xref: /freebsd-src/contrib/llvm-project/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp (revision 4824e7fd18a1223177218d4aec1b3c6c5c4a444e)
1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "PseudoProbePrinter.h"
18 #include "WasmException.h"
19 #include "WinCFGuard.h"
20 #include "WinException.h"
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
36 #include "llvm/BinaryFormat/COFF.h"
37 #include "llvm/BinaryFormat/Dwarf.h"
38 #include "llvm/BinaryFormat/ELF.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/GCMetadataPrinter.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineConstantPool.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBundle.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineLoopInfo.h"
51 #include "llvm/CodeGen/MachineMemOperand.h"
52 #include "llvm/CodeGen/MachineModuleInfo.h"
53 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/Config/config.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/Comdat.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GCStrategy.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalIFunc.h"
74 #include "llvm/IR/GlobalObject.h"
75 #include "llvm/IR/GlobalValue.h"
76 #include "llvm/IR/GlobalVariable.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Mangler.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/Operator.h"
82 #include "llvm/IR/PseudoProbe.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/Value.h"
85 #include "llvm/MC/MCAsmInfo.h"
86 #include "llvm/MC/MCContext.h"
87 #include "llvm/MC/MCDirectives.h"
88 #include "llvm/MC/MCDwarf.h"
89 #include "llvm/MC/MCExpr.h"
90 #include "llvm/MC/MCInst.h"
91 #include "llvm/MC/MCSection.h"
92 #include "llvm/MC/MCSectionCOFF.h"
93 #include "llvm/MC/MCSectionELF.h"
94 #include "llvm/MC/MCSectionMachO.h"
95 #include "llvm/MC/MCSectionXCOFF.h"
96 #include "llvm/MC/MCStreamer.h"
97 #include "llvm/MC/MCSubtargetInfo.h"
98 #include "llvm/MC/MCSymbol.h"
99 #include "llvm/MC/MCSymbolELF.h"
100 #include "llvm/MC/MCSymbolXCOFF.h"
101 #include "llvm/MC/MCTargetOptions.h"
102 #include "llvm/MC/MCValue.h"
103 #include "llvm/MC/SectionKind.h"
104 #include "llvm/MC/TargetRegistry.h"
105 #include "llvm/Pass.h"
106 #include "llvm/Remarks/Remark.h"
107 #include "llvm/Remarks/RemarkFormat.h"
108 #include "llvm/Remarks/RemarkStreamer.h"
109 #include "llvm/Remarks/RemarkStringTable.h"
110 #include "llvm/Support/Casting.h"
111 #include "llvm/Support/CommandLine.h"
112 #include "llvm/Support/Compiler.h"
113 #include "llvm/Support/ErrorHandling.h"
114 #include "llvm/Support/FileSystem.h"
115 #include "llvm/Support/Format.h"
116 #include "llvm/Support/MathExtras.h"
117 #include "llvm/Support/Path.h"
118 #include "llvm/Support/Timer.h"
119 #include "llvm/Support/raw_ostream.h"
120 #include "llvm/Target/TargetLoweringObjectFile.h"
121 #include "llvm/Target/TargetMachine.h"
122 #include "llvm/Target/TargetOptions.h"
123 #include <algorithm>
124 #include <cassert>
125 #include <cinttypes>
126 #include <cstdint>
127 #include <iterator>
128 #include <limits>
129 #include <memory>
130 #include <string>
131 #include <utility>
132 #include <vector>
133 
134 using namespace llvm;
135 
136 #define DEBUG_TYPE "asm-printer"
137 
138 // FIXME: this option currently only applies to DWARF, and not CodeView, tables
139 static cl::opt<bool>
140     DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
141                              cl::desc("Disable debug info printing"));
142 
143 const char DWARFGroupName[] = "dwarf";
144 const char DWARFGroupDescription[] = "DWARF Emission";
145 const char DbgTimerName[] = "emit";
146 const char DbgTimerDescription[] = "Debug Info Emission";
147 const char EHTimerName[] = "write_exception";
148 const char EHTimerDescription[] = "DWARF Exception Writer";
149 const char CFGuardName[] = "Control Flow Guard";
150 const char CFGuardDescription[] = "Control Flow Guard";
151 const char CodeViewLineTablesGroupName[] = "linetables";
152 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables";
153 const char PPTimerName[] = "emit";
154 const char PPTimerDescription[] = "Pseudo Probe Emission";
155 const char PPGroupName[] = "pseudo probe";
156 const char PPGroupDescription[] = "Pseudo Probe Emission";
157 
158 STATISTIC(EmittedInsts, "Number of machine instrs printed");
159 
160 char AsmPrinter::ID = 0;
161 
162 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
163 
164 static gcp_map_type &getGCMap(void *&P) {
165   if (!P)
166     P = new gcp_map_type();
167   return *(gcp_map_type*)P;
168 }
169 
170 /// getGVAlignment - Return the alignment to use for the specified global
171 /// value.  This rounds up to the preferred alignment if possible and legal.
172 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL,
173                                  Align InAlign) {
174   Align Alignment;
175   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
176     Alignment = DL.getPreferredAlign(GVar);
177 
178   // If InAlign is specified, round it to it.
179   if (InAlign > Alignment)
180     Alignment = InAlign;
181 
182   // If the GV has a specified alignment, take it into account.
183   const MaybeAlign GVAlign(GV->getAlignment());
184   if (!GVAlign)
185     return Alignment;
186 
187   assert(GVAlign && "GVAlign must be set");
188 
189   // If the GVAlign is larger than NumBits, or if we are required to obey
190   // NumBits because the GV has an assigned section, obey it.
191   if (*GVAlign > Alignment || GV->hasSection())
192     Alignment = *GVAlign;
193   return Alignment;
194 }
195 
196 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
197     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
198       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
199   VerboseAsm = OutStreamer->isVerboseAsm();
200 }
201 
202 AsmPrinter::~AsmPrinter() {
203   assert(!DD && Handlers.size() == NumUserHandlers &&
204          "Debug/EH info didn't get finalized");
205 
206   if (GCMetadataPrinters) {
207     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
208 
209     delete &GCMap;
210     GCMetadataPrinters = nullptr;
211   }
212 }
213 
214 bool AsmPrinter::isPositionIndependent() const {
215   return TM.isPositionIndependent();
216 }
217 
218 /// getFunctionNumber - Return a unique ID for the current function.
219 unsigned AsmPrinter::getFunctionNumber() const {
220   return MF->getFunctionNumber();
221 }
222 
223 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
224   return *TM.getObjFileLowering();
225 }
226 
227 const DataLayout &AsmPrinter::getDataLayout() const {
228   return MMI->getModule()->getDataLayout();
229 }
230 
231 // Do not use the cached DataLayout because some client use it without a Module
232 // (dsymutil, llvm-dwarfdump).
233 unsigned AsmPrinter::getPointerSize() const {
234   return TM.getPointerSize(0); // FIXME: Default address space
235 }
236 
237 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
238   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
239   return MF->getSubtarget<MCSubtargetInfo>();
240 }
241 
242 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
243   S.emitInstruction(Inst, getSubtargetInfo());
244 }
245 
246 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
247   if (DD) {
248     assert(OutStreamer->hasRawTextSupport() &&
249            "Expected assembly output mode.");
250     (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
251   }
252 }
253 
254 /// getCurrentSection() - Return the current section we are emitting to.
255 const MCSection *AsmPrinter::getCurrentSection() const {
256   return OutStreamer->getCurrentSectionOnly();
257 }
258 
259 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
260   AU.setPreservesAll();
261   MachineFunctionPass::getAnalysisUsage(AU);
262   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
263   AU.addRequired<GCModuleInfo>();
264 }
265 
266 bool AsmPrinter::doInitialization(Module &M) {
267   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
268   MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
269 
270   // Initialize TargetLoweringObjectFile.
271   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
272     .Initialize(OutContext, TM);
273 
274   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
275       .getModuleMetadata(M);
276 
277   OutStreamer->initSections(false, *TM.getMCSubtargetInfo());
278 
279   if (DisableDebugInfoPrinting)
280     MMI->setDebugInfoAvailability(false);
281 
282   // Emit the version-min deployment target directive if needed.
283   //
284   // FIXME: If we end up with a collection of these sorts of Darwin-specific
285   // or ELF-specific things, it may make sense to have a platform helper class
286   // that will work with the target helper class. For now keep it here, as the
287   // alternative is duplicated code in each of the target asm printers that
288   // use the directive, where it would need the same conditionalization
289   // anyway.
290   const Triple &Target = TM.getTargetTriple();
291   OutStreamer->emitVersionForTarget(Target, M.getSDKVersion());
292 
293   // Allow the target to emit any magic that it wants at the start of the file.
294   emitStartOfAsmFile(M);
295 
296   // Very minimal debug info. It is ignored if we emit actual debug info. If we
297   // don't, this at least helps the user find where a global came from.
298   if (MAI->hasSingleParameterDotFile()) {
299     // .file "foo.c"
300 
301     SmallString<128> FileName;
302     if (MAI->hasBasenameOnlyForFileDirective())
303       FileName = llvm::sys::path::filename(M.getSourceFileName());
304     else
305       FileName = M.getSourceFileName();
306     if (MAI->hasFourStringsDotFile()) {
307 #ifdef PACKAGE_VENDOR
308       const char VerStr[] =
309           PACKAGE_VENDOR " " PACKAGE_NAME " version " PACKAGE_VERSION;
310 #else
311       const char VerStr[] = PACKAGE_NAME " version " PACKAGE_VERSION;
312 #endif
313       // TODO: Add timestamp and description.
314       OutStreamer->emitFileDirective(FileName, VerStr, "", "");
315     } else {
316       OutStreamer->emitFileDirective(FileName);
317     }
318   }
319 
320   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
321   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
322   for (auto &I : *MI)
323     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
324       MP->beginAssembly(M, *MI, *this);
325 
326   // Emit module-level inline asm if it exists.
327   if (!M.getModuleInlineAsm().empty()) {
328     OutStreamer->AddComment("Start of file scope inline assembly");
329     OutStreamer->AddBlankLine();
330     emitInlineAsm(M.getModuleInlineAsm() + "\n", *TM.getMCSubtargetInfo(),
331                   TM.Options.MCOptions);
332     OutStreamer->AddComment("End of file scope inline assembly");
333     OutStreamer->AddBlankLine();
334   }
335 
336   if (MAI->doesSupportDebugInformation()) {
337     bool EmitCodeView = M.getCodeViewFlag();
338     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
339       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
340                             DbgTimerName, DbgTimerDescription,
341                             CodeViewLineTablesGroupName,
342                             CodeViewLineTablesGroupDescription);
343     }
344     if (!EmitCodeView || M.getDwarfVersion()) {
345       if (!DisableDebugInfoPrinting) {
346         DD = new DwarfDebug(this);
347         Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
348                               DbgTimerDescription, DWARFGroupName,
349                               DWARFGroupDescription);
350       }
351     }
352   }
353 
354   if (M.getNamedMetadata(PseudoProbeDescMetadataName)) {
355     PP = new PseudoProbeHandler(this);
356     Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName,
357                           PPTimerDescription, PPGroupName, PPGroupDescription);
358   }
359 
360   switch (MAI->getExceptionHandlingType()) {
361   case ExceptionHandling::None:
362     // We may want to emit CFI for debug.
363     LLVM_FALLTHROUGH;
364   case ExceptionHandling::SjLj:
365   case ExceptionHandling::DwarfCFI:
366   case ExceptionHandling::ARM:
367     for (auto &F : M.getFunctionList()) {
368       if (getFunctionCFISectionType(F) != CFISection::None)
369         ModuleCFISection = getFunctionCFISectionType(F);
370       // If any function needsUnwindTableEntry(), it needs .eh_frame and hence
371       // the module needs .eh_frame. If we have found that case, we are done.
372       if (ModuleCFISection == CFISection::EH)
373         break;
374     }
375     assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI ||
376            ModuleCFISection != CFISection::EH);
377     break;
378   default:
379     break;
380   }
381 
382   EHStreamer *ES = nullptr;
383   switch (MAI->getExceptionHandlingType()) {
384   case ExceptionHandling::None:
385     if (!needsCFIForDebug())
386       break;
387     LLVM_FALLTHROUGH;
388   case ExceptionHandling::SjLj:
389   case ExceptionHandling::DwarfCFI:
390     ES = new DwarfCFIException(this);
391     break;
392   case ExceptionHandling::ARM:
393     ES = new ARMException(this);
394     break;
395   case ExceptionHandling::WinEH:
396     switch (MAI->getWinEHEncodingType()) {
397     default: llvm_unreachable("unsupported unwinding information encoding");
398     case WinEH::EncodingType::Invalid:
399       break;
400     case WinEH::EncodingType::X86:
401     case WinEH::EncodingType::Itanium:
402       ES = new WinException(this);
403       break;
404     }
405     break;
406   case ExceptionHandling::Wasm:
407     ES = new WasmException(this);
408     break;
409   case ExceptionHandling::AIX:
410     ES = new AIXException(this);
411     break;
412   }
413   if (ES)
414     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
415                           EHTimerDescription, DWARFGroupName,
416                           DWARFGroupDescription);
417 
418   // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
419   if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard")))
420     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
421                           CFGuardDescription, DWARFGroupName,
422                           DWARFGroupDescription);
423 
424   for (const HandlerInfo &HI : Handlers) {
425     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
426                        HI.TimerGroupDescription, TimePassesIsEnabled);
427     HI.Handler->beginModule(&M);
428   }
429 
430   return false;
431 }
432 
433 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
434   if (!MAI.hasWeakDefCanBeHiddenDirective())
435     return false;
436 
437   return GV->canBeOmittedFromSymbolTable();
438 }
439 
440 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
441   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
442   switch (Linkage) {
443   case GlobalValue::CommonLinkage:
444   case GlobalValue::LinkOnceAnyLinkage:
445   case GlobalValue::LinkOnceODRLinkage:
446   case GlobalValue::WeakAnyLinkage:
447   case GlobalValue::WeakODRLinkage:
448     if (MAI->hasWeakDefDirective()) {
449       // .globl _foo
450       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
451 
452       if (!canBeHidden(GV, *MAI))
453         // .weak_definition _foo
454         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
455       else
456         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
457     } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
458       // .globl _foo
459       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
460       //NOTE: linkonce is handled by the section the symbol was assigned to.
461     } else {
462       // .weak _foo
463       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
464     }
465     return;
466   case GlobalValue::ExternalLinkage:
467     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
468     return;
469   case GlobalValue::PrivateLinkage:
470   case GlobalValue::InternalLinkage:
471     return;
472   case GlobalValue::ExternalWeakLinkage:
473   case GlobalValue::AvailableExternallyLinkage:
474   case GlobalValue::AppendingLinkage:
475     llvm_unreachable("Should never emit this");
476   }
477   llvm_unreachable("Unknown linkage type!");
478 }
479 
480 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
481                                    const GlobalValue *GV) const {
482   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
483 }
484 
485 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
486   return TM.getSymbol(GV);
487 }
488 
489 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const {
490   // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
491   // exact definion (intersection of GlobalValue::hasExactDefinition() and
492   // !isInterposable()). These linkages include: external, appending, internal,
493   // private. It may be profitable to use a local alias for external. The
494   // assembler would otherwise be conservative and assume a global default
495   // visibility symbol can be interposable, even if the code generator already
496   // assumed it.
497   if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) {
498     const Module &M = *GV.getParent();
499     if (TM.getRelocationModel() != Reloc::Static &&
500         M.getPIELevel() == PIELevel::Default && GV.isDSOLocal())
501       return getSymbolWithGlobalValueBase(&GV, "$local");
502   }
503   return TM.getSymbol(&GV);
504 }
505 
506 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
507 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
508   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
509   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
510          "No emulated TLS variables in the common section");
511 
512   // Never emit TLS variable xyz in emulated TLS model.
513   // The initialization value is in __emutls_t.xyz instead of xyz.
514   if (IsEmuTLSVar)
515     return;
516 
517   if (GV->hasInitializer()) {
518     // Check to see if this is a special global used by LLVM, if so, emit it.
519     if (emitSpecialLLVMGlobal(GV))
520       return;
521 
522     // Skip the emission of global equivalents. The symbol can be emitted later
523     // on by emitGlobalGOTEquivs in case it turns out to be needed.
524     if (GlobalGOTEquivs.count(getSymbol(GV)))
525       return;
526 
527     if (isVerbose()) {
528       // When printing the control variable __emutls_v.*,
529       // we don't need to print the original TLS variable name.
530       GV->printAsOperand(OutStreamer->GetCommentOS(),
531                      /*PrintType=*/false, GV->getParent());
532       OutStreamer->GetCommentOS() << '\n';
533     }
534   }
535 
536   MCSymbol *GVSym = getSymbol(GV);
537   MCSymbol *EmittedSym = GVSym;
538 
539   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
540   // attributes.
541   // GV's or GVSym's attributes will be used for the EmittedSym.
542   emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
543 
544   if (!GV->hasInitializer())   // External globals require no extra code.
545     return;
546 
547   GVSym->redefineIfPossible();
548   if (GVSym->isDefined() || GVSym->isVariable())
549     OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) +
550                                         "' is already defined");
551 
552   if (MAI->hasDotTypeDotSizeDirective())
553     OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
554 
555   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
556 
557   const DataLayout &DL = GV->getParent()->getDataLayout();
558   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
559 
560   // If the alignment is specified, we *must* obey it.  Overaligning a global
561   // with a specified alignment is a prompt way to break globals emitted to
562   // sections and expected to be contiguous (e.g. ObjC metadata).
563   const Align Alignment = getGVAlignment(GV, DL);
564 
565   for (const HandlerInfo &HI : Handlers) {
566     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
567                        HI.TimerGroupName, HI.TimerGroupDescription,
568                        TimePassesIsEnabled);
569     HI.Handler->setSymbolSize(GVSym, Size);
570   }
571 
572   // Handle common symbols
573   if (GVKind.isCommon()) {
574     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
575     // .comm _foo, 42, 4
576     const bool SupportsAlignment =
577         getObjFileLowering().getCommDirectiveSupportsAlignment();
578     OutStreamer->emitCommonSymbol(GVSym, Size,
579                                   SupportsAlignment ? Alignment.value() : 0);
580     return;
581   }
582 
583   // Determine to which section this global should be emitted.
584   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
585 
586   // If we have a bss global going to a section that supports the
587   // zerofill directive, do so here.
588   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
589       TheSection->isVirtualSection()) {
590     if (Size == 0)
591       Size = 1; // zerofill of 0 bytes is undefined.
592     emitLinkage(GV, GVSym);
593     // .zerofill __DATA, __bss, _foo, 400, 5
594     OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value());
595     return;
596   }
597 
598   // If this is a BSS local symbol and we are emitting in the BSS
599   // section use .lcomm/.comm directive.
600   if (GVKind.isBSSLocal() &&
601       getObjFileLowering().getBSSSection() == TheSection) {
602     if (Size == 0)
603       Size = 1; // .comm Foo, 0 is undefined, avoid it.
604 
605     // Use .lcomm only if it supports user-specified alignment.
606     // Otherwise, while it would still be correct to use .lcomm in some
607     // cases (e.g. when Align == 1), the external assembler might enfore
608     // some -unknown- default alignment behavior, which could cause
609     // spurious differences between external and integrated assembler.
610     // Prefer to simply fall back to .local / .comm in this case.
611     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
612       // .lcomm _foo, 42
613       OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value());
614       return;
615     }
616 
617     // .local _foo
618     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
619     // .comm _foo, 42, 4
620     const bool SupportsAlignment =
621         getObjFileLowering().getCommDirectiveSupportsAlignment();
622     OutStreamer->emitCommonSymbol(GVSym, Size,
623                                   SupportsAlignment ? Alignment.value() : 0);
624     return;
625   }
626 
627   // Handle thread local data for mach-o which requires us to output an
628   // additional structure of data and mangle the original symbol so that we
629   // can reference it later.
630   //
631   // TODO: This should become an "emit thread local global" method on TLOF.
632   // All of this macho specific stuff should be sunk down into TLOFMachO and
633   // stuff like "TLSExtraDataSection" should no longer be part of the parent
634   // TLOF class.  This will also make it more obvious that stuff like
635   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
636   // specific code.
637   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
638     // Emit the .tbss symbol
639     MCSymbol *MangSym =
640         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
641 
642     if (GVKind.isThreadBSS()) {
643       TheSection = getObjFileLowering().getTLSBSSSection();
644       OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
645     } else if (GVKind.isThreadData()) {
646       OutStreamer->SwitchSection(TheSection);
647 
648       emitAlignment(Alignment, GV);
649       OutStreamer->emitLabel(MangSym);
650 
651       emitGlobalConstant(GV->getParent()->getDataLayout(),
652                          GV->getInitializer());
653     }
654 
655     OutStreamer->AddBlankLine();
656 
657     // Emit the variable struct for the runtime.
658     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
659 
660     OutStreamer->SwitchSection(TLVSect);
661     // Emit the linkage here.
662     emitLinkage(GV, GVSym);
663     OutStreamer->emitLabel(GVSym);
664 
665     // Three pointers in size:
666     //   - __tlv_bootstrap - used to make sure support exists
667     //   - spare pointer, used when mapped by the runtime
668     //   - pointer to mangled symbol above with initializer
669     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
670     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
671                                 PtrSize);
672     OutStreamer->emitIntValue(0, PtrSize);
673     OutStreamer->emitSymbolValue(MangSym, PtrSize);
674 
675     OutStreamer->AddBlankLine();
676     return;
677   }
678 
679   MCSymbol *EmittedInitSym = GVSym;
680 
681   OutStreamer->SwitchSection(TheSection);
682 
683   emitLinkage(GV, EmittedInitSym);
684   emitAlignment(Alignment, GV);
685 
686   OutStreamer->emitLabel(EmittedInitSym);
687   MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
688   if (LocalAlias != EmittedInitSym)
689     OutStreamer->emitLabel(LocalAlias);
690 
691   emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
692 
693   if (MAI->hasDotTypeDotSizeDirective())
694     // .size foo, 42
695     OutStreamer->emitELFSize(EmittedInitSym,
696                              MCConstantExpr::create(Size, OutContext));
697 
698   OutStreamer->AddBlankLine();
699 }
700 
701 /// Emit the directive and value for debug thread local expression
702 ///
703 /// \p Value - The value to emit.
704 /// \p Size - The size of the integer (in bytes) to emit.
705 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
706   OutStreamer->emitValue(Value, Size);
707 }
708 
709 void AsmPrinter::emitFunctionHeaderComment() {}
710 
711 /// EmitFunctionHeader - This method emits the header for the current
712 /// function.
713 void AsmPrinter::emitFunctionHeader() {
714   const Function &F = MF->getFunction();
715 
716   if (isVerbose())
717     OutStreamer->GetCommentOS()
718         << "-- Begin function "
719         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
720 
721   // Print out constants referenced by the function
722   emitConstantPool();
723 
724   // Print the 'header' of function.
725   // If basic block sections are desired, explicitly request a unique section
726   // for this function's entry block.
727   if (MF->front().isBeginSection())
728     MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM));
729   else
730     MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
731   OutStreamer->SwitchSection(MF->getSection());
732 
733   if (!MAI->hasVisibilityOnlyWithLinkage())
734     emitVisibility(CurrentFnSym, F.getVisibility());
735 
736   if (MAI->needsFunctionDescriptors())
737     emitLinkage(&F, CurrentFnDescSym);
738 
739   emitLinkage(&F, CurrentFnSym);
740   if (MAI->hasFunctionAlignment())
741     emitAlignment(MF->getAlignment(), &F);
742 
743   if (MAI->hasDotTypeDotSizeDirective())
744     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
745 
746   if (F.hasFnAttribute(Attribute::Cold))
747     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
748 
749   if (isVerbose()) {
750     F.printAsOperand(OutStreamer->GetCommentOS(),
751                    /*PrintType=*/false, F.getParent());
752     emitFunctionHeaderComment();
753     OutStreamer->GetCommentOS() << '\n';
754   }
755 
756   // Emit the prefix data.
757   if (F.hasPrefixData()) {
758     if (MAI->hasSubsectionsViaSymbols()) {
759       // Preserving prefix data on platforms which use subsections-via-symbols
760       // is a bit tricky. Here we introduce a symbol for the prefix data
761       // and use the .alt_entry attribute to mark the function's real entry point
762       // as an alternative entry point to the prefix-data symbol.
763       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
764       OutStreamer->emitLabel(PrefixSym);
765 
766       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
767 
768       // Emit an .alt_entry directive for the actual function symbol.
769       OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
770     } else {
771       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
772     }
773   }
774 
775   // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
776   // place prefix data before NOPs.
777   unsigned PatchableFunctionPrefix = 0;
778   unsigned PatchableFunctionEntry = 0;
779   (void)F.getFnAttribute("patchable-function-prefix")
780       .getValueAsString()
781       .getAsInteger(10, PatchableFunctionPrefix);
782   (void)F.getFnAttribute("patchable-function-entry")
783       .getValueAsString()
784       .getAsInteger(10, PatchableFunctionEntry);
785   if (PatchableFunctionPrefix) {
786     CurrentPatchableFunctionEntrySym =
787         OutContext.createLinkerPrivateTempSymbol();
788     OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
789     emitNops(PatchableFunctionPrefix);
790   } else if (PatchableFunctionEntry) {
791     // May be reassigned when emitting the body, to reference the label after
792     // the initial BTI (AArch64) or endbr32/endbr64 (x86).
793     CurrentPatchableFunctionEntrySym = CurrentFnBegin;
794   }
795 
796   // Emit the function descriptor. This is a virtual function to allow targets
797   // to emit their specific function descriptor. Right now it is only used by
798   // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
799   // descriptors and should be converted to use this hook as well.
800   if (MAI->needsFunctionDescriptors())
801     emitFunctionDescriptor();
802 
803   // Emit the CurrentFnSym. This is a virtual function to allow targets to do
804   // their wild and crazy things as required.
805   emitFunctionEntryLabel();
806 
807   // If the function had address-taken blocks that got deleted, then we have
808   // references to the dangling symbols.  Emit them at the start of the function
809   // so that we don't get references to undefined symbols.
810   std::vector<MCSymbol*> DeadBlockSyms;
811   MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
812   for (MCSymbol *DeadBlockSym : DeadBlockSyms) {
813     OutStreamer->AddComment("Address taken block that was later removed");
814     OutStreamer->emitLabel(DeadBlockSym);
815   }
816 
817   if (CurrentFnBegin) {
818     if (MAI->useAssignmentForEHBegin()) {
819       MCSymbol *CurPos = OutContext.createTempSymbol();
820       OutStreamer->emitLabel(CurPos);
821       OutStreamer->emitAssignment(CurrentFnBegin,
822                                  MCSymbolRefExpr::create(CurPos, OutContext));
823     } else {
824       OutStreamer->emitLabel(CurrentFnBegin);
825     }
826   }
827 
828   // Emit pre-function debug and/or EH information.
829   for (const HandlerInfo &HI : Handlers) {
830     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
831                        HI.TimerGroupDescription, TimePassesIsEnabled);
832     HI.Handler->beginFunction(MF);
833   }
834 
835   // Emit the prologue data.
836   if (F.hasPrologueData())
837     emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
838 }
839 
840 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
841 /// function.  This can be overridden by targets as required to do custom stuff.
842 void AsmPrinter::emitFunctionEntryLabel() {
843   CurrentFnSym->redefineIfPossible();
844 
845   // The function label could have already been emitted if two symbols end up
846   // conflicting due to asm renaming.  Detect this and emit an error.
847   if (CurrentFnSym->isVariable())
848     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
849                        "' is a protected alias");
850 
851   OutStreamer->emitLabel(CurrentFnSym);
852 
853   if (TM.getTargetTriple().isOSBinFormatELF()) {
854     MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
855     if (Sym != CurrentFnSym)
856       OutStreamer->emitLabel(Sym);
857   }
858 }
859 
860 /// emitComments - Pretty-print comments for instructions.
861 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
862   const MachineFunction *MF = MI.getMF();
863   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
864 
865   // Check for spills and reloads
866 
867   // We assume a single instruction only has a spill or reload, not
868   // both.
869   Optional<unsigned> Size;
870   if ((Size = MI.getRestoreSize(TII))) {
871     CommentOS << *Size << "-byte Reload\n";
872   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
873     if (*Size) {
874       if (*Size == unsigned(MemoryLocation::UnknownSize))
875         CommentOS << "Unknown-size Folded Reload\n";
876       else
877         CommentOS << *Size << "-byte Folded Reload\n";
878     }
879   } else if ((Size = MI.getSpillSize(TII))) {
880     CommentOS << *Size << "-byte Spill\n";
881   } else if ((Size = MI.getFoldedSpillSize(TII))) {
882     if (*Size) {
883       if (*Size == unsigned(MemoryLocation::UnknownSize))
884         CommentOS << "Unknown-size Folded Spill\n";
885       else
886         CommentOS << *Size << "-byte Folded Spill\n";
887     }
888   }
889 
890   // Check for spill-induced copies
891   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
892     CommentOS << " Reload Reuse\n";
893 }
894 
895 /// emitImplicitDef - This method emits the specified machine instruction
896 /// that is an implicit def.
897 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
898   Register RegNo = MI->getOperand(0).getReg();
899 
900   SmallString<128> Str;
901   raw_svector_ostream OS(Str);
902   OS << "implicit-def: "
903      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
904 
905   OutStreamer->AddComment(OS.str());
906   OutStreamer->AddBlankLine();
907 }
908 
909 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
910   std::string Str;
911   raw_string_ostream OS(Str);
912   OS << "kill:";
913   for (const MachineOperand &Op : MI->operands()) {
914     assert(Op.isReg() && "KILL instruction must have only register operands");
915     OS << ' ' << (Op.isDef() ? "def " : "killed ")
916        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
917   }
918   AP.OutStreamer->AddComment(OS.str());
919   AP.OutStreamer->AddBlankLine();
920 }
921 
922 /// emitDebugValueComment - This method handles the target-independent form
923 /// of DBG_VALUE, returning true if it was able to do so.  A false return
924 /// means the target will need to handle MI in EmitInstruction.
925 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
926   // This code handles only the 4-operand target-independent form.
927   if (MI->isNonListDebugValue() && MI->getNumOperands() != 4)
928     return false;
929 
930   SmallString<128> Str;
931   raw_svector_ostream OS(Str);
932   OS << "DEBUG_VALUE: ";
933 
934   const DILocalVariable *V = MI->getDebugVariable();
935   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
936     StringRef Name = SP->getName();
937     if (!Name.empty())
938       OS << Name << ":";
939   }
940   OS << V->getName();
941   OS << " <- ";
942 
943   const DIExpression *Expr = MI->getDebugExpression();
944   if (Expr->getNumElements()) {
945     OS << '[';
946     ListSeparator LS;
947     for (auto Op : Expr->expr_ops()) {
948       OS << LS << dwarf::OperationEncodingString(Op.getOp());
949       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
950         OS << ' ' << Op.getArg(I);
951     }
952     OS << "] ";
953   }
954 
955   // Register or immediate value. Register 0 means undef.
956   for (const MachineOperand &Op : MI->debug_operands()) {
957     if (&Op != MI->debug_operands().begin())
958       OS << ", ";
959     switch (Op.getType()) {
960     case MachineOperand::MO_FPImmediate: {
961       APFloat APF = APFloat(Op.getFPImm()->getValueAPF());
962       Type *ImmTy = Op.getFPImm()->getType();
963       if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() ||
964           ImmTy->isDoubleTy()) {
965         OS << APF.convertToDouble();
966       } else {
967         // There is no good way to print long double.  Convert a copy to
968         // double.  Ah well, it's only a comment.
969         bool ignored;
970         APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
971                     &ignored);
972         OS << "(long double) " << APF.convertToDouble();
973       }
974       break;
975     }
976     case MachineOperand::MO_Immediate: {
977       OS << Op.getImm();
978       break;
979     }
980     case MachineOperand::MO_CImmediate: {
981       Op.getCImm()->getValue().print(OS, false /*isSigned*/);
982       break;
983     }
984     case MachineOperand::MO_TargetIndex: {
985       OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
986       // NOTE: Want this comment at start of line, don't emit with AddComment.
987       AP.OutStreamer->emitRawComment(OS.str());
988       break;
989     }
990     case MachineOperand::MO_Register:
991     case MachineOperand::MO_FrameIndex: {
992       Register Reg;
993       Optional<StackOffset> Offset;
994       if (Op.isReg()) {
995         Reg = Op.getReg();
996       } else {
997         const TargetFrameLowering *TFI =
998             AP.MF->getSubtarget().getFrameLowering();
999         Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg);
1000       }
1001       if (!Reg) {
1002         // Suppress offset, it is not meaningful here.
1003         OS << "undef";
1004         break;
1005       }
1006       // The second operand is only an offset if it's an immediate.
1007       if (MI->isIndirectDebugValue())
1008         Offset = StackOffset::getFixed(MI->getDebugOffset().getImm());
1009       if (Offset)
1010         OS << '[';
1011       OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
1012       if (Offset)
1013         OS << '+' << Offset->getFixed() << ']';
1014       break;
1015     }
1016     default:
1017       llvm_unreachable("Unknown operand type");
1018     }
1019   }
1020 
1021   // NOTE: Want this comment at start of line, don't emit with AddComment.
1022   AP.OutStreamer->emitRawComment(OS.str());
1023   return true;
1024 }
1025 
1026 /// This method handles the target-independent form of DBG_LABEL, returning
1027 /// true if it was able to do so.  A false return means the target will need
1028 /// to handle MI in EmitInstruction.
1029 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
1030   if (MI->getNumOperands() != 1)
1031     return false;
1032 
1033   SmallString<128> Str;
1034   raw_svector_ostream OS(Str);
1035   OS << "DEBUG_LABEL: ";
1036 
1037   const DILabel *V = MI->getDebugLabel();
1038   if (auto *SP = dyn_cast<DISubprogram>(
1039           V->getScope()->getNonLexicalBlockFileScope())) {
1040     StringRef Name = SP->getName();
1041     if (!Name.empty())
1042       OS << Name << ":";
1043   }
1044   OS << V->getName();
1045 
1046   // NOTE: Want this comment at start of line, don't emit with AddComment.
1047   AP.OutStreamer->emitRawComment(OS.str());
1048   return true;
1049 }
1050 
1051 AsmPrinter::CFISection
1052 AsmPrinter::getFunctionCFISectionType(const Function &F) const {
1053   // Ignore functions that won't get emitted.
1054   if (F.isDeclarationForLinker())
1055     return CFISection::None;
1056 
1057   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
1058       F.needsUnwindTableEntry())
1059     return CFISection::EH;
1060 
1061   if (MMI->hasDebugInfo() || TM.Options.ForceDwarfFrameSection)
1062     return CFISection::Debug;
1063 
1064   return CFISection::None;
1065 }
1066 
1067 AsmPrinter::CFISection
1068 AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const {
1069   return getFunctionCFISectionType(MF.getFunction());
1070 }
1071 
1072 bool AsmPrinter::needsSEHMoves() {
1073   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
1074 }
1075 
1076 bool AsmPrinter::needsCFIForDebug() const {
1077   return MAI->getExceptionHandlingType() == ExceptionHandling::None &&
1078          MAI->doesUseCFIForDebug() && ModuleCFISection == CFISection::Debug;
1079 }
1080 
1081 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
1082   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
1083   if (!needsCFIForDebug() &&
1084       ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
1085       ExceptionHandlingType != ExceptionHandling::ARM)
1086     return;
1087 
1088   if (getFunctionCFISectionType(*MF) == CFISection::None)
1089     return;
1090 
1091   // If there is no "real" instruction following this CFI instruction, skip
1092   // emitting it; it would be beyond the end of the function's FDE range.
1093   auto *MBB = MI.getParent();
1094   auto I = std::next(MI.getIterator());
1095   while (I != MBB->end() && I->isTransient())
1096     ++I;
1097   if (I == MBB->instr_end() &&
1098       MBB->getReverseIterator() == MBB->getParent()->rbegin())
1099     return;
1100 
1101   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
1102   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
1103   const MCCFIInstruction &CFI = Instrs[CFIIndex];
1104   emitCFIInstruction(CFI);
1105 }
1106 
1107 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1108   // The operands are the MCSymbol and the frame offset of the allocation.
1109   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1110   int FrameOffset = MI.getOperand(1).getImm();
1111 
1112   // Emit a symbol assignment.
1113   OutStreamer->emitAssignment(FrameAllocSym,
1114                              MCConstantExpr::create(FrameOffset, OutContext));
1115 }
1116 
1117 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a
1118 /// given basic block. This can be used to capture more precise profile
1119 /// information. We use the last 4 bits (LSBs) to encode the following
1120 /// information:
1121 ///  * (1): set if return block (ret or tail call).
1122 ///  * (2): set if ends with a tail call.
1123 ///  * (3): set if exception handling (EH) landing pad.
1124 ///  * (4): set if the block can fall through to its next.
1125 /// The remaining bits are zero.
1126 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) {
1127   const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
1128   return ((unsigned)MBB.isReturnBlock()) |
1129          ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) |
1130          (MBB.isEHPad() << 2) |
1131          (const_cast<MachineBasicBlock &>(MBB).canFallThrough() << 3);
1132 }
1133 
1134 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) {
1135   MCSection *BBAddrMapSection =
1136       getObjFileLowering().getBBAddrMapSection(*MF.getSection());
1137   assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized.");
1138 
1139   const MCSymbol *FunctionSymbol = getFunctionBegin();
1140 
1141   OutStreamer->PushSection();
1142   OutStreamer->SwitchSection(BBAddrMapSection);
1143   OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize());
1144   // Emit the total number of basic blocks in this function.
1145   OutStreamer->emitULEB128IntValue(MF.size());
1146   // Emit BB Information for each basic block in the funciton.
1147   for (const MachineBasicBlock &MBB : MF) {
1148     const MCSymbol *MBBSymbol =
1149         MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol();
1150     // Emit the basic block offset.
1151     emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol);
1152     // Emit the basic block size. When BBs have alignments, their size cannot
1153     // always be computed from their offsets.
1154     emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol);
1155     OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB));
1156   }
1157   OutStreamer->PopSection();
1158 }
1159 
1160 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) {
1161   auto GUID = MI.getOperand(0).getImm();
1162   auto Index = MI.getOperand(1).getImm();
1163   auto Type = MI.getOperand(2).getImm();
1164   auto Attr = MI.getOperand(3).getImm();
1165   DILocation *DebugLoc = MI.getDebugLoc();
1166   PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc);
1167 }
1168 
1169 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1170   if (!MF.getTarget().Options.EmitStackSizeSection)
1171     return;
1172 
1173   MCSection *StackSizeSection =
1174       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1175   if (!StackSizeSection)
1176     return;
1177 
1178   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1179   // Don't emit functions with dynamic stack allocations.
1180   if (FrameInfo.hasVarSizedObjects())
1181     return;
1182 
1183   OutStreamer->PushSection();
1184   OutStreamer->SwitchSection(StackSizeSection);
1185 
1186   const MCSymbol *FunctionSymbol = getFunctionBegin();
1187   uint64_t StackSize = FrameInfo.getStackSize();
1188   OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1189   OutStreamer->emitULEB128IntValue(StackSize);
1190 
1191   OutStreamer->PopSection();
1192 }
1193 
1194 void AsmPrinter::emitStackUsage(const MachineFunction &MF) {
1195   const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput;
1196 
1197   // OutputFilename empty implies -fstack-usage is not passed.
1198   if (OutputFilename.empty())
1199     return;
1200 
1201   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1202   uint64_t StackSize = FrameInfo.getStackSize();
1203 
1204   if (StackUsageStream == nullptr) {
1205     std::error_code EC;
1206     StackUsageStream =
1207         std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text);
1208     if (EC) {
1209       errs() << "Could not open file: " << EC.message();
1210       return;
1211     }
1212   }
1213 
1214   *StackUsageStream << MF.getFunction().getParent()->getName();
1215   if (const DISubprogram *DSP = MF.getFunction().getSubprogram())
1216     *StackUsageStream << ':' << DSP->getLine();
1217 
1218   *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t';
1219   if (FrameInfo.hasVarSizedObjects())
1220     *StackUsageStream << "dynamic\n";
1221   else
1222     *StackUsageStream << "static\n";
1223 }
1224 
1225 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) {
1226   MachineModuleInfo &MMI = MF.getMMI();
1227   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo())
1228     return true;
1229 
1230   // We might emit an EH table that uses function begin and end labels even if
1231   // we don't have any landingpads.
1232   if (!MF.getFunction().hasPersonalityFn())
1233     return false;
1234   return !isNoOpWithoutInvoke(
1235       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1236 }
1237 
1238 /// EmitFunctionBody - This method emits the body and trailer for a
1239 /// function.
1240 void AsmPrinter::emitFunctionBody() {
1241   emitFunctionHeader();
1242 
1243   // Emit target-specific gunk before the function body.
1244   emitFunctionBodyStart();
1245 
1246   if (isVerbose()) {
1247     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1248     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1249     if (!MDT) {
1250       OwnedMDT = std::make_unique<MachineDominatorTree>();
1251       OwnedMDT->getBase().recalculate(*MF);
1252       MDT = OwnedMDT.get();
1253     }
1254 
1255     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1256     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1257     if (!MLI) {
1258       OwnedMLI = std::make_unique<MachineLoopInfo>();
1259       OwnedMLI->getBase().analyze(MDT->getBase());
1260       MLI = OwnedMLI.get();
1261     }
1262   }
1263 
1264   // Print out code for the function.
1265   bool HasAnyRealCode = false;
1266   int NumInstsInFunction = 0;
1267 
1268   bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1269   for (auto &MBB : *MF) {
1270     // Print a label for the basic block.
1271     emitBasicBlockStart(MBB);
1272     DenseMap<StringRef, unsigned> MnemonicCounts;
1273     for (auto &MI : MBB) {
1274       // Print the assembly for the instruction.
1275       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1276           !MI.isDebugInstr()) {
1277         HasAnyRealCode = true;
1278         ++NumInstsInFunction;
1279       }
1280 
1281       // If there is a pre-instruction symbol, emit a label for it here.
1282       if (MCSymbol *S = MI.getPreInstrSymbol())
1283         OutStreamer->emitLabel(S);
1284 
1285       for (const HandlerInfo &HI : Handlers) {
1286         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1287                            HI.TimerGroupDescription, TimePassesIsEnabled);
1288         HI.Handler->beginInstruction(&MI);
1289       }
1290 
1291       if (isVerbose())
1292         emitComments(MI, OutStreamer->GetCommentOS());
1293 
1294       switch (MI.getOpcode()) {
1295       case TargetOpcode::CFI_INSTRUCTION:
1296         emitCFIInstruction(MI);
1297         break;
1298       case TargetOpcode::LOCAL_ESCAPE:
1299         emitFrameAlloc(MI);
1300         break;
1301       case TargetOpcode::ANNOTATION_LABEL:
1302       case TargetOpcode::EH_LABEL:
1303       case TargetOpcode::GC_LABEL:
1304         OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
1305         break;
1306       case TargetOpcode::INLINEASM:
1307       case TargetOpcode::INLINEASM_BR:
1308         emitInlineAsm(&MI);
1309         break;
1310       case TargetOpcode::DBG_VALUE:
1311       case TargetOpcode::DBG_VALUE_LIST:
1312         if (isVerbose()) {
1313           if (!emitDebugValueComment(&MI, *this))
1314             emitInstruction(&MI);
1315         }
1316         break;
1317       case TargetOpcode::DBG_INSTR_REF:
1318         // This instruction reference will have been resolved to a machine
1319         // location, and a nearby DBG_VALUE created. We can safely ignore
1320         // the instruction reference.
1321         break;
1322       case TargetOpcode::DBG_PHI:
1323         // This instruction is only used to label a program point, it's purely
1324         // meta information.
1325         break;
1326       case TargetOpcode::DBG_LABEL:
1327         if (isVerbose()) {
1328           if (!emitDebugLabelComment(&MI, *this))
1329             emitInstruction(&MI);
1330         }
1331         break;
1332       case TargetOpcode::IMPLICIT_DEF:
1333         if (isVerbose()) emitImplicitDef(&MI);
1334         break;
1335       case TargetOpcode::KILL:
1336         if (isVerbose()) emitKill(&MI, *this);
1337         break;
1338       case TargetOpcode::PSEUDO_PROBE:
1339         emitPseudoProbe(MI);
1340         break;
1341       case TargetOpcode::ARITH_FENCE:
1342         if (isVerbose())
1343           OutStreamer->emitRawComment("ARITH_FENCE");
1344         break;
1345       default:
1346         emitInstruction(&MI);
1347         if (CanDoExtraAnalysis) {
1348           MCInst MCI;
1349           MCI.setOpcode(MI.getOpcode());
1350           auto Name = OutStreamer->getMnemonic(MCI);
1351           auto I = MnemonicCounts.insert({Name, 0u});
1352           I.first->second++;
1353         }
1354         break;
1355       }
1356 
1357       // If there is a post-instruction symbol, emit a label for it here.
1358       if (MCSymbol *S = MI.getPostInstrSymbol())
1359         OutStreamer->emitLabel(S);
1360 
1361       for (const HandlerInfo &HI : Handlers) {
1362         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1363                            HI.TimerGroupDescription, TimePassesIsEnabled);
1364         HI.Handler->endInstruction();
1365       }
1366     }
1367 
1368     // We must emit temporary symbol for the end of this basic block, if either
1369     // we have BBLabels enabled or if this basic blocks marks the end of a
1370     // section.
1371     if (MF->hasBBLabels() ||
1372         (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection()))
1373       OutStreamer->emitLabel(MBB.getEndSymbol());
1374 
1375     if (MBB.isEndSection()) {
1376       // The size directive for the section containing the entry block is
1377       // handled separately by the function section.
1378       if (!MBB.sameSection(&MF->front())) {
1379         if (MAI->hasDotTypeDotSizeDirective()) {
1380           // Emit the size directive for the basic block section.
1381           const MCExpr *SizeExp = MCBinaryExpr::createSub(
1382               MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext),
1383               MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext),
1384               OutContext);
1385           OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp);
1386         }
1387         MBBSectionRanges[MBB.getSectionIDNum()] =
1388             MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()};
1389       }
1390     }
1391     emitBasicBlockEnd(MBB);
1392 
1393     if (CanDoExtraAnalysis) {
1394       // Skip empty blocks.
1395       if (MBB.empty())
1396         continue;
1397 
1398       MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix",
1399                                           MBB.begin()->getDebugLoc(), &MBB);
1400 
1401       // Generate instruction mix remark. First, sort counts in descending order
1402       // by count and name.
1403       SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec;
1404       for (auto &KV : MnemonicCounts)
1405         MnemonicVec.emplace_back(KV.first, KV.second);
1406 
1407       sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A,
1408                            const std::pair<StringRef, unsigned> &B) {
1409         if (A.second > B.second)
1410           return true;
1411         if (A.second == B.second)
1412           return StringRef(A.first) < StringRef(B.first);
1413         return false;
1414       });
1415       R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n";
1416       for (auto &KV : MnemonicVec) {
1417         auto Name = (Twine("INST_") + getToken(KV.first.trim()).first).str();
1418         R << KV.first << ": " << ore::NV(Name, KV.second) << "\n";
1419       }
1420       ORE->emit(R);
1421     }
1422   }
1423 
1424   EmittedInsts += NumInstsInFunction;
1425   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1426                                       MF->getFunction().getSubprogram(),
1427                                       &MF->front());
1428   R << ore::NV("NumInstructions", NumInstsInFunction)
1429     << " instructions in function";
1430   ORE->emit(R);
1431 
1432   // If the function is empty and the object file uses .subsections_via_symbols,
1433   // then we need to emit *something* to the function body to prevent the
1434   // labels from collapsing together.  Just emit a noop.
1435   // Similarly, don't emit empty functions on Windows either. It can lead to
1436   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1437   // after linking, causing the kernel not to load the binary:
1438   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1439   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1440   const Triple &TT = TM.getTargetTriple();
1441   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1442                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1443     MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop();
1444 
1445     // Targets can opt-out of emitting the noop here by leaving the opcode
1446     // unspecified.
1447     if (Noop.getOpcode()) {
1448       OutStreamer->AddComment("avoids zero-length function");
1449       emitNops(1);
1450     }
1451   }
1452 
1453   // Switch to the original section in case basic block sections was used.
1454   OutStreamer->SwitchSection(MF->getSection());
1455 
1456   const Function &F = MF->getFunction();
1457   for (const auto &BB : F) {
1458     if (!BB.hasAddressTaken())
1459       continue;
1460     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1461     if (Sym->isDefined())
1462       continue;
1463     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1464     OutStreamer->emitLabel(Sym);
1465   }
1466 
1467   // Emit target-specific gunk after the function body.
1468   emitFunctionBodyEnd();
1469 
1470   if (needFuncLabelsForEHOrDebugInfo(*MF) ||
1471       MAI->hasDotTypeDotSizeDirective()) {
1472     // Create a symbol for the end of function.
1473     CurrentFnEnd = createTempSymbol("func_end");
1474     OutStreamer->emitLabel(CurrentFnEnd);
1475   }
1476 
1477   // If the target wants a .size directive for the size of the function, emit
1478   // it.
1479   if (MAI->hasDotTypeDotSizeDirective()) {
1480     // We can get the size as difference between the function label and the
1481     // temp label.
1482     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1483         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1484         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1485     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1486   }
1487 
1488   for (const HandlerInfo &HI : Handlers) {
1489     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1490                        HI.TimerGroupDescription, TimePassesIsEnabled);
1491     HI.Handler->markFunctionEnd();
1492   }
1493 
1494   MBBSectionRanges[MF->front().getSectionIDNum()] =
1495       MBBSectionRange{CurrentFnBegin, CurrentFnEnd};
1496 
1497   // Print out jump tables referenced by the function.
1498   emitJumpTableInfo();
1499 
1500   // Emit post-function debug and/or EH information.
1501   for (const HandlerInfo &HI : Handlers) {
1502     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1503                        HI.TimerGroupDescription, TimePassesIsEnabled);
1504     HI.Handler->endFunction(MF);
1505   }
1506 
1507   // Emit section containing BB address offsets and their metadata, when
1508   // BB labels are requested for this function. Skip empty functions.
1509   if (MF->hasBBLabels() && HasAnyRealCode)
1510     emitBBAddrMapSection(*MF);
1511 
1512   // Emit section containing stack size metadata.
1513   emitStackSizeSection(*MF);
1514 
1515   // Emit .su file containing function stack size information.
1516   emitStackUsage(*MF);
1517 
1518   emitPatchableFunctionEntries();
1519 
1520   if (isVerbose())
1521     OutStreamer->GetCommentOS() << "-- End function\n";
1522 
1523   OutStreamer->AddBlankLine();
1524 }
1525 
1526 /// Compute the number of Global Variables that uses a Constant.
1527 static unsigned getNumGlobalVariableUses(const Constant *C) {
1528   if (!C)
1529     return 0;
1530 
1531   if (isa<GlobalVariable>(C))
1532     return 1;
1533 
1534   unsigned NumUses = 0;
1535   for (auto *CU : C->users())
1536     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1537 
1538   return NumUses;
1539 }
1540 
1541 /// Only consider global GOT equivalents if at least one user is a
1542 /// cstexpr inside an initializer of another global variables. Also, don't
1543 /// handle cstexpr inside instructions. During global variable emission,
1544 /// candidates are skipped and are emitted later in case at least one cstexpr
1545 /// isn't replaced by a PC relative GOT entry access.
1546 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1547                                      unsigned &NumGOTEquivUsers) {
1548   // Global GOT equivalents are unnamed private globals with a constant
1549   // pointer initializer to another global symbol. They must point to a
1550   // GlobalVariable or Function, i.e., as GlobalValue.
1551   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1552       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1553       !isa<GlobalValue>(GV->getOperand(0)))
1554     return false;
1555 
1556   // To be a got equivalent, at least one of its users need to be a constant
1557   // expression used by another global variable.
1558   for (auto *U : GV->users())
1559     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1560 
1561   return NumGOTEquivUsers > 0;
1562 }
1563 
1564 /// Unnamed constant global variables solely contaning a pointer to
1565 /// another globals variable is equivalent to a GOT table entry; it contains the
1566 /// the address of another symbol. Optimize it and replace accesses to these
1567 /// "GOT equivalents" by using the GOT entry for the final global instead.
1568 /// Compute GOT equivalent candidates among all global variables to avoid
1569 /// emitting them if possible later on, after it use is replaced by a GOT entry
1570 /// access.
1571 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1572   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1573     return;
1574 
1575   for (const auto &G : M.globals()) {
1576     unsigned NumGOTEquivUsers = 0;
1577     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1578       continue;
1579 
1580     const MCSymbol *GOTEquivSym = getSymbol(&G);
1581     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1582   }
1583 }
1584 
1585 /// Constant expressions using GOT equivalent globals may not be eligible
1586 /// for PC relative GOT entry conversion, in such cases we need to emit such
1587 /// globals we previously omitted in EmitGlobalVariable.
1588 void AsmPrinter::emitGlobalGOTEquivs() {
1589   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1590     return;
1591 
1592   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1593   for (auto &I : GlobalGOTEquivs) {
1594     const GlobalVariable *GV = I.second.first;
1595     unsigned Cnt = I.second.second;
1596     if (Cnt)
1597       FailedCandidates.push_back(GV);
1598   }
1599   GlobalGOTEquivs.clear();
1600 
1601   for (auto *GV : FailedCandidates)
1602     emitGlobalVariable(GV);
1603 }
1604 
1605 void AsmPrinter::emitGlobalAlias(Module &M, const GlobalAlias &GA) {
1606   MCSymbol *Name = getSymbol(&GA);
1607   bool IsFunction = GA.getValueType()->isFunctionTy();
1608   // Treat bitcasts of functions as functions also. This is important at least
1609   // on WebAssembly where object and function addresses can't alias each other.
1610   if (!IsFunction)
1611     if (auto *CE = dyn_cast<ConstantExpr>(GA.getAliasee()))
1612       if (CE->getOpcode() == Instruction::BitCast)
1613         IsFunction =
1614           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1615 
1616   // AIX's assembly directive `.set` is not usable for aliasing purpose,
1617   // so AIX has to use the extra-label-at-definition strategy. At this
1618   // point, all the extra label is emitted, we just have to emit linkage for
1619   // those labels.
1620   if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1621     assert(MAI->hasVisibilityOnlyWithLinkage() &&
1622            "Visibility should be handled with emitLinkage() on AIX.");
1623     emitLinkage(&GA, Name);
1624     // If it's a function, also emit linkage for aliases of function entry
1625     // point.
1626     if (IsFunction)
1627       emitLinkage(&GA,
1628                   getObjFileLowering().getFunctionEntryPointSymbol(&GA, TM));
1629     return;
1630   }
1631 
1632   if (GA.hasExternalLinkage() || !MAI->getWeakRefDirective())
1633     OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
1634   else if (GA.hasWeakLinkage() || GA.hasLinkOnceLinkage())
1635     OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
1636   else
1637     assert(GA.hasLocalLinkage() && "Invalid alias linkage");
1638 
1639   // Set the symbol type to function if the alias has a function type.
1640   // This affects codegen when the aliasee is not a function.
1641   if (IsFunction)
1642     OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1643 
1644   emitVisibility(Name, GA.getVisibility());
1645 
1646   const MCExpr *Expr = lowerConstant(GA.getAliasee());
1647 
1648   if (MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1649     OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
1650 
1651   // Emit the directives as assignments aka .set:
1652   OutStreamer->emitAssignment(Name, Expr);
1653   MCSymbol *LocalAlias = getSymbolPreferLocal(GA);
1654   if (LocalAlias != Name)
1655     OutStreamer->emitAssignment(LocalAlias, Expr);
1656 
1657   // If the aliasee does not correspond to a symbol in the output, i.e. the
1658   // alias is not of an object or the aliased object is private, then set the
1659   // size of the alias symbol from the type of the alias. We don't do this in
1660   // other situations as the alias and aliasee having differing types but same
1661   // size may be intentional.
1662   const GlobalObject *BaseObject = GA.getAliaseeObject();
1663   if (MAI->hasDotTypeDotSizeDirective() && GA.getValueType()->isSized() &&
1664       (!BaseObject || BaseObject->hasPrivateLinkage())) {
1665     const DataLayout &DL = M.getDataLayout();
1666     uint64_t Size = DL.getTypeAllocSize(GA.getValueType());
1667     OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1668   }
1669 }
1670 
1671 void AsmPrinter::emitGlobalIFunc(Module &M, const GlobalIFunc &GI) {
1672   assert(!TM.getTargetTriple().isOSBinFormatXCOFF() &&
1673          "IFunc is not supported on AIX.");
1674 
1675   MCSymbol *Name = getSymbol(&GI);
1676 
1677   if (GI.hasExternalLinkage() || !MAI->getWeakRefDirective())
1678     OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
1679   else if (GI.hasWeakLinkage() || GI.hasLinkOnceLinkage())
1680     OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
1681   else
1682     assert(GI.hasLocalLinkage() && "Invalid ifunc linkage");
1683 
1684   OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1685   emitVisibility(Name, GI.getVisibility());
1686 
1687   // Emit the directives as assignments aka .set:
1688   const MCExpr *Expr = lowerConstant(GI.getResolver());
1689   OutStreamer->emitAssignment(Name, Expr);
1690   MCSymbol *LocalAlias = getSymbolPreferLocal(GI);
1691   if (LocalAlias != Name)
1692     OutStreamer->emitAssignment(LocalAlias, Expr);
1693 }
1694 
1695 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) {
1696   if (!RS.needsSection())
1697     return;
1698 
1699   remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1700 
1701   Optional<SmallString<128>> Filename;
1702   if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1703     Filename = *FilenameRef;
1704     sys::fs::make_absolute(*Filename);
1705     assert(!Filename->empty() && "The filename can't be empty.");
1706   }
1707 
1708   std::string Buf;
1709   raw_string_ostream OS(Buf);
1710   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1711       Filename ? RemarkSerializer.metaSerializer(OS, Filename->str())
1712                : RemarkSerializer.metaSerializer(OS);
1713   MetaSerializer->emit();
1714 
1715   // Switch to the remarks section.
1716   MCSection *RemarksSection =
1717       OutContext.getObjectFileInfo()->getRemarksSection();
1718   OutStreamer->SwitchSection(RemarksSection);
1719 
1720   OutStreamer->emitBinaryData(OS.str());
1721 }
1722 
1723 bool AsmPrinter::doFinalization(Module &M) {
1724   // Set the MachineFunction to nullptr so that we can catch attempted
1725   // accesses to MF specific features at the module level and so that
1726   // we can conditionalize accesses based on whether or not it is nullptr.
1727   MF = nullptr;
1728 
1729   // Gather all GOT equivalent globals in the module. We really need two
1730   // passes over the globals: one to compute and another to avoid its emission
1731   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1732   // where the got equivalent shows up before its use.
1733   computeGlobalGOTEquivs(M);
1734 
1735   // Emit global variables.
1736   for (const auto &G : M.globals())
1737     emitGlobalVariable(&G);
1738 
1739   // Emit remaining GOT equivalent globals.
1740   emitGlobalGOTEquivs();
1741 
1742   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1743 
1744   // Emit linkage(XCOFF) and visibility info for declarations
1745   for (const Function &F : M) {
1746     if (!F.isDeclarationForLinker())
1747       continue;
1748 
1749     MCSymbol *Name = getSymbol(&F);
1750     // Function getSymbol gives us the function descriptor symbol for XCOFF.
1751 
1752     if (!TM.getTargetTriple().isOSBinFormatXCOFF()) {
1753       GlobalValue::VisibilityTypes V = F.getVisibility();
1754       if (V == GlobalValue::DefaultVisibility)
1755         continue;
1756 
1757       emitVisibility(Name, V, false);
1758       continue;
1759     }
1760 
1761     if (F.isIntrinsic())
1762       continue;
1763 
1764     // Handle the XCOFF case.
1765     // Variable `Name` is the function descriptor symbol (see above). Get the
1766     // function entry point symbol.
1767     MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM);
1768     // Emit linkage for the function entry point.
1769     emitLinkage(&F, FnEntryPointSym);
1770 
1771     // Emit linkage for the function descriptor.
1772     emitLinkage(&F, Name);
1773   }
1774 
1775   // Emit the remarks section contents.
1776   // FIXME: Figure out when is the safest time to emit this section. It should
1777   // not come after debug info.
1778   if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
1779     emitRemarksSection(*RS);
1780 
1781   TLOF.emitModuleMetadata(*OutStreamer, M);
1782 
1783   if (TM.getTargetTriple().isOSBinFormatELF()) {
1784     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1785 
1786     // Output stubs for external and common global variables.
1787     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1788     if (!Stubs.empty()) {
1789       OutStreamer->SwitchSection(TLOF.getDataSection());
1790       const DataLayout &DL = M.getDataLayout();
1791 
1792       emitAlignment(Align(DL.getPointerSize()));
1793       for (const auto &Stub : Stubs) {
1794         OutStreamer->emitLabel(Stub.first);
1795         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1796                                      DL.getPointerSize());
1797       }
1798     }
1799   }
1800 
1801   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1802     MachineModuleInfoCOFF &MMICOFF =
1803         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1804 
1805     // Output stubs for external and common global variables.
1806     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1807     if (!Stubs.empty()) {
1808       const DataLayout &DL = M.getDataLayout();
1809 
1810       for (const auto &Stub : Stubs) {
1811         SmallString<256> SectionName = StringRef(".rdata$");
1812         SectionName += Stub.first->getName();
1813         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1814             SectionName,
1815             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1816                 COFF::IMAGE_SCN_LNK_COMDAT,
1817             SectionKind::getReadOnly(), Stub.first->getName(),
1818             COFF::IMAGE_COMDAT_SELECT_ANY));
1819         emitAlignment(Align(DL.getPointerSize()));
1820         OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
1821         OutStreamer->emitLabel(Stub.first);
1822         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1823                                      DL.getPointerSize());
1824       }
1825     }
1826   }
1827 
1828   // This needs to happen before emitting debug information since that can end
1829   // arbitrary sections.
1830   if (auto *TS = OutStreamer->getTargetStreamer())
1831     TS->emitConstantPools();
1832 
1833   // Finalize debug and EH information.
1834   for (const HandlerInfo &HI : Handlers) {
1835     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1836                        HI.TimerGroupDescription, TimePassesIsEnabled);
1837     HI.Handler->endModule();
1838   }
1839 
1840   // This deletes all the ephemeral handlers that AsmPrinter added, while
1841   // keeping all the user-added handlers alive until the AsmPrinter is
1842   // destroyed.
1843   Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end());
1844   DD = nullptr;
1845 
1846   // If the target wants to know about weak references, print them all.
1847   if (MAI->getWeakRefDirective()) {
1848     // FIXME: This is not lazy, it would be nice to only print weak references
1849     // to stuff that is actually used.  Note that doing so would require targets
1850     // to notice uses in operands (due to constant exprs etc).  This should
1851     // happen with the MC stuff eventually.
1852 
1853     // Print out module-level global objects here.
1854     for (const auto &GO : M.global_objects()) {
1855       if (!GO.hasExternalWeakLinkage())
1856         continue;
1857       OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1858     }
1859   }
1860 
1861   // Print aliases in topological order, that is, for each alias a = b,
1862   // b must be printed before a.
1863   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1864   // such an order to generate correct TOC information.
1865   SmallVector<const GlobalAlias *, 16> AliasStack;
1866   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1867   for (const auto &Alias : M.aliases()) {
1868     for (const GlobalAlias *Cur = &Alias; Cur;
1869          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1870       if (!AliasVisited.insert(Cur).second)
1871         break;
1872       AliasStack.push_back(Cur);
1873     }
1874     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1875       emitGlobalAlias(M, *AncestorAlias);
1876     AliasStack.clear();
1877   }
1878   for (const auto &IFunc : M.ifuncs())
1879     emitGlobalIFunc(M, IFunc);
1880 
1881   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1882   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1883   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1884     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1885       MP->finishAssembly(M, *MI, *this);
1886 
1887   // Emit llvm.ident metadata in an '.ident' directive.
1888   emitModuleIdents(M);
1889 
1890   // Emit bytes for llvm.commandline metadata.
1891   emitModuleCommandLines(M);
1892 
1893   // Emit __morestack address if needed for indirect calls.
1894   if (MMI->usesMorestackAddr()) {
1895     Align Alignment(1);
1896     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1897         getDataLayout(), SectionKind::getReadOnly(),
1898         /*C=*/nullptr, Alignment);
1899     OutStreamer->SwitchSection(ReadOnlySection);
1900 
1901     MCSymbol *AddrSymbol =
1902         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1903     OutStreamer->emitLabel(AddrSymbol);
1904 
1905     unsigned PtrSize = MAI->getCodePointerSize();
1906     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1907                                  PtrSize);
1908   }
1909 
1910   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1911   // split-stack is used.
1912   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1913     OutStreamer->SwitchSection(
1914         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1915     if (MMI->hasNosplitStack())
1916       OutStreamer->SwitchSection(
1917           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1918   }
1919 
1920   // If we don't have any trampolines, then we don't require stack memory
1921   // to be executable. Some targets have a directive to declare this.
1922   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1923   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1924     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1925       OutStreamer->SwitchSection(S);
1926 
1927   if (TM.Options.EmitAddrsig) {
1928     // Emit address-significance attributes for all globals.
1929     OutStreamer->emitAddrsig();
1930     for (const GlobalValue &GV : M.global_values()) {
1931       if (!GV.use_empty() && !GV.isTransitiveUsedByMetadataOnly() &&
1932           !GV.isThreadLocal() && !GV.hasDLLImportStorageClass() &&
1933           !GV.getName().startswith("llvm.") && !GV.hasAtLeastLocalUnnamedAddr())
1934         OutStreamer->emitAddrsigSym(getSymbol(&GV));
1935     }
1936   }
1937 
1938   // Emit symbol partition specifications (ELF only).
1939   if (TM.getTargetTriple().isOSBinFormatELF()) {
1940     unsigned UniqueID = 0;
1941     for (const GlobalValue &GV : M.global_values()) {
1942       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1943           GV.getVisibility() != GlobalValue::DefaultVisibility)
1944         continue;
1945 
1946       OutStreamer->SwitchSection(
1947           OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
1948                                    "", false, ++UniqueID, nullptr));
1949       OutStreamer->emitBytes(GV.getPartition());
1950       OutStreamer->emitZeros(1);
1951       OutStreamer->emitValue(
1952           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1953           MAI->getCodePointerSize());
1954     }
1955   }
1956 
1957   // Allow the target to emit any magic that it wants at the end of the file,
1958   // after everything else has gone out.
1959   emitEndOfAsmFile(M);
1960 
1961   MMI = nullptr;
1962 
1963   OutStreamer->Finish();
1964   OutStreamer->reset();
1965   OwnedMLI.reset();
1966   OwnedMDT.reset();
1967 
1968   return false;
1969 }
1970 
1971 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) {
1972   auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum());
1973   if (Res.second)
1974     Res.first->second = createTempSymbol("exception");
1975   return Res.first->second;
1976 }
1977 
1978 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1979   this->MF = &MF;
1980   const Function &F = MF.getFunction();
1981 
1982   // Get the function symbol.
1983   if (!MAI->needsFunctionDescriptors()) {
1984     CurrentFnSym = getSymbol(&MF.getFunction());
1985   } else {
1986     assert(TM.getTargetTriple().isOSAIX() &&
1987            "Only AIX uses the function descriptor hooks.");
1988     // AIX is unique here in that the name of the symbol emitted for the
1989     // function body does not have the same name as the source function's
1990     // C-linkage name.
1991     assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
1992                                " initalized first.");
1993 
1994     // Get the function entry point symbol.
1995     CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM);
1996   }
1997 
1998   CurrentFnSymForSize = CurrentFnSym;
1999   CurrentFnBegin = nullptr;
2000   CurrentSectionBeginSym = nullptr;
2001   MBBSectionRanges.clear();
2002   MBBSectionExceptionSyms.clear();
2003   bool NeedsLocalForSize = MAI->needsLocalForSize();
2004   if (F.hasFnAttribute("patchable-function-entry") ||
2005       F.hasFnAttribute("function-instrument") ||
2006       F.hasFnAttribute("xray-instruction-threshold") ||
2007       needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize ||
2008       MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) {
2009     CurrentFnBegin = createTempSymbol("func_begin");
2010     if (NeedsLocalForSize)
2011       CurrentFnSymForSize = CurrentFnBegin;
2012   }
2013 
2014   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
2015 }
2016 
2017 namespace {
2018 
2019 // Keep track the alignment, constpool entries per Section.
2020   struct SectionCPs {
2021     MCSection *S;
2022     Align Alignment;
2023     SmallVector<unsigned, 4> CPEs;
2024 
2025     SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {}
2026   };
2027 
2028 } // end anonymous namespace
2029 
2030 /// EmitConstantPool - Print to the current output stream assembly
2031 /// representations of the constants in the constant pool MCP. This is
2032 /// used to print out constants which have been "spilled to memory" by
2033 /// the code generator.
2034 void AsmPrinter::emitConstantPool() {
2035   const MachineConstantPool *MCP = MF->getConstantPool();
2036   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
2037   if (CP.empty()) return;
2038 
2039   // Calculate sections for constant pool entries. We collect entries to go into
2040   // the same section together to reduce amount of section switch statements.
2041   SmallVector<SectionCPs, 4> CPSections;
2042   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
2043     const MachineConstantPoolEntry &CPE = CP[i];
2044     Align Alignment = CPE.getAlign();
2045 
2046     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
2047 
2048     const Constant *C = nullptr;
2049     if (!CPE.isMachineConstantPoolEntry())
2050       C = CPE.Val.ConstVal;
2051 
2052     MCSection *S = getObjFileLowering().getSectionForConstant(
2053         getDataLayout(), Kind, C, Alignment);
2054 
2055     // The number of sections are small, just do a linear search from the
2056     // last section to the first.
2057     bool Found = false;
2058     unsigned SecIdx = CPSections.size();
2059     while (SecIdx != 0) {
2060       if (CPSections[--SecIdx].S == S) {
2061         Found = true;
2062         break;
2063       }
2064     }
2065     if (!Found) {
2066       SecIdx = CPSections.size();
2067       CPSections.push_back(SectionCPs(S, Alignment));
2068     }
2069 
2070     if (Alignment > CPSections[SecIdx].Alignment)
2071       CPSections[SecIdx].Alignment = Alignment;
2072     CPSections[SecIdx].CPEs.push_back(i);
2073   }
2074 
2075   // Now print stuff into the calculated sections.
2076   const MCSection *CurSection = nullptr;
2077   unsigned Offset = 0;
2078   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
2079     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
2080       unsigned CPI = CPSections[i].CPEs[j];
2081       MCSymbol *Sym = GetCPISymbol(CPI);
2082       if (!Sym->isUndefined())
2083         continue;
2084 
2085       if (CurSection != CPSections[i].S) {
2086         OutStreamer->SwitchSection(CPSections[i].S);
2087         emitAlignment(Align(CPSections[i].Alignment));
2088         CurSection = CPSections[i].S;
2089         Offset = 0;
2090       }
2091 
2092       MachineConstantPoolEntry CPE = CP[CPI];
2093 
2094       // Emit inter-object padding for alignment.
2095       unsigned NewOffset = alignTo(Offset, CPE.getAlign());
2096       OutStreamer->emitZeros(NewOffset - Offset);
2097 
2098       Offset = NewOffset + CPE.getSizeInBytes(getDataLayout());
2099 
2100       OutStreamer->emitLabel(Sym);
2101       if (CPE.isMachineConstantPoolEntry())
2102         emitMachineConstantPoolValue(CPE.Val.MachineCPVal);
2103       else
2104         emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
2105     }
2106   }
2107 }
2108 
2109 // Print assembly representations of the jump tables used by the current
2110 // function.
2111 void AsmPrinter::emitJumpTableInfo() {
2112   const DataLayout &DL = MF->getDataLayout();
2113   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2114   if (!MJTI) return;
2115   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
2116   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2117   if (JT.empty()) return;
2118 
2119   // Pick the directive to use to print the jump table entries, and switch to
2120   // the appropriate section.
2121   const Function &F = MF->getFunction();
2122   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
2123   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
2124       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
2125       F);
2126   if (JTInDiffSection) {
2127     // Drop it in the readonly section.
2128     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
2129     OutStreamer->SwitchSection(ReadOnlySection);
2130   }
2131 
2132   emitAlignment(Align(MJTI->getEntryAlignment(DL)));
2133 
2134   // Jump tables in code sections are marked with a data_region directive
2135   // where that's supported.
2136   if (!JTInDiffSection)
2137     OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
2138 
2139   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
2140     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2141 
2142     // If this jump table was deleted, ignore it.
2143     if (JTBBs.empty()) continue;
2144 
2145     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
2146     /// emit a .set directive for each unique entry.
2147     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
2148         MAI->doesSetDirectiveSuppressReloc()) {
2149       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
2150       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2151       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
2152       for (const MachineBasicBlock *MBB : JTBBs) {
2153         if (!EmittedSets.insert(MBB).second)
2154           continue;
2155 
2156         // .set LJTSet, LBB32-base
2157         const MCExpr *LHS =
2158           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2159         OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
2160                                     MCBinaryExpr::createSub(LHS, Base,
2161                                                             OutContext));
2162       }
2163     }
2164 
2165     // On some targets (e.g. Darwin) we want to emit two consecutive labels
2166     // before each jump table.  The first label is never referenced, but tells
2167     // the assembler and linker the extents of the jump table object.  The
2168     // second label is actually referenced by the code.
2169     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
2170       // FIXME: This doesn't have to have any specific name, just any randomly
2171       // named and numbered local label started with 'l' would work.  Simplify
2172       // GetJTISymbol.
2173       OutStreamer->emitLabel(GetJTISymbol(JTI, true));
2174 
2175     MCSymbol* JTISymbol = GetJTISymbol(JTI);
2176     OutStreamer->emitLabel(JTISymbol);
2177 
2178     for (const MachineBasicBlock *MBB : JTBBs)
2179       emitJumpTableEntry(MJTI, MBB, JTI);
2180   }
2181   if (!JTInDiffSection)
2182     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
2183 }
2184 
2185 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
2186 /// current stream.
2187 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI,
2188                                     const MachineBasicBlock *MBB,
2189                                     unsigned UID) const {
2190   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
2191   const MCExpr *Value = nullptr;
2192   switch (MJTI->getEntryKind()) {
2193   case MachineJumpTableInfo::EK_Inline:
2194     llvm_unreachable("Cannot emit EK_Inline jump table entry");
2195   case MachineJumpTableInfo::EK_Custom32:
2196     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
2197         MJTI, MBB, UID, OutContext);
2198     break;
2199   case MachineJumpTableInfo::EK_BlockAddress:
2200     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
2201     //     .word LBB123
2202     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2203     break;
2204   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
2205     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
2206     // with a relocation as gp-relative, e.g.:
2207     //     .gprel32 LBB123
2208     MCSymbol *MBBSym = MBB->getSymbol();
2209     OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2210     return;
2211   }
2212 
2213   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
2214     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
2215     // with a relocation as gp-relative, e.g.:
2216     //     .gpdword LBB123
2217     MCSymbol *MBBSym = MBB->getSymbol();
2218     OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2219     return;
2220   }
2221 
2222   case MachineJumpTableInfo::EK_LabelDifference32: {
2223     // Each entry is the address of the block minus the address of the jump
2224     // table. This is used for PIC jump tables where gprel32 is not supported.
2225     // e.g.:
2226     //      .word LBB123 - LJTI1_2
2227     // If the .set directive avoids relocations, this is emitted as:
2228     //      .set L4_5_set_123, LBB123 - LJTI1_2
2229     //      .word L4_5_set_123
2230     if (MAI->doesSetDirectiveSuppressReloc()) {
2231       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
2232                                       OutContext);
2233       break;
2234     }
2235     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2236     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2237     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
2238     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
2239     break;
2240   }
2241   }
2242 
2243   assert(Value && "Unknown entry kind!");
2244 
2245   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
2246   OutStreamer->emitValue(Value, EntrySize);
2247 }
2248 
2249 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
2250 /// special global used by LLVM.  If so, emit it and return true, otherwise
2251 /// do nothing and return false.
2252 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) {
2253   if (GV->getName() == "llvm.used") {
2254     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
2255       emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
2256     return true;
2257   }
2258 
2259   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
2260   if (GV->getSection() == "llvm.metadata" ||
2261       GV->hasAvailableExternallyLinkage())
2262     return true;
2263 
2264   if (!GV->hasAppendingLinkage()) return false;
2265 
2266   assert(GV->hasInitializer() && "Not a special LLVM global!");
2267 
2268   if (GV->getName() == "llvm.global_ctors") {
2269     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2270                        /* isCtor */ true);
2271 
2272     return true;
2273   }
2274 
2275   if (GV->getName() == "llvm.global_dtors") {
2276     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2277                        /* isCtor */ false);
2278 
2279     return true;
2280   }
2281 
2282   report_fatal_error("unknown special variable");
2283 }
2284 
2285 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2286 /// global in the specified llvm.used list.
2287 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
2288   // Should be an array of 'i8*'.
2289   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
2290     const GlobalValue *GV =
2291       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
2292     if (GV)
2293       OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
2294   }
2295 }
2296 
2297 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL,
2298                                           const Constant *List,
2299                                           SmallVector<Structor, 8> &Structors) {
2300   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is
2301   // the init priority.
2302   if (!isa<ConstantArray>(List))
2303     return;
2304 
2305   // Gather the structors in a form that's convenient for sorting by priority.
2306   for (Value *O : cast<ConstantArray>(List)->operands()) {
2307     auto *CS = cast<ConstantStruct>(O);
2308     if (CS->getOperand(1)->isNullValue())
2309       break; // Found a null terminator, skip the rest.
2310     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2311     if (!Priority)
2312       continue; // Malformed.
2313     Structors.push_back(Structor());
2314     Structor &S = Structors.back();
2315     S.Priority = Priority->getLimitedValue(65535);
2316     S.Func = CS->getOperand(1);
2317     if (!CS->getOperand(2)->isNullValue()) {
2318       if (TM.getTargetTriple().isOSAIX())
2319         llvm::report_fatal_error(
2320             "associated data of XXStructor list is not yet supported on AIX");
2321       S.ComdatKey =
2322           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2323     }
2324   }
2325 
2326   // Emit the function pointers in the target-specific order
2327   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2328     return L.Priority < R.Priority;
2329   });
2330 }
2331 
2332 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2333 /// priority.
2334 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List,
2335                                     bool IsCtor) {
2336   SmallVector<Structor, 8> Structors;
2337   preprocessXXStructorList(DL, List, Structors);
2338   if (Structors.empty())
2339     return;
2340 
2341   // Emit the structors in reverse order if we are using the .ctor/.dtor
2342   // initialization scheme.
2343   if (!TM.Options.UseInitArray)
2344     std::reverse(Structors.begin(), Structors.end());
2345 
2346   const Align Align = DL.getPointerPrefAlignment();
2347   for (Structor &S : Structors) {
2348     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2349     const MCSymbol *KeySym = nullptr;
2350     if (GlobalValue *GV = S.ComdatKey) {
2351       if (GV->isDeclarationForLinker())
2352         // If the associated variable is not defined in this module
2353         // (it might be available_externally, or have been an
2354         // available_externally definition that was dropped by the
2355         // EliminateAvailableExternally pass), some other TU
2356         // will provide its dynamic initializer.
2357         continue;
2358 
2359       KeySym = getSymbol(GV);
2360     }
2361 
2362     MCSection *OutputSection =
2363         (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2364                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2365     OutStreamer->SwitchSection(OutputSection);
2366     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2367       emitAlignment(Align);
2368     emitXXStructor(DL, S.Func);
2369   }
2370 }
2371 
2372 void AsmPrinter::emitModuleIdents(Module &M) {
2373   if (!MAI->hasIdentDirective())
2374     return;
2375 
2376   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2377     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2378       const MDNode *N = NMD->getOperand(i);
2379       assert(N->getNumOperands() == 1 &&
2380              "llvm.ident metadata entry can have only one operand");
2381       const MDString *S = cast<MDString>(N->getOperand(0));
2382       OutStreamer->emitIdent(S->getString());
2383     }
2384   }
2385 }
2386 
2387 void AsmPrinter::emitModuleCommandLines(Module &M) {
2388   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2389   if (!CommandLine)
2390     return;
2391 
2392   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2393   if (!NMD || !NMD->getNumOperands())
2394     return;
2395 
2396   OutStreamer->PushSection();
2397   OutStreamer->SwitchSection(CommandLine);
2398   OutStreamer->emitZeros(1);
2399   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2400     const MDNode *N = NMD->getOperand(i);
2401     assert(N->getNumOperands() == 1 &&
2402            "llvm.commandline metadata entry can have only one operand");
2403     const MDString *S = cast<MDString>(N->getOperand(0));
2404     OutStreamer->emitBytes(S->getString());
2405     OutStreamer->emitZeros(1);
2406   }
2407   OutStreamer->PopSection();
2408 }
2409 
2410 //===--------------------------------------------------------------------===//
2411 // Emission and print routines
2412 //
2413 
2414 /// Emit a byte directive and value.
2415 ///
2416 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
2417 
2418 /// Emit a short directive and value.
2419 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
2420 
2421 /// Emit a long directive and value.
2422 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
2423 
2424 /// Emit a long long directive and value.
2425 void AsmPrinter::emitInt64(uint64_t Value) const {
2426   OutStreamer->emitInt64(Value);
2427 }
2428 
2429 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2430 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2431 /// .set if it avoids relocations.
2432 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2433                                      unsigned Size) const {
2434   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2435 }
2436 
2437 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2438 /// where the size in bytes of the directive is specified by Size and Label
2439 /// specifies the label.  This implicitly uses .set if it is available.
2440 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2441                                      unsigned Size,
2442                                      bool IsSectionRelative) const {
2443   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2444     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2445     if (Size > 4)
2446       OutStreamer->emitZeros(Size - 4);
2447     return;
2448   }
2449 
2450   // Emit Label+Offset (or just Label if Offset is zero)
2451   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2452   if (Offset)
2453     Expr = MCBinaryExpr::createAdd(
2454         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2455 
2456   OutStreamer->emitValue(Expr, Size);
2457 }
2458 
2459 //===----------------------------------------------------------------------===//
2460 
2461 // EmitAlignment - Emit an alignment directive to the specified power of
2462 // two boundary.  If a global value is specified, and if that global has
2463 // an explicit alignment requested, it will override the alignment request
2464 // if required for correctness.
2465 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const {
2466   if (GV)
2467     Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2468 
2469   if (Alignment == Align(1))
2470     return; // 1-byte aligned: no need to emit alignment.
2471 
2472   if (getCurrentSection()->getKind().isText()) {
2473     const MCSubtargetInfo *STI = nullptr;
2474     if (this->MF)
2475       STI = &getSubtargetInfo();
2476     else
2477       STI = TM.getMCSubtargetInfo();
2478     OutStreamer->emitCodeAlignment(Alignment.value(), STI);
2479   } else
2480     OutStreamer->emitValueToAlignment(Alignment.value());
2481 }
2482 
2483 //===----------------------------------------------------------------------===//
2484 // Constant emission.
2485 //===----------------------------------------------------------------------===//
2486 
2487 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2488   MCContext &Ctx = OutContext;
2489 
2490   if (CV->isNullValue() || isa<UndefValue>(CV))
2491     return MCConstantExpr::create(0, Ctx);
2492 
2493   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2494     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2495 
2496   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2497     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2498 
2499   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2500     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2501 
2502   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV))
2503     return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM);
2504 
2505   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2506   if (!CE) {
2507     llvm_unreachable("Unknown constant value to lower!");
2508   }
2509 
2510   switch (CE->getOpcode()) {
2511   case Instruction::AddrSpaceCast: {
2512     const Constant *Op = CE->getOperand(0);
2513     unsigned DstAS = CE->getType()->getPointerAddressSpace();
2514     unsigned SrcAS = Op->getType()->getPointerAddressSpace();
2515     if (TM.isNoopAddrSpaceCast(SrcAS, DstAS))
2516       return lowerConstant(Op);
2517 
2518     // Fallthrough to error.
2519     LLVM_FALLTHROUGH;
2520   }
2521   default: {
2522     // If the code isn't optimized, there may be outstanding folding
2523     // opportunities. Attempt to fold the expression using DataLayout as a
2524     // last resort before giving up.
2525     Constant *C = ConstantFoldConstant(CE, getDataLayout());
2526     if (C != CE)
2527       return lowerConstant(C);
2528 
2529     // Otherwise report the problem to the user.
2530     std::string S;
2531     raw_string_ostream OS(S);
2532     OS << "Unsupported expression in static initializer: ";
2533     CE->printAsOperand(OS, /*PrintType=*/false,
2534                    !MF ? nullptr : MF->getFunction().getParent());
2535     report_fatal_error(Twine(OS.str()));
2536   }
2537   case Instruction::GetElementPtr: {
2538     // Generate a symbolic expression for the byte address
2539     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2540     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2541 
2542     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2543     if (!OffsetAI)
2544       return Base;
2545 
2546     int64_t Offset = OffsetAI.getSExtValue();
2547     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2548                                    Ctx);
2549   }
2550 
2551   case Instruction::Trunc:
2552     // We emit the value and depend on the assembler to truncate the generated
2553     // expression properly.  This is important for differences between
2554     // blockaddress labels.  Since the two labels are in the same function, it
2555     // is reasonable to treat their delta as a 32-bit value.
2556     LLVM_FALLTHROUGH;
2557   case Instruction::BitCast:
2558     return lowerConstant(CE->getOperand(0));
2559 
2560   case Instruction::IntToPtr: {
2561     const DataLayout &DL = getDataLayout();
2562 
2563     // Handle casts to pointers by changing them into casts to the appropriate
2564     // integer type.  This promotes constant folding and simplifies this code.
2565     Constant *Op = CE->getOperand(0);
2566     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2567                                       false/*ZExt*/);
2568     return lowerConstant(Op);
2569   }
2570 
2571   case Instruction::PtrToInt: {
2572     const DataLayout &DL = getDataLayout();
2573 
2574     // Support only foldable casts to/from pointers that can be eliminated by
2575     // changing the pointer to the appropriately sized integer type.
2576     Constant *Op = CE->getOperand(0);
2577     Type *Ty = CE->getType();
2578 
2579     const MCExpr *OpExpr = lowerConstant(Op);
2580 
2581     // We can emit the pointer value into this slot if the slot is an
2582     // integer slot equal to the size of the pointer.
2583     //
2584     // If the pointer is larger than the resultant integer, then
2585     // as with Trunc just depend on the assembler to truncate it.
2586     if (DL.getTypeAllocSize(Ty).getFixedSize() <=
2587         DL.getTypeAllocSize(Op->getType()).getFixedSize())
2588       return OpExpr;
2589 
2590     // Otherwise the pointer is smaller than the resultant integer, mask off
2591     // the high bits so we are sure to get a proper truncation if the input is
2592     // a constant expr.
2593     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2594     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2595     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2596   }
2597 
2598   case Instruction::Sub: {
2599     GlobalValue *LHSGV;
2600     APInt LHSOffset;
2601     DSOLocalEquivalent *DSOEquiv;
2602     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2603                                    getDataLayout(), &DSOEquiv)) {
2604       GlobalValue *RHSGV;
2605       APInt RHSOffset;
2606       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2607                                      getDataLayout())) {
2608         const MCExpr *RelocExpr =
2609             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2610         if (!RelocExpr) {
2611           const MCExpr *LHSExpr =
2612               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx);
2613           if (DSOEquiv &&
2614               getObjFileLowering().supportDSOLocalEquivalentLowering())
2615             LHSExpr =
2616                 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM);
2617           RelocExpr = MCBinaryExpr::createSub(
2618               LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2619         }
2620         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2621         if (Addend != 0)
2622           RelocExpr = MCBinaryExpr::createAdd(
2623               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2624         return RelocExpr;
2625       }
2626     }
2627   }
2628   // else fallthrough
2629   LLVM_FALLTHROUGH;
2630 
2631   // The MC library also has a right-shift operator, but it isn't consistently
2632   // signed or unsigned between different targets.
2633   case Instruction::Add:
2634   case Instruction::Mul:
2635   case Instruction::SDiv:
2636   case Instruction::SRem:
2637   case Instruction::Shl:
2638   case Instruction::And:
2639   case Instruction::Or:
2640   case Instruction::Xor: {
2641     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2642     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2643     switch (CE->getOpcode()) {
2644     default: llvm_unreachable("Unknown binary operator constant cast expr");
2645     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2646     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2647     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2648     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2649     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2650     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2651     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2652     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2653     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2654     }
2655   }
2656   }
2657 }
2658 
2659 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2660                                    AsmPrinter &AP,
2661                                    const Constant *BaseCV = nullptr,
2662                                    uint64_t Offset = 0);
2663 
2664 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2665 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2666 
2667 /// isRepeatedByteSequence - Determine whether the given value is
2668 /// composed of a repeated sequence of identical bytes and return the
2669 /// byte value.  If it is not a repeated sequence, return -1.
2670 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2671   StringRef Data = V->getRawDataValues();
2672   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2673   char C = Data[0];
2674   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2675     if (Data[i] != C) return -1;
2676   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2677 }
2678 
2679 /// isRepeatedByteSequence - Determine whether the given value is
2680 /// composed of a repeated sequence of identical bytes and return the
2681 /// byte value.  If it is not a repeated sequence, return -1.
2682 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2683   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2684     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2685     assert(Size % 8 == 0);
2686 
2687     // Extend the element to take zero padding into account.
2688     APInt Value = CI->getValue().zextOrSelf(Size);
2689     if (!Value.isSplat(8))
2690       return -1;
2691 
2692     return Value.zextOrTrunc(8).getZExtValue();
2693   }
2694   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2695     // Make sure all array elements are sequences of the same repeated
2696     // byte.
2697     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2698     Constant *Op0 = CA->getOperand(0);
2699     int Byte = isRepeatedByteSequence(Op0, DL);
2700     if (Byte == -1)
2701       return -1;
2702 
2703     // All array elements must be equal.
2704     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2705       if (CA->getOperand(i) != Op0)
2706         return -1;
2707     return Byte;
2708   }
2709 
2710   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2711     return isRepeatedByteSequence(CDS);
2712 
2713   return -1;
2714 }
2715 
2716 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2717                                              const ConstantDataSequential *CDS,
2718                                              AsmPrinter &AP) {
2719   // See if we can aggregate this into a .fill, if so, emit it as such.
2720   int Value = isRepeatedByteSequence(CDS, DL);
2721   if (Value != -1) {
2722     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2723     // Don't emit a 1-byte object as a .fill.
2724     if (Bytes > 1)
2725       return AP.OutStreamer->emitFill(Bytes, Value);
2726   }
2727 
2728   // If this can be emitted with .ascii/.asciz, emit it as such.
2729   if (CDS->isString())
2730     return AP.OutStreamer->emitBytes(CDS->getAsString());
2731 
2732   // Otherwise, emit the values in successive locations.
2733   unsigned ElementByteSize = CDS->getElementByteSize();
2734   if (isa<IntegerType>(CDS->getElementType())) {
2735     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2736       if (AP.isVerbose())
2737         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2738                                                  CDS->getElementAsInteger(i));
2739       AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i),
2740                                    ElementByteSize);
2741     }
2742   } else {
2743     Type *ET = CDS->getElementType();
2744     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2745       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2746   }
2747 
2748   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2749   unsigned EmittedSize =
2750       DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
2751   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2752   if (unsigned Padding = Size - EmittedSize)
2753     AP.OutStreamer->emitZeros(Padding);
2754 }
2755 
2756 static void emitGlobalConstantArray(const DataLayout &DL,
2757                                     const ConstantArray *CA, AsmPrinter &AP,
2758                                     const Constant *BaseCV, uint64_t Offset) {
2759   // See if we can aggregate some values.  Make sure it can be
2760   // represented as a series of bytes of the constant value.
2761   int Value = isRepeatedByteSequence(CA, DL);
2762 
2763   if (Value != -1) {
2764     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2765     AP.OutStreamer->emitFill(Bytes, Value);
2766   }
2767   else {
2768     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2769       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2770       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2771     }
2772   }
2773 }
2774 
2775 static void emitGlobalConstantVector(const DataLayout &DL,
2776                                      const ConstantVector *CV, AsmPrinter &AP) {
2777   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2778     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2779 
2780   unsigned Size = DL.getTypeAllocSize(CV->getType());
2781   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2782                          CV->getType()->getNumElements();
2783   if (unsigned Padding = Size - EmittedSize)
2784     AP.OutStreamer->emitZeros(Padding);
2785 }
2786 
2787 static void emitGlobalConstantStruct(const DataLayout &DL,
2788                                      const ConstantStruct *CS, AsmPrinter &AP,
2789                                      const Constant *BaseCV, uint64_t Offset) {
2790   // Print the fields in successive locations. Pad to align if needed!
2791   unsigned Size = DL.getTypeAllocSize(CS->getType());
2792   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2793   uint64_t SizeSoFar = 0;
2794   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2795     const Constant *Field = CS->getOperand(i);
2796 
2797     // Print the actual field value.
2798     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2799 
2800     // Check if padding is needed and insert one or more 0s.
2801     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2802     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2803                         - Layout->getElementOffset(i)) - FieldSize;
2804     SizeSoFar += FieldSize + PadSize;
2805 
2806     // Insert padding - this may include padding to increase the size of the
2807     // current field up to the ABI size (if the struct is not packed) as well
2808     // as padding to ensure that the next field starts at the right offset.
2809     AP.OutStreamer->emitZeros(PadSize);
2810   }
2811   assert(SizeSoFar == Layout->getSizeInBytes() &&
2812          "Layout of constant struct may be incorrect!");
2813 }
2814 
2815 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2816   assert(ET && "Unknown float type");
2817   APInt API = APF.bitcastToAPInt();
2818 
2819   // First print a comment with what we think the original floating-point value
2820   // should have been.
2821   if (AP.isVerbose()) {
2822     SmallString<8> StrVal;
2823     APF.toString(StrVal);
2824     ET->print(AP.OutStreamer->GetCommentOS());
2825     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2826   }
2827 
2828   // Now iterate through the APInt chunks, emitting them in endian-correct
2829   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2830   // floats).
2831   unsigned NumBytes = API.getBitWidth() / 8;
2832   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2833   const uint64_t *p = API.getRawData();
2834 
2835   // PPC's long double has odd notions of endianness compared to how LLVM
2836   // handles it: p[0] goes first for *big* endian on PPC.
2837   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2838     int Chunk = API.getNumWords() - 1;
2839 
2840     if (TrailingBytes)
2841       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
2842 
2843     for (; Chunk >= 0; --Chunk)
2844       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2845   } else {
2846     unsigned Chunk;
2847     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2848       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2849 
2850     if (TrailingBytes)
2851       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
2852   }
2853 
2854   // Emit the tail padding for the long double.
2855   const DataLayout &DL = AP.getDataLayout();
2856   AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2857 }
2858 
2859 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2860   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2861 }
2862 
2863 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2864   const DataLayout &DL = AP.getDataLayout();
2865   unsigned BitWidth = CI->getBitWidth();
2866 
2867   // Copy the value as we may massage the layout for constants whose bit width
2868   // is not a multiple of 64-bits.
2869   APInt Realigned(CI->getValue());
2870   uint64_t ExtraBits = 0;
2871   unsigned ExtraBitsSize = BitWidth & 63;
2872 
2873   if (ExtraBitsSize) {
2874     // The bit width of the data is not a multiple of 64-bits.
2875     // The extra bits are expected to be at the end of the chunk of the memory.
2876     // Little endian:
2877     // * Nothing to be done, just record the extra bits to emit.
2878     // Big endian:
2879     // * Record the extra bits to emit.
2880     // * Realign the raw data to emit the chunks of 64-bits.
2881     if (DL.isBigEndian()) {
2882       // Basically the structure of the raw data is a chunk of 64-bits cells:
2883       //    0        1         BitWidth / 64
2884       // [chunk1][chunk2] ... [chunkN].
2885       // The most significant chunk is chunkN and it should be emitted first.
2886       // However, due to the alignment issue chunkN contains useless bits.
2887       // Realign the chunks so that they contain only useful information:
2888       // ExtraBits     0       1       (BitWidth / 64) - 1
2889       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2890       ExtraBitsSize = alignTo(ExtraBitsSize, 8);
2891       ExtraBits = Realigned.getRawData()[0] &
2892         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2893       Realigned.lshrInPlace(ExtraBitsSize);
2894     } else
2895       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2896   }
2897 
2898   // We don't expect assemblers to support integer data directives
2899   // for more than 64 bits, so we emit the data in at most 64-bit
2900   // quantities at a time.
2901   const uint64_t *RawData = Realigned.getRawData();
2902   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2903     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2904     AP.OutStreamer->emitIntValue(Val, 8);
2905   }
2906 
2907   if (ExtraBitsSize) {
2908     // Emit the extra bits after the 64-bits chunks.
2909 
2910     // Emit a directive that fills the expected size.
2911     uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType());
2912     Size -= (BitWidth / 64) * 8;
2913     assert(Size && Size * 8 >= ExtraBitsSize &&
2914            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2915            == ExtraBits && "Directive too small for extra bits.");
2916     AP.OutStreamer->emitIntValue(ExtraBits, Size);
2917   }
2918 }
2919 
2920 /// Transform a not absolute MCExpr containing a reference to a GOT
2921 /// equivalent global, by a target specific GOT pc relative access to the
2922 /// final symbol.
2923 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2924                                          const Constant *BaseCst,
2925                                          uint64_t Offset) {
2926   // The global @foo below illustrates a global that uses a got equivalent.
2927   //
2928   //  @bar = global i32 42
2929   //  @gotequiv = private unnamed_addr constant i32* @bar
2930   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2931   //                             i64 ptrtoint (i32* @foo to i64))
2932   //                        to i32)
2933   //
2934   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2935   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2936   // form:
2937   //
2938   //  foo = cstexpr, where
2939   //    cstexpr := <gotequiv> - "." + <cst>
2940   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2941   //
2942   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2943   //
2944   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2945   //    gotpcrelcst := <offset from @foo base> + <cst>
2946   MCValue MV;
2947   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2948     return;
2949   const MCSymbolRefExpr *SymA = MV.getSymA();
2950   if (!SymA)
2951     return;
2952 
2953   // Check that GOT equivalent symbol is cached.
2954   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2955   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2956     return;
2957 
2958   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2959   if (!BaseGV)
2960     return;
2961 
2962   // Check for a valid base symbol
2963   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2964   const MCSymbolRefExpr *SymB = MV.getSymB();
2965 
2966   if (!SymB || BaseSym != &SymB->getSymbol())
2967     return;
2968 
2969   // Make sure to match:
2970   //
2971   //    gotpcrelcst := <offset from @foo base> + <cst>
2972   //
2973   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2974   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2975   // if the target knows how to encode it.
2976   int64_t GOTPCRelCst = Offset + MV.getConstant();
2977   if (GOTPCRelCst < 0)
2978     return;
2979   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2980     return;
2981 
2982   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2983   //
2984   //  bar:
2985   //    .long 42
2986   //  gotequiv:
2987   //    .quad bar
2988   //  foo:
2989   //    .long gotequiv - "." + <cst>
2990   //
2991   // is replaced by the target specific equivalent to:
2992   //
2993   //  bar:
2994   //    .long 42
2995   //  foo:
2996   //    .long bar@GOTPCREL+<gotpcrelcst>
2997   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2998   const GlobalVariable *GV = Result.first;
2999   int NumUses = (int)Result.second;
3000   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
3001   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
3002   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
3003       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
3004 
3005   // Update GOT equivalent usage information
3006   --NumUses;
3007   if (NumUses >= 0)
3008     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
3009 }
3010 
3011 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
3012                                    AsmPrinter &AP, const Constant *BaseCV,
3013                                    uint64_t Offset) {
3014   uint64_t Size = DL.getTypeAllocSize(CV->getType());
3015 
3016   // Globals with sub-elements such as combinations of arrays and structs
3017   // are handled recursively by emitGlobalConstantImpl. Keep track of the
3018   // constant symbol base and the current position with BaseCV and Offset.
3019   if (!BaseCV && CV->hasOneUse())
3020     BaseCV = dyn_cast<Constant>(CV->user_back());
3021 
3022   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
3023     return AP.OutStreamer->emitZeros(Size);
3024 
3025   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
3026     const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType());
3027 
3028     if (StoreSize <= 8) {
3029       if (AP.isVerbose())
3030         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
3031                                                  CI->getZExtValue());
3032       AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize);
3033     } else {
3034       emitGlobalConstantLargeInt(CI, AP);
3035     }
3036 
3037     // Emit tail padding if needed
3038     if (Size != StoreSize)
3039       AP.OutStreamer->emitZeros(Size - StoreSize);
3040 
3041     return;
3042   }
3043 
3044   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
3045     return emitGlobalConstantFP(CFP, AP);
3046 
3047   if (isa<ConstantPointerNull>(CV)) {
3048     AP.OutStreamer->emitIntValue(0, Size);
3049     return;
3050   }
3051 
3052   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
3053     return emitGlobalConstantDataSequential(DL, CDS, AP);
3054 
3055   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
3056     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
3057 
3058   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
3059     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
3060 
3061   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
3062     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
3063     // vectors).
3064     if (CE->getOpcode() == Instruction::BitCast)
3065       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
3066 
3067     if (Size > 8) {
3068       // If the constant expression's size is greater than 64-bits, then we have
3069       // to emit the value in chunks. Try to constant fold the value and emit it
3070       // that way.
3071       Constant *New = ConstantFoldConstant(CE, DL);
3072       if (New != CE)
3073         return emitGlobalConstantImpl(DL, New, AP);
3074     }
3075   }
3076 
3077   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
3078     return emitGlobalConstantVector(DL, V, AP);
3079 
3080   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
3081   // thread the streamer with EmitValue.
3082   const MCExpr *ME = AP.lowerConstant(CV);
3083 
3084   // Since lowerConstant already folded and got rid of all IR pointer and
3085   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
3086   // directly.
3087   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
3088     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
3089 
3090   AP.OutStreamer->emitValue(ME, Size);
3091 }
3092 
3093 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
3094 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) {
3095   uint64_t Size = DL.getTypeAllocSize(CV->getType());
3096   if (Size)
3097     emitGlobalConstantImpl(DL, CV, *this);
3098   else if (MAI->hasSubsectionsViaSymbols()) {
3099     // If the global has zero size, emit a single byte so that two labels don't
3100     // look like they are at the same location.
3101     OutStreamer->emitIntValue(0, 1);
3102   }
3103 }
3104 
3105 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
3106   // Target doesn't support this yet!
3107   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
3108 }
3109 
3110 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
3111   if (Offset > 0)
3112     OS << '+' << Offset;
3113   else if (Offset < 0)
3114     OS << Offset;
3115 }
3116 
3117 void AsmPrinter::emitNops(unsigned N) {
3118   MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop();
3119   for (; N; --N)
3120     EmitToStreamer(*OutStreamer, Nop);
3121 }
3122 
3123 //===----------------------------------------------------------------------===//
3124 // Symbol Lowering Routines.
3125 //===----------------------------------------------------------------------===//
3126 
3127 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
3128   return OutContext.createTempSymbol(Name, true);
3129 }
3130 
3131 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
3132   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
3133 }
3134 
3135 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
3136   return MMI->getAddrLabelSymbol(BB);
3137 }
3138 
3139 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
3140 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
3141   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
3142     const MachineConstantPoolEntry &CPE =
3143         MF->getConstantPool()->getConstants()[CPID];
3144     if (!CPE.isMachineConstantPoolEntry()) {
3145       const DataLayout &DL = MF->getDataLayout();
3146       SectionKind Kind = CPE.getSectionKind(&DL);
3147       const Constant *C = CPE.Val.ConstVal;
3148       Align Alignment = CPE.Alignment;
3149       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
3150               getObjFileLowering().getSectionForConstant(DL, Kind, C,
3151                                                          Alignment))) {
3152         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
3153           if (Sym->isUndefined())
3154             OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
3155           return Sym;
3156         }
3157       }
3158     }
3159   }
3160 
3161   const DataLayout &DL = getDataLayout();
3162   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3163                                       "CPI" + Twine(getFunctionNumber()) + "_" +
3164                                       Twine(CPID));
3165 }
3166 
3167 /// GetJTISymbol - Return the symbol for the specified jump table entry.
3168 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
3169   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
3170 }
3171 
3172 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
3173 /// FIXME: privatize to AsmPrinter.
3174 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
3175   const DataLayout &DL = getDataLayout();
3176   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3177                                       Twine(getFunctionNumber()) + "_" +
3178                                       Twine(UID) + "_set_" + Twine(MBBID));
3179 }
3180 
3181 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
3182                                                    StringRef Suffix) const {
3183   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
3184 }
3185 
3186 /// Return the MCSymbol for the specified ExternalSymbol.
3187 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
3188   SmallString<60> NameStr;
3189   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
3190   return OutContext.getOrCreateSymbol(NameStr);
3191 }
3192 
3193 /// PrintParentLoopComment - Print comments about parent loops of this one.
3194 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3195                                    unsigned FunctionNumber) {
3196   if (!Loop) return;
3197   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
3198   OS.indent(Loop->getLoopDepth()*2)
3199     << "Parent Loop BB" << FunctionNumber << "_"
3200     << Loop->getHeader()->getNumber()
3201     << " Depth=" << Loop->getLoopDepth() << '\n';
3202 }
3203 
3204 /// PrintChildLoopComment - Print comments about child loops within
3205 /// the loop for this basic block, with nesting.
3206 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3207                                   unsigned FunctionNumber) {
3208   // Add child loop information
3209   for (const MachineLoop *CL : *Loop) {
3210     OS.indent(CL->getLoopDepth()*2)
3211       << "Child Loop BB" << FunctionNumber << "_"
3212       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
3213       << '\n';
3214     PrintChildLoopComment(OS, CL, FunctionNumber);
3215   }
3216 }
3217 
3218 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
3219 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
3220                                        const MachineLoopInfo *LI,
3221                                        const AsmPrinter &AP) {
3222   // Add loop depth information
3223   const MachineLoop *Loop = LI->getLoopFor(&MBB);
3224   if (!Loop) return;
3225 
3226   MachineBasicBlock *Header = Loop->getHeader();
3227   assert(Header && "No header for loop");
3228 
3229   // If this block is not a loop header, just print out what is the loop header
3230   // and return.
3231   if (Header != &MBB) {
3232     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
3233                                Twine(AP.getFunctionNumber())+"_" +
3234                                Twine(Loop->getHeader()->getNumber())+
3235                                " Depth="+Twine(Loop->getLoopDepth()));
3236     return;
3237   }
3238 
3239   // Otherwise, it is a loop header.  Print out information about child and
3240   // parent loops.
3241   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
3242 
3243   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
3244 
3245   OS << "=>";
3246   OS.indent(Loop->getLoopDepth()*2-2);
3247 
3248   OS << "This ";
3249   if (Loop->isInnermost())
3250     OS << "Inner ";
3251   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
3252 
3253   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
3254 }
3255 
3256 /// emitBasicBlockStart - This method prints the label for the specified
3257 /// MachineBasicBlock, an alignment (if present) and a comment describing
3258 /// it if appropriate.
3259 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
3260   // End the previous funclet and start a new one.
3261   if (MBB.isEHFuncletEntry()) {
3262     for (const HandlerInfo &HI : Handlers) {
3263       HI.Handler->endFunclet();
3264       HI.Handler->beginFunclet(MBB);
3265     }
3266   }
3267 
3268   // Emit an alignment directive for this block, if needed.
3269   const Align Alignment = MBB.getAlignment();
3270   if (Alignment != Align(1))
3271     emitAlignment(Alignment);
3272 
3273   // Switch to a new section if this basic block must begin a section. The
3274   // entry block is always placed in the function section and is handled
3275   // separately.
3276   if (MBB.isBeginSection() && !MBB.isEntryBlock()) {
3277     OutStreamer->SwitchSection(
3278         getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
3279                                                             MBB, TM));
3280     CurrentSectionBeginSym = MBB.getSymbol();
3281   }
3282 
3283   // If the block has its address taken, emit any labels that were used to
3284   // reference the block.  It is possible that there is more than one label
3285   // here, because multiple LLVM BB's may have been RAUW'd to this block after
3286   // the references were generated.
3287   const BasicBlock *BB = MBB.getBasicBlock();
3288   if (MBB.hasAddressTaken()) {
3289     if (isVerbose())
3290       OutStreamer->AddComment("Block address taken");
3291 
3292     // MBBs can have their address taken as part of CodeGen without having
3293     // their corresponding BB's address taken in IR
3294     if (BB && BB->hasAddressTaken())
3295       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
3296         OutStreamer->emitLabel(Sym);
3297   }
3298 
3299   // Print some verbose block comments.
3300   if (isVerbose()) {
3301     if (BB) {
3302       if (BB->hasName()) {
3303         BB->printAsOperand(OutStreamer->GetCommentOS(),
3304                            /*PrintType=*/false, BB->getModule());
3305         OutStreamer->GetCommentOS() << '\n';
3306       }
3307     }
3308 
3309     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
3310     emitBasicBlockLoopComments(MBB, MLI, *this);
3311   }
3312 
3313   // Print the main label for the block.
3314   if (shouldEmitLabelForBasicBlock(MBB)) {
3315     if (isVerbose() && MBB.hasLabelMustBeEmitted())
3316       OutStreamer->AddComment("Label of block must be emitted");
3317     OutStreamer->emitLabel(MBB.getSymbol());
3318   } else {
3319     if (isVerbose()) {
3320       // NOTE: Want this comment at start of line, don't emit with AddComment.
3321       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
3322                                   false);
3323     }
3324   }
3325 
3326   if (MBB.isEHCatchretTarget() &&
3327       MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) {
3328     OutStreamer->emitLabel(MBB.getEHCatchretSymbol());
3329   }
3330 
3331   // With BB sections, each basic block must handle CFI information on its own
3332   // if it begins a section (Entry block is handled separately by
3333   // AsmPrinterHandler::beginFunction).
3334   if (MBB.isBeginSection() && !MBB.isEntryBlock())
3335     for (const HandlerInfo &HI : Handlers)
3336       HI.Handler->beginBasicBlock(MBB);
3337 }
3338 
3339 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
3340   // Check if CFI information needs to be updated for this MBB with basic block
3341   // sections.
3342   if (MBB.isEndSection())
3343     for (const HandlerInfo &HI : Handlers)
3344       HI.Handler->endBasicBlock(MBB);
3345 }
3346 
3347 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
3348                                 bool IsDefinition) const {
3349   MCSymbolAttr Attr = MCSA_Invalid;
3350 
3351   switch (Visibility) {
3352   default: break;
3353   case GlobalValue::HiddenVisibility:
3354     if (IsDefinition)
3355       Attr = MAI->getHiddenVisibilityAttr();
3356     else
3357       Attr = MAI->getHiddenDeclarationVisibilityAttr();
3358     break;
3359   case GlobalValue::ProtectedVisibility:
3360     Attr = MAI->getProtectedVisibilityAttr();
3361     break;
3362   }
3363 
3364   if (Attr != MCSA_Invalid)
3365     OutStreamer->emitSymbolAttribute(Sym, Attr);
3366 }
3367 
3368 bool AsmPrinter::shouldEmitLabelForBasicBlock(
3369     const MachineBasicBlock &MBB) const {
3370   // With `-fbasic-block-sections=`, a label is needed for every non-entry block
3371   // in the labels mode (option `=labels`) and every section beginning in the
3372   // sections mode (`=all` and `=list=`).
3373   if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock())
3374     return true;
3375   // A label is needed for any block with at least one predecessor (when that
3376   // predecessor is not the fallthrough predecessor, or if it is an EH funclet
3377   // entry, or if a label is forced).
3378   return !MBB.pred_empty() &&
3379          (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() ||
3380           MBB.hasLabelMustBeEmitted());
3381 }
3382 
3383 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3384 /// exactly one predecessor and the control transfer mechanism between
3385 /// the predecessor and this block is a fall-through.
3386 bool AsmPrinter::
3387 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3388   // If this is a landing pad, it isn't a fall through.  If it has no preds,
3389   // then nothing falls through to it.
3390   if (MBB->isEHPad() || MBB->pred_empty())
3391     return false;
3392 
3393   // If there isn't exactly one predecessor, it can't be a fall through.
3394   if (MBB->pred_size() > 1)
3395     return false;
3396 
3397   // The predecessor has to be immediately before this block.
3398   MachineBasicBlock *Pred = *MBB->pred_begin();
3399   if (!Pred->isLayoutSuccessor(MBB))
3400     return false;
3401 
3402   // If the block is completely empty, then it definitely does fall through.
3403   if (Pred->empty())
3404     return true;
3405 
3406   // Check the terminators in the previous blocks
3407   for (const auto &MI : Pred->terminators()) {
3408     // If it is not a simple branch, we are in a table somewhere.
3409     if (!MI.isBranch() || MI.isIndirectBranch())
3410       return false;
3411 
3412     // If we are the operands of one of the branches, this is not a fall
3413     // through. Note that targets with delay slots will usually bundle
3414     // terminators with the delay slot instruction.
3415     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3416       if (OP->isJTI())
3417         return false;
3418       if (OP->isMBB() && OP->getMBB() == MBB)
3419         return false;
3420     }
3421   }
3422 
3423   return true;
3424 }
3425 
3426 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3427   if (!S.usesMetadata())
3428     return nullptr;
3429 
3430   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3431   gcp_map_type::iterator GCPI = GCMap.find(&S);
3432   if (GCPI != GCMap.end())
3433     return GCPI->second.get();
3434 
3435   auto Name = S.getName();
3436 
3437   for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter :
3438        GCMetadataPrinterRegistry::entries())
3439     if (Name == GCMetaPrinter.getName()) {
3440       std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate();
3441       GMP->S = &S;
3442       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3443       return IterBool.first->second.get();
3444     }
3445 
3446   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3447 }
3448 
3449 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3450   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3451   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3452   bool NeedsDefault = false;
3453   if (MI->begin() == MI->end())
3454     // No GC strategy, use the default format.
3455     NeedsDefault = true;
3456   else
3457     for (auto &I : *MI) {
3458       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3459         if (MP->emitStackMaps(SM, *this))
3460           continue;
3461       // The strategy doesn't have printer or doesn't emit custom stack maps.
3462       // Use the default format.
3463       NeedsDefault = true;
3464     }
3465 
3466   if (NeedsDefault)
3467     SM.serializeToStackMapSection();
3468 }
3469 
3470 /// Pin vtable to this file.
3471 AsmPrinterHandler::~AsmPrinterHandler() = default;
3472 
3473 void AsmPrinterHandler::markFunctionEnd() {}
3474 
3475 // In the binary's "xray_instr_map" section, an array of these function entries
3476 // describes each instrumentation point.  When XRay patches your code, the index
3477 // into this table will be given to your handler as a patch point identifier.
3478 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const {
3479   auto Kind8 = static_cast<uint8_t>(Kind);
3480   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3481   Out->emitBinaryData(
3482       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3483   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3484   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3485   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3486   Out->emitZeros(Padding);
3487 }
3488 
3489 void AsmPrinter::emitXRayTable() {
3490   if (Sleds.empty())
3491     return;
3492 
3493   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3494   const Function &F = MF->getFunction();
3495   MCSection *InstMap = nullptr;
3496   MCSection *FnSledIndex = nullptr;
3497   const Triple &TT = TM.getTargetTriple();
3498   // Use PC-relative addresses on all targets.
3499   if (TT.isOSBinFormatELF()) {
3500     auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3501     auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3502     StringRef GroupName;
3503     if (F.hasComdat()) {
3504       Flags |= ELF::SHF_GROUP;
3505       GroupName = F.getComdat()->getName();
3506     }
3507     InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
3508                                        Flags, 0, GroupName, F.hasComdat(),
3509                                        MCSection::NonUniqueID, LinkedToSym);
3510 
3511     if (!TM.Options.XRayOmitFunctionIndex)
3512       FnSledIndex = OutContext.getELFSection(
3513           "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0,
3514           GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym);
3515   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3516     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3517                                          SectionKind::getReadOnlyWithRel());
3518     if (!TM.Options.XRayOmitFunctionIndex)
3519       FnSledIndex = OutContext.getMachOSection(
3520           "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel());
3521   } else {
3522     llvm_unreachable("Unsupported target");
3523   }
3524 
3525   auto WordSizeBytes = MAI->getCodePointerSize();
3526 
3527   // Now we switch to the instrumentation map section. Because this is done
3528   // per-function, we are able to create an index entry that will represent the
3529   // range of sleds associated with a function.
3530   auto &Ctx = OutContext;
3531   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3532   OutStreamer->SwitchSection(InstMap);
3533   OutStreamer->emitLabel(SledsStart);
3534   for (const auto &Sled : Sleds) {
3535     MCSymbol *Dot = Ctx.createTempSymbol();
3536     OutStreamer->emitLabel(Dot);
3537     OutStreamer->emitValueImpl(
3538         MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx),
3539                                 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
3540         WordSizeBytes);
3541     OutStreamer->emitValueImpl(
3542         MCBinaryExpr::createSub(
3543             MCSymbolRefExpr::create(CurrentFnBegin, Ctx),
3544             MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx),
3545                                     MCConstantExpr::create(WordSizeBytes, Ctx),
3546                                     Ctx),
3547             Ctx),
3548         WordSizeBytes);
3549     Sled.emit(WordSizeBytes, OutStreamer.get());
3550   }
3551   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3552   OutStreamer->emitLabel(SledsEnd);
3553 
3554   // We then emit a single entry in the index per function. We use the symbols
3555   // that bound the instrumentation map as the range for a specific function.
3556   // Each entry here will be 2 * word size aligned, as we're writing down two
3557   // pointers. This should work for both 32-bit and 64-bit platforms.
3558   if (FnSledIndex) {
3559     OutStreamer->SwitchSection(FnSledIndex);
3560     OutStreamer->emitCodeAlignment(2 * WordSizeBytes, &getSubtargetInfo());
3561     OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false);
3562     OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false);
3563     OutStreamer->SwitchSection(PrevSection);
3564   }
3565   Sleds.clear();
3566 }
3567 
3568 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3569                             SledKind Kind, uint8_t Version) {
3570   const Function &F = MI.getMF()->getFunction();
3571   auto Attr = F.getFnAttribute("function-instrument");
3572   bool LogArgs = F.hasFnAttribute("xray-log-args");
3573   bool AlwaysInstrument =
3574     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3575   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3576     Kind = SledKind::LOG_ARGS_ENTER;
3577   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3578                                        AlwaysInstrument, &F, Version});
3579 }
3580 
3581 void AsmPrinter::emitPatchableFunctionEntries() {
3582   const Function &F = MF->getFunction();
3583   unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
3584   (void)F.getFnAttribute("patchable-function-prefix")
3585       .getValueAsString()
3586       .getAsInteger(10, PatchableFunctionPrefix);
3587   (void)F.getFnAttribute("patchable-function-entry")
3588       .getValueAsString()
3589       .getAsInteger(10, PatchableFunctionEntry);
3590   if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
3591     return;
3592   const unsigned PointerSize = getPointerSize();
3593   if (TM.getTargetTriple().isOSBinFormatELF()) {
3594     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
3595     const MCSymbolELF *LinkedToSym = nullptr;
3596     StringRef GroupName;
3597 
3598     // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not
3599     // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections.
3600     if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) {
3601       Flags |= ELF::SHF_LINK_ORDER;
3602       if (F.hasComdat()) {
3603         Flags |= ELF::SHF_GROUP;
3604         GroupName = F.getComdat()->getName();
3605       }
3606       LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3607     }
3608     OutStreamer->SwitchSection(OutContext.getELFSection(
3609         "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName,
3610         F.hasComdat(), MCSection::NonUniqueID, LinkedToSym));
3611     emitAlignment(Align(PointerSize));
3612     OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
3613   }
3614 }
3615 
3616 uint16_t AsmPrinter::getDwarfVersion() const {
3617   return OutStreamer->getContext().getDwarfVersion();
3618 }
3619 
3620 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3621   OutStreamer->getContext().setDwarfVersion(Version);
3622 }
3623 
3624 bool AsmPrinter::isDwarf64() const {
3625   return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64;
3626 }
3627 
3628 unsigned int AsmPrinter::getDwarfOffsetByteSize() const {
3629   return dwarf::getDwarfOffsetByteSize(
3630       OutStreamer->getContext().getDwarfFormat());
3631 }
3632 
3633 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const {
3634   return dwarf::getUnitLengthFieldByteSize(
3635       OutStreamer->getContext().getDwarfFormat());
3636 }
3637