1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "PseudoProbePrinter.h" 18 #include "WasmException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/ADT/TinyPtrVector.h" 32 #include "llvm/ADT/Twine.h" 33 #include "llvm/Analysis/ConstantFolding.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/BinaryFormat/COFF.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/BinaryFormat/ELF.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/GCMetadataPrinter.h" 41 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineConstantPool.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineInstr.h" 49 #include "llvm/CodeGen/MachineInstrBundle.h" 50 #include "llvm/CodeGen/MachineJumpTableInfo.h" 51 #include "llvm/CodeGen/MachineLoopInfo.h" 52 #include "llvm/CodeGen/MachineModuleInfo.h" 53 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 54 #include "llvm/CodeGen/MachineOperand.h" 55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/TargetFrameLowering.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/CodeGen/TargetSubtargetInfo.h" 63 #include "llvm/Config/config.h" 64 #include "llvm/IR/BasicBlock.h" 65 #include "llvm/IR/Comdat.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DebugInfoMetadata.h" 70 #include "llvm/IR/DerivedTypes.h" 71 #include "llvm/IR/EHPersonalities.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GCStrategy.h" 74 #include "llvm/IR/GlobalAlias.h" 75 #include "llvm/IR/GlobalIFunc.h" 76 #include "llvm/IR/GlobalObject.h" 77 #include "llvm/IR/GlobalValue.h" 78 #include "llvm/IR/GlobalVariable.h" 79 #include "llvm/IR/Instruction.h" 80 #include "llvm/IR/Mangler.h" 81 #include "llvm/IR/Metadata.h" 82 #include "llvm/IR/Module.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/PseudoProbe.h" 85 #include "llvm/IR/Type.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/IR/ValueHandle.h" 88 #include "llvm/MC/MCAsmInfo.h" 89 #include "llvm/MC/MCContext.h" 90 #include "llvm/MC/MCDirectives.h" 91 #include "llvm/MC/MCExpr.h" 92 #include "llvm/MC/MCInst.h" 93 #include "llvm/MC/MCSection.h" 94 #include "llvm/MC/MCSectionCOFF.h" 95 #include "llvm/MC/MCSectionELF.h" 96 #include "llvm/MC/MCSectionMachO.h" 97 #include "llvm/MC/MCSectionXCOFF.h" 98 #include "llvm/MC/MCStreamer.h" 99 #include "llvm/MC/MCSubtargetInfo.h" 100 #include "llvm/MC/MCSymbol.h" 101 #include "llvm/MC/MCSymbolELF.h" 102 #include "llvm/MC/MCTargetOptions.h" 103 #include "llvm/MC/MCValue.h" 104 #include "llvm/MC/SectionKind.h" 105 #include "llvm/Object/ELFTypes.h" 106 #include "llvm/Pass.h" 107 #include "llvm/Remarks/RemarkStreamer.h" 108 #include "llvm/Support/Casting.h" 109 #include "llvm/Support/Compiler.h" 110 #include "llvm/Support/ErrorHandling.h" 111 #include "llvm/Support/FileSystem.h" 112 #include "llvm/Support/Format.h" 113 #include "llvm/Support/MathExtras.h" 114 #include "llvm/Support/Path.h" 115 #include "llvm/Support/Timer.h" 116 #include "llvm/Support/raw_ostream.h" 117 #include "llvm/Target/TargetLoweringObjectFile.h" 118 #include "llvm/Target/TargetMachine.h" 119 #include "llvm/Target/TargetOptions.h" 120 #include "llvm/TargetParser/Triple.h" 121 #include <algorithm> 122 #include <cassert> 123 #include <cinttypes> 124 #include <cstdint> 125 #include <iterator> 126 #include <memory> 127 #include <optional> 128 #include <string> 129 #include <utility> 130 #include <vector> 131 132 using namespace llvm; 133 134 #define DEBUG_TYPE "asm-printer" 135 136 static cl::opt<std::string> BasicBlockProfileDump( 137 "mbb-profile-dump", cl::Hidden, 138 cl::desc("Basic block profile dump for external cost modelling. If " 139 "matching up BBs with afterwards, the compilation must be " 140 "performed with -basic-block-sections=labels. Enabling this " 141 "flag during in-process ThinLTO is not supported.")); 142 143 const char DWARFGroupName[] = "dwarf"; 144 const char DWARFGroupDescription[] = "DWARF Emission"; 145 const char DbgTimerName[] = "emit"; 146 const char DbgTimerDescription[] = "Debug Info Emission"; 147 const char EHTimerName[] = "write_exception"; 148 const char EHTimerDescription[] = "DWARF Exception Writer"; 149 const char CFGuardName[] = "Control Flow Guard"; 150 const char CFGuardDescription[] = "Control Flow Guard"; 151 const char CodeViewLineTablesGroupName[] = "linetables"; 152 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables"; 153 const char PPTimerName[] = "emit"; 154 const char PPTimerDescription[] = "Pseudo Probe Emission"; 155 const char PPGroupName[] = "pseudo probe"; 156 const char PPGroupDescription[] = "Pseudo Probe Emission"; 157 158 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 159 160 char AsmPrinter::ID = 0; 161 162 namespace { 163 class AddrLabelMapCallbackPtr final : CallbackVH { 164 AddrLabelMap *Map = nullptr; 165 166 public: 167 AddrLabelMapCallbackPtr() = default; 168 AddrLabelMapCallbackPtr(Value *V) : CallbackVH(V) {} 169 170 void setPtr(BasicBlock *BB) { 171 ValueHandleBase::operator=(BB); 172 } 173 174 void setMap(AddrLabelMap *map) { Map = map; } 175 176 void deleted() override; 177 void allUsesReplacedWith(Value *V2) override; 178 }; 179 } // namespace 180 181 class llvm::AddrLabelMap { 182 MCContext &Context; 183 struct AddrLabelSymEntry { 184 /// The symbols for the label. 185 TinyPtrVector<MCSymbol *> Symbols; 186 187 Function *Fn; // The containing function of the BasicBlock. 188 unsigned Index; // The index in BBCallbacks for the BasicBlock. 189 }; 190 191 DenseMap<AssertingVH<BasicBlock>, AddrLabelSymEntry> AddrLabelSymbols; 192 193 /// Callbacks for the BasicBlock's that we have entries for. We use this so 194 /// we get notified if a block is deleted or RAUWd. 195 std::vector<AddrLabelMapCallbackPtr> BBCallbacks; 196 197 /// This is a per-function list of symbols whose corresponding BasicBlock got 198 /// deleted. These symbols need to be emitted at some point in the file, so 199 /// AsmPrinter emits them after the function body. 200 DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>> 201 DeletedAddrLabelsNeedingEmission; 202 203 public: 204 AddrLabelMap(MCContext &context) : Context(context) {} 205 206 ~AddrLabelMap() { 207 assert(DeletedAddrLabelsNeedingEmission.empty() && 208 "Some labels for deleted blocks never got emitted"); 209 } 210 211 ArrayRef<MCSymbol *> getAddrLabelSymbolToEmit(BasicBlock *BB); 212 213 void takeDeletedSymbolsForFunction(Function *F, 214 std::vector<MCSymbol *> &Result); 215 216 void UpdateForDeletedBlock(BasicBlock *BB); 217 void UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New); 218 }; 219 220 ArrayRef<MCSymbol *> AddrLabelMap::getAddrLabelSymbolToEmit(BasicBlock *BB) { 221 assert(BB->hasAddressTaken() && 222 "Shouldn't get label for block without address taken"); 223 AddrLabelSymEntry &Entry = AddrLabelSymbols[BB]; 224 225 // If we already had an entry for this block, just return it. 226 if (!Entry.Symbols.empty()) { 227 assert(BB->getParent() == Entry.Fn && "Parent changed"); 228 return Entry.Symbols; 229 } 230 231 // Otherwise, this is a new entry, create a new symbol for it and add an 232 // entry to BBCallbacks so we can be notified if the BB is deleted or RAUWd. 233 BBCallbacks.emplace_back(BB); 234 BBCallbacks.back().setMap(this); 235 Entry.Index = BBCallbacks.size() - 1; 236 Entry.Fn = BB->getParent(); 237 MCSymbol *Sym = BB->hasAddressTaken() ? Context.createNamedTempSymbol() 238 : Context.createTempSymbol(); 239 Entry.Symbols.push_back(Sym); 240 return Entry.Symbols; 241 } 242 243 /// If we have any deleted symbols for F, return them. 244 void AddrLabelMap::takeDeletedSymbolsForFunction( 245 Function *F, std::vector<MCSymbol *> &Result) { 246 DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>::iterator I = 247 DeletedAddrLabelsNeedingEmission.find(F); 248 249 // If there are no entries for the function, just return. 250 if (I == DeletedAddrLabelsNeedingEmission.end()) 251 return; 252 253 // Otherwise, take the list. 254 std::swap(Result, I->second); 255 DeletedAddrLabelsNeedingEmission.erase(I); 256 } 257 258 //===- Address of Block Management ----------------------------------------===// 259 260 ArrayRef<MCSymbol *> 261 AsmPrinter::getAddrLabelSymbolToEmit(const BasicBlock *BB) { 262 // Lazily create AddrLabelSymbols. 263 if (!AddrLabelSymbols) 264 AddrLabelSymbols = std::make_unique<AddrLabelMap>(OutContext); 265 return AddrLabelSymbols->getAddrLabelSymbolToEmit( 266 const_cast<BasicBlock *>(BB)); 267 } 268 269 void AsmPrinter::takeDeletedSymbolsForFunction( 270 const Function *F, std::vector<MCSymbol *> &Result) { 271 // If no blocks have had their addresses taken, we're done. 272 if (!AddrLabelSymbols) 273 return; 274 return AddrLabelSymbols->takeDeletedSymbolsForFunction( 275 const_cast<Function *>(F), Result); 276 } 277 278 void AddrLabelMap::UpdateForDeletedBlock(BasicBlock *BB) { 279 // If the block got deleted, there is no need for the symbol. If the symbol 280 // was already emitted, we can just forget about it, otherwise we need to 281 // queue it up for later emission when the function is output. 282 AddrLabelSymEntry Entry = std::move(AddrLabelSymbols[BB]); 283 AddrLabelSymbols.erase(BB); 284 assert(!Entry.Symbols.empty() && "Didn't have a symbol, why a callback?"); 285 BBCallbacks[Entry.Index] = nullptr; // Clear the callback. 286 287 #if !LLVM_MEMORY_SANITIZER_BUILD 288 // BasicBlock is destroyed already, so this access is UB detectable by msan. 289 assert((BB->getParent() == nullptr || BB->getParent() == Entry.Fn) && 290 "Block/parent mismatch"); 291 #endif 292 293 for (MCSymbol *Sym : Entry.Symbols) { 294 if (Sym->isDefined()) 295 return; 296 297 // If the block is not yet defined, we need to emit it at the end of the 298 // function. Add the symbol to the DeletedAddrLabelsNeedingEmission list 299 // for the containing Function. Since the block is being deleted, its 300 // parent may already be removed, we have to get the function from 'Entry'. 301 DeletedAddrLabelsNeedingEmission[Entry.Fn].push_back(Sym); 302 } 303 } 304 305 void AddrLabelMap::UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New) { 306 // Get the entry for the RAUW'd block and remove it from our map. 307 AddrLabelSymEntry OldEntry = std::move(AddrLabelSymbols[Old]); 308 AddrLabelSymbols.erase(Old); 309 assert(!OldEntry.Symbols.empty() && "Didn't have a symbol, why a callback?"); 310 311 AddrLabelSymEntry &NewEntry = AddrLabelSymbols[New]; 312 313 // If New is not address taken, just move our symbol over to it. 314 if (NewEntry.Symbols.empty()) { 315 BBCallbacks[OldEntry.Index].setPtr(New); // Update the callback. 316 NewEntry = std::move(OldEntry); // Set New's entry. 317 return; 318 } 319 320 BBCallbacks[OldEntry.Index] = nullptr; // Update the callback. 321 322 // Otherwise, we need to add the old symbols to the new block's set. 323 llvm::append_range(NewEntry.Symbols, OldEntry.Symbols); 324 } 325 326 void AddrLabelMapCallbackPtr::deleted() { 327 Map->UpdateForDeletedBlock(cast<BasicBlock>(getValPtr())); 328 } 329 330 void AddrLabelMapCallbackPtr::allUsesReplacedWith(Value *V2) { 331 Map->UpdateForRAUWBlock(cast<BasicBlock>(getValPtr()), cast<BasicBlock>(V2)); 332 } 333 334 /// getGVAlignment - Return the alignment to use for the specified global 335 /// value. This rounds up to the preferred alignment if possible and legal. 336 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 337 Align InAlign) { 338 Align Alignment; 339 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 340 Alignment = DL.getPreferredAlign(GVar); 341 342 // If InAlign is specified, round it to it. 343 if (InAlign > Alignment) 344 Alignment = InAlign; 345 346 // If the GV has a specified alignment, take it into account. 347 const MaybeAlign GVAlign(GV->getAlign()); 348 if (!GVAlign) 349 return Alignment; 350 351 assert(GVAlign && "GVAlign must be set"); 352 353 // If the GVAlign is larger than NumBits, or if we are required to obey 354 // NumBits because the GV has an assigned section, obey it. 355 if (*GVAlign > Alignment || GV->hasSection()) 356 Alignment = *GVAlign; 357 return Alignment; 358 } 359 360 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 361 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 362 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)), 363 SM(*this) { 364 VerboseAsm = OutStreamer->isVerboseAsm(); 365 DwarfUsesRelocationsAcrossSections = 366 MAI->doesDwarfUseRelocationsAcrossSections(); 367 } 368 369 AsmPrinter::~AsmPrinter() { 370 assert(!DD && Handlers.size() == NumUserHandlers && 371 "Debug/EH info didn't get finalized"); 372 } 373 374 bool AsmPrinter::isPositionIndependent() const { 375 return TM.isPositionIndependent(); 376 } 377 378 /// getFunctionNumber - Return a unique ID for the current function. 379 unsigned AsmPrinter::getFunctionNumber() const { 380 return MF->getFunctionNumber(); 381 } 382 383 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 384 return *TM.getObjFileLowering(); 385 } 386 387 const DataLayout &AsmPrinter::getDataLayout() const { 388 assert(MMI && "MMI could not be nullptr!"); 389 return MMI->getModule()->getDataLayout(); 390 } 391 392 // Do not use the cached DataLayout because some client use it without a Module 393 // (dsymutil, llvm-dwarfdump). 394 unsigned AsmPrinter::getPointerSize() const { 395 return TM.getPointerSize(0); // FIXME: Default address space 396 } 397 398 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 399 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 400 return MF->getSubtarget<MCSubtargetInfo>(); 401 } 402 403 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 404 S.emitInstruction(Inst, getSubtargetInfo()); 405 } 406 407 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 408 if (DD) { 409 assert(OutStreamer->hasRawTextSupport() && 410 "Expected assembly output mode."); 411 // This is NVPTX specific and it's unclear why. 412 // PR51079: If we have code without debug information we need to give up. 413 DISubprogram *MFSP = MF.getFunction().getSubprogram(); 414 if (!MFSP) 415 return; 416 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 417 } 418 } 419 420 /// getCurrentSection() - Return the current section we are emitting to. 421 const MCSection *AsmPrinter::getCurrentSection() const { 422 return OutStreamer->getCurrentSectionOnly(); 423 } 424 425 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 426 AU.setPreservesAll(); 427 MachineFunctionPass::getAnalysisUsage(AU); 428 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 429 AU.addRequired<GCModuleInfo>(); 430 AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); 431 } 432 433 bool AsmPrinter::doInitialization(Module &M) { 434 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 435 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 436 HasSplitStack = false; 437 HasNoSplitStack = false; 438 439 AddrLabelSymbols = nullptr; 440 441 // Initialize TargetLoweringObjectFile. 442 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 443 .Initialize(OutContext, TM); 444 445 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 446 .getModuleMetadata(M); 447 448 // On AIX, we delay emitting any section information until 449 // after emitting the .file pseudo-op. This allows additional 450 // information (such as the embedded command line) to be associated 451 // with all sections in the object file rather than a single section. 452 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) 453 OutStreamer->initSections(false, *TM.getMCSubtargetInfo()); 454 455 // Emit the version-min deployment target directive if needed. 456 // 457 // FIXME: If we end up with a collection of these sorts of Darwin-specific 458 // or ELF-specific things, it may make sense to have a platform helper class 459 // that will work with the target helper class. For now keep it here, as the 460 // alternative is duplicated code in each of the target asm printers that 461 // use the directive, where it would need the same conditionalization 462 // anyway. 463 const Triple &Target = TM.getTargetTriple(); 464 Triple TVT(M.getDarwinTargetVariantTriple()); 465 OutStreamer->emitVersionForTarget( 466 Target, M.getSDKVersion(), 467 M.getDarwinTargetVariantTriple().empty() ? nullptr : &TVT, 468 M.getDarwinTargetVariantSDKVersion()); 469 470 // Allow the target to emit any magic that it wants at the start of the file. 471 emitStartOfAsmFile(M); 472 473 // Very minimal debug info. It is ignored if we emit actual debug info. If we 474 // don't, this at least helps the user find where a global came from. 475 if (MAI->hasSingleParameterDotFile()) { 476 // .file "foo.c" 477 478 SmallString<128> FileName; 479 if (MAI->hasBasenameOnlyForFileDirective()) 480 FileName = llvm::sys::path::filename(M.getSourceFileName()); 481 else 482 FileName = M.getSourceFileName(); 483 if (MAI->hasFourStringsDotFile()) { 484 #ifdef PACKAGE_VENDOR 485 const char VerStr[] = 486 PACKAGE_VENDOR " " PACKAGE_NAME " version " PACKAGE_VERSION; 487 #else 488 const char VerStr[] = PACKAGE_NAME " version " PACKAGE_VERSION; 489 #endif 490 // TODO: Add timestamp and description. 491 OutStreamer->emitFileDirective(FileName, VerStr, "", ""); 492 } else { 493 OutStreamer->emitFileDirective(FileName); 494 } 495 } 496 497 // On AIX, emit bytes for llvm.commandline metadata after .file so that the 498 // C_INFO symbol is preserved if any csect is kept by the linker. 499 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 500 emitModuleCommandLines(M); 501 // Now we can generate section information. 502 OutStreamer->initSections(false, *TM.getMCSubtargetInfo()); 503 504 // To work around an AIX assembler and/or linker bug, generate 505 // a rename for the default text-section symbol name. This call has 506 // no effect when generating object code directly. 507 MCSection *TextSection = 508 OutStreamer->getContext().getObjectFileInfo()->getTextSection(); 509 MCSymbolXCOFF *XSym = 510 static_cast<MCSectionXCOFF *>(TextSection)->getQualNameSymbol(); 511 if (XSym->hasRename()) 512 OutStreamer->emitXCOFFRenameDirective(XSym, XSym->getSymbolTableName()); 513 } 514 515 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 516 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 517 for (const auto &I : *MI) 518 if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I)) 519 MP->beginAssembly(M, *MI, *this); 520 521 // Emit module-level inline asm if it exists. 522 if (!M.getModuleInlineAsm().empty()) { 523 OutStreamer->AddComment("Start of file scope inline assembly"); 524 OutStreamer->addBlankLine(); 525 emitInlineAsm(M.getModuleInlineAsm() + "\n", *TM.getMCSubtargetInfo(), 526 TM.Options.MCOptions); 527 OutStreamer->AddComment("End of file scope inline assembly"); 528 OutStreamer->addBlankLine(); 529 } 530 531 if (MAI->doesSupportDebugInformation()) { 532 bool EmitCodeView = M.getCodeViewFlag(); 533 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 534 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 535 DbgTimerName, DbgTimerDescription, 536 CodeViewLineTablesGroupName, 537 CodeViewLineTablesGroupDescription); 538 } 539 if (!EmitCodeView || M.getDwarfVersion()) { 540 assert(MMI && "MMI could not be nullptr here!"); 541 if (MMI->hasDebugInfo()) { 542 DD = new DwarfDebug(this); 543 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 544 DbgTimerDescription, DWARFGroupName, 545 DWARFGroupDescription); 546 } 547 } 548 } 549 550 if (M.getNamedMetadata(PseudoProbeDescMetadataName)) { 551 PP = new PseudoProbeHandler(this); 552 Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName, 553 PPTimerDescription, PPGroupName, PPGroupDescription); 554 } 555 556 switch (MAI->getExceptionHandlingType()) { 557 case ExceptionHandling::None: 558 // We may want to emit CFI for debug. 559 [[fallthrough]]; 560 case ExceptionHandling::SjLj: 561 case ExceptionHandling::DwarfCFI: 562 case ExceptionHandling::ARM: 563 for (auto &F : M.getFunctionList()) { 564 if (getFunctionCFISectionType(F) != CFISection::None) 565 ModuleCFISection = getFunctionCFISectionType(F); 566 // If any function needsUnwindTableEntry(), it needs .eh_frame and hence 567 // the module needs .eh_frame. If we have found that case, we are done. 568 if (ModuleCFISection == CFISection::EH) 569 break; 570 } 571 assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI || 572 usesCFIWithoutEH() || ModuleCFISection != CFISection::EH); 573 break; 574 default: 575 break; 576 } 577 578 EHStreamer *ES = nullptr; 579 switch (MAI->getExceptionHandlingType()) { 580 case ExceptionHandling::None: 581 if (!usesCFIWithoutEH()) 582 break; 583 [[fallthrough]]; 584 case ExceptionHandling::SjLj: 585 case ExceptionHandling::DwarfCFI: 586 ES = new DwarfCFIException(this); 587 break; 588 case ExceptionHandling::ARM: 589 ES = new ARMException(this); 590 break; 591 case ExceptionHandling::WinEH: 592 switch (MAI->getWinEHEncodingType()) { 593 default: llvm_unreachable("unsupported unwinding information encoding"); 594 case WinEH::EncodingType::Invalid: 595 break; 596 case WinEH::EncodingType::X86: 597 case WinEH::EncodingType::Itanium: 598 ES = new WinException(this); 599 break; 600 } 601 break; 602 case ExceptionHandling::Wasm: 603 ES = new WasmException(this); 604 break; 605 case ExceptionHandling::AIX: 606 ES = new AIXException(this); 607 break; 608 } 609 if (ES) 610 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 611 EHTimerDescription, DWARFGroupName, 612 DWARFGroupDescription); 613 614 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 615 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 616 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 617 CFGuardDescription, DWARFGroupName, 618 DWARFGroupDescription); 619 620 for (const HandlerInfo &HI : Handlers) { 621 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 622 HI.TimerGroupDescription, TimePassesIsEnabled); 623 HI.Handler->beginModule(&M); 624 } 625 626 if (!BasicBlockProfileDump.empty()) { 627 std::error_code PossibleFileError; 628 MBBProfileDumpFileOutput = std::make_unique<raw_fd_ostream>( 629 BasicBlockProfileDump, PossibleFileError); 630 if (PossibleFileError) { 631 M.getContext().emitError("Failed to open file for MBB Profile Dump: " + 632 PossibleFileError.message() + "\n"); 633 } 634 } 635 636 return false; 637 } 638 639 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 640 if (!MAI.hasWeakDefCanBeHiddenDirective()) 641 return false; 642 643 return GV->canBeOmittedFromSymbolTable(); 644 } 645 646 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 647 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 648 switch (Linkage) { 649 case GlobalValue::CommonLinkage: 650 case GlobalValue::LinkOnceAnyLinkage: 651 case GlobalValue::LinkOnceODRLinkage: 652 case GlobalValue::WeakAnyLinkage: 653 case GlobalValue::WeakODRLinkage: 654 if (MAI->hasWeakDefDirective()) { 655 // .globl _foo 656 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 657 658 if (!canBeHidden(GV, *MAI)) 659 // .weak_definition _foo 660 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 661 else 662 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 663 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 664 // .globl _foo 665 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 666 //NOTE: linkonce is handled by the section the symbol was assigned to. 667 } else { 668 // .weak _foo 669 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 670 } 671 return; 672 case GlobalValue::ExternalLinkage: 673 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 674 return; 675 case GlobalValue::PrivateLinkage: 676 case GlobalValue::InternalLinkage: 677 return; 678 case GlobalValue::ExternalWeakLinkage: 679 case GlobalValue::AvailableExternallyLinkage: 680 case GlobalValue::AppendingLinkage: 681 llvm_unreachable("Should never emit this"); 682 } 683 llvm_unreachable("Unknown linkage type!"); 684 } 685 686 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 687 const GlobalValue *GV) const { 688 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 689 } 690 691 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 692 return TM.getSymbol(GV); 693 } 694 695 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 696 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 697 // exact definion (intersection of GlobalValue::hasExactDefinition() and 698 // !isInterposable()). These linkages include: external, appending, internal, 699 // private. It may be profitable to use a local alias for external. The 700 // assembler would otherwise be conservative and assume a global default 701 // visibility symbol can be interposable, even if the code generator already 702 // assumed it. 703 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 704 const Module &M = *GV.getParent(); 705 if (TM.getRelocationModel() != Reloc::Static && 706 M.getPIELevel() == PIELevel::Default && GV.isDSOLocal()) 707 return getSymbolWithGlobalValueBase(&GV, "$local"); 708 } 709 return TM.getSymbol(&GV); 710 } 711 712 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 713 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 714 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 715 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 716 "No emulated TLS variables in the common section"); 717 718 // Never emit TLS variable xyz in emulated TLS model. 719 // The initialization value is in __emutls_t.xyz instead of xyz. 720 if (IsEmuTLSVar) 721 return; 722 723 if (GV->hasInitializer()) { 724 // Check to see if this is a special global used by LLVM, if so, emit it. 725 if (emitSpecialLLVMGlobal(GV)) 726 return; 727 728 // Skip the emission of global equivalents. The symbol can be emitted later 729 // on by emitGlobalGOTEquivs in case it turns out to be needed. 730 if (GlobalGOTEquivs.count(getSymbol(GV))) 731 return; 732 733 if (isVerbose()) { 734 // When printing the control variable __emutls_v.*, 735 // we don't need to print the original TLS variable name. 736 GV->printAsOperand(OutStreamer->getCommentOS(), 737 /*PrintType=*/false, GV->getParent()); 738 OutStreamer->getCommentOS() << '\n'; 739 } 740 } 741 742 MCSymbol *GVSym = getSymbol(GV); 743 MCSymbol *EmittedSym = GVSym; 744 745 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 746 // attributes. 747 // GV's or GVSym's attributes will be used for the EmittedSym. 748 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 749 750 if (GV->isTagged()) { 751 Triple T = TM.getTargetTriple(); 752 753 if (T.getArch() != Triple::aarch64 || !T.isAndroid()) 754 OutContext.reportError(SMLoc(), 755 "tagged symbols (-fsanitize=memtag-globals) are " 756 "only supported on AArch64 Android"); 757 OutStreamer->emitSymbolAttribute(EmittedSym, MAI->getMemtagAttr()); 758 } 759 760 if (!GV->hasInitializer()) // External globals require no extra code. 761 return; 762 763 GVSym->redefineIfPossible(); 764 if (GVSym->isDefined() || GVSym->isVariable()) 765 OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) + 766 "' is already defined"); 767 768 if (MAI->hasDotTypeDotSizeDirective()) 769 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 770 771 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 772 773 const DataLayout &DL = GV->getParent()->getDataLayout(); 774 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 775 776 // If the alignment is specified, we *must* obey it. Overaligning a global 777 // with a specified alignment is a prompt way to break globals emitted to 778 // sections and expected to be contiguous (e.g. ObjC metadata). 779 const Align Alignment = getGVAlignment(GV, DL); 780 781 for (const HandlerInfo &HI : Handlers) { 782 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 783 HI.TimerGroupName, HI.TimerGroupDescription, 784 TimePassesIsEnabled); 785 HI.Handler->setSymbolSize(GVSym, Size); 786 } 787 788 // Handle common symbols 789 if (GVKind.isCommon()) { 790 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 791 // .comm _foo, 42, 4 792 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment); 793 return; 794 } 795 796 // Determine to which section this global should be emitted. 797 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 798 799 // If we have a bss global going to a section that supports the 800 // zerofill directive, do so here. 801 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 802 TheSection->isVirtualSection()) { 803 if (Size == 0) 804 Size = 1; // zerofill of 0 bytes is undefined. 805 emitLinkage(GV, GVSym); 806 // .zerofill __DATA, __bss, _foo, 400, 5 807 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment); 808 return; 809 } 810 811 // If this is a BSS local symbol and we are emitting in the BSS 812 // section use .lcomm/.comm directive. 813 if (GVKind.isBSSLocal() && 814 getObjFileLowering().getBSSSection() == TheSection) { 815 if (Size == 0) 816 Size = 1; // .comm Foo, 0 is undefined, avoid it. 817 818 // Use .lcomm only if it supports user-specified alignment. 819 // Otherwise, while it would still be correct to use .lcomm in some 820 // cases (e.g. when Align == 1), the external assembler might enfore 821 // some -unknown- default alignment behavior, which could cause 822 // spurious differences between external and integrated assembler. 823 // Prefer to simply fall back to .local / .comm in this case. 824 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 825 // .lcomm _foo, 42 826 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment); 827 return; 828 } 829 830 // .local _foo 831 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 832 // .comm _foo, 42, 4 833 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment); 834 return; 835 } 836 837 // Handle thread local data for mach-o which requires us to output an 838 // additional structure of data and mangle the original symbol so that we 839 // can reference it later. 840 // 841 // TODO: This should become an "emit thread local global" method on TLOF. 842 // All of this macho specific stuff should be sunk down into TLOFMachO and 843 // stuff like "TLSExtraDataSection" should no longer be part of the parent 844 // TLOF class. This will also make it more obvious that stuff like 845 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 846 // specific code. 847 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 848 // Emit the .tbss symbol 849 MCSymbol *MangSym = 850 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 851 852 if (GVKind.isThreadBSS()) { 853 TheSection = getObjFileLowering().getTLSBSSSection(); 854 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment); 855 } else if (GVKind.isThreadData()) { 856 OutStreamer->switchSection(TheSection); 857 858 emitAlignment(Alignment, GV); 859 OutStreamer->emitLabel(MangSym); 860 861 emitGlobalConstant(GV->getParent()->getDataLayout(), 862 GV->getInitializer()); 863 } 864 865 OutStreamer->addBlankLine(); 866 867 // Emit the variable struct for the runtime. 868 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 869 870 OutStreamer->switchSection(TLVSect); 871 // Emit the linkage here. 872 emitLinkage(GV, GVSym); 873 OutStreamer->emitLabel(GVSym); 874 875 // Three pointers in size: 876 // - __tlv_bootstrap - used to make sure support exists 877 // - spare pointer, used when mapped by the runtime 878 // - pointer to mangled symbol above with initializer 879 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 880 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 881 PtrSize); 882 OutStreamer->emitIntValue(0, PtrSize); 883 OutStreamer->emitSymbolValue(MangSym, PtrSize); 884 885 OutStreamer->addBlankLine(); 886 return; 887 } 888 889 MCSymbol *EmittedInitSym = GVSym; 890 891 OutStreamer->switchSection(TheSection); 892 893 emitLinkage(GV, EmittedInitSym); 894 emitAlignment(Alignment, GV); 895 896 OutStreamer->emitLabel(EmittedInitSym); 897 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 898 if (LocalAlias != EmittedInitSym) 899 OutStreamer->emitLabel(LocalAlias); 900 901 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 902 903 if (MAI->hasDotTypeDotSizeDirective()) 904 // .size foo, 42 905 OutStreamer->emitELFSize(EmittedInitSym, 906 MCConstantExpr::create(Size, OutContext)); 907 908 OutStreamer->addBlankLine(); 909 } 910 911 /// Emit the directive and value for debug thread local expression 912 /// 913 /// \p Value - The value to emit. 914 /// \p Size - The size of the integer (in bytes) to emit. 915 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 916 OutStreamer->emitValue(Value, Size); 917 } 918 919 void AsmPrinter::emitFunctionHeaderComment() {} 920 921 /// EmitFunctionHeader - This method emits the header for the current 922 /// function. 923 void AsmPrinter::emitFunctionHeader() { 924 const Function &F = MF->getFunction(); 925 926 if (isVerbose()) 927 OutStreamer->getCommentOS() 928 << "-- Begin function " 929 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 930 931 // Print out constants referenced by the function 932 emitConstantPool(); 933 934 // Print the 'header' of function. 935 // If basic block sections are desired, explicitly request a unique section 936 // for this function's entry block. 937 if (MF->front().isBeginSection()) 938 MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM)); 939 else 940 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 941 OutStreamer->switchSection(MF->getSection()); 942 943 if (!MAI->hasVisibilityOnlyWithLinkage()) 944 emitVisibility(CurrentFnSym, F.getVisibility()); 945 946 if (MAI->needsFunctionDescriptors()) 947 emitLinkage(&F, CurrentFnDescSym); 948 949 emitLinkage(&F, CurrentFnSym); 950 if (MAI->hasFunctionAlignment()) 951 emitAlignment(MF->getAlignment(), &F); 952 953 if (MAI->hasDotTypeDotSizeDirective()) 954 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 955 956 if (F.hasFnAttribute(Attribute::Cold)) 957 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 958 959 // Emit the prefix data. 960 if (F.hasPrefixData()) { 961 if (MAI->hasSubsectionsViaSymbols()) { 962 // Preserving prefix data on platforms which use subsections-via-symbols 963 // is a bit tricky. Here we introduce a symbol for the prefix data 964 // and use the .alt_entry attribute to mark the function's real entry point 965 // as an alternative entry point to the prefix-data symbol. 966 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 967 OutStreamer->emitLabel(PrefixSym); 968 969 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 970 971 // Emit an .alt_entry directive for the actual function symbol. 972 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 973 } else { 974 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 975 } 976 } 977 978 // Emit KCFI type information before patchable-function-prefix nops. 979 emitKCFITypeId(*MF); 980 981 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 982 // place prefix data before NOPs. 983 unsigned PatchableFunctionPrefix = 0; 984 unsigned PatchableFunctionEntry = 0; 985 (void)F.getFnAttribute("patchable-function-prefix") 986 .getValueAsString() 987 .getAsInteger(10, PatchableFunctionPrefix); 988 (void)F.getFnAttribute("patchable-function-entry") 989 .getValueAsString() 990 .getAsInteger(10, PatchableFunctionEntry); 991 if (PatchableFunctionPrefix) { 992 CurrentPatchableFunctionEntrySym = 993 OutContext.createLinkerPrivateTempSymbol(); 994 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 995 emitNops(PatchableFunctionPrefix); 996 } else if (PatchableFunctionEntry) { 997 // May be reassigned when emitting the body, to reference the label after 998 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 999 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 1000 } 1001 1002 // Emit the function prologue data for the indirect call sanitizer. 1003 if (const MDNode *MD = F.getMetadata(LLVMContext::MD_func_sanitize)) { 1004 assert(MD->getNumOperands() == 2); 1005 1006 auto *PrologueSig = mdconst::extract<Constant>(MD->getOperand(0)); 1007 auto *TypeHash = mdconst::extract<Constant>(MD->getOperand(1)); 1008 emitGlobalConstant(F.getParent()->getDataLayout(), PrologueSig); 1009 emitGlobalConstant(F.getParent()->getDataLayout(), TypeHash); 1010 } 1011 1012 if (isVerbose()) { 1013 F.printAsOperand(OutStreamer->getCommentOS(), 1014 /*PrintType=*/false, F.getParent()); 1015 emitFunctionHeaderComment(); 1016 OutStreamer->getCommentOS() << '\n'; 1017 } 1018 1019 // Emit the function descriptor. This is a virtual function to allow targets 1020 // to emit their specific function descriptor. Right now it is only used by 1021 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 1022 // descriptors and should be converted to use this hook as well. 1023 if (MAI->needsFunctionDescriptors()) 1024 emitFunctionDescriptor(); 1025 1026 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 1027 // their wild and crazy things as required. 1028 emitFunctionEntryLabel(); 1029 1030 // If the function had address-taken blocks that got deleted, then we have 1031 // references to the dangling symbols. Emit them at the start of the function 1032 // so that we don't get references to undefined symbols. 1033 std::vector<MCSymbol*> DeadBlockSyms; 1034 takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 1035 for (MCSymbol *DeadBlockSym : DeadBlockSyms) { 1036 OutStreamer->AddComment("Address taken block that was later removed"); 1037 OutStreamer->emitLabel(DeadBlockSym); 1038 } 1039 1040 if (CurrentFnBegin) { 1041 if (MAI->useAssignmentForEHBegin()) { 1042 MCSymbol *CurPos = OutContext.createTempSymbol(); 1043 OutStreamer->emitLabel(CurPos); 1044 OutStreamer->emitAssignment(CurrentFnBegin, 1045 MCSymbolRefExpr::create(CurPos, OutContext)); 1046 } else { 1047 OutStreamer->emitLabel(CurrentFnBegin); 1048 } 1049 } 1050 1051 // Emit pre-function debug and/or EH information. 1052 for (const HandlerInfo &HI : Handlers) { 1053 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1054 HI.TimerGroupDescription, TimePassesIsEnabled); 1055 HI.Handler->beginFunction(MF); 1056 } 1057 for (const HandlerInfo &HI : Handlers) { 1058 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1059 HI.TimerGroupDescription, TimePassesIsEnabled); 1060 HI.Handler->beginBasicBlockSection(MF->front()); 1061 } 1062 1063 // Emit the prologue data. 1064 if (F.hasPrologueData()) 1065 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 1066 } 1067 1068 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 1069 /// function. This can be overridden by targets as required to do custom stuff. 1070 void AsmPrinter::emitFunctionEntryLabel() { 1071 CurrentFnSym->redefineIfPossible(); 1072 1073 // The function label could have already been emitted if two symbols end up 1074 // conflicting due to asm renaming. Detect this and emit an error. 1075 if (CurrentFnSym->isVariable()) 1076 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 1077 "' is a protected alias"); 1078 1079 OutStreamer->emitLabel(CurrentFnSym); 1080 1081 if (TM.getTargetTriple().isOSBinFormatELF()) { 1082 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 1083 if (Sym != CurrentFnSym) { 1084 cast<MCSymbolELF>(Sym)->setType(ELF::STT_FUNC); 1085 CurrentFnBeginLocal = Sym; 1086 OutStreamer->emitLabel(Sym); 1087 if (MAI->hasDotTypeDotSizeDirective()) 1088 OutStreamer->emitSymbolAttribute(Sym, MCSA_ELF_TypeFunction); 1089 } 1090 } 1091 } 1092 1093 /// emitComments - Pretty-print comments for instructions. 1094 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 1095 const MachineFunction *MF = MI.getMF(); 1096 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1097 1098 // Check for spills and reloads 1099 1100 // We assume a single instruction only has a spill or reload, not 1101 // both. 1102 std::optional<unsigned> Size; 1103 if ((Size = MI.getRestoreSize(TII))) { 1104 CommentOS << *Size << "-byte Reload\n"; 1105 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 1106 if (*Size) { 1107 if (*Size == unsigned(MemoryLocation::UnknownSize)) 1108 CommentOS << "Unknown-size Folded Reload\n"; 1109 else 1110 CommentOS << *Size << "-byte Folded Reload\n"; 1111 } 1112 } else if ((Size = MI.getSpillSize(TII))) { 1113 CommentOS << *Size << "-byte Spill\n"; 1114 } else if ((Size = MI.getFoldedSpillSize(TII))) { 1115 if (*Size) { 1116 if (*Size == unsigned(MemoryLocation::UnknownSize)) 1117 CommentOS << "Unknown-size Folded Spill\n"; 1118 else 1119 CommentOS << *Size << "-byte Folded Spill\n"; 1120 } 1121 } 1122 1123 // Check for spill-induced copies 1124 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 1125 CommentOS << " Reload Reuse\n"; 1126 } 1127 1128 /// emitImplicitDef - This method emits the specified machine instruction 1129 /// that is an implicit def. 1130 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 1131 Register RegNo = MI->getOperand(0).getReg(); 1132 1133 SmallString<128> Str; 1134 raw_svector_ostream OS(Str); 1135 OS << "implicit-def: " 1136 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 1137 1138 OutStreamer->AddComment(OS.str()); 1139 OutStreamer->addBlankLine(); 1140 } 1141 1142 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 1143 std::string Str; 1144 raw_string_ostream OS(Str); 1145 OS << "kill:"; 1146 for (const MachineOperand &Op : MI->operands()) { 1147 assert(Op.isReg() && "KILL instruction must have only register operands"); 1148 OS << ' ' << (Op.isDef() ? "def " : "killed ") 1149 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 1150 } 1151 AP.OutStreamer->AddComment(OS.str()); 1152 AP.OutStreamer->addBlankLine(); 1153 } 1154 1155 /// emitDebugValueComment - This method handles the target-independent form 1156 /// of DBG_VALUE, returning true if it was able to do so. A false return 1157 /// means the target will need to handle MI in EmitInstruction. 1158 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 1159 // This code handles only the 4-operand target-independent form. 1160 if (MI->isNonListDebugValue() && MI->getNumOperands() != 4) 1161 return false; 1162 1163 SmallString<128> Str; 1164 raw_svector_ostream OS(Str); 1165 OS << "DEBUG_VALUE: "; 1166 1167 const DILocalVariable *V = MI->getDebugVariable(); 1168 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 1169 StringRef Name = SP->getName(); 1170 if (!Name.empty()) 1171 OS << Name << ":"; 1172 } 1173 OS << V->getName(); 1174 OS << " <- "; 1175 1176 const DIExpression *Expr = MI->getDebugExpression(); 1177 // First convert this to a non-variadic expression if possible, to simplify 1178 // the output. 1179 if (auto NonVariadicExpr = DIExpression::convertToNonVariadicExpression(Expr)) 1180 Expr = *NonVariadicExpr; 1181 // Then, output the possibly-simplified expression. 1182 if (Expr->getNumElements()) { 1183 OS << '['; 1184 ListSeparator LS; 1185 for (auto &Op : Expr->expr_ops()) { 1186 OS << LS << dwarf::OperationEncodingString(Op.getOp()); 1187 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 1188 OS << ' ' << Op.getArg(I); 1189 } 1190 OS << "] "; 1191 } 1192 1193 // Register or immediate value. Register 0 means undef. 1194 for (const MachineOperand &Op : MI->debug_operands()) { 1195 if (&Op != MI->debug_operands().begin()) 1196 OS << ", "; 1197 switch (Op.getType()) { 1198 case MachineOperand::MO_FPImmediate: { 1199 APFloat APF = APFloat(Op.getFPImm()->getValueAPF()); 1200 Type *ImmTy = Op.getFPImm()->getType(); 1201 if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() || 1202 ImmTy->isDoubleTy()) { 1203 OS << APF.convertToDouble(); 1204 } else { 1205 // There is no good way to print long double. Convert a copy to 1206 // double. Ah well, it's only a comment. 1207 bool ignored; 1208 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1209 &ignored); 1210 OS << "(long double) " << APF.convertToDouble(); 1211 } 1212 break; 1213 } 1214 case MachineOperand::MO_Immediate: { 1215 OS << Op.getImm(); 1216 break; 1217 } 1218 case MachineOperand::MO_CImmediate: { 1219 Op.getCImm()->getValue().print(OS, false /*isSigned*/); 1220 break; 1221 } 1222 case MachineOperand::MO_TargetIndex: { 1223 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 1224 break; 1225 } 1226 case MachineOperand::MO_Register: 1227 case MachineOperand::MO_FrameIndex: { 1228 Register Reg; 1229 std::optional<StackOffset> Offset; 1230 if (Op.isReg()) { 1231 Reg = Op.getReg(); 1232 } else { 1233 const TargetFrameLowering *TFI = 1234 AP.MF->getSubtarget().getFrameLowering(); 1235 Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg); 1236 } 1237 if (!Reg) { 1238 // Suppress offset, it is not meaningful here. 1239 OS << "undef"; 1240 break; 1241 } 1242 // The second operand is only an offset if it's an immediate. 1243 if (MI->isIndirectDebugValue()) 1244 Offset = StackOffset::getFixed(MI->getDebugOffset().getImm()); 1245 if (Offset) 1246 OS << '['; 1247 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 1248 if (Offset) 1249 OS << '+' << Offset->getFixed() << ']'; 1250 break; 1251 } 1252 default: 1253 llvm_unreachable("Unknown operand type"); 1254 } 1255 } 1256 1257 // NOTE: Want this comment at start of line, don't emit with AddComment. 1258 AP.OutStreamer->emitRawComment(OS.str()); 1259 return true; 1260 } 1261 1262 /// This method handles the target-independent form of DBG_LABEL, returning 1263 /// true if it was able to do so. A false return means the target will need 1264 /// to handle MI in EmitInstruction. 1265 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 1266 if (MI->getNumOperands() != 1) 1267 return false; 1268 1269 SmallString<128> Str; 1270 raw_svector_ostream OS(Str); 1271 OS << "DEBUG_LABEL: "; 1272 1273 const DILabel *V = MI->getDebugLabel(); 1274 if (auto *SP = dyn_cast<DISubprogram>( 1275 V->getScope()->getNonLexicalBlockFileScope())) { 1276 StringRef Name = SP->getName(); 1277 if (!Name.empty()) 1278 OS << Name << ":"; 1279 } 1280 OS << V->getName(); 1281 1282 // NOTE: Want this comment at start of line, don't emit with AddComment. 1283 AP.OutStreamer->emitRawComment(OS.str()); 1284 return true; 1285 } 1286 1287 AsmPrinter::CFISection 1288 AsmPrinter::getFunctionCFISectionType(const Function &F) const { 1289 // Ignore functions that won't get emitted. 1290 if (F.isDeclarationForLinker()) 1291 return CFISection::None; 1292 1293 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 1294 F.needsUnwindTableEntry()) 1295 return CFISection::EH; 1296 1297 if (MAI->usesCFIWithoutEH() && F.hasUWTable()) 1298 return CFISection::EH; 1299 1300 assert(MMI != nullptr && "Invalid machine module info"); 1301 if (MMI->hasDebugInfo() || TM.Options.ForceDwarfFrameSection) 1302 return CFISection::Debug; 1303 1304 return CFISection::None; 1305 } 1306 1307 AsmPrinter::CFISection 1308 AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const { 1309 return getFunctionCFISectionType(MF.getFunction()); 1310 } 1311 1312 bool AsmPrinter::needsSEHMoves() { 1313 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 1314 } 1315 1316 bool AsmPrinter::usesCFIWithoutEH() const { 1317 return MAI->usesCFIWithoutEH() && ModuleCFISection != CFISection::None; 1318 } 1319 1320 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 1321 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1322 if (!usesCFIWithoutEH() && 1323 ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1324 ExceptionHandlingType != ExceptionHandling::ARM) 1325 return; 1326 1327 if (getFunctionCFISectionType(*MF) == CFISection::None) 1328 return; 1329 1330 // If there is no "real" instruction following this CFI instruction, skip 1331 // emitting it; it would be beyond the end of the function's FDE range. 1332 auto *MBB = MI.getParent(); 1333 auto I = std::next(MI.getIterator()); 1334 while (I != MBB->end() && I->isTransient()) 1335 ++I; 1336 if (I == MBB->instr_end() && 1337 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1338 return; 1339 1340 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1341 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1342 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1343 emitCFIInstruction(CFI); 1344 } 1345 1346 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1347 // The operands are the MCSymbol and the frame offset of the allocation. 1348 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1349 int FrameOffset = MI.getOperand(1).getImm(); 1350 1351 // Emit a symbol assignment. 1352 OutStreamer->emitAssignment(FrameAllocSym, 1353 MCConstantExpr::create(FrameOffset, OutContext)); 1354 } 1355 1356 /// Returns the BB metadata to be emitted in the SHT_LLVM_BB_ADDR_MAP section 1357 /// for a given basic block. This can be used to capture more precise profile 1358 /// information. 1359 static uint32_t getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1360 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1361 return object::BBAddrMap::BBEntry::Metadata{ 1362 MBB.isReturnBlock(), !MBB.empty() && TII->isTailCall(MBB.back()), 1363 MBB.isEHPad(), const_cast<MachineBasicBlock &>(MBB).canFallThrough(), 1364 !MBB.empty() && MBB.rbegin()->isIndirectBranch()} 1365 .encode(); 1366 } 1367 1368 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1369 MCSection *BBAddrMapSection = 1370 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1371 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); 1372 1373 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1374 1375 OutStreamer->pushSection(); 1376 OutStreamer->switchSection(BBAddrMapSection); 1377 OutStreamer->AddComment("version"); 1378 uint8_t BBAddrMapVersion = OutStreamer->getContext().getBBAddrMapVersion(); 1379 OutStreamer->emitInt8(BBAddrMapVersion); 1380 OutStreamer->AddComment("feature"); 1381 OutStreamer->emitInt8(0); 1382 OutStreamer->AddComment("function address"); 1383 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1384 OutStreamer->AddComment("number of basic blocks"); 1385 OutStreamer->emitULEB128IntValue(MF.size()); 1386 const MCSymbol *PrevMBBEndSymbol = FunctionSymbol; 1387 // Emit BB Information for each basic block in the function. 1388 for (const MachineBasicBlock &MBB : MF) { 1389 const MCSymbol *MBBSymbol = 1390 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); 1391 // TODO: Remove this check when version 1 is deprecated. 1392 if (BBAddrMapVersion > 1) { 1393 OutStreamer->AddComment("BB id"); 1394 // Emit the BB ID for this basic block. 1395 // We only emit BaseID since CloneID is unset for 1396 // basic-block-sections=labels. 1397 // TODO: Emit the full BBID when labels and sections can be mixed 1398 // together. 1399 OutStreamer->emitULEB128IntValue(MBB.getBBID()->BaseID); 1400 } 1401 // Emit the basic block offset relative to the end of the previous block. 1402 // This is zero unless the block is padded due to alignment. 1403 emitLabelDifferenceAsULEB128(MBBSymbol, PrevMBBEndSymbol); 1404 // Emit the basic block size. When BBs have alignments, their size cannot 1405 // always be computed from their offsets. 1406 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1407 // Emit the Metadata. 1408 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1409 PrevMBBEndSymbol = MBB.getEndSymbol(); 1410 } 1411 OutStreamer->popSection(); 1412 } 1413 1414 void AsmPrinter::emitKCFITrapEntry(const MachineFunction &MF, 1415 const MCSymbol *Symbol) { 1416 MCSection *Section = 1417 getObjFileLowering().getKCFITrapSection(*MF.getSection()); 1418 if (!Section) 1419 return; 1420 1421 OutStreamer->pushSection(); 1422 OutStreamer->switchSection(Section); 1423 1424 MCSymbol *Loc = OutContext.createLinkerPrivateTempSymbol(); 1425 OutStreamer->emitLabel(Loc); 1426 OutStreamer->emitAbsoluteSymbolDiff(Symbol, Loc, 4); 1427 1428 OutStreamer->popSection(); 1429 } 1430 1431 void AsmPrinter::emitKCFITypeId(const MachineFunction &MF) { 1432 const Function &F = MF.getFunction(); 1433 if (const MDNode *MD = F.getMetadata(LLVMContext::MD_kcfi_type)) 1434 emitGlobalConstant(F.getParent()->getDataLayout(), 1435 mdconst::extract<ConstantInt>(MD->getOperand(0))); 1436 } 1437 1438 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) { 1439 if (PP) { 1440 auto GUID = MI.getOperand(0).getImm(); 1441 auto Index = MI.getOperand(1).getImm(); 1442 auto Type = MI.getOperand(2).getImm(); 1443 auto Attr = MI.getOperand(3).getImm(); 1444 DILocation *DebugLoc = MI.getDebugLoc(); 1445 PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc); 1446 } 1447 } 1448 1449 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1450 if (!MF.getTarget().Options.EmitStackSizeSection) 1451 return; 1452 1453 MCSection *StackSizeSection = 1454 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1455 if (!StackSizeSection) 1456 return; 1457 1458 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1459 // Don't emit functions with dynamic stack allocations. 1460 if (FrameInfo.hasVarSizedObjects()) 1461 return; 1462 1463 OutStreamer->pushSection(); 1464 OutStreamer->switchSection(StackSizeSection); 1465 1466 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1467 uint64_t StackSize = 1468 FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize(); 1469 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1470 OutStreamer->emitULEB128IntValue(StackSize); 1471 1472 OutStreamer->popSection(); 1473 } 1474 1475 void AsmPrinter::emitStackUsage(const MachineFunction &MF) { 1476 const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput; 1477 1478 // OutputFilename empty implies -fstack-usage is not passed. 1479 if (OutputFilename.empty()) 1480 return; 1481 1482 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1483 uint64_t StackSize = 1484 FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize(); 1485 1486 if (StackUsageStream == nullptr) { 1487 std::error_code EC; 1488 StackUsageStream = 1489 std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text); 1490 if (EC) { 1491 errs() << "Could not open file: " << EC.message(); 1492 return; 1493 } 1494 } 1495 1496 if (const DISubprogram *DSP = MF.getFunction().getSubprogram()) 1497 *StackUsageStream << DSP->getFilename() << ':' << DSP->getLine(); 1498 else 1499 *StackUsageStream << MF.getFunction().getParent()->getName(); 1500 1501 *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t'; 1502 if (FrameInfo.hasVarSizedObjects()) 1503 *StackUsageStream << "dynamic\n"; 1504 else 1505 *StackUsageStream << "static\n"; 1506 } 1507 1508 void AsmPrinter::emitPCSectionsLabel(const MachineFunction &MF, 1509 const MDNode &MD) { 1510 MCSymbol *S = MF.getContext().createTempSymbol("pcsection"); 1511 OutStreamer->emitLabel(S); 1512 PCSectionsSymbols[&MD].emplace_back(S); 1513 } 1514 1515 void AsmPrinter::emitPCSections(const MachineFunction &MF) { 1516 const Function &F = MF.getFunction(); 1517 if (PCSectionsSymbols.empty() && !F.hasMetadata(LLVMContext::MD_pcsections)) 1518 return; 1519 1520 const CodeModel::Model CM = MF.getTarget().getCodeModel(); 1521 const unsigned RelativeRelocSize = 1522 (CM == CodeModel::Medium || CM == CodeModel::Large) ? getPointerSize() 1523 : 4; 1524 1525 // Switch to PCSection, short-circuiting the common case where the current 1526 // section is still valid (assume most MD_pcsections contain just 1 section). 1527 auto SwitchSection = [&, Prev = StringRef()](const StringRef &Sec) mutable { 1528 if (Sec == Prev) 1529 return; 1530 MCSection *S = getObjFileLowering().getPCSection(Sec, MF.getSection()); 1531 assert(S && "PC section is not initialized"); 1532 OutStreamer->switchSection(S); 1533 Prev = Sec; 1534 }; 1535 // Emit symbols into sections and data as specified in the pcsections MDNode. 1536 auto EmitForMD = [&](const MDNode &MD, ArrayRef<const MCSymbol *> Syms, 1537 bool Deltas) { 1538 // Expect the first operand to be a section name. After that, a tuple of 1539 // constants may appear, which will simply be emitted into the current 1540 // section (the user of MD_pcsections decides the format of encoded data). 1541 assert(isa<MDString>(MD.getOperand(0)) && "first operand not a string"); 1542 bool ConstULEB128 = false; 1543 for (const MDOperand &MDO : MD.operands()) { 1544 if (auto *S = dyn_cast<MDString>(MDO)) { 1545 // Found string, start of new section! 1546 // Find options for this section "<section>!<opts>" - supported options: 1547 // C = Compress constant integers of size 2-8 bytes as ULEB128. 1548 const StringRef SecWithOpt = S->getString(); 1549 const size_t OptStart = SecWithOpt.find('!'); // likely npos 1550 const StringRef Sec = SecWithOpt.substr(0, OptStart); 1551 const StringRef Opts = SecWithOpt.substr(OptStart); // likely empty 1552 ConstULEB128 = Opts.contains('C'); 1553 #ifndef NDEBUG 1554 for (char O : Opts) 1555 assert((O == '!' || O == 'C') && "Invalid !pcsections options"); 1556 #endif 1557 SwitchSection(Sec); 1558 const MCSymbol *Prev = Syms.front(); 1559 for (const MCSymbol *Sym : Syms) { 1560 if (Sym == Prev || !Deltas) { 1561 // Use the entry itself as the base of the relative offset. 1562 MCSymbol *Base = MF.getContext().createTempSymbol("pcsection_base"); 1563 OutStreamer->emitLabel(Base); 1564 // Emit relative relocation `addr - base`, which avoids a dynamic 1565 // relocation in the final binary. User will get the address with 1566 // `base + addr`. 1567 emitLabelDifference(Sym, Base, RelativeRelocSize); 1568 } else { 1569 // Emit delta between symbol and previous symbol. 1570 if (ConstULEB128) 1571 emitLabelDifferenceAsULEB128(Sym, Prev); 1572 else 1573 emitLabelDifference(Sym, Prev, 4); 1574 } 1575 Prev = Sym; 1576 } 1577 } else { 1578 // Emit auxiliary data after PC. 1579 assert(isa<MDNode>(MDO) && "expecting either string or tuple"); 1580 const auto *AuxMDs = cast<MDNode>(MDO); 1581 for (const MDOperand &AuxMDO : AuxMDs->operands()) { 1582 assert(isa<ConstantAsMetadata>(AuxMDO) && "expecting a constant"); 1583 const Constant *C = cast<ConstantAsMetadata>(AuxMDO)->getValue(); 1584 const DataLayout &DL = F.getParent()->getDataLayout(); 1585 const uint64_t Size = DL.getTypeStoreSize(C->getType()); 1586 1587 if (auto *CI = dyn_cast<ConstantInt>(C); 1588 CI && ConstULEB128 && Size > 1 && Size <= 8) { 1589 emitULEB128(CI->getZExtValue()); 1590 } else { 1591 emitGlobalConstant(DL, C); 1592 } 1593 } 1594 } 1595 } 1596 }; 1597 1598 OutStreamer->pushSection(); 1599 // Emit PCs for function start and function size. 1600 if (const MDNode *MD = F.getMetadata(LLVMContext::MD_pcsections)) 1601 EmitForMD(*MD, {getFunctionBegin(), getFunctionEnd()}, true); 1602 // Emit PCs for instructions collected. 1603 for (const auto &MS : PCSectionsSymbols) 1604 EmitForMD(*MS.first, MS.second, false); 1605 OutStreamer->popSection(); 1606 PCSectionsSymbols.clear(); 1607 } 1608 1609 /// Returns true if function begin and end labels should be emitted. 1610 static bool needFuncLabels(const MachineFunction &MF) { 1611 MachineModuleInfo &MMI = MF.getMMI(); 1612 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || 1613 MMI.hasDebugInfo() || 1614 MF.getFunction().hasMetadata(LLVMContext::MD_pcsections)) 1615 return true; 1616 1617 // We might emit an EH table that uses function begin and end labels even if 1618 // we don't have any landingpads. 1619 if (!MF.getFunction().hasPersonalityFn()) 1620 return false; 1621 return !isNoOpWithoutInvoke( 1622 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1623 } 1624 1625 /// EmitFunctionBody - This method emits the body and trailer for a 1626 /// function. 1627 void AsmPrinter::emitFunctionBody() { 1628 emitFunctionHeader(); 1629 1630 // Emit target-specific gunk before the function body. 1631 emitFunctionBodyStart(); 1632 1633 if (isVerbose()) { 1634 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1635 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1636 if (!MDT) { 1637 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1638 OwnedMDT->getBase().recalculate(*MF); 1639 MDT = OwnedMDT.get(); 1640 } 1641 1642 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1643 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1644 if (!MLI) { 1645 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1646 OwnedMLI->getBase().analyze(MDT->getBase()); 1647 MLI = OwnedMLI.get(); 1648 } 1649 } 1650 1651 // Print out code for the function. 1652 bool HasAnyRealCode = false; 1653 int NumInstsInFunction = 0; 1654 bool IsEHa = MMI->getModule()->getModuleFlag("eh-asynch"); 1655 1656 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1657 for (auto &MBB : *MF) { 1658 // Print a label for the basic block. 1659 emitBasicBlockStart(MBB); 1660 DenseMap<StringRef, unsigned> MnemonicCounts; 1661 for (auto &MI : MBB) { 1662 // Print the assembly for the instruction. 1663 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1664 !MI.isDebugInstr()) { 1665 HasAnyRealCode = true; 1666 ++NumInstsInFunction; 1667 } 1668 1669 // If there is a pre-instruction symbol, emit a label for it here. 1670 if (MCSymbol *S = MI.getPreInstrSymbol()) 1671 OutStreamer->emitLabel(S); 1672 1673 if (MDNode *MD = MI.getPCSections()) 1674 emitPCSectionsLabel(*MF, *MD); 1675 1676 for (const HandlerInfo &HI : Handlers) { 1677 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1678 HI.TimerGroupDescription, TimePassesIsEnabled); 1679 HI.Handler->beginInstruction(&MI); 1680 } 1681 1682 if (isVerbose()) 1683 emitComments(MI, OutStreamer->getCommentOS()); 1684 1685 switch (MI.getOpcode()) { 1686 case TargetOpcode::CFI_INSTRUCTION: 1687 emitCFIInstruction(MI); 1688 break; 1689 case TargetOpcode::LOCAL_ESCAPE: 1690 emitFrameAlloc(MI); 1691 break; 1692 case TargetOpcode::ANNOTATION_LABEL: 1693 case TargetOpcode::GC_LABEL: 1694 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1695 break; 1696 case TargetOpcode::EH_LABEL: 1697 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1698 // For AsynchEH, insert a Nop if followed by a trap inst 1699 // Or the exception won't be caught. 1700 // (see MCConstantExpr::create(1,..) in WinException.cpp) 1701 // Ignore SDiv/UDiv because a DIV with Const-0 divisor 1702 // must have being turned into an UndefValue. 1703 // Div with variable opnds won't be the first instruction in 1704 // an EH region as it must be led by at least a Load 1705 { 1706 auto MI2 = std::next(MI.getIterator()); 1707 if (IsEHa && MI2 != MBB.end() && 1708 (MI2->mayLoadOrStore() || MI2->mayRaiseFPException())) 1709 emitNops(1); 1710 } 1711 break; 1712 case TargetOpcode::INLINEASM: 1713 case TargetOpcode::INLINEASM_BR: 1714 emitInlineAsm(&MI); 1715 break; 1716 case TargetOpcode::DBG_VALUE: 1717 case TargetOpcode::DBG_VALUE_LIST: 1718 if (isVerbose()) { 1719 if (!emitDebugValueComment(&MI, *this)) 1720 emitInstruction(&MI); 1721 } 1722 break; 1723 case TargetOpcode::DBG_INSTR_REF: 1724 // This instruction reference will have been resolved to a machine 1725 // location, and a nearby DBG_VALUE created. We can safely ignore 1726 // the instruction reference. 1727 break; 1728 case TargetOpcode::DBG_PHI: 1729 // This instruction is only used to label a program point, it's purely 1730 // meta information. 1731 break; 1732 case TargetOpcode::DBG_LABEL: 1733 if (isVerbose()) { 1734 if (!emitDebugLabelComment(&MI, *this)) 1735 emitInstruction(&MI); 1736 } 1737 break; 1738 case TargetOpcode::IMPLICIT_DEF: 1739 if (isVerbose()) emitImplicitDef(&MI); 1740 break; 1741 case TargetOpcode::KILL: 1742 if (isVerbose()) emitKill(&MI, *this); 1743 break; 1744 case TargetOpcode::PSEUDO_PROBE: 1745 emitPseudoProbe(MI); 1746 break; 1747 case TargetOpcode::ARITH_FENCE: 1748 if (isVerbose()) 1749 OutStreamer->emitRawComment("ARITH_FENCE"); 1750 break; 1751 case TargetOpcode::MEMBARRIER: 1752 OutStreamer->emitRawComment("MEMBARRIER"); 1753 break; 1754 case TargetOpcode::JUMP_TABLE_DEBUG_INFO: 1755 // This instruction is only used to note jump table debug info, it's 1756 // purely meta information. 1757 break; 1758 default: 1759 emitInstruction(&MI); 1760 if (CanDoExtraAnalysis) { 1761 MCInst MCI; 1762 MCI.setOpcode(MI.getOpcode()); 1763 auto Name = OutStreamer->getMnemonic(MCI); 1764 auto I = MnemonicCounts.insert({Name, 0u}); 1765 I.first->second++; 1766 } 1767 break; 1768 } 1769 1770 // If there is a post-instruction symbol, emit a label for it here. 1771 if (MCSymbol *S = MI.getPostInstrSymbol()) 1772 OutStreamer->emitLabel(S); 1773 1774 for (const HandlerInfo &HI : Handlers) { 1775 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1776 HI.TimerGroupDescription, TimePassesIsEnabled); 1777 HI.Handler->endInstruction(); 1778 } 1779 } 1780 1781 // We must emit temporary symbol for the end of this basic block, if either 1782 // we have BBLabels enabled or if this basic blocks marks the end of a 1783 // section. 1784 if (MF->hasBBLabels() || 1785 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection())) 1786 OutStreamer->emitLabel(MBB.getEndSymbol()); 1787 1788 if (MBB.isEndSection()) { 1789 // The size directive for the section containing the entry block is 1790 // handled separately by the function section. 1791 if (!MBB.sameSection(&MF->front())) { 1792 if (MAI->hasDotTypeDotSizeDirective()) { 1793 // Emit the size directive for the basic block section. 1794 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1795 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1796 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1797 OutContext); 1798 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1799 } 1800 MBBSectionRanges[MBB.getSectionIDNum()] = 1801 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1802 } 1803 } 1804 emitBasicBlockEnd(MBB); 1805 1806 if (CanDoExtraAnalysis) { 1807 // Skip empty blocks. 1808 if (MBB.empty()) 1809 continue; 1810 1811 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", 1812 MBB.begin()->getDebugLoc(), &MBB); 1813 1814 // Generate instruction mix remark. First, sort counts in descending order 1815 // by count and name. 1816 SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; 1817 for (auto &KV : MnemonicCounts) 1818 MnemonicVec.emplace_back(KV.first, KV.second); 1819 1820 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, 1821 const std::pair<StringRef, unsigned> &B) { 1822 if (A.second > B.second) 1823 return true; 1824 if (A.second == B.second) 1825 return StringRef(A.first) < StringRef(B.first); 1826 return false; 1827 }); 1828 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; 1829 for (auto &KV : MnemonicVec) { 1830 auto Name = (Twine("INST_") + getToken(KV.first.trim()).first).str(); 1831 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; 1832 } 1833 ORE->emit(R); 1834 } 1835 } 1836 1837 EmittedInsts += NumInstsInFunction; 1838 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1839 MF->getFunction().getSubprogram(), 1840 &MF->front()); 1841 R << ore::NV("NumInstructions", NumInstsInFunction) 1842 << " instructions in function"; 1843 ORE->emit(R); 1844 1845 // If the function is empty and the object file uses .subsections_via_symbols, 1846 // then we need to emit *something* to the function body to prevent the 1847 // labels from collapsing together. Just emit a noop. 1848 // Similarly, don't emit empty functions on Windows either. It can lead to 1849 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1850 // after linking, causing the kernel not to load the binary: 1851 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1852 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1853 const Triple &TT = TM.getTargetTriple(); 1854 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1855 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1856 MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop(); 1857 1858 // Targets can opt-out of emitting the noop here by leaving the opcode 1859 // unspecified. 1860 if (Noop.getOpcode()) { 1861 OutStreamer->AddComment("avoids zero-length function"); 1862 emitNops(1); 1863 } 1864 } 1865 1866 // Switch to the original section in case basic block sections was used. 1867 OutStreamer->switchSection(MF->getSection()); 1868 1869 const Function &F = MF->getFunction(); 1870 for (const auto &BB : F) { 1871 if (!BB.hasAddressTaken()) 1872 continue; 1873 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1874 if (Sym->isDefined()) 1875 continue; 1876 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1877 OutStreamer->emitLabel(Sym); 1878 } 1879 1880 // Emit target-specific gunk after the function body. 1881 emitFunctionBodyEnd(); 1882 1883 // Even though wasm supports .type and .size in general, function symbols 1884 // are automatically sized. 1885 bool EmitFunctionSize = MAI->hasDotTypeDotSizeDirective() && !TT.isWasm(); 1886 1887 if (needFuncLabels(*MF) || EmitFunctionSize) { 1888 // Create a symbol for the end of function. 1889 CurrentFnEnd = createTempSymbol("func_end"); 1890 OutStreamer->emitLabel(CurrentFnEnd); 1891 } 1892 1893 // If the target wants a .size directive for the size of the function, emit 1894 // it. 1895 if (EmitFunctionSize) { 1896 // We can get the size as difference between the function label and the 1897 // temp label. 1898 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1899 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1900 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1901 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1902 if (CurrentFnBeginLocal) 1903 OutStreamer->emitELFSize(CurrentFnBeginLocal, SizeExp); 1904 } 1905 1906 // Call endBasicBlockSection on the last block now, if it wasn't already 1907 // called. 1908 if (!MF->back().isEndSection()) { 1909 for (const HandlerInfo &HI : Handlers) { 1910 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1911 HI.TimerGroupDescription, TimePassesIsEnabled); 1912 HI.Handler->endBasicBlockSection(MF->back()); 1913 } 1914 } 1915 for (const HandlerInfo &HI : Handlers) { 1916 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1917 HI.TimerGroupDescription, TimePassesIsEnabled); 1918 HI.Handler->markFunctionEnd(); 1919 } 1920 1921 MBBSectionRanges[MF->front().getSectionIDNum()] = 1922 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1923 1924 // Print out jump tables referenced by the function. 1925 emitJumpTableInfo(); 1926 1927 // Emit post-function debug and/or EH information. 1928 for (const HandlerInfo &HI : Handlers) { 1929 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1930 HI.TimerGroupDescription, TimePassesIsEnabled); 1931 HI.Handler->endFunction(MF); 1932 } 1933 1934 // Emit section containing BB address offsets and their metadata, when 1935 // BB labels are requested for this function. Skip empty functions. 1936 if (MF->hasBBLabels() && HasAnyRealCode) 1937 emitBBAddrMapSection(*MF); 1938 1939 // Emit sections containing instruction and function PCs. 1940 emitPCSections(*MF); 1941 1942 // Emit section containing stack size metadata. 1943 emitStackSizeSection(*MF); 1944 1945 // Emit .su file containing function stack size information. 1946 emitStackUsage(*MF); 1947 1948 emitPatchableFunctionEntries(); 1949 1950 if (isVerbose()) 1951 OutStreamer->getCommentOS() << "-- End function\n"; 1952 1953 OutStreamer->addBlankLine(); 1954 1955 // Output MBB ids, function names, and frequencies if the flag to dump 1956 // MBB profile information has been set 1957 if (MBBProfileDumpFileOutput && !MF->empty() && 1958 MF->getFunction().getEntryCount()) { 1959 if (!MF->hasBBLabels()) { 1960 MF->getContext().reportError( 1961 SMLoc(), 1962 "Unable to find BB labels for MBB profile dump. -mbb-profile-dump " 1963 "must be called with -basic-block-sections=labels"); 1964 } else { 1965 MachineBlockFrequencyInfo &MBFI = 1966 getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI(); 1967 // The entry count and the entry basic block frequency aren't the same. We 1968 // want to capture "absolute" frequencies, i.e. the frequency with which a 1969 // MBB is executed when the program is executed. From there, we can derive 1970 // Function-relative frequencies (divide by the value for the first MBB). 1971 // We also have the information about frequency with which functions 1972 // were called. This helps, for example, in a type of integration tests 1973 // where we want to cross-validate the compiler's profile with a real 1974 // profile. 1975 // Using double precision because uint64 values used to encode mbb 1976 // "frequencies" may be quite large. 1977 const double EntryCount = 1978 static_cast<double>(MF->getFunction().getEntryCount()->getCount()); 1979 for (const auto &MBB : *MF) { 1980 const double MBBRelFreq = MBFI.getBlockFreqRelativeToEntryBlock(&MBB); 1981 const double AbsMBBFreq = MBBRelFreq * EntryCount; 1982 *MBBProfileDumpFileOutput.get() 1983 << MF->getName() << "," << MBB.getBBID()->BaseID << "," 1984 << AbsMBBFreq << "\n"; 1985 } 1986 } 1987 } 1988 } 1989 1990 /// Compute the number of Global Variables that uses a Constant. 1991 static unsigned getNumGlobalVariableUses(const Constant *C) { 1992 if (!C) 1993 return 0; 1994 1995 if (isa<GlobalVariable>(C)) 1996 return 1; 1997 1998 unsigned NumUses = 0; 1999 for (const auto *CU : C->users()) 2000 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 2001 2002 return NumUses; 2003 } 2004 2005 /// Only consider global GOT equivalents if at least one user is a 2006 /// cstexpr inside an initializer of another global variables. Also, don't 2007 /// handle cstexpr inside instructions. During global variable emission, 2008 /// candidates are skipped and are emitted later in case at least one cstexpr 2009 /// isn't replaced by a PC relative GOT entry access. 2010 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 2011 unsigned &NumGOTEquivUsers) { 2012 // Global GOT equivalents are unnamed private globals with a constant 2013 // pointer initializer to another global symbol. They must point to a 2014 // GlobalVariable or Function, i.e., as GlobalValue. 2015 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 2016 !GV->isConstant() || !GV->isDiscardableIfUnused() || 2017 !isa<GlobalValue>(GV->getOperand(0))) 2018 return false; 2019 2020 // To be a got equivalent, at least one of its users need to be a constant 2021 // expression used by another global variable. 2022 for (const auto *U : GV->users()) 2023 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 2024 2025 return NumGOTEquivUsers > 0; 2026 } 2027 2028 /// Unnamed constant global variables solely contaning a pointer to 2029 /// another globals variable is equivalent to a GOT table entry; it contains the 2030 /// the address of another symbol. Optimize it and replace accesses to these 2031 /// "GOT equivalents" by using the GOT entry for the final global instead. 2032 /// Compute GOT equivalent candidates among all global variables to avoid 2033 /// emitting them if possible later on, after it use is replaced by a GOT entry 2034 /// access. 2035 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 2036 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2037 return; 2038 2039 for (const auto &G : M.globals()) { 2040 unsigned NumGOTEquivUsers = 0; 2041 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 2042 continue; 2043 2044 const MCSymbol *GOTEquivSym = getSymbol(&G); 2045 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 2046 } 2047 } 2048 2049 /// Constant expressions using GOT equivalent globals may not be eligible 2050 /// for PC relative GOT entry conversion, in such cases we need to emit such 2051 /// globals we previously omitted in EmitGlobalVariable. 2052 void AsmPrinter::emitGlobalGOTEquivs() { 2053 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2054 return; 2055 2056 SmallVector<const GlobalVariable *, 8> FailedCandidates; 2057 for (auto &I : GlobalGOTEquivs) { 2058 const GlobalVariable *GV = I.second.first; 2059 unsigned Cnt = I.second.second; 2060 if (Cnt) 2061 FailedCandidates.push_back(GV); 2062 } 2063 GlobalGOTEquivs.clear(); 2064 2065 for (const auto *GV : FailedCandidates) 2066 emitGlobalVariable(GV); 2067 } 2068 2069 void AsmPrinter::emitGlobalAlias(Module &M, const GlobalAlias &GA) { 2070 MCSymbol *Name = getSymbol(&GA); 2071 bool IsFunction = GA.getValueType()->isFunctionTy(); 2072 // Treat bitcasts of functions as functions also. This is important at least 2073 // on WebAssembly where object and function addresses can't alias each other. 2074 if (!IsFunction) 2075 IsFunction = isa<Function>(GA.getAliasee()->stripPointerCasts()); 2076 2077 // AIX's assembly directive `.set` is not usable for aliasing purpose, 2078 // so AIX has to use the extra-label-at-definition strategy. At this 2079 // point, all the extra label is emitted, we just have to emit linkage for 2080 // those labels. 2081 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 2082 assert(MAI->hasVisibilityOnlyWithLinkage() && 2083 "Visibility should be handled with emitLinkage() on AIX."); 2084 2085 // Linkage for alias of global variable has been emitted. 2086 if (isa<GlobalVariable>(GA.getAliaseeObject())) 2087 return; 2088 2089 emitLinkage(&GA, Name); 2090 // If it's a function, also emit linkage for aliases of function entry 2091 // point. 2092 if (IsFunction) 2093 emitLinkage(&GA, 2094 getObjFileLowering().getFunctionEntryPointSymbol(&GA, TM)); 2095 return; 2096 } 2097 2098 if (GA.hasExternalLinkage() || !MAI->getWeakRefDirective()) 2099 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 2100 else if (GA.hasWeakLinkage() || GA.hasLinkOnceLinkage()) 2101 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 2102 else 2103 assert(GA.hasLocalLinkage() && "Invalid alias linkage"); 2104 2105 // Set the symbol type to function if the alias has a function type. 2106 // This affects codegen when the aliasee is not a function. 2107 if (IsFunction) { 2108 OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 2109 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 2110 OutStreamer->beginCOFFSymbolDef(Name); 2111 OutStreamer->emitCOFFSymbolStorageClass( 2112 GA.hasLocalLinkage() ? COFF::IMAGE_SYM_CLASS_STATIC 2113 : COFF::IMAGE_SYM_CLASS_EXTERNAL); 2114 OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_FUNCTION 2115 << COFF::SCT_COMPLEX_TYPE_SHIFT); 2116 OutStreamer->endCOFFSymbolDef(); 2117 } 2118 } 2119 2120 emitVisibility(Name, GA.getVisibility()); 2121 2122 const MCExpr *Expr = lowerConstant(GA.getAliasee()); 2123 2124 if (MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 2125 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 2126 2127 // Emit the directives as assignments aka .set: 2128 OutStreamer->emitAssignment(Name, Expr); 2129 MCSymbol *LocalAlias = getSymbolPreferLocal(GA); 2130 if (LocalAlias != Name) 2131 OutStreamer->emitAssignment(LocalAlias, Expr); 2132 2133 // If the aliasee does not correspond to a symbol in the output, i.e. the 2134 // alias is not of an object or the aliased object is private, then set the 2135 // size of the alias symbol from the type of the alias. We don't do this in 2136 // other situations as the alias and aliasee having differing types but same 2137 // size may be intentional. 2138 const GlobalObject *BaseObject = GA.getAliaseeObject(); 2139 if (MAI->hasDotTypeDotSizeDirective() && GA.getValueType()->isSized() && 2140 (!BaseObject || BaseObject->hasPrivateLinkage())) { 2141 const DataLayout &DL = M.getDataLayout(); 2142 uint64_t Size = DL.getTypeAllocSize(GA.getValueType()); 2143 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 2144 } 2145 } 2146 2147 void AsmPrinter::emitGlobalIFunc(Module &M, const GlobalIFunc &GI) { 2148 assert(!TM.getTargetTriple().isOSBinFormatXCOFF() && 2149 "IFunc is not supported on AIX."); 2150 2151 auto EmitLinkage = [&](MCSymbol *Sym) { 2152 if (GI.hasExternalLinkage() || !MAI->getWeakRefDirective()) 2153 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 2154 else if (GI.hasWeakLinkage() || GI.hasLinkOnceLinkage()) 2155 OutStreamer->emitSymbolAttribute(Sym, MCSA_WeakReference); 2156 else 2157 assert(GI.hasLocalLinkage() && "Invalid ifunc linkage"); 2158 }; 2159 2160 if (TM.getTargetTriple().isOSBinFormatELF()) { 2161 MCSymbol *Name = getSymbol(&GI); 2162 EmitLinkage(Name); 2163 OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 2164 emitVisibility(Name, GI.getVisibility()); 2165 2166 // Emit the directives as assignments aka .set: 2167 const MCExpr *Expr = lowerConstant(GI.getResolver()); 2168 OutStreamer->emitAssignment(Name, Expr); 2169 MCSymbol *LocalAlias = getSymbolPreferLocal(GI); 2170 if (LocalAlias != Name) 2171 OutStreamer->emitAssignment(LocalAlias, Expr); 2172 2173 return; 2174 } 2175 2176 if (!TM.getTargetTriple().isOSBinFormatMachO() || !getIFuncMCSubtargetInfo()) 2177 llvm::report_fatal_error("IFuncs are not supported on this platform"); 2178 2179 // On Darwin platforms, emit a manually-constructed .symbol_resolver that 2180 // implements the symbol resolution duties of the IFunc. 2181 // 2182 // Normally, this would be handled by linker magic, but unfortunately there 2183 // are a few limitations in ld64 and ld-prime's implementation of 2184 // .symbol_resolver that mean we can't always use them: 2185 // 2186 // * resolvers cannot be the target of an alias 2187 // * resolvers cannot have private linkage 2188 // * resolvers cannot have linkonce linkage 2189 // * resolvers cannot appear in executables 2190 // * resolvers cannot appear in bundles 2191 // 2192 // This works around that by emitting a close approximation of what the 2193 // linker would have done. 2194 2195 MCSymbol *LazyPointer = 2196 GetExternalSymbolSymbol(GI.getName() + ".lazy_pointer"); 2197 MCSymbol *StubHelper = GetExternalSymbolSymbol(GI.getName() + ".stub_helper"); 2198 2199 OutStreamer->switchSection(OutContext.getObjectFileInfo()->getDataSection()); 2200 2201 const DataLayout &DL = M.getDataLayout(); 2202 emitAlignment(Align(DL.getPointerSize())); 2203 OutStreamer->emitLabel(LazyPointer); 2204 emitVisibility(LazyPointer, GI.getVisibility()); 2205 OutStreamer->emitValue(MCSymbolRefExpr::create(StubHelper, OutContext), 8); 2206 2207 OutStreamer->switchSection(OutContext.getObjectFileInfo()->getTextSection()); 2208 2209 const TargetSubtargetInfo *STI = 2210 TM.getSubtargetImpl(*GI.getResolverFunction()); 2211 const TargetLowering *TLI = STI->getTargetLowering(); 2212 Align TextAlign(TLI->getMinFunctionAlignment()); 2213 2214 MCSymbol *Stub = getSymbol(&GI); 2215 EmitLinkage(Stub); 2216 OutStreamer->emitCodeAlignment(TextAlign, getIFuncMCSubtargetInfo()); 2217 OutStreamer->emitLabel(Stub); 2218 emitVisibility(Stub, GI.getVisibility()); 2219 emitMachOIFuncStubBody(M, GI, LazyPointer); 2220 2221 OutStreamer->emitCodeAlignment(TextAlign, getIFuncMCSubtargetInfo()); 2222 OutStreamer->emitLabel(StubHelper); 2223 emitVisibility(StubHelper, GI.getVisibility()); 2224 emitMachOIFuncStubHelperBody(M, GI, LazyPointer); 2225 } 2226 2227 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 2228 if (!RS.needsSection()) 2229 return; 2230 2231 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 2232 2233 std::optional<SmallString<128>> Filename; 2234 if (std::optional<StringRef> FilenameRef = RS.getFilename()) { 2235 Filename = *FilenameRef; 2236 sys::fs::make_absolute(*Filename); 2237 assert(!Filename->empty() && "The filename can't be empty."); 2238 } 2239 2240 std::string Buf; 2241 raw_string_ostream OS(Buf); 2242 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 2243 Filename ? RemarkSerializer.metaSerializer(OS, Filename->str()) 2244 : RemarkSerializer.metaSerializer(OS); 2245 MetaSerializer->emit(); 2246 2247 // Switch to the remarks section. 2248 MCSection *RemarksSection = 2249 OutContext.getObjectFileInfo()->getRemarksSection(); 2250 OutStreamer->switchSection(RemarksSection); 2251 2252 OutStreamer->emitBinaryData(OS.str()); 2253 } 2254 2255 bool AsmPrinter::doFinalization(Module &M) { 2256 // Set the MachineFunction to nullptr so that we can catch attempted 2257 // accesses to MF specific features at the module level and so that 2258 // we can conditionalize accesses based on whether or not it is nullptr. 2259 MF = nullptr; 2260 2261 // Gather all GOT equivalent globals in the module. We really need two 2262 // passes over the globals: one to compute and another to avoid its emission 2263 // in EmitGlobalVariable, otherwise we would not be able to handle cases 2264 // where the got equivalent shows up before its use. 2265 computeGlobalGOTEquivs(M); 2266 2267 // Emit global variables. 2268 for (const auto &G : M.globals()) 2269 emitGlobalVariable(&G); 2270 2271 // Emit remaining GOT equivalent globals. 2272 emitGlobalGOTEquivs(); 2273 2274 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2275 2276 // Emit linkage(XCOFF) and visibility info for declarations 2277 for (const Function &F : M) { 2278 if (!F.isDeclarationForLinker()) 2279 continue; 2280 2281 MCSymbol *Name = getSymbol(&F); 2282 // Function getSymbol gives us the function descriptor symbol for XCOFF. 2283 2284 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 2285 GlobalValue::VisibilityTypes V = F.getVisibility(); 2286 if (V == GlobalValue::DefaultVisibility) 2287 continue; 2288 2289 emitVisibility(Name, V, false); 2290 continue; 2291 } 2292 2293 if (F.isIntrinsic()) 2294 continue; 2295 2296 // Handle the XCOFF case. 2297 // Variable `Name` is the function descriptor symbol (see above). Get the 2298 // function entry point symbol. 2299 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 2300 // Emit linkage for the function entry point. 2301 emitLinkage(&F, FnEntryPointSym); 2302 2303 // Emit linkage for the function descriptor. 2304 emitLinkage(&F, Name); 2305 } 2306 2307 // Emit the remarks section contents. 2308 // FIXME: Figure out when is the safest time to emit this section. It should 2309 // not come after debug info. 2310 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 2311 emitRemarksSection(*RS); 2312 2313 TLOF.emitModuleMetadata(*OutStreamer, M); 2314 2315 if (TM.getTargetTriple().isOSBinFormatELF()) { 2316 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 2317 2318 // Output stubs for external and common global variables. 2319 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 2320 if (!Stubs.empty()) { 2321 OutStreamer->switchSection(TLOF.getDataSection()); 2322 const DataLayout &DL = M.getDataLayout(); 2323 2324 emitAlignment(Align(DL.getPointerSize())); 2325 for (const auto &Stub : Stubs) { 2326 OutStreamer->emitLabel(Stub.first); 2327 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 2328 DL.getPointerSize()); 2329 } 2330 } 2331 } 2332 2333 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 2334 MachineModuleInfoCOFF &MMICOFF = 2335 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 2336 2337 // Output stubs for external and common global variables. 2338 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 2339 if (!Stubs.empty()) { 2340 const DataLayout &DL = M.getDataLayout(); 2341 2342 for (const auto &Stub : Stubs) { 2343 SmallString<256> SectionName = StringRef(".rdata$"); 2344 SectionName += Stub.first->getName(); 2345 OutStreamer->switchSection(OutContext.getCOFFSection( 2346 SectionName, 2347 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 2348 COFF::IMAGE_SCN_LNK_COMDAT, 2349 SectionKind::getReadOnly(), Stub.first->getName(), 2350 COFF::IMAGE_COMDAT_SELECT_ANY)); 2351 emitAlignment(Align(DL.getPointerSize())); 2352 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 2353 OutStreamer->emitLabel(Stub.first); 2354 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 2355 DL.getPointerSize()); 2356 } 2357 } 2358 } 2359 2360 // This needs to happen before emitting debug information since that can end 2361 // arbitrary sections. 2362 if (auto *TS = OutStreamer->getTargetStreamer()) 2363 TS->emitConstantPools(); 2364 2365 // Emit Stack maps before any debug info. Mach-O requires that no data or 2366 // text sections come after debug info has been emitted. This matters for 2367 // stack maps as they are arbitrary data, and may even have a custom format 2368 // through user plugins. 2369 emitStackMaps(); 2370 2371 // Print aliases in topological order, that is, for each alias a = b, 2372 // b must be printed before a. 2373 // This is because on some targets (e.g. PowerPC) linker expects aliases in 2374 // such an order to generate correct TOC information. 2375 SmallVector<const GlobalAlias *, 16> AliasStack; 2376 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 2377 for (const auto &Alias : M.aliases()) { 2378 if (Alias.hasAvailableExternallyLinkage()) 2379 continue; 2380 for (const GlobalAlias *Cur = &Alias; Cur; 2381 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 2382 if (!AliasVisited.insert(Cur).second) 2383 break; 2384 AliasStack.push_back(Cur); 2385 } 2386 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 2387 emitGlobalAlias(M, *AncestorAlias); 2388 AliasStack.clear(); 2389 } 2390 2391 // IFuncs must come before deubginfo in case the backend decides to emit them 2392 // as actual functions, since on Mach-O targets, we cannot create regular 2393 // sections after DWARF. 2394 for (const auto &IFunc : M.ifuncs()) 2395 emitGlobalIFunc(M, IFunc); 2396 2397 // Finalize debug and EH information. 2398 for (const HandlerInfo &HI : Handlers) { 2399 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 2400 HI.TimerGroupDescription, TimePassesIsEnabled); 2401 HI.Handler->endModule(); 2402 } 2403 2404 // This deletes all the ephemeral handlers that AsmPrinter added, while 2405 // keeping all the user-added handlers alive until the AsmPrinter is 2406 // destroyed. 2407 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); 2408 DD = nullptr; 2409 2410 // If the target wants to know about weak references, print them all. 2411 if (MAI->getWeakRefDirective()) { 2412 // FIXME: This is not lazy, it would be nice to only print weak references 2413 // to stuff that is actually used. Note that doing so would require targets 2414 // to notice uses in operands (due to constant exprs etc). This should 2415 // happen with the MC stuff eventually. 2416 2417 // Print out module-level global objects here. 2418 for (const auto &GO : M.global_objects()) { 2419 if (!GO.hasExternalWeakLinkage()) 2420 continue; 2421 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 2422 } 2423 if (shouldEmitWeakSwiftAsyncExtendedFramePointerFlags()) { 2424 auto SymbolName = "swift_async_extendedFramePointerFlags"; 2425 auto Global = M.getGlobalVariable(SymbolName); 2426 if (!Global) { 2427 auto Int8PtrTy = PointerType::getUnqual(M.getContext()); 2428 Global = new GlobalVariable(M, Int8PtrTy, false, 2429 GlobalValue::ExternalWeakLinkage, nullptr, 2430 SymbolName); 2431 OutStreamer->emitSymbolAttribute(getSymbol(Global), MCSA_WeakReference); 2432 } 2433 } 2434 } 2435 2436 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 2437 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 2438 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 2439 if (GCMetadataPrinter *MP = getOrCreateGCPrinter(**--I)) 2440 MP->finishAssembly(M, *MI, *this); 2441 2442 // Emit llvm.ident metadata in an '.ident' directive. 2443 emitModuleIdents(M); 2444 2445 // Emit bytes for llvm.commandline metadata. 2446 // The command line metadata is emitted earlier on XCOFF. 2447 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) 2448 emitModuleCommandLines(M); 2449 2450 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 2451 // split-stack is used. 2452 if (TM.getTargetTriple().isOSBinFormatELF() && HasSplitStack) { 2453 OutStreamer->switchSection(OutContext.getELFSection(".note.GNU-split-stack", 2454 ELF::SHT_PROGBITS, 0)); 2455 if (HasNoSplitStack) 2456 OutStreamer->switchSection(OutContext.getELFSection( 2457 ".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 2458 } 2459 2460 // If we don't have any trampolines, then we don't require stack memory 2461 // to be executable. Some targets have a directive to declare this. 2462 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 2463 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 2464 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 2465 OutStreamer->switchSection(S); 2466 2467 if (TM.Options.EmitAddrsig) { 2468 // Emit address-significance attributes for all globals. 2469 OutStreamer->emitAddrsig(); 2470 for (const GlobalValue &GV : M.global_values()) { 2471 if (!GV.use_empty() && !GV.isThreadLocal() && 2472 !GV.hasDLLImportStorageClass() && 2473 !GV.getName().starts_with("llvm.") && 2474 !GV.hasAtLeastLocalUnnamedAddr()) 2475 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 2476 } 2477 } 2478 2479 // Emit symbol partition specifications (ELF only). 2480 if (TM.getTargetTriple().isOSBinFormatELF()) { 2481 unsigned UniqueID = 0; 2482 for (const GlobalValue &GV : M.global_values()) { 2483 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 2484 GV.getVisibility() != GlobalValue::DefaultVisibility) 2485 continue; 2486 2487 OutStreamer->switchSection( 2488 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 2489 "", false, ++UniqueID, nullptr)); 2490 OutStreamer->emitBytes(GV.getPartition()); 2491 OutStreamer->emitZeros(1); 2492 OutStreamer->emitValue( 2493 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 2494 MAI->getCodePointerSize()); 2495 } 2496 } 2497 2498 // Allow the target to emit any magic that it wants at the end of the file, 2499 // after everything else has gone out. 2500 emitEndOfAsmFile(M); 2501 2502 MMI = nullptr; 2503 AddrLabelSymbols = nullptr; 2504 2505 OutStreamer->finish(); 2506 OutStreamer->reset(); 2507 OwnedMLI.reset(); 2508 OwnedMDT.reset(); 2509 2510 return false; 2511 } 2512 2513 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { 2514 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum()); 2515 if (Res.second) 2516 Res.first->second = createTempSymbol("exception"); 2517 return Res.first->second; 2518 } 2519 2520 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 2521 this->MF = &MF; 2522 const Function &F = MF.getFunction(); 2523 2524 // Record that there are split-stack functions, so we will emit a special 2525 // section to tell the linker. 2526 if (MF.shouldSplitStack()) { 2527 HasSplitStack = true; 2528 2529 if (!MF.getFrameInfo().needsSplitStackProlog()) 2530 HasNoSplitStack = true; 2531 } else 2532 HasNoSplitStack = true; 2533 2534 // Get the function symbol. 2535 if (!MAI->needsFunctionDescriptors()) { 2536 CurrentFnSym = getSymbol(&MF.getFunction()); 2537 } else { 2538 assert(TM.getTargetTriple().isOSAIX() && 2539 "Only AIX uses the function descriptor hooks."); 2540 // AIX is unique here in that the name of the symbol emitted for the 2541 // function body does not have the same name as the source function's 2542 // C-linkage name. 2543 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 2544 " initalized first."); 2545 2546 // Get the function entry point symbol. 2547 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 2548 } 2549 2550 CurrentFnSymForSize = CurrentFnSym; 2551 CurrentFnBegin = nullptr; 2552 CurrentFnBeginLocal = nullptr; 2553 CurrentSectionBeginSym = nullptr; 2554 MBBSectionRanges.clear(); 2555 MBBSectionExceptionSyms.clear(); 2556 bool NeedsLocalForSize = MAI->needsLocalForSize(); 2557 if (F.hasFnAttribute("patchable-function-entry") || 2558 F.hasFnAttribute("function-instrument") || 2559 F.hasFnAttribute("xray-instruction-threshold") || 2560 needFuncLabels(MF) || NeedsLocalForSize || 2561 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) { 2562 CurrentFnBegin = createTempSymbol("func_begin"); 2563 if (NeedsLocalForSize) 2564 CurrentFnSymForSize = CurrentFnBegin; 2565 } 2566 2567 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 2568 } 2569 2570 namespace { 2571 2572 // Keep track the alignment, constpool entries per Section. 2573 struct SectionCPs { 2574 MCSection *S; 2575 Align Alignment; 2576 SmallVector<unsigned, 4> CPEs; 2577 2578 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 2579 }; 2580 2581 } // end anonymous namespace 2582 2583 /// EmitConstantPool - Print to the current output stream assembly 2584 /// representations of the constants in the constant pool MCP. This is 2585 /// used to print out constants which have been "spilled to memory" by 2586 /// the code generator. 2587 void AsmPrinter::emitConstantPool() { 2588 const MachineConstantPool *MCP = MF->getConstantPool(); 2589 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 2590 if (CP.empty()) return; 2591 2592 // Calculate sections for constant pool entries. We collect entries to go into 2593 // the same section together to reduce amount of section switch statements. 2594 SmallVector<SectionCPs, 4> CPSections; 2595 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 2596 const MachineConstantPoolEntry &CPE = CP[i]; 2597 Align Alignment = CPE.getAlign(); 2598 2599 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 2600 2601 const Constant *C = nullptr; 2602 if (!CPE.isMachineConstantPoolEntry()) 2603 C = CPE.Val.ConstVal; 2604 2605 MCSection *S = getObjFileLowering().getSectionForConstant( 2606 getDataLayout(), Kind, C, Alignment); 2607 2608 // The number of sections are small, just do a linear search from the 2609 // last section to the first. 2610 bool Found = false; 2611 unsigned SecIdx = CPSections.size(); 2612 while (SecIdx != 0) { 2613 if (CPSections[--SecIdx].S == S) { 2614 Found = true; 2615 break; 2616 } 2617 } 2618 if (!Found) { 2619 SecIdx = CPSections.size(); 2620 CPSections.push_back(SectionCPs(S, Alignment)); 2621 } 2622 2623 if (Alignment > CPSections[SecIdx].Alignment) 2624 CPSections[SecIdx].Alignment = Alignment; 2625 CPSections[SecIdx].CPEs.push_back(i); 2626 } 2627 2628 // Now print stuff into the calculated sections. 2629 const MCSection *CurSection = nullptr; 2630 unsigned Offset = 0; 2631 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 2632 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 2633 unsigned CPI = CPSections[i].CPEs[j]; 2634 MCSymbol *Sym = GetCPISymbol(CPI); 2635 if (!Sym->isUndefined()) 2636 continue; 2637 2638 if (CurSection != CPSections[i].S) { 2639 OutStreamer->switchSection(CPSections[i].S); 2640 emitAlignment(Align(CPSections[i].Alignment)); 2641 CurSection = CPSections[i].S; 2642 Offset = 0; 2643 } 2644 2645 MachineConstantPoolEntry CPE = CP[CPI]; 2646 2647 // Emit inter-object padding for alignment. 2648 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 2649 OutStreamer->emitZeros(NewOffset - Offset); 2650 2651 Offset = NewOffset + CPE.getSizeInBytes(getDataLayout()); 2652 2653 OutStreamer->emitLabel(Sym); 2654 if (CPE.isMachineConstantPoolEntry()) 2655 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 2656 else 2657 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 2658 } 2659 } 2660 } 2661 2662 // Print assembly representations of the jump tables used by the current 2663 // function. 2664 void AsmPrinter::emitJumpTableInfo() { 2665 const DataLayout &DL = MF->getDataLayout(); 2666 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2667 if (!MJTI) return; 2668 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 2669 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2670 if (JT.empty()) return; 2671 2672 // Pick the directive to use to print the jump table entries, and switch to 2673 // the appropriate section. 2674 const Function &F = MF->getFunction(); 2675 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2676 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 2677 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 2678 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference64, 2679 F); 2680 if (JTInDiffSection) { 2681 // Drop it in the readonly section. 2682 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 2683 OutStreamer->switchSection(ReadOnlySection); 2684 } 2685 2686 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 2687 2688 // Jump tables in code sections are marked with a data_region directive 2689 // where that's supported. 2690 if (!JTInDiffSection) 2691 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 2692 2693 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 2694 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2695 2696 // If this jump table was deleted, ignore it. 2697 if (JTBBs.empty()) continue; 2698 2699 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 2700 /// emit a .set directive for each unique entry. 2701 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 2702 MAI->doesSetDirectiveSuppressReloc()) { 2703 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 2704 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2705 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 2706 for (const MachineBasicBlock *MBB : JTBBs) { 2707 if (!EmittedSets.insert(MBB).second) 2708 continue; 2709 2710 // .set LJTSet, LBB32-base 2711 const MCExpr *LHS = 2712 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2713 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 2714 MCBinaryExpr::createSub(LHS, Base, 2715 OutContext)); 2716 } 2717 } 2718 2719 // On some targets (e.g. Darwin) we want to emit two consecutive labels 2720 // before each jump table. The first label is never referenced, but tells 2721 // the assembler and linker the extents of the jump table object. The 2722 // second label is actually referenced by the code. 2723 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 2724 // FIXME: This doesn't have to have any specific name, just any randomly 2725 // named and numbered local label started with 'l' would work. Simplify 2726 // GetJTISymbol. 2727 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 2728 2729 MCSymbol* JTISymbol = GetJTISymbol(JTI); 2730 OutStreamer->emitLabel(JTISymbol); 2731 2732 for (const MachineBasicBlock *MBB : JTBBs) 2733 emitJumpTableEntry(MJTI, MBB, JTI); 2734 } 2735 if (!JTInDiffSection) 2736 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 2737 } 2738 2739 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 2740 /// current stream. 2741 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 2742 const MachineBasicBlock *MBB, 2743 unsigned UID) const { 2744 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 2745 const MCExpr *Value = nullptr; 2746 switch (MJTI->getEntryKind()) { 2747 case MachineJumpTableInfo::EK_Inline: 2748 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 2749 case MachineJumpTableInfo::EK_Custom32: 2750 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 2751 MJTI, MBB, UID, OutContext); 2752 break; 2753 case MachineJumpTableInfo::EK_BlockAddress: 2754 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 2755 // .word LBB123 2756 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2757 break; 2758 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2759 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2760 // with a relocation as gp-relative, e.g.: 2761 // .gprel32 LBB123 2762 MCSymbol *MBBSym = MBB->getSymbol(); 2763 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2764 return; 2765 } 2766 2767 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2768 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2769 // with a relocation as gp-relative, e.g.: 2770 // .gpdword LBB123 2771 MCSymbol *MBBSym = MBB->getSymbol(); 2772 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2773 return; 2774 } 2775 2776 case MachineJumpTableInfo::EK_LabelDifference32: 2777 case MachineJumpTableInfo::EK_LabelDifference64: { 2778 // Each entry is the address of the block minus the address of the jump 2779 // table. This is used for PIC jump tables where gprel32 is not supported. 2780 // e.g.: 2781 // .word LBB123 - LJTI1_2 2782 // If the .set directive avoids relocations, this is emitted as: 2783 // .set L4_5_set_123, LBB123 - LJTI1_2 2784 // .word L4_5_set_123 2785 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 2786 MAI->doesSetDirectiveSuppressReloc()) { 2787 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2788 OutContext); 2789 break; 2790 } 2791 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2792 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2793 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2794 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2795 break; 2796 } 2797 } 2798 2799 assert(Value && "Unknown entry kind!"); 2800 2801 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2802 OutStreamer->emitValue(Value, EntrySize); 2803 } 2804 2805 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2806 /// special global used by LLVM. If so, emit it and return true, otherwise 2807 /// do nothing and return false. 2808 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2809 if (GV->getName() == "llvm.used") { 2810 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2811 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2812 return true; 2813 } 2814 2815 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2816 if (GV->getSection() == "llvm.metadata" || 2817 GV->hasAvailableExternallyLinkage()) 2818 return true; 2819 2820 if (!GV->hasAppendingLinkage()) return false; 2821 2822 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2823 2824 if (GV->getName() == "llvm.global_ctors") { 2825 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2826 /* isCtor */ true); 2827 2828 return true; 2829 } 2830 2831 if (GV->getName() == "llvm.global_dtors") { 2832 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2833 /* isCtor */ false); 2834 2835 return true; 2836 } 2837 2838 report_fatal_error("unknown special variable"); 2839 } 2840 2841 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2842 /// global in the specified llvm.used list. 2843 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2844 // Should be an array of 'i8*'. 2845 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2846 const GlobalValue *GV = 2847 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2848 if (GV) 2849 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2850 } 2851 } 2852 2853 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 2854 const Constant *List, 2855 SmallVector<Structor, 8> &Structors) { 2856 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 2857 // the init priority. 2858 if (!isa<ConstantArray>(List)) 2859 return; 2860 2861 // Gather the structors in a form that's convenient for sorting by priority. 2862 for (Value *O : cast<ConstantArray>(List)->operands()) { 2863 auto *CS = cast<ConstantStruct>(O); 2864 if (CS->getOperand(1)->isNullValue()) 2865 break; // Found a null terminator, skip the rest. 2866 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2867 if (!Priority) 2868 continue; // Malformed. 2869 Structors.push_back(Structor()); 2870 Structor &S = Structors.back(); 2871 S.Priority = Priority->getLimitedValue(65535); 2872 S.Func = CS->getOperand(1); 2873 if (!CS->getOperand(2)->isNullValue()) { 2874 if (TM.getTargetTriple().isOSAIX()) 2875 llvm::report_fatal_error( 2876 "associated data of XXStructor list is not yet supported on AIX"); 2877 S.ComdatKey = 2878 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2879 } 2880 } 2881 2882 // Emit the function pointers in the target-specific order 2883 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2884 return L.Priority < R.Priority; 2885 }); 2886 } 2887 2888 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2889 /// priority. 2890 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2891 bool IsCtor) { 2892 SmallVector<Structor, 8> Structors; 2893 preprocessXXStructorList(DL, List, Structors); 2894 if (Structors.empty()) 2895 return; 2896 2897 // Emit the structors in reverse order if we are using the .ctor/.dtor 2898 // initialization scheme. 2899 if (!TM.Options.UseInitArray) 2900 std::reverse(Structors.begin(), Structors.end()); 2901 2902 const Align Align = DL.getPointerPrefAlignment(); 2903 for (Structor &S : Structors) { 2904 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2905 const MCSymbol *KeySym = nullptr; 2906 if (GlobalValue *GV = S.ComdatKey) { 2907 if (GV->isDeclarationForLinker()) 2908 // If the associated variable is not defined in this module 2909 // (it might be available_externally, or have been an 2910 // available_externally definition that was dropped by the 2911 // EliminateAvailableExternally pass), some other TU 2912 // will provide its dynamic initializer. 2913 continue; 2914 2915 KeySym = getSymbol(GV); 2916 } 2917 2918 MCSection *OutputSection = 2919 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2920 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2921 OutStreamer->switchSection(OutputSection); 2922 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2923 emitAlignment(Align); 2924 emitXXStructor(DL, S.Func); 2925 } 2926 } 2927 2928 void AsmPrinter::emitModuleIdents(Module &M) { 2929 if (!MAI->hasIdentDirective()) 2930 return; 2931 2932 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2933 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2934 const MDNode *N = NMD->getOperand(i); 2935 assert(N->getNumOperands() == 1 && 2936 "llvm.ident metadata entry can have only one operand"); 2937 const MDString *S = cast<MDString>(N->getOperand(0)); 2938 OutStreamer->emitIdent(S->getString()); 2939 } 2940 } 2941 } 2942 2943 void AsmPrinter::emitModuleCommandLines(Module &M) { 2944 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2945 if (!CommandLine) 2946 return; 2947 2948 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2949 if (!NMD || !NMD->getNumOperands()) 2950 return; 2951 2952 OutStreamer->pushSection(); 2953 OutStreamer->switchSection(CommandLine); 2954 OutStreamer->emitZeros(1); 2955 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2956 const MDNode *N = NMD->getOperand(i); 2957 assert(N->getNumOperands() == 1 && 2958 "llvm.commandline metadata entry can have only one operand"); 2959 const MDString *S = cast<MDString>(N->getOperand(0)); 2960 OutStreamer->emitBytes(S->getString()); 2961 OutStreamer->emitZeros(1); 2962 } 2963 OutStreamer->popSection(); 2964 } 2965 2966 //===--------------------------------------------------------------------===// 2967 // Emission and print routines 2968 // 2969 2970 /// Emit a byte directive and value. 2971 /// 2972 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2973 2974 /// Emit a short directive and value. 2975 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2976 2977 /// Emit a long directive and value. 2978 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2979 2980 /// EmitSLEB128 - emit the specified signed leb128 value. 2981 void AsmPrinter::emitSLEB128(int64_t Value, const char *Desc) const { 2982 if (isVerbose() && Desc) 2983 OutStreamer->AddComment(Desc); 2984 2985 OutStreamer->emitSLEB128IntValue(Value); 2986 } 2987 2988 void AsmPrinter::emitULEB128(uint64_t Value, const char *Desc, 2989 unsigned PadTo) const { 2990 if (isVerbose() && Desc) 2991 OutStreamer->AddComment(Desc); 2992 2993 OutStreamer->emitULEB128IntValue(Value, PadTo); 2994 } 2995 2996 /// Emit a long long directive and value. 2997 void AsmPrinter::emitInt64(uint64_t Value) const { 2998 OutStreamer->emitInt64(Value); 2999 } 3000 3001 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 3002 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 3003 /// .set if it avoids relocations. 3004 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 3005 unsigned Size) const { 3006 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 3007 } 3008 3009 /// Emit something like ".uleb128 Hi-Lo". 3010 void AsmPrinter::emitLabelDifferenceAsULEB128(const MCSymbol *Hi, 3011 const MCSymbol *Lo) const { 3012 OutStreamer->emitAbsoluteSymbolDiffAsULEB128(Hi, Lo); 3013 } 3014 3015 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 3016 /// where the size in bytes of the directive is specified by Size and Label 3017 /// specifies the label. This implicitly uses .set if it is available. 3018 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 3019 unsigned Size, 3020 bool IsSectionRelative) const { 3021 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 3022 OutStreamer->emitCOFFSecRel32(Label, Offset); 3023 if (Size > 4) 3024 OutStreamer->emitZeros(Size - 4); 3025 return; 3026 } 3027 3028 // Emit Label+Offset (or just Label if Offset is zero) 3029 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 3030 if (Offset) 3031 Expr = MCBinaryExpr::createAdd( 3032 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 3033 3034 OutStreamer->emitValue(Expr, Size); 3035 } 3036 3037 //===----------------------------------------------------------------------===// 3038 3039 // EmitAlignment - Emit an alignment directive to the specified power of 3040 // two boundary. If a global value is specified, and if that global has 3041 // an explicit alignment requested, it will override the alignment request 3042 // if required for correctness. 3043 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV, 3044 unsigned MaxBytesToEmit) const { 3045 if (GV) 3046 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 3047 3048 if (Alignment == Align(1)) 3049 return; // 1-byte aligned: no need to emit alignment. 3050 3051 if (getCurrentSection()->getKind().isText()) { 3052 const MCSubtargetInfo *STI = nullptr; 3053 if (this->MF) 3054 STI = &getSubtargetInfo(); 3055 else 3056 STI = TM.getMCSubtargetInfo(); 3057 OutStreamer->emitCodeAlignment(Alignment, STI, MaxBytesToEmit); 3058 } else 3059 OutStreamer->emitValueToAlignment(Alignment, 0, 1, MaxBytesToEmit); 3060 } 3061 3062 //===----------------------------------------------------------------------===// 3063 // Constant emission. 3064 //===----------------------------------------------------------------------===// 3065 3066 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 3067 MCContext &Ctx = OutContext; 3068 3069 if (CV->isNullValue() || isa<UndefValue>(CV)) 3070 return MCConstantExpr::create(0, Ctx); 3071 3072 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 3073 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 3074 3075 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 3076 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 3077 3078 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 3079 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 3080 3081 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) 3082 return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM); 3083 3084 if (const NoCFIValue *NC = dyn_cast<NoCFIValue>(CV)) 3085 return MCSymbolRefExpr::create(getSymbol(NC->getGlobalValue()), Ctx); 3086 3087 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 3088 if (!CE) { 3089 llvm_unreachable("Unknown constant value to lower!"); 3090 } 3091 3092 // The constant expression opcodes are limited to those that are necessary 3093 // to represent relocations on supported targets. Expressions involving only 3094 // constant addresses are constant folded instead. 3095 switch (CE->getOpcode()) { 3096 default: 3097 break; // Error 3098 case Instruction::AddrSpaceCast: { 3099 const Constant *Op = CE->getOperand(0); 3100 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 3101 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 3102 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 3103 return lowerConstant(Op); 3104 3105 break; // Error 3106 } 3107 case Instruction::GetElementPtr: { 3108 // Generate a symbolic expression for the byte address 3109 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 3110 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 3111 3112 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 3113 if (!OffsetAI) 3114 return Base; 3115 3116 int64_t Offset = OffsetAI.getSExtValue(); 3117 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 3118 Ctx); 3119 } 3120 3121 case Instruction::Trunc: 3122 // We emit the value and depend on the assembler to truncate the generated 3123 // expression properly. This is important for differences between 3124 // blockaddress labels. Since the two labels are in the same function, it 3125 // is reasonable to treat their delta as a 32-bit value. 3126 [[fallthrough]]; 3127 case Instruction::BitCast: 3128 return lowerConstant(CE->getOperand(0)); 3129 3130 case Instruction::IntToPtr: { 3131 const DataLayout &DL = getDataLayout(); 3132 3133 // Handle casts to pointers by changing them into casts to the appropriate 3134 // integer type. This promotes constant folding and simplifies this code. 3135 Constant *Op = CE->getOperand(0); 3136 Op = ConstantFoldIntegerCast(Op, DL.getIntPtrType(CV->getType()), 3137 /*IsSigned*/ false, DL); 3138 if (Op) 3139 return lowerConstant(Op); 3140 3141 break; // Error 3142 } 3143 3144 case Instruction::PtrToInt: { 3145 const DataLayout &DL = getDataLayout(); 3146 3147 // Support only foldable casts to/from pointers that can be eliminated by 3148 // changing the pointer to the appropriately sized integer type. 3149 Constant *Op = CE->getOperand(0); 3150 Type *Ty = CE->getType(); 3151 3152 const MCExpr *OpExpr = lowerConstant(Op); 3153 3154 // We can emit the pointer value into this slot if the slot is an 3155 // integer slot equal to the size of the pointer. 3156 // 3157 // If the pointer is larger than the resultant integer, then 3158 // as with Trunc just depend on the assembler to truncate it. 3159 if (DL.getTypeAllocSize(Ty).getFixedValue() <= 3160 DL.getTypeAllocSize(Op->getType()).getFixedValue()) 3161 return OpExpr; 3162 3163 break; // Error 3164 } 3165 3166 case Instruction::Sub: { 3167 GlobalValue *LHSGV; 3168 APInt LHSOffset; 3169 DSOLocalEquivalent *DSOEquiv; 3170 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 3171 getDataLayout(), &DSOEquiv)) { 3172 GlobalValue *RHSGV; 3173 APInt RHSOffset; 3174 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 3175 getDataLayout())) { 3176 const MCExpr *RelocExpr = 3177 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 3178 if (!RelocExpr) { 3179 const MCExpr *LHSExpr = 3180 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx); 3181 if (DSOEquiv && 3182 getObjFileLowering().supportDSOLocalEquivalentLowering()) 3183 LHSExpr = 3184 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM); 3185 RelocExpr = MCBinaryExpr::createSub( 3186 LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 3187 } 3188 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 3189 if (Addend != 0) 3190 RelocExpr = MCBinaryExpr::createAdd( 3191 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 3192 return RelocExpr; 3193 } 3194 } 3195 3196 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 3197 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 3198 return MCBinaryExpr::createSub(LHS, RHS, Ctx); 3199 break; 3200 } 3201 3202 case Instruction::Add: { 3203 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 3204 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 3205 return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 3206 } 3207 } 3208 3209 // If the code isn't optimized, there may be outstanding folding 3210 // opportunities. Attempt to fold the expression using DataLayout as a 3211 // last resort before giving up. 3212 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 3213 if (C != CE) 3214 return lowerConstant(C); 3215 3216 // Otherwise report the problem to the user. 3217 std::string S; 3218 raw_string_ostream OS(S); 3219 OS << "Unsupported expression in static initializer: "; 3220 CE->printAsOperand(OS, /*PrintType=*/false, 3221 !MF ? nullptr : MF->getFunction().getParent()); 3222 report_fatal_error(Twine(OS.str())); 3223 } 3224 3225 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 3226 AsmPrinter &AP, 3227 const Constant *BaseCV = nullptr, 3228 uint64_t Offset = 0, 3229 AsmPrinter::AliasMapTy *AliasList = nullptr); 3230 3231 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 3232 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 3233 3234 /// isRepeatedByteSequence - Determine whether the given value is 3235 /// composed of a repeated sequence of identical bytes and return the 3236 /// byte value. If it is not a repeated sequence, return -1. 3237 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 3238 StringRef Data = V->getRawDataValues(); 3239 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 3240 char C = Data[0]; 3241 for (unsigned i = 1, e = Data.size(); i != e; ++i) 3242 if (Data[i] != C) return -1; 3243 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 3244 } 3245 3246 /// isRepeatedByteSequence - Determine whether the given value is 3247 /// composed of a repeated sequence of identical bytes and return the 3248 /// byte value. If it is not a repeated sequence, return -1. 3249 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 3250 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 3251 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 3252 assert(Size % 8 == 0); 3253 3254 // Extend the element to take zero padding into account. 3255 APInt Value = CI->getValue().zext(Size); 3256 if (!Value.isSplat(8)) 3257 return -1; 3258 3259 return Value.zextOrTrunc(8).getZExtValue(); 3260 } 3261 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 3262 // Make sure all array elements are sequences of the same repeated 3263 // byte. 3264 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 3265 Constant *Op0 = CA->getOperand(0); 3266 int Byte = isRepeatedByteSequence(Op0, DL); 3267 if (Byte == -1) 3268 return -1; 3269 3270 // All array elements must be equal. 3271 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 3272 if (CA->getOperand(i) != Op0) 3273 return -1; 3274 return Byte; 3275 } 3276 3277 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 3278 return isRepeatedByteSequence(CDS); 3279 3280 return -1; 3281 } 3282 3283 static void emitGlobalAliasInline(AsmPrinter &AP, uint64_t Offset, 3284 AsmPrinter::AliasMapTy *AliasList) { 3285 if (AliasList) { 3286 auto AliasIt = AliasList->find(Offset); 3287 if (AliasIt != AliasList->end()) { 3288 for (const GlobalAlias *GA : AliasIt->second) 3289 AP.OutStreamer->emitLabel(AP.getSymbol(GA)); 3290 AliasList->erase(Offset); 3291 } 3292 } 3293 } 3294 3295 static void emitGlobalConstantDataSequential( 3296 const DataLayout &DL, const ConstantDataSequential *CDS, AsmPrinter &AP, 3297 AsmPrinter::AliasMapTy *AliasList) { 3298 // See if we can aggregate this into a .fill, if so, emit it as such. 3299 int Value = isRepeatedByteSequence(CDS, DL); 3300 if (Value != -1) { 3301 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 3302 // Don't emit a 1-byte object as a .fill. 3303 if (Bytes > 1) 3304 return AP.OutStreamer->emitFill(Bytes, Value); 3305 } 3306 3307 // If this can be emitted with .ascii/.asciz, emit it as such. 3308 if (CDS->isString()) 3309 return AP.OutStreamer->emitBytes(CDS->getAsString()); 3310 3311 // Otherwise, emit the values in successive locations. 3312 unsigned ElementByteSize = CDS->getElementByteSize(); 3313 if (isa<IntegerType>(CDS->getElementType())) { 3314 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 3315 emitGlobalAliasInline(AP, ElementByteSize * I, AliasList); 3316 if (AP.isVerbose()) 3317 AP.OutStreamer->getCommentOS() 3318 << format("0x%" PRIx64 "\n", CDS->getElementAsInteger(I)); 3319 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(I), 3320 ElementByteSize); 3321 } 3322 } else { 3323 Type *ET = CDS->getElementType(); 3324 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 3325 emitGlobalAliasInline(AP, ElementByteSize * I, AliasList); 3326 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 3327 } 3328 } 3329 3330 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 3331 unsigned EmittedSize = 3332 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 3333 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 3334 if (unsigned Padding = Size - EmittedSize) 3335 AP.OutStreamer->emitZeros(Padding); 3336 } 3337 3338 static void emitGlobalConstantArray(const DataLayout &DL, 3339 const ConstantArray *CA, AsmPrinter &AP, 3340 const Constant *BaseCV, uint64_t Offset, 3341 AsmPrinter::AliasMapTy *AliasList) { 3342 // See if we can aggregate some values. Make sure it can be 3343 // represented as a series of bytes of the constant value. 3344 int Value = isRepeatedByteSequence(CA, DL); 3345 3346 if (Value != -1) { 3347 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 3348 AP.OutStreamer->emitFill(Bytes, Value); 3349 } else { 3350 for (unsigned I = 0, E = CA->getNumOperands(); I != E; ++I) { 3351 emitGlobalConstantImpl(DL, CA->getOperand(I), AP, BaseCV, Offset, 3352 AliasList); 3353 Offset += DL.getTypeAllocSize(CA->getOperand(I)->getType()); 3354 } 3355 } 3356 } 3357 3358 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP); 3359 3360 static void emitGlobalConstantVector(const DataLayout &DL, 3361 const ConstantVector *CV, AsmPrinter &AP, 3362 AsmPrinter::AliasMapTy *AliasList) { 3363 Type *ElementType = CV->getType()->getElementType(); 3364 uint64_t ElementSizeInBits = DL.getTypeSizeInBits(ElementType); 3365 uint64_t ElementAllocSizeInBits = DL.getTypeAllocSizeInBits(ElementType); 3366 uint64_t EmittedSize; 3367 if (ElementSizeInBits != ElementAllocSizeInBits) { 3368 // If the allocation size of an element is different from the size in bits, 3369 // printing each element separately will insert incorrect padding. 3370 // 3371 // The general algorithm here is complicated; instead of writing it out 3372 // here, just use the existing code in ConstantFolding. 3373 Type *IntT = 3374 IntegerType::get(CV->getContext(), DL.getTypeSizeInBits(CV->getType())); 3375 ConstantInt *CI = dyn_cast_or_null<ConstantInt>(ConstantFoldConstant( 3376 ConstantExpr::getBitCast(const_cast<ConstantVector *>(CV), IntT), DL)); 3377 if (!CI) { 3378 report_fatal_error( 3379 "Cannot lower vector global with unusual element type"); 3380 } 3381 emitGlobalAliasInline(AP, 0, AliasList); 3382 emitGlobalConstantLargeInt(CI, AP); 3383 EmittedSize = DL.getTypeStoreSize(CV->getType()); 3384 } else { 3385 for (unsigned I = 0, E = CV->getType()->getNumElements(); I != E; ++I) { 3386 emitGlobalAliasInline(AP, DL.getTypeAllocSize(CV->getType()) * I, AliasList); 3387 emitGlobalConstantImpl(DL, CV->getOperand(I), AP); 3388 } 3389 EmittedSize = 3390 DL.getTypeAllocSize(ElementType) * CV->getType()->getNumElements(); 3391 } 3392 3393 unsigned Size = DL.getTypeAllocSize(CV->getType()); 3394 if (unsigned Padding = Size - EmittedSize) 3395 AP.OutStreamer->emitZeros(Padding); 3396 } 3397 3398 static void emitGlobalConstantStruct(const DataLayout &DL, 3399 const ConstantStruct *CS, AsmPrinter &AP, 3400 const Constant *BaseCV, uint64_t Offset, 3401 AsmPrinter::AliasMapTy *AliasList) { 3402 // Print the fields in successive locations. Pad to align if needed! 3403 unsigned Size = DL.getTypeAllocSize(CS->getType()); 3404 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 3405 uint64_t SizeSoFar = 0; 3406 for (unsigned I = 0, E = CS->getNumOperands(); I != E; ++I) { 3407 const Constant *Field = CS->getOperand(I); 3408 3409 // Print the actual field value. 3410 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar, 3411 AliasList); 3412 3413 // Check if padding is needed and insert one or more 0s. 3414 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 3415 uint64_t PadSize = ((I == E - 1 ? Size : Layout->getElementOffset(I + 1)) - 3416 Layout->getElementOffset(I)) - 3417 FieldSize; 3418 SizeSoFar += FieldSize + PadSize; 3419 3420 // Insert padding - this may include padding to increase the size of the 3421 // current field up to the ABI size (if the struct is not packed) as well 3422 // as padding to ensure that the next field starts at the right offset. 3423 AP.OutStreamer->emitZeros(PadSize); 3424 } 3425 assert(SizeSoFar == Layout->getSizeInBytes() && 3426 "Layout of constant struct may be incorrect!"); 3427 } 3428 3429 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 3430 assert(ET && "Unknown float type"); 3431 APInt API = APF.bitcastToAPInt(); 3432 3433 // First print a comment with what we think the original floating-point value 3434 // should have been. 3435 if (AP.isVerbose()) { 3436 SmallString<8> StrVal; 3437 APF.toString(StrVal); 3438 ET->print(AP.OutStreamer->getCommentOS()); 3439 AP.OutStreamer->getCommentOS() << ' ' << StrVal << '\n'; 3440 } 3441 3442 // Now iterate through the APInt chunks, emitting them in endian-correct 3443 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 3444 // floats). 3445 unsigned NumBytes = API.getBitWidth() / 8; 3446 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 3447 const uint64_t *p = API.getRawData(); 3448 3449 // PPC's long double has odd notions of endianness compared to how LLVM 3450 // handles it: p[0] goes first for *big* endian on PPC. 3451 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 3452 int Chunk = API.getNumWords() - 1; 3453 3454 if (TrailingBytes) 3455 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 3456 3457 for (; Chunk >= 0; --Chunk) 3458 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 3459 } else { 3460 unsigned Chunk; 3461 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 3462 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 3463 3464 if (TrailingBytes) 3465 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 3466 } 3467 3468 // Emit the tail padding for the long double. 3469 const DataLayout &DL = AP.getDataLayout(); 3470 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 3471 } 3472 3473 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 3474 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 3475 } 3476 3477 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 3478 const DataLayout &DL = AP.getDataLayout(); 3479 unsigned BitWidth = CI->getBitWidth(); 3480 3481 // Copy the value as we may massage the layout for constants whose bit width 3482 // is not a multiple of 64-bits. 3483 APInt Realigned(CI->getValue()); 3484 uint64_t ExtraBits = 0; 3485 unsigned ExtraBitsSize = BitWidth & 63; 3486 3487 if (ExtraBitsSize) { 3488 // The bit width of the data is not a multiple of 64-bits. 3489 // The extra bits are expected to be at the end of the chunk of the memory. 3490 // Little endian: 3491 // * Nothing to be done, just record the extra bits to emit. 3492 // Big endian: 3493 // * Record the extra bits to emit. 3494 // * Realign the raw data to emit the chunks of 64-bits. 3495 if (DL.isBigEndian()) { 3496 // Basically the structure of the raw data is a chunk of 64-bits cells: 3497 // 0 1 BitWidth / 64 3498 // [chunk1][chunk2] ... [chunkN]. 3499 // The most significant chunk is chunkN and it should be emitted first. 3500 // However, due to the alignment issue chunkN contains useless bits. 3501 // Realign the chunks so that they contain only useful information: 3502 // ExtraBits 0 1 (BitWidth / 64) - 1 3503 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 3504 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 3505 ExtraBits = Realigned.getRawData()[0] & 3506 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 3507 if (BitWidth >= 64) 3508 Realigned.lshrInPlace(ExtraBitsSize); 3509 } else 3510 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 3511 } 3512 3513 // We don't expect assemblers to support integer data directives 3514 // for more than 64 bits, so we emit the data in at most 64-bit 3515 // quantities at a time. 3516 const uint64_t *RawData = Realigned.getRawData(); 3517 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 3518 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 3519 AP.OutStreamer->emitIntValue(Val, 8); 3520 } 3521 3522 if (ExtraBitsSize) { 3523 // Emit the extra bits after the 64-bits chunks. 3524 3525 // Emit a directive that fills the expected size. 3526 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 3527 Size -= (BitWidth / 64) * 8; 3528 assert(Size && Size * 8 >= ExtraBitsSize && 3529 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 3530 == ExtraBits && "Directive too small for extra bits."); 3531 AP.OutStreamer->emitIntValue(ExtraBits, Size); 3532 } 3533 } 3534 3535 /// Transform a not absolute MCExpr containing a reference to a GOT 3536 /// equivalent global, by a target specific GOT pc relative access to the 3537 /// final symbol. 3538 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 3539 const Constant *BaseCst, 3540 uint64_t Offset) { 3541 // The global @foo below illustrates a global that uses a got equivalent. 3542 // 3543 // @bar = global i32 42 3544 // @gotequiv = private unnamed_addr constant i32* @bar 3545 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 3546 // i64 ptrtoint (i32* @foo to i64)) 3547 // to i32) 3548 // 3549 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 3550 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 3551 // form: 3552 // 3553 // foo = cstexpr, where 3554 // cstexpr := <gotequiv> - "." + <cst> 3555 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 3556 // 3557 // After canonicalization by evaluateAsRelocatable `ME` turns into: 3558 // 3559 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 3560 // gotpcrelcst := <offset from @foo base> + <cst> 3561 MCValue MV; 3562 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 3563 return; 3564 const MCSymbolRefExpr *SymA = MV.getSymA(); 3565 if (!SymA) 3566 return; 3567 3568 // Check that GOT equivalent symbol is cached. 3569 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 3570 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 3571 return; 3572 3573 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 3574 if (!BaseGV) 3575 return; 3576 3577 // Check for a valid base symbol 3578 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 3579 const MCSymbolRefExpr *SymB = MV.getSymB(); 3580 3581 if (!SymB || BaseSym != &SymB->getSymbol()) 3582 return; 3583 3584 // Make sure to match: 3585 // 3586 // gotpcrelcst := <offset from @foo base> + <cst> 3587 // 3588 int64_t GOTPCRelCst = Offset + MV.getConstant(); 3589 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 3590 return; 3591 3592 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 3593 // 3594 // bar: 3595 // .long 42 3596 // gotequiv: 3597 // .quad bar 3598 // foo: 3599 // .long gotequiv - "." + <cst> 3600 // 3601 // is replaced by the target specific equivalent to: 3602 // 3603 // bar: 3604 // .long 42 3605 // foo: 3606 // .long bar@GOTPCREL+<gotpcrelcst> 3607 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 3608 const GlobalVariable *GV = Result.first; 3609 int NumUses = (int)Result.second; 3610 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 3611 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 3612 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 3613 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 3614 3615 // Update GOT equivalent usage information 3616 --NumUses; 3617 if (NumUses >= 0) 3618 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 3619 } 3620 3621 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 3622 AsmPrinter &AP, const Constant *BaseCV, 3623 uint64_t Offset, 3624 AsmPrinter::AliasMapTy *AliasList) { 3625 emitGlobalAliasInline(AP, Offset, AliasList); 3626 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 3627 3628 // Globals with sub-elements such as combinations of arrays and structs 3629 // are handled recursively by emitGlobalConstantImpl. Keep track of the 3630 // constant symbol base and the current position with BaseCV and Offset. 3631 if (!BaseCV && CV->hasOneUse()) 3632 BaseCV = dyn_cast<Constant>(CV->user_back()); 3633 3634 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 3635 return AP.OutStreamer->emitZeros(Size); 3636 3637 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 3638 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 3639 3640 if (StoreSize <= 8) { 3641 if (AP.isVerbose()) 3642 AP.OutStreamer->getCommentOS() 3643 << format("0x%" PRIx64 "\n", CI->getZExtValue()); 3644 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 3645 } else { 3646 emitGlobalConstantLargeInt(CI, AP); 3647 } 3648 3649 // Emit tail padding if needed 3650 if (Size != StoreSize) 3651 AP.OutStreamer->emitZeros(Size - StoreSize); 3652 3653 return; 3654 } 3655 3656 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 3657 return emitGlobalConstantFP(CFP, AP); 3658 3659 if (isa<ConstantPointerNull>(CV)) { 3660 AP.OutStreamer->emitIntValue(0, Size); 3661 return; 3662 } 3663 3664 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 3665 return emitGlobalConstantDataSequential(DL, CDS, AP, AliasList); 3666 3667 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 3668 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset, AliasList); 3669 3670 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 3671 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset, AliasList); 3672 3673 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 3674 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 3675 // vectors). 3676 if (CE->getOpcode() == Instruction::BitCast) 3677 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 3678 3679 if (Size > 8) { 3680 // If the constant expression's size is greater than 64-bits, then we have 3681 // to emit the value in chunks. Try to constant fold the value and emit it 3682 // that way. 3683 Constant *New = ConstantFoldConstant(CE, DL); 3684 if (New != CE) 3685 return emitGlobalConstantImpl(DL, New, AP); 3686 } 3687 } 3688 3689 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 3690 return emitGlobalConstantVector(DL, V, AP, AliasList); 3691 3692 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 3693 // thread the streamer with EmitValue. 3694 const MCExpr *ME = AP.lowerConstant(CV); 3695 3696 // Since lowerConstant already folded and got rid of all IR pointer and 3697 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 3698 // directly. 3699 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 3700 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 3701 3702 AP.OutStreamer->emitValue(ME, Size); 3703 } 3704 3705 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 3706 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV, 3707 AliasMapTy *AliasList) { 3708 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 3709 if (Size) 3710 emitGlobalConstantImpl(DL, CV, *this, nullptr, 0, AliasList); 3711 else if (MAI->hasSubsectionsViaSymbols()) { 3712 // If the global has zero size, emit a single byte so that two labels don't 3713 // look like they are at the same location. 3714 OutStreamer->emitIntValue(0, 1); 3715 } 3716 if (!AliasList) 3717 return; 3718 // TODO: These remaining aliases are not emitted in the correct location. Need 3719 // to handle the case where the alias offset doesn't refer to any sub-element. 3720 for (auto &AliasPair : *AliasList) { 3721 for (const GlobalAlias *GA : AliasPair.second) 3722 OutStreamer->emitLabel(getSymbol(GA)); 3723 } 3724 } 3725 3726 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 3727 // Target doesn't support this yet! 3728 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 3729 } 3730 3731 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 3732 if (Offset > 0) 3733 OS << '+' << Offset; 3734 else if (Offset < 0) 3735 OS << Offset; 3736 } 3737 3738 void AsmPrinter::emitNops(unsigned N) { 3739 MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop(); 3740 for (; N; --N) 3741 EmitToStreamer(*OutStreamer, Nop); 3742 } 3743 3744 //===----------------------------------------------------------------------===// 3745 // Symbol Lowering Routines. 3746 //===----------------------------------------------------------------------===// 3747 3748 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 3749 return OutContext.createTempSymbol(Name, true); 3750 } 3751 3752 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 3753 return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol( 3754 BA->getBasicBlock()); 3755 } 3756 3757 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 3758 return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(BB); 3759 } 3760 3761 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 3762 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 3763 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 3764 const MachineConstantPoolEntry &CPE = 3765 MF->getConstantPool()->getConstants()[CPID]; 3766 if (!CPE.isMachineConstantPoolEntry()) { 3767 const DataLayout &DL = MF->getDataLayout(); 3768 SectionKind Kind = CPE.getSectionKind(&DL); 3769 const Constant *C = CPE.Val.ConstVal; 3770 Align Alignment = CPE.Alignment; 3771 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 3772 getObjFileLowering().getSectionForConstant(DL, Kind, C, 3773 Alignment))) { 3774 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 3775 if (Sym->isUndefined()) 3776 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 3777 return Sym; 3778 } 3779 } 3780 } 3781 } 3782 3783 const DataLayout &DL = getDataLayout(); 3784 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3785 "CPI" + Twine(getFunctionNumber()) + "_" + 3786 Twine(CPID)); 3787 } 3788 3789 /// GetJTISymbol - Return the symbol for the specified jump table entry. 3790 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 3791 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 3792 } 3793 3794 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 3795 /// FIXME: privatize to AsmPrinter. 3796 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 3797 const DataLayout &DL = getDataLayout(); 3798 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3799 Twine(getFunctionNumber()) + "_" + 3800 Twine(UID) + "_set_" + Twine(MBBID)); 3801 } 3802 3803 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 3804 StringRef Suffix) const { 3805 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 3806 } 3807 3808 /// Return the MCSymbol for the specified ExternalSymbol. 3809 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(Twine Sym) const { 3810 SmallString<60> NameStr; 3811 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 3812 return OutContext.getOrCreateSymbol(NameStr); 3813 } 3814 3815 /// PrintParentLoopComment - Print comments about parent loops of this one. 3816 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3817 unsigned FunctionNumber) { 3818 if (!Loop) return; 3819 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 3820 OS.indent(Loop->getLoopDepth()*2) 3821 << "Parent Loop BB" << FunctionNumber << "_" 3822 << Loop->getHeader()->getNumber() 3823 << " Depth=" << Loop->getLoopDepth() << '\n'; 3824 } 3825 3826 /// PrintChildLoopComment - Print comments about child loops within 3827 /// the loop for this basic block, with nesting. 3828 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3829 unsigned FunctionNumber) { 3830 // Add child loop information 3831 for (const MachineLoop *CL : *Loop) { 3832 OS.indent(CL->getLoopDepth()*2) 3833 << "Child Loop BB" << FunctionNumber << "_" 3834 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 3835 << '\n'; 3836 PrintChildLoopComment(OS, CL, FunctionNumber); 3837 } 3838 } 3839 3840 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 3841 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 3842 const MachineLoopInfo *LI, 3843 const AsmPrinter &AP) { 3844 // Add loop depth information 3845 const MachineLoop *Loop = LI->getLoopFor(&MBB); 3846 if (!Loop) return; 3847 3848 MachineBasicBlock *Header = Loop->getHeader(); 3849 assert(Header && "No header for loop"); 3850 3851 // If this block is not a loop header, just print out what is the loop header 3852 // and return. 3853 if (Header != &MBB) { 3854 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3855 Twine(AP.getFunctionNumber())+"_" + 3856 Twine(Loop->getHeader()->getNumber())+ 3857 " Depth="+Twine(Loop->getLoopDepth())); 3858 return; 3859 } 3860 3861 // Otherwise, it is a loop header. Print out information about child and 3862 // parent loops. 3863 raw_ostream &OS = AP.OutStreamer->getCommentOS(); 3864 3865 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3866 3867 OS << "=>"; 3868 OS.indent(Loop->getLoopDepth()*2-2); 3869 3870 OS << "This "; 3871 if (Loop->isInnermost()) 3872 OS << "Inner "; 3873 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3874 3875 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3876 } 3877 3878 /// emitBasicBlockStart - This method prints the label for the specified 3879 /// MachineBasicBlock, an alignment (if present) and a comment describing 3880 /// it if appropriate. 3881 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3882 // End the previous funclet and start a new one. 3883 if (MBB.isEHFuncletEntry()) { 3884 for (const HandlerInfo &HI : Handlers) { 3885 HI.Handler->endFunclet(); 3886 HI.Handler->beginFunclet(MBB); 3887 } 3888 } 3889 3890 // Switch to a new section if this basic block must begin a section. The 3891 // entry block is always placed in the function section and is handled 3892 // separately. 3893 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 3894 OutStreamer->switchSection( 3895 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3896 MBB, TM)); 3897 CurrentSectionBeginSym = MBB.getSymbol(); 3898 } 3899 3900 // Emit an alignment directive for this block, if needed. 3901 const Align Alignment = MBB.getAlignment(); 3902 if (Alignment != Align(1)) 3903 emitAlignment(Alignment, nullptr, MBB.getMaxBytesForAlignment()); 3904 3905 // If the block has its address taken, emit any labels that were used to 3906 // reference the block. It is possible that there is more than one label 3907 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3908 // the references were generated. 3909 if (MBB.isIRBlockAddressTaken()) { 3910 if (isVerbose()) 3911 OutStreamer->AddComment("Block address taken"); 3912 3913 BasicBlock *BB = MBB.getAddressTakenIRBlock(); 3914 assert(BB && BB->hasAddressTaken() && "Missing BB"); 3915 for (MCSymbol *Sym : getAddrLabelSymbolToEmit(BB)) 3916 OutStreamer->emitLabel(Sym); 3917 } else if (isVerbose() && MBB.isMachineBlockAddressTaken()) { 3918 OutStreamer->AddComment("Block address taken"); 3919 } 3920 3921 // Print some verbose block comments. 3922 if (isVerbose()) { 3923 if (const BasicBlock *BB = MBB.getBasicBlock()) { 3924 if (BB->hasName()) { 3925 BB->printAsOperand(OutStreamer->getCommentOS(), 3926 /*PrintType=*/false, BB->getModule()); 3927 OutStreamer->getCommentOS() << '\n'; 3928 } 3929 } 3930 3931 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3932 emitBasicBlockLoopComments(MBB, MLI, *this); 3933 } 3934 3935 // Print the main label for the block. 3936 if (shouldEmitLabelForBasicBlock(MBB)) { 3937 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3938 OutStreamer->AddComment("Label of block must be emitted"); 3939 OutStreamer->emitLabel(MBB.getSymbol()); 3940 } else { 3941 if (isVerbose()) { 3942 // NOTE: Want this comment at start of line, don't emit with AddComment. 3943 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3944 false); 3945 } 3946 } 3947 3948 if (MBB.isEHCatchretTarget() && 3949 MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) { 3950 OutStreamer->emitLabel(MBB.getEHCatchretSymbol()); 3951 } 3952 3953 // With BB sections, each basic block must handle CFI information on its own 3954 // if it begins a section (Entry block call is handled separately, next to 3955 // beginFunction). 3956 if (MBB.isBeginSection() && !MBB.isEntryBlock()) 3957 for (const HandlerInfo &HI : Handlers) 3958 HI.Handler->beginBasicBlockSection(MBB); 3959 } 3960 3961 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 3962 // Check if CFI information needs to be updated for this MBB with basic block 3963 // sections. 3964 if (MBB.isEndSection()) 3965 for (const HandlerInfo &HI : Handlers) 3966 HI.Handler->endBasicBlockSection(MBB); 3967 } 3968 3969 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3970 bool IsDefinition) const { 3971 MCSymbolAttr Attr = MCSA_Invalid; 3972 3973 switch (Visibility) { 3974 default: break; 3975 case GlobalValue::HiddenVisibility: 3976 if (IsDefinition) 3977 Attr = MAI->getHiddenVisibilityAttr(); 3978 else 3979 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3980 break; 3981 case GlobalValue::ProtectedVisibility: 3982 Attr = MAI->getProtectedVisibilityAttr(); 3983 break; 3984 } 3985 3986 if (Attr != MCSA_Invalid) 3987 OutStreamer->emitSymbolAttribute(Sym, Attr); 3988 } 3989 3990 bool AsmPrinter::shouldEmitLabelForBasicBlock( 3991 const MachineBasicBlock &MBB) const { 3992 // With `-fbasic-block-sections=`, a label is needed for every non-entry block 3993 // in the labels mode (option `=labels`) and every section beginning in the 3994 // sections mode (`=all` and `=list=`). 3995 if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock()) 3996 return true; 3997 // A label is needed for any block with at least one predecessor (when that 3998 // predecessor is not the fallthrough predecessor, or if it is an EH funclet 3999 // entry, or if a label is forced). 4000 return !MBB.pred_empty() && 4001 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || 4002 MBB.hasLabelMustBeEmitted()); 4003 } 4004 4005 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 4006 /// exactly one predecessor and the control transfer mechanism between 4007 /// the predecessor and this block is a fall-through. 4008 bool AsmPrinter:: 4009 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 4010 // If this is a landing pad, it isn't a fall through. If it has no preds, 4011 // then nothing falls through to it. 4012 if (MBB->isEHPad() || MBB->pred_empty()) 4013 return false; 4014 4015 // If there isn't exactly one predecessor, it can't be a fall through. 4016 if (MBB->pred_size() > 1) 4017 return false; 4018 4019 // The predecessor has to be immediately before this block. 4020 MachineBasicBlock *Pred = *MBB->pred_begin(); 4021 if (!Pred->isLayoutSuccessor(MBB)) 4022 return false; 4023 4024 // If the block is completely empty, then it definitely does fall through. 4025 if (Pred->empty()) 4026 return true; 4027 4028 // Check the terminators in the previous blocks 4029 for (const auto &MI : Pred->terminators()) { 4030 // If it is not a simple branch, we are in a table somewhere. 4031 if (!MI.isBranch() || MI.isIndirectBranch()) 4032 return false; 4033 4034 // If we are the operands of one of the branches, this is not a fall 4035 // through. Note that targets with delay slots will usually bundle 4036 // terminators with the delay slot instruction. 4037 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 4038 if (OP->isJTI()) 4039 return false; 4040 if (OP->isMBB() && OP->getMBB() == MBB) 4041 return false; 4042 } 4043 } 4044 4045 return true; 4046 } 4047 4048 GCMetadataPrinter *AsmPrinter::getOrCreateGCPrinter(GCStrategy &S) { 4049 if (!S.usesMetadata()) 4050 return nullptr; 4051 4052 auto [GCPI, Inserted] = GCMetadataPrinters.insert({&S, nullptr}); 4053 if (!Inserted) 4054 return GCPI->second.get(); 4055 4056 auto Name = S.getName(); 4057 4058 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 4059 GCMetadataPrinterRegistry::entries()) 4060 if (Name == GCMetaPrinter.getName()) { 4061 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 4062 GMP->S = &S; 4063 GCPI->second = std::move(GMP); 4064 return GCPI->second.get(); 4065 } 4066 4067 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 4068 } 4069 4070 void AsmPrinter::emitStackMaps() { 4071 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 4072 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 4073 bool NeedsDefault = false; 4074 if (MI->begin() == MI->end()) 4075 // No GC strategy, use the default format. 4076 NeedsDefault = true; 4077 else 4078 for (const auto &I : *MI) { 4079 if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I)) 4080 if (MP->emitStackMaps(SM, *this)) 4081 continue; 4082 // The strategy doesn't have printer or doesn't emit custom stack maps. 4083 // Use the default format. 4084 NeedsDefault = true; 4085 } 4086 4087 if (NeedsDefault) 4088 SM.serializeToStackMapSection(); 4089 } 4090 4091 /// Pin vtable to this file. 4092 AsmPrinterHandler::~AsmPrinterHandler() = default; 4093 4094 void AsmPrinterHandler::markFunctionEnd() {} 4095 4096 // In the binary's "xray_instr_map" section, an array of these function entries 4097 // describes each instrumentation point. When XRay patches your code, the index 4098 // into this table will be given to your handler as a patch point identifier. 4099 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 4100 auto Kind8 = static_cast<uint8_t>(Kind); 4101 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 4102 Out->emitBinaryData( 4103 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 4104 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 4105 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 4106 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 4107 Out->emitZeros(Padding); 4108 } 4109 4110 void AsmPrinter::emitXRayTable() { 4111 if (Sleds.empty()) 4112 return; 4113 4114 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 4115 const Function &F = MF->getFunction(); 4116 MCSection *InstMap = nullptr; 4117 MCSection *FnSledIndex = nullptr; 4118 const Triple &TT = TM.getTargetTriple(); 4119 // Use PC-relative addresses on all targets. 4120 if (TT.isOSBinFormatELF()) { 4121 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 4122 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 4123 StringRef GroupName; 4124 if (F.hasComdat()) { 4125 Flags |= ELF::SHF_GROUP; 4126 GroupName = F.getComdat()->getName(); 4127 } 4128 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 4129 Flags, 0, GroupName, F.hasComdat(), 4130 MCSection::NonUniqueID, LinkedToSym); 4131 4132 if (TM.Options.XRayFunctionIndex) 4133 FnSledIndex = OutContext.getELFSection( 4134 "xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, GroupName, F.hasComdat(), 4135 MCSection::NonUniqueID, LinkedToSym); 4136 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 4137 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 4138 MachO::S_ATTR_LIVE_SUPPORT, 4139 SectionKind::getReadOnlyWithRel()); 4140 if (TM.Options.XRayFunctionIndex) 4141 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 4142 MachO::S_ATTR_LIVE_SUPPORT, 4143 SectionKind::getReadOnly()); 4144 } else { 4145 llvm_unreachable("Unsupported target"); 4146 } 4147 4148 auto WordSizeBytes = MAI->getCodePointerSize(); 4149 4150 // Now we switch to the instrumentation map section. Because this is done 4151 // per-function, we are able to create an index entry that will represent the 4152 // range of sleds associated with a function. 4153 auto &Ctx = OutContext; 4154 MCSymbol *SledsStart = 4155 OutContext.createLinkerPrivateSymbol("xray_sleds_start"); 4156 OutStreamer->switchSection(InstMap); 4157 OutStreamer->emitLabel(SledsStart); 4158 for (const auto &Sled : Sleds) { 4159 MCSymbol *Dot = Ctx.createTempSymbol(); 4160 OutStreamer->emitLabel(Dot); 4161 OutStreamer->emitValueImpl( 4162 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 4163 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 4164 WordSizeBytes); 4165 OutStreamer->emitValueImpl( 4166 MCBinaryExpr::createSub( 4167 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 4168 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 4169 MCConstantExpr::create(WordSizeBytes, Ctx), 4170 Ctx), 4171 Ctx), 4172 WordSizeBytes); 4173 Sled.emit(WordSizeBytes, OutStreamer.get()); 4174 } 4175 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 4176 OutStreamer->emitLabel(SledsEnd); 4177 4178 // We then emit a single entry in the index per function. We use the symbols 4179 // that bound the instrumentation map as the range for a specific function. 4180 // Each entry here will be 2 * word size aligned, as we're writing down two 4181 // pointers. This should work for both 32-bit and 64-bit platforms. 4182 if (FnSledIndex) { 4183 OutStreamer->switchSection(FnSledIndex); 4184 OutStreamer->emitCodeAlignment(Align(2 * WordSizeBytes), 4185 &getSubtargetInfo()); 4186 // For Mach-O, use an "l" symbol as the atom of this subsection. The label 4187 // difference uses a SUBTRACTOR external relocation which references the 4188 // symbol. 4189 MCSymbol *Dot = Ctx.createLinkerPrivateSymbol("xray_fn_idx"); 4190 OutStreamer->emitLabel(Dot); 4191 OutStreamer->emitValueImpl( 4192 MCBinaryExpr::createSub(MCSymbolRefExpr::create(SledsStart, Ctx), 4193 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 4194 WordSizeBytes); 4195 OutStreamer->emitValueImpl(MCConstantExpr::create(Sleds.size(), Ctx), 4196 WordSizeBytes); 4197 OutStreamer->switchSection(PrevSection); 4198 } 4199 Sleds.clear(); 4200 } 4201 4202 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 4203 SledKind Kind, uint8_t Version) { 4204 const Function &F = MI.getMF()->getFunction(); 4205 auto Attr = F.getFnAttribute("function-instrument"); 4206 bool LogArgs = F.hasFnAttribute("xray-log-args"); 4207 bool AlwaysInstrument = 4208 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 4209 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 4210 Kind = SledKind::LOG_ARGS_ENTER; 4211 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 4212 AlwaysInstrument, &F, Version}); 4213 } 4214 4215 void AsmPrinter::emitPatchableFunctionEntries() { 4216 const Function &F = MF->getFunction(); 4217 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 4218 (void)F.getFnAttribute("patchable-function-prefix") 4219 .getValueAsString() 4220 .getAsInteger(10, PatchableFunctionPrefix); 4221 (void)F.getFnAttribute("patchable-function-entry") 4222 .getValueAsString() 4223 .getAsInteger(10, PatchableFunctionEntry); 4224 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 4225 return; 4226 const unsigned PointerSize = getPointerSize(); 4227 if (TM.getTargetTriple().isOSBinFormatELF()) { 4228 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 4229 const MCSymbolELF *LinkedToSym = nullptr; 4230 StringRef GroupName; 4231 4232 // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not 4233 // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections. 4234 if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) { 4235 Flags |= ELF::SHF_LINK_ORDER; 4236 if (F.hasComdat()) { 4237 Flags |= ELF::SHF_GROUP; 4238 GroupName = F.getComdat()->getName(); 4239 } 4240 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 4241 } 4242 OutStreamer->switchSection(OutContext.getELFSection( 4243 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 4244 F.hasComdat(), MCSection::NonUniqueID, LinkedToSym)); 4245 emitAlignment(Align(PointerSize)); 4246 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 4247 } 4248 } 4249 4250 uint16_t AsmPrinter::getDwarfVersion() const { 4251 return OutStreamer->getContext().getDwarfVersion(); 4252 } 4253 4254 void AsmPrinter::setDwarfVersion(uint16_t Version) { 4255 OutStreamer->getContext().setDwarfVersion(Version); 4256 } 4257 4258 bool AsmPrinter::isDwarf64() const { 4259 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 4260 } 4261 4262 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 4263 return dwarf::getDwarfOffsetByteSize( 4264 OutStreamer->getContext().getDwarfFormat()); 4265 } 4266 4267 dwarf::FormParams AsmPrinter::getDwarfFormParams() const { 4268 return {getDwarfVersion(), uint8_t(MAI->getCodePointerSize()), 4269 OutStreamer->getContext().getDwarfFormat(), 4270 doesDwarfUseRelocationsAcrossSections()}; 4271 } 4272 4273 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 4274 return dwarf::getUnitLengthFieldByteSize( 4275 OutStreamer->getContext().getDwarfFormat()); 4276 } 4277 4278 std::tuple<const MCSymbol *, uint64_t, const MCSymbol *, 4279 codeview::JumpTableEntrySize> 4280 AsmPrinter::getCodeViewJumpTableInfo(int JTI, const MachineInstr *BranchInstr, 4281 const MCSymbol *BranchLabel) const { 4282 const auto TLI = MF->getSubtarget().getTargetLowering(); 4283 const auto BaseExpr = 4284 TLI->getPICJumpTableRelocBaseExpr(MF, JTI, MMI->getContext()); 4285 const auto Base = &cast<MCSymbolRefExpr>(BaseExpr)->getSymbol(); 4286 4287 // By default, for the architectures that support CodeView, 4288 // EK_LabelDifference32 is implemented as an Int32 from the base address. 4289 return std::make_tuple(Base, 0, BranchLabel, 4290 codeview::JumpTableEntrySize::Int32); 4291 } 4292