { 1704 // Emit the size directive for the basic block section. 1705 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1706 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1707 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1708 OutContext); 1709 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1710 } 1711 MBBSectionRanges[MBB.getSectionIDNum()] = 1712 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1713 } 1714 } 1715 emitBasicBlockEnd(MBB); 1716 1717 if (CanDoExtraAnalysis) { 1718 // Skip empty blocks. 1719 if (MBB.empty()) 1720 continue; 1721 1722 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", 1723 MBB.begin()->getDebugLoc(), &MBB); 1724 1725 // Generate instruction mix remark. First, sort counts in descending order 1726 // by count and name. 1727 SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; 1728 for (auto &KV : MnemonicCounts) 1729 MnemonicVec.emplace_back(KV.first, KV.second); 1730 1731 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, 1732 const std::pair<StringRef, unsigned> &B) { 1733 if (A.second > B.second) 1734 return true; 1735 if (A.second == B.second) 1736 return StringRef(A.first) < StringRef(B.first); 1737 return false; 1738 }); 1739 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; 1740 for (auto &KV : MnemonicVec) { 1741 auto Name = (Twine("INST_") + getToken(KV.first.trim()).first).str(); 1742 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; 1743 } 1744 ORE->emit(R); 1745 } 1746 } 1747 1748 EmittedInsts += NumInstsInFunction; 1749 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1750 MF->getFunction().getSubprogram(), 1751 &MF->front()); 1752 R << ore::NV("NumInstructions", NumInstsInFunction) 1753 << " instructions in function"; 1754 ORE->emit(R); 1755 1756 // If the function is empty and the object file uses .subsections_via_symbols, 1757 // then we need to emit *something* to the function body to prevent the 1758 // labels from collapsing together. Just emit a noop. 1759 // Similarly, don't emit empty functions on Windows either. It can lead to 1760 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1761 // after linking, causing the kernel not to load the binary: 1762 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1763 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1764 const Triple &TT = TM.getTargetTriple(); 1765 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1766 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1767 MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop(); 1768 1769 // Targets can opt-out of emitting the noop here by leaving the opcode 1770 // unspecified. 1771 if (Noop.getOpcode()) { 1772 OutStreamer->AddComment("avoids zero-length function"); 1773 emitNops(1); 1774 } 1775 } 1776 1777 // Switch to the original section in case basic block sections was used. 1778 OutStreamer->switchSection(MF->getSection()); 1779 1780 const Function &F = MF->getFunction(); 1781 for (const auto &BB : F) { 1782 if (!BB.hasAddressTaken()) 1783 continue; 1784 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1785 if (Sym->isDefined()) 1786 continue; 1787 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1788 OutStreamer->emitLabel(Sym); 1789 } 1790 1791 // Emit target-specific gunk after the function body. 1792 emitFunctionBodyEnd(); 1793 1794 // Even though wasm supports .type and .size in general, function symbols 1795 // are automatically sized. 1796 bool EmitFunctionSize = MAI->hasDotTypeDotSizeDirective() && !TT.isWasm(); 1797 1798 if (needFuncLabels(*MF) || EmitFunctionSize) { 1799 // Create a symbol for the end of function. 1800 CurrentFnEnd = createTempSymbol("func_end"); 1801 OutStreamer->emitLabel(CurrentFnEnd); 1802 } 1803 1804 // If the target wants a .size directive for the size of the function, emit 1805 // it. 1806 if (EmitFunctionSize) { 1807 // We can get the size as difference between the function label and the 1808 // temp label. 1809 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1810 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1811 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1812 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1813 if (CurrentFnBeginLocal) 1814 OutStreamer->emitELFSize(CurrentFnBeginLocal, SizeExp); 1815 } 1816 1817 // Call endBasicBlockSection on the last block now, if it wasn't already 1818 // called. 1819 if (!MF->back().isEndSection()) { 1820 for (const HandlerInfo &HI : Handlers) { 1821 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1822 HI.TimerGroupDescription, TimePassesIsEnabled); 1823 HI.Handler->endBasicBlockSection(MF->back()); 1824 } 1825 } 1826 for (const HandlerInfo &HI : Handlers) { 1827 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1828 HI.TimerGroupDescription, TimePassesIsEnabled); 1829 HI.Handler->markFunctionEnd(); 1830 } 1831 1832 MBBSectionRanges[MF->front().getSectionIDNum()] = 1833 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1834 1835 // Print out jump tables referenced by the function. 1836 emitJumpTableInfo(); 1837 1838 // Emit post-function debug and/or EH information. 1839 for (const HandlerInfo &HI : Handlers) { 1840 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1841 HI.TimerGroupDescription, TimePassesIsEnabled); 1842 HI.Handler->endFunction(MF); 1843 } 1844 1845 // Emit section containing BB address offsets and their metadata, when 1846 // BB labels are requested for this function. Skip empty functions. 1847 if (MF->hasBBLabels() && HasAnyRealCode) 1848 emitBBAddrMapSection(*MF); 1849 1850 // Emit sections containing instruction and function PCs. 1851 emitPCSections(*MF); 1852 1853 // Emit section containing stack size metadata. 1854 emitStackSizeSection(*MF); 1855 1856 // Emit .su file containing function stack size information. 1857 emitStackUsage(*MF); 1858 1859 emitPatchableFunctionEntries(); 1860 1861 if (isVerbose()) 1862 OutStreamer->getCommentOS() << "-- End function\n"; 1863 1864 OutStreamer->addBlankLine(); 1865 } 1866 1867 /// Compute the number of Global Variables that uses a Constant. 1868 static unsigned getNumGlobalVariableUses(const Constant *C) { 1869 if (!C) 1870 return 0; 1871 1872 if (isa<GlobalVariable>(C)) 1873 return 1; 1874 1875 unsigned NumUses = 0; 1876 for (const auto *CU : C->users()) 1877 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1878 1879 return NumUses; 1880 } 1881 1882 /// Only consider global GOT equivalents if at least one user is a 1883 /// cstexpr inside an initializer of another global variables. Also, don't 1884 /// handle cstexpr inside instructions. During global variable emission, 1885 /// candidates are skipped and are emitted later in case at least one cstexpr 1886 /// isn't replaced by a PC relative GOT entry access. 1887 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1888 unsigned &NumGOTEquivUsers) { 1889 // Global GOT equivalents are unnamed private globals with a constant 1890 // pointer initializer to another global symbol. They must point to a 1891 // GlobalVariable or Function, i.e., as GlobalValue. 1892 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1893 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1894 !isa<GlobalValue>(GV->getOperand(0))) 1895 return false; 1896 1897 // To be a got equivalent, at least one of its users need to be a constant 1898 // expression used by another global variable. 1899 for (const auto *U : GV->users()) 1900 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1901 1902 return NumGOTEquivUsers > 0; 1903 } 1904 1905 /// Unnamed constant global variables solely contaning a pointer to 1906 /// another globals variable is equivalent to a GOT table entry; it contains the 1907 /// the address of another symbol. Optimize it and replace accesses to these 1908 /// "GOT equivalents" by using the GOT entry for the final global instead. 1909 /// Compute GOT equivalent candidates among all global variables to avoid 1910 /// emitting them if possible later on, after it use is replaced by a GOT entry 1911 /// access. 1912 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1913 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1914 return; 1915 1916 for (const auto &G : M.globals()) { 1917 unsigned NumGOTEquivUsers = 0; 1918 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1919 continue; 1920 1921 const MCSymbol *GOTEquivSym = getSymbol(&G); 1922 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1923 } 1924 } 1925 1926 /// Constant expressions using GOT equivalent globals may not be eligible 1927 /// for PC relative GOT entry conversion, in such cases we need to emit such 1928 /// globals we previously omitted in EmitGlobalVariable. 1929 void AsmPrinter::emitGlobalGOTEquivs() { 1930 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1931 return; 1932 1933 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1934 for (auto &I : GlobalGOTEquivs) { 1935 const GlobalVariable *GV = I.second.first; 1936 unsigned Cnt = I.second.second; 1937 if (Cnt) 1938 FailedCandidates.push_back(GV); 1939 } 1940 GlobalGOTEquivs.clear(); 1941 1942 for (const auto *GV : FailedCandidates) 1943 emitGlobalVariable(GV); 1944 } 1945 1946 void AsmPrinter::emitGlobalAlias(Module &M, const GlobalAlias &GA) { 1947 MCSymbol *Name = getSymbol(&GA); 1948 bool IsFunction = GA.getValueType()->isFunctionTy(); 1949 // Treat bitcasts of functions as functions also. This is important at least 1950 // on WebAssembly where object and function addresses can't alias each other. 1951 if (!IsFunction) 1952 IsFunction = isa<Function>(GA.getAliasee()->stripPointerCasts()); 1953 1954 // AIX's assembly directive `.set` is not usable for aliasing purpose, 1955 // so AIX has to use the extra-label-at-definition strategy. At this 1956 // point, all the extra label is emitted, we just have to emit linkage for 1957 // those labels. 1958 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1959 assert(MAI->hasVisibilityOnlyWithLinkage() && 1960 "Visibility should be handled with emitLinkage() on AIX."); 1961 1962 // Linkage for alias of global variable has been emitted. 1963 if (isa<GlobalVariable>(GA.getAliaseeObject())) 1964 return; 1965 1966 emitLinkage(&GA, Name); 1967 // If it's a function, also emit linkage for aliases of function entry 1968 // point. 1969 if (IsFunction) 1970 emitLinkage(&GA, 1971 getObjFileLowering().getFunctionEntryPointSymbol(&GA, TM)); 1972 return; 1973 } 1974 1975 if (GA.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1976 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1977 else if (GA.hasWeakLinkage() || GA.hasLinkOnceLinkage()) 1978 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1979 else 1980 assert(GA.hasLocalLinkage() && "Invalid alias linkage"); 1981 1982 // Set the symbol type to function if the alias has a function type. 1983 // This affects codegen when the aliasee is not a function. 1984 if (IsFunction) { 1985 OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1986 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1987 OutStreamer->beginCOFFSymbolDef(Name); 1988 OutStreamer->emitCOFFSymbolStorageClass( 1989 GA.hasLocalLinkage() ? COFF::IMAGE_SYM_CLASS_STATIC 1990 : COFF::IMAGE_SYM_CLASS_EXTERNAL); 1991 OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_FUNCTION 1992 << COFF::SCT_COMPLEX_TYPE_SHIFT); 1993 OutStreamer->endCOFFSymbolDef(); 1994 } 1995 } 1996 1997 emitVisibility(Name, GA.getVisibility()); 1998 1999 const MCExpr *Expr = lowerConstant(GA.getAliasee()); 2000 2001 if (MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 2002 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 2003 2004 // Emit the directives as assignments aka .set: 2005 OutStreamer->emitAssignment(Name, Expr); 2006 MCSymbol *LocalAlias = getSymbolPreferLocal(GA); 2007 if (LocalAlias != Name) 2008 OutStreamer->emitAssignment(LocalAlias, Expr); 2009 2010 // If the aliasee does not correspond to a symbol in the output, i.e. the 2011 // alias is not of an object or the aliased object is private, then set the 2012 // size of the alias symbol from the type of the alias. We don't do this in 2013 // other situations as the alias and aliasee having differing types but same 2014 // size may be intentional. 2015 const GlobalObject *BaseObject = GA.getAliaseeObject(); 2016 if (MAI->hasDotTypeDotSizeDirective() && GA.getValueType()->isSized() && 2017 (!BaseObject || BaseObject->hasPrivateLinkage())) { 2018 const DataLayout &DL = M.getDataLayout(); 2019 uint64_t Size = DL.getTypeAllocSize(GA.getValueType()); 2020 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 2021 } 2022 } 2023 2024 void AsmPrinter::emitGlobalIFunc(Module &M, const GlobalIFunc &GI) { 2025 assert(!TM.getTargetTriple().isOSBinFormatXCOFF() && 2026 "IFunc is not supported on AIX."); 2027 2028 MCSymbol *Name = getSymbol(&GI); 2029 2030 if (GI.hasExternalLinkage() || !MAI->getWeakRefDirective()) 2031 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 2032 else if (GI.hasWeakLinkage() || GI.hasLinkOnceLinkage()) 2033 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 2034 else 2035 assert(GI.hasLocalLinkage() && "Invalid ifunc linkage"); 2036 2037 OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 2038 emitVisibility(Name, GI.getVisibility()); 2039 2040 // Emit the directives as assignments aka .set: 2041 const MCExpr *Expr = lowerConstant(GI.getResolver()); 2042 OutStreamer->emitAssignment(Name, Expr); 2043 MCSymbol *LocalAlias = getSymbolPreferLocal(GI); 2044 if (LocalAlias != Name) 2045 OutStreamer->emitAssignment(LocalAlias, Expr); 2046 } 2047 2048 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 2049 if (!RS.needsSection()) 2050 return; 2051 2052 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 2053 2054 std::optional<SmallString<128>> Filename; 2055 if (std::optional<StringRef> FilenameRef = RS.getFilename()) { 2056 Filename = *FilenameRef; 2057 sys::fs::make_absolute(*Filename); 2058 assert(!Filename->empty() && "The filename can't be empty."); 2059 } 2060 2061 std::string Buf; 2062 raw_string_ostream OS(Buf); 2063 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 2064 Filename ? RemarkSerializer.metaSerializer(OS, Filename->str()) 2065 : RemarkSerializer.metaSerializer(OS); 2066 MetaSerializer->emit(); 2067 2068 // Switch to the remarks section. 2069 MCSection *RemarksSection = 2070 OutContext.getObjectFileInfo()->getRemarksSection(); 2071 OutStreamer->switchSection(RemarksSection); 2072 2073 OutStreamer->emitBinaryData(OS.str()); 2074 } 2075 2076 bool AsmPrinter::doFinalization(Module &M) { 2077 // Set the MachineFunction to nullptr so that we can catch attempted 2078 // accesses to MF specific features at the module level and so that 2079 // we can conditionalize accesses based on whether or not it is nullptr. 2080 MF = nullptr; 2081 2082 // Gather all GOT equivalent globals in the module. We really need two 2083 // passes over the globals: one to compute and another to avoid its emission 2084 // in EmitGlobalVariable, otherwise we would not be able to handle cases 2085 // where the got equivalent shows up before its use. 2086 computeGlobalGOTEquivs(M); 2087 2088 // Emit global variables. 2089 for (const auto &G : M.globals()) 2090 emitGlobalVariable(&G); 2091 2092 // Emit remaining GOT equivalent globals. 2093 emitGlobalGOTEquivs(); 2094 2095 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2096 2097 // Emit linkage(XCOFF) and visibility info for declarations 2098 for (const Function &F : M) { 2099 if (!F.isDeclarationForLinker()) 2100 continue; 2101 2102 MCSymbol *Name = getSymbol(&F); 2103 // Function getSymbol gives us the function descriptor symbol for XCOFF. 2104 2105 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 2106 GlobalValue::VisibilityTypes V = F.getVisibility(); 2107 if (V == GlobalValue::DefaultVisibility) 2108 continue; 2109 2110 emitVisibility(Name, V, false); 2111 continue; 2112 } 2113 2114 if (F.isIntrinsic()) 2115 continue; 2116 2117 // Handle the XCOFF case. 2118 // Variable `Name` is the function descriptor symbol (see above). Get the 2119 // function entry point symbol. 2120 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 2121 // Emit linkage for the function entry point. 2122 emitLinkage(&F, FnEntryPointSym); 2123 2124 // Emit linkage for the function descriptor. 2125 emitLinkage(&F, Name); 2126 } 2127 2128 // Emit the remarks section contents. 2129 // FIXME: Figure out when is the safest time to emit this section. It should 2130 // not come after debug info. 2131 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 2132 emitRemarksSection(*RS); 2133 2134 TLOF.emitModuleMetadata(*OutStreamer, M); 2135 2136 if (TM.getTargetTriple().isOSBinFormatELF()) { 2137 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 2138 2139 // Output stubs for external and common global variables. 2140 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 2141 if (!Stubs.empty()) { 2142 OutStreamer->switchSection(TLOF.getDataSection()); 2143 const DataLayout &DL = M.getDataLayout(); 2144 2145 emitAlignment(Align(DL.getPointerSize())); 2146 for (const auto &Stub : Stubs) { 2147 OutStreamer->emitLabel(Stub.first); 2148 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 2149 DL.getPointerSize()); 2150 } 2151 } 2152 } 2153 2154 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 2155 MachineModuleInfoCOFF &MMICOFF = 2156 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 2157 2158 // Output stubs for external and common global variables. 2159 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 2160 if (!Stubs.empty()) { 2161 const DataLayout &DL = M.getDataLayout(); 2162 2163 for (const auto &Stub : Stubs) { 2164 SmallString<256> SectionName = StringRef(".rdata$"); 2165 SectionName += Stub.first->getName(); 2166 OutStreamer->switchSection(OutContext.getCOFFSection( 2167 SectionName, 2168 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 2169 COFF::IMAGE_SCN_LNK_COMDAT, 2170 SectionKind::getReadOnly(), Stub.first->getName(), 2171 COFF::IMAGE_COMDAT_SELECT_ANY)); 2172 emitAlignment(Align(DL.getPointerSize())); 2173 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 2174 OutStreamer->emitLabel(Stub.first); 2175 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 2176 DL.getPointerSize()); 2177 } 2178 } 2179 } 2180 2181 // This needs to happen before emitting debug information since that can end 2182 // arbitrary sections. 2183 if (auto *TS = OutStreamer->getTargetStreamer()) 2184 TS->emitConstantPools(); 2185 2186 // Emit Stack maps before any debug info. Mach-O requires that no data or 2187 // text sections come after debug info has been emitted. This matters for 2188 // stack maps as they are arbitrary data, and may even have a custom format 2189 // through user plugins. 2190 emitStackMaps(); 2191 2192 // Finalize debug and EH information. 2193 for (const HandlerInfo &HI : Handlers) { 2194 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 2195 HI.TimerGroupDescription, TimePassesIsEnabled); 2196 HI.Handler->endModule(); 2197 } 2198 2199 // This deletes all the ephemeral handlers that AsmPrinter added, while 2200 // keeping all the user-added handlers alive until the AsmPrinter is 2201 // destroyed. 2202 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); 2203 DD = nullptr; 2204 2205 // If the target wants to know about weak references, print them all. 2206 if (MAI->getWeakRefDirective()) { 2207 // FIXME: This is not lazy, it would be nice to only print weak references 2208 // to stuff that is actually used. Note that doing so would require targets 2209 // to notice uses in operands (due to constant exprs etc). This should 2210 // happen with the MC stuff eventually. 2211 2212 // Print out module-level global objects here. 2213 for (const auto &GO : M.global_objects()) { 2214 if (!GO.hasExternalWeakLinkage()) 2215 continue; 2216 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 2217 } 2218 if (shouldEmitWeakSwiftAsyncExtendedFramePointerFlags()) { 2219 auto SymbolName = "swift_async_extendedFramePointerFlags"; 2220 auto Global = M.getGlobalVariable(SymbolName); 2221 if (!Global) { 2222 auto Int8PtrTy = Type::getInt8PtrTy(M.getContext()); 2223 Global = new GlobalVariable(M, Int8PtrTy, false, 2224 GlobalValue::ExternalWeakLinkage, nullptr, 2225 SymbolName); 2226 OutStreamer->emitSymbolAttribute(getSymbol(Global), MCSA_WeakReference); 2227 } 2228 } 2229 } 2230 2231 // Print aliases in topological order, that is, for each alias a = b, 2232 // b must be printed before a. 2233 // This is because on some targets (e.g. PowerPC) linker expects aliases in 2234 // such an order to generate correct TOC information. 2235 SmallVector<const GlobalAlias *, 16> AliasStack; 2236 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 2237 for (const auto &Alias : M.aliases()) { 2238 for (const GlobalAlias *Cur = &Alias; Cur; 2239 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 2240 if (!AliasVisited.insert(Cur).second) 2241 break; 2242 AliasStack.push_back(Cur); 2243 } 2244 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 2245 emitGlobalAlias(M, *AncestorAlias); 2246 AliasStack.clear(); 2247 } 2248 for (const auto &IFunc : M.ifuncs()) 2249 emitGlobalIFunc(M, IFunc); 2250 2251 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 2252 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 2253 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 2254 if (GCMetadataPrinter *MP = getOrCreateGCPrinter(**--I)) 2255 MP->finishAssembly(M, *MI, *this); 2256 2257 // Emit llvm.ident metadata in an '.ident' directive. 2258 emitModuleIdents(M); 2259 2260 // Emit bytes for llvm.commandline metadata. 2261 emitModuleCommandLines(M); 2262 2263 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 2264 // split-stack is used. 2265 if (TM.getTargetTriple().isOSBinFormatELF() && HasSplitStack) { 2266 OutStreamer->switchSection(OutContext.getELFSection(".note.GNU-split-stack", 2267 ELF::SHT_PROGBITS, 0)); 2268 if (HasNoSplitStack) 2269 OutStreamer->switchSection(OutContext.getELFSection( 2270 ".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 2271 } 2272 2273 // If we don't have any trampolines, then we don't require stack memory 2274 // to be executable. Some targets have a directive to declare this. 2275 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 2276 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 2277 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 2278 OutStreamer->switchSection(S); 2279 2280 if (TM.Options.EmitAddrsig) { 2281 // Emit address-significance attributes for all globals. 2282 OutStreamer->emitAddrsig(); 2283 for (const GlobalValue &GV : M.global_values()) { 2284 if (!GV.use_empty() && !GV.isThreadLocal() && 2285 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 2286 !GV.hasAtLeastLocalUnnamedAddr()) 2287 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 2288 } 2289 } 2290 2291 // Emit symbol partition specifications (ELF only). 2292 if (TM.getTargetTriple().isOSBinFormatELF()) { 2293 unsigned UniqueID = 0; 2294 for (const GlobalValue &GV : M.global_values()) { 2295 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 2296 GV.getVisibility() != GlobalValue::DefaultVisibility) 2297 continue; 2298 2299 OutStreamer->switchSection( 2300 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 2301 "", false, ++UniqueID, nullptr)); 2302 OutStreamer->emitBytes(GV.getPartition()); 2303 OutStreamer->emitZeros(1); 2304 OutStreamer->emitValue( 2305 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 2306 MAI->getCodePointerSize()); 2307 } 2308 } 2309 2310 // Allow the target to emit any magic that it wants at the end of the file, 2311 // after everything else has gone out. 2312 emitEndOfAsmFile(M); 2313 2314 MMI = nullptr; 2315 AddrLabelSymbols = nullptr; 2316 2317 OutStreamer->finish(); 2318 OutStreamer->reset(); 2319 OwnedMLI.reset(); 2320 OwnedMDT.reset(); 2321 2322 return false; 2323 } 2324 2325 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { 2326 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum()); 2327 if (Res.second) 2328 Res.first->second = createTempSymbol("exception"); 2329 return Res.first->second; 2330 } 2331 2332 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 2333 this->MF = &MF; 2334 const Function &F = MF.getFunction(); 2335 2336 // Record that there are split-stack functions, so we will emit a special 2337 // section to tell the linker. 2338 if (MF.shouldSplitStack()) { 2339 HasSplitStack = true; 2340 2341 if (!MF.getFrameInfo().needsSplitStackProlog()) 2342 HasNoSplitStack = true; 2343 } else 2344 HasNoSplitStack = true; 2345 2346 // Get the function symbol. 2347 if (!MAI->needsFunctionDescriptors()) { 2348 CurrentFnSym = getSymbol(&MF.getFunction()); 2349 } else { 2350 assert(TM.getTargetTriple().isOSAIX() && 2351 "Only AIX uses the function descriptor hooks."); 2352 // AIX is unique here in that the name of the symbol emitted for the 2353 // function body does not have the same name as the source function's 2354 // C-linkage name. 2355 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 2356 " initalized first."); 2357 2358 // Get the function entry point symbol. 2359 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 2360 } 2361 2362 CurrentFnSymForSize = CurrentFnSym; 2363 CurrentFnBegin = nullptr; 2364 CurrentFnBeginLocal = nullptr; 2365 CurrentSectionBeginSym = nullptr; 2366 MBBSectionRanges.clear(); 2367 MBBSectionExceptionSyms.clear(); 2368 bool NeedsLocalForSize = MAI->needsLocalForSize(); 2369 if (F.hasFnAttribute("patchable-function-entry") || 2370 F.hasFnAttribute("function-instrument") || 2371 F.hasFnAttribute("xray-instruction-threshold") || 2372 needFuncLabels(MF) || NeedsLocalForSize || 2373 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) { 2374 CurrentFnBegin = createTempSymbol("func_begin"); 2375 if (NeedsLocalForSize) 2376 CurrentFnSymForSize = CurrentFnBegin; 2377 } 2378 2379 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 2380 } 2381 2382 namespace { 2383 2384 // Keep track the alignment, constpool entries per Section. 2385 struct SectionCPs { 2386 MCSection *S; 2387 Align Alignment; 2388 SmallVector<unsigned, 4> CPEs; 2389 2390 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 2391 }; 2392 2393 } // end anonymous namespace 2394 2395 /// EmitConstantPool - Print to the current output stream assembly 2396 /// representations of the constants in the constant pool MCP. This is 2397 /// used to print out constants which have been "spilled to memory" by 2398 /// the code generator. 2399 void AsmPrinter::emitConstantPool() { 2400 const MachineConstantPool *MCP = MF->getConstantPool(); 2401 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 2402 if (CP.empty()) return; 2403 2404 // Calculate sections for constant pool entries. We collect entries to go into 2405 // the same section together to reduce amount of section switch statements. 2406 SmallVector<SectionCPs, 4> CPSections; 2407 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 2408 const MachineConstantPoolEntry &CPE = CP[i]; 2409 Align Alignment = CPE.getAlign(); 2410 2411 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 2412 2413 const Constant *C = nullptr; 2414 if (!CPE.isMachineConstantPoolEntry()) 2415 C = CPE.Val.ConstVal; 2416 2417 MCSection *S = getObjFileLowering().getSectionForConstant( 2418 getDataLayout(), Kind, C, Alignment); 2419 2420 // The number of sections are small, just do a linear search from the 2421 // last section to the first. 2422 bool Found = false; 2423 unsigned SecIdx = CPSections.size(); 2424 while (SecIdx != 0) { 2425 if (CPSections[--SecIdx].S == S) { 2426 Found = true; 2427 break; 2428 } 2429 } 2430 if (!Found) { 2431 SecIdx = CPSections.size(); 2432 CPSections.push_back(SectionCPs(S, Alignment)); 2433 } 2434 2435 if (Alignment > CPSections[SecIdx].Alignment) 2436 CPSections[SecIdx].Alignment = Alignment; 2437 CPSections[SecIdx].CPEs.push_back(i); 2438 } 2439 2440 // Now print stuff into the calculated sections. 2441 const MCSection *CurSection = nullptr; 2442 unsigned Offset = 0; 2443 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 2444 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 2445 unsigned CPI = CPSections[i].CPEs[j]; 2446 MCSymbol *Sym = GetCPISymbol(CPI); 2447 if (!Sym->isUndefined()) 2448 continue; 2449 2450 if (CurSection != CPSections[i].S) { 2451 OutStreamer->switchSection(CPSections[i].S); 2452 emitAlignment(Align(CPSections[i].Alignment)); 2453 CurSection = CPSections[i].S; 2454 Offset = 0; 2455 } 2456 2457 MachineConstantPoolEntry CPE = CP[CPI]; 2458 2459 // Emit inter-object padding for alignment. 2460 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 2461 OutStreamer->emitZeros(NewOffset - Offset); 2462 2463 Offset = NewOffset + CPE.getSizeInBytes(getDataLayout()); 2464 2465 OutStreamer->emitLabel(Sym); 2466 if (CPE.isMachineConstantPoolEntry()) 2467 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 2468 else 2469 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 2470 } 2471 } 2472 } 2473 2474 // Print assembly representations of the jump tables used by the current 2475 // function. 2476 void AsmPrinter::emitJumpTableInfo() { 2477 const DataLayout &DL = MF->getDataLayout(); 2478 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2479 if (!MJTI) return; 2480 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 2481 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2482 if (JT.empty()) return; 2483 2484 // Pick the directive to use to print the jump table entries, and switch to 2485 // the appropriate section. 2486 const Function &F = MF->getFunction(); 2487 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2488 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 2489 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 2490 F); 2491 if (JTInDiffSection) { 2492 // Drop it in the readonly section. 2493 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 2494 OutStreamer->switchSection(ReadOnlySection); 2495 } 2496 2497 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 2498 2499 // Jump tables in code sections are marked with a data_region directive 2500 // where that's supported. 2501 if (!JTInDiffSection) 2502 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 2503 2504 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 2505 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2506 2507 // If this jump table was deleted, ignore it. 2508 if (JTBBs.empty()) continue; 2509 2510 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 2511 /// emit a .set directive for each unique entry. 2512 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 2513 MAI->doesSetDirectiveSuppressReloc()) { 2514 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 2515 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2516 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 2517 for (const MachineBasicBlock *MBB : JTBBs) { 2518 if (!EmittedSets.insert(MBB).second) 2519 continue; 2520 2521 // .set LJTSet, LBB32-base 2522 const MCExpr *LHS = 2523 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2524 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 2525 MCBinaryExpr::createSub(LHS, Base, 2526 OutContext)); 2527 } 2528 } 2529 2530 // On some targets (e.g. Darwin) we want to emit two consecutive labels 2531 // before each jump table. The first label is never referenced, but tells 2532 // the assembler and linker the extents of the jump table object. The 2533 // second label is actually referenced by the code. 2534 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 2535 // FIXME: This doesn't have to have any specific name, just any randomly 2536 // named and numbered local label started with 'l' would work. Simplify 2537 // GetJTISymbol. 2538 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 2539 2540 MCSymbol* JTISymbol = GetJTISymbol(JTI); 2541 OutStreamer->emitLabel(JTISymbol); 2542 2543 for (const MachineBasicBlock *MBB : JTBBs) 2544 emitJumpTableEntry(MJTI, MBB, JTI); 2545 } 2546 if (!JTInDiffSection) 2547 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 2548 } 2549 2550 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 2551 /// current stream. 2552 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 2553 const MachineBasicBlock *MBB, 2554 unsigned UID) const { 2555 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 2556 const MCExpr *Value = nullptr; 2557 switch (MJTI->getEntryKind()) { 2558 case MachineJumpTableInfo::EK_Inline: 2559 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 2560 case MachineJumpTableInfo::EK_Custom32: 2561 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 2562 MJTI, MBB, UID, OutContext); 2563 break; 2564 case MachineJumpTableInfo::EK_BlockAddress: 2565 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 2566 // .word LBB123 2567 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2568 break; 2569 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2570 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2571 // with a relocation as gp-relative, e.g.: 2572 // .gprel32 LBB123 2573 MCSymbol *MBBSym = MBB->getSymbol(); 2574 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2575 return; 2576 } 2577 2578 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2579 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2580 // with a relocation as gp-relative, e.g.: 2581 // .gpdword LBB123 2582 MCSymbol *MBBSym = MBB->getSymbol(); 2583 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2584 return; 2585 } 2586 2587 case MachineJumpTableInfo::EK_LabelDifference32: { 2588 // Each entry is the address of the block minus the address of the jump 2589 // table. This is used for PIC jump tables where gprel32 is not supported. 2590 // e.g.: 2591 // .word LBB123 - LJTI1_2 2592 // If the .set directive avoids relocations, this is emitted as: 2593 // .set L4_5_set_123, LBB123 - LJTI1_2 2594 // .word L4_5_set_123 2595 if (MAI->doesSetDirectiveSuppressReloc()) { 2596 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2597 OutContext); 2598 break; 2599 } 2600 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2601 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2602 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2603 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2604 break; 2605 } 2606 } 2607 2608 assert(Value && "Unknown entry kind!"); 2609 2610 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2611 OutStreamer->emitValue(Value, EntrySize); 2612 } 2613 2614 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2615 /// special global used by LLVM. If so, emit it and return true, otherwise 2616 /// do nothing and return false. 2617 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2618 if (GV->getName() == "llvm.used") { 2619 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2620 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2621 return true; 2622 } 2623 2624 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2625 if (GV->getSection() == "llvm.metadata" || 2626 GV->hasAvailableExternallyLinkage()) 2627 return true; 2628 2629 if (!GV->hasAppendingLinkage()) return false; 2630 2631 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2632 2633 if (GV->getName() == "llvm.global_ctors") { 2634 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2635 /* isCtor */ true); 2636 2637 return true; 2638 } 2639 2640 if (GV->getName() == "llvm.global_dtors") { 2641 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2642 /* isCtor */ false); 2643 2644 return true; 2645 } 2646 2647 report_fatal_error("unknown special variable"); 2648 } 2649 2650 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2651 /// global in the specified llvm.used list. 2652 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2653 // Should be an array of 'i8*'. 2654 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2655 const GlobalValue *GV = 2656 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2657 if (GV) 2658 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2659 } 2660 } 2661 2662 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 2663 const Constant *List, 2664 SmallVector<Structor, 8> &Structors) { 2665 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 2666 // the init priority. 2667 if (!isa<ConstantArray>(List)) 2668 return; 2669 2670 // Gather the structors in a form that's convenient for sorting by priority. 2671 for (Value *O : cast<ConstantArray>(List)->operands()) { 2672 auto *CS = cast<ConstantStruct>(O); 2673 if (CS->getOperand(1)->isNullValue()) 2674 break; // Found a null terminator, skip the rest. 2675 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2676 if (!Priority) 2677 continue; // Malformed. 2678 Structors.push_back(Structor()); 2679 Structor &S = Structors.back(); 2680 S.Priority = Priority->getLimitedValue(65535); 2681 S.Func = CS->getOperand(1); 2682 if (!CS->getOperand(2)->isNullValue()) { 2683 if (TM.getTargetTriple().isOSAIX()) 2684 llvm::report_fatal_error( 2685 "associated data of XXStructor list is not yet supported on AIX"); 2686 S.ComdatKey = 2687 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2688 } 2689 } 2690 2691 // Emit the function pointers in the target-specific order 2692 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2693 return L.Priority < R.Priority; 2694 }); 2695 } 2696 2697 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2698 /// priority. 2699 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2700 bool IsCtor) { 2701 SmallVector<Structor, 8> Structors; 2702 preprocessXXStructorList(DL, List, Structors); 2703 if (Structors.empty()) 2704 return; 2705 2706 // Emit the structors in reverse order if we are using the .ctor/.dtor 2707 // initialization scheme. 2708 if (!TM.Options.UseInitArray) 2709 std::reverse(Structors.begin(), Structors.end()); 2710 2711 const Align Align = DL.getPointerPrefAlignment(); 2712 for (Structor &S : Structors) { 2713 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2714 const MCSymbol *KeySym = nullptr; 2715 if (GlobalValue *GV = S.ComdatKey) { 2716 if (GV->isDeclarationForLinker()) 2717 // If the associated variable is not defined in this module 2718 // (it might be available_externally, or have been an 2719 // available_externally definition that was dropped by the 2720 // EliminateAvailableExternally pass), some other TU 2721 // will provide its dynamic initializer. 2722 continue; 2723 2724 KeySym = getSymbol(GV); 2725 } 2726 2727 MCSection *OutputSection = 2728 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2729 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2730 OutStreamer->switchSection(OutputSection); 2731 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2732 emitAlignment(Align); 2733 emitXXStructor(DL, S.Func); 2734 } 2735 } 2736 2737 void AsmPrinter::emitModuleIdents(Module &M) { 2738 if (!MAI->hasIdentDirective()) 2739 return; 2740 2741 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2742 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2743 const MDNode *N = NMD->getOperand(i); 2744 assert(N->getNumOperands() == 1 && 2745 "llvm.ident metadata entry can have only one operand"); 2746 const MDString *S = cast<MDString>(N->getOperand(0)); 2747 OutStreamer->emitIdent(S->getString()); 2748 } 2749 } 2750 } 2751 2752 void AsmPrinter::emitModuleCommandLines(Module &M) { 2753 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2754 if (!CommandLine) 2755 return; 2756 2757 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2758 if (!NMD || !NMD->getNumOperands()) 2759 return; 2760 2761 OutStreamer->pushSection(); 2762 OutStreamer->switchSection(CommandLine); 2763 OutStreamer->emitZeros(1); 2764 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2765 const MDNode *N = NMD->getOperand(i); 2766 assert(N->getNumOperands() == 1 && 2767 "llvm.commandline metadata entry can have only one operand"); 2768 const MDString *S = cast<MDString>(N->getOperand(0)); 2769 OutStreamer->emitBytes(S->getString()); 2770 OutStreamer->emitZeros(1); 2771 } 2772 OutStreamer->popSection(); 2773 } 2774 2775 //===--------------------------------------------------------------------===// 2776 // Emission and print routines 2777 // 2778 2779 /// Emit a byte directive and value. 2780 /// 2781 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2782 2783 /// Emit a short directive and value. 2784 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2785 2786 /// Emit a long directive and value. 2787 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2788 2789 /// Emit a long long directive and value. 2790 void AsmPrinter::emitInt64(uint64_t Value) const { 2791 OutStreamer->emitInt64(Value); 2792 } 2793 2794 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2795 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2796 /// .set if it avoids relocations. 2797 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2798 unsigned Size) const { 2799 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2800 } 2801 2802 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2803 /// where the size in bytes of the directive is specified by Size and Label 2804 /// specifies the label. This implicitly uses .set if it is available. 2805 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2806 unsigned Size, 2807 bool IsSectionRelative) const { 2808 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2809 OutStreamer->emitCOFFSecRel32(Label, Offset); 2810 if (Size > 4) 2811 OutStreamer->emitZeros(Size - 4); 2812 return; 2813 } 2814 2815 // Emit Label+Offset (or just Label if Offset is zero) 2816 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2817 if (Offset) 2818 Expr = MCBinaryExpr::createAdd( 2819 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2820 2821 OutStreamer->emitValue(Expr, Size); 2822 } 2823 2824 //===----------------------------------------------------------------------===// 2825 2826 // EmitAlignment - Emit an alignment directive to the specified power of 2827 // two boundary. If a global value is specified, and if that global has 2828 // an explicit alignment requested, it will override the alignment request 2829 // if required for correctness. 2830 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV, 2831 unsigned MaxBytesToEmit) const { 2832 if (GV) 2833 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2834 2835 if (Alignment == Align(1)) 2836 return; // 1-byte aligned: no need to emit alignment. 2837 2838 if (getCurrentSection()->getKind().isText()) { 2839 const MCSubtargetInfo *STI = nullptr; 2840 if (this->MF) 2841 STI = &getSubtargetInfo(); 2842 else 2843 STI = TM.getMCSubtargetInfo(); 2844 OutStreamer->emitCodeAlignment(Alignment, STI, MaxBytesToEmit); 2845 } else 2846 OutStreamer->emitValueToAlignment(Alignment, 0, 1, MaxBytesToEmit); 2847 } 2848 2849 //===----------------------------------------------------------------------===// 2850 // Constant emission. 2851 //===----------------------------------------------------------------------===// 2852 2853 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2854 MCContext &Ctx = OutContext; 2855 2856 if (CV->isNullValue() || isa<UndefValue>(CV)) 2857 return MCConstantExpr::create(0, Ctx); 2858 2859 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2860 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2861 2862 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2863 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2864 2865 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2866 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2867 2868 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) 2869 return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM); 2870 2871 if (const NoCFIValue *NC = dyn_cast<NoCFIValue>(CV)) 2872 return MCSymbolRefExpr::create(getSymbol(NC->getGlobalValue()), Ctx); 2873 2874 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2875 if (!CE) { 2876 llvm_unreachable("Unknown constant value to lower!"); 2877 } 2878 2879 // The constant expression opcodes are limited to those that are necessary 2880 // to represent relocations on supported targets. Expressions involving only 2881 // constant addresses are constant folded instead. 2882 switch (CE->getOpcode()) { 2883 default: 2884 break; // Error 2885 case Instruction::AddrSpaceCast: { 2886 const Constant *Op = CE->getOperand(0); 2887 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 2888 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 2889 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 2890 return lowerConstant(Op); 2891 2892 break; // Error 2893 } 2894 case Instruction::GetElementPtr: { 2895 // Generate a symbolic expression for the byte address 2896 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2897 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2898 2899 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2900 if (!OffsetAI) 2901 return Base; 2902 2903 int64_t Offset = OffsetAI.getSExtValue(); 2904 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2905 Ctx); 2906 } 2907 2908 case Instruction::Trunc: 2909 // We emit the value and depend on the assembler to truncate the generated 2910 // expression properly. This is important for differences between 2911 // blockaddress labels. Since the two labels are in the same function, it 2912 // is reasonable to treat their delta as a 32-bit value. 2913 [[fallthrough]]; 2914 case Instruction::BitCast: 2915 return lowerConstant(CE->getOperand(0)); 2916 2917 case Instruction::IntToPtr: { 2918 const DataLayout &DL = getDataLayout(); 2919 2920 // Handle casts to pointers by changing them into casts to the appropriate 2921 // integer type. This promotes constant folding and simplifies this code. 2922 Constant *Op = CE->getOperand(0); 2923 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2924 false/*ZExt*/); 2925 return lowerConstant(Op); 2926 } 2927 2928 case Instruction::PtrToInt: { 2929 const DataLayout &DL = getDataLayout(); 2930 2931 // Support only foldable casts to/from pointers that can be eliminated by 2932 // changing the pointer to the appropriately sized integer type. 2933 Constant *Op = CE->getOperand(0); 2934 Type *Ty = CE->getType(); 2935 2936 const MCExpr *OpExpr = lowerConstant(Op); 2937 2938 // We can emit the pointer value into this slot if the slot is an 2939 // integer slot equal to the size of the pointer. 2940 // 2941 // If the pointer is larger than the resultant integer, then 2942 // as with Trunc just depend on the assembler to truncate it. 2943 if (DL.getTypeAllocSize(Ty).getFixedValue() <= 2944 DL.getTypeAllocSize(Op->getType()).getFixedValue()) 2945 return OpExpr; 2946 2947 break; // Error 2948 } 2949 2950 case Instruction::Sub: { 2951 GlobalValue *LHSGV; 2952 APInt LHSOffset; 2953 DSOLocalEquivalent *DSOEquiv; 2954 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2955 getDataLayout(), &DSOEquiv)) { 2956 GlobalValue *RHSGV; 2957 APInt RHSOffset; 2958 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2959 getDataLayout())) { 2960 const MCExpr *RelocExpr = 2961 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2962 if (!RelocExpr) { 2963 const MCExpr *LHSExpr = 2964 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx); 2965 if (DSOEquiv && 2966 getObjFileLowering().supportDSOLocalEquivalentLowering()) 2967 LHSExpr = 2968 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM); 2969 RelocExpr = MCBinaryExpr::createSub( 2970 LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2971 } 2972 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2973 if (Addend != 0) 2974 RelocExpr = MCBinaryExpr::createAdd( 2975 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2976 return RelocExpr; 2977 } 2978 } 2979 2980 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2981 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2982 return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2983 break; 2984 } 2985 2986 case Instruction::Add: { 2987 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2988 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2989 return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2990 } 2991 } 2992 2993 // If the code isn't optimized, there may be outstanding folding 2994 // opportunities. Attempt to fold the expression using DataLayout as a 2995 // last resort before giving up. 2996 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2997 if (C != CE) 2998 return lowerConstant(C); 2999 3000 // Otherwise report the problem to the user. 3001 std::string S; 3002 raw_string_ostream OS(S); 3003 OS << "Unsupported expression in static initializer: "; 3004 CE->printAsOperand(OS, /*PrintType=*/false, 3005 !MF ? nullptr : MF->getFunction().getParent()); 3006 report_fatal_error(Twine(OS.str())); 3007 } 3008 3009 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 3010 AsmPrinter &AP, 3011 const Constant *BaseCV = nullptr, 3012 uint64_t Offset = 0, 3013 AsmPrinter::AliasMapTy *AliasList = nullptr); 3014 3015 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 3016 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 3017 3018 /// isRepeatedByteSequence - Determine whether the given value is 3019 /// composed of a repeated sequence of identical bytes and return the 3020 /// byte value. If it is not a repeated sequence, return -1. 3021 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 3022 StringRef Data = V->getRawDataValues(); 3023 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 3024 char C = Data[0]; 3025 for (unsigned i = 1, e = Data.size(); i != e; ++i) 3026 if (Data[i] != C) return -1; 3027 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 3028 } 3029 3030 /// isRepeatedByteSequence - Determine whether the given value is 3031 /// composed of a repeated sequence of identical bytes and return the 3032 /// byte value. If it is not a repeated sequence, return -1. 3033 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 3034 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 3035 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 3036 assert(Size % 8 == 0); 3037 3038 // Extend the element to take zero padding into account. 3039 APInt Value = CI->getValue().zext(Size); 3040 if (!Value.isSplat(8)) 3041 return -1; 3042 3043 return Value.zextOrTrunc(8).getZExtValue(); 3044 } 3045 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 3046 // Make sure all array elements are sequences of the same repeated 3047 // byte. 3048 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 3049 Constant *Op0 = CA->getOperand(0); 3050 int Byte = isRepeatedByteSequence(Op0, DL); 3051 if (Byte == -1) 3052 return -1; 3053 3054 // All array elements must be equal. 3055 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 3056 if (CA->getOperand(i) != Op0) 3057 return -1; 3058 return Byte; 3059 } 3060 3061 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 3062 return isRepeatedByteSequence(CDS); 3063 3064 return -1; 3065 } 3066 3067 static void emitGlobalAliasInline(AsmPrinter &AP, uint64_t Offset, 3068 AsmPrinter::AliasMapTy *AliasList) { 3069 if (AliasList) { 3070 auto AliasIt = AliasList->find(Offset); 3071 if (AliasIt != AliasList->end()) { 3072 for (const GlobalAlias *GA : AliasIt->second) 3073 AP.OutStreamer->emitLabel(AP.getSymbol(GA)); 3074 AliasList->erase(Offset); 3075 } 3076 } 3077 } 3078 3079 static void emitGlobalConstantDataSequential( 3080 const DataLayout &DL, const ConstantDataSequential *CDS, AsmPrinter &AP, 3081 AsmPrinter::AliasMapTy *AliasList) { 3082 // See if we can aggregate this into a .fill, if so, emit it as such. 3083 int Value = isRepeatedByteSequence(CDS, DL); 3084 if (Value != -1) { 3085 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 3086 // Don't emit a 1-byte object as a .fill. 3087 if (Bytes > 1) 3088 return AP.OutStreamer->emitFill(Bytes, Value); 3089 } 3090 3091 // If this can be emitted with .ascii/.asciz, emit it as such. 3092 if (CDS->isString()) 3093 return AP.OutStreamer->emitBytes(CDS->getAsString()); 3094 3095 // Otherwise, emit the values in successive locations. 3096 unsigned ElementByteSize = CDS->getElementByteSize(); 3097 if (isa<IntegerType>(CDS->getElementType())) { 3098 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 3099 emitGlobalAliasInline(AP, ElementByteSize * I, AliasList); 3100 if (AP.isVerbose()) 3101 AP.OutStreamer->getCommentOS() 3102 << format("0x%" PRIx64 "\n", CDS->getElementAsInteger(I)); 3103 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(I), 3104 ElementByteSize); 3105 } 3106 } else { 3107 Type *ET = CDS->getElementType(); 3108 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 3109 emitGlobalAliasInline(AP, ElementByteSize * I, AliasList); 3110 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 3111 } 3112 } 3113 3114 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 3115 unsigned EmittedSize = 3116 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 3117 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 3118 if (unsigned Padding = Size - EmittedSize) 3119 AP.OutStreamer->emitZeros(Padding); 3120 } 3121 3122 static void emitGlobalConstantArray(const DataLayout &DL, 3123 const ConstantArray *CA, AsmPrinter &AP, 3124 const Constant *BaseCV, uint64_t Offset, 3125 AsmPrinter::AliasMapTy *AliasList) { 3126 // See if we can aggregate some values. Make sure it can be 3127 // represented as a series of bytes of the constant value. 3128 int Value = isRepeatedByteSequence(CA, DL); 3129 3130 if (Value != -1) { 3131 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 3132 AP.OutStreamer->emitFill(Bytes, Value); 3133 } else { 3134 for (unsigned I = 0, E = CA->getNumOperands(); I != E; ++I) { 3135 emitGlobalConstantImpl(DL, CA->getOperand(I), AP, BaseCV, Offset, 3136 AliasList); 3137 Offset += DL.getTypeAllocSize(CA->getOperand(I)->getType()); 3138 } 3139 } 3140 } 3141 3142 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP); 3143 3144 static void emitGlobalConstantVector(const DataLayout &DL, 3145 const ConstantVector *CV, AsmPrinter &AP, 3146 AsmPrinter::AliasMapTy *AliasList) { 3147 Type *ElementType = CV->getType()->getElementType(); 3148 uint64_t ElementSizeInBits = DL.getTypeSizeInBits(ElementType); 3149 uint64_t ElementAllocSizeInBits = DL.getTypeAllocSizeInBits(ElementType); 3150 uint64_t EmittedSize; 3151 if (ElementSizeInBits != ElementAllocSizeInBits) { 3152 // If the allocation size of an element is different from the size in bits, 3153 // printing each element separately will insert incorrect padding. 3154 // 3155 // The general algorithm here is complicated; instead of writing it out 3156 // here, just use the existing code in ConstantFolding. 3157 Type *IntT = 3158 IntegerType::get(CV->getContext(), DL.getTypeSizeInBits(CV->getType())); 3159 ConstantInt *CI = dyn_cast_or_null<ConstantInt>(ConstantFoldConstant( 3160 ConstantExpr::getBitCast(const_cast<ConstantVector *>(CV), IntT), DL)); 3161 if (!CI) { 3162 report_fatal_error( 3163 "Cannot lower vector global with unusual element type"); 3164 } 3165 emitGlobalAliasInline(AP, 0, AliasList); 3166 emitGlobalConstantLargeInt(CI, AP); 3167 EmittedSize = DL.getTypeStoreSize(CV->getType()); 3168 } else { 3169 for (unsigned I = 0, E = CV->getType()->getNumElements(); I != E; ++I) { 3170 emitGlobalAliasInline(AP, DL.getTypeAllocSize(CV->getType()) * I, AliasList); 3171 emitGlobalConstantImpl(DL, CV->getOperand(I), AP); 3172 } 3173 EmittedSize = 3174 DL.getTypeAllocSize(ElementType) * CV->getType()->getNumElements(); 3175 } 3176 3177 unsigned Size = DL.getTypeAllocSize(CV->getType()); 3178 if (unsigned Padding = Size - EmittedSize) 3179 AP.OutStreamer->emitZeros(Padding); 3180 } 3181 3182 static void emitGlobalConstantStruct(const DataLayout &DL, 3183 const ConstantStruct *CS, AsmPrinter &AP, 3184 const Constant *BaseCV, uint64_t Offset, 3185 AsmPrinter::AliasMapTy *AliasList) { 3186 // Print the fields in successive locations. Pad to align if needed! 3187 unsigned Size = DL.getTypeAllocSize(CS->getType()); 3188 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 3189 uint64_t SizeSoFar = 0; 3190 for (unsigned I = 0, E = CS->getNumOperands(); I != E; ++I) { 3191 const Constant *Field = CS->getOperand(I); 3192 3193 // Print the actual field value. 3194 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar, 3195 AliasList); 3196 3197 // Check if padding is needed and insert one or more 0s. 3198 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 3199 uint64_t PadSize = ((I == E - 1 ? Size : Layout->getElementOffset(I + 1)) - 3200 Layout->getElementOffset(I)) - 3201 FieldSize; 3202 SizeSoFar += FieldSize + PadSize; 3203 3204 // Insert padding - this may include padding to increase the size of the 3205 // current field up to the ABI size (if the struct is not packed) as well 3206 // as padding to ensure that the next field starts at the right offset. 3207 AP.OutStreamer->emitZeros(PadSize); 3208 } 3209 assert(SizeSoFar == Layout->getSizeInBytes() && 3210 "Layout of constant struct may be incorrect!"); 3211 } 3212 3213 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 3214 assert(ET && "Unknown float type"); 3215 APInt API = APF.bitcastToAPInt(); 3216 3217 // First print a comment with what we think the original floating-point value 3218 // should have been. 3219 if (AP.isVerbose()) { 3220 SmallString<8> StrVal; 3221 APF.toString(StrVal); 3222 ET->print(AP.OutStreamer->getCommentOS()); 3223 AP.OutStreamer->getCommentOS() << ' ' << StrVal << '\n'; 3224 } 3225 3226 // Now iterate through the APInt chunks, emitting them in endian-correct 3227 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 3228 // floats). 3229 unsigned NumBytes = API.getBitWidth() / 8; 3230 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 3231 const uint64_t *p = API.getRawData(); 3232 3233 // PPC's long double has odd notions of endianness compared to how LLVM 3234 // handles it: p[0] goes first for *big* endian on PPC. 3235 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 3236 int Chunk = API.getNumWords() - 1; 3237 3238 if (TrailingBytes) 3239 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 3240 3241 for (; Chunk >= 0; --Chunk) 3242 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 3243 } else { 3244 unsigned Chunk; 3245 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 3246 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 3247 3248 if (TrailingBytes) 3249 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 3250 } 3251 3252 // Emit the tail padding for the long double. 3253 const DataLayout &DL = AP.getDataLayout(); 3254 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 3255 } 3256 3257 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 3258 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 3259 } 3260 3261 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 3262 const DataLayout &DL = AP.getDataLayout(); 3263 unsigned BitWidth = CI->getBitWidth(); 3264 3265 // Copy the value as we may massage the layout for constants whose bit width 3266 // is not a multiple of 64-bits. 3267 APInt Realigned(CI->getValue()); 3268 uint64_t ExtraBits = 0; 3269 unsigned ExtraBitsSize = BitWidth & 63; 3270 3271 if (ExtraBitsSize) { 3272 // The bit width of the data is not a multiple of 64-bits. 3273 // The extra bits are expected to be at the end of the chunk of the memory. 3274 // Little endian: 3275 // * Nothing to be done, just record the extra bits to emit. 3276 // Big endian: 3277 // * Record the extra bits to emit. 3278 // * Realign the raw data to emit the chunks of 64-bits. 3279 if (DL.isBigEndian()) { 3280 // Basically the structure of the raw data is a chunk of 64-bits cells: 3281 // 0 1 BitWidth / 64 3282 // [chunk1][chunk2] ... [chunkN]. 3283 // The most significant chunk is chunkN and it should be emitted first. 3284 // However, due to the alignment issue chunkN contains useless bits. 3285 // Realign the chunks so that they contain only useful information: 3286 // ExtraBits 0 1 (BitWidth / 64) - 1 3287 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 3288 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 3289 ExtraBits = Realigned.getRawData()[0] & 3290 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 3291 Realigned.lshrInPlace(ExtraBitsSize); 3292 } else 3293 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 3294 } 3295 3296 // We don't expect assemblers to support integer data directives 3297 // for more than 64 bits, so we emit the data in at most 64-bit 3298 // quantities at a time. 3299 const uint64_t *RawData = Realigned.getRawData(); 3300 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 3301 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 3302 AP.OutStreamer->emitIntValue(Val, 8); 3303 } 3304 3305 if (ExtraBitsSize) { 3306 // Emit the extra bits after the 64-bits chunks. 3307 3308 // Emit a directive that fills the expected size. 3309 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 3310 Size -= (BitWidth / 64) * 8; 3311 assert(Size && Size * 8 >= ExtraBitsSize && 3312 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 3313 == ExtraBits && "Directive too small for extra bits."); 3314 AP.OutStreamer->emitIntValue(ExtraBits, Size); 3315 } 3316 } 3317 3318 /// Transform a not absolute MCExpr containing a reference to a GOT 3319 /// equivalent global, by a target specific GOT pc relative access to the 3320 /// final symbol. 3321 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 3322 const Constant *BaseCst, 3323 uint64_t Offset) { 3324 // The global @foo below illustrates a global that uses a got equivalent. 3325 // 3326 // @bar = global i32 42 3327 // @gotequiv = private unnamed_addr constant i32* @bar 3328 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 3329 // i64 ptrtoint (i32* @foo to i64)) 3330 // to i32) 3331 // 3332 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 3333 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 3334 // form: 3335 // 3336 // foo = cstexpr, where 3337 // cstexpr := <gotequiv> - "." + <cst> 3338 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 3339 // 3340 // After canonicalization by evaluateAsRelocatable `ME` turns into: 3341 // 3342 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 3343 // gotpcrelcst := <offset from @foo base> + <cst> 3344 MCValue MV; 3345 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 3346 return; 3347 const MCSymbolRefExpr *SymA = MV.getSymA(); 3348 if (!SymA) 3349 return; 3350 3351 // Check that GOT equivalent symbol is cached. 3352 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 3353 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 3354 return; 3355 3356 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 3357 if (!BaseGV) 3358 return; 3359 3360 // Check for a valid base symbol 3361 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 3362 const MCSymbolRefExpr *SymB = MV.getSymB(); 3363 3364 if (!SymB || BaseSym != &SymB->getSymbol()) 3365 return; 3366 3367 // Make sure to match: 3368 // 3369 // gotpcrelcst := <offset from @foo base> + <cst> 3370 // 3371 // If gotpcrelcst is positive it means that we can safely fold the pc rel 3372 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 3373 // if the target knows how to encode it. 3374 int64_t GOTPCRelCst = Offset + MV.getConstant(); 3375 if (GOTPCRelCst < 0) 3376 return; 3377 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 3378 return; 3379 3380 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 3381 // 3382 // bar: 3383 // .long 42 3384 // gotequiv: 3385 // .quad bar 3386 // foo: 3387 // .long gotequiv - "." + <cst> 3388 // 3389 // is replaced by the target specific equivalent to: 3390 // 3391 // bar: 3392 // .long 42 3393 // foo: 3394 // .long bar@GOTPCREL+<gotpcrelcst> 3395 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 3396 const GlobalVariable *GV = Result.first; 3397 int NumUses = (int)Result.second; 3398 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 3399 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 3400 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 3401 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 3402 3403 // Update GOT equivalent usage information 3404 --NumUses; 3405 if (NumUses >= 0) 3406 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 3407 } 3408 3409 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 3410 AsmPrinter &AP, const Constant *BaseCV, 3411 uint64_t Offset, 3412 AsmPrinter::AliasMapTy *AliasList) { 3413 emitGlobalAliasInline(AP, Offset, AliasList); 3414 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 3415 3416 // Globals with sub-elements such as combinations of arrays and structs 3417 // are handled recursively by emitGlobalConstantImpl. Keep track of the 3418 // constant symbol base and the current position with BaseCV and Offset. 3419 if (!BaseCV && CV->hasOneUse()) 3420 BaseCV = dyn_cast<Constant>(CV->user_back()); 3421 3422 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 3423 return AP.OutStreamer->emitZeros(Size); 3424 3425 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 3426 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 3427 3428 if (StoreSize <= 8) { 3429 if (AP.isVerbose()) 3430 AP.OutStreamer->getCommentOS() 3431 << format("0x%" PRIx64 "\n", CI->getZExtValue()); 3432 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 3433 } else { 3434 emitGlobalConstantLargeInt(CI, AP); 3435 } 3436 3437 // Emit tail padding if needed 3438 if (Size != StoreSize) 3439 AP.OutStreamer->emitZeros(Size - StoreSize); 3440 3441 return; 3442 } 3443 3444 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 3445 return emitGlobalConstantFP(CFP, AP); 3446 3447 if (isa<ConstantPointerNull>(CV)) { 3448 AP.OutStreamer->emitIntValue(0, Size); 3449 return; 3450 } 3451 3452 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 3453 return emitGlobalConstantDataSequential(DL, CDS, AP, AliasList); 3454 3455 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 3456 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset, AliasList); 3457 3458 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 3459 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset, AliasList); 3460 3461 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 3462 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 3463 // vectors). 3464 if (CE->getOpcode() == Instruction::BitCast) 3465 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 3466 3467 if (Size > 8) { 3468 // If the constant expression's size is greater than 64-bits, then we have 3469 // to emit the value in chunks. Try to constant fold the value and emit it 3470 // that way. 3471 Constant *New = ConstantFoldConstant(CE, DL); 3472 if (New != CE) 3473 return emitGlobalConstantImpl(DL, New, AP); 3474 } 3475 } 3476 3477 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 3478 return emitGlobalConstantVector(DL, V, AP, AliasList); 3479 3480 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 3481 // thread the streamer with EmitValue. 3482 const MCExpr *ME = AP.lowerConstant(CV); 3483 3484 // Since lowerConstant already folded and got rid of all IR pointer and 3485 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 3486 // directly. 3487 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 3488 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 3489 3490 AP.OutStreamer->emitValue(ME, Size); 3491 } 3492 3493 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 3494 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV, 3495 AliasMapTy *AliasList) { 3496 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 3497 if (Size) 3498 emitGlobalConstantImpl(DL, CV, *this, nullptr, 0, AliasList); 3499 else if (MAI->hasSubsectionsViaSymbols()) { 3500 // If the global has zero size, emit a single byte so that two labels don't 3501 // look like they are at the same location. 3502 OutStreamer->emitIntValue(0, 1); 3503 } 3504 if (!AliasList) 3505 return; 3506 // TODO: These remaining aliases are not emitted in the correct location. Need 3507 // to handle the case where the alias offset doesn't refer to any sub-element. 3508 for (auto &AliasPair : *AliasList) { 3509 for (const GlobalAlias *GA : AliasPair.second) 3510 OutStreamer->emitLabel(getSymbol(GA)); 3511 } 3512 } 3513 3514 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 3515 // Target doesn't support this yet! 3516 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 3517 } 3518 3519 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 3520 if (Offset > 0) 3521 OS << '+' << Offset; 3522 else if (Offset < 0) 3523 OS << Offset; 3524 } 3525 3526 void AsmPrinter::emitNops(unsigned N) { 3527 MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop(); 3528 for (; N; --N) 3529 EmitToStreamer(*OutStreamer, Nop); 3530 } 3531 3532 //===----------------------------------------------------------------------===// 3533 // Symbol Lowering Routines. 3534 //===----------------------------------------------------------------------===// 3535 3536 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 3537 return OutContext.createTempSymbol(Name, true); 3538 } 3539 3540 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 3541 return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol( 3542 BA->getBasicBlock()); 3543 } 3544 3545 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 3546 return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(BB); 3547 } 3548 3549 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 3550 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 3551 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 3552 const MachineConstantPoolEntry &CPE = 3553 MF->getConstantPool()->getConstants()[CPID]; 3554 if (!CPE.isMachineConstantPoolEntry()) { 3555 const DataLayout &DL = MF->getDataLayout(); 3556 SectionKind Kind = CPE.getSectionKind(&DL); 3557 const Constant *C = CPE.Val.ConstVal; 3558 Align Alignment = CPE.Alignment; 3559 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 3560 getObjFileLowering().getSectionForConstant(DL, Kind, C, 3561 Alignment))) { 3562 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 3563 if (Sym->isUndefined()) 3564 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 3565 return Sym; 3566 } 3567 } 3568 } 3569 } 3570 3571 const DataLayout &DL = getDataLayout(); 3572 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3573 "CPI" + Twine(getFunctionNumber()) + "_" + 3574 Twine(CPID)); 3575 } 3576 3577 /// GetJTISymbol - Return the symbol for the specified jump table entry. 3578 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 3579 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 3580 } 3581 3582 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 3583 /// FIXME: privatize to AsmPrinter. 3584 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 3585 const DataLayout &DL = getDataLayout(); 3586 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3587 Twine(getFunctionNumber()) + "_" + 3588 Twine(UID) + "_set_" + Twine(MBBID)); 3589 } 3590 3591 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 3592 StringRef Suffix) const { 3593 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 3594 } 3595 3596 /// Return the MCSymbol for the specified ExternalSymbol. 3597 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 3598 SmallString<60> NameStr; 3599 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 3600 return OutContext.getOrCreateSymbol(NameStr); 3601 } 3602 3603 /// PrintParentLoopComment - Print comments about parent loops of this one. 3604 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3605 unsigned FunctionNumber) { 3606 if (!Loop) return; 3607 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 3608 OS.indent(Loop->getLoopDepth()*2) 3609 << "Parent Loop BB" << FunctionNumber << "_" 3610 << Loop->getHeader()->getNumber() 3611 << " Depth=" << Loop->getLoopDepth() << '\n'; 3612 } 3613 3614 /// PrintChildLoopComment - Print comments about child loops within 3615 /// the loop for this basic block, with nesting. 3616 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3617 unsigned FunctionNumber) { 3618 // Add child loop information 3619 for (const MachineLoop *CL : *Loop) { 3620 OS.indent(CL->getLoopDepth()*2) 3621 << "Child Loop BB" << FunctionNumber << "_" 3622 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 3623 << '\n'; 3624 PrintChildLoopComment(OS, CL, FunctionNumber); 3625 } 3626 } 3627 3628 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 3629 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 3630 const MachineLoopInfo *LI, 3631 const AsmPrinter &AP) { 3632 // Add loop depth information 3633 const MachineLoop *Loop = LI->getLoopFor(&MBB); 3634 if (!Loop) return; 3635 3636 MachineBasicBlock *Header = Loop->getHeader(); 3637 assert(Header && "No header for loop"); 3638 3639 // If this block is not a loop header, just print out what is the loop header 3640 // and return. 3641 if (Header != &MBB) { 3642 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3643 Twine(AP.getFunctionNumber())+"_" + 3644 Twine(Loop->getHeader()->getNumber())+ 3645 " Depth="+Twine(Loop->getLoopDepth())); 3646 return; 3647 } 3648 3649 // Otherwise, it is a loop header. Print out information about child and 3650 // parent loops. 3651 raw_ostream &OS = AP.OutStreamer->getCommentOS(); 3652 3653 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3654 3655 OS << "=>"; 3656 OS.indent(Loop->getLoopDepth()*2-2); 3657 3658 OS << "This "; 3659 if (Loop->isInnermost()) 3660 OS << "Inner "; 3661 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3662 3663 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3664 } 3665 3666 /// emitBasicBlockStart - This method prints the label for the specified 3667 /// MachineBasicBlock, an alignment (if present) and a comment describing 3668 /// it if appropriate. 3669 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3670 // End the previous funclet and start a new one. 3671 if (MBB.isEHFuncletEntry()) { 3672 for (const HandlerInfo &HI : Handlers) { 3673 HI.Handler->endFunclet(); 3674 HI.Handler->beginFunclet(MBB); 3675 } 3676 } 3677 3678 // Switch to a new section if this basic block must begin a section. The 3679 // entry block is always placed in the function section and is handled 3680 // separately. 3681 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 3682 OutStreamer->switchSection( 3683 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3684 MBB, TM)); 3685 CurrentSectionBeginSym = MBB.getSymbol(); 3686 } 3687 3688 // Emit an alignment directive for this block, if needed. 3689 const Align Alignment = MBB.getAlignment(); 3690 if (Alignment != Align(1)) 3691 emitAlignment(Alignment, nullptr, MBB.getMaxBytesForAlignment()); 3692 3693 // If the block has its address taken, emit any labels that were used to 3694 // reference the block. It is possible that there is more than one label 3695 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3696 // the references were generated. 3697 if (MBB.isIRBlockAddressTaken()) { 3698 if (isVerbose()) 3699 OutStreamer->AddComment("Block address taken"); 3700 3701 BasicBlock *BB = MBB.getAddressTakenIRBlock(); 3702 assert(BB && BB->hasAddressTaken() && "Missing BB"); 3703 for (MCSymbol *Sym : getAddrLabelSymbolToEmit(BB)) 3704 OutStreamer->emitLabel(Sym); 3705 } else if (isVerbose() && MBB.isMachineBlockAddressTaken()) { 3706 OutStreamer->AddComment("Block address taken"); 3707 } 3708 3709 // Print some verbose block comments. 3710 if (isVerbose()) { 3711 if (const BasicBlock *BB = MBB.getBasicBlock()) { 3712 if (BB->hasName()) { 3713 BB->printAsOperand(OutStreamer->getCommentOS(), 3714 /*PrintType=*/false, BB->getModule()); 3715 OutStreamer->getCommentOS() << '\n'; 3716 } 3717 } 3718 3719 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3720 emitBasicBlockLoopComments(MBB, MLI, *this); 3721 } 3722 3723 // Print the main label for the block. 3724 if (shouldEmitLabelForBasicBlock(MBB)) { 3725 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3726 OutStreamer->AddComment("Label of block must be emitted"); 3727 OutStreamer->emitLabel(MBB.getSymbol()); 3728 } else { 3729 if (isVerbose()) { 3730 // NOTE: Want this comment at start of line, don't emit with AddComment. 3731 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3732 false); 3733 } 3734 } 3735 3736 if (MBB.isEHCatchretTarget() && 3737 MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) { 3738 OutStreamer->emitLabel(MBB.getEHCatchretSymbol()); 3739 } 3740 3741 // With BB sections, each basic block must handle CFI information on its own 3742 // if it begins a section (Entry block call is handled separately, next to 3743 // beginFunction). 3744 if (MBB.isBeginSection() && !MBB.isEntryBlock()) 3745 for (const HandlerInfo &HI : Handlers) 3746 HI.Handler->beginBasicBlockSection(MBB); 3747 } 3748 3749 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 3750 // Check if CFI information needs to be updated for this MBB with basic block 3751 // sections. 3752 if (MBB.isEndSection()) 3753 for (const HandlerInfo &HI : Handlers) 3754 HI.Handler->endBasicBlockSection(MBB); 3755 } 3756 3757 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3758 bool IsDefinition) const { 3759 MCSymbolAttr Attr = MCSA_Invalid; 3760 3761 switch (Visibility) { 3762 default: break; 3763 case GlobalValue::HiddenVisibility: 3764 if (IsDefinition) 3765 Attr = MAI->getHiddenVisibilityAttr(); 3766 else 3767 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3768 break; 3769 case GlobalValue::ProtectedVisibility: 3770 Attr = MAI->getProtectedVisibilityAttr(); 3771 break; 3772 } 3773 3774 if (Attr != MCSA_Invalid) 3775 OutStreamer->emitSymbolAttribute(Sym, Attr); 3776 } 3777 3778 bool AsmPrinter::shouldEmitLabelForBasicBlock( 3779 const MachineBasicBlock &MBB) const { 3780 // With `-fbasic-block-sections=`, a label is needed for every non-entry block 3781 // in the labels mode (option `=labels`) and every section beginning in the 3782 // sections mode (`=all` and `=list=`). 3783 if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock()) 3784 return true; 3785 // A label is needed for any block with at least one predecessor (when that 3786 // predecessor is not the fallthrough predecessor, or if it is an EH funclet 3787 // entry, or if a label is forced). 3788 return !MBB.pred_empty() && 3789 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || 3790 MBB.hasLabelMustBeEmitted()); 3791 } 3792 3793 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3794 /// exactly one predecessor and the control transfer mechanism between 3795 /// the predecessor and this block is a fall-through. 3796 bool AsmPrinter:: 3797 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3798 // If this is a landing pad, it isn't a fall through. If it has no preds, 3799 // then nothing falls through to it. 3800 if (MBB->isEHPad() || MBB->pred_empty()) 3801 return false; 3802 3803 // If there isn't exactly one predecessor, it can't be a fall through. 3804 if (MBB->pred_size() > 1) 3805 return false; 3806 3807 // The predecessor has to be immediately before this block. 3808 MachineBasicBlock *Pred = *MBB->pred_begin(); 3809 if (!Pred->isLayoutSuccessor(MBB)) 3810 return false; 3811 3812 // If the block is completely empty, then it definitely does fall through. 3813 if (Pred->empty()) 3814 return true; 3815 3816 // Check the terminators in the previous blocks 3817 for (const auto &MI : Pred->terminators()) { 3818 // If it is not a simple branch, we are in a table somewhere. 3819 if (!MI.isBranch() || MI.isIndirectBranch()) 3820 return false; 3821 3822 // If we are the operands of one of the branches, this is not a fall 3823 // through. Note that targets with delay slots will usually bundle 3824 // terminators with the delay slot instruction. 3825 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3826 if (OP->isJTI()) 3827 return false; 3828 if (OP->isMBB() && OP->getMBB() == MBB) 3829 return false; 3830 } 3831 } 3832 3833 return true; 3834 } 3835 3836 GCMetadataPrinter *AsmPrinter::getOrCreateGCPrinter(GCStrategy &S) { 3837 if (!S.usesMetadata()) 3838 return nullptr; 3839 3840 auto [GCPI, Inserted] = GCMetadataPrinters.insert({&S, nullptr}); 3841 if (!Inserted) 3842 return GCPI->second.get(); 3843 3844 auto Name = S.getName(); 3845 3846 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 3847 GCMetadataPrinterRegistry::entries()) 3848 if (Name == GCMetaPrinter.getName()) { 3849 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 3850 GMP->S = &S; 3851 GCPI->second = std::move(GMP); 3852 return GCPI->second.get(); 3853 } 3854 3855 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3856 } 3857 3858 void AsmPrinter::emitStackMaps() { 3859 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3860 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3861 bool NeedsDefault = false; 3862 if (MI->begin() == MI->end()) 3863 // No GC strategy, use the default format. 3864 NeedsDefault = true; 3865 else 3866 for (const auto &I : *MI) { 3867 if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I)) 3868 if (MP->emitStackMaps(SM, *this)) 3869 continue; 3870 // The strategy doesn't have printer or doesn't emit custom stack maps. 3871 // Use the default format. 3872 NeedsDefault = true; 3873 } 3874 3875 if (NeedsDefault) 3876 SM.serializeToStackMapSection(); 3877 } 3878 3879 /// Pin vtable to this file. 3880 AsmPrinterHandler::~AsmPrinterHandler() = default; 3881 3882 void AsmPrinterHandler::markFunctionEnd() {} 3883 3884 // In the binary's "xray_instr_map" section, an array of these function entries 3885 // describes each instrumentation point. When XRay patches your code, the index 3886 // into this table will be given to your handler as a patch point identifier. 3887 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 3888 auto Kind8 = static_cast<uint8_t>(Kind); 3889 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3890 Out->emitBinaryData( 3891 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3892 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3893 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3894 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3895 Out->emitZeros(Padding); 3896 } 3897 3898 void AsmPrinter::emitXRayTable() { 3899 if (Sleds.empty()) 3900 return; 3901 3902 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3903 const Function &F = MF->getFunction(); 3904 MCSection *InstMap = nullptr; 3905 MCSection *FnSledIndex = nullptr; 3906 const Triple &TT = TM.getTargetTriple(); 3907 // Use PC-relative addresses on all targets. 3908 if (TT.isOSBinFormatELF()) { 3909 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3910 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3911 StringRef GroupName; 3912 if (F.hasComdat()) { 3913 Flags |= ELF::SHF_GROUP; 3914 GroupName = F.getComdat()->getName(); 3915 } 3916 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3917 Flags, 0, GroupName, F.hasComdat(), 3918 MCSection::NonUniqueID, LinkedToSym); 3919 3920 if (!TM.Options.XRayOmitFunctionIndex) 3921 FnSledIndex = OutContext.getELFSection( 3922 "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0, 3923 GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym); 3924 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3925 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3926 SectionKind::getReadOnlyWithRel()); 3927 if (!TM.Options.XRayOmitFunctionIndex) 3928 FnSledIndex = OutContext.getMachOSection( 3929 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel()); 3930 } else { 3931 llvm_unreachable("Unsupported target"); 3932 } 3933 3934 auto WordSizeBytes = MAI->getCodePointerSize(); 3935 3936 // Now we switch to the instrumentation map section. Because this is done 3937 // per-function, we are able to create an index entry that will represent the 3938 // range of sleds associated with a function. 3939 auto &Ctx = OutContext; 3940 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3941 OutStreamer->switchSection(InstMap); 3942 OutStreamer->emitLabel(SledsStart); 3943 for (const auto &Sled : Sleds) { 3944 MCSymbol *Dot = Ctx.createTempSymbol(); 3945 OutStreamer->emitLabel(Dot); 3946 OutStreamer->emitValueImpl( 3947 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 3948 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 3949 WordSizeBytes); 3950 OutStreamer->emitValueImpl( 3951 MCBinaryExpr::createSub( 3952 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 3953 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 3954 MCConstantExpr::create(WordSizeBytes, Ctx), 3955 Ctx), 3956 Ctx), 3957 WordSizeBytes); 3958 Sled.emit(WordSizeBytes, OutStreamer.get()); 3959 } 3960 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3961 OutStreamer->emitLabel(SledsEnd); 3962 3963 // We then emit a single entry in the index per function. We use the symbols 3964 // that bound the instrumentation map as the range for a specific function. 3965 // Each entry here will be 2 * word size aligned, as we're writing down two 3966 // pointers. This should work for both 32-bit and 64-bit platforms. 3967 if (FnSledIndex) { 3968 OutStreamer->switchSection(FnSledIndex); 3969 OutStreamer->emitCodeAlignment(Align(2 * WordSizeBytes), 3970 &getSubtargetInfo()); 3971 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3972 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3973 OutStreamer->switchSection(PrevSection); 3974 } 3975 Sleds.clear(); 3976 } 3977 3978 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3979 SledKind Kind, uint8_t Version) { 3980 const Function &F = MI.getMF()->getFunction(); 3981 auto Attr = F.getFnAttribute("function-instrument"); 3982 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3983 bool AlwaysInstrument = 3984 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3985 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3986 Kind = SledKind::LOG_ARGS_ENTER; 3987 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3988 AlwaysInstrument, &F, Version}); 3989 } 3990 3991 void AsmPrinter::emitPatchableFunctionEntries() { 3992 const Function &F = MF->getFunction(); 3993 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3994 (void)F.getFnAttribute("patchable-function-prefix") 3995 .getValueAsString() 3996 .getAsInteger(10, PatchableFunctionPrefix); 3997 (void)F.getFnAttribute("patchable-function-entry") 3998 .getValueAsString() 3999 .getAsInteger(10, PatchableFunctionEntry); 4000 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 4001 return; 4002 const unsigned PointerSize = getPointerSize(); 4003 if (TM.getTargetTriple().isOSBinFormatELF()) { 4004 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 4005 const MCSymbolELF *LinkedToSym = nullptr; 4006 StringRef GroupName; 4007 4008 // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not 4009 // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections. 4010 if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) { 4011 Flags |= ELF::SHF_LINK_ORDER; 4012 if (F.hasComdat()) { 4013 Flags |= ELF::SHF_GROUP; 4014 GroupName = F.getComdat()->getName(); 4015 } 4016 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 4017 } 4018 OutStreamer->switchSection(OutContext.getELFSection( 4019 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 4020 F.hasComdat(), MCSection::NonUniqueID, LinkedToSym)); 4021 emitAlignment(Align(PointerSize)); 4022 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 4023 } 4024 } 4025 4026 uint16_t AsmPrinter::getDwarfVersion() const { 4027 return OutStreamer->getContext().getDwarfVersion(); 4028 } 4029 4030 void AsmPrinter::setDwarfVersion(uint16_t Version) { 4031 OutStreamer->getContext().setDwarfVersion(Version); 4032 } 4033 4034 bool AsmPrinter::isDwarf64() const { 4035 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 4036 } 4037 4038 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 4039 return dwarf::getDwarfOffsetByteSize( 4040 OutStreamer->getContext().getDwarfFormat()); 4041 } 4042 4043 dwarf::FormParams AsmPrinter::getDwarfFormParams() const { 4044 return {getDwarfVersion(), uint8_t(getPointerSize()), 4045 OutStreamer->getContext().getDwarfFormat(), 4046 doesDwarfUseRelocationsAcrossSections()}; 4047 } 4048 4049 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 4050 return dwarf::getUnitLengthFieldByteSize( 4051 OutStreamer->getContext().getDwarfFormat()); 4052 } 4053