1 //===- AggressiveAntiDepBreaker.cpp - Anti-dep breaker --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AggressiveAntiDepBreaker class, which 10 // implements register anti-dependence breaking during post-RA 11 // scheduling. It attempts to break all anti-dependencies within a 12 // block. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AggressiveAntiDepBreaker.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/iterator_range.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineOperand.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/RegisterClassInfo.h" 27 #include "llvm/CodeGen/ScheduleDAG.h" 28 #include "llvm/CodeGen/TargetInstrInfo.h" 29 #include "llvm/CodeGen/TargetRegisterInfo.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCRegisterInfo.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/MachineValueType.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cassert> 37 #include <utility> 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "post-RA-sched" 42 43 // If DebugDiv > 0 then only break antidep with (ID % DebugDiv) == DebugMod 44 static cl::opt<int> 45 DebugDiv("agg-antidep-debugdiv", 46 cl::desc("Debug control for aggressive anti-dep breaker"), 47 cl::init(0), cl::Hidden); 48 49 static cl::opt<int> 50 DebugMod("agg-antidep-debugmod", 51 cl::desc("Debug control for aggressive anti-dep breaker"), 52 cl::init(0), cl::Hidden); 53 54 AggressiveAntiDepState::AggressiveAntiDepState(const unsigned TargetRegs, 55 MachineBasicBlock *BB) 56 : NumTargetRegs(TargetRegs), GroupNodes(TargetRegs, 0), 57 GroupNodeIndices(TargetRegs, 0), KillIndices(TargetRegs, 0), 58 DefIndices(TargetRegs, 0) { 59 const unsigned BBSize = BB->size(); 60 for (unsigned i = 0; i < NumTargetRegs; ++i) { 61 // Initialize all registers to be in their own group. Initially we 62 // assign the register to the same-indexed GroupNode. 63 GroupNodeIndices[i] = i; 64 // Initialize the indices to indicate that no registers are live. 65 KillIndices[i] = ~0u; 66 DefIndices[i] = BBSize; 67 } 68 } 69 70 unsigned AggressiveAntiDepState::GetGroup(unsigned Reg) { 71 unsigned Node = GroupNodeIndices[Reg]; 72 while (GroupNodes[Node] != Node) 73 Node = GroupNodes[Node]; 74 75 return Node; 76 } 77 78 void AggressiveAntiDepState::GetGroupRegs( 79 unsigned Group, 80 std::vector<unsigned> &Regs, 81 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference> *RegRefs) 82 { 83 for (unsigned Reg = 0; Reg != NumTargetRegs; ++Reg) { 84 if ((GetGroup(Reg) == Group) && (RegRefs->count(Reg) > 0)) 85 Regs.push_back(Reg); 86 } 87 } 88 89 unsigned AggressiveAntiDepState::UnionGroups(unsigned Reg1, unsigned Reg2) { 90 assert(GroupNodes[0] == 0 && "GroupNode 0 not parent!"); 91 assert(GroupNodeIndices[0] == 0 && "Reg 0 not in Group 0!"); 92 93 // find group for each register 94 unsigned Group1 = GetGroup(Reg1); 95 unsigned Group2 = GetGroup(Reg2); 96 97 // if either group is 0, then that must become the parent 98 unsigned Parent = (Group1 == 0) ? Group1 : Group2; 99 unsigned Other = (Parent == Group1) ? Group2 : Group1; 100 GroupNodes.at(Other) = Parent; 101 return Parent; 102 } 103 104 unsigned AggressiveAntiDepState::LeaveGroup(unsigned Reg) { 105 // Create a new GroupNode for Reg. Reg's existing GroupNode must 106 // stay as is because there could be other GroupNodes referring to 107 // it. 108 unsigned idx = GroupNodes.size(); 109 GroupNodes.push_back(idx); 110 GroupNodeIndices[Reg] = idx; 111 return idx; 112 } 113 114 bool AggressiveAntiDepState::IsLive(unsigned Reg) { 115 // KillIndex must be defined and DefIndex not defined for a register 116 // to be live. 117 return((KillIndices[Reg] != ~0u) && (DefIndices[Reg] == ~0u)); 118 } 119 120 AggressiveAntiDepBreaker::AggressiveAntiDepBreaker( 121 MachineFunction &MFi, const RegisterClassInfo &RCI, 122 TargetSubtargetInfo::RegClassVector &CriticalPathRCs) 123 : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()), 124 TII(MF.getSubtarget().getInstrInfo()), 125 TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI) { 126 /* Collect a bitset of all registers that are only broken if they 127 are on the critical path. */ 128 for (unsigned i = 0, e = CriticalPathRCs.size(); i < e; ++i) { 129 BitVector CPSet = TRI->getAllocatableSet(MF, CriticalPathRCs[i]); 130 if (CriticalPathSet.none()) 131 CriticalPathSet = CPSet; 132 else 133 CriticalPathSet |= CPSet; 134 } 135 136 LLVM_DEBUG(dbgs() << "AntiDep Critical-Path Registers:"); 137 LLVM_DEBUG(for (unsigned r 138 : CriticalPathSet.set_bits()) dbgs() 139 << " " << printReg(r, TRI)); 140 LLVM_DEBUG(dbgs() << '\n'); 141 } 142 143 AggressiveAntiDepBreaker::~AggressiveAntiDepBreaker() { 144 delete State; 145 } 146 147 void AggressiveAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { 148 assert(!State); 149 State = new AggressiveAntiDepState(TRI->getNumRegs(), BB); 150 151 bool IsReturnBlock = BB->isReturnBlock(); 152 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 153 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 154 155 // Examine the live-in regs of all successors. 156 for (MachineBasicBlock *Succ : BB->successors()) 157 for (const auto &LI : Succ->liveins()) { 158 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) { 159 unsigned Reg = *AI; 160 State->UnionGroups(Reg, 0); 161 KillIndices[Reg] = BB->size(); 162 DefIndices[Reg] = ~0u; 163 } 164 } 165 166 // Mark live-out callee-saved registers. In a return block this is 167 // all callee-saved registers. In non-return this is any 168 // callee-saved register that is not saved in the prolog. 169 const MachineFrameInfo &MFI = MF.getFrameInfo(); 170 BitVector Pristine = MFI.getPristineRegs(MF); 171 for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I; 172 ++I) { 173 unsigned Reg = *I; 174 if (!IsReturnBlock && !Pristine.test(Reg)) 175 continue; 176 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 177 unsigned AliasReg = *AI; 178 State->UnionGroups(AliasReg, 0); 179 KillIndices[AliasReg] = BB->size(); 180 DefIndices[AliasReg] = ~0u; 181 } 182 } 183 } 184 185 void AggressiveAntiDepBreaker::FinishBlock() { 186 delete State; 187 State = nullptr; 188 } 189 190 void AggressiveAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count, 191 unsigned InsertPosIndex) { 192 assert(Count < InsertPosIndex && "Instruction index out of expected range!"); 193 194 std::set<unsigned> PassthruRegs; 195 GetPassthruRegs(MI, PassthruRegs); 196 PrescanInstruction(MI, Count, PassthruRegs); 197 ScanInstruction(MI, Count); 198 199 LLVM_DEBUG(dbgs() << "Observe: "); 200 LLVM_DEBUG(MI.dump()); 201 LLVM_DEBUG(dbgs() << "\tRegs:"); 202 203 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 204 for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) { 205 // If Reg is current live, then mark that it can't be renamed as 206 // we don't know the extent of its live-range anymore (now that it 207 // has been scheduled). If it is not live but was defined in the 208 // previous schedule region, then set its def index to the most 209 // conservative location (i.e. the beginning of the previous 210 // schedule region). 211 if (State->IsLive(Reg)) { 212 LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() 213 << " " << printReg(Reg, TRI) << "=g" << State->GetGroup(Reg) 214 << "->g0(region live-out)"); 215 State->UnionGroups(Reg, 0); 216 } else if ((DefIndices[Reg] < InsertPosIndex) 217 && (DefIndices[Reg] >= Count)) { 218 DefIndices[Reg] = Count; 219 } 220 } 221 LLVM_DEBUG(dbgs() << '\n'); 222 } 223 224 bool AggressiveAntiDepBreaker::IsImplicitDefUse(MachineInstr &MI, 225 MachineOperand &MO) { 226 if (!MO.isReg() || !MO.isImplicit()) 227 return false; 228 229 Register Reg = MO.getReg(); 230 if (Reg == 0) 231 return false; 232 233 MachineOperand *Op = nullptr; 234 if (MO.isDef()) 235 Op = MI.findRegisterUseOperand(Reg, true); 236 else 237 Op = MI.findRegisterDefOperand(Reg); 238 239 return(Op && Op->isImplicit()); 240 } 241 242 void AggressiveAntiDepBreaker::GetPassthruRegs( 243 MachineInstr &MI, std::set<unsigned> &PassthruRegs) { 244 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 245 MachineOperand &MO = MI.getOperand(i); 246 if (!MO.isReg()) continue; 247 if ((MO.isDef() && MI.isRegTiedToUseOperand(i)) || 248 IsImplicitDefUse(MI, MO)) { 249 const Register Reg = MO.getReg(); 250 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 251 SubRegs.isValid(); ++SubRegs) 252 PassthruRegs.insert(*SubRegs); 253 } 254 } 255 } 256 257 /// AntiDepEdges - Return in Edges the anti- and output- dependencies 258 /// in SU that we want to consider for breaking. 259 static void AntiDepEdges(const SUnit *SU, std::vector<const SDep *> &Edges) { 260 SmallSet<unsigned, 4> RegSet; 261 for (const SDep &Pred : SU->Preds) { 262 if ((Pred.getKind() == SDep::Anti) || (Pred.getKind() == SDep::Output)) { 263 if (RegSet.insert(Pred.getReg()).second) 264 Edges.push_back(&Pred); 265 } 266 } 267 } 268 269 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up 270 /// critical path. 271 static const SUnit *CriticalPathStep(const SUnit *SU) { 272 const SDep *Next = nullptr; 273 unsigned NextDepth = 0; 274 // Find the predecessor edge with the greatest depth. 275 if (SU) { 276 for (const SDep &Pred : SU->Preds) { 277 const SUnit *PredSU = Pred.getSUnit(); 278 unsigned PredLatency = Pred.getLatency(); 279 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; 280 // In the case of a latency tie, prefer an anti-dependency edge over 281 // other types of edges. 282 if (NextDepth < PredTotalLatency || 283 (NextDepth == PredTotalLatency && Pred.getKind() == SDep::Anti)) { 284 NextDepth = PredTotalLatency; 285 Next = &Pred; 286 } 287 } 288 } 289 290 return (Next) ? Next->getSUnit() : nullptr; 291 } 292 293 void AggressiveAntiDepBreaker::HandleLastUse(unsigned Reg, unsigned KillIdx, 294 const char *tag, 295 const char *header, 296 const char *footer) { 297 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 298 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 299 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 300 RegRefs = State->GetRegRefs(); 301 302 // FIXME: We must leave subregisters of live super registers as live, so that 303 // we don't clear out the register tracking information for subregisters of 304 // super registers we're still tracking (and with which we're unioning 305 // subregister definitions). 306 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 307 if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) { 308 LLVM_DEBUG(if (!header && footer) dbgs() << footer); 309 return; 310 } 311 312 if (!State->IsLive(Reg)) { 313 KillIndices[Reg] = KillIdx; 314 DefIndices[Reg] = ~0u; 315 RegRefs.erase(Reg); 316 State->LeaveGroup(Reg); 317 LLVM_DEBUG(if (header) { 318 dbgs() << header << printReg(Reg, TRI); 319 header = nullptr; 320 }); 321 LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << tag); 322 // Repeat for subregisters. Note that we only do this if the superregister 323 // was not live because otherwise, regardless whether we have an explicit 324 // use of the subregister, the subregister's contents are needed for the 325 // uses of the superregister. 326 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 327 unsigned SubregReg = *SubRegs; 328 if (!State->IsLive(SubregReg)) { 329 KillIndices[SubregReg] = KillIdx; 330 DefIndices[SubregReg] = ~0u; 331 RegRefs.erase(SubregReg); 332 State->LeaveGroup(SubregReg); 333 LLVM_DEBUG(if (header) { 334 dbgs() << header << printReg(Reg, TRI); 335 header = nullptr; 336 }); 337 LLVM_DEBUG(dbgs() << " " << printReg(SubregReg, TRI) << "->g" 338 << State->GetGroup(SubregReg) << tag); 339 } 340 } 341 } 342 343 LLVM_DEBUG(if (!header && footer) dbgs() << footer); 344 } 345 346 void AggressiveAntiDepBreaker::PrescanInstruction( 347 MachineInstr &MI, unsigned Count, std::set<unsigned> &PassthruRegs) { 348 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 349 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 350 RegRefs = State->GetRegRefs(); 351 352 // Handle dead defs by simulating a last-use of the register just 353 // after the def. A dead def can occur because the def is truly 354 // dead, or because only a subregister is live at the def. If we 355 // don't do this the dead def will be incorrectly merged into the 356 // previous def. 357 for (const MachineOperand &MO : MI.operands()) { 358 if (!MO.isReg() || !MO.isDef()) continue; 359 Register Reg = MO.getReg(); 360 if (Reg == 0) continue; 361 362 HandleLastUse(Reg, Count + 1, "", "\tDead Def: ", "\n"); 363 } 364 365 LLVM_DEBUG(dbgs() << "\tDef Groups:"); 366 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 367 MachineOperand &MO = MI.getOperand(i); 368 if (!MO.isReg() || !MO.isDef()) continue; 369 Register Reg = MO.getReg(); 370 if (Reg == 0) continue; 371 372 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g" 373 << State->GetGroup(Reg)); 374 375 // If MI's defs have a special allocation requirement, don't allow 376 // any def registers to be changed. Also assume all registers 377 // defined in a call must not be changed (ABI). Inline assembly may 378 // reference either system calls or the register directly. Skip it until we 379 // can tell user specified registers from compiler-specified. 380 if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI) || 381 MI.isInlineAsm()) { 382 LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)"); 383 State->UnionGroups(Reg, 0); 384 } 385 386 // Any aliased that are live at this point are completely or 387 // partially defined here, so group those aliases with Reg. 388 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { 389 unsigned AliasReg = *AI; 390 if (State->IsLive(AliasReg)) { 391 State->UnionGroups(Reg, AliasReg); 392 LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << "(via " 393 << printReg(AliasReg, TRI) << ")"); 394 } 395 } 396 397 // Note register reference... 398 const TargetRegisterClass *RC = nullptr; 399 if (i < MI.getDesc().getNumOperands()) 400 RC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 401 AggressiveAntiDepState::RegisterReference RR = { &MO, RC }; 402 RegRefs.insert(std::make_pair(Reg, RR)); 403 } 404 405 LLVM_DEBUG(dbgs() << '\n'); 406 407 // Scan the register defs for this instruction and update 408 // live-ranges. 409 for (const MachineOperand &MO : MI.operands()) { 410 if (!MO.isReg() || !MO.isDef()) continue; 411 Register Reg = MO.getReg(); 412 if (Reg == 0) continue; 413 // Ignore KILLs and passthru registers for liveness... 414 if (MI.isKill() || (PassthruRegs.count(Reg) != 0)) 415 continue; 416 417 // Update def for Reg and aliases. 418 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 419 // We need to be careful here not to define already-live super registers. 420 // If the super register is already live, then this definition is not 421 // a definition of the whole super register (just a partial insertion 422 // into it). Earlier subregister definitions (which we've not yet visited 423 // because we're iterating bottom-up) need to be linked to the same group 424 // as this definition. 425 if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) 426 continue; 427 428 DefIndices[*AI] = Count; 429 } 430 } 431 } 432 433 void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr &MI, 434 unsigned Count) { 435 LLVM_DEBUG(dbgs() << "\tUse Groups:"); 436 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 437 RegRefs = State->GetRegRefs(); 438 439 // If MI's uses have special allocation requirement, don't allow 440 // any use registers to be changed. Also assume all registers 441 // used in a call must not be changed (ABI). 442 // Inline Assembly register uses also cannot be safely changed. 443 // FIXME: The issue with predicated instruction is more complex. We are being 444 // conservatively here because the kill markers cannot be trusted after 445 // if-conversion: 446 // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14] 447 // ... 448 // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395] 449 // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12] 450 // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8) 451 // 452 // The first R6 kill is not really a kill since it's killed by a predicated 453 // instruction which may not be executed. The second R6 def may or may not 454 // re-define R6 so it's not safe to change it since the last R6 use cannot be 455 // changed. 456 bool Special = MI.isCall() || MI.hasExtraSrcRegAllocReq() || 457 TII->isPredicated(MI) || MI.isInlineAsm(); 458 459 // Scan the register uses for this instruction and update 460 // live-ranges, groups and RegRefs. 461 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 462 MachineOperand &MO = MI.getOperand(i); 463 if (!MO.isReg() || !MO.isUse()) continue; 464 Register Reg = MO.getReg(); 465 if (Reg == 0) continue; 466 467 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g" 468 << State->GetGroup(Reg)); 469 470 // It wasn't previously live but now it is, this is a kill. Forget 471 // the previous live-range information and start a new live-range 472 // for the register. 473 HandleLastUse(Reg, Count, "(last-use)"); 474 475 if (Special) { 476 LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)"); 477 State->UnionGroups(Reg, 0); 478 } 479 480 // Note register reference... 481 const TargetRegisterClass *RC = nullptr; 482 if (i < MI.getDesc().getNumOperands()) 483 RC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 484 AggressiveAntiDepState::RegisterReference RR = { &MO, RC }; 485 RegRefs.insert(std::make_pair(Reg, RR)); 486 } 487 488 LLVM_DEBUG(dbgs() << '\n'); 489 490 // Form a group of all defs and uses of a KILL instruction to ensure 491 // that all registers are renamed as a group. 492 if (MI.isKill()) { 493 LLVM_DEBUG(dbgs() << "\tKill Group:"); 494 495 unsigned FirstReg = 0; 496 for (const MachineOperand &MO : MI.operands()) { 497 if (!MO.isReg()) continue; 498 Register Reg = MO.getReg(); 499 if (Reg == 0) continue; 500 501 if (FirstReg != 0) { 502 LLVM_DEBUG(dbgs() << "=" << printReg(Reg, TRI)); 503 State->UnionGroups(FirstReg, Reg); 504 } else { 505 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI)); 506 FirstReg = Reg; 507 } 508 } 509 510 LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(FirstReg) << '\n'); 511 } 512 } 513 514 BitVector AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg) { 515 BitVector BV(TRI->getNumRegs(), false); 516 bool first = true; 517 518 // Check all references that need rewriting for Reg. For each, use 519 // the corresponding register class to narrow the set of registers 520 // that are appropriate for renaming. 521 for (const auto &Q : make_range(State->GetRegRefs().equal_range(Reg))) { 522 const TargetRegisterClass *RC = Q.second.RC; 523 if (!RC) continue; 524 525 BitVector RCBV = TRI->getAllocatableSet(MF, RC); 526 if (first) { 527 BV |= RCBV; 528 first = false; 529 } else { 530 BV &= RCBV; 531 } 532 533 LLVM_DEBUG(dbgs() << " " << TRI->getRegClassName(RC)); 534 } 535 536 return BV; 537 } 538 539 bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters( 540 unsigned AntiDepGroupIndex, 541 RenameOrderType& RenameOrder, 542 std::map<unsigned, unsigned> &RenameMap) { 543 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 544 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 545 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 546 RegRefs = State->GetRegRefs(); 547 548 // Collect all referenced registers in the same group as 549 // AntiDepReg. These all need to be renamed together if we are to 550 // break the anti-dependence. 551 std::vector<unsigned> Regs; 552 State->GetGroupRegs(AntiDepGroupIndex, Regs, &RegRefs); 553 assert(!Regs.empty() && "Empty register group!"); 554 if (Regs.empty()) 555 return false; 556 557 // Find the "superest" register in the group. At the same time, 558 // collect the BitVector of registers that can be used to rename 559 // each register. 560 LLVM_DEBUG(dbgs() << "\tRename Candidates for Group g" << AntiDepGroupIndex 561 << ":\n"); 562 std::map<unsigned, BitVector> RenameRegisterMap; 563 unsigned SuperReg = 0; 564 for (unsigned Reg : Regs) { 565 if ((SuperReg == 0) || TRI->isSuperRegister(SuperReg, Reg)) 566 SuperReg = Reg; 567 568 // If Reg has any references, then collect possible rename regs 569 if (RegRefs.count(Reg) > 0) { 570 LLVM_DEBUG(dbgs() << "\t\t" << printReg(Reg, TRI) << ":"); 571 572 BitVector &BV = RenameRegisterMap[Reg]; 573 assert(BV.empty()); 574 BV = GetRenameRegisters(Reg); 575 576 LLVM_DEBUG({ 577 dbgs() << " ::"; 578 for (unsigned r : BV.set_bits()) 579 dbgs() << " " << printReg(r, TRI); 580 dbgs() << "\n"; 581 }); 582 } 583 } 584 585 // All group registers should be a subreg of SuperReg. 586 for (unsigned Reg : Regs) { 587 if (Reg == SuperReg) continue; 588 bool IsSub = TRI->isSubRegister(SuperReg, Reg); 589 // FIXME: remove this once PR18663 has been properly fixed. For now, 590 // return a conservative answer: 591 // assert(IsSub && "Expecting group subregister"); 592 if (!IsSub) 593 return false; 594 } 595 596 #ifndef NDEBUG 597 // If DebugDiv > 0 then only rename (renamecnt % DebugDiv) == DebugMod 598 if (DebugDiv > 0) { 599 static int renamecnt = 0; 600 if (renamecnt++ % DebugDiv != DebugMod) 601 return false; 602 603 dbgs() << "*** Performing rename " << printReg(SuperReg, TRI) 604 << " for debug ***\n"; 605 } 606 #endif 607 608 // Check each possible rename register for SuperReg in round-robin 609 // order. If that register is available, and the corresponding 610 // registers are available for the other group subregisters, then we 611 // can use those registers to rename. 612 613 // FIXME: Using getMinimalPhysRegClass is very conservative. We should 614 // check every use of the register and find the largest register class 615 // that can be used in all of them. 616 const TargetRegisterClass *SuperRC = 617 TRI->getMinimalPhysRegClass(SuperReg, MVT::Other); 618 619 ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(SuperRC); 620 if (Order.empty()) { 621 LLVM_DEBUG(dbgs() << "\tEmpty Super Regclass!!\n"); 622 return false; 623 } 624 625 LLVM_DEBUG(dbgs() << "\tFind Registers:"); 626 627 RenameOrder.insert(RenameOrderType::value_type(SuperRC, Order.size())); 628 629 unsigned OrigR = RenameOrder[SuperRC]; 630 unsigned EndR = ((OrigR == Order.size()) ? 0 : OrigR); 631 unsigned R = OrigR; 632 do { 633 if (R == 0) R = Order.size(); 634 --R; 635 const unsigned NewSuperReg = Order[R]; 636 // Don't consider non-allocatable registers 637 if (!MRI.isAllocatable(NewSuperReg)) continue; 638 // Don't replace a register with itself. 639 if (NewSuperReg == SuperReg) continue; 640 641 LLVM_DEBUG(dbgs() << " [" << printReg(NewSuperReg, TRI) << ':'); 642 RenameMap.clear(); 643 644 // For each referenced group register (which must be a SuperReg or 645 // a subregister of SuperReg), find the corresponding subregister 646 // of NewSuperReg and make sure it is free to be renamed. 647 for (unsigned Reg : Regs) { 648 unsigned NewReg = 0; 649 if (Reg == SuperReg) { 650 NewReg = NewSuperReg; 651 } else { 652 unsigned NewSubRegIdx = TRI->getSubRegIndex(SuperReg, Reg); 653 if (NewSubRegIdx != 0) 654 NewReg = TRI->getSubReg(NewSuperReg, NewSubRegIdx); 655 } 656 657 LLVM_DEBUG(dbgs() << " " << printReg(NewReg, TRI)); 658 659 // Check if Reg can be renamed to NewReg. 660 if (!RenameRegisterMap[Reg].test(NewReg)) { 661 LLVM_DEBUG(dbgs() << "(no rename)"); 662 goto next_super_reg; 663 } 664 665 // If NewReg is dead and NewReg's most recent def is not before 666 // Regs's kill, it's safe to replace Reg with NewReg. We 667 // must also check all aliases of NewReg, because we can't define a 668 // register when any sub or super is already live. 669 if (State->IsLive(NewReg) || (KillIndices[Reg] > DefIndices[NewReg])) { 670 LLVM_DEBUG(dbgs() << "(live)"); 671 goto next_super_reg; 672 } else { 673 bool found = false; 674 for (MCRegAliasIterator AI(NewReg, TRI, false); AI.isValid(); ++AI) { 675 unsigned AliasReg = *AI; 676 if (State->IsLive(AliasReg) || 677 (KillIndices[Reg] > DefIndices[AliasReg])) { 678 LLVM_DEBUG(dbgs() 679 << "(alias " << printReg(AliasReg, TRI) << " live)"); 680 found = true; 681 break; 682 } 683 } 684 if (found) 685 goto next_super_reg; 686 } 687 688 // We cannot rename 'Reg' to 'NewReg' if one of the uses of 'Reg' also 689 // defines 'NewReg' via an early-clobber operand. 690 for (const auto &Q : make_range(RegRefs.equal_range(Reg))) { 691 MachineInstr *UseMI = Q.second.Operand->getParent(); 692 int Idx = UseMI->findRegisterDefOperandIdx(NewReg, false, true, TRI); 693 if (Idx == -1) 694 continue; 695 696 if (UseMI->getOperand(Idx).isEarlyClobber()) { 697 LLVM_DEBUG(dbgs() << "(ec)"); 698 goto next_super_reg; 699 } 700 } 701 702 // Also, we cannot rename 'Reg' to 'NewReg' if the instruction defining 703 // 'Reg' is an early-clobber define and that instruction also uses 704 // 'NewReg'. 705 for (const auto &Q : make_range(RegRefs.equal_range(Reg))) { 706 if (!Q.second.Operand->isDef() || !Q.second.Operand->isEarlyClobber()) 707 continue; 708 709 MachineInstr *DefMI = Q.second.Operand->getParent(); 710 if (DefMI->readsRegister(NewReg, TRI)) { 711 LLVM_DEBUG(dbgs() << "(ec)"); 712 goto next_super_reg; 713 } 714 } 715 716 // Record that 'Reg' can be renamed to 'NewReg'. 717 RenameMap.insert(std::pair<unsigned, unsigned>(Reg, NewReg)); 718 } 719 720 // If we fall-out here, then every register in the group can be 721 // renamed, as recorded in RenameMap. 722 RenameOrder.erase(SuperRC); 723 RenameOrder.insert(RenameOrderType::value_type(SuperRC, R)); 724 LLVM_DEBUG(dbgs() << "]\n"); 725 return true; 726 727 next_super_reg: 728 LLVM_DEBUG(dbgs() << ']'); 729 } while (R != EndR); 730 731 LLVM_DEBUG(dbgs() << '\n'); 732 733 // No registers are free and available! 734 return false; 735 } 736 737 /// BreakAntiDependencies - Identifiy anti-dependencies within the 738 /// ScheduleDAG and break them by renaming registers. 739 unsigned AggressiveAntiDepBreaker::BreakAntiDependencies( 740 const std::vector<SUnit> &SUnits, 741 MachineBasicBlock::iterator Begin, 742 MachineBasicBlock::iterator End, 743 unsigned InsertPosIndex, 744 DbgValueVector &DbgValues) { 745 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 746 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 747 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 748 RegRefs = State->GetRegRefs(); 749 750 // The code below assumes that there is at least one instruction, 751 // so just duck out immediately if the block is empty. 752 if (SUnits.empty()) return 0; 753 754 // For each regclass the next register to use for renaming. 755 RenameOrderType RenameOrder; 756 757 // ...need a map from MI to SUnit. 758 std::map<MachineInstr *, const SUnit *> MISUnitMap; 759 for (const SUnit &SU : SUnits) 760 MISUnitMap.insert(std::make_pair(SU.getInstr(), &SU)); 761 762 // Track progress along the critical path through the SUnit graph as 763 // we walk the instructions. This is needed for regclasses that only 764 // break critical-path anti-dependencies. 765 const SUnit *CriticalPathSU = nullptr; 766 MachineInstr *CriticalPathMI = nullptr; 767 if (CriticalPathSet.any()) { 768 for (const SUnit &SU : SUnits) { 769 if (!CriticalPathSU || 770 ((SU.getDepth() + SU.Latency) > 771 (CriticalPathSU->getDepth() + CriticalPathSU->Latency))) { 772 CriticalPathSU = &SU; 773 } 774 } 775 assert(CriticalPathSU && "Failed to find SUnit critical path"); 776 CriticalPathMI = CriticalPathSU->getInstr(); 777 } 778 779 #ifndef NDEBUG 780 LLVM_DEBUG(dbgs() << "\n===== Aggressive anti-dependency breaking\n"); 781 LLVM_DEBUG(dbgs() << "Available regs:"); 782 for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { 783 if (!State->IsLive(Reg)) 784 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI)); 785 } 786 LLVM_DEBUG(dbgs() << '\n'); 787 #endif 788 789 BitVector RegAliases(TRI->getNumRegs()); 790 791 // Attempt to break anti-dependence edges. Walk the instructions 792 // from the bottom up, tracking information about liveness as we go 793 // to help determine which registers are available. 794 unsigned Broken = 0; 795 unsigned Count = InsertPosIndex - 1; 796 for (MachineBasicBlock::iterator I = End, E = Begin; 797 I != E; --Count) { 798 MachineInstr &MI = *--I; 799 800 if (MI.isDebugInstr()) 801 continue; 802 803 LLVM_DEBUG(dbgs() << "Anti: "); 804 LLVM_DEBUG(MI.dump()); 805 806 std::set<unsigned> PassthruRegs; 807 GetPassthruRegs(MI, PassthruRegs); 808 809 // Process the defs in MI... 810 PrescanInstruction(MI, Count, PassthruRegs); 811 812 // The dependence edges that represent anti- and output- 813 // dependencies that are candidates for breaking. 814 std::vector<const SDep *> Edges; 815 const SUnit *PathSU = MISUnitMap[&MI]; 816 AntiDepEdges(PathSU, Edges); 817 818 // If MI is not on the critical path, then we don't rename 819 // registers in the CriticalPathSet. 820 BitVector *ExcludeRegs = nullptr; 821 if (&MI == CriticalPathMI) { 822 CriticalPathSU = CriticalPathStep(CriticalPathSU); 823 CriticalPathMI = (CriticalPathSU) ? CriticalPathSU->getInstr() : nullptr; 824 } else if (CriticalPathSet.any()) { 825 ExcludeRegs = &CriticalPathSet; 826 } 827 828 // Ignore KILL instructions (they form a group in ScanInstruction 829 // but don't cause any anti-dependence breaking themselves) 830 if (!MI.isKill()) { 831 // Attempt to break each anti-dependency... 832 for (const SDep *Edge : Edges) { 833 SUnit *NextSU = Edge->getSUnit(); 834 835 if ((Edge->getKind() != SDep::Anti) && 836 (Edge->getKind() != SDep::Output)) continue; 837 838 unsigned AntiDepReg = Edge->getReg(); 839 LLVM_DEBUG(dbgs() << "\tAntidep reg: " << printReg(AntiDepReg, TRI)); 840 assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); 841 842 if (!MRI.isAllocatable(AntiDepReg)) { 843 // Don't break anti-dependencies on non-allocatable registers. 844 LLVM_DEBUG(dbgs() << " (non-allocatable)\n"); 845 continue; 846 } else if (ExcludeRegs && ExcludeRegs->test(AntiDepReg)) { 847 // Don't break anti-dependencies for critical path registers 848 // if not on the critical path 849 LLVM_DEBUG(dbgs() << " (not critical-path)\n"); 850 continue; 851 } else if (PassthruRegs.count(AntiDepReg) != 0) { 852 // If the anti-dep register liveness "passes-thru", then 853 // don't try to change it. It will be changed along with 854 // the use if required to break an earlier antidep. 855 LLVM_DEBUG(dbgs() << " (passthru)\n"); 856 continue; 857 } else { 858 // No anti-dep breaking for implicit deps 859 MachineOperand *AntiDepOp = MI.findRegisterDefOperand(AntiDepReg); 860 assert(AntiDepOp && "Can't find index for defined register operand"); 861 if (!AntiDepOp || AntiDepOp->isImplicit()) { 862 LLVM_DEBUG(dbgs() << " (implicit)\n"); 863 continue; 864 } 865 866 // If the SUnit has other dependencies on the SUnit that 867 // it anti-depends on, don't bother breaking the 868 // anti-dependency since those edges would prevent such 869 // units from being scheduled past each other 870 // regardless. 871 // 872 // Also, if there are dependencies on other SUnits with the 873 // same register as the anti-dependency, don't attempt to 874 // break it. 875 for (const SDep &Pred : PathSU->Preds) { 876 if (Pred.getSUnit() == NextSU ? (Pred.getKind() != SDep::Anti || 877 Pred.getReg() != AntiDepReg) 878 : (Pred.getKind() == SDep::Data && 879 Pred.getReg() == AntiDepReg)) { 880 AntiDepReg = 0; 881 break; 882 } 883 } 884 for (const SDep &Pred : PathSU->Preds) { 885 if ((Pred.getSUnit() == NextSU) && (Pred.getKind() != SDep::Anti) && 886 (Pred.getKind() != SDep::Output)) { 887 LLVM_DEBUG(dbgs() << " (real dependency)\n"); 888 AntiDepReg = 0; 889 break; 890 } else if ((Pred.getSUnit() != NextSU) && 891 (Pred.getKind() == SDep::Data) && 892 (Pred.getReg() == AntiDepReg)) { 893 LLVM_DEBUG(dbgs() << " (other dependency)\n"); 894 AntiDepReg = 0; 895 break; 896 } 897 } 898 899 if (AntiDepReg == 0) continue; 900 901 // If the definition of the anti-dependency register does not start 902 // a new live range, bail out. This can happen if the anti-dep 903 // register is a sub-register of another register whose live range 904 // spans over PathSU. In such case, PathSU defines only a part of 905 // the larger register. 906 RegAliases.reset(); 907 for (MCRegAliasIterator AI(AntiDepReg, TRI, true); AI.isValid(); ++AI) 908 RegAliases.set(*AI); 909 for (SDep S : PathSU->Succs) { 910 SDep::Kind K = S.getKind(); 911 if (K != SDep::Data && K != SDep::Output && K != SDep::Anti) 912 continue; 913 unsigned R = S.getReg(); 914 if (!RegAliases[R]) 915 continue; 916 if (R == AntiDepReg || TRI->isSubRegister(AntiDepReg, R)) 917 continue; 918 AntiDepReg = 0; 919 break; 920 } 921 922 if (AntiDepReg == 0) continue; 923 } 924 925 assert(AntiDepReg != 0); 926 if (AntiDepReg == 0) continue; 927 928 // Determine AntiDepReg's register group. 929 const unsigned GroupIndex = State->GetGroup(AntiDepReg); 930 if (GroupIndex == 0) { 931 LLVM_DEBUG(dbgs() << " (zero group)\n"); 932 continue; 933 } 934 935 LLVM_DEBUG(dbgs() << '\n'); 936 937 // Look for a suitable register to use to break the anti-dependence. 938 std::map<unsigned, unsigned> RenameMap; 939 if (FindSuitableFreeRegisters(GroupIndex, RenameOrder, RenameMap)) { 940 LLVM_DEBUG(dbgs() << "\tBreaking anti-dependence edge on " 941 << printReg(AntiDepReg, TRI) << ":"); 942 943 // Handle each group register... 944 for (const auto &P : RenameMap) { 945 unsigned CurrReg = P.first; 946 unsigned NewReg = P.second; 947 948 LLVM_DEBUG(dbgs() << " " << printReg(CurrReg, TRI) << "->" 949 << printReg(NewReg, TRI) << "(" 950 << RegRefs.count(CurrReg) << " refs)"); 951 952 // Update the references to the old register CurrReg to 953 // refer to the new register NewReg. 954 for (const auto &Q : make_range(RegRefs.equal_range(CurrReg))) { 955 Q.second.Operand->setReg(NewReg); 956 // If the SU for the instruction being updated has debug 957 // information related to the anti-dependency register, make 958 // sure to update that as well. 959 const SUnit *SU = MISUnitMap[Q.second.Operand->getParent()]; 960 if (!SU) continue; 961 UpdateDbgValues(DbgValues, Q.second.Operand->getParent(), 962 AntiDepReg, NewReg); 963 } 964 965 // We just went back in time and modified history; the 966 // liveness information for CurrReg is now inconsistent. Set 967 // the state as if it were dead. 968 State->UnionGroups(NewReg, 0); 969 RegRefs.erase(NewReg); 970 DefIndices[NewReg] = DefIndices[CurrReg]; 971 KillIndices[NewReg] = KillIndices[CurrReg]; 972 973 State->UnionGroups(CurrReg, 0); 974 RegRefs.erase(CurrReg); 975 DefIndices[CurrReg] = KillIndices[CurrReg]; 976 KillIndices[CurrReg] = ~0u; 977 assert(((KillIndices[CurrReg] == ~0u) != 978 (DefIndices[CurrReg] == ~0u)) && 979 "Kill and Def maps aren't consistent for AntiDepReg!"); 980 } 981 982 ++Broken; 983 LLVM_DEBUG(dbgs() << '\n'); 984 } 985 } 986 } 987 988 ScanInstruction(MI, Count); 989 } 990 991 return Broken; 992 } 993 994 AntiDepBreaker *llvm::createAggressiveAntiDepBreaker( 995 MachineFunction &MFi, const RegisterClassInfo &RCI, 996 TargetSubtargetInfo::RegClassVector &CriticalPathRCs) { 997 return new AggressiveAntiDepBreaker(MFi, RCI, CriticalPathRCs); 998 } 999