1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "PseudoProbePrinter.h" 18 #include "WasmException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/BinaryFormat/COFF.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/BinaryFormat/ELF.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/GCMetadataPrinter.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineConstantPool.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBundle.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineMemOperand.h" 52 #include "llvm/CodeGen/MachineModuleInfo.h" 53 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 54 #include "llvm/CodeGen/MachineOperand.h" 55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/TargetFrameLowering.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/Config/config.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/Comdat.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GCStrategy.h" 72 #include "llvm/IR/GlobalAlias.h" 73 #include "llvm/IR/GlobalIFunc.h" 74 #include "llvm/IR/GlobalObject.h" 75 #include "llvm/IR/GlobalValue.h" 76 #include "llvm/IR/GlobalVariable.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Mangler.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PseudoProbe.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/MC/MCAsmInfo.h" 86 #include "llvm/MC/MCContext.h" 87 #include "llvm/MC/MCDirectives.h" 88 #include "llvm/MC/MCDwarf.h" 89 #include "llvm/MC/MCExpr.h" 90 #include "llvm/MC/MCInst.h" 91 #include "llvm/MC/MCSection.h" 92 #include "llvm/MC/MCSectionCOFF.h" 93 #include "llvm/MC/MCSectionELF.h" 94 #include "llvm/MC/MCSectionMachO.h" 95 #include "llvm/MC/MCSectionXCOFF.h" 96 #include "llvm/MC/MCStreamer.h" 97 #include "llvm/MC/MCSubtargetInfo.h" 98 #include "llvm/MC/MCSymbol.h" 99 #include "llvm/MC/MCSymbolELF.h" 100 #include "llvm/MC/MCSymbolXCOFF.h" 101 #include "llvm/MC/MCTargetOptions.h" 102 #include "llvm/MC/MCValue.h" 103 #include "llvm/MC/SectionKind.h" 104 #include "llvm/MC/TargetRegistry.h" 105 #include "llvm/Pass.h" 106 #include "llvm/Remarks/Remark.h" 107 #include "llvm/Remarks/RemarkFormat.h" 108 #include "llvm/Remarks/RemarkStreamer.h" 109 #include "llvm/Remarks/RemarkStringTable.h" 110 #include "llvm/Support/Casting.h" 111 #include "llvm/Support/CommandLine.h" 112 #include "llvm/Support/Compiler.h" 113 #include "llvm/Support/ErrorHandling.h" 114 #include "llvm/Support/FileSystem.h" 115 #include "llvm/Support/Format.h" 116 #include "llvm/Support/MathExtras.h" 117 #include "llvm/Support/Path.h" 118 #include "llvm/Support/Timer.h" 119 #include "llvm/Support/raw_ostream.h" 120 #include "llvm/Target/TargetLoweringObjectFile.h" 121 #include "llvm/Target/TargetMachine.h" 122 #include "llvm/Target/TargetOptions.h" 123 #include <algorithm> 124 #include <cassert> 125 #include <cinttypes> 126 #include <cstdint> 127 #include <iterator> 128 #include <limits> 129 #include <memory> 130 #include <string> 131 #include <utility> 132 #include <vector> 133 134 using namespace llvm; 135 136 #define DEBUG_TYPE "asm-printer" 137 138 // FIXME: this option currently only applies to DWARF, and not CodeView, tables 139 static cl::opt<bool> 140 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 141 cl::desc("Disable debug info printing")); 142 143 const char DWARFGroupName[] = "dwarf"; 144 const char DWARFGroupDescription[] = "DWARF Emission"; 145 const char DbgTimerName[] = "emit"; 146 const char DbgTimerDescription[] = "Debug Info Emission"; 147 const char EHTimerName[] = "write_exception"; 148 const char EHTimerDescription[] = "DWARF Exception Writer"; 149 const char CFGuardName[] = "Control Flow Guard"; 150 const char CFGuardDescription[] = "Control Flow Guard"; 151 const char CodeViewLineTablesGroupName[] = "linetables"; 152 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables"; 153 const char PPTimerName[] = "emit"; 154 const char PPTimerDescription[] = "Pseudo Probe Emission"; 155 const char PPGroupName[] = "pseudo probe"; 156 const char PPGroupDescription[] = "Pseudo Probe Emission"; 157 158 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 159 160 char AsmPrinter::ID = 0; 161 162 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 163 164 static gcp_map_type &getGCMap(void *&P) { 165 if (!P) 166 P = new gcp_map_type(); 167 return *(gcp_map_type*)P; 168 } 169 170 /// getGVAlignment - Return the alignment to use for the specified global 171 /// value. This rounds up to the preferred alignment if possible and legal. 172 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 173 Align InAlign) { 174 Align Alignment; 175 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 176 Alignment = DL.getPreferredAlign(GVar); 177 178 // If InAlign is specified, round it to it. 179 if (InAlign > Alignment) 180 Alignment = InAlign; 181 182 // If the GV has a specified alignment, take it into account. 183 const MaybeAlign GVAlign(GV->getAlignment()); 184 if (!GVAlign) 185 return Alignment; 186 187 assert(GVAlign && "GVAlign must be set"); 188 189 // If the GVAlign is larger than NumBits, or if we are required to obey 190 // NumBits because the GV has an assigned section, obey it. 191 if (*GVAlign > Alignment || GV->hasSection()) 192 Alignment = *GVAlign; 193 return Alignment; 194 } 195 196 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 197 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 198 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 199 VerboseAsm = OutStreamer->isVerboseAsm(); 200 } 201 202 AsmPrinter::~AsmPrinter() { 203 assert(!DD && Handlers.size() == NumUserHandlers && 204 "Debug/EH info didn't get finalized"); 205 206 if (GCMetadataPrinters) { 207 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 208 209 delete &GCMap; 210 GCMetadataPrinters = nullptr; 211 } 212 } 213 214 bool AsmPrinter::isPositionIndependent() const { 215 return TM.isPositionIndependent(); 216 } 217 218 /// getFunctionNumber - Return a unique ID for the current function. 219 unsigned AsmPrinter::getFunctionNumber() const { 220 return MF->getFunctionNumber(); 221 } 222 223 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 224 return *TM.getObjFileLowering(); 225 } 226 227 const DataLayout &AsmPrinter::getDataLayout() const { 228 return MMI->getModule()->getDataLayout(); 229 } 230 231 // Do not use the cached DataLayout because some client use it without a Module 232 // (dsymutil, llvm-dwarfdump). 233 unsigned AsmPrinter::getPointerSize() const { 234 return TM.getPointerSize(0); // FIXME: Default address space 235 } 236 237 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 238 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 239 return MF->getSubtarget<MCSubtargetInfo>(); 240 } 241 242 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 243 S.emitInstruction(Inst, getSubtargetInfo()); 244 } 245 246 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 247 if (DD) { 248 assert(OutStreamer->hasRawTextSupport() && 249 "Expected assembly output mode."); 250 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 251 } 252 } 253 254 /// getCurrentSection() - Return the current section we are emitting to. 255 const MCSection *AsmPrinter::getCurrentSection() const { 256 return OutStreamer->getCurrentSectionOnly(); 257 } 258 259 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 260 AU.setPreservesAll(); 261 MachineFunctionPass::getAnalysisUsage(AU); 262 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 263 AU.addRequired<GCModuleInfo>(); 264 } 265 266 bool AsmPrinter::doInitialization(Module &M) { 267 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 268 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 269 270 // Initialize TargetLoweringObjectFile. 271 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 272 .Initialize(OutContext, TM); 273 274 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 275 .getModuleMetadata(M); 276 277 OutStreamer->initSections(false, *TM.getMCSubtargetInfo()); 278 279 if (DisableDebugInfoPrinting) 280 MMI->setDebugInfoAvailability(false); 281 282 // Emit the version-min deployment target directive if needed. 283 // 284 // FIXME: If we end up with a collection of these sorts of Darwin-specific 285 // or ELF-specific things, it may make sense to have a platform helper class 286 // that will work with the target helper class. For now keep it here, as the 287 // alternative is duplicated code in each of the target asm printers that 288 // use the directive, where it would need the same conditionalization 289 // anyway. 290 const Triple &Target = TM.getTargetTriple(); 291 OutStreamer->emitVersionForTarget(Target, M.getSDKVersion()); 292 293 // Allow the target to emit any magic that it wants at the start of the file. 294 emitStartOfAsmFile(M); 295 296 // Very minimal debug info. It is ignored if we emit actual debug info. If we 297 // don't, this at least helps the user find where a global came from. 298 if (MAI->hasSingleParameterDotFile()) { 299 // .file "foo.c" 300 301 SmallString<128> FileName; 302 if (MAI->hasBasenameOnlyForFileDirective()) 303 FileName = llvm::sys::path::filename(M.getSourceFileName()); 304 else 305 FileName = M.getSourceFileName(); 306 if (MAI->hasFourStringsDotFile()) { 307 #ifdef PACKAGE_VENDOR 308 const char VerStr[] = 309 PACKAGE_VENDOR " " PACKAGE_NAME " version " PACKAGE_VERSION; 310 #else 311 const char VerStr[] = PACKAGE_NAME " version " PACKAGE_VERSION; 312 #endif 313 // TODO: Add timestamp and description. 314 OutStreamer->emitFileDirective(FileName, VerStr, "", ""); 315 } else { 316 OutStreamer->emitFileDirective(FileName); 317 } 318 } 319 320 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 321 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 322 for (auto &I : *MI) 323 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 324 MP->beginAssembly(M, *MI, *this); 325 326 // Emit module-level inline asm if it exists. 327 if (!M.getModuleInlineAsm().empty()) { 328 OutStreamer->AddComment("Start of file scope inline assembly"); 329 OutStreamer->AddBlankLine(); 330 emitInlineAsm(M.getModuleInlineAsm() + "\n", *TM.getMCSubtargetInfo(), 331 TM.Options.MCOptions); 332 OutStreamer->AddComment("End of file scope inline assembly"); 333 OutStreamer->AddBlankLine(); 334 } 335 336 if (MAI->doesSupportDebugInformation()) { 337 bool EmitCodeView = M.getCodeViewFlag(); 338 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 339 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 340 DbgTimerName, DbgTimerDescription, 341 CodeViewLineTablesGroupName, 342 CodeViewLineTablesGroupDescription); 343 } 344 if (!EmitCodeView || M.getDwarfVersion()) { 345 if (!DisableDebugInfoPrinting) { 346 DD = new DwarfDebug(this); 347 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 348 DbgTimerDescription, DWARFGroupName, 349 DWARFGroupDescription); 350 } 351 } 352 } 353 354 if (M.getNamedMetadata(PseudoProbeDescMetadataName)) { 355 PP = new PseudoProbeHandler(this); 356 Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName, 357 PPTimerDescription, PPGroupName, PPGroupDescription); 358 } 359 360 switch (MAI->getExceptionHandlingType()) { 361 case ExceptionHandling::None: 362 // We may want to emit CFI for debug. 363 LLVM_FALLTHROUGH; 364 case ExceptionHandling::SjLj: 365 case ExceptionHandling::DwarfCFI: 366 case ExceptionHandling::ARM: 367 for (auto &F : M.getFunctionList()) { 368 if (getFunctionCFISectionType(F) != CFISection::None) 369 ModuleCFISection = getFunctionCFISectionType(F); 370 // If any function needsUnwindTableEntry(), it needs .eh_frame and hence 371 // the module needs .eh_frame. If we have found that case, we are done. 372 if (ModuleCFISection == CFISection::EH) 373 break; 374 } 375 assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI || 376 ModuleCFISection != CFISection::EH); 377 break; 378 default: 379 break; 380 } 381 382 EHStreamer *ES = nullptr; 383 switch (MAI->getExceptionHandlingType()) { 384 case ExceptionHandling::None: 385 if (!needsCFIForDebug()) 386 break; 387 LLVM_FALLTHROUGH; 388 case ExceptionHandling::SjLj: 389 case ExceptionHandling::DwarfCFI: 390 ES = new DwarfCFIException(this); 391 break; 392 case ExceptionHandling::ARM: 393 ES = new ARMException(this); 394 break; 395 case ExceptionHandling::WinEH: 396 switch (MAI->getWinEHEncodingType()) { 397 default: llvm_unreachable("unsupported unwinding information encoding"); 398 case WinEH::EncodingType::Invalid: 399 break; 400 case WinEH::EncodingType::X86: 401 case WinEH::EncodingType::Itanium: 402 ES = new WinException(this); 403 break; 404 } 405 break; 406 case ExceptionHandling::Wasm: 407 ES = new WasmException(this); 408 break; 409 case ExceptionHandling::AIX: 410 ES = new AIXException(this); 411 break; 412 } 413 if (ES) 414 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 415 EHTimerDescription, DWARFGroupName, 416 DWARFGroupDescription); 417 418 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 419 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 420 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 421 CFGuardDescription, DWARFGroupName, 422 DWARFGroupDescription); 423 424 for (const HandlerInfo &HI : Handlers) { 425 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 426 HI.TimerGroupDescription, TimePassesIsEnabled); 427 HI.Handler->beginModule(&M); 428 } 429 430 return false; 431 } 432 433 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 434 if (!MAI.hasWeakDefCanBeHiddenDirective()) 435 return false; 436 437 return GV->canBeOmittedFromSymbolTable(); 438 } 439 440 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 441 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 442 switch (Linkage) { 443 case GlobalValue::CommonLinkage: 444 case GlobalValue::LinkOnceAnyLinkage: 445 case GlobalValue::LinkOnceODRLinkage: 446 case GlobalValue::WeakAnyLinkage: 447 case GlobalValue::WeakODRLinkage: 448 if (MAI->hasWeakDefDirective()) { 449 // .globl _foo 450 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 451 452 if (!canBeHidden(GV, *MAI)) 453 // .weak_definition _foo 454 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 455 else 456 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 457 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 458 // .globl _foo 459 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 460 //NOTE: linkonce is handled by the section the symbol was assigned to. 461 } else { 462 // .weak _foo 463 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 464 } 465 return; 466 case GlobalValue::ExternalLinkage: 467 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 468 return; 469 case GlobalValue::PrivateLinkage: 470 case GlobalValue::InternalLinkage: 471 return; 472 case GlobalValue::ExternalWeakLinkage: 473 case GlobalValue::AvailableExternallyLinkage: 474 case GlobalValue::AppendingLinkage: 475 llvm_unreachable("Should never emit this"); 476 } 477 llvm_unreachable("Unknown linkage type!"); 478 } 479 480 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 481 const GlobalValue *GV) const { 482 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 483 } 484 485 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 486 return TM.getSymbol(GV); 487 } 488 489 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 490 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 491 // exact definion (intersection of GlobalValue::hasExactDefinition() and 492 // !isInterposable()). These linkages include: external, appending, internal, 493 // private. It may be profitable to use a local alias for external. The 494 // assembler would otherwise be conservative and assume a global default 495 // visibility symbol can be interposable, even if the code generator already 496 // assumed it. 497 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 498 const Module &M = *GV.getParent(); 499 if (TM.getRelocationModel() != Reloc::Static && 500 M.getPIELevel() == PIELevel::Default && GV.isDSOLocal()) 501 return getSymbolWithGlobalValueBase(&GV, "$local"); 502 } 503 return TM.getSymbol(&GV); 504 } 505 506 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 507 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 508 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 509 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 510 "No emulated TLS variables in the common section"); 511 512 // Never emit TLS variable xyz in emulated TLS model. 513 // The initialization value is in __emutls_t.xyz instead of xyz. 514 if (IsEmuTLSVar) 515 return; 516 517 if (GV->hasInitializer()) { 518 // Check to see if this is a special global used by LLVM, if so, emit it. 519 if (emitSpecialLLVMGlobal(GV)) 520 return; 521 522 // Skip the emission of global equivalents. The symbol can be emitted later 523 // on by emitGlobalGOTEquivs in case it turns out to be needed. 524 if (GlobalGOTEquivs.count(getSymbol(GV))) 525 return; 526 527 if (isVerbose()) { 528 // When printing the control variable __emutls_v.*, 529 // we don't need to print the original TLS variable name. 530 GV->printAsOperand(OutStreamer->GetCommentOS(), 531 /*PrintType=*/false, GV->getParent()); 532 OutStreamer->GetCommentOS() << '\n'; 533 } 534 } 535 536 MCSymbol *GVSym = getSymbol(GV); 537 MCSymbol *EmittedSym = GVSym; 538 539 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 540 // attributes. 541 // GV's or GVSym's attributes will be used for the EmittedSym. 542 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 543 544 if (!GV->hasInitializer()) // External globals require no extra code. 545 return; 546 547 GVSym->redefineIfPossible(); 548 if (GVSym->isDefined() || GVSym->isVariable()) 549 OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) + 550 "' is already defined"); 551 552 if (MAI->hasDotTypeDotSizeDirective()) 553 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 554 555 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 556 557 const DataLayout &DL = GV->getParent()->getDataLayout(); 558 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 559 560 // If the alignment is specified, we *must* obey it. Overaligning a global 561 // with a specified alignment is a prompt way to break globals emitted to 562 // sections and expected to be contiguous (e.g. ObjC metadata). 563 const Align Alignment = getGVAlignment(GV, DL); 564 565 for (const HandlerInfo &HI : Handlers) { 566 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 567 HI.TimerGroupName, HI.TimerGroupDescription, 568 TimePassesIsEnabled); 569 HI.Handler->setSymbolSize(GVSym, Size); 570 } 571 572 // Handle common symbols 573 if (GVKind.isCommon()) { 574 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 575 // .comm _foo, 42, 4 576 const bool SupportsAlignment = 577 getObjFileLowering().getCommDirectiveSupportsAlignment(); 578 OutStreamer->emitCommonSymbol(GVSym, Size, 579 SupportsAlignment ? Alignment.value() : 0); 580 return; 581 } 582 583 // Determine to which section this global should be emitted. 584 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 585 586 // If we have a bss global going to a section that supports the 587 // zerofill directive, do so here. 588 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 589 TheSection->isVirtualSection()) { 590 if (Size == 0) 591 Size = 1; // zerofill of 0 bytes is undefined. 592 emitLinkage(GV, GVSym); 593 // .zerofill __DATA, __bss, _foo, 400, 5 594 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 595 return; 596 } 597 598 // If this is a BSS local symbol and we are emitting in the BSS 599 // section use .lcomm/.comm directive. 600 if (GVKind.isBSSLocal() && 601 getObjFileLowering().getBSSSection() == TheSection) { 602 if (Size == 0) 603 Size = 1; // .comm Foo, 0 is undefined, avoid it. 604 605 // Use .lcomm only if it supports user-specified alignment. 606 // Otherwise, while it would still be correct to use .lcomm in some 607 // cases (e.g. when Align == 1), the external assembler might enfore 608 // some -unknown- default alignment behavior, which could cause 609 // spurious differences between external and integrated assembler. 610 // Prefer to simply fall back to .local / .comm in this case. 611 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 612 // .lcomm _foo, 42 613 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 614 return; 615 } 616 617 // .local _foo 618 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 619 // .comm _foo, 42, 4 620 const bool SupportsAlignment = 621 getObjFileLowering().getCommDirectiveSupportsAlignment(); 622 OutStreamer->emitCommonSymbol(GVSym, Size, 623 SupportsAlignment ? Alignment.value() : 0); 624 return; 625 } 626 627 // Handle thread local data for mach-o which requires us to output an 628 // additional structure of data and mangle the original symbol so that we 629 // can reference it later. 630 // 631 // TODO: This should become an "emit thread local global" method on TLOF. 632 // All of this macho specific stuff should be sunk down into TLOFMachO and 633 // stuff like "TLSExtraDataSection" should no longer be part of the parent 634 // TLOF class. This will also make it more obvious that stuff like 635 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 636 // specific code. 637 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 638 // Emit the .tbss symbol 639 MCSymbol *MangSym = 640 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 641 642 if (GVKind.isThreadBSS()) { 643 TheSection = getObjFileLowering().getTLSBSSSection(); 644 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 645 } else if (GVKind.isThreadData()) { 646 OutStreamer->SwitchSection(TheSection); 647 648 emitAlignment(Alignment, GV); 649 OutStreamer->emitLabel(MangSym); 650 651 emitGlobalConstant(GV->getParent()->getDataLayout(), 652 GV->getInitializer()); 653 } 654 655 OutStreamer->AddBlankLine(); 656 657 // Emit the variable struct for the runtime. 658 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 659 660 OutStreamer->SwitchSection(TLVSect); 661 // Emit the linkage here. 662 emitLinkage(GV, GVSym); 663 OutStreamer->emitLabel(GVSym); 664 665 // Three pointers in size: 666 // - __tlv_bootstrap - used to make sure support exists 667 // - spare pointer, used when mapped by the runtime 668 // - pointer to mangled symbol above with initializer 669 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 670 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 671 PtrSize); 672 OutStreamer->emitIntValue(0, PtrSize); 673 OutStreamer->emitSymbolValue(MangSym, PtrSize); 674 675 OutStreamer->AddBlankLine(); 676 return; 677 } 678 679 MCSymbol *EmittedInitSym = GVSym; 680 681 OutStreamer->SwitchSection(TheSection); 682 683 emitLinkage(GV, EmittedInitSym); 684 emitAlignment(Alignment, GV); 685 686 OutStreamer->emitLabel(EmittedInitSym); 687 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 688 if (LocalAlias != EmittedInitSym) 689 OutStreamer->emitLabel(LocalAlias); 690 691 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 692 693 if (MAI->hasDotTypeDotSizeDirective()) 694 // .size foo, 42 695 OutStreamer->emitELFSize(EmittedInitSym, 696 MCConstantExpr::create(Size, OutContext)); 697 698 OutStreamer->AddBlankLine(); 699 } 700 701 /// Emit the directive and value for debug thread local expression 702 /// 703 /// \p Value - The value to emit. 704 /// \p Size - The size of the integer (in bytes) to emit. 705 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 706 OutStreamer->emitValue(Value, Size); 707 } 708 709 void AsmPrinter::emitFunctionHeaderComment() {} 710 711 /// EmitFunctionHeader - This method emits the header for the current 712 /// function. 713 void AsmPrinter::emitFunctionHeader() { 714 const Function &F = MF->getFunction(); 715 716 if (isVerbose()) 717 OutStreamer->GetCommentOS() 718 << "-- Begin function " 719 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 720 721 // Print out constants referenced by the function 722 emitConstantPool(); 723 724 // Print the 'header' of function. 725 // If basic block sections are desired, explicitly request a unique section 726 // for this function's entry block. 727 if (MF->front().isBeginSection()) 728 MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM)); 729 else 730 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 731 OutStreamer->SwitchSection(MF->getSection()); 732 733 if (!MAI->hasVisibilityOnlyWithLinkage()) 734 emitVisibility(CurrentFnSym, F.getVisibility()); 735 736 if (MAI->needsFunctionDescriptors()) 737 emitLinkage(&F, CurrentFnDescSym); 738 739 emitLinkage(&F, CurrentFnSym); 740 if (MAI->hasFunctionAlignment()) 741 emitAlignment(MF->getAlignment(), &F); 742 743 if (MAI->hasDotTypeDotSizeDirective()) 744 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 745 746 if (F.hasFnAttribute(Attribute::Cold)) 747 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 748 749 if (isVerbose()) { 750 F.printAsOperand(OutStreamer->GetCommentOS(), 751 /*PrintType=*/false, F.getParent()); 752 emitFunctionHeaderComment(); 753 OutStreamer->GetCommentOS() << '\n'; 754 } 755 756 // Emit the prefix data. 757 if (F.hasPrefixData()) { 758 if (MAI->hasSubsectionsViaSymbols()) { 759 // Preserving prefix data on platforms which use subsections-via-symbols 760 // is a bit tricky. Here we introduce a symbol for the prefix data 761 // and use the .alt_entry attribute to mark the function's real entry point 762 // as an alternative entry point to the prefix-data symbol. 763 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 764 OutStreamer->emitLabel(PrefixSym); 765 766 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 767 768 // Emit an .alt_entry directive for the actual function symbol. 769 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 770 } else { 771 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 772 } 773 } 774 775 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 776 // place prefix data before NOPs. 777 unsigned PatchableFunctionPrefix = 0; 778 unsigned PatchableFunctionEntry = 0; 779 (void)F.getFnAttribute("patchable-function-prefix") 780 .getValueAsString() 781 .getAsInteger(10, PatchableFunctionPrefix); 782 (void)F.getFnAttribute("patchable-function-entry") 783 .getValueAsString() 784 .getAsInteger(10, PatchableFunctionEntry); 785 if (PatchableFunctionPrefix) { 786 CurrentPatchableFunctionEntrySym = 787 OutContext.createLinkerPrivateTempSymbol(); 788 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 789 emitNops(PatchableFunctionPrefix); 790 } else if (PatchableFunctionEntry) { 791 // May be reassigned when emitting the body, to reference the label after 792 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 793 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 794 } 795 796 // Emit the function descriptor. This is a virtual function to allow targets 797 // to emit their specific function descriptor. Right now it is only used by 798 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 799 // descriptors and should be converted to use this hook as well. 800 if (MAI->needsFunctionDescriptors()) 801 emitFunctionDescriptor(); 802 803 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 804 // their wild and crazy things as required. 805 emitFunctionEntryLabel(); 806 807 // If the function had address-taken blocks that got deleted, then we have 808 // references to the dangling symbols. Emit them at the start of the function 809 // so that we don't get references to undefined symbols. 810 std::vector<MCSymbol*> DeadBlockSyms; 811 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 812 for (MCSymbol *DeadBlockSym : DeadBlockSyms) { 813 OutStreamer->AddComment("Address taken block that was later removed"); 814 OutStreamer->emitLabel(DeadBlockSym); 815 } 816 817 if (CurrentFnBegin) { 818 if (MAI->useAssignmentForEHBegin()) { 819 MCSymbol *CurPos = OutContext.createTempSymbol(); 820 OutStreamer->emitLabel(CurPos); 821 OutStreamer->emitAssignment(CurrentFnBegin, 822 MCSymbolRefExpr::create(CurPos, OutContext)); 823 } else { 824 OutStreamer->emitLabel(CurrentFnBegin); 825 } 826 } 827 828 // Emit pre-function debug and/or EH information. 829 for (const HandlerInfo &HI : Handlers) { 830 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 831 HI.TimerGroupDescription, TimePassesIsEnabled); 832 HI.Handler->beginFunction(MF); 833 } 834 835 // Emit the prologue data. 836 if (F.hasPrologueData()) 837 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 838 } 839 840 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 841 /// function. This can be overridden by targets as required to do custom stuff. 842 void AsmPrinter::emitFunctionEntryLabel() { 843 CurrentFnSym->redefineIfPossible(); 844 845 // The function label could have already been emitted if two symbols end up 846 // conflicting due to asm renaming. Detect this and emit an error. 847 if (CurrentFnSym->isVariable()) 848 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 849 "' is a protected alias"); 850 851 OutStreamer->emitLabel(CurrentFnSym); 852 853 if (TM.getTargetTriple().isOSBinFormatELF()) { 854 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 855 if (Sym != CurrentFnSym) 856 OutStreamer->emitLabel(Sym); 857 } 858 } 859 860 /// emitComments - Pretty-print comments for instructions. 861 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 862 const MachineFunction *MF = MI.getMF(); 863 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 864 865 // Check for spills and reloads 866 867 // We assume a single instruction only has a spill or reload, not 868 // both. 869 Optional<unsigned> Size; 870 if ((Size = MI.getRestoreSize(TII))) { 871 CommentOS << *Size << "-byte Reload\n"; 872 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 873 if (*Size) { 874 if (*Size == unsigned(MemoryLocation::UnknownSize)) 875 CommentOS << "Unknown-size Folded Reload\n"; 876 else 877 CommentOS << *Size << "-byte Folded Reload\n"; 878 } 879 } else if ((Size = MI.getSpillSize(TII))) { 880 CommentOS << *Size << "-byte Spill\n"; 881 } else if ((Size = MI.getFoldedSpillSize(TII))) { 882 if (*Size) { 883 if (*Size == unsigned(MemoryLocation::UnknownSize)) 884 CommentOS << "Unknown-size Folded Spill\n"; 885 else 886 CommentOS << *Size << "-byte Folded Spill\n"; 887 } 888 } 889 890 // Check for spill-induced copies 891 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 892 CommentOS << " Reload Reuse\n"; 893 } 894 895 /// emitImplicitDef - This method emits the specified machine instruction 896 /// that is an implicit def. 897 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 898 Register RegNo = MI->getOperand(0).getReg(); 899 900 SmallString<128> Str; 901 raw_svector_ostream OS(Str); 902 OS << "implicit-def: " 903 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 904 905 OutStreamer->AddComment(OS.str()); 906 OutStreamer->AddBlankLine(); 907 } 908 909 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 910 std::string Str; 911 raw_string_ostream OS(Str); 912 OS << "kill:"; 913 for (const MachineOperand &Op : MI->operands()) { 914 assert(Op.isReg() && "KILL instruction must have only register operands"); 915 OS << ' ' << (Op.isDef() ? "def " : "killed ") 916 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 917 } 918 AP.OutStreamer->AddComment(OS.str()); 919 AP.OutStreamer->AddBlankLine(); 920 } 921 922 /// emitDebugValueComment - This method handles the target-independent form 923 /// of DBG_VALUE, returning true if it was able to do so. A false return 924 /// means the target will need to handle MI in EmitInstruction. 925 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 926 // This code handles only the 4-operand target-independent form. 927 if (MI->isNonListDebugValue() && MI->getNumOperands() != 4) 928 return false; 929 930 SmallString<128> Str; 931 raw_svector_ostream OS(Str); 932 OS << "DEBUG_VALUE: "; 933 934 const DILocalVariable *V = MI->getDebugVariable(); 935 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 936 StringRef Name = SP->getName(); 937 if (!Name.empty()) 938 OS << Name << ":"; 939 } 940 OS << V->getName(); 941 OS << " <- "; 942 943 const DIExpression *Expr = MI->getDebugExpression(); 944 if (Expr->getNumElements()) { 945 OS << '['; 946 ListSeparator LS; 947 for (auto Op : Expr->expr_ops()) { 948 OS << LS << dwarf::OperationEncodingString(Op.getOp()); 949 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 950 OS << ' ' << Op.getArg(I); 951 } 952 OS << "] "; 953 } 954 955 // Register or immediate value. Register 0 means undef. 956 for (const MachineOperand &Op : MI->debug_operands()) { 957 if (&Op != MI->debug_operands().begin()) 958 OS << ", "; 959 switch (Op.getType()) { 960 case MachineOperand::MO_FPImmediate: { 961 APFloat APF = APFloat(Op.getFPImm()->getValueAPF()); 962 Type *ImmTy = Op.getFPImm()->getType(); 963 if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() || 964 ImmTy->isDoubleTy()) { 965 OS << APF.convertToDouble(); 966 } else { 967 // There is no good way to print long double. Convert a copy to 968 // double. Ah well, it's only a comment. 969 bool ignored; 970 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 971 &ignored); 972 OS << "(long double) " << APF.convertToDouble(); 973 } 974 break; 975 } 976 case MachineOperand::MO_Immediate: { 977 OS << Op.getImm(); 978 break; 979 } 980 case MachineOperand::MO_CImmediate: { 981 Op.getCImm()->getValue().print(OS, false /*isSigned*/); 982 break; 983 } 984 case MachineOperand::MO_TargetIndex: { 985 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 986 // NOTE: Want this comment at start of line, don't emit with AddComment. 987 AP.OutStreamer->emitRawComment(OS.str()); 988 break; 989 } 990 case MachineOperand::MO_Register: 991 case MachineOperand::MO_FrameIndex: { 992 Register Reg; 993 Optional<StackOffset> Offset; 994 if (Op.isReg()) { 995 Reg = Op.getReg(); 996 } else { 997 const TargetFrameLowering *TFI = 998 AP.MF->getSubtarget().getFrameLowering(); 999 Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg); 1000 } 1001 if (!Reg) { 1002 // Suppress offset, it is not meaningful here. 1003 OS << "undef"; 1004 break; 1005 } 1006 // The second operand is only an offset if it's an immediate. 1007 if (MI->isIndirectDebugValue()) 1008 Offset = StackOffset::getFixed(MI->getDebugOffset().getImm()); 1009 if (Offset) 1010 OS << '['; 1011 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 1012 if (Offset) 1013 OS << '+' << Offset->getFixed() << ']'; 1014 break; 1015 } 1016 default: 1017 llvm_unreachable("Unknown operand type"); 1018 } 1019 } 1020 1021 // NOTE: Want this comment at start of line, don't emit with AddComment. 1022 AP.OutStreamer->emitRawComment(OS.str()); 1023 return true; 1024 } 1025 1026 /// This method handles the target-independent form of DBG_LABEL, returning 1027 /// true if it was able to do so. A false return means the target will need 1028 /// to handle MI in EmitInstruction. 1029 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 1030 if (MI->getNumOperands() != 1) 1031 return false; 1032 1033 SmallString<128> Str; 1034 raw_svector_ostream OS(Str); 1035 OS << "DEBUG_LABEL: "; 1036 1037 const DILabel *V = MI->getDebugLabel(); 1038 if (auto *SP = dyn_cast<DISubprogram>( 1039 V->getScope()->getNonLexicalBlockFileScope())) { 1040 StringRef Name = SP->getName(); 1041 if (!Name.empty()) 1042 OS << Name << ":"; 1043 } 1044 OS << V->getName(); 1045 1046 // NOTE: Want this comment at start of line, don't emit with AddComment. 1047 AP.OutStreamer->emitRawComment(OS.str()); 1048 return true; 1049 } 1050 1051 AsmPrinter::CFISection 1052 AsmPrinter::getFunctionCFISectionType(const Function &F) const { 1053 // Ignore functions that won't get emitted. 1054 if (F.isDeclarationForLinker()) 1055 return CFISection::None; 1056 1057 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 1058 F.needsUnwindTableEntry()) 1059 return CFISection::EH; 1060 1061 if (MMI->hasDebugInfo() || TM.Options.ForceDwarfFrameSection) 1062 return CFISection::Debug; 1063 1064 return CFISection::None; 1065 } 1066 1067 AsmPrinter::CFISection 1068 AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const { 1069 return getFunctionCFISectionType(MF.getFunction()); 1070 } 1071 1072 bool AsmPrinter::needsSEHMoves() { 1073 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 1074 } 1075 1076 bool AsmPrinter::needsCFIForDebug() const { 1077 return MAI->getExceptionHandlingType() == ExceptionHandling::None && 1078 MAI->doesUseCFIForDebug() && ModuleCFISection == CFISection::Debug; 1079 } 1080 1081 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 1082 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1083 if (!needsCFIForDebug() && 1084 ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1085 ExceptionHandlingType != ExceptionHandling::ARM) 1086 return; 1087 1088 if (getFunctionCFISectionType(*MF) == CFISection::None) 1089 return; 1090 1091 // If there is no "real" instruction following this CFI instruction, skip 1092 // emitting it; it would be beyond the end of the function's FDE range. 1093 auto *MBB = MI.getParent(); 1094 auto I = std::next(MI.getIterator()); 1095 while (I != MBB->end() && I->isTransient()) 1096 ++I; 1097 if (I == MBB->instr_end() && 1098 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1099 return; 1100 1101 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1102 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1103 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1104 emitCFIInstruction(CFI); 1105 } 1106 1107 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1108 // The operands are the MCSymbol and the frame offset of the allocation. 1109 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1110 int FrameOffset = MI.getOperand(1).getImm(); 1111 1112 // Emit a symbol assignment. 1113 OutStreamer->emitAssignment(FrameAllocSym, 1114 MCConstantExpr::create(FrameOffset, OutContext)); 1115 } 1116 1117 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a 1118 /// given basic block. This can be used to capture more precise profile 1119 /// information. We use the last 4 bits (LSBs) to encode the following 1120 /// information: 1121 /// * (1): set if return block (ret or tail call). 1122 /// * (2): set if ends with a tail call. 1123 /// * (3): set if exception handling (EH) landing pad. 1124 /// * (4): set if the block can fall through to its next. 1125 /// The remaining bits are zero. 1126 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1127 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1128 return ((unsigned)MBB.isReturnBlock()) | 1129 ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) | 1130 (MBB.isEHPad() << 2) | 1131 (const_cast<MachineBasicBlock &>(MBB).canFallThrough() << 3); 1132 } 1133 1134 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1135 MCSection *BBAddrMapSection = 1136 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1137 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); 1138 1139 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1140 1141 OutStreamer->PushSection(); 1142 OutStreamer->SwitchSection(BBAddrMapSection); 1143 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1144 // Emit the total number of basic blocks in this function. 1145 OutStreamer->emitULEB128IntValue(MF.size()); 1146 // Emit BB Information for each basic block in the funciton. 1147 for (const MachineBasicBlock &MBB : MF) { 1148 const MCSymbol *MBBSymbol = 1149 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); 1150 // Emit the basic block offset. 1151 emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol); 1152 // Emit the basic block size. When BBs have alignments, their size cannot 1153 // always be computed from their offsets. 1154 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1155 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1156 } 1157 OutStreamer->PopSection(); 1158 } 1159 1160 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) { 1161 auto GUID = MI.getOperand(0).getImm(); 1162 auto Index = MI.getOperand(1).getImm(); 1163 auto Type = MI.getOperand(2).getImm(); 1164 auto Attr = MI.getOperand(3).getImm(); 1165 DILocation *DebugLoc = MI.getDebugLoc(); 1166 PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc); 1167 } 1168 1169 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1170 if (!MF.getTarget().Options.EmitStackSizeSection) 1171 return; 1172 1173 MCSection *StackSizeSection = 1174 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1175 if (!StackSizeSection) 1176 return; 1177 1178 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1179 // Don't emit functions with dynamic stack allocations. 1180 if (FrameInfo.hasVarSizedObjects()) 1181 return; 1182 1183 OutStreamer->PushSection(); 1184 OutStreamer->SwitchSection(StackSizeSection); 1185 1186 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1187 uint64_t StackSize = FrameInfo.getStackSize(); 1188 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1189 OutStreamer->emitULEB128IntValue(StackSize); 1190 1191 OutStreamer->PopSection(); 1192 } 1193 1194 void AsmPrinter::emitStackUsage(const MachineFunction &MF) { 1195 const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput; 1196 1197 // OutputFilename empty implies -fstack-usage is not passed. 1198 if (OutputFilename.empty()) 1199 return; 1200 1201 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1202 uint64_t StackSize = FrameInfo.getStackSize(); 1203 1204 if (StackUsageStream == nullptr) { 1205 std::error_code EC; 1206 StackUsageStream = 1207 std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text); 1208 if (EC) { 1209 errs() << "Could not open file: " << EC.message(); 1210 return; 1211 } 1212 } 1213 1214 *StackUsageStream << MF.getFunction().getParent()->getName(); 1215 if (const DISubprogram *DSP = MF.getFunction().getSubprogram()) 1216 *StackUsageStream << ':' << DSP->getLine(); 1217 1218 *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t'; 1219 if (FrameInfo.hasVarSizedObjects()) 1220 *StackUsageStream << "dynamic\n"; 1221 else 1222 *StackUsageStream << "static\n"; 1223 } 1224 1225 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) { 1226 MachineModuleInfo &MMI = MF.getMMI(); 1227 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo()) 1228 return true; 1229 1230 // We might emit an EH table that uses function begin and end labels even if 1231 // we don't have any landingpads. 1232 if (!MF.getFunction().hasPersonalityFn()) 1233 return false; 1234 return !isNoOpWithoutInvoke( 1235 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1236 } 1237 1238 /// EmitFunctionBody - This method emits the body and trailer for a 1239 /// function. 1240 void AsmPrinter::emitFunctionBody() { 1241 emitFunctionHeader(); 1242 1243 // Emit target-specific gunk before the function body. 1244 emitFunctionBodyStart(); 1245 1246 if (isVerbose()) { 1247 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1248 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1249 if (!MDT) { 1250 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1251 OwnedMDT->getBase().recalculate(*MF); 1252 MDT = OwnedMDT.get(); 1253 } 1254 1255 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1256 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1257 if (!MLI) { 1258 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1259 OwnedMLI->getBase().analyze(MDT->getBase()); 1260 MLI = OwnedMLI.get(); 1261 } 1262 } 1263 1264 // Print out code for the function. 1265 bool HasAnyRealCode = false; 1266 int NumInstsInFunction = 0; 1267 1268 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1269 for (auto &MBB : *MF) { 1270 // Print a label for the basic block. 1271 emitBasicBlockStart(MBB); 1272 DenseMap<StringRef, unsigned> MnemonicCounts; 1273 for (auto &MI : MBB) { 1274 // Print the assembly for the instruction. 1275 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1276 !MI.isDebugInstr()) { 1277 HasAnyRealCode = true; 1278 ++NumInstsInFunction; 1279 } 1280 1281 // If there is a pre-instruction symbol, emit a label for it here. 1282 if (MCSymbol *S = MI.getPreInstrSymbol()) 1283 OutStreamer->emitLabel(S); 1284 1285 for (const HandlerInfo &HI : Handlers) { 1286 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1287 HI.TimerGroupDescription, TimePassesIsEnabled); 1288 HI.Handler->beginInstruction(&MI); 1289 } 1290 1291 if (isVerbose()) 1292 emitComments(MI, OutStreamer->GetCommentOS()); 1293 1294 switch (MI.getOpcode()) { 1295 case TargetOpcode::CFI_INSTRUCTION: 1296 emitCFIInstruction(MI); 1297 break; 1298 case TargetOpcode::LOCAL_ESCAPE: 1299 emitFrameAlloc(MI); 1300 break; 1301 case TargetOpcode::ANNOTATION_LABEL: 1302 case TargetOpcode::EH_LABEL: 1303 case TargetOpcode::GC_LABEL: 1304 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1305 break; 1306 case TargetOpcode::INLINEASM: 1307 case TargetOpcode::INLINEASM_BR: 1308 emitInlineAsm(&MI); 1309 break; 1310 case TargetOpcode::DBG_VALUE: 1311 case TargetOpcode::DBG_VALUE_LIST: 1312 if (isVerbose()) { 1313 if (!emitDebugValueComment(&MI, *this)) 1314 emitInstruction(&MI); 1315 } 1316 break; 1317 case TargetOpcode::DBG_INSTR_REF: 1318 // This instruction reference will have been resolved to a machine 1319 // location, and a nearby DBG_VALUE created. We can safely ignore 1320 // the instruction reference. 1321 break; 1322 case TargetOpcode::DBG_PHI: 1323 // This instruction is only used to label a program point, it's purely 1324 // meta information. 1325 break; 1326 case TargetOpcode::DBG_LABEL: 1327 if (isVerbose()) { 1328 if (!emitDebugLabelComment(&MI, *this)) 1329 emitInstruction(&MI); 1330 } 1331 break; 1332 case TargetOpcode::IMPLICIT_DEF: 1333 if (isVerbose()) emitImplicitDef(&MI); 1334 break; 1335 case TargetOpcode::KILL: 1336 if (isVerbose()) emitKill(&MI, *this); 1337 break; 1338 case TargetOpcode::PSEUDO_PROBE: 1339 emitPseudoProbe(MI); 1340 break; 1341 case TargetOpcode::ARITH_FENCE: 1342 if (isVerbose()) 1343 OutStreamer->emitRawComment("ARITH_FENCE"); 1344 break; 1345 default: 1346 emitInstruction(&MI); 1347 if (CanDoExtraAnalysis) { 1348 MCInst MCI; 1349 MCI.setOpcode(MI.getOpcode()); 1350 auto Name = OutStreamer->getMnemonic(MCI); 1351 auto I = MnemonicCounts.insert({Name, 0u}); 1352 I.first->second++; 1353 } 1354 break; 1355 } 1356 1357 // If there is a post-instruction symbol, emit a label for it here. 1358 if (MCSymbol *S = MI.getPostInstrSymbol()) 1359 OutStreamer->emitLabel(S); 1360 1361 for (const HandlerInfo &HI : Handlers) { 1362 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1363 HI.TimerGroupDescription, TimePassesIsEnabled); 1364 HI.Handler->endInstruction(); 1365 } 1366 } 1367 1368 // We must emit temporary symbol for the end of this basic block, if either 1369 // we have BBLabels enabled or if this basic blocks marks the end of a 1370 // section. 1371 if (MF->hasBBLabels() || 1372 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection())) 1373 OutStreamer->emitLabel(MBB.getEndSymbol()); 1374 1375 if (MBB.isEndSection()) { 1376 // The size directive for the section containing the entry block is 1377 // handled separately by the function section. 1378 if (!MBB.sameSection(&MF->front())) { 1379 if (MAI->hasDotTypeDotSizeDirective()) { 1380 // Emit the size directive for the basic block section. 1381 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1382 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1383 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1384 OutContext); 1385 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1386 } 1387 MBBSectionRanges[MBB.getSectionIDNum()] = 1388 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1389 } 1390 } 1391 emitBasicBlockEnd(MBB); 1392 1393 if (CanDoExtraAnalysis) { 1394 // Skip empty blocks. 1395 if (MBB.empty()) 1396 continue; 1397 1398 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", 1399 MBB.begin()->getDebugLoc(), &MBB); 1400 1401 // Generate instruction mix remark. First, sort counts in descending order 1402 // by count and name. 1403 SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; 1404 for (auto &KV : MnemonicCounts) 1405 MnemonicVec.emplace_back(KV.first, KV.second); 1406 1407 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, 1408 const std::pair<StringRef, unsigned> &B) { 1409 if (A.second > B.second) 1410 return true; 1411 if (A.second == B.second) 1412 return StringRef(A.first) < StringRef(B.first); 1413 return false; 1414 }); 1415 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; 1416 for (auto &KV : MnemonicVec) { 1417 auto Name = (Twine("INST_") + getToken(KV.first.trim()).first).str(); 1418 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; 1419 } 1420 ORE->emit(R); 1421 } 1422 } 1423 1424 EmittedInsts += NumInstsInFunction; 1425 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1426 MF->getFunction().getSubprogram(), 1427 &MF->front()); 1428 R << ore::NV("NumInstructions", NumInstsInFunction) 1429 << " instructions in function"; 1430 ORE->emit(R); 1431 1432 // If the function is empty and the object file uses .subsections_via_symbols, 1433 // then we need to emit *something* to the function body to prevent the 1434 // labels from collapsing together. Just emit a noop. 1435 // Similarly, don't emit empty functions on Windows either. It can lead to 1436 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1437 // after linking, causing the kernel not to load the binary: 1438 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1439 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1440 const Triple &TT = TM.getTargetTriple(); 1441 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1442 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1443 MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop(); 1444 1445 // Targets can opt-out of emitting the noop here by leaving the opcode 1446 // unspecified. 1447 if (Noop.getOpcode()) { 1448 OutStreamer->AddComment("avoids zero-length function"); 1449 emitNops(1); 1450 } 1451 } 1452 1453 // Switch to the original section in case basic block sections was used. 1454 OutStreamer->SwitchSection(MF->getSection()); 1455 1456 const Function &F = MF->getFunction(); 1457 for (const auto &BB : F) { 1458 if (!BB.hasAddressTaken()) 1459 continue; 1460 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1461 if (Sym->isDefined()) 1462 continue; 1463 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1464 OutStreamer->emitLabel(Sym); 1465 } 1466 1467 // Emit target-specific gunk after the function body. 1468 emitFunctionBodyEnd(); 1469 1470 if (needFuncLabelsForEHOrDebugInfo(*MF) || 1471 MAI->hasDotTypeDotSizeDirective()) { 1472 // Create a symbol for the end of function. 1473 CurrentFnEnd = createTempSymbol("func_end"); 1474 OutStreamer->emitLabel(CurrentFnEnd); 1475 } 1476 1477 // If the target wants a .size directive for the size of the function, emit 1478 // it. 1479 if (MAI->hasDotTypeDotSizeDirective()) { 1480 // We can get the size as difference between the function label and the 1481 // temp label. 1482 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1483 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1484 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1485 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1486 } 1487 1488 for (const HandlerInfo &HI : Handlers) { 1489 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1490 HI.TimerGroupDescription, TimePassesIsEnabled); 1491 HI.Handler->markFunctionEnd(); 1492 } 1493 1494 MBBSectionRanges[MF->front().getSectionIDNum()] = 1495 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1496 1497 // Print out jump tables referenced by the function. 1498 emitJumpTableInfo(); 1499 1500 // Emit post-function debug and/or EH information. 1501 for (const HandlerInfo &HI : Handlers) { 1502 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1503 HI.TimerGroupDescription, TimePassesIsEnabled); 1504 HI.Handler->endFunction(MF); 1505 } 1506 1507 // Emit section containing BB address offsets and their metadata, when 1508 // BB labels are requested for this function. Skip empty functions. 1509 if (MF->hasBBLabels() && HasAnyRealCode) 1510 emitBBAddrMapSection(*MF); 1511 1512 // Emit section containing stack size metadata. 1513 emitStackSizeSection(*MF); 1514 1515 // Emit .su file containing function stack size information. 1516 emitStackUsage(*MF); 1517 1518 emitPatchableFunctionEntries(); 1519 1520 if (isVerbose()) 1521 OutStreamer->GetCommentOS() << "-- End function\n"; 1522 1523 OutStreamer->AddBlankLine(); 1524 } 1525 1526 /// Compute the number of Global Variables that uses a Constant. 1527 static unsigned getNumGlobalVariableUses(const Constant *C) { 1528 if (!C) 1529 return 0; 1530 1531 if (isa<GlobalVariable>(C)) 1532 return 1; 1533 1534 unsigned NumUses = 0; 1535 for (auto *CU : C->users()) 1536 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1537 1538 return NumUses; 1539 } 1540 1541 /// Only consider global GOT equivalents if at least one user is a 1542 /// cstexpr inside an initializer of another global variables. Also, don't 1543 /// handle cstexpr inside instructions. During global variable emission, 1544 /// candidates are skipped and are emitted later in case at least one cstexpr 1545 /// isn't replaced by a PC relative GOT entry access. 1546 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1547 unsigned &NumGOTEquivUsers) { 1548 // Global GOT equivalents are unnamed private globals with a constant 1549 // pointer initializer to another global symbol. They must point to a 1550 // GlobalVariable or Function, i.e., as GlobalValue. 1551 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1552 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1553 !isa<GlobalValue>(GV->getOperand(0))) 1554 return false; 1555 1556 // To be a got equivalent, at least one of its users need to be a constant 1557 // expression used by another global variable. 1558 for (auto *U : GV->users()) 1559 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1560 1561 return NumGOTEquivUsers > 0; 1562 } 1563 1564 /// Unnamed constant global variables solely contaning a pointer to 1565 /// another globals variable is equivalent to a GOT table entry; it contains the 1566 /// the address of another symbol. Optimize it and replace accesses to these 1567 /// "GOT equivalents" by using the GOT entry for the final global instead. 1568 /// Compute GOT equivalent candidates among all global variables to avoid 1569 /// emitting them if possible later on, after it use is replaced by a GOT entry 1570 /// access. 1571 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1572 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1573 return; 1574 1575 for (const auto &G : M.globals()) { 1576 unsigned NumGOTEquivUsers = 0; 1577 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1578 continue; 1579 1580 const MCSymbol *GOTEquivSym = getSymbol(&G); 1581 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1582 } 1583 } 1584 1585 /// Constant expressions using GOT equivalent globals may not be eligible 1586 /// for PC relative GOT entry conversion, in such cases we need to emit such 1587 /// globals we previously omitted in EmitGlobalVariable. 1588 void AsmPrinter::emitGlobalGOTEquivs() { 1589 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1590 return; 1591 1592 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1593 for (auto &I : GlobalGOTEquivs) { 1594 const GlobalVariable *GV = I.second.first; 1595 unsigned Cnt = I.second.second; 1596 if (Cnt) 1597 FailedCandidates.push_back(GV); 1598 } 1599 GlobalGOTEquivs.clear(); 1600 1601 for (auto *GV : FailedCandidates) 1602 emitGlobalVariable(GV); 1603 } 1604 1605 void AsmPrinter::emitGlobalAlias(Module &M, const GlobalAlias &GA) { 1606 MCSymbol *Name = getSymbol(&GA); 1607 bool IsFunction = GA.getValueType()->isFunctionTy(); 1608 // Treat bitcasts of functions as functions also. This is important at least 1609 // on WebAssembly where object and function addresses can't alias each other. 1610 if (!IsFunction) 1611 if (auto *CE = dyn_cast<ConstantExpr>(GA.getAliasee())) 1612 if (CE->getOpcode() == Instruction::BitCast) 1613 IsFunction = 1614 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1615 1616 // AIX's assembly directive `.set` is not usable for aliasing purpose, 1617 // so AIX has to use the extra-label-at-definition strategy. At this 1618 // point, all the extra label is emitted, we just have to emit linkage for 1619 // those labels. 1620 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1621 assert(MAI->hasVisibilityOnlyWithLinkage() && 1622 "Visibility should be handled with emitLinkage() on AIX."); 1623 emitLinkage(&GA, Name); 1624 // If it's a function, also emit linkage for aliases of function entry 1625 // point. 1626 if (IsFunction) 1627 emitLinkage(&GA, 1628 getObjFileLowering().getFunctionEntryPointSymbol(&GA, TM)); 1629 return; 1630 } 1631 1632 if (GA.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1633 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1634 else if (GA.hasWeakLinkage() || GA.hasLinkOnceLinkage()) 1635 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1636 else 1637 assert(GA.hasLocalLinkage() && "Invalid alias linkage"); 1638 1639 // Set the symbol type to function if the alias has a function type. 1640 // This affects codegen when the aliasee is not a function. 1641 if (IsFunction) 1642 OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1643 1644 emitVisibility(Name, GA.getVisibility()); 1645 1646 const MCExpr *Expr = lowerConstant(GA.getAliasee()); 1647 1648 if (MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1649 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1650 1651 // Emit the directives as assignments aka .set: 1652 OutStreamer->emitAssignment(Name, Expr); 1653 MCSymbol *LocalAlias = getSymbolPreferLocal(GA); 1654 if (LocalAlias != Name) 1655 OutStreamer->emitAssignment(LocalAlias, Expr); 1656 1657 // If the aliasee does not correspond to a symbol in the output, i.e. the 1658 // alias is not of an object or the aliased object is private, then set the 1659 // size of the alias symbol from the type of the alias. We don't do this in 1660 // other situations as the alias and aliasee having differing types but same 1661 // size may be intentional. 1662 const GlobalObject *BaseObject = GA.getAliaseeObject(); 1663 if (MAI->hasDotTypeDotSizeDirective() && GA.getValueType()->isSized() && 1664 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1665 const DataLayout &DL = M.getDataLayout(); 1666 uint64_t Size = DL.getTypeAllocSize(GA.getValueType()); 1667 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1668 } 1669 } 1670 1671 void AsmPrinter::emitGlobalIFunc(Module &M, const GlobalIFunc &GI) { 1672 assert(!TM.getTargetTriple().isOSBinFormatXCOFF() && 1673 "IFunc is not supported on AIX."); 1674 1675 MCSymbol *Name = getSymbol(&GI); 1676 1677 if (GI.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1678 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1679 else if (GI.hasWeakLinkage() || GI.hasLinkOnceLinkage()) 1680 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1681 else 1682 assert(GI.hasLocalLinkage() && "Invalid ifunc linkage"); 1683 1684 OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1685 emitVisibility(Name, GI.getVisibility()); 1686 1687 // Emit the directives as assignments aka .set: 1688 const MCExpr *Expr = lowerConstant(GI.getResolver()); 1689 OutStreamer->emitAssignment(Name, Expr); 1690 MCSymbol *LocalAlias = getSymbolPreferLocal(GI); 1691 if (LocalAlias != Name) 1692 OutStreamer->emitAssignment(LocalAlias, Expr); 1693 } 1694 1695 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1696 if (!RS.needsSection()) 1697 return; 1698 1699 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1700 1701 Optional<SmallString<128>> Filename; 1702 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1703 Filename = *FilenameRef; 1704 sys::fs::make_absolute(*Filename); 1705 assert(!Filename->empty() && "The filename can't be empty."); 1706 } 1707 1708 std::string Buf; 1709 raw_string_ostream OS(Buf); 1710 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1711 Filename ? RemarkSerializer.metaSerializer(OS, Filename->str()) 1712 : RemarkSerializer.metaSerializer(OS); 1713 MetaSerializer->emit(); 1714 1715 // Switch to the remarks section. 1716 MCSection *RemarksSection = 1717 OutContext.getObjectFileInfo()->getRemarksSection(); 1718 OutStreamer->SwitchSection(RemarksSection); 1719 1720 OutStreamer->emitBinaryData(OS.str()); 1721 } 1722 1723 bool AsmPrinter::doFinalization(Module &M) { 1724 // Set the MachineFunction to nullptr so that we can catch attempted 1725 // accesses to MF specific features at the module level and so that 1726 // we can conditionalize accesses based on whether or not it is nullptr. 1727 MF = nullptr; 1728 1729 // Gather all GOT equivalent globals in the module. We really need two 1730 // passes over the globals: one to compute and another to avoid its emission 1731 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1732 // where the got equivalent shows up before its use. 1733 computeGlobalGOTEquivs(M); 1734 1735 // Emit global variables. 1736 for (const auto &G : M.globals()) 1737 emitGlobalVariable(&G); 1738 1739 // Emit remaining GOT equivalent globals. 1740 emitGlobalGOTEquivs(); 1741 1742 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1743 1744 // Emit linkage(XCOFF) and visibility info for declarations 1745 for (const Function &F : M) { 1746 if (!F.isDeclarationForLinker()) 1747 continue; 1748 1749 MCSymbol *Name = getSymbol(&F); 1750 // Function getSymbol gives us the function descriptor symbol for XCOFF. 1751 1752 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 1753 GlobalValue::VisibilityTypes V = F.getVisibility(); 1754 if (V == GlobalValue::DefaultVisibility) 1755 continue; 1756 1757 emitVisibility(Name, V, false); 1758 continue; 1759 } 1760 1761 if (F.isIntrinsic()) 1762 continue; 1763 1764 // Handle the XCOFF case. 1765 // Variable `Name` is the function descriptor symbol (see above). Get the 1766 // function entry point symbol. 1767 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 1768 // Emit linkage for the function entry point. 1769 emitLinkage(&F, FnEntryPointSym); 1770 1771 // Emit linkage for the function descriptor. 1772 emitLinkage(&F, Name); 1773 } 1774 1775 // Emit the remarks section contents. 1776 // FIXME: Figure out when is the safest time to emit this section. It should 1777 // not come after debug info. 1778 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1779 emitRemarksSection(*RS); 1780 1781 TLOF.emitModuleMetadata(*OutStreamer, M); 1782 1783 if (TM.getTargetTriple().isOSBinFormatELF()) { 1784 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1785 1786 // Output stubs for external and common global variables. 1787 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1788 if (!Stubs.empty()) { 1789 OutStreamer->SwitchSection(TLOF.getDataSection()); 1790 const DataLayout &DL = M.getDataLayout(); 1791 1792 emitAlignment(Align(DL.getPointerSize())); 1793 for (const auto &Stub : Stubs) { 1794 OutStreamer->emitLabel(Stub.first); 1795 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1796 DL.getPointerSize()); 1797 } 1798 } 1799 } 1800 1801 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1802 MachineModuleInfoCOFF &MMICOFF = 1803 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1804 1805 // Output stubs for external and common global variables. 1806 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1807 if (!Stubs.empty()) { 1808 const DataLayout &DL = M.getDataLayout(); 1809 1810 for (const auto &Stub : Stubs) { 1811 SmallString<256> SectionName = StringRef(".rdata$"); 1812 SectionName += Stub.first->getName(); 1813 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1814 SectionName, 1815 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1816 COFF::IMAGE_SCN_LNK_COMDAT, 1817 SectionKind::getReadOnly(), Stub.first->getName(), 1818 COFF::IMAGE_COMDAT_SELECT_ANY)); 1819 emitAlignment(Align(DL.getPointerSize())); 1820 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 1821 OutStreamer->emitLabel(Stub.first); 1822 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1823 DL.getPointerSize()); 1824 } 1825 } 1826 } 1827 1828 // This needs to happen before emitting debug information since that can end 1829 // arbitrary sections. 1830 if (auto *TS = OutStreamer->getTargetStreamer()) 1831 TS->emitConstantPools(); 1832 1833 // Finalize debug and EH information. 1834 for (const HandlerInfo &HI : Handlers) { 1835 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1836 HI.TimerGroupDescription, TimePassesIsEnabled); 1837 HI.Handler->endModule(); 1838 } 1839 1840 // This deletes all the ephemeral handlers that AsmPrinter added, while 1841 // keeping all the user-added handlers alive until the AsmPrinter is 1842 // destroyed. 1843 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); 1844 DD = nullptr; 1845 1846 // If the target wants to know about weak references, print them all. 1847 if (MAI->getWeakRefDirective()) { 1848 // FIXME: This is not lazy, it would be nice to only print weak references 1849 // to stuff that is actually used. Note that doing so would require targets 1850 // to notice uses in operands (due to constant exprs etc). This should 1851 // happen with the MC stuff eventually. 1852 1853 // Print out module-level global objects here. 1854 for (const auto &GO : M.global_objects()) { 1855 if (!GO.hasExternalWeakLinkage()) 1856 continue; 1857 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1858 } 1859 } 1860 1861 // Print aliases in topological order, that is, for each alias a = b, 1862 // b must be printed before a. 1863 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1864 // such an order to generate correct TOC information. 1865 SmallVector<const GlobalAlias *, 16> AliasStack; 1866 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1867 for (const auto &Alias : M.aliases()) { 1868 for (const GlobalAlias *Cur = &Alias; Cur; 1869 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1870 if (!AliasVisited.insert(Cur).second) 1871 break; 1872 AliasStack.push_back(Cur); 1873 } 1874 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1875 emitGlobalAlias(M, *AncestorAlias); 1876 AliasStack.clear(); 1877 } 1878 for (const auto &IFunc : M.ifuncs()) 1879 emitGlobalIFunc(M, IFunc); 1880 1881 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1882 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1883 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1884 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1885 MP->finishAssembly(M, *MI, *this); 1886 1887 // Emit llvm.ident metadata in an '.ident' directive. 1888 emitModuleIdents(M); 1889 1890 // Emit bytes for llvm.commandline metadata. 1891 emitModuleCommandLines(M); 1892 1893 // Emit __morestack address if needed for indirect calls. 1894 if (MMI->usesMorestackAddr()) { 1895 Align Alignment(1); 1896 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1897 getDataLayout(), SectionKind::getReadOnly(), 1898 /*C=*/nullptr, Alignment); 1899 OutStreamer->SwitchSection(ReadOnlySection); 1900 1901 MCSymbol *AddrSymbol = 1902 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1903 OutStreamer->emitLabel(AddrSymbol); 1904 1905 unsigned PtrSize = MAI->getCodePointerSize(); 1906 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1907 PtrSize); 1908 } 1909 1910 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1911 // split-stack is used. 1912 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1913 OutStreamer->SwitchSection( 1914 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1915 if (MMI->hasNosplitStack()) 1916 OutStreamer->SwitchSection( 1917 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1918 } 1919 1920 // If we don't have any trampolines, then we don't require stack memory 1921 // to be executable. Some targets have a directive to declare this. 1922 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1923 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1924 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1925 OutStreamer->SwitchSection(S); 1926 1927 if (TM.Options.EmitAddrsig) { 1928 // Emit address-significance attributes for all globals. 1929 OutStreamer->emitAddrsig(); 1930 for (const GlobalValue &GV : M.global_values()) { 1931 if (!GV.use_empty() && !GV.isTransitiveUsedByMetadataOnly() && 1932 !GV.isThreadLocal() && !GV.hasDLLImportStorageClass() && 1933 !GV.getName().startswith("llvm.") && !GV.hasAtLeastLocalUnnamedAddr()) 1934 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 1935 } 1936 } 1937 1938 // Emit symbol partition specifications (ELF only). 1939 if (TM.getTargetTriple().isOSBinFormatELF()) { 1940 unsigned UniqueID = 0; 1941 for (const GlobalValue &GV : M.global_values()) { 1942 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1943 GV.getVisibility() != GlobalValue::DefaultVisibility) 1944 continue; 1945 1946 OutStreamer->SwitchSection( 1947 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 1948 "", false, ++UniqueID, nullptr)); 1949 OutStreamer->emitBytes(GV.getPartition()); 1950 OutStreamer->emitZeros(1); 1951 OutStreamer->emitValue( 1952 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1953 MAI->getCodePointerSize()); 1954 } 1955 } 1956 1957 // Allow the target to emit any magic that it wants at the end of the file, 1958 // after everything else has gone out. 1959 emitEndOfAsmFile(M); 1960 1961 MMI = nullptr; 1962 1963 OutStreamer->Finish(); 1964 OutStreamer->reset(); 1965 OwnedMLI.reset(); 1966 OwnedMDT.reset(); 1967 1968 return false; 1969 } 1970 1971 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { 1972 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum()); 1973 if (Res.second) 1974 Res.first->second = createTempSymbol("exception"); 1975 return Res.first->second; 1976 } 1977 1978 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1979 this->MF = &MF; 1980 const Function &F = MF.getFunction(); 1981 1982 // Get the function symbol. 1983 if (!MAI->needsFunctionDescriptors()) { 1984 CurrentFnSym = getSymbol(&MF.getFunction()); 1985 } else { 1986 assert(TM.getTargetTriple().isOSAIX() && 1987 "Only AIX uses the function descriptor hooks."); 1988 // AIX is unique here in that the name of the symbol emitted for the 1989 // function body does not have the same name as the source function's 1990 // C-linkage name. 1991 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1992 " initalized first."); 1993 1994 // Get the function entry point symbol. 1995 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 1996 } 1997 1998 CurrentFnSymForSize = CurrentFnSym; 1999 CurrentFnBegin = nullptr; 2000 CurrentSectionBeginSym = nullptr; 2001 MBBSectionRanges.clear(); 2002 MBBSectionExceptionSyms.clear(); 2003 bool NeedsLocalForSize = MAI->needsLocalForSize(); 2004 if (F.hasFnAttribute("patchable-function-entry") || 2005 F.hasFnAttribute("function-instrument") || 2006 F.hasFnAttribute("xray-instruction-threshold") || 2007 needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize || 2008 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) { 2009 CurrentFnBegin = createTempSymbol("func_begin"); 2010 if (NeedsLocalForSize) 2011 CurrentFnSymForSize = CurrentFnBegin; 2012 } 2013 2014 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 2015 } 2016 2017 namespace { 2018 2019 // Keep track the alignment, constpool entries per Section. 2020 struct SectionCPs { 2021 MCSection *S; 2022 Align Alignment; 2023 SmallVector<unsigned, 4> CPEs; 2024 2025 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 2026 }; 2027 2028 } // end anonymous namespace 2029 2030 /// EmitConstantPool - Print to the current output stream assembly 2031 /// representations of the constants in the constant pool MCP. This is 2032 /// used to print out constants which have been "spilled to memory" by 2033 /// the code generator. 2034 void AsmPrinter::emitConstantPool() { 2035 const MachineConstantPool *MCP = MF->getConstantPool(); 2036 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 2037 if (CP.empty()) return; 2038 2039 // Calculate sections for constant pool entries. We collect entries to go into 2040 // the same section together to reduce amount of section switch statements. 2041 SmallVector<SectionCPs, 4> CPSections; 2042 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 2043 const MachineConstantPoolEntry &CPE = CP[i]; 2044 Align Alignment = CPE.getAlign(); 2045 2046 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 2047 2048 const Constant *C = nullptr; 2049 if (!CPE.isMachineConstantPoolEntry()) 2050 C = CPE.Val.ConstVal; 2051 2052 MCSection *S = getObjFileLowering().getSectionForConstant( 2053 getDataLayout(), Kind, C, Alignment); 2054 2055 // The number of sections are small, just do a linear search from the 2056 // last section to the first. 2057 bool Found = false; 2058 unsigned SecIdx = CPSections.size(); 2059 while (SecIdx != 0) { 2060 if (CPSections[--SecIdx].S == S) { 2061 Found = true; 2062 break; 2063 } 2064 } 2065 if (!Found) { 2066 SecIdx = CPSections.size(); 2067 CPSections.push_back(SectionCPs(S, Alignment)); 2068 } 2069 2070 if (Alignment > CPSections[SecIdx].Alignment) 2071 CPSections[SecIdx].Alignment = Alignment; 2072 CPSections[SecIdx].CPEs.push_back(i); 2073 } 2074 2075 // Now print stuff into the calculated sections. 2076 const MCSection *CurSection = nullptr; 2077 unsigned Offset = 0; 2078 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 2079 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 2080 unsigned CPI = CPSections[i].CPEs[j]; 2081 MCSymbol *Sym = GetCPISymbol(CPI); 2082 if (!Sym->isUndefined()) 2083 continue; 2084 2085 if (CurSection != CPSections[i].S) { 2086 OutStreamer->SwitchSection(CPSections[i].S); 2087 emitAlignment(Align(CPSections[i].Alignment)); 2088 CurSection = CPSections[i].S; 2089 Offset = 0; 2090 } 2091 2092 MachineConstantPoolEntry CPE = CP[CPI]; 2093 2094 // Emit inter-object padding for alignment. 2095 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 2096 OutStreamer->emitZeros(NewOffset - Offset); 2097 2098 Offset = NewOffset + CPE.getSizeInBytes(getDataLayout()); 2099 2100 OutStreamer->emitLabel(Sym); 2101 if (CPE.isMachineConstantPoolEntry()) 2102 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 2103 else 2104 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 2105 } 2106 } 2107 } 2108 2109 // Print assembly representations of the jump tables used by the current 2110 // function. 2111 void AsmPrinter::emitJumpTableInfo() { 2112 const DataLayout &DL = MF->getDataLayout(); 2113 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2114 if (!MJTI) return; 2115 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 2116 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2117 if (JT.empty()) return; 2118 2119 // Pick the directive to use to print the jump table entries, and switch to 2120 // the appropriate section. 2121 const Function &F = MF->getFunction(); 2122 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2123 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 2124 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 2125 F); 2126 if (JTInDiffSection) { 2127 // Drop it in the readonly section. 2128 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 2129 OutStreamer->SwitchSection(ReadOnlySection); 2130 } 2131 2132 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 2133 2134 // Jump tables in code sections are marked with a data_region directive 2135 // where that's supported. 2136 if (!JTInDiffSection) 2137 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 2138 2139 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 2140 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2141 2142 // If this jump table was deleted, ignore it. 2143 if (JTBBs.empty()) continue; 2144 2145 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 2146 /// emit a .set directive for each unique entry. 2147 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 2148 MAI->doesSetDirectiveSuppressReloc()) { 2149 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 2150 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2151 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 2152 for (const MachineBasicBlock *MBB : JTBBs) { 2153 if (!EmittedSets.insert(MBB).second) 2154 continue; 2155 2156 // .set LJTSet, LBB32-base 2157 const MCExpr *LHS = 2158 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2159 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 2160 MCBinaryExpr::createSub(LHS, Base, 2161 OutContext)); 2162 } 2163 } 2164 2165 // On some targets (e.g. Darwin) we want to emit two consecutive labels 2166 // before each jump table. The first label is never referenced, but tells 2167 // the assembler and linker the extents of the jump table object. The 2168 // second label is actually referenced by the code. 2169 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 2170 // FIXME: This doesn't have to have any specific name, just any randomly 2171 // named and numbered local label started with 'l' would work. Simplify 2172 // GetJTISymbol. 2173 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 2174 2175 MCSymbol* JTISymbol = GetJTISymbol(JTI); 2176 OutStreamer->emitLabel(JTISymbol); 2177 2178 for (const MachineBasicBlock *MBB : JTBBs) 2179 emitJumpTableEntry(MJTI, MBB, JTI); 2180 } 2181 if (!JTInDiffSection) 2182 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 2183 } 2184 2185 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 2186 /// current stream. 2187 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 2188 const MachineBasicBlock *MBB, 2189 unsigned UID) const { 2190 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 2191 const MCExpr *Value = nullptr; 2192 switch (MJTI->getEntryKind()) { 2193 case MachineJumpTableInfo::EK_Inline: 2194 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 2195 case MachineJumpTableInfo::EK_Custom32: 2196 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 2197 MJTI, MBB, UID, OutContext); 2198 break; 2199 case MachineJumpTableInfo::EK_BlockAddress: 2200 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 2201 // .word LBB123 2202 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2203 break; 2204 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2205 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2206 // with a relocation as gp-relative, e.g.: 2207 // .gprel32 LBB123 2208 MCSymbol *MBBSym = MBB->getSymbol(); 2209 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2210 return; 2211 } 2212 2213 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2214 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2215 // with a relocation as gp-relative, e.g.: 2216 // .gpdword LBB123 2217 MCSymbol *MBBSym = MBB->getSymbol(); 2218 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2219 return; 2220 } 2221 2222 case MachineJumpTableInfo::EK_LabelDifference32: { 2223 // Each entry is the address of the block minus the address of the jump 2224 // table. This is used for PIC jump tables where gprel32 is not supported. 2225 // e.g.: 2226 // .word LBB123 - LJTI1_2 2227 // If the .set directive avoids relocations, this is emitted as: 2228 // .set L4_5_set_123, LBB123 - LJTI1_2 2229 // .word L4_5_set_123 2230 if (MAI->doesSetDirectiveSuppressReloc()) { 2231 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2232 OutContext); 2233 break; 2234 } 2235 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2236 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2237 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2238 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2239 break; 2240 } 2241 } 2242 2243 assert(Value && "Unknown entry kind!"); 2244 2245 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2246 OutStreamer->emitValue(Value, EntrySize); 2247 } 2248 2249 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2250 /// special global used by LLVM. If so, emit it and return true, otherwise 2251 /// do nothing and return false. 2252 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2253 if (GV->getName() == "llvm.used") { 2254 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2255 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2256 return true; 2257 } 2258 2259 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2260 if (GV->getSection() == "llvm.metadata" || 2261 GV->hasAvailableExternallyLinkage()) 2262 return true; 2263 2264 if (!GV->hasAppendingLinkage()) return false; 2265 2266 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2267 2268 if (GV->getName() == "llvm.global_ctors") { 2269 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2270 /* isCtor */ true); 2271 2272 return true; 2273 } 2274 2275 if (GV->getName() == "llvm.global_dtors") { 2276 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2277 /* isCtor */ false); 2278 2279 return true; 2280 } 2281 2282 report_fatal_error("unknown special variable"); 2283 } 2284 2285 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2286 /// global in the specified llvm.used list. 2287 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2288 // Should be an array of 'i8*'. 2289 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2290 const GlobalValue *GV = 2291 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2292 if (GV) 2293 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2294 } 2295 } 2296 2297 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 2298 const Constant *List, 2299 SmallVector<Structor, 8> &Structors) { 2300 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 2301 // the init priority. 2302 if (!isa<ConstantArray>(List)) 2303 return; 2304 2305 // Gather the structors in a form that's convenient for sorting by priority. 2306 for (Value *O : cast<ConstantArray>(List)->operands()) { 2307 auto *CS = cast<ConstantStruct>(O); 2308 if (CS->getOperand(1)->isNullValue()) 2309 break; // Found a null terminator, skip the rest. 2310 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2311 if (!Priority) 2312 continue; // Malformed. 2313 Structors.push_back(Structor()); 2314 Structor &S = Structors.back(); 2315 S.Priority = Priority->getLimitedValue(65535); 2316 S.Func = CS->getOperand(1); 2317 if (!CS->getOperand(2)->isNullValue()) { 2318 if (TM.getTargetTriple().isOSAIX()) 2319 llvm::report_fatal_error( 2320 "associated data of XXStructor list is not yet supported on AIX"); 2321 S.ComdatKey = 2322 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2323 } 2324 } 2325 2326 // Emit the function pointers in the target-specific order 2327 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2328 return L.Priority < R.Priority; 2329 }); 2330 } 2331 2332 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2333 /// priority. 2334 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2335 bool IsCtor) { 2336 SmallVector<Structor, 8> Structors; 2337 preprocessXXStructorList(DL, List, Structors); 2338 if (Structors.empty()) 2339 return; 2340 2341 // Emit the structors in reverse order if we are using the .ctor/.dtor 2342 // initialization scheme. 2343 if (!TM.Options.UseInitArray) 2344 std::reverse(Structors.begin(), Structors.end()); 2345 2346 const Align Align = DL.getPointerPrefAlignment(); 2347 for (Structor &S : Structors) { 2348 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2349 const MCSymbol *KeySym = nullptr; 2350 if (GlobalValue *GV = S.ComdatKey) { 2351 if (GV->isDeclarationForLinker()) 2352 // If the associated variable is not defined in this module 2353 // (it might be available_externally, or have been an 2354 // available_externally definition that was dropped by the 2355 // EliminateAvailableExternally pass), some other TU 2356 // will provide its dynamic initializer. 2357 continue; 2358 2359 KeySym = getSymbol(GV); 2360 } 2361 2362 MCSection *OutputSection = 2363 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2364 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2365 OutStreamer->SwitchSection(OutputSection); 2366 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2367 emitAlignment(Align); 2368 emitXXStructor(DL, S.Func); 2369 } 2370 } 2371 2372 void AsmPrinter::emitModuleIdents(Module &M) { 2373 if (!MAI->hasIdentDirective()) 2374 return; 2375 2376 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2377 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2378 const MDNode *N = NMD->getOperand(i); 2379 assert(N->getNumOperands() == 1 && 2380 "llvm.ident metadata entry can have only one operand"); 2381 const MDString *S = cast<MDString>(N->getOperand(0)); 2382 OutStreamer->emitIdent(S->getString()); 2383 } 2384 } 2385 } 2386 2387 void AsmPrinter::emitModuleCommandLines(Module &M) { 2388 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2389 if (!CommandLine) 2390 return; 2391 2392 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2393 if (!NMD || !NMD->getNumOperands()) 2394 return; 2395 2396 OutStreamer->PushSection(); 2397 OutStreamer->SwitchSection(CommandLine); 2398 OutStreamer->emitZeros(1); 2399 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2400 const MDNode *N = NMD->getOperand(i); 2401 assert(N->getNumOperands() == 1 && 2402 "llvm.commandline metadata entry can have only one operand"); 2403 const MDString *S = cast<MDString>(N->getOperand(0)); 2404 OutStreamer->emitBytes(S->getString()); 2405 OutStreamer->emitZeros(1); 2406 } 2407 OutStreamer->PopSection(); 2408 } 2409 2410 //===--------------------------------------------------------------------===// 2411 // Emission and print routines 2412 // 2413 2414 /// Emit a byte directive and value. 2415 /// 2416 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2417 2418 /// Emit a short directive and value. 2419 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2420 2421 /// Emit a long directive and value. 2422 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2423 2424 /// Emit a long long directive and value. 2425 void AsmPrinter::emitInt64(uint64_t Value) const { 2426 OutStreamer->emitInt64(Value); 2427 } 2428 2429 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2430 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2431 /// .set if it avoids relocations. 2432 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2433 unsigned Size) const { 2434 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2435 } 2436 2437 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2438 /// where the size in bytes of the directive is specified by Size and Label 2439 /// specifies the label. This implicitly uses .set if it is available. 2440 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2441 unsigned Size, 2442 bool IsSectionRelative) const { 2443 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2444 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2445 if (Size > 4) 2446 OutStreamer->emitZeros(Size - 4); 2447 return; 2448 } 2449 2450 // Emit Label+Offset (or just Label if Offset is zero) 2451 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2452 if (Offset) 2453 Expr = MCBinaryExpr::createAdd( 2454 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2455 2456 OutStreamer->emitValue(Expr, Size); 2457 } 2458 2459 //===----------------------------------------------------------------------===// 2460 2461 // EmitAlignment - Emit an alignment directive to the specified power of 2462 // two boundary. If a global value is specified, and if that global has 2463 // an explicit alignment requested, it will override the alignment request 2464 // if required for correctness. 2465 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const { 2466 if (GV) 2467 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2468 2469 if (Alignment == Align(1)) 2470 return; // 1-byte aligned: no need to emit alignment. 2471 2472 if (getCurrentSection()->getKind().isText()) { 2473 const MCSubtargetInfo *STI = nullptr; 2474 if (this->MF) 2475 STI = &getSubtargetInfo(); 2476 else 2477 STI = TM.getMCSubtargetInfo(); 2478 OutStreamer->emitCodeAlignment(Alignment.value(), STI); 2479 } else 2480 OutStreamer->emitValueToAlignment(Alignment.value()); 2481 } 2482 2483 //===----------------------------------------------------------------------===// 2484 // Constant emission. 2485 //===----------------------------------------------------------------------===// 2486 2487 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2488 MCContext &Ctx = OutContext; 2489 2490 if (CV->isNullValue() || isa<UndefValue>(CV)) 2491 return MCConstantExpr::create(0, Ctx); 2492 2493 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2494 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2495 2496 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2497 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2498 2499 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2500 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2501 2502 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) 2503 return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM); 2504 2505 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2506 if (!CE) { 2507 llvm_unreachable("Unknown constant value to lower!"); 2508 } 2509 2510 switch (CE->getOpcode()) { 2511 case Instruction::AddrSpaceCast: { 2512 const Constant *Op = CE->getOperand(0); 2513 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 2514 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 2515 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 2516 return lowerConstant(Op); 2517 2518 // Fallthrough to error. 2519 LLVM_FALLTHROUGH; 2520 } 2521 default: { 2522 // If the code isn't optimized, there may be outstanding folding 2523 // opportunities. Attempt to fold the expression using DataLayout as a 2524 // last resort before giving up. 2525 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2526 if (C != CE) 2527 return lowerConstant(C); 2528 2529 // Otherwise report the problem to the user. 2530 std::string S; 2531 raw_string_ostream OS(S); 2532 OS << "Unsupported expression in static initializer: "; 2533 CE->printAsOperand(OS, /*PrintType=*/false, 2534 !MF ? nullptr : MF->getFunction().getParent()); 2535 report_fatal_error(Twine(OS.str())); 2536 } 2537 case Instruction::GetElementPtr: { 2538 // Generate a symbolic expression for the byte address 2539 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2540 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2541 2542 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2543 if (!OffsetAI) 2544 return Base; 2545 2546 int64_t Offset = OffsetAI.getSExtValue(); 2547 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2548 Ctx); 2549 } 2550 2551 case Instruction::Trunc: 2552 // We emit the value and depend on the assembler to truncate the generated 2553 // expression properly. This is important for differences between 2554 // blockaddress labels. Since the two labels are in the same function, it 2555 // is reasonable to treat their delta as a 32-bit value. 2556 LLVM_FALLTHROUGH; 2557 case Instruction::BitCast: 2558 return lowerConstant(CE->getOperand(0)); 2559 2560 case Instruction::IntToPtr: { 2561 const DataLayout &DL = getDataLayout(); 2562 2563 // Handle casts to pointers by changing them into casts to the appropriate 2564 // integer type. This promotes constant folding and simplifies this code. 2565 Constant *Op = CE->getOperand(0); 2566 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2567 false/*ZExt*/); 2568 return lowerConstant(Op); 2569 } 2570 2571 case Instruction::PtrToInt: { 2572 const DataLayout &DL = getDataLayout(); 2573 2574 // Support only foldable casts to/from pointers that can be eliminated by 2575 // changing the pointer to the appropriately sized integer type. 2576 Constant *Op = CE->getOperand(0); 2577 Type *Ty = CE->getType(); 2578 2579 const MCExpr *OpExpr = lowerConstant(Op); 2580 2581 // We can emit the pointer value into this slot if the slot is an 2582 // integer slot equal to the size of the pointer. 2583 // 2584 // If the pointer is larger than the resultant integer, then 2585 // as with Trunc just depend on the assembler to truncate it. 2586 if (DL.getTypeAllocSize(Ty).getFixedSize() <= 2587 DL.getTypeAllocSize(Op->getType()).getFixedSize()) 2588 return OpExpr; 2589 2590 // Otherwise the pointer is smaller than the resultant integer, mask off 2591 // the high bits so we are sure to get a proper truncation if the input is 2592 // a constant expr. 2593 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2594 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2595 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2596 } 2597 2598 case Instruction::Sub: { 2599 GlobalValue *LHSGV; 2600 APInt LHSOffset; 2601 DSOLocalEquivalent *DSOEquiv; 2602 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2603 getDataLayout(), &DSOEquiv)) { 2604 GlobalValue *RHSGV; 2605 APInt RHSOffset; 2606 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2607 getDataLayout())) { 2608 const MCExpr *RelocExpr = 2609 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2610 if (!RelocExpr) { 2611 const MCExpr *LHSExpr = 2612 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx); 2613 if (DSOEquiv && 2614 getObjFileLowering().supportDSOLocalEquivalentLowering()) 2615 LHSExpr = 2616 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM); 2617 RelocExpr = MCBinaryExpr::createSub( 2618 LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2619 } 2620 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2621 if (Addend != 0) 2622 RelocExpr = MCBinaryExpr::createAdd( 2623 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2624 return RelocExpr; 2625 } 2626 } 2627 } 2628 // else fallthrough 2629 LLVM_FALLTHROUGH; 2630 2631 // The MC library also has a right-shift operator, but it isn't consistently 2632 // signed or unsigned between different targets. 2633 case Instruction::Add: 2634 case Instruction::Mul: 2635 case Instruction::SDiv: 2636 case Instruction::SRem: 2637 case Instruction::Shl: 2638 case Instruction::And: 2639 case Instruction::Or: 2640 case Instruction::Xor: { 2641 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2642 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2643 switch (CE->getOpcode()) { 2644 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2645 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2646 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2647 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2648 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2649 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2650 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2651 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2652 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2653 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2654 } 2655 } 2656 } 2657 } 2658 2659 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2660 AsmPrinter &AP, 2661 const Constant *BaseCV = nullptr, 2662 uint64_t Offset = 0); 2663 2664 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2665 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2666 2667 /// isRepeatedByteSequence - Determine whether the given value is 2668 /// composed of a repeated sequence of identical bytes and return the 2669 /// byte value. If it is not a repeated sequence, return -1. 2670 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2671 StringRef Data = V->getRawDataValues(); 2672 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2673 char C = Data[0]; 2674 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2675 if (Data[i] != C) return -1; 2676 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2677 } 2678 2679 /// isRepeatedByteSequence - Determine whether the given value is 2680 /// composed of a repeated sequence of identical bytes and return the 2681 /// byte value. If it is not a repeated sequence, return -1. 2682 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2683 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2684 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2685 assert(Size % 8 == 0); 2686 2687 // Extend the element to take zero padding into account. 2688 APInt Value = CI->getValue().zextOrSelf(Size); 2689 if (!Value.isSplat(8)) 2690 return -1; 2691 2692 return Value.zextOrTrunc(8).getZExtValue(); 2693 } 2694 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2695 // Make sure all array elements are sequences of the same repeated 2696 // byte. 2697 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2698 Constant *Op0 = CA->getOperand(0); 2699 int Byte = isRepeatedByteSequence(Op0, DL); 2700 if (Byte == -1) 2701 return -1; 2702 2703 // All array elements must be equal. 2704 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2705 if (CA->getOperand(i) != Op0) 2706 return -1; 2707 return Byte; 2708 } 2709 2710 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2711 return isRepeatedByteSequence(CDS); 2712 2713 return -1; 2714 } 2715 2716 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2717 const ConstantDataSequential *CDS, 2718 AsmPrinter &AP) { 2719 // See if we can aggregate this into a .fill, if so, emit it as such. 2720 int Value = isRepeatedByteSequence(CDS, DL); 2721 if (Value != -1) { 2722 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2723 // Don't emit a 1-byte object as a .fill. 2724 if (Bytes > 1) 2725 return AP.OutStreamer->emitFill(Bytes, Value); 2726 } 2727 2728 // If this can be emitted with .ascii/.asciz, emit it as such. 2729 if (CDS->isString()) 2730 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2731 2732 // Otherwise, emit the values in successive locations. 2733 unsigned ElementByteSize = CDS->getElementByteSize(); 2734 if (isa<IntegerType>(CDS->getElementType())) { 2735 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2736 if (AP.isVerbose()) 2737 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2738 CDS->getElementAsInteger(i)); 2739 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2740 ElementByteSize); 2741 } 2742 } else { 2743 Type *ET = CDS->getElementType(); 2744 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2745 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2746 } 2747 2748 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2749 unsigned EmittedSize = 2750 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 2751 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2752 if (unsigned Padding = Size - EmittedSize) 2753 AP.OutStreamer->emitZeros(Padding); 2754 } 2755 2756 static void emitGlobalConstantArray(const DataLayout &DL, 2757 const ConstantArray *CA, AsmPrinter &AP, 2758 const Constant *BaseCV, uint64_t Offset) { 2759 // See if we can aggregate some values. Make sure it can be 2760 // represented as a series of bytes of the constant value. 2761 int Value = isRepeatedByteSequence(CA, DL); 2762 2763 if (Value != -1) { 2764 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2765 AP.OutStreamer->emitFill(Bytes, Value); 2766 } 2767 else { 2768 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2769 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2770 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2771 } 2772 } 2773 } 2774 2775 static void emitGlobalConstantVector(const DataLayout &DL, 2776 const ConstantVector *CV, AsmPrinter &AP) { 2777 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2778 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2779 2780 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2781 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2782 CV->getType()->getNumElements(); 2783 if (unsigned Padding = Size - EmittedSize) 2784 AP.OutStreamer->emitZeros(Padding); 2785 } 2786 2787 static void emitGlobalConstantStruct(const DataLayout &DL, 2788 const ConstantStruct *CS, AsmPrinter &AP, 2789 const Constant *BaseCV, uint64_t Offset) { 2790 // Print the fields in successive locations. Pad to align if needed! 2791 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2792 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2793 uint64_t SizeSoFar = 0; 2794 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2795 const Constant *Field = CS->getOperand(i); 2796 2797 // Print the actual field value. 2798 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2799 2800 // Check if padding is needed and insert one or more 0s. 2801 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2802 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2803 - Layout->getElementOffset(i)) - FieldSize; 2804 SizeSoFar += FieldSize + PadSize; 2805 2806 // Insert padding - this may include padding to increase the size of the 2807 // current field up to the ABI size (if the struct is not packed) as well 2808 // as padding to ensure that the next field starts at the right offset. 2809 AP.OutStreamer->emitZeros(PadSize); 2810 } 2811 assert(SizeSoFar == Layout->getSizeInBytes() && 2812 "Layout of constant struct may be incorrect!"); 2813 } 2814 2815 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2816 assert(ET && "Unknown float type"); 2817 APInt API = APF.bitcastToAPInt(); 2818 2819 // First print a comment with what we think the original floating-point value 2820 // should have been. 2821 if (AP.isVerbose()) { 2822 SmallString<8> StrVal; 2823 APF.toString(StrVal); 2824 ET->print(AP.OutStreamer->GetCommentOS()); 2825 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2826 } 2827 2828 // Now iterate through the APInt chunks, emitting them in endian-correct 2829 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2830 // floats). 2831 unsigned NumBytes = API.getBitWidth() / 8; 2832 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2833 const uint64_t *p = API.getRawData(); 2834 2835 // PPC's long double has odd notions of endianness compared to how LLVM 2836 // handles it: p[0] goes first for *big* endian on PPC. 2837 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2838 int Chunk = API.getNumWords() - 1; 2839 2840 if (TrailingBytes) 2841 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 2842 2843 for (; Chunk >= 0; --Chunk) 2844 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2845 } else { 2846 unsigned Chunk; 2847 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2848 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2849 2850 if (TrailingBytes) 2851 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 2852 } 2853 2854 // Emit the tail padding for the long double. 2855 const DataLayout &DL = AP.getDataLayout(); 2856 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2857 } 2858 2859 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2860 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2861 } 2862 2863 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2864 const DataLayout &DL = AP.getDataLayout(); 2865 unsigned BitWidth = CI->getBitWidth(); 2866 2867 // Copy the value as we may massage the layout for constants whose bit width 2868 // is not a multiple of 64-bits. 2869 APInt Realigned(CI->getValue()); 2870 uint64_t ExtraBits = 0; 2871 unsigned ExtraBitsSize = BitWidth & 63; 2872 2873 if (ExtraBitsSize) { 2874 // The bit width of the data is not a multiple of 64-bits. 2875 // The extra bits are expected to be at the end of the chunk of the memory. 2876 // Little endian: 2877 // * Nothing to be done, just record the extra bits to emit. 2878 // Big endian: 2879 // * Record the extra bits to emit. 2880 // * Realign the raw data to emit the chunks of 64-bits. 2881 if (DL.isBigEndian()) { 2882 // Basically the structure of the raw data is a chunk of 64-bits cells: 2883 // 0 1 BitWidth / 64 2884 // [chunk1][chunk2] ... [chunkN]. 2885 // The most significant chunk is chunkN and it should be emitted first. 2886 // However, due to the alignment issue chunkN contains useless bits. 2887 // Realign the chunks so that they contain only useful information: 2888 // ExtraBits 0 1 (BitWidth / 64) - 1 2889 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2890 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 2891 ExtraBits = Realigned.getRawData()[0] & 2892 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2893 Realigned.lshrInPlace(ExtraBitsSize); 2894 } else 2895 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2896 } 2897 2898 // We don't expect assemblers to support integer data directives 2899 // for more than 64 bits, so we emit the data in at most 64-bit 2900 // quantities at a time. 2901 const uint64_t *RawData = Realigned.getRawData(); 2902 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2903 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2904 AP.OutStreamer->emitIntValue(Val, 8); 2905 } 2906 2907 if (ExtraBitsSize) { 2908 // Emit the extra bits after the 64-bits chunks. 2909 2910 // Emit a directive that fills the expected size. 2911 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 2912 Size -= (BitWidth / 64) * 8; 2913 assert(Size && Size * 8 >= ExtraBitsSize && 2914 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2915 == ExtraBits && "Directive too small for extra bits."); 2916 AP.OutStreamer->emitIntValue(ExtraBits, Size); 2917 } 2918 } 2919 2920 /// Transform a not absolute MCExpr containing a reference to a GOT 2921 /// equivalent global, by a target specific GOT pc relative access to the 2922 /// final symbol. 2923 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2924 const Constant *BaseCst, 2925 uint64_t Offset) { 2926 // The global @foo below illustrates a global that uses a got equivalent. 2927 // 2928 // @bar = global i32 42 2929 // @gotequiv = private unnamed_addr constant i32* @bar 2930 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2931 // i64 ptrtoint (i32* @foo to i64)) 2932 // to i32) 2933 // 2934 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2935 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2936 // form: 2937 // 2938 // foo = cstexpr, where 2939 // cstexpr := <gotequiv> - "." + <cst> 2940 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2941 // 2942 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2943 // 2944 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2945 // gotpcrelcst := <offset from @foo base> + <cst> 2946 MCValue MV; 2947 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2948 return; 2949 const MCSymbolRefExpr *SymA = MV.getSymA(); 2950 if (!SymA) 2951 return; 2952 2953 // Check that GOT equivalent symbol is cached. 2954 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2955 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2956 return; 2957 2958 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2959 if (!BaseGV) 2960 return; 2961 2962 // Check for a valid base symbol 2963 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2964 const MCSymbolRefExpr *SymB = MV.getSymB(); 2965 2966 if (!SymB || BaseSym != &SymB->getSymbol()) 2967 return; 2968 2969 // Make sure to match: 2970 // 2971 // gotpcrelcst := <offset from @foo base> + <cst> 2972 // 2973 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2974 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2975 // if the target knows how to encode it. 2976 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2977 if (GOTPCRelCst < 0) 2978 return; 2979 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2980 return; 2981 2982 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2983 // 2984 // bar: 2985 // .long 42 2986 // gotequiv: 2987 // .quad bar 2988 // foo: 2989 // .long gotequiv - "." + <cst> 2990 // 2991 // is replaced by the target specific equivalent to: 2992 // 2993 // bar: 2994 // .long 42 2995 // foo: 2996 // .long bar@GOTPCREL+<gotpcrelcst> 2997 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2998 const GlobalVariable *GV = Result.first; 2999 int NumUses = (int)Result.second; 3000 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 3001 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 3002 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 3003 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 3004 3005 // Update GOT equivalent usage information 3006 --NumUses; 3007 if (NumUses >= 0) 3008 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 3009 } 3010 3011 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 3012 AsmPrinter &AP, const Constant *BaseCV, 3013 uint64_t Offset) { 3014 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 3015 3016 // Globals with sub-elements such as combinations of arrays and structs 3017 // are handled recursively by emitGlobalConstantImpl. Keep track of the 3018 // constant symbol base and the current position with BaseCV and Offset. 3019 if (!BaseCV && CV->hasOneUse()) 3020 BaseCV = dyn_cast<Constant>(CV->user_back()); 3021 3022 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 3023 return AP.OutStreamer->emitZeros(Size); 3024 3025 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 3026 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 3027 3028 if (StoreSize <= 8) { 3029 if (AP.isVerbose()) 3030 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 3031 CI->getZExtValue()); 3032 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 3033 } else { 3034 emitGlobalConstantLargeInt(CI, AP); 3035 } 3036 3037 // Emit tail padding if needed 3038 if (Size != StoreSize) 3039 AP.OutStreamer->emitZeros(Size - StoreSize); 3040 3041 return; 3042 } 3043 3044 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 3045 return emitGlobalConstantFP(CFP, AP); 3046 3047 if (isa<ConstantPointerNull>(CV)) { 3048 AP.OutStreamer->emitIntValue(0, Size); 3049 return; 3050 } 3051 3052 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 3053 return emitGlobalConstantDataSequential(DL, CDS, AP); 3054 3055 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 3056 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 3057 3058 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 3059 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 3060 3061 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 3062 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 3063 // vectors). 3064 if (CE->getOpcode() == Instruction::BitCast) 3065 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 3066 3067 if (Size > 8) { 3068 // If the constant expression's size is greater than 64-bits, then we have 3069 // to emit the value in chunks. Try to constant fold the value and emit it 3070 // that way. 3071 Constant *New = ConstantFoldConstant(CE, DL); 3072 if (New != CE) 3073 return emitGlobalConstantImpl(DL, New, AP); 3074 } 3075 } 3076 3077 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 3078 return emitGlobalConstantVector(DL, V, AP); 3079 3080 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 3081 // thread the streamer with EmitValue. 3082 const MCExpr *ME = AP.lowerConstant(CV); 3083 3084 // Since lowerConstant already folded and got rid of all IR pointer and 3085 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 3086 // directly. 3087 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 3088 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 3089 3090 AP.OutStreamer->emitValue(ME, Size); 3091 } 3092 3093 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 3094 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 3095 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 3096 if (Size) 3097 emitGlobalConstantImpl(DL, CV, *this); 3098 else if (MAI->hasSubsectionsViaSymbols()) { 3099 // If the global has zero size, emit a single byte so that two labels don't 3100 // look like they are at the same location. 3101 OutStreamer->emitIntValue(0, 1); 3102 } 3103 } 3104 3105 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 3106 // Target doesn't support this yet! 3107 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 3108 } 3109 3110 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 3111 if (Offset > 0) 3112 OS << '+' << Offset; 3113 else if (Offset < 0) 3114 OS << Offset; 3115 } 3116 3117 void AsmPrinter::emitNops(unsigned N) { 3118 MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop(); 3119 for (; N; --N) 3120 EmitToStreamer(*OutStreamer, Nop); 3121 } 3122 3123 //===----------------------------------------------------------------------===// 3124 // Symbol Lowering Routines. 3125 //===----------------------------------------------------------------------===// 3126 3127 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 3128 return OutContext.createTempSymbol(Name, true); 3129 } 3130 3131 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 3132 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 3133 } 3134 3135 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 3136 return MMI->getAddrLabelSymbol(BB); 3137 } 3138 3139 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 3140 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 3141 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 3142 const MachineConstantPoolEntry &CPE = 3143 MF->getConstantPool()->getConstants()[CPID]; 3144 if (!CPE.isMachineConstantPoolEntry()) { 3145 const DataLayout &DL = MF->getDataLayout(); 3146 SectionKind Kind = CPE.getSectionKind(&DL); 3147 const Constant *C = CPE.Val.ConstVal; 3148 Align Alignment = CPE.Alignment; 3149 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 3150 getObjFileLowering().getSectionForConstant(DL, Kind, C, 3151 Alignment))) { 3152 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 3153 if (Sym->isUndefined()) 3154 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 3155 return Sym; 3156 } 3157 } 3158 } 3159 } 3160 3161 const DataLayout &DL = getDataLayout(); 3162 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3163 "CPI" + Twine(getFunctionNumber()) + "_" + 3164 Twine(CPID)); 3165 } 3166 3167 /// GetJTISymbol - Return the symbol for the specified jump table entry. 3168 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 3169 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 3170 } 3171 3172 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 3173 /// FIXME: privatize to AsmPrinter. 3174 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 3175 const DataLayout &DL = getDataLayout(); 3176 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3177 Twine(getFunctionNumber()) + "_" + 3178 Twine(UID) + "_set_" + Twine(MBBID)); 3179 } 3180 3181 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 3182 StringRef Suffix) const { 3183 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 3184 } 3185 3186 /// Return the MCSymbol for the specified ExternalSymbol. 3187 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 3188 SmallString<60> NameStr; 3189 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 3190 return OutContext.getOrCreateSymbol(NameStr); 3191 } 3192 3193 /// PrintParentLoopComment - Print comments about parent loops of this one. 3194 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3195 unsigned FunctionNumber) { 3196 if (!Loop) return; 3197 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 3198 OS.indent(Loop->getLoopDepth()*2) 3199 << "Parent Loop BB" << FunctionNumber << "_" 3200 << Loop->getHeader()->getNumber() 3201 << " Depth=" << Loop->getLoopDepth() << '\n'; 3202 } 3203 3204 /// PrintChildLoopComment - Print comments about child loops within 3205 /// the loop for this basic block, with nesting. 3206 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3207 unsigned FunctionNumber) { 3208 // Add child loop information 3209 for (const MachineLoop *CL : *Loop) { 3210 OS.indent(CL->getLoopDepth()*2) 3211 << "Child Loop BB" << FunctionNumber << "_" 3212 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 3213 << '\n'; 3214 PrintChildLoopComment(OS, CL, FunctionNumber); 3215 } 3216 } 3217 3218 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 3219 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 3220 const MachineLoopInfo *LI, 3221 const AsmPrinter &AP) { 3222 // Add loop depth information 3223 const MachineLoop *Loop = LI->getLoopFor(&MBB); 3224 if (!Loop) return; 3225 3226 MachineBasicBlock *Header = Loop->getHeader(); 3227 assert(Header && "No header for loop"); 3228 3229 // If this block is not a loop header, just print out what is the loop header 3230 // and return. 3231 if (Header != &MBB) { 3232 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3233 Twine(AP.getFunctionNumber())+"_" + 3234 Twine(Loop->getHeader()->getNumber())+ 3235 " Depth="+Twine(Loop->getLoopDepth())); 3236 return; 3237 } 3238 3239 // Otherwise, it is a loop header. Print out information about child and 3240 // parent loops. 3241 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 3242 3243 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3244 3245 OS << "=>"; 3246 OS.indent(Loop->getLoopDepth()*2-2); 3247 3248 OS << "This "; 3249 if (Loop->isInnermost()) 3250 OS << "Inner "; 3251 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3252 3253 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3254 } 3255 3256 /// emitBasicBlockStart - This method prints the label for the specified 3257 /// MachineBasicBlock, an alignment (if present) and a comment describing 3258 /// it if appropriate. 3259 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3260 // End the previous funclet and start a new one. 3261 if (MBB.isEHFuncletEntry()) { 3262 for (const HandlerInfo &HI : Handlers) { 3263 HI.Handler->endFunclet(); 3264 HI.Handler->beginFunclet(MBB); 3265 } 3266 } 3267 3268 // Emit an alignment directive for this block, if needed. 3269 const Align Alignment = MBB.getAlignment(); 3270 if (Alignment != Align(1)) 3271 emitAlignment(Alignment); 3272 3273 // Switch to a new section if this basic block must begin a section. The 3274 // entry block is always placed in the function section and is handled 3275 // separately. 3276 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 3277 OutStreamer->SwitchSection( 3278 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3279 MBB, TM)); 3280 CurrentSectionBeginSym = MBB.getSymbol(); 3281 } 3282 3283 // If the block has its address taken, emit any labels that were used to 3284 // reference the block. It is possible that there is more than one label 3285 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3286 // the references were generated. 3287 const BasicBlock *BB = MBB.getBasicBlock(); 3288 if (MBB.hasAddressTaken()) { 3289 if (isVerbose()) 3290 OutStreamer->AddComment("Block address taken"); 3291 3292 // MBBs can have their address taken as part of CodeGen without having 3293 // their corresponding BB's address taken in IR 3294 if (BB && BB->hasAddressTaken()) 3295 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 3296 OutStreamer->emitLabel(Sym); 3297 } 3298 3299 // Print some verbose block comments. 3300 if (isVerbose()) { 3301 if (BB) { 3302 if (BB->hasName()) { 3303 BB->printAsOperand(OutStreamer->GetCommentOS(), 3304 /*PrintType=*/false, BB->getModule()); 3305 OutStreamer->GetCommentOS() << '\n'; 3306 } 3307 } 3308 3309 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3310 emitBasicBlockLoopComments(MBB, MLI, *this); 3311 } 3312 3313 // Print the main label for the block. 3314 if (shouldEmitLabelForBasicBlock(MBB)) { 3315 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3316 OutStreamer->AddComment("Label of block must be emitted"); 3317 OutStreamer->emitLabel(MBB.getSymbol()); 3318 } else { 3319 if (isVerbose()) { 3320 // NOTE: Want this comment at start of line, don't emit with AddComment. 3321 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3322 false); 3323 } 3324 } 3325 3326 if (MBB.isEHCatchretTarget() && 3327 MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) { 3328 OutStreamer->emitLabel(MBB.getEHCatchretSymbol()); 3329 } 3330 3331 // With BB sections, each basic block must handle CFI information on its own 3332 // if it begins a section (Entry block is handled separately by 3333 // AsmPrinterHandler::beginFunction). 3334 if (MBB.isBeginSection() && !MBB.isEntryBlock()) 3335 for (const HandlerInfo &HI : Handlers) 3336 HI.Handler->beginBasicBlock(MBB); 3337 } 3338 3339 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 3340 // Check if CFI information needs to be updated for this MBB with basic block 3341 // sections. 3342 if (MBB.isEndSection()) 3343 for (const HandlerInfo &HI : Handlers) 3344 HI.Handler->endBasicBlock(MBB); 3345 } 3346 3347 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3348 bool IsDefinition) const { 3349 MCSymbolAttr Attr = MCSA_Invalid; 3350 3351 switch (Visibility) { 3352 default: break; 3353 case GlobalValue::HiddenVisibility: 3354 if (IsDefinition) 3355 Attr = MAI->getHiddenVisibilityAttr(); 3356 else 3357 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3358 break; 3359 case GlobalValue::ProtectedVisibility: 3360 Attr = MAI->getProtectedVisibilityAttr(); 3361 break; 3362 } 3363 3364 if (Attr != MCSA_Invalid) 3365 OutStreamer->emitSymbolAttribute(Sym, Attr); 3366 } 3367 3368 bool AsmPrinter::shouldEmitLabelForBasicBlock( 3369 const MachineBasicBlock &MBB) const { 3370 // With `-fbasic-block-sections=`, a label is needed for every non-entry block 3371 // in the labels mode (option `=labels`) and every section beginning in the 3372 // sections mode (`=all` and `=list=`). 3373 if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock()) 3374 return true; 3375 // A label is needed for any block with at least one predecessor (when that 3376 // predecessor is not the fallthrough predecessor, or if it is an EH funclet 3377 // entry, or if a label is forced). 3378 return !MBB.pred_empty() && 3379 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || 3380 MBB.hasLabelMustBeEmitted()); 3381 } 3382 3383 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3384 /// exactly one predecessor and the control transfer mechanism between 3385 /// the predecessor and this block is a fall-through. 3386 bool AsmPrinter:: 3387 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3388 // If this is a landing pad, it isn't a fall through. If it has no preds, 3389 // then nothing falls through to it. 3390 if (MBB->isEHPad() || MBB->pred_empty()) 3391 return false; 3392 3393 // If there isn't exactly one predecessor, it can't be a fall through. 3394 if (MBB->pred_size() > 1) 3395 return false; 3396 3397 // The predecessor has to be immediately before this block. 3398 MachineBasicBlock *Pred = *MBB->pred_begin(); 3399 if (!Pred->isLayoutSuccessor(MBB)) 3400 return false; 3401 3402 // If the block is completely empty, then it definitely does fall through. 3403 if (Pred->empty()) 3404 return true; 3405 3406 // Check the terminators in the previous blocks 3407 for (const auto &MI : Pred->terminators()) { 3408 // If it is not a simple branch, we are in a table somewhere. 3409 if (!MI.isBranch() || MI.isIndirectBranch()) 3410 return false; 3411 3412 // If we are the operands of one of the branches, this is not a fall 3413 // through. Note that targets with delay slots will usually bundle 3414 // terminators with the delay slot instruction. 3415 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3416 if (OP->isJTI()) 3417 return false; 3418 if (OP->isMBB() && OP->getMBB() == MBB) 3419 return false; 3420 } 3421 } 3422 3423 return true; 3424 } 3425 3426 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3427 if (!S.usesMetadata()) 3428 return nullptr; 3429 3430 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3431 gcp_map_type::iterator GCPI = GCMap.find(&S); 3432 if (GCPI != GCMap.end()) 3433 return GCPI->second.get(); 3434 3435 auto Name = S.getName(); 3436 3437 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 3438 GCMetadataPrinterRegistry::entries()) 3439 if (Name == GCMetaPrinter.getName()) { 3440 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 3441 GMP->S = &S; 3442 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3443 return IterBool.first->second.get(); 3444 } 3445 3446 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3447 } 3448 3449 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3450 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3451 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3452 bool NeedsDefault = false; 3453 if (MI->begin() == MI->end()) 3454 // No GC strategy, use the default format. 3455 NeedsDefault = true; 3456 else 3457 for (auto &I : *MI) { 3458 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3459 if (MP->emitStackMaps(SM, *this)) 3460 continue; 3461 // The strategy doesn't have printer or doesn't emit custom stack maps. 3462 // Use the default format. 3463 NeedsDefault = true; 3464 } 3465 3466 if (NeedsDefault) 3467 SM.serializeToStackMapSection(); 3468 } 3469 3470 /// Pin vtable to this file. 3471 AsmPrinterHandler::~AsmPrinterHandler() = default; 3472 3473 void AsmPrinterHandler::markFunctionEnd() {} 3474 3475 // In the binary's "xray_instr_map" section, an array of these function entries 3476 // describes each instrumentation point. When XRay patches your code, the index 3477 // into this table will be given to your handler as a patch point identifier. 3478 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 3479 auto Kind8 = static_cast<uint8_t>(Kind); 3480 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3481 Out->emitBinaryData( 3482 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3483 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3484 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3485 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3486 Out->emitZeros(Padding); 3487 } 3488 3489 void AsmPrinter::emitXRayTable() { 3490 if (Sleds.empty()) 3491 return; 3492 3493 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3494 const Function &F = MF->getFunction(); 3495 MCSection *InstMap = nullptr; 3496 MCSection *FnSledIndex = nullptr; 3497 const Triple &TT = TM.getTargetTriple(); 3498 // Use PC-relative addresses on all targets. 3499 if (TT.isOSBinFormatELF()) { 3500 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3501 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3502 StringRef GroupName; 3503 if (F.hasComdat()) { 3504 Flags |= ELF::SHF_GROUP; 3505 GroupName = F.getComdat()->getName(); 3506 } 3507 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3508 Flags, 0, GroupName, F.hasComdat(), 3509 MCSection::NonUniqueID, LinkedToSym); 3510 3511 if (!TM.Options.XRayOmitFunctionIndex) 3512 FnSledIndex = OutContext.getELFSection( 3513 "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0, 3514 GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym); 3515 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3516 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3517 SectionKind::getReadOnlyWithRel()); 3518 if (!TM.Options.XRayOmitFunctionIndex) 3519 FnSledIndex = OutContext.getMachOSection( 3520 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel()); 3521 } else { 3522 llvm_unreachable("Unsupported target"); 3523 } 3524 3525 auto WordSizeBytes = MAI->getCodePointerSize(); 3526 3527 // Now we switch to the instrumentation map section. Because this is done 3528 // per-function, we are able to create an index entry that will represent the 3529 // range of sleds associated with a function. 3530 auto &Ctx = OutContext; 3531 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3532 OutStreamer->SwitchSection(InstMap); 3533 OutStreamer->emitLabel(SledsStart); 3534 for (const auto &Sled : Sleds) { 3535 MCSymbol *Dot = Ctx.createTempSymbol(); 3536 OutStreamer->emitLabel(Dot); 3537 OutStreamer->emitValueImpl( 3538 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 3539 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 3540 WordSizeBytes); 3541 OutStreamer->emitValueImpl( 3542 MCBinaryExpr::createSub( 3543 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 3544 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 3545 MCConstantExpr::create(WordSizeBytes, Ctx), 3546 Ctx), 3547 Ctx), 3548 WordSizeBytes); 3549 Sled.emit(WordSizeBytes, OutStreamer.get()); 3550 } 3551 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3552 OutStreamer->emitLabel(SledsEnd); 3553 3554 // We then emit a single entry in the index per function. We use the symbols 3555 // that bound the instrumentation map as the range for a specific function. 3556 // Each entry here will be 2 * word size aligned, as we're writing down two 3557 // pointers. This should work for both 32-bit and 64-bit platforms. 3558 if (FnSledIndex) { 3559 OutStreamer->SwitchSection(FnSledIndex); 3560 OutStreamer->emitCodeAlignment(2 * WordSizeBytes, &getSubtargetInfo()); 3561 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3562 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3563 OutStreamer->SwitchSection(PrevSection); 3564 } 3565 Sleds.clear(); 3566 } 3567 3568 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3569 SledKind Kind, uint8_t Version) { 3570 const Function &F = MI.getMF()->getFunction(); 3571 auto Attr = F.getFnAttribute("function-instrument"); 3572 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3573 bool AlwaysInstrument = 3574 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3575 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3576 Kind = SledKind::LOG_ARGS_ENTER; 3577 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3578 AlwaysInstrument, &F, Version}); 3579 } 3580 3581 void AsmPrinter::emitPatchableFunctionEntries() { 3582 const Function &F = MF->getFunction(); 3583 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3584 (void)F.getFnAttribute("patchable-function-prefix") 3585 .getValueAsString() 3586 .getAsInteger(10, PatchableFunctionPrefix); 3587 (void)F.getFnAttribute("patchable-function-entry") 3588 .getValueAsString() 3589 .getAsInteger(10, PatchableFunctionEntry); 3590 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3591 return; 3592 const unsigned PointerSize = getPointerSize(); 3593 if (TM.getTargetTriple().isOSBinFormatELF()) { 3594 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3595 const MCSymbolELF *LinkedToSym = nullptr; 3596 StringRef GroupName; 3597 3598 // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not 3599 // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections. 3600 if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) { 3601 Flags |= ELF::SHF_LINK_ORDER; 3602 if (F.hasComdat()) { 3603 Flags |= ELF::SHF_GROUP; 3604 GroupName = F.getComdat()->getName(); 3605 } 3606 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3607 } 3608 OutStreamer->SwitchSection(OutContext.getELFSection( 3609 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3610 F.hasComdat(), MCSection::NonUniqueID, LinkedToSym)); 3611 emitAlignment(Align(PointerSize)); 3612 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3613 } 3614 } 3615 3616 uint16_t AsmPrinter::getDwarfVersion() const { 3617 return OutStreamer->getContext().getDwarfVersion(); 3618 } 3619 3620 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3621 OutStreamer->getContext().setDwarfVersion(Version); 3622 } 3623 3624 bool AsmPrinter::isDwarf64() const { 3625 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 3626 } 3627 3628 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 3629 return dwarf::getDwarfOffsetByteSize( 3630 OutStreamer->getContext().getDwarfFormat()); 3631 } 3632 3633 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 3634 return dwarf::getUnitLengthFieldByteSize( 3635 OutStreamer->getContext().getDwarfFormat()); 3636 } 3637