1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/MC/TargetRegistry.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/TargetParser/Triple.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <optional> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<unsigned> 87 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 88 cl::desc("Number of metadatas above which we emit an index " 89 "to enable lazy-loading")); 90 static cl::opt<uint32_t> FlushThreshold( 91 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 92 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 93 94 static cl::opt<bool> WriteRelBFToSummary( 95 "write-relbf-to-summary", cl::Hidden, cl::init(false), 96 cl::desc("Write relative block frequency to function summary ")); 97 98 namespace llvm { 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 } 101 102 namespace { 103 104 /// These are manifest constants used by the bitcode writer. They do not need to 105 /// be kept in sync with the reader, but need to be consistent within this file. 106 enum { 107 // VALUE_SYMTAB_BLOCK abbrev id's. 108 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 109 VST_ENTRY_7_ABBREV, 110 VST_ENTRY_6_ABBREV, 111 VST_BBENTRY_6_ABBREV, 112 113 // CONSTANTS_BLOCK abbrev id's. 114 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 CONSTANTS_INTEGER_ABBREV, 116 CONSTANTS_CE_CAST_Abbrev, 117 CONSTANTS_NULL_Abbrev, 118 119 // FUNCTION_BLOCK abbrev id's. 120 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 121 FUNCTION_INST_UNOP_ABBREV, 122 FUNCTION_INST_UNOP_FLAGS_ABBREV, 123 FUNCTION_INST_BINOP_ABBREV, 124 FUNCTION_INST_BINOP_FLAGS_ABBREV, 125 FUNCTION_INST_CAST_ABBREV, 126 FUNCTION_INST_CAST_FLAGS_ABBREV, 127 FUNCTION_INST_RET_VOID_ABBREV, 128 FUNCTION_INST_RET_VAL_ABBREV, 129 FUNCTION_INST_UNREACHABLE_ABBREV, 130 FUNCTION_INST_GEP_ABBREV, 131 }; 132 133 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 134 /// file type. 135 class BitcodeWriterBase { 136 protected: 137 /// The stream created and owned by the client. 138 BitstreamWriter &Stream; 139 140 StringTableBuilder &StrtabBuilder; 141 142 public: 143 /// Constructs a BitcodeWriterBase object that writes to the provided 144 /// \p Stream. 145 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 146 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 147 148 protected: 149 void writeModuleVersion(); 150 }; 151 152 void BitcodeWriterBase::writeModuleVersion() { 153 // VERSION: [version#] 154 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 155 } 156 157 /// Base class to manage the module bitcode writing, currently subclassed for 158 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 159 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 160 protected: 161 /// The Module to write to bitcode. 162 const Module &M; 163 164 /// Enumerates ids for all values in the module. 165 ValueEnumerator VE; 166 167 /// Optional per-module index to write for ThinLTO. 168 const ModuleSummaryIndex *Index; 169 170 /// Map that holds the correspondence between GUIDs in the summary index, 171 /// that came from indirect call profiles, and a value id generated by this 172 /// class to use in the VST and summary block records. 173 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 174 175 /// Tracks the last value id recorded in the GUIDToValueMap. 176 unsigned GlobalValueId; 177 178 /// Saves the offset of the VSTOffset record that must eventually be 179 /// backpatched with the offset of the actual VST. 180 uint64_t VSTOffsetPlaceholder = 0; 181 182 public: 183 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 184 /// writing to the provided \p Buffer. 185 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 186 BitstreamWriter &Stream, 187 bool ShouldPreserveUseListOrder, 188 const ModuleSummaryIndex *Index) 189 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 190 VE(M, ShouldPreserveUseListOrder), Index(Index) { 191 // Assign ValueIds to any callee values in the index that came from 192 // indirect call profiles and were recorded as a GUID not a Value* 193 // (which would have been assigned an ID by the ValueEnumerator). 194 // The starting ValueId is just after the number of values in the 195 // ValueEnumerator, so that they can be emitted in the VST. 196 GlobalValueId = VE.getValues().size(); 197 if (!Index) 198 return; 199 for (const auto &GUIDSummaryLists : *Index) 200 // Examine all summaries for this GUID. 201 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 202 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 203 // For each call in the function summary, see if the call 204 // is to a GUID (which means it is for an indirect call, 205 // otherwise we would have a Value for it). If so, synthesize 206 // a value id. 207 for (auto &CallEdge : FS->calls()) 208 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 209 assignValueId(CallEdge.first.getGUID()); 210 } 211 212 protected: 213 void writePerModuleGlobalValueSummary(); 214 215 private: 216 void writePerModuleFunctionSummaryRecord( 217 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 218 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 219 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); 220 void writeModuleLevelReferences(const GlobalVariable &V, 221 SmallVector<uint64_t, 64> &NameVals, 222 unsigned FSModRefsAbbrev, 223 unsigned FSModVTableRefsAbbrev); 224 225 void assignValueId(GlobalValue::GUID ValGUID) { 226 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 227 } 228 229 unsigned getValueId(GlobalValue::GUID ValGUID) { 230 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 231 // Expect that any GUID value had a value Id assigned by an 232 // earlier call to assignValueId. 233 assert(VMI != GUIDToValueIdMap.end() && 234 "GUID does not have assigned value Id"); 235 return VMI->second; 236 } 237 238 // Helper to get the valueId for the type of value recorded in VI. 239 unsigned getValueId(ValueInfo VI) { 240 if (!VI.haveGVs() || !VI.getValue()) 241 return getValueId(VI.getGUID()); 242 return VE.getValueID(VI.getValue()); 243 } 244 245 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 246 }; 247 248 /// Class to manage the bitcode writing for a module. 249 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 250 /// Pointer to the buffer allocated by caller for bitcode writing. 251 const SmallVectorImpl<char> &Buffer; 252 253 /// True if a module hash record should be written. 254 bool GenerateHash; 255 256 /// If non-null, when GenerateHash is true, the resulting hash is written 257 /// into ModHash. 258 ModuleHash *ModHash; 259 260 SHA1 Hasher; 261 262 /// The start bit of the identification block. 263 uint64_t BitcodeStartBit; 264 265 public: 266 /// Constructs a ModuleBitcodeWriter object for the given Module, 267 /// writing to the provided \p Buffer. 268 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 269 StringTableBuilder &StrtabBuilder, 270 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 271 const ModuleSummaryIndex *Index, bool GenerateHash, 272 ModuleHash *ModHash = nullptr) 273 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 274 ShouldPreserveUseListOrder, Index), 275 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 276 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 277 278 /// Emit the current module to the bitstream. 279 void write(); 280 281 private: 282 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 283 284 size_t addToStrtab(StringRef Str); 285 286 void writeAttributeGroupTable(); 287 void writeAttributeTable(); 288 void writeTypeTable(); 289 void writeComdats(); 290 void writeValueSymbolTableForwardDecl(); 291 void writeModuleInfo(); 292 void writeValueAsMetadata(const ValueAsMetadata *MD, 293 SmallVectorImpl<uint64_t> &Record); 294 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 295 unsigned Abbrev); 296 unsigned createDILocationAbbrev(); 297 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned &Abbrev); 299 unsigned createGenericDINodeAbbrev(); 300 void writeGenericDINode(const GenericDINode *N, 301 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 302 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIGenericSubrange(const DIGenericSubrange *N, 305 SmallVectorImpl<uint64_t> &Record, 306 unsigned Abbrev); 307 void writeDIEnumerator(const DIEnumerator *N, 308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 309 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDIStringType(const DIStringType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIDerivedType(const DIDerivedType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDICompositeType(const DICompositeType *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDISubroutineType(const DISubroutineType *N, 318 SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDICompileUnit(const DICompileUnit *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDISubprogram(const DISubprogram *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlock(const DILexicalBlock *N, 327 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 328 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 329 SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDICommonBlock(const DICommonBlock *N, 332 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 333 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record); 340 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 341 unsigned Abbrev); 342 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 343 unsigned Abbrev); 344 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 345 SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDIGlobalVariable(const DIGlobalVariable *N, 351 SmallVectorImpl<uint64_t> &Record, 352 unsigned Abbrev); 353 void writeDILocalVariable(const DILocalVariable *N, 354 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 355 void writeDILabel(const DILabel *N, 356 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 357 void writeDIExpression(const DIExpression *N, 358 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 359 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 360 SmallVectorImpl<uint64_t> &Record, 361 unsigned Abbrev); 362 void writeDIObjCProperty(const DIObjCProperty *N, 363 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 364 void writeDIImportedEntity(const DIImportedEntity *N, 365 SmallVectorImpl<uint64_t> &Record, 366 unsigned Abbrev); 367 unsigned createNamedMetadataAbbrev(); 368 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 369 unsigned createMetadataStringsAbbrev(); 370 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 371 SmallVectorImpl<uint64_t> &Record); 372 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 373 SmallVectorImpl<uint64_t> &Record, 374 std::vector<unsigned> *MDAbbrevs = nullptr, 375 std::vector<uint64_t> *IndexPos = nullptr); 376 void writeModuleMetadata(); 377 void writeFunctionMetadata(const Function &F); 378 void writeFunctionMetadataAttachment(const Function &F); 379 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 380 const GlobalObject &GO); 381 void writeModuleMetadataKinds(); 382 void writeOperandBundleTags(); 383 void writeSyncScopeNames(); 384 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 385 void writeModuleConstants(); 386 bool pushValueAndType(const Value *V, unsigned InstID, 387 SmallVectorImpl<unsigned> &Vals); 388 void writeOperandBundles(const CallBase &CB, unsigned InstID); 389 void pushValue(const Value *V, unsigned InstID, 390 SmallVectorImpl<unsigned> &Vals); 391 void pushValueSigned(const Value *V, unsigned InstID, 392 SmallVectorImpl<uint64_t> &Vals); 393 void writeInstruction(const Instruction &I, unsigned InstID, 394 SmallVectorImpl<unsigned> &Vals); 395 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 396 void writeGlobalValueSymbolTable( 397 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 398 void writeUseList(UseListOrder &&Order); 399 void writeUseListBlock(const Function *F); 400 void 401 writeFunction(const Function &F, 402 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 403 void writeBlockInfo(); 404 void writeModuleHash(size_t BlockStartPos); 405 406 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 407 return unsigned(SSID); 408 } 409 410 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 411 }; 412 413 /// Class to manage the bitcode writing for a combined index. 414 class IndexBitcodeWriter : public BitcodeWriterBase { 415 /// The combined index to write to bitcode. 416 const ModuleSummaryIndex &Index; 417 418 /// When writing a subset of the index for distributed backends, client 419 /// provides a map of modules to the corresponding GUIDs/summaries to write. 420 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 421 422 /// Map that holds the correspondence between the GUID used in the combined 423 /// index and a value id generated by this class to use in references. 424 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 425 426 // The sorted stack id indices actually used in the summary entries being 427 // written, which will be a subset of those in the full index in the case of 428 // distributed indexes. 429 std::vector<unsigned> StackIdIndices; 430 431 /// Tracks the last value id recorded in the GUIDToValueMap. 432 unsigned GlobalValueId = 0; 433 434 /// Tracks the assignment of module paths in the module path string table to 435 /// an id assigned for use in summary references to the module path. 436 DenseMap<StringRef, uint64_t> ModuleIdMap; 437 438 public: 439 /// Constructs a IndexBitcodeWriter object for the given combined index, 440 /// writing to the provided \p Buffer. When writing a subset of the index 441 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 442 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 443 const ModuleSummaryIndex &Index, 444 const std::map<std::string, GVSummaryMapTy> 445 *ModuleToSummariesForIndex = nullptr) 446 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 447 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 448 // Assign unique value ids to all summaries to be written, for use 449 // in writing out the call graph edges. Save the mapping from GUID 450 // to the new global value id to use when writing those edges, which 451 // are currently saved in the index in terms of GUID. 452 forEachSummary([&](GVInfo I, bool IsAliasee) { 453 GUIDToValueIdMap[I.first] = ++GlobalValueId; 454 if (IsAliasee) 455 return; 456 auto *FS = dyn_cast<FunctionSummary>(I.second); 457 if (!FS) 458 return; 459 // Record all stack id indices actually used in the summary entries being 460 // written, so that we can compact them in the case of distributed ThinLTO 461 // indexes. 462 for (auto &CI : FS->callsites()) 463 for (auto Idx : CI.StackIdIndices) 464 StackIdIndices.push_back(Idx); 465 for (auto &AI : FS->allocs()) 466 for (auto &MIB : AI.MIBs) 467 for (auto Idx : MIB.StackIdIndices) 468 StackIdIndices.push_back(Idx); 469 }); 470 llvm::sort(StackIdIndices); 471 StackIdIndices.erase( 472 std::unique(StackIdIndices.begin(), StackIdIndices.end()), 473 StackIdIndices.end()); 474 } 475 476 /// The below iterator returns the GUID and associated summary. 477 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 478 479 /// Calls the callback for each value GUID and summary to be written to 480 /// bitcode. This hides the details of whether they are being pulled from the 481 /// entire index or just those in a provided ModuleToSummariesForIndex map. 482 template<typename Functor> 483 void forEachSummary(Functor Callback) { 484 if (ModuleToSummariesForIndex) { 485 for (auto &M : *ModuleToSummariesForIndex) 486 for (auto &Summary : M.second) { 487 Callback(Summary, false); 488 // Ensure aliasee is handled, e.g. for assigning a valueId, 489 // even if we are not importing the aliasee directly (the 490 // imported alias will contain a copy of aliasee). 491 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 492 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 493 } 494 } else { 495 for (auto &Summaries : Index) 496 for (auto &Summary : Summaries.second.SummaryList) 497 Callback({Summaries.first, Summary.get()}, false); 498 } 499 } 500 501 /// Calls the callback for each entry in the modulePaths StringMap that 502 /// should be written to the module path string table. This hides the details 503 /// of whether they are being pulled from the entire index or just those in a 504 /// provided ModuleToSummariesForIndex map. 505 template <typename Functor> void forEachModule(Functor Callback) { 506 if (ModuleToSummariesForIndex) { 507 for (const auto &M : *ModuleToSummariesForIndex) { 508 const auto &MPI = Index.modulePaths().find(M.first); 509 if (MPI == Index.modulePaths().end()) { 510 // This should only happen if the bitcode file was empty, in which 511 // case we shouldn't be importing (the ModuleToSummariesForIndex 512 // would only include the module we are writing and index for). 513 assert(ModuleToSummariesForIndex->size() == 1); 514 continue; 515 } 516 Callback(*MPI); 517 } 518 } else { 519 // Since StringMap iteration order isn't guaranteed, order by path string 520 // first. 521 // FIXME: Make this a vector of StringMapEntry instead to avoid the later 522 // map lookup. 523 std::vector<StringRef> ModulePaths; 524 for (auto &[ModPath, _] : Index.modulePaths()) 525 ModulePaths.push_back(ModPath); 526 llvm::sort(ModulePaths.begin(), ModulePaths.end()); 527 for (auto &ModPath : ModulePaths) 528 Callback(*Index.modulePaths().find(ModPath)); 529 } 530 } 531 532 /// Main entry point for writing a combined index to bitcode. 533 void write(); 534 535 private: 536 void writeModStrings(); 537 void writeCombinedGlobalValueSummary(); 538 539 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 540 auto VMI = GUIDToValueIdMap.find(ValGUID); 541 if (VMI == GUIDToValueIdMap.end()) 542 return std::nullopt; 543 return VMI->second; 544 } 545 546 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 547 }; 548 549 } // end anonymous namespace 550 551 static unsigned getEncodedCastOpcode(unsigned Opcode) { 552 switch (Opcode) { 553 default: llvm_unreachable("Unknown cast instruction!"); 554 case Instruction::Trunc : return bitc::CAST_TRUNC; 555 case Instruction::ZExt : return bitc::CAST_ZEXT; 556 case Instruction::SExt : return bitc::CAST_SEXT; 557 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 558 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 559 case Instruction::UIToFP : return bitc::CAST_UITOFP; 560 case Instruction::SIToFP : return bitc::CAST_SITOFP; 561 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 562 case Instruction::FPExt : return bitc::CAST_FPEXT; 563 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 564 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 565 case Instruction::BitCast : return bitc::CAST_BITCAST; 566 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 567 } 568 } 569 570 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 571 switch (Opcode) { 572 default: llvm_unreachable("Unknown binary instruction!"); 573 case Instruction::FNeg: return bitc::UNOP_FNEG; 574 } 575 } 576 577 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 578 switch (Opcode) { 579 default: llvm_unreachable("Unknown binary instruction!"); 580 case Instruction::Add: 581 case Instruction::FAdd: return bitc::BINOP_ADD; 582 case Instruction::Sub: 583 case Instruction::FSub: return bitc::BINOP_SUB; 584 case Instruction::Mul: 585 case Instruction::FMul: return bitc::BINOP_MUL; 586 case Instruction::UDiv: return bitc::BINOP_UDIV; 587 case Instruction::FDiv: 588 case Instruction::SDiv: return bitc::BINOP_SDIV; 589 case Instruction::URem: return bitc::BINOP_UREM; 590 case Instruction::FRem: 591 case Instruction::SRem: return bitc::BINOP_SREM; 592 case Instruction::Shl: return bitc::BINOP_SHL; 593 case Instruction::LShr: return bitc::BINOP_LSHR; 594 case Instruction::AShr: return bitc::BINOP_ASHR; 595 case Instruction::And: return bitc::BINOP_AND; 596 case Instruction::Or: return bitc::BINOP_OR; 597 case Instruction::Xor: return bitc::BINOP_XOR; 598 } 599 } 600 601 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 602 switch (Op) { 603 default: llvm_unreachable("Unknown RMW operation!"); 604 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 605 case AtomicRMWInst::Add: return bitc::RMW_ADD; 606 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 607 case AtomicRMWInst::And: return bitc::RMW_AND; 608 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 609 case AtomicRMWInst::Or: return bitc::RMW_OR; 610 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 611 case AtomicRMWInst::Max: return bitc::RMW_MAX; 612 case AtomicRMWInst::Min: return bitc::RMW_MIN; 613 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 614 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 615 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 616 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 617 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 618 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 619 case AtomicRMWInst::UIncWrap: 620 return bitc::RMW_UINC_WRAP; 621 case AtomicRMWInst::UDecWrap: 622 return bitc::RMW_UDEC_WRAP; 623 } 624 } 625 626 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 627 switch (Ordering) { 628 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 629 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 630 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 631 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 632 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 633 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 634 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 635 } 636 llvm_unreachable("Invalid ordering"); 637 } 638 639 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 640 StringRef Str, unsigned AbbrevToUse) { 641 SmallVector<unsigned, 64> Vals; 642 643 // Code: [strchar x N] 644 for (char C : Str) { 645 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 646 AbbrevToUse = 0; 647 Vals.push_back(C); 648 } 649 650 // Emit the finished record. 651 Stream.EmitRecord(Code, Vals, AbbrevToUse); 652 } 653 654 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 655 switch (Kind) { 656 case Attribute::Alignment: 657 return bitc::ATTR_KIND_ALIGNMENT; 658 case Attribute::AllocAlign: 659 return bitc::ATTR_KIND_ALLOC_ALIGN; 660 case Attribute::AllocSize: 661 return bitc::ATTR_KIND_ALLOC_SIZE; 662 case Attribute::AlwaysInline: 663 return bitc::ATTR_KIND_ALWAYS_INLINE; 664 case Attribute::Builtin: 665 return bitc::ATTR_KIND_BUILTIN; 666 case Attribute::ByVal: 667 return bitc::ATTR_KIND_BY_VAL; 668 case Attribute::Convergent: 669 return bitc::ATTR_KIND_CONVERGENT; 670 case Attribute::InAlloca: 671 return bitc::ATTR_KIND_IN_ALLOCA; 672 case Attribute::Cold: 673 return bitc::ATTR_KIND_COLD; 674 case Attribute::DisableSanitizerInstrumentation: 675 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 676 case Attribute::FnRetThunkExtern: 677 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 678 case Attribute::Hot: 679 return bitc::ATTR_KIND_HOT; 680 case Attribute::ElementType: 681 return bitc::ATTR_KIND_ELEMENTTYPE; 682 case Attribute::InlineHint: 683 return bitc::ATTR_KIND_INLINE_HINT; 684 case Attribute::InReg: 685 return bitc::ATTR_KIND_IN_REG; 686 case Attribute::JumpTable: 687 return bitc::ATTR_KIND_JUMP_TABLE; 688 case Attribute::MinSize: 689 return bitc::ATTR_KIND_MIN_SIZE; 690 case Attribute::AllocatedPointer: 691 return bitc::ATTR_KIND_ALLOCATED_POINTER; 692 case Attribute::AllocKind: 693 return bitc::ATTR_KIND_ALLOC_KIND; 694 case Attribute::Memory: 695 return bitc::ATTR_KIND_MEMORY; 696 case Attribute::NoFPClass: 697 return bitc::ATTR_KIND_NOFPCLASS; 698 case Attribute::Naked: 699 return bitc::ATTR_KIND_NAKED; 700 case Attribute::Nest: 701 return bitc::ATTR_KIND_NEST; 702 case Attribute::NoAlias: 703 return bitc::ATTR_KIND_NO_ALIAS; 704 case Attribute::NoBuiltin: 705 return bitc::ATTR_KIND_NO_BUILTIN; 706 case Attribute::NoCallback: 707 return bitc::ATTR_KIND_NO_CALLBACK; 708 case Attribute::NoCapture: 709 return bitc::ATTR_KIND_NO_CAPTURE; 710 case Attribute::NoDuplicate: 711 return bitc::ATTR_KIND_NO_DUPLICATE; 712 case Attribute::NoFree: 713 return bitc::ATTR_KIND_NOFREE; 714 case Attribute::NoImplicitFloat: 715 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 716 case Attribute::NoInline: 717 return bitc::ATTR_KIND_NO_INLINE; 718 case Attribute::NoRecurse: 719 return bitc::ATTR_KIND_NO_RECURSE; 720 case Attribute::NoMerge: 721 return bitc::ATTR_KIND_NO_MERGE; 722 case Attribute::NonLazyBind: 723 return bitc::ATTR_KIND_NON_LAZY_BIND; 724 case Attribute::NonNull: 725 return bitc::ATTR_KIND_NON_NULL; 726 case Attribute::Dereferenceable: 727 return bitc::ATTR_KIND_DEREFERENCEABLE; 728 case Attribute::DereferenceableOrNull: 729 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 730 case Attribute::NoRedZone: 731 return bitc::ATTR_KIND_NO_RED_ZONE; 732 case Attribute::NoReturn: 733 return bitc::ATTR_KIND_NO_RETURN; 734 case Attribute::NoSync: 735 return bitc::ATTR_KIND_NOSYNC; 736 case Attribute::NoCfCheck: 737 return bitc::ATTR_KIND_NOCF_CHECK; 738 case Attribute::NoProfile: 739 return bitc::ATTR_KIND_NO_PROFILE; 740 case Attribute::SkipProfile: 741 return bitc::ATTR_KIND_SKIP_PROFILE; 742 case Attribute::NoUnwind: 743 return bitc::ATTR_KIND_NO_UNWIND; 744 case Attribute::NoSanitizeBounds: 745 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 746 case Attribute::NoSanitizeCoverage: 747 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 748 case Attribute::NullPointerIsValid: 749 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 750 case Attribute::OptimizeForDebugging: 751 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; 752 case Attribute::OptForFuzzing: 753 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 754 case Attribute::OptimizeForSize: 755 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 756 case Attribute::OptimizeNone: 757 return bitc::ATTR_KIND_OPTIMIZE_NONE; 758 case Attribute::ReadNone: 759 return bitc::ATTR_KIND_READ_NONE; 760 case Attribute::ReadOnly: 761 return bitc::ATTR_KIND_READ_ONLY; 762 case Attribute::Returned: 763 return bitc::ATTR_KIND_RETURNED; 764 case Attribute::ReturnsTwice: 765 return bitc::ATTR_KIND_RETURNS_TWICE; 766 case Attribute::SExt: 767 return bitc::ATTR_KIND_S_EXT; 768 case Attribute::Speculatable: 769 return bitc::ATTR_KIND_SPECULATABLE; 770 case Attribute::StackAlignment: 771 return bitc::ATTR_KIND_STACK_ALIGNMENT; 772 case Attribute::StackProtect: 773 return bitc::ATTR_KIND_STACK_PROTECT; 774 case Attribute::StackProtectReq: 775 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 776 case Attribute::StackProtectStrong: 777 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 778 case Attribute::SafeStack: 779 return bitc::ATTR_KIND_SAFESTACK; 780 case Attribute::ShadowCallStack: 781 return bitc::ATTR_KIND_SHADOWCALLSTACK; 782 case Attribute::StrictFP: 783 return bitc::ATTR_KIND_STRICT_FP; 784 case Attribute::StructRet: 785 return bitc::ATTR_KIND_STRUCT_RET; 786 case Attribute::SanitizeAddress: 787 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 788 case Attribute::SanitizeHWAddress: 789 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 790 case Attribute::SanitizeThread: 791 return bitc::ATTR_KIND_SANITIZE_THREAD; 792 case Attribute::SanitizeMemory: 793 return bitc::ATTR_KIND_SANITIZE_MEMORY; 794 case Attribute::SpeculativeLoadHardening: 795 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 796 case Attribute::SwiftError: 797 return bitc::ATTR_KIND_SWIFT_ERROR; 798 case Attribute::SwiftSelf: 799 return bitc::ATTR_KIND_SWIFT_SELF; 800 case Attribute::SwiftAsync: 801 return bitc::ATTR_KIND_SWIFT_ASYNC; 802 case Attribute::UWTable: 803 return bitc::ATTR_KIND_UW_TABLE; 804 case Attribute::VScaleRange: 805 return bitc::ATTR_KIND_VSCALE_RANGE; 806 case Attribute::WillReturn: 807 return bitc::ATTR_KIND_WILLRETURN; 808 case Attribute::WriteOnly: 809 return bitc::ATTR_KIND_WRITEONLY; 810 case Attribute::ZExt: 811 return bitc::ATTR_KIND_Z_EXT; 812 case Attribute::ImmArg: 813 return bitc::ATTR_KIND_IMMARG; 814 case Attribute::SanitizeMemTag: 815 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 816 case Attribute::Preallocated: 817 return bitc::ATTR_KIND_PREALLOCATED; 818 case Attribute::NoUndef: 819 return bitc::ATTR_KIND_NOUNDEF; 820 case Attribute::ByRef: 821 return bitc::ATTR_KIND_BYREF; 822 case Attribute::MustProgress: 823 return bitc::ATTR_KIND_MUSTPROGRESS; 824 case Attribute::PresplitCoroutine: 825 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 826 case Attribute::Writable: 827 return bitc::ATTR_KIND_WRITABLE; 828 case Attribute::CoroDestroyOnlyWhenComplete: 829 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE; 830 case Attribute::DeadOnUnwind: 831 return bitc::ATTR_KIND_DEAD_ON_UNWIND; 832 case Attribute::EndAttrKinds: 833 llvm_unreachable("Can not encode end-attribute kinds marker."); 834 case Attribute::None: 835 llvm_unreachable("Can not encode none-attribute."); 836 case Attribute::EmptyKey: 837 case Attribute::TombstoneKey: 838 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 839 } 840 841 llvm_unreachable("Trying to encode unknown attribute"); 842 } 843 844 void ModuleBitcodeWriter::writeAttributeGroupTable() { 845 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 846 VE.getAttributeGroups(); 847 if (AttrGrps.empty()) return; 848 849 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 850 851 SmallVector<uint64_t, 64> Record; 852 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 853 unsigned AttrListIndex = Pair.first; 854 AttributeSet AS = Pair.second; 855 Record.push_back(VE.getAttributeGroupID(Pair)); 856 Record.push_back(AttrListIndex); 857 858 for (Attribute Attr : AS) { 859 if (Attr.isEnumAttribute()) { 860 Record.push_back(0); 861 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 862 } else if (Attr.isIntAttribute()) { 863 Record.push_back(1); 864 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 865 Record.push_back(Attr.getValueAsInt()); 866 } else if (Attr.isStringAttribute()) { 867 StringRef Kind = Attr.getKindAsString(); 868 StringRef Val = Attr.getValueAsString(); 869 870 Record.push_back(Val.empty() ? 3 : 4); 871 Record.append(Kind.begin(), Kind.end()); 872 Record.push_back(0); 873 if (!Val.empty()) { 874 Record.append(Val.begin(), Val.end()); 875 Record.push_back(0); 876 } 877 } else { 878 assert(Attr.isTypeAttribute()); 879 Type *Ty = Attr.getValueAsType(); 880 Record.push_back(Ty ? 6 : 5); 881 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 882 if (Ty) 883 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 884 } 885 } 886 887 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 888 Record.clear(); 889 } 890 891 Stream.ExitBlock(); 892 } 893 894 void ModuleBitcodeWriter::writeAttributeTable() { 895 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 896 if (Attrs.empty()) return; 897 898 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 899 900 SmallVector<uint64_t, 64> Record; 901 for (const AttributeList &AL : Attrs) { 902 for (unsigned i : AL.indexes()) { 903 AttributeSet AS = AL.getAttributes(i); 904 if (AS.hasAttributes()) 905 Record.push_back(VE.getAttributeGroupID({i, AS})); 906 } 907 908 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 909 Record.clear(); 910 } 911 912 Stream.ExitBlock(); 913 } 914 915 /// WriteTypeTable - Write out the type table for a module. 916 void ModuleBitcodeWriter::writeTypeTable() { 917 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 918 919 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 920 SmallVector<uint64_t, 64> TypeVals; 921 922 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 923 924 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 925 auto Abbv = std::make_shared<BitCodeAbbrev>(); 926 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 927 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 928 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 929 930 // Abbrev for TYPE_CODE_FUNCTION. 931 Abbv = std::make_shared<BitCodeAbbrev>(); 932 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 936 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 937 938 // Abbrev for TYPE_CODE_STRUCT_ANON. 939 Abbv = std::make_shared<BitCodeAbbrev>(); 940 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 944 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 945 946 // Abbrev for TYPE_CODE_STRUCT_NAME. 947 Abbv = std::make_shared<BitCodeAbbrev>(); 948 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 951 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 952 953 // Abbrev for TYPE_CODE_STRUCT_NAMED. 954 Abbv = std::make_shared<BitCodeAbbrev>(); 955 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 959 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 960 961 // Abbrev for TYPE_CODE_ARRAY. 962 Abbv = std::make_shared<BitCodeAbbrev>(); 963 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 966 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 967 968 // Emit an entry count so the reader can reserve space. 969 TypeVals.push_back(TypeList.size()); 970 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 971 TypeVals.clear(); 972 973 // Loop over all of the types, emitting each in turn. 974 for (Type *T : TypeList) { 975 int AbbrevToUse = 0; 976 unsigned Code = 0; 977 978 switch (T->getTypeID()) { 979 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 980 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 981 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 982 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 983 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 984 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 985 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 986 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 987 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 988 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 989 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 990 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 991 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 992 case Type::IntegerTyID: 993 // INTEGER: [width] 994 Code = bitc::TYPE_CODE_INTEGER; 995 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 996 break; 997 case Type::PointerTyID: { 998 PointerType *PTy = cast<PointerType>(T); 999 unsigned AddressSpace = PTy->getAddressSpace(); 1000 // OPAQUE_POINTER: [address space] 1001 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 1002 TypeVals.push_back(AddressSpace); 1003 if (AddressSpace == 0) 1004 AbbrevToUse = OpaquePtrAbbrev; 1005 break; 1006 } 1007 case Type::FunctionTyID: { 1008 FunctionType *FT = cast<FunctionType>(T); 1009 // FUNCTION: [isvararg, retty, paramty x N] 1010 Code = bitc::TYPE_CODE_FUNCTION; 1011 TypeVals.push_back(FT->isVarArg()); 1012 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1013 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1014 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1015 AbbrevToUse = FunctionAbbrev; 1016 break; 1017 } 1018 case Type::StructTyID: { 1019 StructType *ST = cast<StructType>(T); 1020 // STRUCT: [ispacked, eltty x N] 1021 TypeVals.push_back(ST->isPacked()); 1022 // Output all of the element types. 1023 for (Type *ET : ST->elements()) 1024 TypeVals.push_back(VE.getTypeID(ET)); 1025 1026 if (ST->isLiteral()) { 1027 Code = bitc::TYPE_CODE_STRUCT_ANON; 1028 AbbrevToUse = StructAnonAbbrev; 1029 } else { 1030 if (ST->isOpaque()) { 1031 Code = bitc::TYPE_CODE_OPAQUE; 1032 } else { 1033 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1034 AbbrevToUse = StructNamedAbbrev; 1035 } 1036 1037 // Emit the name if it is present. 1038 if (!ST->getName().empty()) 1039 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1040 StructNameAbbrev); 1041 } 1042 break; 1043 } 1044 case Type::ArrayTyID: { 1045 ArrayType *AT = cast<ArrayType>(T); 1046 // ARRAY: [numelts, eltty] 1047 Code = bitc::TYPE_CODE_ARRAY; 1048 TypeVals.push_back(AT->getNumElements()); 1049 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1050 AbbrevToUse = ArrayAbbrev; 1051 break; 1052 } 1053 case Type::FixedVectorTyID: 1054 case Type::ScalableVectorTyID: { 1055 VectorType *VT = cast<VectorType>(T); 1056 // VECTOR [numelts, eltty] or 1057 // [numelts, eltty, scalable] 1058 Code = bitc::TYPE_CODE_VECTOR; 1059 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1060 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1061 if (isa<ScalableVectorType>(VT)) 1062 TypeVals.push_back(true); 1063 break; 1064 } 1065 case Type::TargetExtTyID: { 1066 TargetExtType *TET = cast<TargetExtType>(T); 1067 Code = bitc::TYPE_CODE_TARGET_TYPE; 1068 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1069 StructNameAbbrev); 1070 TypeVals.push_back(TET->getNumTypeParameters()); 1071 for (Type *InnerTy : TET->type_params()) 1072 TypeVals.push_back(VE.getTypeID(InnerTy)); 1073 for (unsigned IntParam : TET->int_params()) 1074 TypeVals.push_back(IntParam); 1075 break; 1076 } 1077 case Type::TypedPointerTyID: 1078 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1079 } 1080 1081 // Emit the finished record. 1082 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1083 TypeVals.clear(); 1084 } 1085 1086 Stream.ExitBlock(); 1087 } 1088 1089 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1090 switch (Linkage) { 1091 case GlobalValue::ExternalLinkage: 1092 return 0; 1093 case GlobalValue::WeakAnyLinkage: 1094 return 16; 1095 case GlobalValue::AppendingLinkage: 1096 return 2; 1097 case GlobalValue::InternalLinkage: 1098 return 3; 1099 case GlobalValue::LinkOnceAnyLinkage: 1100 return 18; 1101 case GlobalValue::ExternalWeakLinkage: 1102 return 7; 1103 case GlobalValue::CommonLinkage: 1104 return 8; 1105 case GlobalValue::PrivateLinkage: 1106 return 9; 1107 case GlobalValue::WeakODRLinkage: 1108 return 17; 1109 case GlobalValue::LinkOnceODRLinkage: 1110 return 19; 1111 case GlobalValue::AvailableExternallyLinkage: 1112 return 12; 1113 } 1114 llvm_unreachable("Invalid linkage"); 1115 } 1116 1117 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1118 return getEncodedLinkage(GV.getLinkage()); 1119 } 1120 1121 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1122 uint64_t RawFlags = 0; 1123 RawFlags |= Flags.ReadNone; 1124 RawFlags |= (Flags.ReadOnly << 1); 1125 RawFlags |= (Flags.NoRecurse << 2); 1126 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1127 RawFlags |= (Flags.NoInline << 4); 1128 RawFlags |= (Flags.AlwaysInline << 5); 1129 RawFlags |= (Flags.NoUnwind << 6); 1130 RawFlags |= (Flags.MayThrow << 7); 1131 RawFlags |= (Flags.HasUnknownCall << 8); 1132 RawFlags |= (Flags.MustBeUnreachable << 9); 1133 return RawFlags; 1134 } 1135 1136 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1137 // in BitcodeReader.cpp. 1138 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1139 uint64_t RawFlags = 0; 1140 1141 RawFlags |= Flags.NotEligibleToImport; // bool 1142 RawFlags |= (Flags.Live << 1); 1143 RawFlags |= (Flags.DSOLocal << 2); 1144 RawFlags |= (Flags.CanAutoHide << 3); 1145 1146 // Linkage don't need to be remapped at that time for the summary. Any future 1147 // change to the getEncodedLinkage() function will need to be taken into 1148 // account here as well. 1149 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1150 1151 RawFlags |= (Flags.Visibility << 8); // 2 bits 1152 1153 return RawFlags; 1154 } 1155 1156 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1157 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1158 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1159 return RawFlags; 1160 } 1161 1162 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) { 1163 uint64_t RawFlags = 0; 1164 1165 RawFlags |= CI.Hotness; // 3 bits 1166 RawFlags |= (CI.HasTailCall << 3); // 1 bit 1167 1168 return RawFlags; 1169 } 1170 1171 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) { 1172 uint64_t RawFlags = 0; 1173 1174 RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits 1175 RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit 1176 1177 return RawFlags; 1178 } 1179 1180 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1181 switch (GV.getVisibility()) { 1182 case GlobalValue::DefaultVisibility: return 0; 1183 case GlobalValue::HiddenVisibility: return 1; 1184 case GlobalValue::ProtectedVisibility: return 2; 1185 } 1186 llvm_unreachable("Invalid visibility"); 1187 } 1188 1189 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1190 switch (GV.getDLLStorageClass()) { 1191 case GlobalValue::DefaultStorageClass: return 0; 1192 case GlobalValue::DLLImportStorageClass: return 1; 1193 case GlobalValue::DLLExportStorageClass: return 2; 1194 } 1195 llvm_unreachable("Invalid DLL storage class"); 1196 } 1197 1198 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1199 switch (GV.getThreadLocalMode()) { 1200 case GlobalVariable::NotThreadLocal: return 0; 1201 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1202 case GlobalVariable::LocalDynamicTLSModel: return 2; 1203 case GlobalVariable::InitialExecTLSModel: return 3; 1204 case GlobalVariable::LocalExecTLSModel: return 4; 1205 } 1206 llvm_unreachable("Invalid TLS model"); 1207 } 1208 1209 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1210 switch (C.getSelectionKind()) { 1211 case Comdat::Any: 1212 return bitc::COMDAT_SELECTION_KIND_ANY; 1213 case Comdat::ExactMatch: 1214 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1215 case Comdat::Largest: 1216 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1217 case Comdat::NoDeduplicate: 1218 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1219 case Comdat::SameSize: 1220 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1221 } 1222 llvm_unreachable("Invalid selection kind"); 1223 } 1224 1225 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1226 switch (GV.getUnnamedAddr()) { 1227 case GlobalValue::UnnamedAddr::None: return 0; 1228 case GlobalValue::UnnamedAddr::Local: return 2; 1229 case GlobalValue::UnnamedAddr::Global: return 1; 1230 } 1231 llvm_unreachable("Invalid unnamed_addr"); 1232 } 1233 1234 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1235 if (GenerateHash) 1236 Hasher.update(Str); 1237 return StrtabBuilder.add(Str); 1238 } 1239 1240 void ModuleBitcodeWriter::writeComdats() { 1241 SmallVector<unsigned, 64> Vals; 1242 for (const Comdat *C : VE.getComdats()) { 1243 // COMDAT: [strtab offset, strtab size, selection_kind] 1244 Vals.push_back(addToStrtab(C->getName())); 1245 Vals.push_back(C->getName().size()); 1246 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1247 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1248 Vals.clear(); 1249 } 1250 } 1251 1252 /// Write a record that will eventually hold the word offset of the 1253 /// module-level VST. For now the offset is 0, which will be backpatched 1254 /// after the real VST is written. Saves the bit offset to backpatch. 1255 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1256 // Write a placeholder value in for the offset of the real VST, 1257 // which is written after the function blocks so that it can include 1258 // the offset of each function. The placeholder offset will be 1259 // updated when the real VST is written. 1260 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1261 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1262 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1263 // hold the real VST offset. Must use fixed instead of VBR as we don't 1264 // know how many VBR chunks to reserve ahead of time. 1265 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1266 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1267 1268 // Emit the placeholder 1269 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1270 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1271 1272 // Compute and save the bit offset to the placeholder, which will be 1273 // patched when the real VST is written. We can simply subtract the 32-bit 1274 // fixed size from the current bit number to get the location to backpatch. 1275 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1276 } 1277 1278 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1279 1280 /// Determine the encoding to use for the given string name and length. 1281 static StringEncoding getStringEncoding(StringRef Str) { 1282 bool isChar6 = true; 1283 for (char C : Str) { 1284 if (isChar6) 1285 isChar6 = BitCodeAbbrevOp::isChar6(C); 1286 if ((unsigned char)C & 128) 1287 // don't bother scanning the rest. 1288 return SE_Fixed8; 1289 } 1290 if (isChar6) 1291 return SE_Char6; 1292 return SE_Fixed7; 1293 } 1294 1295 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1296 "Sanitizer Metadata is too large for naive serialization."); 1297 static unsigned 1298 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1299 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1300 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1301 } 1302 1303 /// Emit top-level description of module, including target triple, inline asm, 1304 /// descriptors for global variables, and function prototype info. 1305 /// Returns the bit offset to backpatch with the location of the real VST. 1306 void ModuleBitcodeWriter::writeModuleInfo() { 1307 // Emit various pieces of data attached to a module. 1308 if (!M.getTargetTriple().empty()) 1309 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1310 0 /*TODO*/); 1311 const std::string &DL = M.getDataLayoutStr(); 1312 if (!DL.empty()) 1313 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1314 if (!M.getModuleInlineAsm().empty()) 1315 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1316 0 /*TODO*/); 1317 1318 // Emit information about sections and GC, computing how many there are. Also 1319 // compute the maximum alignment value. 1320 std::map<std::string, unsigned> SectionMap; 1321 std::map<std::string, unsigned> GCMap; 1322 MaybeAlign MaxAlignment; 1323 unsigned MaxGlobalType = 0; 1324 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1325 if (A) 1326 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1327 }; 1328 for (const GlobalVariable &GV : M.globals()) { 1329 UpdateMaxAlignment(GV.getAlign()); 1330 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1331 if (GV.hasSection()) { 1332 // Give section names unique ID's. 1333 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1334 if (!Entry) { 1335 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1336 0 /*TODO*/); 1337 Entry = SectionMap.size(); 1338 } 1339 } 1340 } 1341 for (const Function &F : M) { 1342 UpdateMaxAlignment(F.getAlign()); 1343 if (F.hasSection()) { 1344 // Give section names unique ID's. 1345 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1346 if (!Entry) { 1347 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1348 0 /*TODO*/); 1349 Entry = SectionMap.size(); 1350 } 1351 } 1352 if (F.hasGC()) { 1353 // Same for GC names. 1354 unsigned &Entry = GCMap[F.getGC()]; 1355 if (!Entry) { 1356 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1357 0 /*TODO*/); 1358 Entry = GCMap.size(); 1359 } 1360 } 1361 } 1362 1363 // Emit abbrev for globals, now that we know # sections and max alignment. 1364 unsigned SimpleGVarAbbrev = 0; 1365 if (!M.global_empty()) { 1366 // Add an abbrev for common globals with no visibility or thread localness. 1367 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1368 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1372 Log2_32_Ceil(MaxGlobalType+1))); 1373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1374 //| explicitType << 1 1375 //| constant 1376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1378 if (!MaxAlignment) // Alignment. 1379 Abbv->Add(BitCodeAbbrevOp(0)); 1380 else { 1381 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1383 Log2_32_Ceil(MaxEncAlignment+1))); 1384 } 1385 if (SectionMap.empty()) // Section. 1386 Abbv->Add(BitCodeAbbrevOp(0)); 1387 else 1388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1389 Log2_32_Ceil(SectionMap.size()+1))); 1390 // Don't bother emitting vis + thread local. 1391 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1392 } 1393 1394 SmallVector<unsigned, 64> Vals; 1395 // Emit the module's source file name. 1396 { 1397 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1398 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1399 if (Bits == SE_Char6) 1400 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1401 else if (Bits == SE_Fixed7) 1402 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1403 1404 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1405 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1406 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1408 Abbv->Add(AbbrevOpToUse); 1409 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1410 1411 for (const auto P : M.getSourceFileName()) 1412 Vals.push_back((unsigned char)P); 1413 1414 // Emit the finished record. 1415 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1416 Vals.clear(); 1417 } 1418 1419 // Emit the global variable information. 1420 for (const GlobalVariable &GV : M.globals()) { 1421 unsigned AbbrevToUse = 0; 1422 1423 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1424 // linkage, alignment, section, visibility, threadlocal, 1425 // unnamed_addr, externally_initialized, dllstorageclass, 1426 // comdat, attributes, DSO_Local, GlobalSanitizer, code_model] 1427 Vals.push_back(addToStrtab(GV.getName())); 1428 Vals.push_back(GV.getName().size()); 1429 Vals.push_back(VE.getTypeID(GV.getValueType())); 1430 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1431 Vals.push_back(GV.isDeclaration() ? 0 : 1432 (VE.getValueID(GV.getInitializer()) + 1)); 1433 Vals.push_back(getEncodedLinkage(GV)); 1434 Vals.push_back(getEncodedAlign(GV.getAlign())); 1435 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1436 : 0); 1437 if (GV.isThreadLocal() || 1438 GV.getVisibility() != GlobalValue::DefaultVisibility || 1439 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1440 GV.isExternallyInitialized() || 1441 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1442 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1443 GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) { 1444 Vals.push_back(getEncodedVisibility(GV)); 1445 Vals.push_back(getEncodedThreadLocalMode(GV)); 1446 Vals.push_back(getEncodedUnnamedAddr(GV)); 1447 Vals.push_back(GV.isExternallyInitialized()); 1448 Vals.push_back(getEncodedDLLStorageClass(GV)); 1449 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1450 1451 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1452 Vals.push_back(VE.getAttributeListID(AL)); 1453 1454 Vals.push_back(GV.isDSOLocal()); 1455 Vals.push_back(addToStrtab(GV.getPartition())); 1456 Vals.push_back(GV.getPartition().size()); 1457 1458 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1459 GV.getSanitizerMetadata()) 1460 : 0)); 1461 Vals.push_back(GV.getCodeModelRaw()); 1462 } else { 1463 AbbrevToUse = SimpleGVarAbbrev; 1464 } 1465 1466 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1467 Vals.clear(); 1468 } 1469 1470 // Emit the function proto information. 1471 for (const Function &F : M) { 1472 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1473 // linkage, paramattrs, alignment, section, visibility, gc, 1474 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1475 // prefixdata, personalityfn, DSO_Local, addrspace] 1476 Vals.push_back(addToStrtab(F.getName())); 1477 Vals.push_back(F.getName().size()); 1478 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1479 Vals.push_back(F.getCallingConv()); 1480 Vals.push_back(F.isDeclaration()); 1481 Vals.push_back(getEncodedLinkage(F)); 1482 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1483 Vals.push_back(getEncodedAlign(F.getAlign())); 1484 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1485 : 0); 1486 Vals.push_back(getEncodedVisibility(F)); 1487 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1488 Vals.push_back(getEncodedUnnamedAddr(F)); 1489 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1490 : 0); 1491 Vals.push_back(getEncodedDLLStorageClass(F)); 1492 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1493 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1494 : 0); 1495 Vals.push_back( 1496 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1497 1498 Vals.push_back(F.isDSOLocal()); 1499 Vals.push_back(F.getAddressSpace()); 1500 Vals.push_back(addToStrtab(F.getPartition())); 1501 Vals.push_back(F.getPartition().size()); 1502 1503 unsigned AbbrevToUse = 0; 1504 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1505 Vals.clear(); 1506 } 1507 1508 // Emit the alias information. 1509 for (const GlobalAlias &A : M.aliases()) { 1510 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1511 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1512 // DSO_Local] 1513 Vals.push_back(addToStrtab(A.getName())); 1514 Vals.push_back(A.getName().size()); 1515 Vals.push_back(VE.getTypeID(A.getValueType())); 1516 Vals.push_back(A.getType()->getAddressSpace()); 1517 Vals.push_back(VE.getValueID(A.getAliasee())); 1518 Vals.push_back(getEncodedLinkage(A)); 1519 Vals.push_back(getEncodedVisibility(A)); 1520 Vals.push_back(getEncodedDLLStorageClass(A)); 1521 Vals.push_back(getEncodedThreadLocalMode(A)); 1522 Vals.push_back(getEncodedUnnamedAddr(A)); 1523 Vals.push_back(A.isDSOLocal()); 1524 Vals.push_back(addToStrtab(A.getPartition())); 1525 Vals.push_back(A.getPartition().size()); 1526 1527 unsigned AbbrevToUse = 0; 1528 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1529 Vals.clear(); 1530 } 1531 1532 // Emit the ifunc information. 1533 for (const GlobalIFunc &I : M.ifuncs()) { 1534 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1535 // val#, linkage, visibility, DSO_Local] 1536 Vals.push_back(addToStrtab(I.getName())); 1537 Vals.push_back(I.getName().size()); 1538 Vals.push_back(VE.getTypeID(I.getValueType())); 1539 Vals.push_back(I.getType()->getAddressSpace()); 1540 Vals.push_back(VE.getValueID(I.getResolver())); 1541 Vals.push_back(getEncodedLinkage(I)); 1542 Vals.push_back(getEncodedVisibility(I)); 1543 Vals.push_back(I.isDSOLocal()); 1544 Vals.push_back(addToStrtab(I.getPartition())); 1545 Vals.push_back(I.getPartition().size()); 1546 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1547 Vals.clear(); 1548 } 1549 1550 writeValueSymbolTableForwardDecl(); 1551 } 1552 1553 static uint64_t getOptimizationFlags(const Value *V) { 1554 uint64_t Flags = 0; 1555 1556 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1557 if (OBO->hasNoSignedWrap()) 1558 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1559 if (OBO->hasNoUnsignedWrap()) 1560 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1561 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1562 if (PEO->isExact()) 1563 Flags |= 1 << bitc::PEO_EXACT; 1564 } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) { 1565 if (PDI->isDisjoint()) 1566 Flags |= 1 << bitc::PDI_DISJOINT; 1567 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1568 if (FPMO->hasAllowReassoc()) 1569 Flags |= bitc::AllowReassoc; 1570 if (FPMO->hasNoNaNs()) 1571 Flags |= bitc::NoNaNs; 1572 if (FPMO->hasNoInfs()) 1573 Flags |= bitc::NoInfs; 1574 if (FPMO->hasNoSignedZeros()) 1575 Flags |= bitc::NoSignedZeros; 1576 if (FPMO->hasAllowReciprocal()) 1577 Flags |= bitc::AllowReciprocal; 1578 if (FPMO->hasAllowContract()) 1579 Flags |= bitc::AllowContract; 1580 if (FPMO->hasApproxFunc()) 1581 Flags |= bitc::ApproxFunc; 1582 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) { 1583 if (NNI->hasNonNeg()) 1584 Flags |= 1 << bitc::PNNI_NON_NEG; 1585 } 1586 1587 return Flags; 1588 } 1589 1590 void ModuleBitcodeWriter::writeValueAsMetadata( 1591 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1592 // Mimic an MDNode with a value as one operand. 1593 Value *V = MD->getValue(); 1594 Record.push_back(VE.getTypeID(V->getType())); 1595 Record.push_back(VE.getValueID(V)); 1596 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1597 Record.clear(); 1598 } 1599 1600 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1601 SmallVectorImpl<uint64_t> &Record, 1602 unsigned Abbrev) { 1603 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1604 Metadata *MD = N->getOperand(i); 1605 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1606 "Unexpected function-local metadata"); 1607 Record.push_back(VE.getMetadataOrNullID(MD)); 1608 } 1609 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1610 : bitc::METADATA_NODE, 1611 Record, Abbrev); 1612 Record.clear(); 1613 } 1614 1615 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1616 // Assume the column is usually under 128, and always output the inlined-at 1617 // location (it's never more expensive than building an array size 1). 1618 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1619 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1620 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1621 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1622 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1623 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1625 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1626 return Stream.EmitAbbrev(std::move(Abbv)); 1627 } 1628 1629 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1630 SmallVectorImpl<uint64_t> &Record, 1631 unsigned &Abbrev) { 1632 if (!Abbrev) 1633 Abbrev = createDILocationAbbrev(); 1634 1635 Record.push_back(N->isDistinct()); 1636 Record.push_back(N->getLine()); 1637 Record.push_back(N->getColumn()); 1638 Record.push_back(VE.getMetadataID(N->getScope())); 1639 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1640 Record.push_back(N->isImplicitCode()); 1641 1642 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1643 Record.clear(); 1644 } 1645 1646 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1647 // Assume the column is usually under 128, and always output the inlined-at 1648 // location (it's never more expensive than building an array size 1). 1649 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1650 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1651 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1652 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1653 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1654 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1655 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1656 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1657 return Stream.EmitAbbrev(std::move(Abbv)); 1658 } 1659 1660 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1661 SmallVectorImpl<uint64_t> &Record, 1662 unsigned &Abbrev) { 1663 if (!Abbrev) 1664 Abbrev = createGenericDINodeAbbrev(); 1665 1666 Record.push_back(N->isDistinct()); 1667 Record.push_back(N->getTag()); 1668 Record.push_back(0); // Per-tag version field; unused for now. 1669 1670 for (auto &I : N->operands()) 1671 Record.push_back(VE.getMetadataOrNullID(I)); 1672 1673 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1674 Record.clear(); 1675 } 1676 1677 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1678 SmallVectorImpl<uint64_t> &Record, 1679 unsigned Abbrev) { 1680 const uint64_t Version = 2 << 1; 1681 Record.push_back((uint64_t)N->isDistinct() | Version); 1682 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1683 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1684 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1685 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1686 1687 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1688 Record.clear(); 1689 } 1690 1691 void ModuleBitcodeWriter::writeDIGenericSubrange( 1692 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1693 unsigned Abbrev) { 1694 Record.push_back((uint64_t)N->isDistinct()); 1695 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1696 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1697 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1698 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1699 1700 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1701 Record.clear(); 1702 } 1703 1704 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1705 if ((int64_t)V >= 0) 1706 Vals.push_back(V << 1); 1707 else 1708 Vals.push_back((-V << 1) | 1); 1709 } 1710 1711 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1712 // We have an arbitrary precision integer value to write whose 1713 // bit width is > 64. However, in canonical unsigned integer 1714 // format it is likely that the high bits are going to be zero. 1715 // So, we only write the number of active words. 1716 unsigned NumWords = A.getActiveWords(); 1717 const uint64_t *RawData = A.getRawData(); 1718 for (unsigned i = 0; i < NumWords; i++) 1719 emitSignedInt64(Vals, RawData[i]); 1720 } 1721 1722 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1723 SmallVectorImpl<uint64_t> &Record, 1724 unsigned Abbrev) { 1725 const uint64_t IsBigInt = 1 << 2; 1726 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1727 Record.push_back(N->getValue().getBitWidth()); 1728 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1729 emitWideAPInt(Record, N->getValue()); 1730 1731 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1732 Record.clear(); 1733 } 1734 1735 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1736 SmallVectorImpl<uint64_t> &Record, 1737 unsigned Abbrev) { 1738 Record.push_back(N->isDistinct()); 1739 Record.push_back(N->getTag()); 1740 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1741 Record.push_back(N->getSizeInBits()); 1742 Record.push_back(N->getAlignInBits()); 1743 Record.push_back(N->getEncoding()); 1744 Record.push_back(N->getFlags()); 1745 1746 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1747 Record.clear(); 1748 } 1749 1750 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1751 SmallVectorImpl<uint64_t> &Record, 1752 unsigned Abbrev) { 1753 Record.push_back(N->isDistinct()); 1754 Record.push_back(N->getTag()); 1755 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1756 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1757 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1758 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1759 Record.push_back(N->getSizeInBits()); 1760 Record.push_back(N->getAlignInBits()); 1761 Record.push_back(N->getEncoding()); 1762 1763 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1764 Record.clear(); 1765 } 1766 1767 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1768 SmallVectorImpl<uint64_t> &Record, 1769 unsigned Abbrev) { 1770 Record.push_back(N->isDistinct()); 1771 Record.push_back(N->getTag()); 1772 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1773 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1774 Record.push_back(N->getLine()); 1775 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1776 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1777 Record.push_back(N->getSizeInBits()); 1778 Record.push_back(N->getAlignInBits()); 1779 Record.push_back(N->getOffsetInBits()); 1780 Record.push_back(N->getFlags()); 1781 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1782 1783 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1784 // that there is no DWARF address space associated with DIDerivedType. 1785 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1786 Record.push_back(*DWARFAddressSpace + 1); 1787 else 1788 Record.push_back(0); 1789 1790 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1791 1792 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1793 Record.clear(); 1794 } 1795 1796 void ModuleBitcodeWriter::writeDICompositeType( 1797 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1798 unsigned Abbrev) { 1799 const unsigned IsNotUsedInOldTypeRef = 0x2; 1800 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1801 Record.push_back(N->getTag()); 1802 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1803 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1804 Record.push_back(N->getLine()); 1805 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1806 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1807 Record.push_back(N->getSizeInBits()); 1808 Record.push_back(N->getAlignInBits()); 1809 Record.push_back(N->getOffsetInBits()); 1810 Record.push_back(N->getFlags()); 1811 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1812 Record.push_back(N->getRuntimeLang()); 1813 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1814 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1815 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1816 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1817 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1818 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1819 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1820 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1821 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1822 1823 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1824 Record.clear(); 1825 } 1826 1827 void ModuleBitcodeWriter::writeDISubroutineType( 1828 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1829 unsigned Abbrev) { 1830 const unsigned HasNoOldTypeRefs = 0x2; 1831 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1832 Record.push_back(N->getFlags()); 1833 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1834 Record.push_back(N->getCC()); 1835 1836 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1837 Record.clear(); 1838 } 1839 1840 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1841 SmallVectorImpl<uint64_t> &Record, 1842 unsigned Abbrev) { 1843 Record.push_back(N->isDistinct()); 1844 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1845 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1846 if (N->getRawChecksum()) { 1847 Record.push_back(N->getRawChecksum()->Kind); 1848 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1849 } else { 1850 // Maintain backwards compatibility with the old internal representation of 1851 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1852 Record.push_back(0); 1853 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1854 } 1855 auto Source = N->getRawSource(); 1856 if (Source) 1857 Record.push_back(VE.getMetadataOrNullID(Source)); 1858 1859 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1860 Record.clear(); 1861 } 1862 1863 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1864 SmallVectorImpl<uint64_t> &Record, 1865 unsigned Abbrev) { 1866 assert(N->isDistinct() && "Expected distinct compile units"); 1867 Record.push_back(/* IsDistinct */ true); 1868 Record.push_back(N->getSourceLanguage()); 1869 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1870 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1871 Record.push_back(N->isOptimized()); 1872 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1873 Record.push_back(N->getRuntimeVersion()); 1874 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1875 Record.push_back(N->getEmissionKind()); 1876 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1877 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1878 Record.push_back(/* subprograms */ 0); 1879 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1880 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1881 Record.push_back(N->getDWOId()); 1882 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1883 Record.push_back(N->getSplitDebugInlining()); 1884 Record.push_back(N->getDebugInfoForProfiling()); 1885 Record.push_back((unsigned)N->getNameTableKind()); 1886 Record.push_back(N->getRangesBaseAddress()); 1887 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1888 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1889 1890 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1891 Record.clear(); 1892 } 1893 1894 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1895 SmallVectorImpl<uint64_t> &Record, 1896 unsigned Abbrev) { 1897 const uint64_t HasUnitFlag = 1 << 1; 1898 const uint64_t HasSPFlagsFlag = 1 << 2; 1899 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1900 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1901 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1902 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1903 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1904 Record.push_back(N->getLine()); 1905 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1906 Record.push_back(N->getScopeLine()); 1907 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1908 Record.push_back(N->getSPFlags()); 1909 Record.push_back(N->getVirtualIndex()); 1910 Record.push_back(N->getFlags()); 1911 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1912 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1913 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1914 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1915 Record.push_back(N->getThisAdjustment()); 1916 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1917 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1918 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1919 1920 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1921 Record.clear(); 1922 } 1923 1924 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1925 SmallVectorImpl<uint64_t> &Record, 1926 unsigned Abbrev) { 1927 Record.push_back(N->isDistinct()); 1928 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1929 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1930 Record.push_back(N->getLine()); 1931 Record.push_back(N->getColumn()); 1932 1933 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1934 Record.clear(); 1935 } 1936 1937 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1938 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1939 unsigned Abbrev) { 1940 Record.push_back(N->isDistinct()); 1941 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1942 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1943 Record.push_back(N->getDiscriminator()); 1944 1945 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1946 Record.clear(); 1947 } 1948 1949 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1950 SmallVectorImpl<uint64_t> &Record, 1951 unsigned Abbrev) { 1952 Record.push_back(N->isDistinct()); 1953 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1954 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1955 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1956 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1957 Record.push_back(N->getLineNo()); 1958 1959 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1960 Record.clear(); 1961 } 1962 1963 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1964 SmallVectorImpl<uint64_t> &Record, 1965 unsigned Abbrev) { 1966 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1967 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1968 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1969 1970 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1971 Record.clear(); 1972 } 1973 1974 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1975 SmallVectorImpl<uint64_t> &Record, 1976 unsigned Abbrev) { 1977 Record.push_back(N->isDistinct()); 1978 Record.push_back(N->getMacinfoType()); 1979 Record.push_back(N->getLine()); 1980 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1981 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1982 1983 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1984 Record.clear(); 1985 } 1986 1987 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1988 SmallVectorImpl<uint64_t> &Record, 1989 unsigned Abbrev) { 1990 Record.push_back(N->isDistinct()); 1991 Record.push_back(N->getMacinfoType()); 1992 Record.push_back(N->getLine()); 1993 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1994 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1995 1996 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1997 Record.clear(); 1998 } 1999 2000 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 2001 SmallVectorImpl<uint64_t> &Record) { 2002 Record.reserve(N->getArgs().size()); 2003 for (ValueAsMetadata *MD : N->getArgs()) 2004 Record.push_back(VE.getMetadataID(MD)); 2005 2006 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record); 2007 Record.clear(); 2008 } 2009 2010 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 2011 SmallVectorImpl<uint64_t> &Record, 2012 unsigned Abbrev) { 2013 Record.push_back(N->isDistinct()); 2014 for (auto &I : N->operands()) 2015 Record.push_back(VE.getMetadataOrNullID(I)); 2016 Record.push_back(N->getLineNo()); 2017 Record.push_back(N->getIsDecl()); 2018 2019 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 2020 Record.clear(); 2021 } 2022 2023 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 2024 SmallVectorImpl<uint64_t> &Record, 2025 unsigned Abbrev) { 2026 // There are no arguments for this metadata type. 2027 Record.push_back(N->isDistinct()); 2028 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 2029 Record.clear(); 2030 } 2031 2032 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 2033 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2034 unsigned Abbrev) { 2035 Record.push_back(N->isDistinct()); 2036 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2037 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2038 Record.push_back(N->isDefault()); 2039 2040 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2041 Record.clear(); 2042 } 2043 2044 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2045 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2046 unsigned Abbrev) { 2047 Record.push_back(N->isDistinct()); 2048 Record.push_back(N->getTag()); 2049 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2050 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2051 Record.push_back(N->isDefault()); 2052 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2053 2054 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2055 Record.clear(); 2056 } 2057 2058 void ModuleBitcodeWriter::writeDIGlobalVariable( 2059 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2060 unsigned Abbrev) { 2061 const uint64_t Version = 2 << 1; 2062 Record.push_back((uint64_t)N->isDistinct() | Version); 2063 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2064 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2065 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2066 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2067 Record.push_back(N->getLine()); 2068 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2069 Record.push_back(N->isLocalToUnit()); 2070 Record.push_back(N->isDefinition()); 2071 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2072 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2073 Record.push_back(N->getAlignInBits()); 2074 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2075 2076 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2077 Record.clear(); 2078 } 2079 2080 void ModuleBitcodeWriter::writeDILocalVariable( 2081 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2082 unsigned Abbrev) { 2083 // In order to support all possible bitcode formats in BitcodeReader we need 2084 // to distinguish the following cases: 2085 // 1) Record has no artificial tag (Record[1]), 2086 // has no obsolete inlinedAt field (Record[9]). 2087 // In this case Record size will be 8, HasAlignment flag is false. 2088 // 2) Record has artificial tag (Record[1]), 2089 // has no obsolete inlignedAt field (Record[9]). 2090 // In this case Record size will be 9, HasAlignment flag is false. 2091 // 3) Record has both artificial tag (Record[1]) and 2092 // obsolete inlignedAt field (Record[9]). 2093 // In this case Record size will be 10, HasAlignment flag is false. 2094 // 4) Record has neither artificial tag, nor inlignedAt field, but 2095 // HasAlignment flag is true and Record[8] contains alignment value. 2096 const uint64_t HasAlignmentFlag = 1 << 1; 2097 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2098 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2099 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2100 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2101 Record.push_back(N->getLine()); 2102 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2103 Record.push_back(N->getArg()); 2104 Record.push_back(N->getFlags()); 2105 Record.push_back(N->getAlignInBits()); 2106 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2107 2108 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2109 Record.clear(); 2110 } 2111 2112 void ModuleBitcodeWriter::writeDILabel( 2113 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2114 unsigned Abbrev) { 2115 Record.push_back((uint64_t)N->isDistinct()); 2116 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2117 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2118 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2119 Record.push_back(N->getLine()); 2120 2121 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2122 Record.clear(); 2123 } 2124 2125 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2126 SmallVectorImpl<uint64_t> &Record, 2127 unsigned Abbrev) { 2128 Record.reserve(N->getElements().size() + 1); 2129 const uint64_t Version = 3 << 1; 2130 Record.push_back((uint64_t)N->isDistinct() | Version); 2131 Record.append(N->elements_begin(), N->elements_end()); 2132 2133 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2134 Record.clear(); 2135 } 2136 2137 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2138 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2139 unsigned Abbrev) { 2140 Record.push_back(N->isDistinct()); 2141 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2142 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2143 2144 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2145 Record.clear(); 2146 } 2147 2148 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2149 SmallVectorImpl<uint64_t> &Record, 2150 unsigned Abbrev) { 2151 Record.push_back(N->isDistinct()); 2152 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2153 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2154 Record.push_back(N->getLine()); 2155 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2156 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2157 Record.push_back(N->getAttributes()); 2158 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2159 2160 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2161 Record.clear(); 2162 } 2163 2164 void ModuleBitcodeWriter::writeDIImportedEntity( 2165 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2166 unsigned Abbrev) { 2167 Record.push_back(N->isDistinct()); 2168 Record.push_back(N->getTag()); 2169 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2170 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2171 Record.push_back(N->getLine()); 2172 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2173 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2174 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2175 2176 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2177 Record.clear(); 2178 } 2179 2180 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2181 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2182 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2185 return Stream.EmitAbbrev(std::move(Abbv)); 2186 } 2187 2188 void ModuleBitcodeWriter::writeNamedMetadata( 2189 SmallVectorImpl<uint64_t> &Record) { 2190 if (M.named_metadata_empty()) 2191 return; 2192 2193 unsigned Abbrev = createNamedMetadataAbbrev(); 2194 for (const NamedMDNode &NMD : M.named_metadata()) { 2195 // Write name. 2196 StringRef Str = NMD.getName(); 2197 Record.append(Str.bytes_begin(), Str.bytes_end()); 2198 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2199 Record.clear(); 2200 2201 // Write named metadata operands. 2202 for (const MDNode *N : NMD.operands()) 2203 Record.push_back(VE.getMetadataID(N)); 2204 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2205 Record.clear(); 2206 } 2207 } 2208 2209 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2210 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2211 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2215 return Stream.EmitAbbrev(std::move(Abbv)); 2216 } 2217 2218 /// Write out a record for MDString. 2219 /// 2220 /// All the metadata strings in a metadata block are emitted in a single 2221 /// record. The sizes and strings themselves are shoved into a blob. 2222 void ModuleBitcodeWriter::writeMetadataStrings( 2223 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2224 if (Strings.empty()) 2225 return; 2226 2227 // Start the record with the number of strings. 2228 Record.push_back(bitc::METADATA_STRINGS); 2229 Record.push_back(Strings.size()); 2230 2231 // Emit the sizes of the strings in the blob. 2232 SmallString<256> Blob; 2233 { 2234 BitstreamWriter W(Blob); 2235 for (const Metadata *MD : Strings) 2236 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2237 W.FlushToWord(); 2238 } 2239 2240 // Add the offset to the strings to the record. 2241 Record.push_back(Blob.size()); 2242 2243 // Add the strings to the blob. 2244 for (const Metadata *MD : Strings) 2245 Blob.append(cast<MDString>(MD)->getString()); 2246 2247 // Emit the final record. 2248 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2249 Record.clear(); 2250 } 2251 2252 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2253 enum MetadataAbbrev : unsigned { 2254 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2255 #include "llvm/IR/Metadata.def" 2256 LastPlusOne 2257 }; 2258 2259 void ModuleBitcodeWriter::writeMetadataRecords( 2260 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2261 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2262 if (MDs.empty()) 2263 return; 2264 2265 // Initialize MDNode abbreviations. 2266 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2267 #include "llvm/IR/Metadata.def" 2268 2269 for (const Metadata *MD : MDs) { 2270 if (IndexPos) 2271 IndexPos->push_back(Stream.GetCurrentBitNo()); 2272 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2273 assert(N->isResolved() && "Expected forward references to be resolved"); 2274 2275 switch (N->getMetadataID()) { 2276 default: 2277 llvm_unreachable("Invalid MDNode subclass"); 2278 #define HANDLE_MDNODE_LEAF(CLASS) \ 2279 case Metadata::CLASS##Kind: \ 2280 if (MDAbbrevs) \ 2281 write##CLASS(cast<CLASS>(N), Record, \ 2282 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2283 else \ 2284 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2285 continue; 2286 #include "llvm/IR/Metadata.def" 2287 } 2288 } 2289 if (auto *AL = dyn_cast<DIArgList>(MD)) { 2290 writeDIArgList(AL, Record); 2291 continue; 2292 } 2293 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2294 } 2295 } 2296 2297 void ModuleBitcodeWriter::writeModuleMetadata() { 2298 if (!VE.hasMDs() && M.named_metadata_empty()) 2299 return; 2300 2301 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2302 SmallVector<uint64_t, 64> Record; 2303 2304 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2305 // block and load any metadata. 2306 std::vector<unsigned> MDAbbrevs; 2307 2308 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2309 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2310 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2311 createGenericDINodeAbbrev(); 2312 2313 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2314 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2317 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2318 2319 Abbv = std::make_shared<BitCodeAbbrev>(); 2320 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2323 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2324 2325 // Emit MDStrings together upfront. 2326 writeMetadataStrings(VE.getMDStrings(), Record); 2327 2328 // We only emit an index for the metadata record if we have more than a given 2329 // (naive) threshold of metadatas, otherwise it is not worth it. 2330 if (VE.getNonMDStrings().size() > IndexThreshold) { 2331 // Write a placeholder value in for the offset of the metadata index, 2332 // which is written after the records, so that it can include 2333 // the offset of each entry. The placeholder offset will be 2334 // updated after all records are emitted. 2335 uint64_t Vals[] = {0, 0}; 2336 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2337 } 2338 2339 // Compute and save the bit offset to the current position, which will be 2340 // patched when we emit the index later. We can simply subtract the 64-bit 2341 // fixed size from the current bit number to get the location to backpatch. 2342 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2343 2344 // This index will contain the bitpos for each individual record. 2345 std::vector<uint64_t> IndexPos; 2346 IndexPos.reserve(VE.getNonMDStrings().size()); 2347 2348 // Write all the records 2349 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2350 2351 if (VE.getNonMDStrings().size() > IndexThreshold) { 2352 // Now that we have emitted all the records we will emit the index. But 2353 // first 2354 // backpatch the forward reference so that the reader can skip the records 2355 // efficiently. 2356 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2357 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2358 2359 // Delta encode the index. 2360 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2361 for (auto &Elt : IndexPos) { 2362 auto EltDelta = Elt - PreviousValue; 2363 PreviousValue = Elt; 2364 Elt = EltDelta; 2365 } 2366 // Emit the index record. 2367 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2368 IndexPos.clear(); 2369 } 2370 2371 // Write the named metadata now. 2372 writeNamedMetadata(Record); 2373 2374 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2375 SmallVector<uint64_t, 4> Record; 2376 Record.push_back(VE.getValueID(&GO)); 2377 pushGlobalMetadataAttachment(Record, GO); 2378 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2379 }; 2380 for (const Function &F : M) 2381 if (F.isDeclaration() && F.hasMetadata()) 2382 AddDeclAttachedMetadata(F); 2383 // FIXME: Only store metadata for declarations here, and move data for global 2384 // variable definitions to a separate block (PR28134). 2385 for (const GlobalVariable &GV : M.globals()) 2386 if (GV.hasMetadata()) 2387 AddDeclAttachedMetadata(GV); 2388 2389 Stream.ExitBlock(); 2390 } 2391 2392 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2393 if (!VE.hasMDs()) 2394 return; 2395 2396 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2397 SmallVector<uint64_t, 64> Record; 2398 writeMetadataStrings(VE.getMDStrings(), Record); 2399 writeMetadataRecords(VE.getNonMDStrings(), Record); 2400 Stream.ExitBlock(); 2401 } 2402 2403 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2404 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2405 // [n x [id, mdnode]] 2406 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2407 GO.getAllMetadata(MDs); 2408 for (const auto &I : MDs) { 2409 Record.push_back(I.first); 2410 Record.push_back(VE.getMetadataID(I.second)); 2411 } 2412 } 2413 2414 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2415 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2416 2417 SmallVector<uint64_t, 64> Record; 2418 2419 if (F.hasMetadata()) { 2420 pushGlobalMetadataAttachment(Record, F); 2421 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2422 Record.clear(); 2423 } 2424 2425 // Write metadata attachments 2426 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2427 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2428 for (const BasicBlock &BB : F) 2429 for (const Instruction &I : BB) { 2430 MDs.clear(); 2431 I.getAllMetadataOtherThanDebugLoc(MDs); 2432 2433 // If no metadata, ignore instruction. 2434 if (MDs.empty()) continue; 2435 2436 Record.push_back(VE.getInstructionID(&I)); 2437 2438 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2439 Record.push_back(MDs[i].first); 2440 Record.push_back(VE.getMetadataID(MDs[i].second)); 2441 } 2442 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2443 Record.clear(); 2444 } 2445 2446 Stream.ExitBlock(); 2447 } 2448 2449 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2450 SmallVector<uint64_t, 64> Record; 2451 2452 // Write metadata kinds 2453 // METADATA_KIND - [n x [id, name]] 2454 SmallVector<StringRef, 8> Names; 2455 M.getMDKindNames(Names); 2456 2457 if (Names.empty()) return; 2458 2459 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2460 2461 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2462 Record.push_back(MDKindID); 2463 StringRef KName = Names[MDKindID]; 2464 Record.append(KName.begin(), KName.end()); 2465 2466 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2467 Record.clear(); 2468 } 2469 2470 Stream.ExitBlock(); 2471 } 2472 2473 void ModuleBitcodeWriter::writeOperandBundleTags() { 2474 // Write metadata kinds 2475 // 2476 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2477 // 2478 // OPERAND_BUNDLE_TAG - [strchr x N] 2479 2480 SmallVector<StringRef, 8> Tags; 2481 M.getOperandBundleTags(Tags); 2482 2483 if (Tags.empty()) 2484 return; 2485 2486 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2487 2488 SmallVector<uint64_t, 64> Record; 2489 2490 for (auto Tag : Tags) { 2491 Record.append(Tag.begin(), Tag.end()); 2492 2493 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2494 Record.clear(); 2495 } 2496 2497 Stream.ExitBlock(); 2498 } 2499 2500 void ModuleBitcodeWriter::writeSyncScopeNames() { 2501 SmallVector<StringRef, 8> SSNs; 2502 M.getContext().getSyncScopeNames(SSNs); 2503 if (SSNs.empty()) 2504 return; 2505 2506 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2507 2508 SmallVector<uint64_t, 64> Record; 2509 for (auto SSN : SSNs) { 2510 Record.append(SSN.begin(), SSN.end()); 2511 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2512 Record.clear(); 2513 } 2514 2515 Stream.ExitBlock(); 2516 } 2517 2518 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2519 bool isGlobal) { 2520 if (FirstVal == LastVal) return; 2521 2522 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2523 2524 unsigned AggregateAbbrev = 0; 2525 unsigned String8Abbrev = 0; 2526 unsigned CString7Abbrev = 0; 2527 unsigned CString6Abbrev = 0; 2528 // If this is a constant pool for the module, emit module-specific abbrevs. 2529 if (isGlobal) { 2530 // Abbrev for CST_CODE_AGGREGATE. 2531 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2532 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2535 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2536 2537 // Abbrev for CST_CODE_STRING. 2538 Abbv = std::make_shared<BitCodeAbbrev>(); 2539 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2542 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2543 // Abbrev for CST_CODE_CSTRING. 2544 Abbv = std::make_shared<BitCodeAbbrev>(); 2545 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2546 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2548 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2549 // Abbrev for CST_CODE_CSTRING. 2550 Abbv = std::make_shared<BitCodeAbbrev>(); 2551 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2554 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2555 } 2556 2557 SmallVector<uint64_t, 64> Record; 2558 2559 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2560 Type *LastTy = nullptr; 2561 for (unsigned i = FirstVal; i != LastVal; ++i) { 2562 const Value *V = Vals[i].first; 2563 // If we need to switch types, do so now. 2564 if (V->getType() != LastTy) { 2565 LastTy = V->getType(); 2566 Record.push_back(VE.getTypeID(LastTy)); 2567 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2568 CONSTANTS_SETTYPE_ABBREV); 2569 Record.clear(); 2570 } 2571 2572 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2573 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2574 Record.push_back( 2575 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2576 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2577 2578 // Add the asm string. 2579 const std::string &AsmStr = IA->getAsmString(); 2580 Record.push_back(AsmStr.size()); 2581 Record.append(AsmStr.begin(), AsmStr.end()); 2582 2583 // Add the constraint string. 2584 const std::string &ConstraintStr = IA->getConstraintString(); 2585 Record.push_back(ConstraintStr.size()); 2586 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2587 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2588 Record.clear(); 2589 continue; 2590 } 2591 const Constant *C = cast<Constant>(V); 2592 unsigned Code = -1U; 2593 unsigned AbbrevToUse = 0; 2594 if (C->isNullValue()) { 2595 Code = bitc::CST_CODE_NULL; 2596 } else if (isa<PoisonValue>(C)) { 2597 Code = bitc::CST_CODE_POISON; 2598 } else if (isa<UndefValue>(C)) { 2599 Code = bitc::CST_CODE_UNDEF; 2600 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2601 if (IV->getBitWidth() <= 64) { 2602 uint64_t V = IV->getSExtValue(); 2603 emitSignedInt64(Record, V); 2604 Code = bitc::CST_CODE_INTEGER; 2605 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2606 } else { // Wide integers, > 64 bits in size. 2607 emitWideAPInt(Record, IV->getValue()); 2608 Code = bitc::CST_CODE_WIDE_INTEGER; 2609 } 2610 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2611 Code = bitc::CST_CODE_FLOAT; 2612 Type *Ty = CFP->getType(); 2613 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2614 Ty->isDoubleTy()) { 2615 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2616 } else if (Ty->isX86_FP80Ty()) { 2617 // api needed to prevent premature destruction 2618 // bits are not in the same order as a normal i80 APInt, compensate. 2619 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2620 const uint64_t *p = api.getRawData(); 2621 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2622 Record.push_back(p[0] & 0xffffLL); 2623 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2624 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2625 const uint64_t *p = api.getRawData(); 2626 Record.push_back(p[0]); 2627 Record.push_back(p[1]); 2628 } else { 2629 assert(0 && "Unknown FP type!"); 2630 } 2631 } else if (isa<ConstantDataSequential>(C) && 2632 cast<ConstantDataSequential>(C)->isString()) { 2633 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2634 // Emit constant strings specially. 2635 unsigned NumElts = Str->getNumElements(); 2636 // If this is a null-terminated string, use the denser CSTRING encoding. 2637 if (Str->isCString()) { 2638 Code = bitc::CST_CODE_CSTRING; 2639 --NumElts; // Don't encode the null, which isn't allowed by char6. 2640 } else { 2641 Code = bitc::CST_CODE_STRING; 2642 AbbrevToUse = String8Abbrev; 2643 } 2644 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2645 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2646 for (unsigned i = 0; i != NumElts; ++i) { 2647 unsigned char V = Str->getElementAsInteger(i); 2648 Record.push_back(V); 2649 isCStr7 &= (V & 128) == 0; 2650 if (isCStrChar6) 2651 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2652 } 2653 2654 if (isCStrChar6) 2655 AbbrevToUse = CString6Abbrev; 2656 else if (isCStr7) 2657 AbbrevToUse = CString7Abbrev; 2658 } else if (const ConstantDataSequential *CDS = 2659 dyn_cast<ConstantDataSequential>(C)) { 2660 Code = bitc::CST_CODE_DATA; 2661 Type *EltTy = CDS->getElementType(); 2662 if (isa<IntegerType>(EltTy)) { 2663 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2664 Record.push_back(CDS->getElementAsInteger(i)); 2665 } else { 2666 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2667 Record.push_back( 2668 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2669 } 2670 } else if (isa<ConstantAggregate>(C)) { 2671 Code = bitc::CST_CODE_AGGREGATE; 2672 for (const Value *Op : C->operands()) 2673 Record.push_back(VE.getValueID(Op)); 2674 AbbrevToUse = AggregateAbbrev; 2675 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2676 switch (CE->getOpcode()) { 2677 default: 2678 if (Instruction::isCast(CE->getOpcode())) { 2679 Code = bitc::CST_CODE_CE_CAST; 2680 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2681 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2682 Record.push_back(VE.getValueID(C->getOperand(0))); 2683 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2684 } else { 2685 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2686 Code = bitc::CST_CODE_CE_BINOP; 2687 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2688 Record.push_back(VE.getValueID(C->getOperand(0))); 2689 Record.push_back(VE.getValueID(C->getOperand(1))); 2690 uint64_t Flags = getOptimizationFlags(CE); 2691 if (Flags != 0) 2692 Record.push_back(Flags); 2693 } 2694 break; 2695 case Instruction::FNeg: { 2696 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2697 Code = bitc::CST_CODE_CE_UNOP; 2698 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2699 Record.push_back(VE.getValueID(C->getOperand(0))); 2700 uint64_t Flags = getOptimizationFlags(CE); 2701 if (Flags != 0) 2702 Record.push_back(Flags); 2703 break; 2704 } 2705 case Instruction::GetElementPtr: { 2706 Code = bitc::CST_CODE_CE_GEP; 2707 const auto *GO = cast<GEPOperator>(C); 2708 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2709 if (std::optional<unsigned> Idx = GO->getInRangeIndex()) { 2710 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2711 Record.push_back((*Idx << 1) | GO->isInBounds()); 2712 } else if (GO->isInBounds()) 2713 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2714 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2715 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2716 Record.push_back(VE.getValueID(C->getOperand(i))); 2717 } 2718 break; 2719 } 2720 case Instruction::ExtractElement: 2721 Code = bitc::CST_CODE_CE_EXTRACTELT; 2722 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2723 Record.push_back(VE.getValueID(C->getOperand(0))); 2724 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2725 Record.push_back(VE.getValueID(C->getOperand(1))); 2726 break; 2727 case Instruction::InsertElement: 2728 Code = bitc::CST_CODE_CE_INSERTELT; 2729 Record.push_back(VE.getValueID(C->getOperand(0))); 2730 Record.push_back(VE.getValueID(C->getOperand(1))); 2731 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2732 Record.push_back(VE.getValueID(C->getOperand(2))); 2733 break; 2734 case Instruction::ShuffleVector: 2735 // If the return type and argument types are the same, this is a 2736 // standard shufflevector instruction. If the types are different, 2737 // then the shuffle is widening or truncating the input vectors, and 2738 // the argument type must also be encoded. 2739 if (C->getType() == C->getOperand(0)->getType()) { 2740 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2741 } else { 2742 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2743 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2744 } 2745 Record.push_back(VE.getValueID(C->getOperand(0))); 2746 Record.push_back(VE.getValueID(C->getOperand(1))); 2747 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2748 break; 2749 case Instruction::ICmp: 2750 case Instruction::FCmp: 2751 Code = bitc::CST_CODE_CE_CMP; 2752 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2753 Record.push_back(VE.getValueID(C->getOperand(0))); 2754 Record.push_back(VE.getValueID(C->getOperand(1))); 2755 Record.push_back(CE->getPredicate()); 2756 break; 2757 } 2758 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2759 Code = bitc::CST_CODE_BLOCKADDRESS; 2760 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2761 Record.push_back(VE.getValueID(BA->getFunction())); 2762 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2763 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2764 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2765 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2766 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2767 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2768 Code = bitc::CST_CODE_NO_CFI_VALUE; 2769 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2770 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2771 } else { 2772 #ifndef NDEBUG 2773 C->dump(); 2774 #endif 2775 llvm_unreachable("Unknown constant!"); 2776 } 2777 Stream.EmitRecord(Code, Record, AbbrevToUse); 2778 Record.clear(); 2779 } 2780 2781 Stream.ExitBlock(); 2782 } 2783 2784 void ModuleBitcodeWriter::writeModuleConstants() { 2785 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2786 2787 // Find the first constant to emit, which is the first non-globalvalue value. 2788 // We know globalvalues have been emitted by WriteModuleInfo. 2789 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2790 if (!isa<GlobalValue>(Vals[i].first)) { 2791 writeConstants(i, Vals.size(), true); 2792 return; 2793 } 2794 } 2795 } 2796 2797 /// pushValueAndType - The file has to encode both the value and type id for 2798 /// many values, because we need to know what type to create for forward 2799 /// references. However, most operands are not forward references, so this type 2800 /// field is not needed. 2801 /// 2802 /// This function adds V's value ID to Vals. If the value ID is higher than the 2803 /// instruction ID, then it is a forward reference, and it also includes the 2804 /// type ID. The value ID that is written is encoded relative to the InstID. 2805 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2806 SmallVectorImpl<unsigned> &Vals) { 2807 unsigned ValID = VE.getValueID(V); 2808 // Make encoding relative to the InstID. 2809 Vals.push_back(InstID - ValID); 2810 if (ValID >= InstID) { 2811 Vals.push_back(VE.getTypeID(V->getType())); 2812 return true; 2813 } 2814 return false; 2815 } 2816 2817 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2818 unsigned InstID) { 2819 SmallVector<unsigned, 64> Record; 2820 LLVMContext &C = CS.getContext(); 2821 2822 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2823 const auto &Bundle = CS.getOperandBundleAt(i); 2824 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2825 2826 for (auto &Input : Bundle.Inputs) 2827 pushValueAndType(Input, InstID, Record); 2828 2829 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2830 Record.clear(); 2831 } 2832 } 2833 2834 /// pushValue - Like pushValueAndType, but where the type of the value is 2835 /// omitted (perhaps it was already encoded in an earlier operand). 2836 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2837 SmallVectorImpl<unsigned> &Vals) { 2838 unsigned ValID = VE.getValueID(V); 2839 Vals.push_back(InstID - ValID); 2840 } 2841 2842 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2843 SmallVectorImpl<uint64_t> &Vals) { 2844 unsigned ValID = VE.getValueID(V); 2845 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2846 emitSignedInt64(Vals, diff); 2847 } 2848 2849 /// WriteInstruction - Emit an instruction to the specified stream. 2850 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2851 unsigned InstID, 2852 SmallVectorImpl<unsigned> &Vals) { 2853 unsigned Code = 0; 2854 unsigned AbbrevToUse = 0; 2855 VE.setInstructionID(&I); 2856 switch (I.getOpcode()) { 2857 default: 2858 if (Instruction::isCast(I.getOpcode())) { 2859 Code = bitc::FUNC_CODE_INST_CAST; 2860 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2861 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2862 Vals.push_back(VE.getTypeID(I.getType())); 2863 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2864 uint64_t Flags = getOptimizationFlags(&I); 2865 if (Flags != 0) { 2866 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) 2867 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; 2868 Vals.push_back(Flags); 2869 } 2870 } else { 2871 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2872 Code = bitc::FUNC_CODE_INST_BINOP; 2873 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2874 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2875 pushValue(I.getOperand(1), InstID, Vals); 2876 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2877 uint64_t Flags = getOptimizationFlags(&I); 2878 if (Flags != 0) { 2879 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2880 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2881 Vals.push_back(Flags); 2882 } 2883 } 2884 break; 2885 case Instruction::FNeg: { 2886 Code = bitc::FUNC_CODE_INST_UNOP; 2887 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2888 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2889 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2890 uint64_t Flags = getOptimizationFlags(&I); 2891 if (Flags != 0) { 2892 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2893 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2894 Vals.push_back(Flags); 2895 } 2896 break; 2897 } 2898 case Instruction::GetElementPtr: { 2899 Code = bitc::FUNC_CODE_INST_GEP; 2900 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2901 auto &GEPInst = cast<GetElementPtrInst>(I); 2902 Vals.push_back(GEPInst.isInBounds()); 2903 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2904 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2905 pushValueAndType(I.getOperand(i), InstID, Vals); 2906 break; 2907 } 2908 case Instruction::ExtractValue: { 2909 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2910 pushValueAndType(I.getOperand(0), InstID, Vals); 2911 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2912 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2913 break; 2914 } 2915 case Instruction::InsertValue: { 2916 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2917 pushValueAndType(I.getOperand(0), InstID, Vals); 2918 pushValueAndType(I.getOperand(1), InstID, Vals); 2919 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2920 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2921 break; 2922 } 2923 case Instruction::Select: { 2924 Code = bitc::FUNC_CODE_INST_VSELECT; 2925 pushValueAndType(I.getOperand(1), InstID, Vals); 2926 pushValue(I.getOperand(2), InstID, Vals); 2927 pushValueAndType(I.getOperand(0), InstID, Vals); 2928 uint64_t Flags = getOptimizationFlags(&I); 2929 if (Flags != 0) 2930 Vals.push_back(Flags); 2931 break; 2932 } 2933 case Instruction::ExtractElement: 2934 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2935 pushValueAndType(I.getOperand(0), InstID, Vals); 2936 pushValueAndType(I.getOperand(1), InstID, Vals); 2937 break; 2938 case Instruction::InsertElement: 2939 Code = bitc::FUNC_CODE_INST_INSERTELT; 2940 pushValueAndType(I.getOperand(0), InstID, Vals); 2941 pushValue(I.getOperand(1), InstID, Vals); 2942 pushValueAndType(I.getOperand(2), InstID, Vals); 2943 break; 2944 case Instruction::ShuffleVector: 2945 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2946 pushValueAndType(I.getOperand(0), InstID, Vals); 2947 pushValue(I.getOperand(1), InstID, Vals); 2948 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2949 Vals); 2950 break; 2951 case Instruction::ICmp: 2952 case Instruction::FCmp: { 2953 // compare returning Int1Ty or vector of Int1Ty 2954 Code = bitc::FUNC_CODE_INST_CMP2; 2955 pushValueAndType(I.getOperand(0), InstID, Vals); 2956 pushValue(I.getOperand(1), InstID, Vals); 2957 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2958 uint64_t Flags = getOptimizationFlags(&I); 2959 if (Flags != 0) 2960 Vals.push_back(Flags); 2961 break; 2962 } 2963 2964 case Instruction::Ret: 2965 { 2966 Code = bitc::FUNC_CODE_INST_RET; 2967 unsigned NumOperands = I.getNumOperands(); 2968 if (NumOperands == 0) 2969 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2970 else if (NumOperands == 1) { 2971 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2972 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2973 } else { 2974 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2975 pushValueAndType(I.getOperand(i), InstID, Vals); 2976 } 2977 } 2978 break; 2979 case Instruction::Br: 2980 { 2981 Code = bitc::FUNC_CODE_INST_BR; 2982 const BranchInst &II = cast<BranchInst>(I); 2983 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2984 if (II.isConditional()) { 2985 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2986 pushValue(II.getCondition(), InstID, Vals); 2987 } 2988 } 2989 break; 2990 case Instruction::Switch: 2991 { 2992 Code = bitc::FUNC_CODE_INST_SWITCH; 2993 const SwitchInst &SI = cast<SwitchInst>(I); 2994 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2995 pushValue(SI.getCondition(), InstID, Vals); 2996 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2997 for (auto Case : SI.cases()) { 2998 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2999 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 3000 } 3001 } 3002 break; 3003 case Instruction::IndirectBr: 3004 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 3005 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3006 // Encode the address operand as relative, but not the basic blocks. 3007 pushValue(I.getOperand(0), InstID, Vals); 3008 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 3009 Vals.push_back(VE.getValueID(I.getOperand(i))); 3010 break; 3011 3012 case Instruction::Invoke: { 3013 const InvokeInst *II = cast<InvokeInst>(&I); 3014 const Value *Callee = II->getCalledOperand(); 3015 FunctionType *FTy = II->getFunctionType(); 3016 3017 if (II->hasOperandBundles()) 3018 writeOperandBundles(*II, InstID); 3019 3020 Code = bitc::FUNC_CODE_INST_INVOKE; 3021 3022 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 3023 Vals.push_back(II->getCallingConv() | 1 << 13); 3024 Vals.push_back(VE.getValueID(II->getNormalDest())); 3025 Vals.push_back(VE.getValueID(II->getUnwindDest())); 3026 Vals.push_back(VE.getTypeID(FTy)); 3027 pushValueAndType(Callee, InstID, Vals); 3028 3029 // Emit value #'s for the fixed parameters. 3030 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3031 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3032 3033 // Emit type/value pairs for varargs params. 3034 if (FTy->isVarArg()) { 3035 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 3036 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3037 } 3038 break; 3039 } 3040 case Instruction::Resume: 3041 Code = bitc::FUNC_CODE_INST_RESUME; 3042 pushValueAndType(I.getOperand(0), InstID, Vals); 3043 break; 3044 case Instruction::CleanupRet: { 3045 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3046 const auto &CRI = cast<CleanupReturnInst>(I); 3047 pushValue(CRI.getCleanupPad(), InstID, Vals); 3048 if (CRI.hasUnwindDest()) 3049 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3050 break; 3051 } 3052 case Instruction::CatchRet: { 3053 Code = bitc::FUNC_CODE_INST_CATCHRET; 3054 const auto &CRI = cast<CatchReturnInst>(I); 3055 pushValue(CRI.getCatchPad(), InstID, Vals); 3056 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3057 break; 3058 } 3059 case Instruction::CleanupPad: 3060 case Instruction::CatchPad: { 3061 const auto &FuncletPad = cast<FuncletPadInst>(I); 3062 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3063 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3064 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3065 3066 unsigned NumArgOperands = FuncletPad.arg_size(); 3067 Vals.push_back(NumArgOperands); 3068 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3069 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3070 break; 3071 } 3072 case Instruction::CatchSwitch: { 3073 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3074 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3075 3076 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3077 3078 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3079 Vals.push_back(NumHandlers); 3080 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3081 Vals.push_back(VE.getValueID(CatchPadBB)); 3082 3083 if (CatchSwitch.hasUnwindDest()) 3084 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3085 break; 3086 } 3087 case Instruction::CallBr: { 3088 const CallBrInst *CBI = cast<CallBrInst>(&I); 3089 const Value *Callee = CBI->getCalledOperand(); 3090 FunctionType *FTy = CBI->getFunctionType(); 3091 3092 if (CBI->hasOperandBundles()) 3093 writeOperandBundles(*CBI, InstID); 3094 3095 Code = bitc::FUNC_CODE_INST_CALLBR; 3096 3097 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3098 3099 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3100 1 << bitc::CALL_EXPLICIT_TYPE); 3101 3102 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3103 Vals.push_back(CBI->getNumIndirectDests()); 3104 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3105 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3106 3107 Vals.push_back(VE.getTypeID(FTy)); 3108 pushValueAndType(Callee, InstID, Vals); 3109 3110 // Emit value #'s for the fixed parameters. 3111 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3112 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3113 3114 // Emit type/value pairs for varargs params. 3115 if (FTy->isVarArg()) { 3116 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3117 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3118 } 3119 break; 3120 } 3121 case Instruction::Unreachable: 3122 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3123 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3124 break; 3125 3126 case Instruction::PHI: { 3127 const PHINode &PN = cast<PHINode>(I); 3128 Code = bitc::FUNC_CODE_INST_PHI; 3129 // With the newer instruction encoding, forward references could give 3130 // negative valued IDs. This is most common for PHIs, so we use 3131 // signed VBRs. 3132 SmallVector<uint64_t, 128> Vals64; 3133 Vals64.push_back(VE.getTypeID(PN.getType())); 3134 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3135 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3136 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3137 } 3138 3139 uint64_t Flags = getOptimizationFlags(&I); 3140 if (Flags != 0) 3141 Vals64.push_back(Flags); 3142 3143 // Emit a Vals64 vector and exit. 3144 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3145 Vals64.clear(); 3146 return; 3147 } 3148 3149 case Instruction::LandingPad: { 3150 const LandingPadInst &LP = cast<LandingPadInst>(I); 3151 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3152 Vals.push_back(VE.getTypeID(LP.getType())); 3153 Vals.push_back(LP.isCleanup()); 3154 Vals.push_back(LP.getNumClauses()); 3155 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3156 if (LP.isCatch(I)) 3157 Vals.push_back(LandingPadInst::Catch); 3158 else 3159 Vals.push_back(LandingPadInst::Filter); 3160 pushValueAndType(LP.getClause(I), InstID, Vals); 3161 } 3162 break; 3163 } 3164 3165 case Instruction::Alloca: { 3166 Code = bitc::FUNC_CODE_INST_ALLOCA; 3167 const AllocaInst &AI = cast<AllocaInst>(I); 3168 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3169 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3170 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3171 using APV = AllocaPackedValues; 3172 unsigned Record = 0; 3173 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3174 Bitfield::set<APV::AlignLower>( 3175 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3176 Bitfield::set<APV::AlignUpper>(Record, 3177 EncodedAlign >> APV::AlignLower::Bits); 3178 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3179 Bitfield::set<APV::ExplicitType>(Record, true); 3180 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3181 Vals.push_back(Record); 3182 3183 unsigned AS = AI.getAddressSpace(); 3184 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3185 Vals.push_back(AS); 3186 break; 3187 } 3188 3189 case Instruction::Load: 3190 if (cast<LoadInst>(I).isAtomic()) { 3191 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3192 pushValueAndType(I.getOperand(0), InstID, Vals); 3193 } else { 3194 Code = bitc::FUNC_CODE_INST_LOAD; 3195 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3196 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3197 } 3198 Vals.push_back(VE.getTypeID(I.getType())); 3199 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3200 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3201 if (cast<LoadInst>(I).isAtomic()) { 3202 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3203 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3204 } 3205 break; 3206 case Instruction::Store: 3207 if (cast<StoreInst>(I).isAtomic()) 3208 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3209 else 3210 Code = bitc::FUNC_CODE_INST_STORE; 3211 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3212 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3213 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3214 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3215 if (cast<StoreInst>(I).isAtomic()) { 3216 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3217 Vals.push_back( 3218 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3219 } 3220 break; 3221 case Instruction::AtomicCmpXchg: 3222 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3223 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3224 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3225 pushValue(I.getOperand(2), InstID, Vals); // newval. 3226 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3227 Vals.push_back( 3228 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3229 Vals.push_back( 3230 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3231 Vals.push_back( 3232 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3233 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3234 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3235 break; 3236 case Instruction::AtomicRMW: 3237 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3238 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3239 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3240 Vals.push_back( 3241 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3242 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3243 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3244 Vals.push_back( 3245 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3246 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3247 break; 3248 case Instruction::Fence: 3249 Code = bitc::FUNC_CODE_INST_FENCE; 3250 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3251 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3252 break; 3253 case Instruction::Call: { 3254 const CallInst &CI = cast<CallInst>(I); 3255 FunctionType *FTy = CI.getFunctionType(); 3256 3257 if (CI.hasOperandBundles()) 3258 writeOperandBundles(CI, InstID); 3259 3260 Code = bitc::FUNC_CODE_INST_CALL; 3261 3262 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3263 3264 unsigned Flags = getOptimizationFlags(&I); 3265 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3266 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3267 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3268 1 << bitc::CALL_EXPLICIT_TYPE | 3269 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3270 unsigned(Flags != 0) << bitc::CALL_FMF); 3271 if (Flags != 0) 3272 Vals.push_back(Flags); 3273 3274 Vals.push_back(VE.getTypeID(FTy)); 3275 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3276 3277 // Emit value #'s for the fixed parameters. 3278 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3279 // Check for labels (can happen with asm labels). 3280 if (FTy->getParamType(i)->isLabelTy()) 3281 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3282 else 3283 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3284 } 3285 3286 // Emit type/value pairs for varargs params. 3287 if (FTy->isVarArg()) { 3288 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3289 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3290 } 3291 break; 3292 } 3293 case Instruction::VAArg: 3294 Code = bitc::FUNC_CODE_INST_VAARG; 3295 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3296 pushValue(I.getOperand(0), InstID, Vals); // valist. 3297 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3298 break; 3299 case Instruction::Freeze: 3300 Code = bitc::FUNC_CODE_INST_FREEZE; 3301 pushValueAndType(I.getOperand(0), InstID, Vals); 3302 break; 3303 } 3304 3305 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3306 Vals.clear(); 3307 } 3308 3309 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3310 /// to allow clients to efficiently find the function body. 3311 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3312 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3313 // Get the offset of the VST we are writing, and backpatch it into 3314 // the VST forward declaration record. 3315 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3316 // The BitcodeStartBit was the stream offset of the identification block. 3317 VSTOffset -= bitcodeStartBit(); 3318 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3319 // Note that we add 1 here because the offset is relative to one word 3320 // before the start of the identification block, which was historically 3321 // always the start of the regular bitcode header. 3322 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3323 3324 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3325 3326 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3327 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3330 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3331 3332 for (const Function &F : M) { 3333 uint64_t Record[2]; 3334 3335 if (F.isDeclaration()) 3336 continue; 3337 3338 Record[0] = VE.getValueID(&F); 3339 3340 // Save the word offset of the function (from the start of the 3341 // actual bitcode written to the stream). 3342 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3343 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3344 // Note that we add 1 here because the offset is relative to one word 3345 // before the start of the identification block, which was historically 3346 // always the start of the regular bitcode header. 3347 Record[1] = BitcodeIndex / 32 + 1; 3348 3349 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3350 } 3351 3352 Stream.ExitBlock(); 3353 } 3354 3355 /// Emit names for arguments, instructions and basic blocks in a function. 3356 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3357 const ValueSymbolTable &VST) { 3358 if (VST.empty()) 3359 return; 3360 3361 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3362 3363 // FIXME: Set up the abbrev, we know how many values there are! 3364 // FIXME: We know if the type names can use 7-bit ascii. 3365 SmallVector<uint64_t, 64> NameVals; 3366 3367 for (const ValueName &Name : VST) { 3368 // Figure out the encoding to use for the name. 3369 StringEncoding Bits = getStringEncoding(Name.getKey()); 3370 3371 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3372 NameVals.push_back(VE.getValueID(Name.getValue())); 3373 3374 // VST_CODE_ENTRY: [valueid, namechar x N] 3375 // VST_CODE_BBENTRY: [bbid, namechar x N] 3376 unsigned Code; 3377 if (isa<BasicBlock>(Name.getValue())) { 3378 Code = bitc::VST_CODE_BBENTRY; 3379 if (Bits == SE_Char6) 3380 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3381 } else { 3382 Code = bitc::VST_CODE_ENTRY; 3383 if (Bits == SE_Char6) 3384 AbbrevToUse = VST_ENTRY_6_ABBREV; 3385 else if (Bits == SE_Fixed7) 3386 AbbrevToUse = VST_ENTRY_7_ABBREV; 3387 } 3388 3389 for (const auto P : Name.getKey()) 3390 NameVals.push_back((unsigned char)P); 3391 3392 // Emit the finished record. 3393 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3394 NameVals.clear(); 3395 } 3396 3397 Stream.ExitBlock(); 3398 } 3399 3400 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3401 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3402 unsigned Code; 3403 if (isa<BasicBlock>(Order.V)) 3404 Code = bitc::USELIST_CODE_BB; 3405 else 3406 Code = bitc::USELIST_CODE_DEFAULT; 3407 3408 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3409 Record.push_back(VE.getValueID(Order.V)); 3410 Stream.EmitRecord(Code, Record); 3411 } 3412 3413 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3414 assert(VE.shouldPreserveUseListOrder() && 3415 "Expected to be preserving use-list order"); 3416 3417 auto hasMore = [&]() { 3418 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3419 }; 3420 if (!hasMore()) 3421 // Nothing to do. 3422 return; 3423 3424 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3425 while (hasMore()) { 3426 writeUseList(std::move(VE.UseListOrders.back())); 3427 VE.UseListOrders.pop_back(); 3428 } 3429 Stream.ExitBlock(); 3430 } 3431 3432 /// Emit a function body to the module stream. 3433 void ModuleBitcodeWriter::writeFunction( 3434 const Function &F, 3435 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3436 // Save the bitcode index of the start of this function block for recording 3437 // in the VST. 3438 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3439 3440 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3441 VE.incorporateFunction(F); 3442 3443 SmallVector<unsigned, 64> Vals; 3444 3445 // Emit the number of basic blocks, so the reader can create them ahead of 3446 // time. 3447 Vals.push_back(VE.getBasicBlocks().size()); 3448 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3449 Vals.clear(); 3450 3451 // If there are function-local constants, emit them now. 3452 unsigned CstStart, CstEnd; 3453 VE.getFunctionConstantRange(CstStart, CstEnd); 3454 writeConstants(CstStart, CstEnd, false); 3455 3456 // If there is function-local metadata, emit it now. 3457 writeFunctionMetadata(F); 3458 3459 // Keep a running idea of what the instruction ID is. 3460 unsigned InstID = CstEnd; 3461 3462 bool NeedsMetadataAttachment = F.hasMetadata(); 3463 3464 DILocation *LastDL = nullptr; 3465 SmallSetVector<Function *, 4> BlockAddressUsers; 3466 3467 // Finally, emit all the instructions, in order. 3468 for (const BasicBlock &BB : F) { 3469 for (const Instruction &I : BB) { 3470 writeInstruction(I, InstID, Vals); 3471 3472 if (!I.getType()->isVoidTy()) 3473 ++InstID; 3474 3475 // If the instruction has metadata, write a metadata attachment later. 3476 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3477 3478 // If the instruction has a debug location, emit it. 3479 DILocation *DL = I.getDebugLoc(); 3480 if (!DL) 3481 continue; 3482 3483 if (DL == LastDL) { 3484 // Just repeat the same debug loc as last time. 3485 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3486 continue; 3487 } 3488 3489 Vals.push_back(DL->getLine()); 3490 Vals.push_back(DL->getColumn()); 3491 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3492 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3493 Vals.push_back(DL->isImplicitCode()); 3494 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3495 Vals.clear(); 3496 3497 LastDL = DL; 3498 } 3499 3500 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3501 SmallVector<Value *> Worklist{BA}; 3502 SmallPtrSet<Value *, 8> Visited{BA}; 3503 while (!Worklist.empty()) { 3504 Value *V = Worklist.pop_back_val(); 3505 for (User *U : V->users()) { 3506 if (auto *I = dyn_cast<Instruction>(U)) { 3507 Function *P = I->getFunction(); 3508 if (P != &F) 3509 BlockAddressUsers.insert(P); 3510 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3511 Visited.insert(U).second) 3512 Worklist.push_back(U); 3513 } 3514 } 3515 } 3516 } 3517 3518 if (!BlockAddressUsers.empty()) { 3519 Vals.resize(BlockAddressUsers.size()); 3520 for (auto I : llvm::enumerate(BlockAddressUsers)) 3521 Vals[I.index()] = VE.getValueID(I.value()); 3522 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3523 Vals.clear(); 3524 } 3525 3526 // Emit names for all the instructions etc. 3527 if (auto *Symtab = F.getValueSymbolTable()) 3528 writeFunctionLevelValueSymbolTable(*Symtab); 3529 3530 if (NeedsMetadataAttachment) 3531 writeFunctionMetadataAttachment(F); 3532 if (VE.shouldPreserveUseListOrder()) 3533 writeUseListBlock(&F); 3534 VE.purgeFunction(); 3535 Stream.ExitBlock(); 3536 } 3537 3538 // Emit blockinfo, which defines the standard abbreviations etc. 3539 void ModuleBitcodeWriter::writeBlockInfo() { 3540 // We only want to emit block info records for blocks that have multiple 3541 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3542 // Other blocks can define their abbrevs inline. 3543 Stream.EnterBlockInfoBlock(); 3544 3545 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3546 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3551 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3552 VST_ENTRY_8_ABBREV) 3553 llvm_unreachable("Unexpected abbrev ordering!"); 3554 } 3555 3556 { // 7-bit fixed width VST_CODE_ENTRY strings. 3557 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3558 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3562 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3563 VST_ENTRY_7_ABBREV) 3564 llvm_unreachable("Unexpected abbrev ordering!"); 3565 } 3566 { // 6-bit char6 VST_CODE_ENTRY strings. 3567 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3568 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3572 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3573 VST_ENTRY_6_ABBREV) 3574 llvm_unreachable("Unexpected abbrev ordering!"); 3575 } 3576 { // 6-bit char6 VST_CODE_BBENTRY strings. 3577 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3578 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3582 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3583 VST_BBENTRY_6_ABBREV) 3584 llvm_unreachable("Unexpected abbrev ordering!"); 3585 } 3586 3587 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3588 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3589 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3591 VE.computeBitsRequiredForTypeIndicies())); 3592 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3593 CONSTANTS_SETTYPE_ABBREV) 3594 llvm_unreachable("Unexpected abbrev ordering!"); 3595 } 3596 3597 { // INTEGER abbrev for CONSTANTS_BLOCK. 3598 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3599 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3601 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3602 CONSTANTS_INTEGER_ABBREV) 3603 llvm_unreachable("Unexpected abbrev ordering!"); 3604 } 3605 3606 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3607 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3608 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3611 VE.computeBitsRequiredForTypeIndicies())); 3612 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3613 3614 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3615 CONSTANTS_CE_CAST_Abbrev) 3616 llvm_unreachable("Unexpected abbrev ordering!"); 3617 } 3618 { // NULL abbrev for CONSTANTS_BLOCK. 3619 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3620 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3621 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3622 CONSTANTS_NULL_Abbrev) 3623 llvm_unreachable("Unexpected abbrev ordering!"); 3624 } 3625 3626 // FIXME: This should only use space for first class types! 3627 3628 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3629 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3630 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3633 VE.computeBitsRequiredForTypeIndicies())); 3634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3636 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3637 FUNCTION_INST_LOAD_ABBREV) 3638 llvm_unreachable("Unexpected abbrev ordering!"); 3639 } 3640 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3641 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3642 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3643 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3645 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3646 FUNCTION_INST_UNOP_ABBREV) 3647 llvm_unreachable("Unexpected abbrev ordering!"); 3648 } 3649 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3650 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3651 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3652 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3653 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3654 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3655 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3656 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3657 llvm_unreachable("Unexpected abbrev ordering!"); 3658 } 3659 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3660 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3661 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3662 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3663 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3664 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3665 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3666 FUNCTION_INST_BINOP_ABBREV) 3667 llvm_unreachable("Unexpected abbrev ordering!"); 3668 } 3669 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3670 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3671 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3675 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3676 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3677 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3678 llvm_unreachable("Unexpected abbrev ordering!"); 3679 } 3680 { // INST_CAST abbrev for FUNCTION_BLOCK. 3681 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3682 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3684 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3685 VE.computeBitsRequiredForTypeIndicies())); 3686 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3687 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3688 FUNCTION_INST_CAST_ABBREV) 3689 llvm_unreachable("Unexpected abbrev ordering!"); 3690 } 3691 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. 3692 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3693 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3694 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3695 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3696 VE.computeBitsRequiredForTypeIndicies())); 3697 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3698 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3699 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3700 FUNCTION_INST_CAST_FLAGS_ABBREV) 3701 llvm_unreachable("Unexpected abbrev ordering!"); 3702 } 3703 3704 { // INST_RET abbrev for FUNCTION_BLOCK. 3705 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3706 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3707 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3708 FUNCTION_INST_RET_VOID_ABBREV) 3709 llvm_unreachable("Unexpected abbrev ordering!"); 3710 } 3711 { // INST_RET abbrev for FUNCTION_BLOCK. 3712 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3713 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3715 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3716 FUNCTION_INST_RET_VAL_ABBREV) 3717 llvm_unreachable("Unexpected abbrev ordering!"); 3718 } 3719 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3720 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3721 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3722 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3723 FUNCTION_INST_UNREACHABLE_ABBREV) 3724 llvm_unreachable("Unexpected abbrev ordering!"); 3725 } 3726 { 3727 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3728 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3731 Log2_32_Ceil(VE.getTypes().size() + 1))); 3732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3734 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3735 FUNCTION_INST_GEP_ABBREV) 3736 llvm_unreachable("Unexpected abbrev ordering!"); 3737 } 3738 3739 Stream.ExitBlock(); 3740 } 3741 3742 /// Write the module path strings, currently only used when generating 3743 /// a combined index file. 3744 void IndexBitcodeWriter::writeModStrings() { 3745 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3746 3747 // TODO: See which abbrev sizes we actually need to emit 3748 3749 // 8-bit fixed-width MST_ENTRY strings. 3750 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3751 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3755 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3756 3757 // 7-bit fixed width MST_ENTRY strings. 3758 Abbv = std::make_shared<BitCodeAbbrev>(); 3759 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3763 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3764 3765 // 6-bit char6 MST_ENTRY strings. 3766 Abbv = std::make_shared<BitCodeAbbrev>(); 3767 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3771 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3772 3773 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3774 Abbv = std::make_shared<BitCodeAbbrev>(); 3775 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3781 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3782 3783 SmallVector<unsigned, 64> Vals; 3784 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) { 3785 StringRef Key = MPSE.getKey(); 3786 const auto &Hash = MPSE.getValue(); 3787 StringEncoding Bits = getStringEncoding(Key); 3788 unsigned AbbrevToUse = Abbrev8Bit; 3789 if (Bits == SE_Char6) 3790 AbbrevToUse = Abbrev6Bit; 3791 else if (Bits == SE_Fixed7) 3792 AbbrevToUse = Abbrev7Bit; 3793 3794 auto ModuleId = ModuleIdMap.size(); 3795 ModuleIdMap[Key] = ModuleId; 3796 Vals.push_back(ModuleId); 3797 Vals.append(Key.begin(), Key.end()); 3798 3799 // Emit the finished record. 3800 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3801 3802 // Emit an optional hash for the module now 3803 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3804 Vals.assign(Hash.begin(), Hash.end()); 3805 // Emit the hash record. 3806 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3807 } 3808 3809 Vals.clear(); 3810 }); 3811 Stream.ExitBlock(); 3812 } 3813 3814 /// Write the function type metadata related records that need to appear before 3815 /// a function summary entry (whether per-module or combined). 3816 template <typename Fn> 3817 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3818 FunctionSummary *FS, 3819 Fn GetValueID) { 3820 if (!FS->type_tests().empty()) 3821 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3822 3823 SmallVector<uint64_t, 64> Record; 3824 3825 auto WriteVFuncIdVec = [&](uint64_t Ty, 3826 ArrayRef<FunctionSummary::VFuncId> VFs) { 3827 if (VFs.empty()) 3828 return; 3829 Record.clear(); 3830 for (auto &VF : VFs) { 3831 Record.push_back(VF.GUID); 3832 Record.push_back(VF.Offset); 3833 } 3834 Stream.EmitRecord(Ty, Record); 3835 }; 3836 3837 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3838 FS->type_test_assume_vcalls()); 3839 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3840 FS->type_checked_load_vcalls()); 3841 3842 auto WriteConstVCallVec = [&](uint64_t Ty, 3843 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3844 for (auto &VC : VCs) { 3845 Record.clear(); 3846 Record.push_back(VC.VFunc.GUID); 3847 Record.push_back(VC.VFunc.Offset); 3848 llvm::append_range(Record, VC.Args); 3849 Stream.EmitRecord(Ty, Record); 3850 } 3851 }; 3852 3853 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3854 FS->type_test_assume_const_vcalls()); 3855 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3856 FS->type_checked_load_const_vcalls()); 3857 3858 auto WriteRange = [&](ConstantRange Range) { 3859 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3860 assert(Range.getLower().getNumWords() == 1); 3861 assert(Range.getUpper().getNumWords() == 1); 3862 emitSignedInt64(Record, *Range.getLower().getRawData()); 3863 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3864 }; 3865 3866 if (!FS->paramAccesses().empty()) { 3867 Record.clear(); 3868 for (auto &Arg : FS->paramAccesses()) { 3869 size_t UndoSize = Record.size(); 3870 Record.push_back(Arg.ParamNo); 3871 WriteRange(Arg.Use); 3872 Record.push_back(Arg.Calls.size()); 3873 for (auto &Call : Arg.Calls) { 3874 Record.push_back(Call.ParamNo); 3875 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 3876 if (!ValueID) { 3877 // If ValueID is unknown we can't drop just this call, we must drop 3878 // entire parameter. 3879 Record.resize(UndoSize); 3880 break; 3881 } 3882 Record.push_back(*ValueID); 3883 WriteRange(Call.Offsets); 3884 } 3885 } 3886 if (!Record.empty()) 3887 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3888 } 3889 } 3890 3891 /// Collect type IDs from type tests used by function. 3892 static void 3893 getReferencedTypeIds(FunctionSummary *FS, 3894 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3895 if (!FS->type_tests().empty()) 3896 for (auto &TT : FS->type_tests()) 3897 ReferencedTypeIds.insert(TT); 3898 3899 auto GetReferencedTypesFromVFuncIdVec = 3900 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3901 for (auto &VF : VFs) 3902 ReferencedTypeIds.insert(VF.GUID); 3903 }; 3904 3905 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3906 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3907 3908 auto GetReferencedTypesFromConstVCallVec = 3909 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3910 for (auto &VC : VCs) 3911 ReferencedTypeIds.insert(VC.VFunc.GUID); 3912 }; 3913 3914 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3915 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3916 } 3917 3918 static void writeWholeProgramDevirtResolutionByArg( 3919 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3920 const WholeProgramDevirtResolution::ByArg &ByArg) { 3921 NameVals.push_back(args.size()); 3922 llvm::append_range(NameVals, args); 3923 3924 NameVals.push_back(ByArg.TheKind); 3925 NameVals.push_back(ByArg.Info); 3926 NameVals.push_back(ByArg.Byte); 3927 NameVals.push_back(ByArg.Bit); 3928 } 3929 3930 static void writeWholeProgramDevirtResolution( 3931 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3932 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3933 NameVals.push_back(Id); 3934 3935 NameVals.push_back(Wpd.TheKind); 3936 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3937 NameVals.push_back(Wpd.SingleImplName.size()); 3938 3939 NameVals.push_back(Wpd.ResByArg.size()); 3940 for (auto &A : Wpd.ResByArg) 3941 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3942 } 3943 3944 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3945 StringTableBuilder &StrtabBuilder, 3946 const std::string &Id, 3947 const TypeIdSummary &Summary) { 3948 NameVals.push_back(StrtabBuilder.add(Id)); 3949 NameVals.push_back(Id.size()); 3950 3951 NameVals.push_back(Summary.TTRes.TheKind); 3952 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3953 NameVals.push_back(Summary.TTRes.AlignLog2); 3954 NameVals.push_back(Summary.TTRes.SizeM1); 3955 NameVals.push_back(Summary.TTRes.BitMask); 3956 NameVals.push_back(Summary.TTRes.InlineBits); 3957 3958 for (auto &W : Summary.WPDRes) 3959 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3960 W.second); 3961 } 3962 3963 static void writeTypeIdCompatibleVtableSummaryRecord( 3964 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3965 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3966 ValueEnumerator &VE) { 3967 NameVals.push_back(StrtabBuilder.add(Id)); 3968 NameVals.push_back(Id.size()); 3969 3970 for (auto &P : Summary) { 3971 NameVals.push_back(P.AddressPointOffset); 3972 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3973 } 3974 } 3975 3976 static void writeFunctionHeapProfileRecords( 3977 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 3978 unsigned AllocAbbrev, bool PerModule, 3979 std::function<unsigned(const ValueInfo &VI)> GetValueID, 3980 std::function<unsigned(unsigned)> GetStackIndex) { 3981 SmallVector<uint64_t> Record; 3982 3983 for (auto &CI : FS->callsites()) { 3984 Record.clear(); 3985 // Per module callsite clones should always have a single entry of 3986 // value 0. 3987 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 3988 Record.push_back(GetValueID(CI.Callee)); 3989 if (!PerModule) { 3990 Record.push_back(CI.StackIdIndices.size()); 3991 Record.push_back(CI.Clones.size()); 3992 } 3993 for (auto Id : CI.StackIdIndices) 3994 Record.push_back(GetStackIndex(Id)); 3995 if (!PerModule) { 3996 for (auto V : CI.Clones) 3997 Record.push_back(V); 3998 } 3999 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 4000 : bitc::FS_COMBINED_CALLSITE_INFO, 4001 Record, CallsiteAbbrev); 4002 } 4003 4004 for (auto &AI : FS->allocs()) { 4005 Record.clear(); 4006 // Per module alloc versions should always have a single entry of 4007 // value 0. 4008 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 4009 if (!PerModule) { 4010 Record.push_back(AI.MIBs.size()); 4011 Record.push_back(AI.Versions.size()); 4012 } 4013 for (auto &MIB : AI.MIBs) { 4014 Record.push_back((uint8_t)MIB.AllocType); 4015 Record.push_back(MIB.StackIdIndices.size()); 4016 for (auto Id : MIB.StackIdIndices) 4017 Record.push_back(GetStackIndex(Id)); 4018 } 4019 if (!PerModule) { 4020 for (auto V : AI.Versions) 4021 Record.push_back(V); 4022 } 4023 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 4024 : bitc::FS_COMBINED_ALLOC_INFO, 4025 Record, AllocAbbrev); 4026 } 4027 } 4028 4029 // Helper to emit a single function summary record. 4030 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 4031 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 4032 unsigned ValueID, unsigned FSCallsRelBFAbbrev, 4033 unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev, 4034 unsigned AllocAbbrev, const Function &F) { 4035 NameVals.push_back(ValueID); 4036 4037 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4038 4039 writeFunctionTypeMetadataRecords( 4040 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 4041 return {VE.getValueID(VI.getValue())}; 4042 }); 4043 4044 writeFunctionHeapProfileRecords( 4045 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4046 /*PerModule*/ true, 4047 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 4048 /*GetStackIndex*/ [&](unsigned I) { return I; }); 4049 4050 auto SpecialRefCnts = FS->specialRefCounts(); 4051 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4052 NameVals.push_back(FS->instCount()); 4053 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4054 NameVals.push_back(FS->refs().size()); 4055 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4056 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4057 4058 for (auto &RI : FS->refs()) 4059 NameVals.push_back(VE.getValueID(RI.getValue())); 4060 4061 const bool UseRelBFRecord = 4062 WriteRelBFToSummary && !F.hasProfileData() && 4063 ForceSummaryEdgesCold == FunctionSummary::FSHT_None; 4064 for (auto &ECI : FS->calls()) { 4065 NameVals.push_back(getValueId(ECI.first)); 4066 if (UseRelBFRecord) 4067 NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second)); 4068 else 4069 NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second)); 4070 } 4071 4072 unsigned FSAbbrev = 4073 (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev); 4074 unsigned Code = 4075 (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE); 4076 4077 // Emit the finished record. 4078 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4079 NameVals.clear(); 4080 } 4081 4082 // Collect the global value references in the given variable's initializer, 4083 // and emit them in a summary record. 4084 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4085 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4086 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4087 auto VI = Index->getValueInfo(V.getGUID()); 4088 if (!VI || VI.getSummaryList().empty()) { 4089 // Only declarations should not have a summary (a declaration might however 4090 // have a summary if the def was in module level asm). 4091 assert(V.isDeclaration()); 4092 return; 4093 } 4094 auto *Summary = VI.getSummaryList()[0].get(); 4095 NameVals.push_back(VE.getValueID(&V)); 4096 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4097 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4098 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4099 4100 auto VTableFuncs = VS->vTableFuncs(); 4101 if (!VTableFuncs.empty()) 4102 NameVals.push_back(VS->refs().size()); 4103 4104 unsigned SizeBeforeRefs = NameVals.size(); 4105 for (auto &RI : VS->refs()) 4106 NameVals.push_back(VE.getValueID(RI.getValue())); 4107 // Sort the refs for determinism output, the vector returned by FS->refs() has 4108 // been initialized from a DenseSet. 4109 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4110 4111 if (VTableFuncs.empty()) 4112 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4113 FSModRefsAbbrev); 4114 else { 4115 // VTableFuncs pairs should already be sorted by offset. 4116 for (auto &P : VTableFuncs) { 4117 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4118 NameVals.push_back(P.VTableOffset); 4119 } 4120 4121 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4122 FSModVTableRefsAbbrev); 4123 } 4124 NameVals.clear(); 4125 } 4126 4127 /// Emit the per-module summary section alongside the rest of 4128 /// the module's bitcode. 4129 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4130 // By default we compile with ThinLTO if the module has a summary, but the 4131 // client can request full LTO with a module flag. 4132 bool IsThinLTO = true; 4133 if (auto *MD = 4134 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4135 IsThinLTO = MD->getZExtValue(); 4136 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4137 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4138 4); 4139 4140 Stream.EmitRecord( 4141 bitc::FS_VERSION, 4142 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4143 4144 // Write the index flags. 4145 uint64_t Flags = 0; 4146 // Bits 1-3 are set only in the combined index, skip them. 4147 if (Index->enableSplitLTOUnit()) 4148 Flags |= 0x8; 4149 if (Index->hasUnifiedLTO()) 4150 Flags |= 0x200; 4151 4152 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4153 4154 if (Index->begin() == Index->end()) { 4155 Stream.ExitBlock(); 4156 return; 4157 } 4158 4159 for (const auto &GVI : valueIds()) { 4160 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4161 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4162 } 4163 4164 if (!Index->stackIds().empty()) { 4165 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4166 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4167 // numids x stackid 4168 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4169 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4170 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4171 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); 4172 } 4173 4174 // Abbrev for FS_PERMODULE_PROFILE. 4175 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4176 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4184 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4187 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4188 4189 // Abbrev for FS_PERMODULE_RELBF. 4190 Abbv = std::make_shared<BitCodeAbbrev>(); 4191 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4199 // numrefs x valueid, n x (valueid, rel_block_freq+tailcall]) 4200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4202 unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4203 4204 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4205 Abbv = std::make_shared<BitCodeAbbrev>(); 4206 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4211 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4212 4213 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4214 Abbv = std::make_shared<BitCodeAbbrev>(); 4215 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4219 // numrefs x valueid, n x (valueid , offset) 4220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4222 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4223 4224 // Abbrev for FS_ALIAS. 4225 Abbv = std::make_shared<BitCodeAbbrev>(); 4226 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4230 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4231 4232 // Abbrev for FS_TYPE_ID_METADATA 4233 Abbv = std::make_shared<BitCodeAbbrev>(); 4234 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4237 // n x (valueid , offset) 4238 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4239 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4240 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4241 4242 Abbv = std::make_shared<BitCodeAbbrev>(); 4243 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4245 // n x stackidindex 4246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4248 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4249 4250 Abbv = std::make_shared<BitCodeAbbrev>(); 4251 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4252 // n x (alloc type, numstackids, numstackids x stackidindex) 4253 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4255 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4256 4257 SmallVector<uint64_t, 64> NameVals; 4258 // Iterate over the list of functions instead of the Index to 4259 // ensure the ordering is stable. 4260 for (const Function &F : M) { 4261 // Summary emission does not support anonymous functions, they have to 4262 // renamed using the anonymous function renaming pass. 4263 if (!F.hasName()) 4264 report_fatal_error("Unexpected anonymous function when writing summary"); 4265 4266 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4267 if (!VI || VI.getSummaryList().empty()) { 4268 // Only declarations should not have a summary (a declaration might 4269 // however have a summary if the def was in module level asm). 4270 assert(F.isDeclaration()); 4271 continue; 4272 } 4273 auto *Summary = VI.getSummaryList()[0].get(); 4274 writePerModuleFunctionSummaryRecord( 4275 NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev, 4276 FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, F); 4277 } 4278 4279 // Capture references from GlobalVariable initializers, which are outside 4280 // of a function scope. 4281 for (const GlobalVariable &G : M.globals()) 4282 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4283 FSModVTableRefsAbbrev); 4284 4285 for (const GlobalAlias &A : M.aliases()) { 4286 auto *Aliasee = A.getAliaseeObject(); 4287 // Skip ifunc and nameless functions which don't have an entry in the 4288 // summary. 4289 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4290 continue; 4291 auto AliasId = VE.getValueID(&A); 4292 auto AliaseeId = VE.getValueID(Aliasee); 4293 NameVals.push_back(AliasId); 4294 auto *Summary = Index->getGlobalValueSummary(A); 4295 AliasSummary *AS = cast<AliasSummary>(Summary); 4296 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4297 NameVals.push_back(AliaseeId); 4298 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4299 NameVals.clear(); 4300 } 4301 4302 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4303 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4304 S.second, VE); 4305 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4306 TypeIdCompatibleVtableAbbrev); 4307 NameVals.clear(); 4308 } 4309 4310 if (Index->getBlockCount()) 4311 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4312 ArrayRef<uint64_t>{Index->getBlockCount()}); 4313 4314 Stream.ExitBlock(); 4315 } 4316 4317 /// Emit the combined summary section into the combined index file. 4318 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4319 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4320 Stream.EmitRecord( 4321 bitc::FS_VERSION, 4322 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4323 4324 // Write the index flags. 4325 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4326 4327 for (const auto &GVI : valueIds()) { 4328 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4329 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4330 } 4331 4332 if (!StackIdIndices.empty()) { 4333 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4334 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4335 // numids x stackid 4336 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4337 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4338 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4339 // Write the stack ids used by this index, which will be a subset of those in 4340 // the full index in the case of distributed indexes. 4341 std::vector<uint64_t> StackIds; 4342 for (auto &I : StackIdIndices) 4343 StackIds.push_back(Index.getStackIdAtIndex(I)); 4344 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); 4345 } 4346 4347 // Abbrev for FS_COMBINED_PROFILE. 4348 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4349 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4359 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4362 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4363 4364 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4365 Abbv = std::make_shared<BitCodeAbbrev>(); 4366 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4372 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4373 4374 // Abbrev for FS_COMBINED_ALIAS. 4375 Abbv = std::make_shared<BitCodeAbbrev>(); 4376 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4381 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4382 4383 Abbv = std::make_shared<BitCodeAbbrev>(); 4384 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4388 // numstackindices x stackidindex, numver x version 4389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4391 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4392 4393 Abbv = std::make_shared<BitCodeAbbrev>(); 4394 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4397 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4398 // numver x version 4399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4400 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4401 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4402 4403 // The aliases are emitted as a post-pass, and will point to the value 4404 // id of the aliasee. Save them in a vector for post-processing. 4405 SmallVector<AliasSummary *, 64> Aliases; 4406 4407 // Save the value id for each summary for alias emission. 4408 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4409 4410 SmallVector<uint64_t, 64> NameVals; 4411 4412 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4413 // with the type ids referenced by this index file. 4414 std::set<GlobalValue::GUID> ReferencedTypeIds; 4415 4416 // For local linkage, we also emit the original name separately 4417 // immediately after the record. 4418 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4419 // We don't need to emit the original name if we are writing the index for 4420 // distributed backends (in which case ModuleToSummariesForIndex is 4421 // non-null). The original name is only needed during the thin link, since 4422 // for SamplePGO the indirect call targets for local functions have 4423 // have the original name annotated in profile. 4424 // Continue to emit it when writing out the entire combined index, which is 4425 // used in testing the thin link via llvm-lto. 4426 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4427 return; 4428 NameVals.push_back(S.getOriginalName()); 4429 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4430 NameVals.clear(); 4431 }; 4432 4433 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4434 forEachSummary([&](GVInfo I, bool IsAliasee) { 4435 GlobalValueSummary *S = I.second; 4436 assert(S); 4437 DefOrUseGUIDs.insert(I.first); 4438 for (const ValueInfo &VI : S->refs()) 4439 DefOrUseGUIDs.insert(VI.getGUID()); 4440 4441 auto ValueId = getValueId(I.first); 4442 assert(ValueId); 4443 SummaryToValueIdMap[S] = *ValueId; 4444 4445 // If this is invoked for an aliasee, we want to record the above 4446 // mapping, but then not emit a summary entry (if the aliasee is 4447 // to be imported, we will invoke this separately with IsAliasee=false). 4448 if (IsAliasee) 4449 return; 4450 4451 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4452 // Will process aliases as a post-pass because the reader wants all 4453 // global to be loaded first. 4454 Aliases.push_back(AS); 4455 return; 4456 } 4457 4458 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4459 NameVals.push_back(*ValueId); 4460 assert(ModuleIdMap.count(VS->modulePath())); 4461 NameVals.push_back(ModuleIdMap[VS->modulePath()]); 4462 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4463 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4464 for (auto &RI : VS->refs()) { 4465 auto RefValueId = getValueId(RI.getGUID()); 4466 if (!RefValueId) 4467 continue; 4468 NameVals.push_back(*RefValueId); 4469 } 4470 4471 // Emit the finished record. 4472 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4473 FSModRefsAbbrev); 4474 NameVals.clear(); 4475 MaybeEmitOriginalName(*S); 4476 return; 4477 } 4478 4479 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4480 if (!VI) 4481 return std::nullopt; 4482 return getValueId(VI.getGUID()); 4483 }; 4484 4485 auto *FS = cast<FunctionSummary>(S); 4486 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4487 getReferencedTypeIds(FS, ReferencedTypeIds); 4488 4489 writeFunctionHeapProfileRecords( 4490 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4491 /*PerModule*/ false, 4492 /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned { 4493 std::optional<unsigned> ValueID = GetValueId(VI); 4494 // This can happen in shared index files for distributed ThinLTO if 4495 // the callee function summary is not included. Record 0 which we 4496 // will have to deal with conservatively when doing any kind of 4497 // validation in the ThinLTO backends. 4498 if (!ValueID) 4499 return 0; 4500 return *ValueID; 4501 }, 4502 /*GetStackIndex*/ [&](unsigned I) { 4503 // Get the corresponding index into the list of StackIdIndices 4504 // actually being written for this combined index (which may be a 4505 // subset in the case of distributed indexes). 4506 auto Lower = llvm::lower_bound(StackIdIndices, I); 4507 return std::distance(StackIdIndices.begin(), Lower); 4508 }); 4509 4510 NameVals.push_back(*ValueId); 4511 assert(ModuleIdMap.count(FS->modulePath())); 4512 NameVals.push_back(ModuleIdMap[FS->modulePath()]); 4513 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4514 NameVals.push_back(FS->instCount()); 4515 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4516 NameVals.push_back(FS->entryCount()); 4517 4518 // Fill in below 4519 NameVals.push_back(0); // numrefs 4520 NameVals.push_back(0); // rorefcnt 4521 NameVals.push_back(0); // worefcnt 4522 4523 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4524 for (auto &RI : FS->refs()) { 4525 auto RefValueId = getValueId(RI.getGUID()); 4526 if (!RefValueId) 4527 continue; 4528 NameVals.push_back(*RefValueId); 4529 if (RI.isReadOnly()) 4530 RORefCnt++; 4531 else if (RI.isWriteOnly()) 4532 WORefCnt++; 4533 Count++; 4534 } 4535 NameVals[6] = Count; 4536 NameVals[7] = RORefCnt; 4537 NameVals[8] = WORefCnt; 4538 4539 for (auto &EI : FS->calls()) { 4540 // If this GUID doesn't have a value id, it doesn't have a function 4541 // summary and we don't need to record any calls to it. 4542 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4543 if (!CallValueId) 4544 continue; 4545 NameVals.push_back(*CallValueId); 4546 NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second)); 4547 } 4548 4549 // Emit the finished record. 4550 Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals, 4551 FSCallsProfileAbbrev); 4552 NameVals.clear(); 4553 MaybeEmitOriginalName(*S); 4554 }); 4555 4556 for (auto *AS : Aliases) { 4557 auto AliasValueId = SummaryToValueIdMap[AS]; 4558 assert(AliasValueId); 4559 NameVals.push_back(AliasValueId); 4560 assert(ModuleIdMap.count(AS->modulePath())); 4561 NameVals.push_back(ModuleIdMap[AS->modulePath()]); 4562 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4563 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4564 assert(AliaseeValueId); 4565 NameVals.push_back(AliaseeValueId); 4566 4567 // Emit the finished record. 4568 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4569 NameVals.clear(); 4570 MaybeEmitOriginalName(*AS); 4571 4572 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4573 getReferencedTypeIds(FS, ReferencedTypeIds); 4574 } 4575 4576 if (!Index.cfiFunctionDefs().empty()) { 4577 for (auto &S : Index.cfiFunctionDefs()) { 4578 if (DefOrUseGUIDs.count( 4579 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4580 NameVals.push_back(StrtabBuilder.add(S)); 4581 NameVals.push_back(S.size()); 4582 } 4583 } 4584 if (!NameVals.empty()) { 4585 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4586 NameVals.clear(); 4587 } 4588 } 4589 4590 if (!Index.cfiFunctionDecls().empty()) { 4591 for (auto &S : Index.cfiFunctionDecls()) { 4592 if (DefOrUseGUIDs.count( 4593 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4594 NameVals.push_back(StrtabBuilder.add(S)); 4595 NameVals.push_back(S.size()); 4596 } 4597 } 4598 if (!NameVals.empty()) { 4599 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4600 NameVals.clear(); 4601 } 4602 } 4603 4604 // Walk the GUIDs that were referenced, and write the 4605 // corresponding type id records. 4606 for (auto &T : ReferencedTypeIds) { 4607 auto TidIter = Index.typeIds().equal_range(T); 4608 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4609 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4610 It->second.second); 4611 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4612 NameVals.clear(); 4613 } 4614 } 4615 4616 if (Index.getBlockCount()) 4617 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4618 ArrayRef<uint64_t>{Index.getBlockCount()}); 4619 4620 Stream.ExitBlock(); 4621 } 4622 4623 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4624 /// current llvm version, and a record for the epoch number. 4625 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4626 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4627 4628 // Write the "user readable" string identifying the bitcode producer 4629 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4630 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4633 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4634 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4635 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4636 4637 // Write the epoch version 4638 Abbv = std::make_shared<BitCodeAbbrev>(); 4639 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4640 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4641 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4642 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4643 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4644 Stream.ExitBlock(); 4645 } 4646 4647 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4648 // Emit the module's hash. 4649 // MODULE_CODE_HASH: [5*i32] 4650 if (GenerateHash) { 4651 uint32_t Vals[5]; 4652 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4653 Buffer.size() - BlockStartPos)); 4654 std::array<uint8_t, 20> Hash = Hasher.result(); 4655 for (int Pos = 0; Pos < 20; Pos += 4) { 4656 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4657 } 4658 4659 // Emit the finished record. 4660 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4661 4662 if (ModHash) 4663 // Save the written hash value. 4664 llvm::copy(Vals, std::begin(*ModHash)); 4665 } 4666 } 4667 4668 void ModuleBitcodeWriter::write() { 4669 writeIdentificationBlock(Stream); 4670 4671 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4672 size_t BlockStartPos = Buffer.size(); 4673 4674 writeModuleVersion(); 4675 4676 // Emit blockinfo, which defines the standard abbreviations etc. 4677 writeBlockInfo(); 4678 4679 // Emit information describing all of the types in the module. 4680 writeTypeTable(); 4681 4682 // Emit information about attribute groups. 4683 writeAttributeGroupTable(); 4684 4685 // Emit information about parameter attributes. 4686 writeAttributeTable(); 4687 4688 writeComdats(); 4689 4690 // Emit top-level description of module, including target triple, inline asm, 4691 // descriptors for global variables, and function prototype info. 4692 writeModuleInfo(); 4693 4694 // Emit constants. 4695 writeModuleConstants(); 4696 4697 // Emit metadata kind names. 4698 writeModuleMetadataKinds(); 4699 4700 // Emit metadata. 4701 writeModuleMetadata(); 4702 4703 // Emit module-level use-lists. 4704 if (VE.shouldPreserveUseListOrder()) 4705 writeUseListBlock(nullptr); 4706 4707 writeOperandBundleTags(); 4708 writeSyncScopeNames(); 4709 4710 // Emit function bodies. 4711 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4712 for (const Function &F : M) 4713 if (!F.isDeclaration()) 4714 writeFunction(F, FunctionToBitcodeIndex); 4715 4716 // Need to write after the above call to WriteFunction which populates 4717 // the summary information in the index. 4718 if (Index) 4719 writePerModuleGlobalValueSummary(); 4720 4721 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4722 4723 writeModuleHash(BlockStartPos); 4724 4725 Stream.ExitBlock(); 4726 } 4727 4728 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4729 uint32_t &Position) { 4730 support::endian::write32le(&Buffer[Position], Value); 4731 Position += 4; 4732 } 4733 4734 /// If generating a bc file on darwin, we have to emit a 4735 /// header and trailer to make it compatible with the system archiver. To do 4736 /// this we emit the following header, and then emit a trailer that pads the 4737 /// file out to be a multiple of 16 bytes. 4738 /// 4739 /// struct bc_header { 4740 /// uint32_t Magic; // 0x0B17C0DE 4741 /// uint32_t Version; // Version, currently always 0. 4742 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4743 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4744 /// uint32_t CPUType; // CPU specifier. 4745 /// ... potentially more later ... 4746 /// }; 4747 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4748 const Triple &TT) { 4749 unsigned CPUType = ~0U; 4750 4751 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4752 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4753 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4754 // specific constants here because they are implicitly part of the Darwin ABI. 4755 enum { 4756 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4757 DARWIN_CPU_TYPE_X86 = 7, 4758 DARWIN_CPU_TYPE_ARM = 12, 4759 DARWIN_CPU_TYPE_POWERPC = 18 4760 }; 4761 4762 Triple::ArchType Arch = TT.getArch(); 4763 if (Arch == Triple::x86_64) 4764 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4765 else if (Arch == Triple::x86) 4766 CPUType = DARWIN_CPU_TYPE_X86; 4767 else if (Arch == Triple::ppc) 4768 CPUType = DARWIN_CPU_TYPE_POWERPC; 4769 else if (Arch == Triple::ppc64) 4770 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4771 else if (Arch == Triple::arm || Arch == Triple::thumb) 4772 CPUType = DARWIN_CPU_TYPE_ARM; 4773 4774 // Traditional Bitcode starts after header. 4775 assert(Buffer.size() >= BWH_HeaderSize && 4776 "Expected header size to be reserved"); 4777 unsigned BCOffset = BWH_HeaderSize; 4778 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4779 4780 // Write the magic and version. 4781 unsigned Position = 0; 4782 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4783 writeInt32ToBuffer(0, Buffer, Position); // Version. 4784 writeInt32ToBuffer(BCOffset, Buffer, Position); 4785 writeInt32ToBuffer(BCSize, Buffer, Position); 4786 writeInt32ToBuffer(CPUType, Buffer, Position); 4787 4788 // If the file is not a multiple of 16 bytes, insert dummy padding. 4789 while (Buffer.size() & 15) 4790 Buffer.push_back(0); 4791 } 4792 4793 /// Helper to write the header common to all bitcode files. 4794 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4795 // Emit the file header. 4796 Stream.Emit((unsigned)'B', 8); 4797 Stream.Emit((unsigned)'C', 8); 4798 Stream.Emit(0x0, 4); 4799 Stream.Emit(0xC, 4); 4800 Stream.Emit(0xE, 4); 4801 Stream.Emit(0xD, 4); 4802 } 4803 4804 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4805 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4806 writeBitcodeHeader(*Stream); 4807 } 4808 4809 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4810 4811 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4812 Stream->EnterSubblock(Block, 3); 4813 4814 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4815 Abbv->Add(BitCodeAbbrevOp(Record)); 4816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4817 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4818 4819 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4820 4821 Stream->ExitBlock(); 4822 } 4823 4824 void BitcodeWriter::writeSymtab() { 4825 assert(!WroteStrtab && !WroteSymtab); 4826 4827 // If any module has module-level inline asm, we will require a registered asm 4828 // parser for the target so that we can create an accurate symbol table for 4829 // the module. 4830 for (Module *M : Mods) { 4831 if (M->getModuleInlineAsm().empty()) 4832 continue; 4833 4834 std::string Err; 4835 const Triple TT(M->getTargetTriple()); 4836 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4837 if (!T || !T->hasMCAsmParser()) 4838 return; 4839 } 4840 4841 WroteSymtab = true; 4842 SmallVector<char, 0> Symtab; 4843 // The irsymtab::build function may be unable to create a symbol table if the 4844 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4845 // table is not required for correctness, but we still want to be able to 4846 // write malformed modules to bitcode files, so swallow the error. 4847 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4848 consumeError(std::move(E)); 4849 return; 4850 } 4851 4852 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4853 {Symtab.data(), Symtab.size()}); 4854 } 4855 4856 void BitcodeWriter::writeStrtab() { 4857 assert(!WroteStrtab); 4858 4859 std::vector<char> Strtab; 4860 StrtabBuilder.finalizeInOrder(); 4861 Strtab.resize(StrtabBuilder.getSize()); 4862 StrtabBuilder.write((uint8_t *)Strtab.data()); 4863 4864 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4865 {Strtab.data(), Strtab.size()}); 4866 4867 WroteStrtab = true; 4868 } 4869 4870 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4871 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4872 WroteStrtab = true; 4873 } 4874 4875 void BitcodeWriter::writeModule(const Module &M, 4876 bool ShouldPreserveUseListOrder, 4877 const ModuleSummaryIndex *Index, 4878 bool GenerateHash, ModuleHash *ModHash) { 4879 assert(!WroteStrtab); 4880 4881 // The Mods vector is used by irsymtab::build, which requires non-const 4882 // Modules in case it needs to materialize metadata. But the bitcode writer 4883 // requires that the module is materialized, so we can cast to non-const here, 4884 // after checking that it is in fact materialized. 4885 assert(M.isMaterialized()); 4886 Mods.push_back(const_cast<Module *>(&M)); 4887 4888 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4889 ShouldPreserveUseListOrder, Index, 4890 GenerateHash, ModHash); 4891 ModuleWriter.write(); 4892 } 4893 4894 void BitcodeWriter::writeIndex( 4895 const ModuleSummaryIndex *Index, 4896 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4897 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4898 ModuleToSummariesForIndex); 4899 IndexWriter.write(); 4900 } 4901 4902 /// Write the specified module to the specified output stream. 4903 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4904 bool ShouldPreserveUseListOrder, 4905 const ModuleSummaryIndex *Index, 4906 bool GenerateHash, ModuleHash *ModHash) { 4907 SmallVector<char, 0> Buffer; 4908 Buffer.reserve(256*1024); 4909 4910 // If this is darwin or another generic macho target, reserve space for the 4911 // header. 4912 Triple TT(M.getTargetTriple()); 4913 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4914 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4915 4916 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4917 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4918 ModHash); 4919 Writer.writeSymtab(); 4920 Writer.writeStrtab(); 4921 4922 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4923 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4924 4925 // Write the generated bitstream to "Out". 4926 if (!Buffer.empty()) 4927 Out.write((char *)&Buffer.front(), Buffer.size()); 4928 } 4929 4930 void IndexBitcodeWriter::write() { 4931 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4932 4933 writeModuleVersion(); 4934 4935 // Write the module paths in the combined index. 4936 writeModStrings(); 4937 4938 // Write the summary combined index records. 4939 writeCombinedGlobalValueSummary(); 4940 4941 Stream.ExitBlock(); 4942 } 4943 4944 // Write the specified module summary index to the given raw output stream, 4945 // where it will be written in a new bitcode block. This is used when 4946 // writing the combined index file for ThinLTO. When writing a subset of the 4947 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4948 void llvm::writeIndexToFile( 4949 const ModuleSummaryIndex &Index, raw_ostream &Out, 4950 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4951 SmallVector<char, 0> Buffer; 4952 Buffer.reserve(256 * 1024); 4953 4954 BitcodeWriter Writer(Buffer); 4955 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4956 Writer.writeStrtab(); 4957 4958 Out.write((char *)&Buffer.front(), Buffer.size()); 4959 } 4960 4961 namespace { 4962 4963 /// Class to manage the bitcode writing for a thin link bitcode file. 4964 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4965 /// ModHash is for use in ThinLTO incremental build, generated while writing 4966 /// the module bitcode file. 4967 const ModuleHash *ModHash; 4968 4969 public: 4970 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4971 BitstreamWriter &Stream, 4972 const ModuleSummaryIndex &Index, 4973 const ModuleHash &ModHash) 4974 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4975 /*ShouldPreserveUseListOrder=*/false, &Index), 4976 ModHash(&ModHash) {} 4977 4978 void write(); 4979 4980 private: 4981 void writeSimplifiedModuleInfo(); 4982 }; 4983 4984 } // end anonymous namespace 4985 4986 // This function writes a simpilified module info for thin link bitcode file. 4987 // It only contains the source file name along with the name(the offset and 4988 // size in strtab) and linkage for global values. For the global value info 4989 // entry, in order to keep linkage at offset 5, there are three zeros used 4990 // as padding. 4991 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4992 SmallVector<unsigned, 64> Vals; 4993 // Emit the module's source file name. 4994 { 4995 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4996 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4997 if (Bits == SE_Char6) 4998 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4999 else if (Bits == SE_Fixed7) 5000 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 5001 5002 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5003 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5004 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 5005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5006 Abbv->Add(AbbrevOpToUse); 5007 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5008 5009 for (const auto P : M.getSourceFileName()) 5010 Vals.push_back((unsigned char)P); 5011 5012 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 5013 Vals.clear(); 5014 } 5015 5016 // Emit the global variable information. 5017 for (const GlobalVariable &GV : M.globals()) { 5018 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 5019 Vals.push_back(StrtabBuilder.add(GV.getName())); 5020 Vals.push_back(GV.getName().size()); 5021 Vals.push_back(0); 5022 Vals.push_back(0); 5023 Vals.push_back(0); 5024 Vals.push_back(getEncodedLinkage(GV)); 5025 5026 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5027 Vals.clear(); 5028 } 5029 5030 // Emit the function proto information. 5031 for (const Function &F : M) { 5032 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5033 Vals.push_back(StrtabBuilder.add(F.getName())); 5034 Vals.push_back(F.getName().size()); 5035 Vals.push_back(0); 5036 Vals.push_back(0); 5037 Vals.push_back(0); 5038 Vals.push_back(getEncodedLinkage(F)); 5039 5040 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5041 Vals.clear(); 5042 } 5043 5044 // Emit the alias information. 5045 for (const GlobalAlias &A : M.aliases()) { 5046 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5047 Vals.push_back(StrtabBuilder.add(A.getName())); 5048 Vals.push_back(A.getName().size()); 5049 Vals.push_back(0); 5050 Vals.push_back(0); 5051 Vals.push_back(0); 5052 Vals.push_back(getEncodedLinkage(A)); 5053 5054 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5055 Vals.clear(); 5056 } 5057 5058 // Emit the ifunc information. 5059 for (const GlobalIFunc &I : M.ifuncs()) { 5060 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5061 Vals.push_back(StrtabBuilder.add(I.getName())); 5062 Vals.push_back(I.getName().size()); 5063 Vals.push_back(0); 5064 Vals.push_back(0); 5065 Vals.push_back(0); 5066 Vals.push_back(getEncodedLinkage(I)); 5067 5068 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5069 Vals.clear(); 5070 } 5071 } 5072 5073 void ThinLinkBitcodeWriter::write() { 5074 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5075 5076 writeModuleVersion(); 5077 5078 writeSimplifiedModuleInfo(); 5079 5080 writePerModuleGlobalValueSummary(); 5081 5082 // Write module hash. 5083 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5084 5085 Stream.ExitBlock(); 5086 } 5087 5088 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5089 const ModuleSummaryIndex &Index, 5090 const ModuleHash &ModHash) { 5091 assert(!WroteStrtab); 5092 5093 // The Mods vector is used by irsymtab::build, which requires non-const 5094 // Modules in case it needs to materialize metadata. But the bitcode writer 5095 // requires that the module is materialized, so we can cast to non-const here, 5096 // after checking that it is in fact materialized. 5097 assert(M.isMaterialized()); 5098 Mods.push_back(const_cast<Module *>(&M)); 5099 5100 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5101 ModHash); 5102 ThinLinkWriter.write(); 5103 } 5104 5105 // Write the specified thin link bitcode file to the given raw output stream, 5106 // where it will be written in a new bitcode block. This is used when 5107 // writing the per-module index file for ThinLTO. 5108 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5109 const ModuleSummaryIndex &Index, 5110 const ModuleHash &ModHash) { 5111 SmallVector<char, 0> Buffer; 5112 Buffer.reserve(256 * 1024); 5113 5114 BitcodeWriter Writer(Buffer); 5115 Writer.writeThinLinkBitcode(M, Index, ModHash); 5116 Writer.writeSymtab(); 5117 Writer.writeStrtab(); 5118 5119 Out.write((char *)&Buffer.front(), Buffer.size()); 5120 } 5121 5122 static const char *getSectionNameForBitcode(const Triple &T) { 5123 switch (T.getObjectFormat()) { 5124 case Triple::MachO: 5125 return "__LLVM,__bitcode"; 5126 case Triple::COFF: 5127 case Triple::ELF: 5128 case Triple::Wasm: 5129 case Triple::UnknownObjectFormat: 5130 return ".llvmbc"; 5131 case Triple::GOFF: 5132 llvm_unreachable("GOFF is not yet implemented"); 5133 break; 5134 case Triple::SPIRV: 5135 llvm_unreachable("SPIRV is not yet implemented"); 5136 break; 5137 case Triple::XCOFF: 5138 llvm_unreachable("XCOFF is not yet implemented"); 5139 break; 5140 case Triple::DXContainer: 5141 llvm_unreachable("DXContainer is not yet implemented"); 5142 break; 5143 } 5144 llvm_unreachable("Unimplemented ObjectFormatType"); 5145 } 5146 5147 static const char *getSectionNameForCommandline(const Triple &T) { 5148 switch (T.getObjectFormat()) { 5149 case Triple::MachO: 5150 return "__LLVM,__cmdline"; 5151 case Triple::COFF: 5152 case Triple::ELF: 5153 case Triple::Wasm: 5154 case Triple::UnknownObjectFormat: 5155 return ".llvmcmd"; 5156 case Triple::GOFF: 5157 llvm_unreachable("GOFF is not yet implemented"); 5158 break; 5159 case Triple::SPIRV: 5160 llvm_unreachable("SPIRV is not yet implemented"); 5161 break; 5162 case Triple::XCOFF: 5163 llvm_unreachable("XCOFF is not yet implemented"); 5164 break; 5165 case Triple::DXContainer: 5166 llvm_unreachable("DXC is not yet implemented"); 5167 break; 5168 } 5169 llvm_unreachable("Unimplemented ObjectFormatType"); 5170 } 5171 5172 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5173 bool EmbedBitcode, bool EmbedCmdline, 5174 const std::vector<uint8_t> &CmdArgs) { 5175 // Save llvm.compiler.used and remove it. 5176 SmallVector<Constant *, 2> UsedArray; 5177 SmallVector<GlobalValue *, 4> UsedGlobals; 5178 Type *UsedElementType = PointerType::getUnqual(M.getContext()); 5179 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5180 for (auto *GV : UsedGlobals) { 5181 if (GV->getName() != "llvm.embedded.module" && 5182 GV->getName() != "llvm.cmdline") 5183 UsedArray.push_back( 5184 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5185 } 5186 if (Used) 5187 Used->eraseFromParent(); 5188 5189 // Embed the bitcode for the llvm module. 5190 std::string Data; 5191 ArrayRef<uint8_t> ModuleData; 5192 Triple T(M.getTargetTriple()); 5193 5194 if (EmbedBitcode) { 5195 if (Buf.getBufferSize() == 0 || 5196 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5197 (const unsigned char *)Buf.getBufferEnd())) { 5198 // If the input is LLVM Assembly, bitcode is produced by serializing 5199 // the module. Use-lists order need to be preserved in this case. 5200 llvm::raw_string_ostream OS(Data); 5201 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5202 ModuleData = 5203 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5204 } else 5205 // If the input is LLVM bitcode, write the input byte stream directly. 5206 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5207 Buf.getBufferSize()); 5208 } 5209 llvm::Constant *ModuleConstant = 5210 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5211 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5212 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5213 ModuleConstant); 5214 GV->setSection(getSectionNameForBitcode(T)); 5215 // Set alignment to 1 to prevent padding between two contributions from input 5216 // sections after linking. 5217 GV->setAlignment(Align(1)); 5218 UsedArray.push_back( 5219 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5220 if (llvm::GlobalVariable *Old = 5221 M.getGlobalVariable("llvm.embedded.module", true)) { 5222 assert(Old->hasZeroLiveUses() && 5223 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5224 GV->takeName(Old); 5225 Old->eraseFromParent(); 5226 } else { 5227 GV->setName("llvm.embedded.module"); 5228 } 5229 5230 // Skip if only bitcode needs to be embedded. 5231 if (EmbedCmdline) { 5232 // Embed command-line options. 5233 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5234 CmdArgs.size()); 5235 llvm::Constant *CmdConstant = 5236 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5237 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5238 llvm::GlobalValue::PrivateLinkage, 5239 CmdConstant); 5240 GV->setSection(getSectionNameForCommandline(T)); 5241 GV->setAlignment(Align(1)); 5242 UsedArray.push_back( 5243 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5244 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5245 assert(Old->hasZeroLiveUses() && 5246 "llvm.cmdline can only be used once in llvm.compiler.used"); 5247 GV->takeName(Old); 5248 Old->eraseFromParent(); 5249 } else { 5250 GV->setName("llvm.cmdline"); 5251 } 5252 } 5253 5254 if (UsedArray.empty()) 5255 return; 5256 5257 // Recreate llvm.compiler.used. 5258 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5259 auto *NewUsed = new GlobalVariable( 5260 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5261 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5262 NewUsed->setSection("llvm.metadata"); 5263 } 5264