1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/AttributeMask.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GVMaterializer.h" 41 #include "llvm/IR/GetElementPtrTypeIterator.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/IntrinsicsAArch64.h" 54 #include "llvm/IR/IntrinsicsARM.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/IR/Verifier.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/ErrorOr.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/ModRef.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/TargetParser/Triple.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstddef> 79 #include <cstdint> 80 #include <deque> 81 #include <map> 82 #include <memory> 83 #include <optional> 84 #include <set> 85 #include <string> 86 #include <system_error> 87 #include <tuple> 88 #include <utility> 89 #include <vector> 90 91 using namespace llvm; 92 93 static cl::opt<bool> PrintSummaryGUIDs( 94 "print-summary-global-ids", cl::init(false), cl::Hidden, 95 cl::desc( 96 "Print the global id for each value when reading the module summary")); 97 98 static cl::opt<bool> ExpandConstantExprs( 99 "expand-constant-exprs", cl::Hidden, 100 cl::desc( 101 "Expand constant expressions to instructions for testing purposes")); 102 103 namespace { 104 105 enum { 106 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 107 }; 108 109 } // end anonymous namespace 110 111 static Error error(const Twine &Message) { 112 return make_error<StringError>( 113 Message, make_error_code(BitcodeError::CorruptedBitcode)); 114 } 115 116 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 117 if (!Stream.canSkipToPos(4)) 118 return createStringError(std::errc::illegal_byte_sequence, 119 "file too small to contain bitcode header"); 120 for (unsigned C : {'B', 'C'}) 121 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 122 if (Res.get() != C) 123 return createStringError(std::errc::illegal_byte_sequence, 124 "file doesn't start with bitcode header"); 125 } else 126 return Res.takeError(); 127 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 128 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 129 if (Res.get() != C) 130 return createStringError(std::errc::illegal_byte_sequence, 131 "file doesn't start with bitcode header"); 132 } else 133 return Res.takeError(); 134 return Error::success(); 135 } 136 137 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 138 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 139 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 140 141 if (Buffer.getBufferSize() & 3) 142 return error("Invalid bitcode signature"); 143 144 // If we have a wrapper header, parse it and ignore the non-bc file contents. 145 // The magic number is 0x0B17C0DE stored in little endian. 146 if (isBitcodeWrapper(BufPtr, BufEnd)) 147 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 148 return error("Invalid bitcode wrapper header"); 149 150 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 151 if (Error Err = hasInvalidBitcodeHeader(Stream)) 152 return std::move(Err); 153 154 return std::move(Stream); 155 } 156 157 /// Convert a string from a record into an std::string, return true on failure. 158 template <typename StrTy> 159 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 160 StrTy &Result) { 161 if (Idx > Record.size()) 162 return true; 163 164 Result.append(Record.begin() + Idx, Record.end()); 165 return false; 166 } 167 168 // Strip all the TBAA attachment for the module. 169 static void stripTBAA(Module *M) { 170 for (auto &F : *M) { 171 if (F.isMaterializable()) 172 continue; 173 for (auto &I : instructions(F)) 174 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 175 } 176 } 177 178 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 179 /// "epoch" encoded in the bitcode, and return the producer name if any. 180 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 181 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 182 return std::move(Err); 183 184 // Read all the records. 185 SmallVector<uint64_t, 64> Record; 186 187 std::string ProducerIdentification; 188 189 while (true) { 190 BitstreamEntry Entry; 191 if (Error E = Stream.advance().moveInto(Entry)) 192 return std::move(E); 193 194 switch (Entry.Kind) { 195 default: 196 case BitstreamEntry::Error: 197 return error("Malformed block"); 198 case BitstreamEntry::EndBlock: 199 return ProducerIdentification; 200 case BitstreamEntry::Record: 201 // The interesting case. 202 break; 203 } 204 205 // Read a record. 206 Record.clear(); 207 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 208 if (!MaybeBitCode) 209 return MaybeBitCode.takeError(); 210 switch (MaybeBitCode.get()) { 211 default: // Default behavior: reject 212 return error("Invalid value"); 213 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 214 convertToString(Record, 0, ProducerIdentification); 215 break; 216 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 217 unsigned epoch = (unsigned)Record[0]; 218 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 219 return error( 220 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 221 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 222 } 223 } 224 } 225 } 226 } 227 228 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 229 // We expect a number of well-defined blocks, though we don't necessarily 230 // need to understand them all. 231 while (true) { 232 if (Stream.AtEndOfStream()) 233 return ""; 234 235 BitstreamEntry Entry; 236 if (Error E = Stream.advance().moveInto(Entry)) 237 return std::move(E); 238 239 switch (Entry.Kind) { 240 case BitstreamEntry::EndBlock: 241 case BitstreamEntry::Error: 242 return error("Malformed block"); 243 244 case BitstreamEntry::SubBlock: 245 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 246 return readIdentificationBlock(Stream); 247 248 // Ignore other sub-blocks. 249 if (Error Err = Stream.SkipBlock()) 250 return std::move(Err); 251 continue; 252 case BitstreamEntry::Record: 253 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 254 return std::move(E); 255 continue; 256 } 257 } 258 } 259 260 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 261 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 262 return std::move(Err); 263 264 SmallVector<uint64_t, 64> Record; 265 // Read all the records for this module. 266 267 while (true) { 268 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 269 if (!MaybeEntry) 270 return MaybeEntry.takeError(); 271 BitstreamEntry Entry = MaybeEntry.get(); 272 273 switch (Entry.Kind) { 274 case BitstreamEntry::SubBlock: // Handled for us already. 275 case BitstreamEntry::Error: 276 return error("Malformed block"); 277 case BitstreamEntry::EndBlock: 278 return false; 279 case BitstreamEntry::Record: 280 // The interesting case. 281 break; 282 } 283 284 // Read a record. 285 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 286 if (!MaybeRecord) 287 return MaybeRecord.takeError(); 288 switch (MaybeRecord.get()) { 289 default: 290 break; // Default behavior, ignore unknown content. 291 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 292 std::string S; 293 if (convertToString(Record, 0, S)) 294 return error("Invalid section name record"); 295 // Check for the i386 and other (x86_64, ARM) conventions 296 if (S.find("__DATA,__objc_catlist") != std::string::npos || 297 S.find("__OBJC,__category") != std::string::npos) 298 return true; 299 break; 300 } 301 } 302 Record.clear(); 303 } 304 llvm_unreachable("Exit infinite loop"); 305 } 306 307 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 308 // We expect a number of well-defined blocks, though we don't necessarily 309 // need to understand them all. 310 while (true) { 311 BitstreamEntry Entry; 312 if (Error E = Stream.advance().moveInto(Entry)) 313 return std::move(E); 314 315 switch (Entry.Kind) { 316 case BitstreamEntry::Error: 317 return error("Malformed block"); 318 case BitstreamEntry::EndBlock: 319 return false; 320 321 case BitstreamEntry::SubBlock: 322 if (Entry.ID == bitc::MODULE_BLOCK_ID) 323 return hasObjCCategoryInModule(Stream); 324 325 // Ignore other sub-blocks. 326 if (Error Err = Stream.SkipBlock()) 327 return std::move(Err); 328 continue; 329 330 case BitstreamEntry::Record: 331 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 332 return std::move(E); 333 continue; 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid triple record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 Error readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid version record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 /// This represents a constant expression or constant aggregate using a custom 483 /// structure internal to the bitcode reader. Later, this structure will be 484 /// expanded by materializeValue() either into a constant expression/aggregate, 485 /// or into an instruction sequence at the point of use. This allows us to 486 /// upgrade bitcode using constant expressions even if this kind of constant 487 /// expression is no longer supported. 488 class BitcodeConstant final : public Value, 489 TrailingObjects<BitcodeConstant, unsigned> { 490 friend TrailingObjects; 491 492 // Value subclass ID: Pick largest possible value to avoid any clashes. 493 static constexpr uint8_t SubclassID = 255; 494 495 public: 496 // Opcodes used for non-expressions. This includes constant aggregates 497 // (struct, array, vector) that might need expansion, as well as non-leaf 498 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 499 // but still go through BitcodeConstant to avoid different uselist orders 500 // between the two cases. 501 static constexpr uint8_t ConstantStructOpcode = 255; 502 static constexpr uint8_t ConstantArrayOpcode = 254; 503 static constexpr uint8_t ConstantVectorOpcode = 253; 504 static constexpr uint8_t NoCFIOpcode = 252; 505 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 506 static constexpr uint8_t BlockAddressOpcode = 250; 507 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode; 508 509 // Separate struct to make passing different number of parameters to 510 // BitcodeConstant::create() more convenient. 511 struct ExtraInfo { 512 uint8_t Opcode; 513 uint8_t Flags; 514 unsigned Extra; 515 Type *SrcElemTy; 516 517 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0, 518 Type *SrcElemTy = nullptr) 519 : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {} 520 }; 521 522 uint8_t Opcode; 523 uint8_t Flags; 524 unsigned NumOperands; 525 unsigned Extra; // GEP inrange index or blockaddress BB id. 526 Type *SrcElemTy; // GEP source element type. 527 528 private: 529 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 530 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 531 NumOperands(OpIDs.size()), Extra(Info.Extra), 532 SrcElemTy(Info.SrcElemTy) { 533 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 534 getTrailingObjects<unsigned>()); 535 } 536 537 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 538 539 public: 540 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 541 const ExtraInfo &Info, 542 ArrayRef<unsigned> OpIDs) { 543 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 544 alignof(BitcodeConstant)); 545 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 546 } 547 548 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 549 550 ArrayRef<unsigned> getOperandIDs() const { 551 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 552 } 553 554 std::optional<unsigned> getInRangeIndex() const { 555 assert(Opcode == Instruction::GetElementPtr); 556 if (Extra == (unsigned)-1) 557 return std::nullopt; 558 return Extra; 559 } 560 561 const char *getOpcodeName() const { 562 return Instruction::getOpcodeName(Opcode); 563 } 564 }; 565 566 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 567 LLVMContext &Context; 568 Module *TheModule = nullptr; 569 // Next offset to start scanning for lazy parsing of function bodies. 570 uint64_t NextUnreadBit = 0; 571 // Last function offset found in the VST. 572 uint64_t LastFunctionBlockBit = 0; 573 bool SeenValueSymbolTable = false; 574 uint64_t VSTOffset = 0; 575 576 std::vector<std::string> SectionTable; 577 std::vector<std::string> GCTable; 578 579 std::vector<Type *> TypeList; 580 /// Track type IDs of contained types. Order is the same as the contained 581 /// types of a Type*. This is used during upgrades of typed pointer IR in 582 /// opaque pointer mode. 583 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 584 /// In some cases, we need to create a type ID for a type that was not 585 /// explicitly encoded in the bitcode, or we don't know about at the current 586 /// point. For example, a global may explicitly encode the value type ID, but 587 /// not have a type ID for the pointer to value type, for which we create a 588 /// virtual type ID instead. This map stores the new type ID that was created 589 /// for the given pair of Type and contained type ID. 590 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 591 DenseMap<Function *, unsigned> FunctionTypeIDs; 592 /// Allocator for BitcodeConstants. This should come before ValueList, 593 /// because the ValueList might hold ValueHandles to these constants, so 594 /// ValueList must be destroyed before Alloc. 595 BumpPtrAllocator Alloc; 596 BitcodeReaderValueList ValueList; 597 std::optional<MetadataLoader> MDLoader; 598 std::vector<Comdat *> ComdatList; 599 DenseSet<GlobalObject *> ImplicitComdatObjects; 600 SmallVector<Instruction *, 64> InstructionList; 601 602 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 603 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 604 605 struct FunctionOperandInfo { 606 Function *F; 607 unsigned PersonalityFn; 608 unsigned Prefix; 609 unsigned Prologue; 610 }; 611 std::vector<FunctionOperandInfo> FunctionOperands; 612 613 /// The set of attributes by index. Index zero in the file is for null, and 614 /// is thus not represented here. As such all indices are off by one. 615 std::vector<AttributeList> MAttributes; 616 617 /// The set of attribute groups. 618 std::map<unsigned, AttributeList> MAttributeGroups; 619 620 /// While parsing a function body, this is a list of the basic blocks for the 621 /// function. 622 std::vector<BasicBlock*> FunctionBBs; 623 624 // When reading the module header, this list is populated with functions that 625 // have bodies later in the file. 626 std::vector<Function*> FunctionsWithBodies; 627 628 // When intrinsic functions are encountered which require upgrading they are 629 // stored here with their replacement function. 630 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 631 UpdatedIntrinsicMap UpgradedIntrinsics; 632 633 // Several operations happen after the module header has been read, but 634 // before function bodies are processed. This keeps track of whether 635 // we've done this yet. 636 bool SeenFirstFunctionBody = false; 637 638 /// When function bodies are initially scanned, this map contains info about 639 /// where to find deferred function body in the stream. 640 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 641 642 /// When Metadata block is initially scanned when parsing the module, we may 643 /// choose to defer parsing of the metadata. This vector contains info about 644 /// which Metadata blocks are deferred. 645 std::vector<uint64_t> DeferredMetadataInfo; 646 647 /// These are basic blocks forward-referenced by block addresses. They are 648 /// inserted lazily into functions when they're loaded. The basic block ID is 649 /// its index into the vector. 650 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 651 std::deque<Function *> BasicBlockFwdRefQueue; 652 653 /// These are Functions that contain BlockAddresses which refer a different 654 /// Function. When parsing the different Function, queue Functions that refer 655 /// to the different Function. Those Functions must be materialized in order 656 /// to resolve their BlockAddress constants before the different Function 657 /// gets moved into another Module. 658 std::vector<Function *> BackwardRefFunctions; 659 660 /// Indicates that we are using a new encoding for instruction operands where 661 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 662 /// instruction number, for a more compact encoding. Some instruction 663 /// operands are not relative to the instruction ID: basic block numbers, and 664 /// types. Once the old style function blocks have been phased out, we would 665 /// not need this flag. 666 bool UseRelativeIDs = false; 667 668 /// True if all functions will be materialized, negating the need to process 669 /// (e.g.) blockaddress forward references. 670 bool WillMaterializeAllForwardRefs = false; 671 672 bool StripDebugInfo = false; 673 TBAAVerifier TBAAVerifyHelper; 674 675 std::vector<std::string> BundleTags; 676 SmallVector<SyncScope::ID, 8> SSIDs; 677 678 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 679 680 public: 681 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 682 StringRef ProducerIdentification, LLVMContext &Context); 683 684 Error materializeForwardReferencedFunctions(); 685 686 Error materialize(GlobalValue *GV) override; 687 Error materializeModule() override; 688 std::vector<StructType *> getIdentifiedStructTypes() const override; 689 690 /// Main interface to parsing a bitcode buffer. 691 /// \returns true if an error occurred. 692 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 693 bool IsImporting, ParserCallbacks Callbacks = {}); 694 695 static uint64_t decodeSignRotatedValue(uint64_t V); 696 697 /// Materialize any deferred Metadata block. 698 Error materializeMetadata() override; 699 700 void setStripDebugInfo() override; 701 702 private: 703 std::vector<StructType *> IdentifiedStructTypes; 704 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 705 StructType *createIdentifiedStructType(LLVMContext &Context); 706 707 static constexpr unsigned InvalidTypeID = ~0u; 708 709 Type *getTypeByID(unsigned ID); 710 Type *getPtrElementTypeByID(unsigned ID); 711 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 712 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 713 714 void callValueTypeCallback(Value *F, unsigned TypeID); 715 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 716 Expected<Constant *> getValueForInitializer(unsigned ID); 717 718 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 719 BasicBlock *ConstExprInsertBB) { 720 if (Ty && Ty->isMetadataTy()) 721 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 722 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 723 } 724 725 Metadata *getFnMetadataByID(unsigned ID) { 726 return MDLoader->getMetadataFwdRefOrLoad(ID); 727 } 728 729 BasicBlock *getBasicBlock(unsigned ID) const { 730 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 731 return FunctionBBs[ID]; 732 } 733 734 AttributeList getAttributes(unsigned i) const { 735 if (i-1 < MAttributes.size()) 736 return MAttributes[i-1]; 737 return AttributeList(); 738 } 739 740 /// Read a value/type pair out of the specified record from slot 'Slot'. 741 /// Increment Slot past the number of slots used in the record. Return true on 742 /// failure. 743 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 744 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 745 BasicBlock *ConstExprInsertBB) { 746 if (Slot == Record.size()) return true; 747 unsigned ValNo = (unsigned)Record[Slot++]; 748 // Adjust the ValNo, if it was encoded relative to the InstNum. 749 if (UseRelativeIDs) 750 ValNo = InstNum - ValNo; 751 if (ValNo < InstNum) { 752 // If this is not a forward reference, just return the value we already 753 // have. 754 TypeID = ValueList.getTypeID(ValNo); 755 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 756 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 757 "Incorrect type ID stored for value"); 758 return ResVal == nullptr; 759 } 760 if (Slot == Record.size()) 761 return true; 762 763 TypeID = (unsigned)Record[Slot++]; 764 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 765 ConstExprInsertBB); 766 return ResVal == nullptr; 767 } 768 769 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 770 /// past the number of slots used by the value in the record. Return true if 771 /// there is an error. 772 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 773 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 774 BasicBlock *ConstExprInsertBB) { 775 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 776 return true; 777 // All values currently take a single record slot. 778 ++Slot; 779 return false; 780 } 781 782 /// Like popValue, but does not increment the Slot number. 783 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 784 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 785 BasicBlock *ConstExprInsertBB) { 786 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 787 return ResVal == nullptr; 788 } 789 790 /// Version of getValue that returns ResVal directly, or 0 if there is an 791 /// error. 792 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 793 unsigned InstNum, Type *Ty, unsigned TyID, 794 BasicBlock *ConstExprInsertBB) { 795 if (Slot == Record.size()) return nullptr; 796 unsigned ValNo = (unsigned)Record[Slot]; 797 // Adjust the ValNo, if it was encoded relative to the InstNum. 798 if (UseRelativeIDs) 799 ValNo = InstNum - ValNo; 800 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 801 } 802 803 /// Like getValue, but decodes signed VBRs. 804 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 805 unsigned InstNum, Type *Ty, unsigned TyID, 806 BasicBlock *ConstExprInsertBB) { 807 if (Slot == Record.size()) return nullptr; 808 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 809 // Adjust the ValNo, if it was encoded relative to the InstNum. 810 if (UseRelativeIDs) 811 ValNo = InstNum - ValNo; 812 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 813 } 814 815 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 816 /// corresponding argument's pointee type. Also upgrades intrinsics that now 817 /// require an elementtype attribute. 818 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 819 820 /// Converts alignment exponent (i.e. power of two (or zero)) to the 821 /// corresponding alignment to use. If alignment is too large, returns 822 /// a corresponding error code. 823 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 824 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 825 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 826 ParserCallbacks Callbacks = {}); 827 828 Error parseComdatRecord(ArrayRef<uint64_t> Record); 829 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 830 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 831 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 832 ArrayRef<uint64_t> Record); 833 834 Error parseAttributeBlock(); 835 Error parseAttributeGroupBlock(); 836 Error parseTypeTable(); 837 Error parseTypeTableBody(); 838 Error parseOperandBundleTags(); 839 Error parseSyncScopeNames(); 840 841 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 842 unsigned NameIndex, Triple &TT); 843 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 844 ArrayRef<uint64_t> Record); 845 Error parseValueSymbolTable(uint64_t Offset = 0); 846 Error parseGlobalValueSymbolTable(); 847 Error parseConstants(); 848 Error rememberAndSkipFunctionBodies(); 849 Error rememberAndSkipFunctionBody(); 850 /// Save the positions of the Metadata blocks and skip parsing the blocks. 851 Error rememberAndSkipMetadata(); 852 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 853 Error parseFunctionBody(Function *F); 854 Error globalCleanup(); 855 Error resolveGlobalAndIndirectSymbolInits(); 856 Error parseUseLists(); 857 Error findFunctionInStream( 858 Function *F, 859 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 860 861 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 862 }; 863 864 /// Class to manage reading and parsing function summary index bitcode 865 /// files/sections. 866 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 867 /// The module index built during parsing. 868 ModuleSummaryIndex &TheIndex; 869 870 /// Indicates whether we have encountered a global value summary section 871 /// yet during parsing. 872 bool SeenGlobalValSummary = false; 873 874 /// Indicates whether we have already parsed the VST, used for error checking. 875 bool SeenValueSymbolTable = false; 876 877 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 878 /// Used to enable on-demand parsing of the VST. 879 uint64_t VSTOffset = 0; 880 881 // Map to save ValueId to ValueInfo association that was recorded in the 882 // ValueSymbolTable. It is used after the VST is parsed to convert 883 // call graph edges read from the function summary from referencing 884 // callees by their ValueId to using the ValueInfo instead, which is how 885 // they are recorded in the summary index being built. 886 // We save a GUID which refers to the same global as the ValueInfo, but 887 // ignoring the linkage, i.e. for values other than local linkage they are 888 // identical (this is the second tuple member). 889 // The third tuple member is the real GUID of the ValueInfo. 890 DenseMap<unsigned, 891 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>> 892 ValueIdToValueInfoMap; 893 894 /// Map populated during module path string table parsing, from the 895 /// module ID to a string reference owned by the index's module 896 /// path string table, used to correlate with combined index 897 /// summary records. 898 DenseMap<uint64_t, StringRef> ModuleIdMap; 899 900 /// Original source file name recorded in a bitcode record. 901 std::string SourceFileName; 902 903 /// The string identifier given to this module by the client, normally the 904 /// path to the bitcode file. 905 StringRef ModulePath; 906 907 /// Callback to ask whether a symbol is the prevailing copy when invoked 908 /// during combined index building. 909 std::function<bool(GlobalValue::GUID)> IsPrevailing; 910 911 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 912 /// ids from the lists in the callsite and alloc entries to the index. 913 std::vector<uint64_t> StackIds; 914 915 public: 916 ModuleSummaryIndexBitcodeReader( 917 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 918 StringRef ModulePath, 919 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 920 921 Error parseModule(); 922 923 private: 924 void setValueGUID(uint64_t ValueID, StringRef ValueName, 925 GlobalValue::LinkageTypes Linkage, 926 StringRef SourceFileName); 927 Error parseValueSymbolTable( 928 uint64_t Offset, 929 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 930 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 931 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 932 bool IsOldProfileFormat, 933 bool HasProfile, 934 bool HasRelBF); 935 Error parseEntireSummary(unsigned ID); 936 Error parseModuleStringTable(); 937 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 938 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 939 TypeIdCompatibleVtableInfo &TypeId); 940 std::vector<FunctionSummary::ParamAccess> 941 parseParamAccesses(ArrayRef<uint64_t> Record); 942 943 template <bool AllowNullValueInfo = false> 944 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 945 getValueInfoFromValueId(unsigned ValueId); 946 947 void addThisModule(); 948 ModuleSummaryIndex::ModuleInfo *getThisModule(); 949 }; 950 951 } // end anonymous namespace 952 953 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 954 Error Err) { 955 if (Err) { 956 std::error_code EC; 957 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 958 EC = EIB.convertToErrorCode(); 959 Ctx.emitError(EIB.message()); 960 }); 961 return EC; 962 } 963 return std::error_code(); 964 } 965 966 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 967 StringRef ProducerIdentification, 968 LLVMContext &Context) 969 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 970 ValueList(this->Stream.SizeInBytes(), 971 [this](unsigned ValID, BasicBlock *InsertBB) { 972 return materializeValue(ValID, InsertBB); 973 }) { 974 this->ProducerIdentification = std::string(ProducerIdentification); 975 } 976 977 Error BitcodeReader::materializeForwardReferencedFunctions() { 978 if (WillMaterializeAllForwardRefs) 979 return Error::success(); 980 981 // Prevent recursion. 982 WillMaterializeAllForwardRefs = true; 983 984 while (!BasicBlockFwdRefQueue.empty()) { 985 Function *F = BasicBlockFwdRefQueue.front(); 986 BasicBlockFwdRefQueue.pop_front(); 987 assert(F && "Expected valid function"); 988 if (!BasicBlockFwdRefs.count(F)) 989 // Already materialized. 990 continue; 991 992 // Check for a function that isn't materializable to prevent an infinite 993 // loop. When parsing a blockaddress stored in a global variable, there 994 // isn't a trivial way to check if a function will have a body without a 995 // linear search through FunctionsWithBodies, so just check it here. 996 if (!F->isMaterializable()) 997 return error("Never resolved function from blockaddress"); 998 999 // Try to materialize F. 1000 if (Error Err = materialize(F)) 1001 return Err; 1002 } 1003 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1004 1005 for (Function *F : BackwardRefFunctions) 1006 if (Error Err = materialize(F)) 1007 return Err; 1008 BackwardRefFunctions.clear(); 1009 1010 // Reset state. 1011 WillMaterializeAllForwardRefs = false; 1012 return Error::success(); 1013 } 1014 1015 //===----------------------------------------------------------------------===// 1016 // Helper functions to implement forward reference resolution, etc. 1017 //===----------------------------------------------------------------------===// 1018 1019 static bool hasImplicitComdat(size_t Val) { 1020 switch (Val) { 1021 default: 1022 return false; 1023 case 1: // Old WeakAnyLinkage 1024 case 4: // Old LinkOnceAnyLinkage 1025 case 10: // Old WeakODRLinkage 1026 case 11: // Old LinkOnceODRLinkage 1027 return true; 1028 } 1029 } 1030 1031 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1032 switch (Val) { 1033 default: // Map unknown/new linkages to external 1034 case 0: 1035 return GlobalValue::ExternalLinkage; 1036 case 2: 1037 return GlobalValue::AppendingLinkage; 1038 case 3: 1039 return GlobalValue::InternalLinkage; 1040 case 5: 1041 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1042 case 6: 1043 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1044 case 7: 1045 return GlobalValue::ExternalWeakLinkage; 1046 case 8: 1047 return GlobalValue::CommonLinkage; 1048 case 9: 1049 return GlobalValue::PrivateLinkage; 1050 case 12: 1051 return GlobalValue::AvailableExternallyLinkage; 1052 case 13: 1053 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1054 case 14: 1055 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1056 case 15: 1057 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1058 case 1: // Old value with implicit comdat. 1059 case 16: 1060 return GlobalValue::WeakAnyLinkage; 1061 case 10: // Old value with implicit comdat. 1062 case 17: 1063 return GlobalValue::WeakODRLinkage; 1064 case 4: // Old value with implicit comdat. 1065 case 18: 1066 return GlobalValue::LinkOnceAnyLinkage; 1067 case 11: // Old value with implicit comdat. 1068 case 19: 1069 return GlobalValue::LinkOnceODRLinkage; 1070 } 1071 } 1072 1073 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1074 FunctionSummary::FFlags Flags; 1075 Flags.ReadNone = RawFlags & 0x1; 1076 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1077 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1078 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1079 Flags.NoInline = (RawFlags >> 4) & 0x1; 1080 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1081 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1082 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1083 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1084 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1085 return Flags; 1086 } 1087 1088 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1089 // 1090 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1091 // visibility: [8, 10). 1092 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1093 uint64_t Version) { 1094 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1095 // like getDecodedLinkage() above. Any future change to the linkage enum and 1096 // to getDecodedLinkage() will need to be taken into account here as above. 1097 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1098 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1099 RawFlags = RawFlags >> 4; 1100 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1101 // The Live flag wasn't introduced until version 3. For dead stripping 1102 // to work correctly on earlier versions, we must conservatively treat all 1103 // values as live. 1104 bool Live = (RawFlags & 0x2) || Version < 3; 1105 bool Local = (RawFlags & 0x4); 1106 bool AutoHide = (RawFlags & 0x8); 1107 1108 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1109 Live, Local, AutoHide); 1110 } 1111 1112 // Decode the flags for GlobalVariable in the summary 1113 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1114 return GlobalVarSummary::GVarFlags( 1115 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1116 (RawFlags & 0x4) ? true : false, 1117 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1118 } 1119 1120 static std::pair<CalleeInfo::HotnessType, bool> 1121 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) { 1122 CalleeInfo::HotnessType Hotness = 1123 static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits 1124 bool HasTailCall = (RawFlags & 0x8); // 1 bit 1125 return {Hotness, HasTailCall}; 1126 } 1127 1128 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF, 1129 bool &HasTailCall) { 1130 static constexpr uint64_t RelBlockFreqMask = 1131 (1 << CalleeInfo::RelBlockFreqBits) - 1; 1132 RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits 1133 HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit 1134 } 1135 1136 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1137 switch (Val) { 1138 default: // Map unknown visibilities to default. 1139 case 0: return GlobalValue::DefaultVisibility; 1140 case 1: return GlobalValue::HiddenVisibility; 1141 case 2: return GlobalValue::ProtectedVisibility; 1142 } 1143 } 1144 1145 static GlobalValue::DLLStorageClassTypes 1146 getDecodedDLLStorageClass(unsigned Val) { 1147 switch (Val) { 1148 default: // Map unknown values to default. 1149 case 0: return GlobalValue::DefaultStorageClass; 1150 case 1: return GlobalValue::DLLImportStorageClass; 1151 case 2: return GlobalValue::DLLExportStorageClass; 1152 } 1153 } 1154 1155 static bool getDecodedDSOLocal(unsigned Val) { 1156 switch(Val) { 1157 default: // Map unknown values to preemptable. 1158 case 0: return false; 1159 case 1: return true; 1160 } 1161 } 1162 1163 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) { 1164 switch (Val) { 1165 case 1: 1166 return CodeModel::Tiny; 1167 case 2: 1168 return CodeModel::Small; 1169 case 3: 1170 return CodeModel::Kernel; 1171 case 4: 1172 return CodeModel::Medium; 1173 case 5: 1174 return CodeModel::Large; 1175 } 1176 1177 return {}; 1178 } 1179 1180 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1181 switch (Val) { 1182 case 0: return GlobalVariable::NotThreadLocal; 1183 default: // Map unknown non-zero value to general dynamic. 1184 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1185 case 2: return GlobalVariable::LocalDynamicTLSModel; 1186 case 3: return GlobalVariable::InitialExecTLSModel; 1187 case 4: return GlobalVariable::LocalExecTLSModel; 1188 } 1189 } 1190 1191 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1192 switch (Val) { 1193 default: // Map unknown to UnnamedAddr::None. 1194 case 0: return GlobalVariable::UnnamedAddr::None; 1195 case 1: return GlobalVariable::UnnamedAddr::Global; 1196 case 2: return GlobalVariable::UnnamedAddr::Local; 1197 } 1198 } 1199 1200 static int getDecodedCastOpcode(unsigned Val) { 1201 switch (Val) { 1202 default: return -1; 1203 case bitc::CAST_TRUNC : return Instruction::Trunc; 1204 case bitc::CAST_ZEXT : return Instruction::ZExt; 1205 case bitc::CAST_SEXT : return Instruction::SExt; 1206 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1207 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1208 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1209 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1210 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1211 case bitc::CAST_FPEXT : return Instruction::FPExt; 1212 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1213 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1214 case bitc::CAST_BITCAST : return Instruction::BitCast; 1215 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1216 } 1217 } 1218 1219 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1220 bool IsFP = Ty->isFPOrFPVectorTy(); 1221 // UnOps are only valid for int/fp or vector of int/fp types 1222 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1223 return -1; 1224 1225 switch (Val) { 1226 default: 1227 return -1; 1228 case bitc::UNOP_FNEG: 1229 return IsFP ? Instruction::FNeg : -1; 1230 } 1231 } 1232 1233 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1234 bool IsFP = Ty->isFPOrFPVectorTy(); 1235 // BinOps are only valid for int/fp or vector of int/fp types 1236 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1237 return -1; 1238 1239 switch (Val) { 1240 default: 1241 return -1; 1242 case bitc::BINOP_ADD: 1243 return IsFP ? Instruction::FAdd : Instruction::Add; 1244 case bitc::BINOP_SUB: 1245 return IsFP ? Instruction::FSub : Instruction::Sub; 1246 case bitc::BINOP_MUL: 1247 return IsFP ? Instruction::FMul : Instruction::Mul; 1248 case bitc::BINOP_UDIV: 1249 return IsFP ? -1 : Instruction::UDiv; 1250 case bitc::BINOP_SDIV: 1251 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1252 case bitc::BINOP_UREM: 1253 return IsFP ? -1 : Instruction::URem; 1254 case bitc::BINOP_SREM: 1255 return IsFP ? Instruction::FRem : Instruction::SRem; 1256 case bitc::BINOP_SHL: 1257 return IsFP ? -1 : Instruction::Shl; 1258 case bitc::BINOP_LSHR: 1259 return IsFP ? -1 : Instruction::LShr; 1260 case bitc::BINOP_ASHR: 1261 return IsFP ? -1 : Instruction::AShr; 1262 case bitc::BINOP_AND: 1263 return IsFP ? -1 : Instruction::And; 1264 case bitc::BINOP_OR: 1265 return IsFP ? -1 : Instruction::Or; 1266 case bitc::BINOP_XOR: 1267 return IsFP ? -1 : Instruction::Xor; 1268 } 1269 } 1270 1271 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1272 switch (Val) { 1273 default: return AtomicRMWInst::BAD_BINOP; 1274 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1275 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1276 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1277 case bitc::RMW_AND: return AtomicRMWInst::And; 1278 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1279 case bitc::RMW_OR: return AtomicRMWInst::Or; 1280 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1281 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1282 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1283 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1284 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1285 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1286 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1287 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1288 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1289 case bitc::RMW_UINC_WRAP: 1290 return AtomicRMWInst::UIncWrap; 1291 case bitc::RMW_UDEC_WRAP: 1292 return AtomicRMWInst::UDecWrap; 1293 } 1294 } 1295 1296 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1297 switch (Val) { 1298 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1299 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1300 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1301 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1302 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1303 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1304 default: // Map unknown orderings to sequentially-consistent. 1305 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1306 } 1307 } 1308 1309 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1310 switch (Val) { 1311 default: // Map unknown selection kinds to any. 1312 case bitc::COMDAT_SELECTION_KIND_ANY: 1313 return Comdat::Any; 1314 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1315 return Comdat::ExactMatch; 1316 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1317 return Comdat::Largest; 1318 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1319 return Comdat::NoDeduplicate; 1320 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1321 return Comdat::SameSize; 1322 } 1323 } 1324 1325 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1326 FastMathFlags FMF; 1327 if (0 != (Val & bitc::UnsafeAlgebra)) 1328 FMF.setFast(); 1329 if (0 != (Val & bitc::AllowReassoc)) 1330 FMF.setAllowReassoc(); 1331 if (0 != (Val & bitc::NoNaNs)) 1332 FMF.setNoNaNs(); 1333 if (0 != (Val & bitc::NoInfs)) 1334 FMF.setNoInfs(); 1335 if (0 != (Val & bitc::NoSignedZeros)) 1336 FMF.setNoSignedZeros(); 1337 if (0 != (Val & bitc::AllowReciprocal)) 1338 FMF.setAllowReciprocal(); 1339 if (0 != (Val & bitc::AllowContract)) 1340 FMF.setAllowContract(true); 1341 if (0 != (Val & bitc::ApproxFunc)) 1342 FMF.setApproxFunc(); 1343 return FMF; 1344 } 1345 1346 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1347 // A GlobalValue with local linkage cannot have a DLL storage class. 1348 if (GV->hasLocalLinkage()) 1349 return; 1350 switch (Val) { 1351 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1352 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1353 } 1354 } 1355 1356 Type *BitcodeReader::getTypeByID(unsigned ID) { 1357 // The type table size is always specified correctly. 1358 if (ID >= TypeList.size()) 1359 return nullptr; 1360 1361 if (Type *Ty = TypeList[ID]) 1362 return Ty; 1363 1364 // If we have a forward reference, the only possible case is when it is to a 1365 // named struct. Just create a placeholder for now. 1366 return TypeList[ID] = createIdentifiedStructType(Context); 1367 } 1368 1369 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1370 auto It = ContainedTypeIDs.find(ID); 1371 if (It == ContainedTypeIDs.end()) 1372 return InvalidTypeID; 1373 1374 if (Idx >= It->second.size()) 1375 return InvalidTypeID; 1376 1377 return It->second[Idx]; 1378 } 1379 1380 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1381 if (ID >= TypeList.size()) 1382 return nullptr; 1383 1384 Type *Ty = TypeList[ID]; 1385 if (!Ty->isPointerTy()) 1386 return nullptr; 1387 1388 return getTypeByID(getContainedTypeID(ID, 0)); 1389 } 1390 1391 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1392 ArrayRef<unsigned> ChildTypeIDs) { 1393 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1394 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1395 auto It = VirtualTypeIDs.find(CacheKey); 1396 if (It != VirtualTypeIDs.end()) { 1397 // The cmpxchg return value is the only place we need more than one 1398 // contained type ID, however the second one will always be the same (i1), 1399 // so we don't need to include it in the cache key. This asserts that the 1400 // contained types are indeed as expected and there are no collisions. 1401 assert((ChildTypeIDs.empty() || 1402 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1403 "Incorrect cached contained type IDs"); 1404 return It->second; 1405 } 1406 1407 unsigned TypeID = TypeList.size(); 1408 TypeList.push_back(Ty); 1409 if (!ChildTypeIDs.empty()) 1410 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1411 VirtualTypeIDs.insert({CacheKey, TypeID}); 1412 return TypeID; 1413 } 1414 1415 static bool isConstExprSupported(const BitcodeConstant *BC) { 1416 uint8_t Opcode = BC->Opcode; 1417 1418 // These are not real constant expressions, always consider them supported. 1419 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1420 return true; 1421 1422 // If -expand-constant-exprs is set, we want to consider all expressions 1423 // as unsupported. 1424 if (ExpandConstantExprs) 1425 return false; 1426 1427 if (Instruction::isBinaryOp(Opcode)) 1428 return ConstantExpr::isSupportedBinOp(Opcode); 1429 1430 if (Instruction::isCast(Opcode)) 1431 return ConstantExpr::isSupportedCastOp(Opcode); 1432 1433 if (Opcode == Instruction::GetElementPtr) 1434 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1435 1436 switch (Opcode) { 1437 case Instruction::FNeg: 1438 case Instruction::Select: 1439 return false; 1440 default: 1441 return true; 1442 } 1443 } 1444 1445 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1446 BasicBlock *InsertBB) { 1447 // Quickly handle the case where there is no BitcodeConstant to resolve. 1448 if (StartValID < ValueList.size() && ValueList[StartValID] && 1449 !isa<BitcodeConstant>(ValueList[StartValID])) 1450 return ValueList[StartValID]; 1451 1452 SmallDenseMap<unsigned, Value *> MaterializedValues; 1453 SmallVector<unsigned> Worklist; 1454 Worklist.push_back(StartValID); 1455 while (!Worklist.empty()) { 1456 unsigned ValID = Worklist.back(); 1457 if (MaterializedValues.count(ValID)) { 1458 // Duplicate expression that was already handled. 1459 Worklist.pop_back(); 1460 continue; 1461 } 1462 1463 if (ValID >= ValueList.size() || !ValueList[ValID]) 1464 return error("Invalid value ID"); 1465 1466 Value *V = ValueList[ValID]; 1467 auto *BC = dyn_cast<BitcodeConstant>(V); 1468 if (!BC) { 1469 MaterializedValues.insert({ValID, V}); 1470 Worklist.pop_back(); 1471 continue; 1472 } 1473 1474 // Iterate in reverse, so values will get popped from the worklist in 1475 // expected order. 1476 SmallVector<Value *> Ops; 1477 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1478 auto It = MaterializedValues.find(OpID); 1479 if (It != MaterializedValues.end()) 1480 Ops.push_back(It->second); 1481 else 1482 Worklist.push_back(OpID); 1483 } 1484 1485 // Some expressions have not been resolved yet, handle them first and then 1486 // revisit this one. 1487 if (Ops.size() != BC->getOperandIDs().size()) 1488 continue; 1489 std::reverse(Ops.begin(), Ops.end()); 1490 1491 SmallVector<Constant *> ConstOps; 1492 for (Value *Op : Ops) 1493 if (auto *C = dyn_cast<Constant>(Op)) 1494 ConstOps.push_back(C); 1495 1496 // Materialize as constant expression if possible. 1497 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1498 Constant *C; 1499 if (Instruction::isCast(BC->Opcode)) { 1500 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1501 if (!C) 1502 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1503 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1504 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1505 } else { 1506 switch (BC->Opcode) { 1507 case BitcodeConstant::NoCFIOpcode: { 1508 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1509 if (!GV) 1510 return error("no_cfi operand must be GlobalValue"); 1511 C = NoCFIValue::get(GV); 1512 break; 1513 } 1514 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1515 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1516 if (!GV) 1517 return error("dso_local operand must be GlobalValue"); 1518 C = DSOLocalEquivalent::get(GV); 1519 break; 1520 } 1521 case BitcodeConstant::BlockAddressOpcode: { 1522 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1523 if (!Fn) 1524 return error("blockaddress operand must be a function"); 1525 1526 // If the function is already parsed we can insert the block address 1527 // right away. 1528 BasicBlock *BB; 1529 unsigned BBID = BC->Extra; 1530 if (!BBID) 1531 // Invalid reference to entry block. 1532 return error("Invalid ID"); 1533 if (!Fn->empty()) { 1534 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1535 for (size_t I = 0, E = BBID; I != E; ++I) { 1536 if (BBI == BBE) 1537 return error("Invalid ID"); 1538 ++BBI; 1539 } 1540 BB = &*BBI; 1541 } else { 1542 // Otherwise insert a placeholder and remember it so it can be 1543 // inserted when the function is parsed. 1544 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1545 if (FwdBBs.empty()) 1546 BasicBlockFwdRefQueue.push_back(Fn); 1547 if (FwdBBs.size() < BBID + 1) 1548 FwdBBs.resize(BBID + 1); 1549 if (!FwdBBs[BBID]) 1550 FwdBBs[BBID] = BasicBlock::Create(Context); 1551 BB = FwdBBs[BBID]; 1552 } 1553 C = BlockAddress::get(Fn, BB); 1554 break; 1555 } 1556 case BitcodeConstant::ConstantStructOpcode: 1557 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1558 break; 1559 case BitcodeConstant::ConstantArrayOpcode: 1560 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1561 break; 1562 case BitcodeConstant::ConstantVectorOpcode: 1563 C = ConstantVector::get(ConstOps); 1564 break; 1565 case Instruction::ICmp: 1566 case Instruction::FCmp: 1567 C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]); 1568 break; 1569 case Instruction::GetElementPtr: 1570 C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0], 1571 ArrayRef(ConstOps).drop_front(), 1572 BC->Flags, BC->getInRangeIndex()); 1573 break; 1574 case Instruction::ExtractElement: 1575 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1576 break; 1577 case Instruction::InsertElement: 1578 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1579 ConstOps[2]); 1580 break; 1581 case Instruction::ShuffleVector: { 1582 SmallVector<int, 16> Mask; 1583 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1584 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1585 break; 1586 } 1587 default: 1588 llvm_unreachable("Unhandled bitcode constant"); 1589 } 1590 } 1591 1592 // Cache resolved constant. 1593 ValueList.replaceValueWithoutRAUW(ValID, C); 1594 MaterializedValues.insert({ValID, C}); 1595 Worklist.pop_back(); 1596 continue; 1597 } 1598 1599 if (!InsertBB) 1600 return error(Twine("Value referenced by initializer is an unsupported " 1601 "constant expression of type ") + 1602 BC->getOpcodeName()); 1603 1604 // Materialize as instructions if necessary. 1605 Instruction *I; 1606 if (Instruction::isCast(BC->Opcode)) { 1607 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1608 BC->getType(), "constexpr", InsertBB); 1609 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1610 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1611 "constexpr", InsertBB); 1612 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1613 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1614 Ops[1], "constexpr", InsertBB); 1615 if (isa<OverflowingBinaryOperator>(I)) { 1616 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1617 I->setHasNoSignedWrap(); 1618 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1619 I->setHasNoUnsignedWrap(); 1620 } 1621 if (isa<PossiblyExactOperator>(I) && 1622 (BC->Flags & PossiblyExactOperator::IsExact)) 1623 I->setIsExact(); 1624 } else { 1625 switch (BC->Opcode) { 1626 case BitcodeConstant::ConstantVectorOpcode: { 1627 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1628 Value *V = PoisonValue::get(BC->getType()); 1629 for (auto Pair : enumerate(Ops)) { 1630 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1631 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1632 InsertBB); 1633 } 1634 I = cast<Instruction>(V); 1635 break; 1636 } 1637 case BitcodeConstant::ConstantStructOpcode: 1638 case BitcodeConstant::ConstantArrayOpcode: { 1639 Value *V = PoisonValue::get(BC->getType()); 1640 for (auto Pair : enumerate(Ops)) 1641 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1642 "constexpr.ins", InsertBB); 1643 I = cast<Instruction>(V); 1644 break; 1645 } 1646 case Instruction::ICmp: 1647 case Instruction::FCmp: 1648 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1649 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1650 "constexpr", InsertBB); 1651 break; 1652 case Instruction::GetElementPtr: 1653 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1654 ArrayRef(Ops).drop_front(), "constexpr", 1655 InsertBB); 1656 if (BC->Flags) 1657 cast<GetElementPtrInst>(I)->setIsInBounds(); 1658 break; 1659 case Instruction::Select: 1660 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1661 break; 1662 case Instruction::ExtractElement: 1663 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1664 break; 1665 case Instruction::InsertElement: 1666 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1667 InsertBB); 1668 break; 1669 case Instruction::ShuffleVector: 1670 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1671 InsertBB); 1672 break; 1673 default: 1674 llvm_unreachable("Unhandled bitcode constant"); 1675 } 1676 } 1677 1678 MaterializedValues.insert({ValID, I}); 1679 Worklist.pop_back(); 1680 } 1681 1682 return MaterializedValues[StartValID]; 1683 } 1684 1685 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1686 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1687 if (!MaybeV) 1688 return MaybeV.takeError(); 1689 1690 // Result must be Constant if InsertBB is nullptr. 1691 return cast<Constant>(MaybeV.get()); 1692 } 1693 1694 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1695 StringRef Name) { 1696 auto *Ret = StructType::create(Context, Name); 1697 IdentifiedStructTypes.push_back(Ret); 1698 return Ret; 1699 } 1700 1701 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1702 auto *Ret = StructType::create(Context); 1703 IdentifiedStructTypes.push_back(Ret); 1704 return Ret; 1705 } 1706 1707 //===----------------------------------------------------------------------===// 1708 // Functions for parsing blocks from the bitcode file 1709 //===----------------------------------------------------------------------===// 1710 1711 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1712 switch (Val) { 1713 case Attribute::EndAttrKinds: 1714 case Attribute::EmptyKey: 1715 case Attribute::TombstoneKey: 1716 llvm_unreachable("Synthetic enumerators which should never get here"); 1717 1718 case Attribute::None: return 0; 1719 case Attribute::ZExt: return 1 << 0; 1720 case Attribute::SExt: return 1 << 1; 1721 case Attribute::NoReturn: return 1 << 2; 1722 case Attribute::InReg: return 1 << 3; 1723 case Attribute::StructRet: return 1 << 4; 1724 case Attribute::NoUnwind: return 1 << 5; 1725 case Attribute::NoAlias: return 1 << 6; 1726 case Attribute::ByVal: return 1 << 7; 1727 case Attribute::Nest: return 1 << 8; 1728 case Attribute::ReadNone: return 1 << 9; 1729 case Attribute::ReadOnly: return 1 << 10; 1730 case Attribute::NoInline: return 1 << 11; 1731 case Attribute::AlwaysInline: return 1 << 12; 1732 case Attribute::OptimizeForSize: return 1 << 13; 1733 case Attribute::StackProtect: return 1 << 14; 1734 case Attribute::StackProtectReq: return 1 << 15; 1735 case Attribute::Alignment: return 31 << 16; 1736 case Attribute::NoCapture: return 1 << 21; 1737 case Attribute::NoRedZone: return 1 << 22; 1738 case Attribute::NoImplicitFloat: return 1 << 23; 1739 case Attribute::Naked: return 1 << 24; 1740 case Attribute::InlineHint: return 1 << 25; 1741 case Attribute::StackAlignment: return 7 << 26; 1742 case Attribute::ReturnsTwice: return 1 << 29; 1743 case Attribute::UWTable: return 1 << 30; 1744 case Attribute::NonLazyBind: return 1U << 31; 1745 case Attribute::SanitizeAddress: return 1ULL << 32; 1746 case Attribute::MinSize: return 1ULL << 33; 1747 case Attribute::NoDuplicate: return 1ULL << 34; 1748 case Attribute::StackProtectStrong: return 1ULL << 35; 1749 case Attribute::SanitizeThread: return 1ULL << 36; 1750 case Attribute::SanitizeMemory: return 1ULL << 37; 1751 case Attribute::NoBuiltin: return 1ULL << 38; 1752 case Attribute::Returned: return 1ULL << 39; 1753 case Attribute::Cold: return 1ULL << 40; 1754 case Attribute::Builtin: return 1ULL << 41; 1755 case Attribute::OptimizeNone: return 1ULL << 42; 1756 case Attribute::InAlloca: return 1ULL << 43; 1757 case Attribute::NonNull: return 1ULL << 44; 1758 case Attribute::JumpTable: return 1ULL << 45; 1759 case Attribute::Convergent: return 1ULL << 46; 1760 case Attribute::SafeStack: return 1ULL << 47; 1761 case Attribute::NoRecurse: return 1ULL << 48; 1762 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1763 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1764 case Attribute::SwiftSelf: return 1ULL << 51; 1765 case Attribute::SwiftError: return 1ULL << 52; 1766 case Attribute::WriteOnly: return 1ULL << 53; 1767 case Attribute::Speculatable: return 1ULL << 54; 1768 case Attribute::StrictFP: return 1ULL << 55; 1769 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1770 case Attribute::NoCfCheck: return 1ULL << 57; 1771 case Attribute::OptForFuzzing: return 1ULL << 58; 1772 case Attribute::ShadowCallStack: return 1ULL << 59; 1773 case Attribute::SpeculativeLoadHardening: 1774 return 1ULL << 60; 1775 case Attribute::ImmArg: 1776 return 1ULL << 61; 1777 case Attribute::WillReturn: 1778 return 1ULL << 62; 1779 case Attribute::NoFree: 1780 return 1ULL << 63; 1781 default: 1782 // Other attributes are not supported in the raw format, 1783 // as we ran out of space. 1784 return 0; 1785 } 1786 llvm_unreachable("Unsupported attribute type"); 1787 } 1788 1789 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1790 if (!Val) return; 1791 1792 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1793 I = Attribute::AttrKind(I + 1)) { 1794 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1795 if (I == Attribute::Alignment) 1796 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1797 else if (I == Attribute::StackAlignment) 1798 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1799 else if (Attribute::isTypeAttrKind(I)) 1800 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1801 else 1802 B.addAttribute(I); 1803 } 1804 } 1805 } 1806 1807 /// This fills an AttrBuilder object with the LLVM attributes that have 1808 /// been decoded from the given integer. This function must stay in sync with 1809 /// 'encodeLLVMAttributesForBitcode'. 1810 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1811 uint64_t EncodedAttrs, 1812 uint64_t AttrIdx) { 1813 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1814 // the bits above 31 down by 11 bits. 1815 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1816 assert((!Alignment || isPowerOf2_32(Alignment)) && 1817 "Alignment must be a power of two."); 1818 1819 if (Alignment) 1820 B.addAlignmentAttr(Alignment); 1821 1822 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1823 (EncodedAttrs & 0xffff); 1824 1825 if (AttrIdx == AttributeList::FunctionIndex) { 1826 // Upgrade old memory attributes. 1827 MemoryEffects ME = MemoryEffects::unknown(); 1828 if (Attrs & (1ULL << 9)) { 1829 // ReadNone 1830 Attrs &= ~(1ULL << 9); 1831 ME &= MemoryEffects::none(); 1832 } 1833 if (Attrs & (1ULL << 10)) { 1834 // ReadOnly 1835 Attrs &= ~(1ULL << 10); 1836 ME &= MemoryEffects::readOnly(); 1837 } 1838 if (Attrs & (1ULL << 49)) { 1839 // InaccessibleMemOnly 1840 Attrs &= ~(1ULL << 49); 1841 ME &= MemoryEffects::inaccessibleMemOnly(); 1842 } 1843 if (Attrs & (1ULL << 50)) { 1844 // InaccessibleMemOrArgMemOnly 1845 Attrs &= ~(1ULL << 50); 1846 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1847 } 1848 if (Attrs & (1ULL << 53)) { 1849 // WriteOnly 1850 Attrs &= ~(1ULL << 53); 1851 ME &= MemoryEffects::writeOnly(); 1852 } 1853 if (ME != MemoryEffects::unknown()) 1854 B.addMemoryAttr(ME); 1855 } 1856 1857 addRawAttributeValue(B, Attrs); 1858 } 1859 1860 Error BitcodeReader::parseAttributeBlock() { 1861 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1862 return Err; 1863 1864 if (!MAttributes.empty()) 1865 return error("Invalid multiple blocks"); 1866 1867 SmallVector<uint64_t, 64> Record; 1868 1869 SmallVector<AttributeList, 8> Attrs; 1870 1871 // Read all the records. 1872 while (true) { 1873 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1874 if (!MaybeEntry) 1875 return MaybeEntry.takeError(); 1876 BitstreamEntry Entry = MaybeEntry.get(); 1877 1878 switch (Entry.Kind) { 1879 case BitstreamEntry::SubBlock: // Handled for us already. 1880 case BitstreamEntry::Error: 1881 return error("Malformed block"); 1882 case BitstreamEntry::EndBlock: 1883 return Error::success(); 1884 case BitstreamEntry::Record: 1885 // The interesting case. 1886 break; 1887 } 1888 1889 // Read a record. 1890 Record.clear(); 1891 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1892 if (!MaybeRecord) 1893 return MaybeRecord.takeError(); 1894 switch (MaybeRecord.get()) { 1895 default: // Default behavior: ignore. 1896 break; 1897 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1898 // Deprecated, but still needed to read old bitcode files. 1899 if (Record.size() & 1) 1900 return error("Invalid parameter attribute record"); 1901 1902 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1903 AttrBuilder B(Context); 1904 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 1905 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1906 } 1907 1908 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1909 Attrs.clear(); 1910 break; 1911 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1912 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1913 Attrs.push_back(MAttributeGroups[Record[i]]); 1914 1915 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1916 Attrs.clear(); 1917 break; 1918 } 1919 } 1920 } 1921 1922 // Returns Attribute::None on unrecognized codes. 1923 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1924 switch (Code) { 1925 default: 1926 return Attribute::None; 1927 case bitc::ATTR_KIND_ALIGNMENT: 1928 return Attribute::Alignment; 1929 case bitc::ATTR_KIND_ALWAYS_INLINE: 1930 return Attribute::AlwaysInline; 1931 case bitc::ATTR_KIND_BUILTIN: 1932 return Attribute::Builtin; 1933 case bitc::ATTR_KIND_BY_VAL: 1934 return Attribute::ByVal; 1935 case bitc::ATTR_KIND_IN_ALLOCA: 1936 return Attribute::InAlloca; 1937 case bitc::ATTR_KIND_COLD: 1938 return Attribute::Cold; 1939 case bitc::ATTR_KIND_CONVERGENT: 1940 return Attribute::Convergent; 1941 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1942 return Attribute::DisableSanitizerInstrumentation; 1943 case bitc::ATTR_KIND_ELEMENTTYPE: 1944 return Attribute::ElementType; 1945 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 1946 return Attribute::FnRetThunkExtern; 1947 case bitc::ATTR_KIND_INLINE_HINT: 1948 return Attribute::InlineHint; 1949 case bitc::ATTR_KIND_IN_REG: 1950 return Attribute::InReg; 1951 case bitc::ATTR_KIND_JUMP_TABLE: 1952 return Attribute::JumpTable; 1953 case bitc::ATTR_KIND_MEMORY: 1954 return Attribute::Memory; 1955 case bitc::ATTR_KIND_NOFPCLASS: 1956 return Attribute::NoFPClass; 1957 case bitc::ATTR_KIND_MIN_SIZE: 1958 return Attribute::MinSize; 1959 case bitc::ATTR_KIND_NAKED: 1960 return Attribute::Naked; 1961 case bitc::ATTR_KIND_NEST: 1962 return Attribute::Nest; 1963 case bitc::ATTR_KIND_NO_ALIAS: 1964 return Attribute::NoAlias; 1965 case bitc::ATTR_KIND_NO_BUILTIN: 1966 return Attribute::NoBuiltin; 1967 case bitc::ATTR_KIND_NO_CALLBACK: 1968 return Attribute::NoCallback; 1969 case bitc::ATTR_KIND_NO_CAPTURE: 1970 return Attribute::NoCapture; 1971 case bitc::ATTR_KIND_NO_DUPLICATE: 1972 return Attribute::NoDuplicate; 1973 case bitc::ATTR_KIND_NOFREE: 1974 return Attribute::NoFree; 1975 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1976 return Attribute::NoImplicitFloat; 1977 case bitc::ATTR_KIND_NO_INLINE: 1978 return Attribute::NoInline; 1979 case bitc::ATTR_KIND_NO_RECURSE: 1980 return Attribute::NoRecurse; 1981 case bitc::ATTR_KIND_NO_MERGE: 1982 return Attribute::NoMerge; 1983 case bitc::ATTR_KIND_NON_LAZY_BIND: 1984 return Attribute::NonLazyBind; 1985 case bitc::ATTR_KIND_NON_NULL: 1986 return Attribute::NonNull; 1987 case bitc::ATTR_KIND_DEREFERENCEABLE: 1988 return Attribute::Dereferenceable; 1989 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1990 return Attribute::DereferenceableOrNull; 1991 case bitc::ATTR_KIND_ALLOC_ALIGN: 1992 return Attribute::AllocAlign; 1993 case bitc::ATTR_KIND_ALLOC_KIND: 1994 return Attribute::AllocKind; 1995 case bitc::ATTR_KIND_ALLOC_SIZE: 1996 return Attribute::AllocSize; 1997 case bitc::ATTR_KIND_ALLOCATED_POINTER: 1998 return Attribute::AllocatedPointer; 1999 case bitc::ATTR_KIND_NO_RED_ZONE: 2000 return Attribute::NoRedZone; 2001 case bitc::ATTR_KIND_NO_RETURN: 2002 return Attribute::NoReturn; 2003 case bitc::ATTR_KIND_NOSYNC: 2004 return Attribute::NoSync; 2005 case bitc::ATTR_KIND_NOCF_CHECK: 2006 return Attribute::NoCfCheck; 2007 case bitc::ATTR_KIND_NO_PROFILE: 2008 return Attribute::NoProfile; 2009 case bitc::ATTR_KIND_SKIP_PROFILE: 2010 return Attribute::SkipProfile; 2011 case bitc::ATTR_KIND_NO_UNWIND: 2012 return Attribute::NoUnwind; 2013 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 2014 return Attribute::NoSanitizeBounds; 2015 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 2016 return Attribute::NoSanitizeCoverage; 2017 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 2018 return Attribute::NullPointerIsValid; 2019 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING: 2020 return Attribute::OptimizeForDebugging; 2021 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 2022 return Attribute::OptForFuzzing; 2023 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 2024 return Attribute::OptimizeForSize; 2025 case bitc::ATTR_KIND_OPTIMIZE_NONE: 2026 return Attribute::OptimizeNone; 2027 case bitc::ATTR_KIND_READ_NONE: 2028 return Attribute::ReadNone; 2029 case bitc::ATTR_KIND_READ_ONLY: 2030 return Attribute::ReadOnly; 2031 case bitc::ATTR_KIND_RETURNED: 2032 return Attribute::Returned; 2033 case bitc::ATTR_KIND_RETURNS_TWICE: 2034 return Attribute::ReturnsTwice; 2035 case bitc::ATTR_KIND_S_EXT: 2036 return Attribute::SExt; 2037 case bitc::ATTR_KIND_SPECULATABLE: 2038 return Attribute::Speculatable; 2039 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2040 return Attribute::StackAlignment; 2041 case bitc::ATTR_KIND_STACK_PROTECT: 2042 return Attribute::StackProtect; 2043 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2044 return Attribute::StackProtectReq; 2045 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2046 return Attribute::StackProtectStrong; 2047 case bitc::ATTR_KIND_SAFESTACK: 2048 return Attribute::SafeStack; 2049 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2050 return Attribute::ShadowCallStack; 2051 case bitc::ATTR_KIND_STRICT_FP: 2052 return Attribute::StrictFP; 2053 case bitc::ATTR_KIND_STRUCT_RET: 2054 return Attribute::StructRet; 2055 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2056 return Attribute::SanitizeAddress; 2057 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2058 return Attribute::SanitizeHWAddress; 2059 case bitc::ATTR_KIND_SANITIZE_THREAD: 2060 return Attribute::SanitizeThread; 2061 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2062 return Attribute::SanitizeMemory; 2063 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2064 return Attribute::SpeculativeLoadHardening; 2065 case bitc::ATTR_KIND_SWIFT_ERROR: 2066 return Attribute::SwiftError; 2067 case bitc::ATTR_KIND_SWIFT_SELF: 2068 return Attribute::SwiftSelf; 2069 case bitc::ATTR_KIND_SWIFT_ASYNC: 2070 return Attribute::SwiftAsync; 2071 case bitc::ATTR_KIND_UW_TABLE: 2072 return Attribute::UWTable; 2073 case bitc::ATTR_KIND_VSCALE_RANGE: 2074 return Attribute::VScaleRange; 2075 case bitc::ATTR_KIND_WILLRETURN: 2076 return Attribute::WillReturn; 2077 case bitc::ATTR_KIND_WRITEONLY: 2078 return Attribute::WriteOnly; 2079 case bitc::ATTR_KIND_Z_EXT: 2080 return Attribute::ZExt; 2081 case bitc::ATTR_KIND_IMMARG: 2082 return Attribute::ImmArg; 2083 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2084 return Attribute::SanitizeMemTag; 2085 case bitc::ATTR_KIND_PREALLOCATED: 2086 return Attribute::Preallocated; 2087 case bitc::ATTR_KIND_NOUNDEF: 2088 return Attribute::NoUndef; 2089 case bitc::ATTR_KIND_BYREF: 2090 return Attribute::ByRef; 2091 case bitc::ATTR_KIND_MUSTPROGRESS: 2092 return Attribute::MustProgress; 2093 case bitc::ATTR_KIND_HOT: 2094 return Attribute::Hot; 2095 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2096 return Attribute::PresplitCoroutine; 2097 case bitc::ATTR_KIND_WRITABLE: 2098 return Attribute::Writable; 2099 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE: 2100 return Attribute::CoroDestroyOnlyWhenComplete; 2101 case bitc::ATTR_KIND_DEAD_ON_UNWIND: 2102 return Attribute::DeadOnUnwind; 2103 } 2104 } 2105 2106 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2107 MaybeAlign &Alignment) { 2108 // Note: Alignment in bitcode files is incremented by 1, so that zero 2109 // can be used for default alignment. 2110 if (Exponent > Value::MaxAlignmentExponent + 1) 2111 return error("Invalid alignment value"); 2112 Alignment = decodeMaybeAlign(Exponent); 2113 return Error::success(); 2114 } 2115 2116 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2117 *Kind = getAttrFromCode(Code); 2118 if (*Kind == Attribute::None) 2119 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2120 return Error::success(); 2121 } 2122 2123 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2124 switch (EncodedKind) { 2125 case bitc::ATTR_KIND_READ_NONE: 2126 ME &= MemoryEffects::none(); 2127 return true; 2128 case bitc::ATTR_KIND_READ_ONLY: 2129 ME &= MemoryEffects::readOnly(); 2130 return true; 2131 case bitc::ATTR_KIND_WRITEONLY: 2132 ME &= MemoryEffects::writeOnly(); 2133 return true; 2134 case bitc::ATTR_KIND_ARGMEMONLY: 2135 ME &= MemoryEffects::argMemOnly(); 2136 return true; 2137 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2138 ME &= MemoryEffects::inaccessibleMemOnly(); 2139 return true; 2140 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2141 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2142 return true; 2143 default: 2144 return false; 2145 } 2146 } 2147 2148 Error BitcodeReader::parseAttributeGroupBlock() { 2149 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2150 return Err; 2151 2152 if (!MAttributeGroups.empty()) 2153 return error("Invalid multiple blocks"); 2154 2155 SmallVector<uint64_t, 64> Record; 2156 2157 // Read all the records. 2158 while (true) { 2159 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2160 if (!MaybeEntry) 2161 return MaybeEntry.takeError(); 2162 BitstreamEntry Entry = MaybeEntry.get(); 2163 2164 switch (Entry.Kind) { 2165 case BitstreamEntry::SubBlock: // Handled for us already. 2166 case BitstreamEntry::Error: 2167 return error("Malformed block"); 2168 case BitstreamEntry::EndBlock: 2169 return Error::success(); 2170 case BitstreamEntry::Record: 2171 // The interesting case. 2172 break; 2173 } 2174 2175 // Read a record. 2176 Record.clear(); 2177 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2178 if (!MaybeRecord) 2179 return MaybeRecord.takeError(); 2180 switch (MaybeRecord.get()) { 2181 default: // Default behavior: ignore. 2182 break; 2183 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2184 if (Record.size() < 3) 2185 return error("Invalid grp record"); 2186 2187 uint64_t GrpID = Record[0]; 2188 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2189 2190 AttrBuilder B(Context); 2191 MemoryEffects ME = MemoryEffects::unknown(); 2192 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2193 if (Record[i] == 0) { // Enum attribute 2194 Attribute::AttrKind Kind; 2195 uint64_t EncodedKind = Record[++i]; 2196 if (Idx == AttributeList::FunctionIndex && 2197 upgradeOldMemoryAttribute(ME, EncodedKind)) 2198 continue; 2199 2200 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2201 return Err; 2202 2203 // Upgrade old-style byval attribute to one with a type, even if it's 2204 // nullptr. We will have to insert the real type when we associate 2205 // this AttributeList with a function. 2206 if (Kind == Attribute::ByVal) 2207 B.addByValAttr(nullptr); 2208 else if (Kind == Attribute::StructRet) 2209 B.addStructRetAttr(nullptr); 2210 else if (Kind == Attribute::InAlloca) 2211 B.addInAllocaAttr(nullptr); 2212 else if (Kind == Attribute::UWTable) 2213 B.addUWTableAttr(UWTableKind::Default); 2214 else if (Attribute::isEnumAttrKind(Kind)) 2215 B.addAttribute(Kind); 2216 else 2217 return error("Not an enum attribute"); 2218 } else if (Record[i] == 1) { // Integer attribute 2219 Attribute::AttrKind Kind; 2220 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2221 return Err; 2222 if (!Attribute::isIntAttrKind(Kind)) 2223 return error("Not an int attribute"); 2224 if (Kind == Attribute::Alignment) 2225 B.addAlignmentAttr(Record[++i]); 2226 else if (Kind == Attribute::StackAlignment) 2227 B.addStackAlignmentAttr(Record[++i]); 2228 else if (Kind == Attribute::Dereferenceable) 2229 B.addDereferenceableAttr(Record[++i]); 2230 else if (Kind == Attribute::DereferenceableOrNull) 2231 B.addDereferenceableOrNullAttr(Record[++i]); 2232 else if (Kind == Attribute::AllocSize) 2233 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2234 else if (Kind == Attribute::VScaleRange) 2235 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2236 else if (Kind == Attribute::UWTable) 2237 B.addUWTableAttr(UWTableKind(Record[++i])); 2238 else if (Kind == Attribute::AllocKind) 2239 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2240 else if (Kind == Attribute::Memory) 2241 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2242 else if (Kind == Attribute::NoFPClass) 2243 B.addNoFPClassAttr( 2244 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2245 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2246 bool HasValue = (Record[i++] == 4); 2247 SmallString<64> KindStr; 2248 SmallString<64> ValStr; 2249 2250 while (Record[i] != 0 && i != e) 2251 KindStr += Record[i++]; 2252 assert(Record[i] == 0 && "Kind string not null terminated"); 2253 2254 if (HasValue) { 2255 // Has a value associated with it. 2256 ++i; // Skip the '0' that terminates the "kind" string. 2257 while (Record[i] != 0 && i != e) 2258 ValStr += Record[i++]; 2259 assert(Record[i] == 0 && "Value string not null terminated"); 2260 } 2261 2262 B.addAttribute(KindStr.str(), ValStr.str()); 2263 } else if (Record[i] == 5 || Record[i] == 6) { 2264 bool HasType = Record[i] == 6; 2265 Attribute::AttrKind Kind; 2266 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2267 return Err; 2268 if (!Attribute::isTypeAttrKind(Kind)) 2269 return error("Not a type attribute"); 2270 2271 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2272 } else { 2273 return error("Invalid attribute group entry"); 2274 } 2275 } 2276 2277 if (ME != MemoryEffects::unknown()) 2278 B.addMemoryAttr(ME); 2279 2280 UpgradeAttributes(B); 2281 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2282 break; 2283 } 2284 } 2285 } 2286 } 2287 2288 Error BitcodeReader::parseTypeTable() { 2289 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2290 return Err; 2291 2292 return parseTypeTableBody(); 2293 } 2294 2295 Error BitcodeReader::parseTypeTableBody() { 2296 if (!TypeList.empty()) 2297 return error("Invalid multiple blocks"); 2298 2299 SmallVector<uint64_t, 64> Record; 2300 unsigned NumRecords = 0; 2301 2302 SmallString<64> TypeName; 2303 2304 // Read all the records for this type table. 2305 while (true) { 2306 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2307 if (!MaybeEntry) 2308 return MaybeEntry.takeError(); 2309 BitstreamEntry Entry = MaybeEntry.get(); 2310 2311 switch (Entry.Kind) { 2312 case BitstreamEntry::SubBlock: // Handled for us already. 2313 case BitstreamEntry::Error: 2314 return error("Malformed block"); 2315 case BitstreamEntry::EndBlock: 2316 if (NumRecords != TypeList.size()) 2317 return error("Malformed block"); 2318 return Error::success(); 2319 case BitstreamEntry::Record: 2320 // The interesting case. 2321 break; 2322 } 2323 2324 // Read a record. 2325 Record.clear(); 2326 Type *ResultTy = nullptr; 2327 SmallVector<unsigned> ContainedIDs; 2328 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2329 if (!MaybeRecord) 2330 return MaybeRecord.takeError(); 2331 switch (MaybeRecord.get()) { 2332 default: 2333 return error("Invalid value"); 2334 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2335 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2336 // type list. This allows us to reserve space. 2337 if (Record.empty()) 2338 return error("Invalid numentry record"); 2339 TypeList.resize(Record[0]); 2340 continue; 2341 case bitc::TYPE_CODE_VOID: // VOID 2342 ResultTy = Type::getVoidTy(Context); 2343 break; 2344 case bitc::TYPE_CODE_HALF: // HALF 2345 ResultTy = Type::getHalfTy(Context); 2346 break; 2347 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2348 ResultTy = Type::getBFloatTy(Context); 2349 break; 2350 case bitc::TYPE_CODE_FLOAT: // FLOAT 2351 ResultTy = Type::getFloatTy(Context); 2352 break; 2353 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2354 ResultTy = Type::getDoubleTy(Context); 2355 break; 2356 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2357 ResultTy = Type::getX86_FP80Ty(Context); 2358 break; 2359 case bitc::TYPE_CODE_FP128: // FP128 2360 ResultTy = Type::getFP128Ty(Context); 2361 break; 2362 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2363 ResultTy = Type::getPPC_FP128Ty(Context); 2364 break; 2365 case bitc::TYPE_CODE_LABEL: // LABEL 2366 ResultTy = Type::getLabelTy(Context); 2367 break; 2368 case bitc::TYPE_CODE_METADATA: // METADATA 2369 ResultTy = Type::getMetadataTy(Context); 2370 break; 2371 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2372 ResultTy = Type::getX86_MMXTy(Context); 2373 break; 2374 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2375 ResultTy = Type::getX86_AMXTy(Context); 2376 break; 2377 case bitc::TYPE_CODE_TOKEN: // TOKEN 2378 ResultTy = Type::getTokenTy(Context); 2379 break; 2380 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2381 if (Record.empty()) 2382 return error("Invalid integer record"); 2383 2384 uint64_t NumBits = Record[0]; 2385 if (NumBits < IntegerType::MIN_INT_BITS || 2386 NumBits > IntegerType::MAX_INT_BITS) 2387 return error("Bitwidth for integer type out of range"); 2388 ResultTy = IntegerType::get(Context, NumBits); 2389 break; 2390 } 2391 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2392 // [pointee type, address space] 2393 if (Record.empty()) 2394 return error("Invalid pointer record"); 2395 unsigned AddressSpace = 0; 2396 if (Record.size() == 2) 2397 AddressSpace = Record[1]; 2398 ResultTy = getTypeByID(Record[0]); 2399 if (!ResultTy || 2400 !PointerType::isValidElementType(ResultTy)) 2401 return error("Invalid type"); 2402 ContainedIDs.push_back(Record[0]); 2403 ResultTy = PointerType::get(ResultTy, AddressSpace); 2404 break; 2405 } 2406 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2407 if (Record.size() != 1) 2408 return error("Invalid opaque pointer record"); 2409 unsigned AddressSpace = Record[0]; 2410 ResultTy = PointerType::get(Context, AddressSpace); 2411 break; 2412 } 2413 case bitc::TYPE_CODE_FUNCTION_OLD: { 2414 // Deprecated, but still needed to read old bitcode files. 2415 // FUNCTION: [vararg, attrid, retty, paramty x N] 2416 if (Record.size() < 3) 2417 return error("Invalid function record"); 2418 SmallVector<Type*, 8> ArgTys; 2419 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2420 if (Type *T = getTypeByID(Record[i])) 2421 ArgTys.push_back(T); 2422 else 2423 break; 2424 } 2425 2426 ResultTy = getTypeByID(Record[2]); 2427 if (!ResultTy || ArgTys.size() < Record.size()-3) 2428 return error("Invalid type"); 2429 2430 ContainedIDs.append(Record.begin() + 2, Record.end()); 2431 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2432 break; 2433 } 2434 case bitc::TYPE_CODE_FUNCTION: { 2435 // FUNCTION: [vararg, retty, paramty x N] 2436 if (Record.size() < 2) 2437 return error("Invalid function record"); 2438 SmallVector<Type*, 8> ArgTys; 2439 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2440 if (Type *T = getTypeByID(Record[i])) { 2441 if (!FunctionType::isValidArgumentType(T)) 2442 return error("Invalid function argument type"); 2443 ArgTys.push_back(T); 2444 } 2445 else 2446 break; 2447 } 2448 2449 ResultTy = getTypeByID(Record[1]); 2450 if (!ResultTy || ArgTys.size() < Record.size()-2) 2451 return error("Invalid type"); 2452 2453 ContainedIDs.append(Record.begin() + 1, Record.end()); 2454 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2455 break; 2456 } 2457 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2458 if (Record.empty()) 2459 return error("Invalid anon struct record"); 2460 SmallVector<Type*, 8> EltTys; 2461 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2462 if (Type *T = getTypeByID(Record[i])) 2463 EltTys.push_back(T); 2464 else 2465 break; 2466 } 2467 if (EltTys.size() != Record.size()-1) 2468 return error("Invalid type"); 2469 ContainedIDs.append(Record.begin() + 1, Record.end()); 2470 ResultTy = StructType::get(Context, EltTys, Record[0]); 2471 break; 2472 } 2473 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2474 if (convertToString(Record, 0, TypeName)) 2475 return error("Invalid struct name record"); 2476 continue; 2477 2478 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2479 if (Record.empty()) 2480 return error("Invalid named struct record"); 2481 2482 if (NumRecords >= TypeList.size()) 2483 return error("Invalid TYPE table"); 2484 2485 // Check to see if this was forward referenced, if so fill in the temp. 2486 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2487 if (Res) { 2488 Res->setName(TypeName); 2489 TypeList[NumRecords] = nullptr; 2490 } else // Otherwise, create a new struct. 2491 Res = createIdentifiedStructType(Context, TypeName); 2492 TypeName.clear(); 2493 2494 SmallVector<Type*, 8> EltTys; 2495 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2496 if (Type *T = getTypeByID(Record[i])) 2497 EltTys.push_back(T); 2498 else 2499 break; 2500 } 2501 if (EltTys.size() != Record.size()-1) 2502 return error("Invalid named struct record"); 2503 Res->setBody(EltTys, Record[0]); 2504 ContainedIDs.append(Record.begin() + 1, Record.end()); 2505 ResultTy = Res; 2506 break; 2507 } 2508 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2509 if (Record.size() != 1) 2510 return error("Invalid opaque type record"); 2511 2512 if (NumRecords >= TypeList.size()) 2513 return error("Invalid TYPE table"); 2514 2515 // Check to see if this was forward referenced, if so fill in the temp. 2516 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2517 if (Res) { 2518 Res->setName(TypeName); 2519 TypeList[NumRecords] = nullptr; 2520 } else // Otherwise, create a new struct with no body. 2521 Res = createIdentifiedStructType(Context, TypeName); 2522 TypeName.clear(); 2523 ResultTy = Res; 2524 break; 2525 } 2526 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2527 if (Record.size() < 1) 2528 return error("Invalid target extension type record"); 2529 2530 if (NumRecords >= TypeList.size()) 2531 return error("Invalid TYPE table"); 2532 2533 if (Record[0] >= Record.size()) 2534 return error("Too many type parameters"); 2535 2536 unsigned NumTys = Record[0]; 2537 SmallVector<Type *, 4> TypeParams; 2538 SmallVector<unsigned, 8> IntParams; 2539 for (unsigned i = 0; i < NumTys; i++) { 2540 if (Type *T = getTypeByID(Record[i + 1])) 2541 TypeParams.push_back(T); 2542 else 2543 return error("Invalid type"); 2544 } 2545 2546 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2547 if (Record[i] > UINT_MAX) 2548 return error("Integer parameter too large"); 2549 IntParams.push_back(Record[i]); 2550 } 2551 ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams); 2552 TypeName.clear(); 2553 break; 2554 } 2555 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2556 if (Record.size() < 2) 2557 return error("Invalid array type record"); 2558 ResultTy = getTypeByID(Record[1]); 2559 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2560 return error("Invalid type"); 2561 ContainedIDs.push_back(Record[1]); 2562 ResultTy = ArrayType::get(ResultTy, Record[0]); 2563 break; 2564 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2565 // [numelts, eltty, scalable] 2566 if (Record.size() < 2) 2567 return error("Invalid vector type record"); 2568 if (Record[0] == 0) 2569 return error("Invalid vector length"); 2570 ResultTy = getTypeByID(Record[1]); 2571 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2572 return error("Invalid type"); 2573 bool Scalable = Record.size() > 2 ? Record[2] : false; 2574 ContainedIDs.push_back(Record[1]); 2575 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2576 break; 2577 } 2578 2579 if (NumRecords >= TypeList.size()) 2580 return error("Invalid TYPE table"); 2581 if (TypeList[NumRecords]) 2582 return error( 2583 "Invalid TYPE table: Only named structs can be forward referenced"); 2584 assert(ResultTy && "Didn't read a type?"); 2585 TypeList[NumRecords] = ResultTy; 2586 if (!ContainedIDs.empty()) 2587 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2588 ++NumRecords; 2589 } 2590 } 2591 2592 Error BitcodeReader::parseOperandBundleTags() { 2593 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2594 return Err; 2595 2596 if (!BundleTags.empty()) 2597 return error("Invalid multiple blocks"); 2598 2599 SmallVector<uint64_t, 64> Record; 2600 2601 while (true) { 2602 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2603 if (!MaybeEntry) 2604 return MaybeEntry.takeError(); 2605 BitstreamEntry Entry = MaybeEntry.get(); 2606 2607 switch (Entry.Kind) { 2608 case BitstreamEntry::SubBlock: // Handled for us already. 2609 case BitstreamEntry::Error: 2610 return error("Malformed block"); 2611 case BitstreamEntry::EndBlock: 2612 return Error::success(); 2613 case BitstreamEntry::Record: 2614 // The interesting case. 2615 break; 2616 } 2617 2618 // Tags are implicitly mapped to integers by their order. 2619 2620 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2621 if (!MaybeRecord) 2622 return MaybeRecord.takeError(); 2623 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2624 return error("Invalid operand bundle record"); 2625 2626 // OPERAND_BUNDLE_TAG: [strchr x N] 2627 BundleTags.emplace_back(); 2628 if (convertToString(Record, 0, BundleTags.back())) 2629 return error("Invalid operand bundle record"); 2630 Record.clear(); 2631 } 2632 } 2633 2634 Error BitcodeReader::parseSyncScopeNames() { 2635 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2636 return Err; 2637 2638 if (!SSIDs.empty()) 2639 return error("Invalid multiple synchronization scope names blocks"); 2640 2641 SmallVector<uint64_t, 64> Record; 2642 while (true) { 2643 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2644 if (!MaybeEntry) 2645 return MaybeEntry.takeError(); 2646 BitstreamEntry Entry = MaybeEntry.get(); 2647 2648 switch (Entry.Kind) { 2649 case BitstreamEntry::SubBlock: // Handled for us already. 2650 case BitstreamEntry::Error: 2651 return error("Malformed block"); 2652 case BitstreamEntry::EndBlock: 2653 if (SSIDs.empty()) 2654 return error("Invalid empty synchronization scope names block"); 2655 return Error::success(); 2656 case BitstreamEntry::Record: 2657 // The interesting case. 2658 break; 2659 } 2660 2661 // Synchronization scope names are implicitly mapped to synchronization 2662 // scope IDs by their order. 2663 2664 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2665 if (!MaybeRecord) 2666 return MaybeRecord.takeError(); 2667 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2668 return error("Invalid sync scope record"); 2669 2670 SmallString<16> SSN; 2671 if (convertToString(Record, 0, SSN)) 2672 return error("Invalid sync scope record"); 2673 2674 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2675 Record.clear(); 2676 } 2677 } 2678 2679 /// Associate a value with its name from the given index in the provided record. 2680 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2681 unsigned NameIndex, Triple &TT) { 2682 SmallString<128> ValueName; 2683 if (convertToString(Record, NameIndex, ValueName)) 2684 return error("Invalid record"); 2685 unsigned ValueID = Record[0]; 2686 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2687 return error("Invalid record"); 2688 Value *V = ValueList[ValueID]; 2689 2690 StringRef NameStr(ValueName.data(), ValueName.size()); 2691 if (NameStr.contains(0)) 2692 return error("Invalid value name"); 2693 V->setName(NameStr); 2694 auto *GO = dyn_cast<GlobalObject>(V); 2695 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2696 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2697 return V; 2698 } 2699 2700 /// Helper to note and return the current location, and jump to the given 2701 /// offset. 2702 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2703 BitstreamCursor &Stream) { 2704 // Save the current parsing location so we can jump back at the end 2705 // of the VST read. 2706 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2707 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2708 return std::move(JumpFailed); 2709 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2710 if (!MaybeEntry) 2711 return MaybeEntry.takeError(); 2712 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2713 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2714 return error("Expected value symbol table subblock"); 2715 return CurrentBit; 2716 } 2717 2718 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2719 Function *F, 2720 ArrayRef<uint64_t> Record) { 2721 // Note that we subtract 1 here because the offset is relative to one word 2722 // before the start of the identification or module block, which was 2723 // historically always the start of the regular bitcode header. 2724 uint64_t FuncWordOffset = Record[1] - 1; 2725 uint64_t FuncBitOffset = FuncWordOffset * 32; 2726 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2727 // Set the LastFunctionBlockBit to point to the last function block. 2728 // Later when parsing is resumed after function materialization, 2729 // we can simply skip that last function block. 2730 if (FuncBitOffset > LastFunctionBlockBit) 2731 LastFunctionBlockBit = FuncBitOffset; 2732 } 2733 2734 /// Read a new-style GlobalValue symbol table. 2735 Error BitcodeReader::parseGlobalValueSymbolTable() { 2736 unsigned FuncBitcodeOffsetDelta = 2737 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2738 2739 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2740 return Err; 2741 2742 SmallVector<uint64_t, 64> Record; 2743 while (true) { 2744 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2745 if (!MaybeEntry) 2746 return MaybeEntry.takeError(); 2747 BitstreamEntry Entry = MaybeEntry.get(); 2748 2749 switch (Entry.Kind) { 2750 case BitstreamEntry::SubBlock: 2751 case BitstreamEntry::Error: 2752 return error("Malformed block"); 2753 case BitstreamEntry::EndBlock: 2754 return Error::success(); 2755 case BitstreamEntry::Record: 2756 break; 2757 } 2758 2759 Record.clear(); 2760 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2761 if (!MaybeRecord) 2762 return MaybeRecord.takeError(); 2763 switch (MaybeRecord.get()) { 2764 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2765 unsigned ValueID = Record[0]; 2766 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2767 return error("Invalid value reference in symbol table"); 2768 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2769 cast<Function>(ValueList[ValueID]), Record); 2770 break; 2771 } 2772 } 2773 } 2774 } 2775 2776 /// Parse the value symbol table at either the current parsing location or 2777 /// at the given bit offset if provided. 2778 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2779 uint64_t CurrentBit; 2780 // Pass in the Offset to distinguish between calling for the module-level 2781 // VST (where we want to jump to the VST offset) and the function-level 2782 // VST (where we don't). 2783 if (Offset > 0) { 2784 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2785 if (!MaybeCurrentBit) 2786 return MaybeCurrentBit.takeError(); 2787 CurrentBit = MaybeCurrentBit.get(); 2788 // If this module uses a string table, read this as a module-level VST. 2789 if (UseStrtab) { 2790 if (Error Err = parseGlobalValueSymbolTable()) 2791 return Err; 2792 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2793 return JumpFailed; 2794 return Error::success(); 2795 } 2796 // Otherwise, the VST will be in a similar format to a function-level VST, 2797 // and will contain symbol names. 2798 } 2799 2800 // Compute the delta between the bitcode indices in the VST (the word offset 2801 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2802 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2803 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2804 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2805 // just before entering the VST subblock because: 1) the EnterSubBlock 2806 // changes the AbbrevID width; 2) the VST block is nested within the same 2807 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2808 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2809 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2810 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2811 unsigned FuncBitcodeOffsetDelta = 2812 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2813 2814 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2815 return Err; 2816 2817 SmallVector<uint64_t, 64> Record; 2818 2819 Triple TT(TheModule->getTargetTriple()); 2820 2821 // Read all the records for this value table. 2822 SmallString<128> ValueName; 2823 2824 while (true) { 2825 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2826 if (!MaybeEntry) 2827 return MaybeEntry.takeError(); 2828 BitstreamEntry Entry = MaybeEntry.get(); 2829 2830 switch (Entry.Kind) { 2831 case BitstreamEntry::SubBlock: // Handled for us already. 2832 case BitstreamEntry::Error: 2833 return error("Malformed block"); 2834 case BitstreamEntry::EndBlock: 2835 if (Offset > 0) 2836 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2837 return JumpFailed; 2838 return Error::success(); 2839 case BitstreamEntry::Record: 2840 // The interesting case. 2841 break; 2842 } 2843 2844 // Read a record. 2845 Record.clear(); 2846 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2847 if (!MaybeRecord) 2848 return MaybeRecord.takeError(); 2849 switch (MaybeRecord.get()) { 2850 default: // Default behavior: unknown type. 2851 break; 2852 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2853 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2854 if (Error Err = ValOrErr.takeError()) 2855 return Err; 2856 ValOrErr.get(); 2857 break; 2858 } 2859 case bitc::VST_CODE_FNENTRY: { 2860 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2861 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2862 if (Error Err = ValOrErr.takeError()) 2863 return Err; 2864 Value *V = ValOrErr.get(); 2865 2866 // Ignore function offsets emitted for aliases of functions in older 2867 // versions of LLVM. 2868 if (auto *F = dyn_cast<Function>(V)) 2869 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2870 break; 2871 } 2872 case bitc::VST_CODE_BBENTRY: { 2873 if (convertToString(Record, 1, ValueName)) 2874 return error("Invalid bbentry record"); 2875 BasicBlock *BB = getBasicBlock(Record[0]); 2876 if (!BB) 2877 return error("Invalid bbentry record"); 2878 2879 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2880 ValueName.clear(); 2881 break; 2882 } 2883 } 2884 } 2885 } 2886 2887 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2888 /// encoding. 2889 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2890 if ((V & 1) == 0) 2891 return V >> 1; 2892 if (V != 1) 2893 return -(V >> 1); 2894 // There is no such thing as -0 with integers. "-0" really means MININT. 2895 return 1ULL << 63; 2896 } 2897 2898 /// Resolve all of the initializers for global values and aliases that we can. 2899 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2900 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2901 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2902 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2903 2904 GlobalInitWorklist.swap(GlobalInits); 2905 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2906 FunctionOperandWorklist.swap(FunctionOperands); 2907 2908 while (!GlobalInitWorklist.empty()) { 2909 unsigned ValID = GlobalInitWorklist.back().second; 2910 if (ValID >= ValueList.size()) { 2911 // Not ready to resolve this yet, it requires something later in the file. 2912 GlobalInits.push_back(GlobalInitWorklist.back()); 2913 } else { 2914 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2915 if (!MaybeC) 2916 return MaybeC.takeError(); 2917 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 2918 } 2919 GlobalInitWorklist.pop_back(); 2920 } 2921 2922 while (!IndirectSymbolInitWorklist.empty()) { 2923 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2924 if (ValID >= ValueList.size()) { 2925 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2926 } else { 2927 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2928 if (!MaybeC) 2929 return MaybeC.takeError(); 2930 Constant *C = MaybeC.get(); 2931 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2932 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2933 if (C->getType() != GV->getType()) 2934 return error("Alias and aliasee types don't match"); 2935 GA->setAliasee(C); 2936 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2937 GI->setResolver(C); 2938 } else { 2939 return error("Expected an alias or an ifunc"); 2940 } 2941 } 2942 IndirectSymbolInitWorklist.pop_back(); 2943 } 2944 2945 while (!FunctionOperandWorklist.empty()) { 2946 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2947 if (Info.PersonalityFn) { 2948 unsigned ValID = Info.PersonalityFn - 1; 2949 if (ValID < ValueList.size()) { 2950 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2951 if (!MaybeC) 2952 return MaybeC.takeError(); 2953 Info.F->setPersonalityFn(MaybeC.get()); 2954 Info.PersonalityFn = 0; 2955 } 2956 } 2957 if (Info.Prefix) { 2958 unsigned ValID = Info.Prefix - 1; 2959 if (ValID < ValueList.size()) { 2960 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2961 if (!MaybeC) 2962 return MaybeC.takeError(); 2963 Info.F->setPrefixData(MaybeC.get()); 2964 Info.Prefix = 0; 2965 } 2966 } 2967 if (Info.Prologue) { 2968 unsigned ValID = Info.Prologue - 1; 2969 if (ValID < ValueList.size()) { 2970 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2971 if (!MaybeC) 2972 return MaybeC.takeError(); 2973 Info.F->setPrologueData(MaybeC.get()); 2974 Info.Prologue = 0; 2975 } 2976 } 2977 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2978 FunctionOperands.push_back(Info); 2979 FunctionOperandWorklist.pop_back(); 2980 } 2981 2982 return Error::success(); 2983 } 2984 2985 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2986 SmallVector<uint64_t, 8> Words(Vals.size()); 2987 transform(Vals, Words.begin(), 2988 BitcodeReader::decodeSignRotatedValue); 2989 2990 return APInt(TypeBits, Words); 2991 } 2992 2993 Error BitcodeReader::parseConstants() { 2994 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2995 return Err; 2996 2997 SmallVector<uint64_t, 64> Record; 2998 2999 // Read all the records for this value table. 3000 Type *CurTy = Type::getInt32Ty(Context); 3001 unsigned Int32TyID = getVirtualTypeID(CurTy); 3002 unsigned CurTyID = Int32TyID; 3003 Type *CurElemTy = nullptr; 3004 unsigned NextCstNo = ValueList.size(); 3005 3006 while (true) { 3007 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3008 if (!MaybeEntry) 3009 return MaybeEntry.takeError(); 3010 BitstreamEntry Entry = MaybeEntry.get(); 3011 3012 switch (Entry.Kind) { 3013 case BitstreamEntry::SubBlock: // Handled for us already. 3014 case BitstreamEntry::Error: 3015 return error("Malformed block"); 3016 case BitstreamEntry::EndBlock: 3017 if (NextCstNo != ValueList.size()) 3018 return error("Invalid constant reference"); 3019 return Error::success(); 3020 case BitstreamEntry::Record: 3021 // The interesting case. 3022 break; 3023 } 3024 3025 // Read a record. 3026 Record.clear(); 3027 Type *VoidType = Type::getVoidTy(Context); 3028 Value *V = nullptr; 3029 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3030 if (!MaybeBitCode) 3031 return MaybeBitCode.takeError(); 3032 switch (unsigned BitCode = MaybeBitCode.get()) { 3033 default: // Default behavior: unknown constant 3034 case bitc::CST_CODE_UNDEF: // UNDEF 3035 V = UndefValue::get(CurTy); 3036 break; 3037 case bitc::CST_CODE_POISON: // POISON 3038 V = PoisonValue::get(CurTy); 3039 break; 3040 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3041 if (Record.empty()) 3042 return error("Invalid settype record"); 3043 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3044 return error("Invalid settype record"); 3045 if (TypeList[Record[0]] == VoidType) 3046 return error("Invalid constant type"); 3047 CurTyID = Record[0]; 3048 CurTy = TypeList[CurTyID]; 3049 CurElemTy = getPtrElementTypeByID(CurTyID); 3050 continue; // Skip the ValueList manipulation. 3051 case bitc::CST_CODE_NULL: // NULL 3052 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3053 return error("Invalid type for a constant null value"); 3054 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3055 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3056 return error("Invalid type for a constant null value"); 3057 V = Constant::getNullValue(CurTy); 3058 break; 3059 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3060 if (!CurTy->isIntegerTy() || Record.empty()) 3061 return error("Invalid integer const record"); 3062 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3063 break; 3064 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3065 if (!CurTy->isIntegerTy() || Record.empty()) 3066 return error("Invalid wide integer const record"); 3067 3068 APInt VInt = 3069 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 3070 V = ConstantInt::get(Context, VInt); 3071 3072 break; 3073 } 3074 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3075 if (Record.empty()) 3076 return error("Invalid float const record"); 3077 if (CurTy->isHalfTy()) 3078 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 3079 APInt(16, (uint16_t)Record[0]))); 3080 else if (CurTy->isBFloatTy()) 3081 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 3082 APInt(16, (uint32_t)Record[0]))); 3083 else if (CurTy->isFloatTy()) 3084 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 3085 APInt(32, (uint32_t)Record[0]))); 3086 else if (CurTy->isDoubleTy()) 3087 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 3088 APInt(64, Record[0]))); 3089 else if (CurTy->isX86_FP80Ty()) { 3090 // Bits are not stored the same way as a normal i80 APInt, compensate. 3091 uint64_t Rearrange[2]; 3092 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3093 Rearrange[1] = Record[0] >> 48; 3094 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 3095 APInt(80, Rearrange))); 3096 } else if (CurTy->isFP128Ty()) 3097 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 3098 APInt(128, Record))); 3099 else if (CurTy->isPPC_FP128Ty()) 3100 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 3101 APInt(128, Record))); 3102 else 3103 V = UndefValue::get(CurTy); 3104 break; 3105 } 3106 3107 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3108 if (Record.empty()) 3109 return error("Invalid aggregate record"); 3110 3111 unsigned Size = Record.size(); 3112 SmallVector<unsigned, 16> Elts; 3113 for (unsigned i = 0; i != Size; ++i) 3114 Elts.push_back(Record[i]); 3115 3116 if (isa<StructType>(CurTy)) { 3117 V = BitcodeConstant::create( 3118 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3119 } else if (isa<ArrayType>(CurTy)) { 3120 V = BitcodeConstant::create(Alloc, CurTy, 3121 BitcodeConstant::ConstantArrayOpcode, Elts); 3122 } else if (isa<VectorType>(CurTy)) { 3123 V = BitcodeConstant::create( 3124 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3125 } else { 3126 V = UndefValue::get(CurTy); 3127 } 3128 break; 3129 } 3130 case bitc::CST_CODE_STRING: // STRING: [values] 3131 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3132 if (Record.empty()) 3133 return error("Invalid string record"); 3134 3135 SmallString<16> Elts(Record.begin(), Record.end()); 3136 V = ConstantDataArray::getString(Context, Elts, 3137 BitCode == bitc::CST_CODE_CSTRING); 3138 break; 3139 } 3140 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3141 if (Record.empty()) 3142 return error("Invalid data record"); 3143 3144 Type *EltTy; 3145 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3146 EltTy = Array->getElementType(); 3147 else 3148 EltTy = cast<VectorType>(CurTy)->getElementType(); 3149 if (EltTy->isIntegerTy(8)) { 3150 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3151 if (isa<VectorType>(CurTy)) 3152 V = ConstantDataVector::get(Context, Elts); 3153 else 3154 V = ConstantDataArray::get(Context, Elts); 3155 } else if (EltTy->isIntegerTy(16)) { 3156 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3157 if (isa<VectorType>(CurTy)) 3158 V = ConstantDataVector::get(Context, Elts); 3159 else 3160 V = ConstantDataArray::get(Context, Elts); 3161 } else if (EltTy->isIntegerTy(32)) { 3162 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3163 if (isa<VectorType>(CurTy)) 3164 V = ConstantDataVector::get(Context, Elts); 3165 else 3166 V = ConstantDataArray::get(Context, Elts); 3167 } else if (EltTy->isIntegerTy(64)) { 3168 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3169 if (isa<VectorType>(CurTy)) 3170 V = ConstantDataVector::get(Context, Elts); 3171 else 3172 V = ConstantDataArray::get(Context, Elts); 3173 } else if (EltTy->isHalfTy()) { 3174 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3175 if (isa<VectorType>(CurTy)) 3176 V = ConstantDataVector::getFP(EltTy, Elts); 3177 else 3178 V = ConstantDataArray::getFP(EltTy, Elts); 3179 } else if (EltTy->isBFloatTy()) { 3180 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3181 if (isa<VectorType>(CurTy)) 3182 V = ConstantDataVector::getFP(EltTy, Elts); 3183 else 3184 V = ConstantDataArray::getFP(EltTy, Elts); 3185 } else if (EltTy->isFloatTy()) { 3186 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3187 if (isa<VectorType>(CurTy)) 3188 V = ConstantDataVector::getFP(EltTy, Elts); 3189 else 3190 V = ConstantDataArray::getFP(EltTy, Elts); 3191 } else if (EltTy->isDoubleTy()) { 3192 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3193 if (isa<VectorType>(CurTy)) 3194 V = ConstantDataVector::getFP(EltTy, Elts); 3195 else 3196 V = ConstantDataArray::getFP(EltTy, Elts); 3197 } else { 3198 return error("Invalid type for value"); 3199 } 3200 break; 3201 } 3202 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3203 if (Record.size() < 2) 3204 return error("Invalid unary op constexpr record"); 3205 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3206 if (Opc < 0) { 3207 V = UndefValue::get(CurTy); // Unknown unop. 3208 } else { 3209 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3210 } 3211 break; 3212 } 3213 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3214 if (Record.size() < 3) 3215 return error("Invalid binary op constexpr record"); 3216 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3217 if (Opc < 0) { 3218 V = UndefValue::get(CurTy); // Unknown binop. 3219 } else { 3220 uint8_t Flags = 0; 3221 if (Record.size() >= 4) { 3222 if (Opc == Instruction::Add || 3223 Opc == Instruction::Sub || 3224 Opc == Instruction::Mul || 3225 Opc == Instruction::Shl) { 3226 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3227 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3228 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3229 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3230 } else if (Opc == Instruction::SDiv || 3231 Opc == Instruction::UDiv || 3232 Opc == Instruction::LShr || 3233 Opc == Instruction::AShr) { 3234 if (Record[3] & (1 << bitc::PEO_EXACT)) 3235 Flags |= PossiblyExactOperator::IsExact; 3236 } 3237 } 3238 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3239 {(unsigned)Record[1], (unsigned)Record[2]}); 3240 } 3241 break; 3242 } 3243 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3244 if (Record.size() < 3) 3245 return error("Invalid cast constexpr record"); 3246 int Opc = getDecodedCastOpcode(Record[0]); 3247 if (Opc < 0) { 3248 V = UndefValue::get(CurTy); // Unknown cast. 3249 } else { 3250 unsigned OpTyID = Record[1]; 3251 Type *OpTy = getTypeByID(OpTyID); 3252 if (!OpTy) 3253 return error("Invalid cast constexpr record"); 3254 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3255 } 3256 break; 3257 } 3258 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3259 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 3260 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 3261 // operands] 3262 if (Record.size() < 2) 3263 return error("Constant GEP record must have at least two elements"); 3264 unsigned OpNum = 0; 3265 Type *PointeeType = nullptr; 3266 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 3267 Record.size() % 2) 3268 PointeeType = getTypeByID(Record[OpNum++]); 3269 3270 bool InBounds = false; 3271 std::optional<unsigned> InRangeIndex; 3272 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 3273 uint64_t Op = Record[OpNum++]; 3274 InBounds = Op & 1; 3275 InRangeIndex = Op >> 1; 3276 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3277 InBounds = true; 3278 3279 SmallVector<unsigned, 16> Elts; 3280 unsigned BaseTypeID = Record[OpNum]; 3281 while (OpNum != Record.size()) { 3282 unsigned ElTyID = Record[OpNum++]; 3283 Type *ElTy = getTypeByID(ElTyID); 3284 if (!ElTy) 3285 return error("Invalid getelementptr constexpr record"); 3286 Elts.push_back(Record[OpNum++]); 3287 } 3288 3289 if (Elts.size() < 1) 3290 return error("Invalid gep with no operands"); 3291 3292 Type *BaseType = getTypeByID(BaseTypeID); 3293 if (isa<VectorType>(BaseType)) { 3294 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3295 BaseType = getTypeByID(BaseTypeID); 3296 } 3297 3298 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3299 if (!OrigPtrTy) 3300 return error("GEP base operand must be pointer or vector of pointer"); 3301 3302 if (!PointeeType) { 3303 PointeeType = getPtrElementTypeByID(BaseTypeID); 3304 if (!PointeeType) 3305 return error("Missing element type for old-style constant GEP"); 3306 } 3307 3308 V = BitcodeConstant::create(Alloc, CurTy, 3309 {Instruction::GetElementPtr, InBounds, 3310 InRangeIndex.value_or(-1), PointeeType}, 3311 Elts); 3312 break; 3313 } 3314 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3315 if (Record.size() < 3) 3316 return error("Invalid select constexpr record"); 3317 3318 V = BitcodeConstant::create( 3319 Alloc, CurTy, Instruction::Select, 3320 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3321 break; 3322 } 3323 case bitc::CST_CODE_CE_EXTRACTELT 3324 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3325 if (Record.size() < 3) 3326 return error("Invalid extractelement constexpr record"); 3327 unsigned OpTyID = Record[0]; 3328 VectorType *OpTy = 3329 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3330 if (!OpTy) 3331 return error("Invalid extractelement constexpr record"); 3332 unsigned IdxRecord; 3333 if (Record.size() == 4) { 3334 unsigned IdxTyID = Record[2]; 3335 Type *IdxTy = getTypeByID(IdxTyID); 3336 if (!IdxTy) 3337 return error("Invalid extractelement constexpr record"); 3338 IdxRecord = Record[3]; 3339 } else { 3340 // Deprecated, but still needed to read old bitcode files. 3341 IdxRecord = Record[2]; 3342 } 3343 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3344 {(unsigned)Record[1], IdxRecord}); 3345 break; 3346 } 3347 case bitc::CST_CODE_CE_INSERTELT 3348 : { // CE_INSERTELT: [opval, opval, opty, opval] 3349 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3350 if (Record.size() < 3 || !OpTy) 3351 return error("Invalid insertelement constexpr record"); 3352 unsigned IdxRecord; 3353 if (Record.size() == 4) { 3354 unsigned IdxTyID = Record[2]; 3355 Type *IdxTy = getTypeByID(IdxTyID); 3356 if (!IdxTy) 3357 return error("Invalid insertelement constexpr record"); 3358 IdxRecord = Record[3]; 3359 } else { 3360 // Deprecated, but still needed to read old bitcode files. 3361 IdxRecord = Record[2]; 3362 } 3363 V = BitcodeConstant::create( 3364 Alloc, CurTy, Instruction::InsertElement, 3365 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3366 break; 3367 } 3368 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3369 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3370 if (Record.size() < 3 || !OpTy) 3371 return error("Invalid shufflevector constexpr record"); 3372 V = BitcodeConstant::create( 3373 Alloc, CurTy, Instruction::ShuffleVector, 3374 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3375 break; 3376 } 3377 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3378 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3379 VectorType *OpTy = 3380 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3381 if (Record.size() < 4 || !RTy || !OpTy) 3382 return error("Invalid shufflevector constexpr record"); 3383 V = BitcodeConstant::create( 3384 Alloc, CurTy, Instruction::ShuffleVector, 3385 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3386 break; 3387 } 3388 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3389 if (Record.size() < 4) 3390 return error("Invalid cmp constexpt record"); 3391 unsigned OpTyID = Record[0]; 3392 Type *OpTy = getTypeByID(OpTyID); 3393 if (!OpTy) 3394 return error("Invalid cmp constexpr record"); 3395 V = BitcodeConstant::create( 3396 Alloc, CurTy, 3397 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3398 : Instruction::ICmp), 3399 (uint8_t)Record[3]}, 3400 {(unsigned)Record[1], (unsigned)Record[2]}); 3401 break; 3402 } 3403 // This maintains backward compatibility, pre-asm dialect keywords. 3404 // Deprecated, but still needed to read old bitcode files. 3405 case bitc::CST_CODE_INLINEASM_OLD: { 3406 if (Record.size() < 2) 3407 return error("Invalid inlineasm record"); 3408 std::string AsmStr, ConstrStr; 3409 bool HasSideEffects = Record[0] & 1; 3410 bool IsAlignStack = Record[0] >> 1; 3411 unsigned AsmStrSize = Record[1]; 3412 if (2+AsmStrSize >= Record.size()) 3413 return error("Invalid inlineasm record"); 3414 unsigned ConstStrSize = Record[2+AsmStrSize]; 3415 if (3+AsmStrSize+ConstStrSize > Record.size()) 3416 return error("Invalid inlineasm record"); 3417 3418 for (unsigned i = 0; i != AsmStrSize; ++i) 3419 AsmStr += (char)Record[2+i]; 3420 for (unsigned i = 0; i != ConstStrSize; ++i) 3421 ConstrStr += (char)Record[3+AsmStrSize+i]; 3422 UpgradeInlineAsmString(&AsmStr); 3423 if (!CurElemTy) 3424 return error("Missing element type for old-style inlineasm"); 3425 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3426 HasSideEffects, IsAlignStack); 3427 break; 3428 } 3429 // This version adds support for the asm dialect keywords (e.g., 3430 // inteldialect). 3431 case bitc::CST_CODE_INLINEASM_OLD2: { 3432 if (Record.size() < 2) 3433 return error("Invalid inlineasm record"); 3434 std::string AsmStr, ConstrStr; 3435 bool HasSideEffects = Record[0] & 1; 3436 bool IsAlignStack = (Record[0] >> 1) & 1; 3437 unsigned AsmDialect = Record[0] >> 2; 3438 unsigned AsmStrSize = Record[1]; 3439 if (2+AsmStrSize >= Record.size()) 3440 return error("Invalid inlineasm record"); 3441 unsigned ConstStrSize = Record[2+AsmStrSize]; 3442 if (3+AsmStrSize+ConstStrSize > Record.size()) 3443 return error("Invalid inlineasm record"); 3444 3445 for (unsigned i = 0; i != AsmStrSize; ++i) 3446 AsmStr += (char)Record[2+i]; 3447 for (unsigned i = 0; i != ConstStrSize; ++i) 3448 ConstrStr += (char)Record[3+AsmStrSize+i]; 3449 UpgradeInlineAsmString(&AsmStr); 3450 if (!CurElemTy) 3451 return error("Missing element type for old-style inlineasm"); 3452 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3453 HasSideEffects, IsAlignStack, 3454 InlineAsm::AsmDialect(AsmDialect)); 3455 break; 3456 } 3457 // This version adds support for the unwind keyword. 3458 case bitc::CST_CODE_INLINEASM_OLD3: { 3459 if (Record.size() < 2) 3460 return error("Invalid inlineasm record"); 3461 unsigned OpNum = 0; 3462 std::string AsmStr, ConstrStr; 3463 bool HasSideEffects = Record[OpNum] & 1; 3464 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3465 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3466 bool CanThrow = (Record[OpNum] >> 3) & 1; 3467 ++OpNum; 3468 unsigned AsmStrSize = Record[OpNum]; 3469 ++OpNum; 3470 if (OpNum + AsmStrSize >= Record.size()) 3471 return error("Invalid inlineasm record"); 3472 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3473 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3474 return error("Invalid inlineasm record"); 3475 3476 for (unsigned i = 0; i != AsmStrSize; ++i) 3477 AsmStr += (char)Record[OpNum + i]; 3478 ++OpNum; 3479 for (unsigned i = 0; i != ConstStrSize; ++i) 3480 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3481 UpgradeInlineAsmString(&AsmStr); 3482 if (!CurElemTy) 3483 return error("Missing element type for old-style inlineasm"); 3484 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3485 HasSideEffects, IsAlignStack, 3486 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3487 break; 3488 } 3489 // This version adds explicit function type. 3490 case bitc::CST_CODE_INLINEASM: { 3491 if (Record.size() < 3) 3492 return error("Invalid inlineasm record"); 3493 unsigned OpNum = 0; 3494 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3495 ++OpNum; 3496 if (!FnTy) 3497 return error("Invalid inlineasm record"); 3498 std::string AsmStr, ConstrStr; 3499 bool HasSideEffects = Record[OpNum] & 1; 3500 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3501 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3502 bool CanThrow = (Record[OpNum] >> 3) & 1; 3503 ++OpNum; 3504 unsigned AsmStrSize = Record[OpNum]; 3505 ++OpNum; 3506 if (OpNum + AsmStrSize >= Record.size()) 3507 return error("Invalid inlineasm record"); 3508 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3509 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3510 return error("Invalid inlineasm record"); 3511 3512 for (unsigned i = 0; i != AsmStrSize; ++i) 3513 AsmStr += (char)Record[OpNum + i]; 3514 ++OpNum; 3515 for (unsigned i = 0; i != ConstStrSize; ++i) 3516 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3517 UpgradeInlineAsmString(&AsmStr); 3518 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3519 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3520 break; 3521 } 3522 case bitc::CST_CODE_BLOCKADDRESS:{ 3523 if (Record.size() < 3) 3524 return error("Invalid blockaddress record"); 3525 unsigned FnTyID = Record[0]; 3526 Type *FnTy = getTypeByID(FnTyID); 3527 if (!FnTy) 3528 return error("Invalid blockaddress record"); 3529 V = BitcodeConstant::create( 3530 Alloc, CurTy, 3531 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3532 Record[1]); 3533 break; 3534 } 3535 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3536 if (Record.size() < 2) 3537 return error("Invalid dso_local record"); 3538 unsigned GVTyID = Record[0]; 3539 Type *GVTy = getTypeByID(GVTyID); 3540 if (!GVTy) 3541 return error("Invalid dso_local record"); 3542 V = BitcodeConstant::create( 3543 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3544 break; 3545 } 3546 case bitc::CST_CODE_NO_CFI_VALUE: { 3547 if (Record.size() < 2) 3548 return error("Invalid no_cfi record"); 3549 unsigned GVTyID = Record[0]; 3550 Type *GVTy = getTypeByID(GVTyID); 3551 if (!GVTy) 3552 return error("Invalid no_cfi record"); 3553 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3554 Record[1]); 3555 break; 3556 } 3557 } 3558 3559 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3560 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3561 return Err; 3562 ++NextCstNo; 3563 } 3564 } 3565 3566 Error BitcodeReader::parseUseLists() { 3567 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3568 return Err; 3569 3570 // Read all the records. 3571 SmallVector<uint64_t, 64> Record; 3572 3573 while (true) { 3574 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3575 if (!MaybeEntry) 3576 return MaybeEntry.takeError(); 3577 BitstreamEntry Entry = MaybeEntry.get(); 3578 3579 switch (Entry.Kind) { 3580 case BitstreamEntry::SubBlock: // Handled for us already. 3581 case BitstreamEntry::Error: 3582 return error("Malformed block"); 3583 case BitstreamEntry::EndBlock: 3584 return Error::success(); 3585 case BitstreamEntry::Record: 3586 // The interesting case. 3587 break; 3588 } 3589 3590 // Read a use list record. 3591 Record.clear(); 3592 bool IsBB = false; 3593 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3594 if (!MaybeRecord) 3595 return MaybeRecord.takeError(); 3596 switch (MaybeRecord.get()) { 3597 default: // Default behavior: unknown type. 3598 break; 3599 case bitc::USELIST_CODE_BB: 3600 IsBB = true; 3601 [[fallthrough]]; 3602 case bitc::USELIST_CODE_DEFAULT: { 3603 unsigned RecordLength = Record.size(); 3604 if (RecordLength < 3) 3605 // Records should have at least an ID and two indexes. 3606 return error("Invalid record"); 3607 unsigned ID = Record.pop_back_val(); 3608 3609 Value *V; 3610 if (IsBB) { 3611 assert(ID < FunctionBBs.size() && "Basic block not found"); 3612 V = FunctionBBs[ID]; 3613 } else 3614 V = ValueList[ID]; 3615 unsigned NumUses = 0; 3616 SmallDenseMap<const Use *, unsigned, 16> Order; 3617 for (const Use &U : V->materialized_uses()) { 3618 if (++NumUses > Record.size()) 3619 break; 3620 Order[&U] = Record[NumUses - 1]; 3621 } 3622 if (Order.size() != Record.size() || NumUses > Record.size()) 3623 // Mismatches can happen if the functions are being materialized lazily 3624 // (out-of-order), or a value has been upgraded. 3625 break; 3626 3627 V->sortUseList([&](const Use &L, const Use &R) { 3628 return Order.lookup(&L) < Order.lookup(&R); 3629 }); 3630 break; 3631 } 3632 } 3633 } 3634 } 3635 3636 /// When we see the block for metadata, remember where it is and then skip it. 3637 /// This lets us lazily deserialize the metadata. 3638 Error BitcodeReader::rememberAndSkipMetadata() { 3639 // Save the current stream state. 3640 uint64_t CurBit = Stream.GetCurrentBitNo(); 3641 DeferredMetadataInfo.push_back(CurBit); 3642 3643 // Skip over the block for now. 3644 if (Error Err = Stream.SkipBlock()) 3645 return Err; 3646 return Error::success(); 3647 } 3648 3649 Error BitcodeReader::materializeMetadata() { 3650 for (uint64_t BitPos : DeferredMetadataInfo) { 3651 // Move the bit stream to the saved position. 3652 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3653 return JumpFailed; 3654 if (Error Err = MDLoader->parseModuleMetadata()) 3655 return Err; 3656 } 3657 3658 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3659 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3660 // multiple times. 3661 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3662 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3663 NamedMDNode *LinkerOpts = 3664 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3665 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3666 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3667 } 3668 } 3669 3670 DeferredMetadataInfo.clear(); 3671 return Error::success(); 3672 } 3673 3674 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3675 3676 /// When we see the block for a function body, remember where it is and then 3677 /// skip it. This lets us lazily deserialize the functions. 3678 Error BitcodeReader::rememberAndSkipFunctionBody() { 3679 // Get the function we are talking about. 3680 if (FunctionsWithBodies.empty()) 3681 return error("Insufficient function protos"); 3682 3683 Function *Fn = FunctionsWithBodies.back(); 3684 FunctionsWithBodies.pop_back(); 3685 3686 // Save the current stream state. 3687 uint64_t CurBit = Stream.GetCurrentBitNo(); 3688 assert( 3689 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3690 "Mismatch between VST and scanned function offsets"); 3691 DeferredFunctionInfo[Fn] = CurBit; 3692 3693 // Skip over the function block for now. 3694 if (Error Err = Stream.SkipBlock()) 3695 return Err; 3696 return Error::success(); 3697 } 3698 3699 Error BitcodeReader::globalCleanup() { 3700 // Patch the initializers for globals and aliases up. 3701 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3702 return Err; 3703 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3704 return error("Malformed global initializer set"); 3705 3706 // Look for intrinsic functions which need to be upgraded at some point 3707 // and functions that need to have their function attributes upgraded. 3708 for (Function &F : *TheModule) { 3709 MDLoader->upgradeDebugIntrinsics(F); 3710 Function *NewFn; 3711 if (UpgradeIntrinsicFunction(&F, NewFn)) 3712 UpgradedIntrinsics[&F] = NewFn; 3713 // Look for functions that rely on old function attribute behavior. 3714 UpgradeFunctionAttributes(F); 3715 } 3716 3717 // Look for global variables which need to be renamed. 3718 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3719 for (GlobalVariable &GV : TheModule->globals()) 3720 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3721 UpgradedVariables.emplace_back(&GV, Upgraded); 3722 for (auto &Pair : UpgradedVariables) { 3723 Pair.first->eraseFromParent(); 3724 TheModule->insertGlobalVariable(Pair.second); 3725 } 3726 3727 // Force deallocation of memory for these vectors to favor the client that 3728 // want lazy deserialization. 3729 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3730 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3731 return Error::success(); 3732 } 3733 3734 /// Support for lazy parsing of function bodies. This is required if we 3735 /// either have an old bitcode file without a VST forward declaration record, 3736 /// or if we have an anonymous function being materialized, since anonymous 3737 /// functions do not have a name and are therefore not in the VST. 3738 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3739 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3740 return JumpFailed; 3741 3742 if (Stream.AtEndOfStream()) 3743 return error("Could not find function in stream"); 3744 3745 if (!SeenFirstFunctionBody) 3746 return error("Trying to materialize functions before seeing function blocks"); 3747 3748 // An old bitcode file with the symbol table at the end would have 3749 // finished the parse greedily. 3750 assert(SeenValueSymbolTable); 3751 3752 SmallVector<uint64_t, 64> Record; 3753 3754 while (true) { 3755 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3756 if (!MaybeEntry) 3757 return MaybeEntry.takeError(); 3758 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3759 3760 switch (Entry.Kind) { 3761 default: 3762 return error("Expect SubBlock"); 3763 case BitstreamEntry::SubBlock: 3764 switch (Entry.ID) { 3765 default: 3766 return error("Expect function block"); 3767 case bitc::FUNCTION_BLOCK_ID: 3768 if (Error Err = rememberAndSkipFunctionBody()) 3769 return Err; 3770 NextUnreadBit = Stream.GetCurrentBitNo(); 3771 return Error::success(); 3772 } 3773 } 3774 } 3775 } 3776 3777 Error BitcodeReaderBase::readBlockInfo() { 3778 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3779 Stream.ReadBlockInfoBlock(); 3780 if (!MaybeNewBlockInfo) 3781 return MaybeNewBlockInfo.takeError(); 3782 std::optional<BitstreamBlockInfo> NewBlockInfo = 3783 std::move(MaybeNewBlockInfo.get()); 3784 if (!NewBlockInfo) 3785 return error("Malformed block"); 3786 BlockInfo = std::move(*NewBlockInfo); 3787 return Error::success(); 3788 } 3789 3790 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3791 // v1: [selection_kind, name] 3792 // v2: [strtab_offset, strtab_size, selection_kind] 3793 StringRef Name; 3794 std::tie(Name, Record) = readNameFromStrtab(Record); 3795 3796 if (Record.empty()) 3797 return error("Invalid record"); 3798 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3799 std::string OldFormatName; 3800 if (!UseStrtab) { 3801 if (Record.size() < 2) 3802 return error("Invalid record"); 3803 unsigned ComdatNameSize = Record[1]; 3804 if (ComdatNameSize > Record.size() - 2) 3805 return error("Comdat name size too large"); 3806 OldFormatName.reserve(ComdatNameSize); 3807 for (unsigned i = 0; i != ComdatNameSize; ++i) 3808 OldFormatName += (char)Record[2 + i]; 3809 Name = OldFormatName; 3810 } 3811 Comdat *C = TheModule->getOrInsertComdat(Name); 3812 C->setSelectionKind(SK); 3813 ComdatList.push_back(C); 3814 return Error::success(); 3815 } 3816 3817 static void inferDSOLocal(GlobalValue *GV) { 3818 // infer dso_local from linkage and visibility if it is not encoded. 3819 if (GV->hasLocalLinkage() || 3820 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3821 GV->setDSOLocal(true); 3822 } 3823 3824 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3825 GlobalValue::SanitizerMetadata Meta; 3826 if (V & (1 << 0)) 3827 Meta.NoAddress = true; 3828 if (V & (1 << 1)) 3829 Meta.NoHWAddress = true; 3830 if (V & (1 << 2)) 3831 Meta.Memtag = true; 3832 if (V & (1 << 3)) 3833 Meta.IsDynInit = true; 3834 return Meta; 3835 } 3836 3837 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3838 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3839 // visibility, threadlocal, unnamed_addr, externally_initialized, 3840 // dllstorageclass, comdat, attributes, preemption specifier, 3841 // partition strtab offset, partition strtab size] (name in VST) 3842 // v2: [strtab_offset, strtab_size, v1] 3843 // v3: [v2, code_model] 3844 StringRef Name; 3845 std::tie(Name, Record) = readNameFromStrtab(Record); 3846 3847 if (Record.size() < 6) 3848 return error("Invalid record"); 3849 unsigned TyID = Record[0]; 3850 Type *Ty = getTypeByID(TyID); 3851 if (!Ty) 3852 return error("Invalid record"); 3853 bool isConstant = Record[1] & 1; 3854 bool explicitType = Record[1] & 2; 3855 unsigned AddressSpace; 3856 if (explicitType) { 3857 AddressSpace = Record[1] >> 2; 3858 } else { 3859 if (!Ty->isPointerTy()) 3860 return error("Invalid type for value"); 3861 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3862 TyID = getContainedTypeID(TyID); 3863 Ty = getTypeByID(TyID); 3864 if (!Ty) 3865 return error("Missing element type for old-style global"); 3866 } 3867 3868 uint64_t RawLinkage = Record[3]; 3869 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3870 MaybeAlign Alignment; 3871 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3872 return Err; 3873 std::string Section; 3874 if (Record[5]) { 3875 if (Record[5] - 1 >= SectionTable.size()) 3876 return error("Invalid ID"); 3877 Section = SectionTable[Record[5] - 1]; 3878 } 3879 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3880 // Local linkage must have default visibility. 3881 // auto-upgrade `hidden` and `protected` for old bitcode. 3882 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3883 Visibility = getDecodedVisibility(Record[6]); 3884 3885 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3886 if (Record.size() > 7) 3887 TLM = getDecodedThreadLocalMode(Record[7]); 3888 3889 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3890 if (Record.size() > 8) 3891 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3892 3893 bool ExternallyInitialized = false; 3894 if (Record.size() > 9) 3895 ExternallyInitialized = Record[9]; 3896 3897 GlobalVariable *NewGV = 3898 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3899 nullptr, TLM, AddressSpace, ExternallyInitialized); 3900 if (Alignment) 3901 NewGV->setAlignment(*Alignment); 3902 if (!Section.empty()) 3903 NewGV->setSection(Section); 3904 NewGV->setVisibility(Visibility); 3905 NewGV->setUnnamedAddr(UnnamedAddr); 3906 3907 if (Record.size() > 10) { 3908 // A GlobalValue with local linkage cannot have a DLL storage class. 3909 if (!NewGV->hasLocalLinkage()) { 3910 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3911 } 3912 } else { 3913 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3914 } 3915 3916 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 3917 3918 // Remember which value to use for the global initializer. 3919 if (unsigned InitID = Record[2]) 3920 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3921 3922 if (Record.size() > 11) { 3923 if (unsigned ComdatID = Record[11]) { 3924 if (ComdatID > ComdatList.size()) 3925 return error("Invalid global variable comdat ID"); 3926 NewGV->setComdat(ComdatList[ComdatID - 1]); 3927 } 3928 } else if (hasImplicitComdat(RawLinkage)) { 3929 ImplicitComdatObjects.insert(NewGV); 3930 } 3931 3932 if (Record.size() > 12) { 3933 auto AS = getAttributes(Record[12]).getFnAttrs(); 3934 NewGV->setAttributes(AS); 3935 } 3936 3937 if (Record.size() > 13) { 3938 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3939 } 3940 inferDSOLocal(NewGV); 3941 3942 // Check whether we have enough values to read a partition name. 3943 if (Record.size() > 15) 3944 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3945 3946 if (Record.size() > 16 && Record[16]) { 3947 llvm::GlobalValue::SanitizerMetadata Meta = 3948 deserializeSanitizerMetadata(Record[16]); 3949 NewGV->setSanitizerMetadata(Meta); 3950 } 3951 3952 if (Record.size() > 17 && Record[17]) { 3953 if (auto CM = getDecodedCodeModel(Record[17])) 3954 NewGV->setCodeModel(*CM); 3955 else 3956 return error("Invalid global variable code model"); 3957 } 3958 3959 return Error::success(); 3960 } 3961 3962 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 3963 if (ValueTypeCallback) { 3964 (*ValueTypeCallback)( 3965 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 3966 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 3967 } 3968 } 3969 3970 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3971 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3972 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3973 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3974 // v2: [strtab_offset, strtab_size, v1] 3975 StringRef Name; 3976 std::tie(Name, Record) = readNameFromStrtab(Record); 3977 3978 if (Record.size() < 8) 3979 return error("Invalid record"); 3980 unsigned FTyID = Record[0]; 3981 Type *FTy = getTypeByID(FTyID); 3982 if (!FTy) 3983 return error("Invalid record"); 3984 if (isa<PointerType>(FTy)) { 3985 FTyID = getContainedTypeID(FTyID, 0); 3986 FTy = getTypeByID(FTyID); 3987 if (!FTy) 3988 return error("Missing element type for old-style function"); 3989 } 3990 3991 if (!isa<FunctionType>(FTy)) 3992 return error("Invalid type for value"); 3993 auto CC = static_cast<CallingConv::ID>(Record[1]); 3994 if (CC & ~CallingConv::MaxID) 3995 return error("Invalid calling convention ID"); 3996 3997 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3998 if (Record.size() > 16) 3999 AddrSpace = Record[16]; 4000 4001 Function *Func = 4002 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 4003 AddrSpace, Name, TheModule); 4004 4005 assert(Func->getFunctionType() == FTy && 4006 "Incorrect fully specified type provided for function"); 4007 FunctionTypeIDs[Func] = FTyID; 4008 4009 Func->setCallingConv(CC); 4010 bool isProto = Record[2]; 4011 uint64_t RawLinkage = Record[3]; 4012 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4013 Func->setAttributes(getAttributes(Record[4])); 4014 callValueTypeCallback(Func, FTyID); 4015 4016 // Upgrade any old-style byval or sret without a type by propagating the 4017 // argument's pointee type. There should be no opaque pointers where the byval 4018 // type is implicit. 4019 for (unsigned i = 0; i != Func->arg_size(); ++i) { 4020 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4021 Attribute::InAlloca}) { 4022 if (!Func->hasParamAttribute(i, Kind)) 4023 continue; 4024 4025 if (Func->getParamAttribute(i, Kind).getValueAsType()) 4026 continue; 4027 4028 Func->removeParamAttr(i, Kind); 4029 4030 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 4031 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 4032 if (!PtrEltTy) 4033 return error("Missing param element type for attribute upgrade"); 4034 4035 Attribute NewAttr; 4036 switch (Kind) { 4037 case Attribute::ByVal: 4038 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4039 break; 4040 case Attribute::StructRet: 4041 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4042 break; 4043 case Attribute::InAlloca: 4044 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4045 break; 4046 default: 4047 llvm_unreachable("not an upgraded type attribute"); 4048 } 4049 4050 Func->addParamAttr(i, NewAttr); 4051 } 4052 } 4053 4054 if (Func->getCallingConv() == CallingConv::X86_INTR && 4055 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4056 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4057 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4058 if (!ByValTy) 4059 return error("Missing param element type for x86_intrcc upgrade"); 4060 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4061 Func->addParamAttr(0, NewAttr); 4062 } 4063 4064 MaybeAlign Alignment; 4065 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4066 return Err; 4067 if (Alignment) 4068 Func->setAlignment(*Alignment); 4069 if (Record[6]) { 4070 if (Record[6] - 1 >= SectionTable.size()) 4071 return error("Invalid ID"); 4072 Func->setSection(SectionTable[Record[6] - 1]); 4073 } 4074 // Local linkage must have default visibility. 4075 // auto-upgrade `hidden` and `protected` for old bitcode. 4076 if (!Func->hasLocalLinkage()) 4077 Func->setVisibility(getDecodedVisibility(Record[7])); 4078 if (Record.size() > 8 && Record[8]) { 4079 if (Record[8] - 1 >= GCTable.size()) 4080 return error("Invalid ID"); 4081 Func->setGC(GCTable[Record[8] - 1]); 4082 } 4083 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4084 if (Record.size() > 9) 4085 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4086 Func->setUnnamedAddr(UnnamedAddr); 4087 4088 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4089 if (Record.size() > 10) 4090 OperandInfo.Prologue = Record[10]; 4091 4092 if (Record.size() > 11) { 4093 // A GlobalValue with local linkage cannot have a DLL storage class. 4094 if (!Func->hasLocalLinkage()) { 4095 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4096 } 4097 } else { 4098 upgradeDLLImportExportLinkage(Func, RawLinkage); 4099 } 4100 4101 if (Record.size() > 12) { 4102 if (unsigned ComdatID = Record[12]) { 4103 if (ComdatID > ComdatList.size()) 4104 return error("Invalid function comdat ID"); 4105 Func->setComdat(ComdatList[ComdatID - 1]); 4106 } 4107 } else if (hasImplicitComdat(RawLinkage)) { 4108 ImplicitComdatObjects.insert(Func); 4109 } 4110 4111 if (Record.size() > 13) 4112 OperandInfo.Prefix = Record[13]; 4113 4114 if (Record.size() > 14) 4115 OperandInfo.PersonalityFn = Record[14]; 4116 4117 if (Record.size() > 15) { 4118 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4119 } 4120 inferDSOLocal(Func); 4121 4122 // Record[16] is the address space number. 4123 4124 // Check whether we have enough values to read a partition name. Also make 4125 // sure Strtab has enough values. 4126 if (Record.size() > 18 && Strtab.data() && 4127 Record[17] + Record[18] <= Strtab.size()) { 4128 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4129 } 4130 4131 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4132 4133 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4134 FunctionOperands.push_back(OperandInfo); 4135 4136 // If this is a function with a body, remember the prototype we are 4137 // creating now, so that we can match up the body with them later. 4138 if (!isProto) { 4139 Func->setIsMaterializable(true); 4140 FunctionsWithBodies.push_back(Func); 4141 DeferredFunctionInfo[Func] = 0; 4142 } 4143 return Error::success(); 4144 } 4145 4146 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4147 unsigned BitCode, ArrayRef<uint64_t> Record) { 4148 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4149 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4150 // dllstorageclass, threadlocal, unnamed_addr, 4151 // preemption specifier] (name in VST) 4152 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4153 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4154 // preemption specifier] (name in VST) 4155 // v2: [strtab_offset, strtab_size, v1] 4156 StringRef Name; 4157 std::tie(Name, Record) = readNameFromStrtab(Record); 4158 4159 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4160 if (Record.size() < (3 + (unsigned)NewRecord)) 4161 return error("Invalid record"); 4162 unsigned OpNum = 0; 4163 unsigned TypeID = Record[OpNum++]; 4164 Type *Ty = getTypeByID(TypeID); 4165 if (!Ty) 4166 return error("Invalid record"); 4167 4168 unsigned AddrSpace; 4169 if (!NewRecord) { 4170 auto *PTy = dyn_cast<PointerType>(Ty); 4171 if (!PTy) 4172 return error("Invalid type for value"); 4173 AddrSpace = PTy->getAddressSpace(); 4174 TypeID = getContainedTypeID(TypeID); 4175 Ty = getTypeByID(TypeID); 4176 if (!Ty) 4177 return error("Missing element type for old-style indirect symbol"); 4178 } else { 4179 AddrSpace = Record[OpNum++]; 4180 } 4181 4182 auto Val = Record[OpNum++]; 4183 auto Linkage = Record[OpNum++]; 4184 GlobalValue *NewGA; 4185 if (BitCode == bitc::MODULE_CODE_ALIAS || 4186 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4187 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4188 TheModule); 4189 else 4190 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4191 nullptr, TheModule); 4192 4193 // Local linkage must have default visibility. 4194 // auto-upgrade `hidden` and `protected` for old bitcode. 4195 if (OpNum != Record.size()) { 4196 auto VisInd = OpNum++; 4197 if (!NewGA->hasLocalLinkage()) 4198 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4199 } 4200 if (BitCode == bitc::MODULE_CODE_ALIAS || 4201 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4202 if (OpNum != Record.size()) { 4203 auto S = Record[OpNum++]; 4204 // A GlobalValue with local linkage cannot have a DLL storage class. 4205 if (!NewGA->hasLocalLinkage()) 4206 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4207 } 4208 else 4209 upgradeDLLImportExportLinkage(NewGA, Linkage); 4210 if (OpNum != Record.size()) 4211 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4212 if (OpNum != Record.size()) 4213 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4214 } 4215 if (OpNum != Record.size()) 4216 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4217 inferDSOLocal(NewGA); 4218 4219 // Check whether we have enough values to read a partition name. 4220 if (OpNum + 1 < Record.size()) { 4221 NewGA->setPartition( 4222 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4223 OpNum += 2; 4224 } 4225 4226 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4227 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4228 return Error::success(); 4229 } 4230 4231 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4232 bool ShouldLazyLoadMetadata, 4233 ParserCallbacks Callbacks) { 4234 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4235 if (ResumeBit) { 4236 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4237 return JumpFailed; 4238 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4239 return Err; 4240 4241 SmallVector<uint64_t, 64> Record; 4242 4243 // Parts of bitcode parsing depend on the datalayout. Make sure we 4244 // finalize the datalayout before we run any of that code. 4245 bool ResolvedDataLayout = false; 4246 // In order to support importing modules with illegal data layout strings, 4247 // delay parsing the data layout string until after upgrades and overrides 4248 // have been applied, allowing to fix illegal data layout strings. 4249 // Initialize to the current module's layout string in case none is specified. 4250 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4251 4252 auto ResolveDataLayout = [&]() -> Error { 4253 if (ResolvedDataLayout) 4254 return Error::success(); 4255 4256 // Datalayout and triple can't be parsed after this point. 4257 ResolvedDataLayout = true; 4258 4259 // Auto-upgrade the layout string 4260 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4261 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4262 4263 // Apply override 4264 if (Callbacks.DataLayout) { 4265 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4266 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4267 TentativeDataLayoutStr = *LayoutOverride; 4268 } 4269 4270 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4271 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4272 if (!MaybeDL) 4273 return MaybeDL.takeError(); 4274 4275 TheModule->setDataLayout(MaybeDL.get()); 4276 return Error::success(); 4277 }; 4278 4279 // Read all the records for this module. 4280 while (true) { 4281 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4282 if (!MaybeEntry) 4283 return MaybeEntry.takeError(); 4284 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4285 4286 switch (Entry.Kind) { 4287 case BitstreamEntry::Error: 4288 return error("Malformed block"); 4289 case BitstreamEntry::EndBlock: 4290 if (Error Err = ResolveDataLayout()) 4291 return Err; 4292 return globalCleanup(); 4293 4294 case BitstreamEntry::SubBlock: 4295 switch (Entry.ID) { 4296 default: // Skip unknown content. 4297 if (Error Err = Stream.SkipBlock()) 4298 return Err; 4299 break; 4300 case bitc::BLOCKINFO_BLOCK_ID: 4301 if (Error Err = readBlockInfo()) 4302 return Err; 4303 break; 4304 case bitc::PARAMATTR_BLOCK_ID: 4305 if (Error Err = parseAttributeBlock()) 4306 return Err; 4307 break; 4308 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4309 if (Error Err = parseAttributeGroupBlock()) 4310 return Err; 4311 break; 4312 case bitc::TYPE_BLOCK_ID_NEW: 4313 if (Error Err = parseTypeTable()) 4314 return Err; 4315 break; 4316 case bitc::VALUE_SYMTAB_BLOCK_ID: 4317 if (!SeenValueSymbolTable) { 4318 // Either this is an old form VST without function index and an 4319 // associated VST forward declaration record (which would have caused 4320 // the VST to be jumped to and parsed before it was encountered 4321 // normally in the stream), or there were no function blocks to 4322 // trigger an earlier parsing of the VST. 4323 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4324 if (Error Err = parseValueSymbolTable()) 4325 return Err; 4326 SeenValueSymbolTable = true; 4327 } else { 4328 // We must have had a VST forward declaration record, which caused 4329 // the parser to jump to and parse the VST earlier. 4330 assert(VSTOffset > 0); 4331 if (Error Err = Stream.SkipBlock()) 4332 return Err; 4333 } 4334 break; 4335 case bitc::CONSTANTS_BLOCK_ID: 4336 if (Error Err = parseConstants()) 4337 return Err; 4338 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4339 return Err; 4340 break; 4341 case bitc::METADATA_BLOCK_ID: 4342 if (ShouldLazyLoadMetadata) { 4343 if (Error Err = rememberAndSkipMetadata()) 4344 return Err; 4345 break; 4346 } 4347 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4348 if (Error Err = MDLoader->parseModuleMetadata()) 4349 return Err; 4350 break; 4351 case bitc::METADATA_KIND_BLOCK_ID: 4352 if (Error Err = MDLoader->parseMetadataKinds()) 4353 return Err; 4354 break; 4355 case bitc::FUNCTION_BLOCK_ID: 4356 if (Error Err = ResolveDataLayout()) 4357 return Err; 4358 4359 // If this is the first function body we've seen, reverse the 4360 // FunctionsWithBodies list. 4361 if (!SeenFirstFunctionBody) { 4362 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4363 if (Error Err = globalCleanup()) 4364 return Err; 4365 SeenFirstFunctionBody = true; 4366 } 4367 4368 if (VSTOffset > 0) { 4369 // If we have a VST forward declaration record, make sure we 4370 // parse the VST now if we haven't already. It is needed to 4371 // set up the DeferredFunctionInfo vector for lazy reading. 4372 if (!SeenValueSymbolTable) { 4373 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4374 return Err; 4375 SeenValueSymbolTable = true; 4376 // Fall through so that we record the NextUnreadBit below. 4377 // This is necessary in case we have an anonymous function that 4378 // is later materialized. Since it will not have a VST entry we 4379 // need to fall back to the lazy parse to find its offset. 4380 } else { 4381 // If we have a VST forward declaration record, but have already 4382 // parsed the VST (just above, when the first function body was 4383 // encountered here), then we are resuming the parse after 4384 // materializing functions. The ResumeBit points to the 4385 // start of the last function block recorded in the 4386 // DeferredFunctionInfo map. Skip it. 4387 if (Error Err = Stream.SkipBlock()) 4388 return Err; 4389 continue; 4390 } 4391 } 4392 4393 // Support older bitcode files that did not have the function 4394 // index in the VST, nor a VST forward declaration record, as 4395 // well as anonymous functions that do not have VST entries. 4396 // Build the DeferredFunctionInfo vector on the fly. 4397 if (Error Err = rememberAndSkipFunctionBody()) 4398 return Err; 4399 4400 // Suspend parsing when we reach the function bodies. Subsequent 4401 // materialization calls will resume it when necessary. If the bitcode 4402 // file is old, the symbol table will be at the end instead and will not 4403 // have been seen yet. In this case, just finish the parse now. 4404 if (SeenValueSymbolTable) { 4405 NextUnreadBit = Stream.GetCurrentBitNo(); 4406 // After the VST has been parsed, we need to make sure intrinsic name 4407 // are auto-upgraded. 4408 return globalCleanup(); 4409 } 4410 break; 4411 case bitc::USELIST_BLOCK_ID: 4412 if (Error Err = parseUseLists()) 4413 return Err; 4414 break; 4415 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4416 if (Error Err = parseOperandBundleTags()) 4417 return Err; 4418 break; 4419 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4420 if (Error Err = parseSyncScopeNames()) 4421 return Err; 4422 break; 4423 } 4424 continue; 4425 4426 case BitstreamEntry::Record: 4427 // The interesting case. 4428 break; 4429 } 4430 4431 // Read a record. 4432 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4433 if (!MaybeBitCode) 4434 return MaybeBitCode.takeError(); 4435 switch (unsigned BitCode = MaybeBitCode.get()) { 4436 default: break; // Default behavior, ignore unknown content. 4437 case bitc::MODULE_CODE_VERSION: { 4438 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4439 if (!VersionOrErr) 4440 return VersionOrErr.takeError(); 4441 UseRelativeIDs = *VersionOrErr >= 1; 4442 break; 4443 } 4444 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4445 if (ResolvedDataLayout) 4446 return error("target triple too late in module"); 4447 std::string S; 4448 if (convertToString(Record, 0, S)) 4449 return error("Invalid record"); 4450 TheModule->setTargetTriple(S); 4451 break; 4452 } 4453 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4454 if (ResolvedDataLayout) 4455 return error("datalayout too late in module"); 4456 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4457 return error("Invalid record"); 4458 break; 4459 } 4460 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4461 std::string S; 4462 if (convertToString(Record, 0, S)) 4463 return error("Invalid record"); 4464 TheModule->setModuleInlineAsm(S); 4465 break; 4466 } 4467 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4468 // Deprecated, but still needed to read old bitcode files. 4469 std::string S; 4470 if (convertToString(Record, 0, S)) 4471 return error("Invalid record"); 4472 // Ignore value. 4473 break; 4474 } 4475 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4476 std::string S; 4477 if (convertToString(Record, 0, S)) 4478 return error("Invalid record"); 4479 SectionTable.push_back(S); 4480 break; 4481 } 4482 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4483 std::string S; 4484 if (convertToString(Record, 0, S)) 4485 return error("Invalid record"); 4486 GCTable.push_back(S); 4487 break; 4488 } 4489 case bitc::MODULE_CODE_COMDAT: 4490 if (Error Err = parseComdatRecord(Record)) 4491 return Err; 4492 break; 4493 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4494 // written by ThinLinkBitcodeWriter. See 4495 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4496 // record 4497 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4498 case bitc::MODULE_CODE_GLOBALVAR: 4499 if (Error Err = parseGlobalVarRecord(Record)) 4500 return Err; 4501 break; 4502 case bitc::MODULE_CODE_FUNCTION: 4503 if (Error Err = ResolveDataLayout()) 4504 return Err; 4505 if (Error Err = parseFunctionRecord(Record)) 4506 return Err; 4507 break; 4508 case bitc::MODULE_CODE_IFUNC: 4509 case bitc::MODULE_CODE_ALIAS: 4510 case bitc::MODULE_CODE_ALIAS_OLD: 4511 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4512 return Err; 4513 break; 4514 /// MODULE_CODE_VSTOFFSET: [offset] 4515 case bitc::MODULE_CODE_VSTOFFSET: 4516 if (Record.empty()) 4517 return error("Invalid record"); 4518 // Note that we subtract 1 here because the offset is relative to one word 4519 // before the start of the identification or module block, which was 4520 // historically always the start of the regular bitcode header. 4521 VSTOffset = Record[0] - 1; 4522 break; 4523 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4524 case bitc::MODULE_CODE_SOURCE_FILENAME: 4525 SmallString<128> ValueName; 4526 if (convertToString(Record, 0, ValueName)) 4527 return error("Invalid record"); 4528 TheModule->setSourceFileName(ValueName); 4529 break; 4530 } 4531 Record.clear(); 4532 } 4533 this->ValueTypeCallback = std::nullopt; 4534 return Error::success(); 4535 } 4536 4537 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4538 bool IsImporting, 4539 ParserCallbacks Callbacks) { 4540 TheModule = M; 4541 MetadataLoaderCallbacks MDCallbacks; 4542 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4543 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4544 return getContainedTypeID(I, J); 4545 }; 4546 MDCallbacks.MDType = Callbacks.MDType; 4547 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4548 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4549 } 4550 4551 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4552 if (!isa<PointerType>(PtrType)) 4553 return error("Load/Store operand is not a pointer type"); 4554 if (!PointerType::isLoadableOrStorableType(ValType)) 4555 return error("Cannot load/store from pointer"); 4556 return Error::success(); 4557 } 4558 4559 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4560 ArrayRef<unsigned> ArgTyIDs) { 4561 AttributeList Attrs = CB->getAttributes(); 4562 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4563 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4564 Attribute::InAlloca}) { 4565 if (!Attrs.hasParamAttr(i, Kind) || 4566 Attrs.getParamAttr(i, Kind).getValueAsType()) 4567 continue; 4568 4569 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4570 if (!PtrEltTy) 4571 return error("Missing element type for typed attribute upgrade"); 4572 4573 Attribute NewAttr; 4574 switch (Kind) { 4575 case Attribute::ByVal: 4576 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4577 break; 4578 case Attribute::StructRet: 4579 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4580 break; 4581 case Attribute::InAlloca: 4582 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4583 break; 4584 default: 4585 llvm_unreachable("not an upgraded type attribute"); 4586 } 4587 4588 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4589 } 4590 } 4591 4592 if (CB->isInlineAsm()) { 4593 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4594 unsigned ArgNo = 0; 4595 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4596 if (!CI.hasArg()) 4597 continue; 4598 4599 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4600 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4601 if (!ElemTy) 4602 return error("Missing element type for inline asm upgrade"); 4603 Attrs = Attrs.addParamAttribute( 4604 Context, ArgNo, 4605 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4606 } 4607 4608 ArgNo++; 4609 } 4610 } 4611 4612 switch (CB->getIntrinsicID()) { 4613 case Intrinsic::preserve_array_access_index: 4614 case Intrinsic::preserve_struct_access_index: 4615 case Intrinsic::aarch64_ldaxr: 4616 case Intrinsic::aarch64_ldxr: 4617 case Intrinsic::aarch64_stlxr: 4618 case Intrinsic::aarch64_stxr: 4619 case Intrinsic::arm_ldaex: 4620 case Intrinsic::arm_ldrex: 4621 case Intrinsic::arm_stlex: 4622 case Intrinsic::arm_strex: { 4623 unsigned ArgNo; 4624 switch (CB->getIntrinsicID()) { 4625 case Intrinsic::aarch64_stlxr: 4626 case Intrinsic::aarch64_stxr: 4627 case Intrinsic::arm_stlex: 4628 case Intrinsic::arm_strex: 4629 ArgNo = 1; 4630 break; 4631 default: 4632 ArgNo = 0; 4633 break; 4634 } 4635 if (!Attrs.getParamElementType(ArgNo)) { 4636 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4637 if (!ElTy) 4638 return error("Missing element type for elementtype upgrade"); 4639 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4640 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4641 } 4642 break; 4643 } 4644 default: 4645 break; 4646 } 4647 4648 CB->setAttributes(Attrs); 4649 return Error::success(); 4650 } 4651 4652 /// Lazily parse the specified function body block. 4653 Error BitcodeReader::parseFunctionBody(Function *F) { 4654 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4655 return Err; 4656 4657 // Unexpected unresolved metadata when parsing function. 4658 if (MDLoader->hasFwdRefs()) 4659 return error("Invalid function metadata: incoming forward references"); 4660 4661 InstructionList.clear(); 4662 unsigned ModuleValueListSize = ValueList.size(); 4663 unsigned ModuleMDLoaderSize = MDLoader->size(); 4664 4665 // Add all the function arguments to the value table. 4666 unsigned ArgNo = 0; 4667 unsigned FTyID = FunctionTypeIDs[F]; 4668 for (Argument &I : F->args()) { 4669 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4670 assert(I.getType() == getTypeByID(ArgTyID) && 4671 "Incorrect fully specified type for Function Argument"); 4672 ValueList.push_back(&I, ArgTyID); 4673 ++ArgNo; 4674 } 4675 unsigned NextValueNo = ValueList.size(); 4676 BasicBlock *CurBB = nullptr; 4677 unsigned CurBBNo = 0; 4678 // Block into which constant expressions from phi nodes are materialized. 4679 BasicBlock *PhiConstExprBB = nullptr; 4680 // Edge blocks for phi nodes into which constant expressions have been 4681 // expanded. 4682 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4683 ConstExprEdgeBBs; 4684 4685 DebugLoc LastLoc; 4686 auto getLastInstruction = [&]() -> Instruction * { 4687 if (CurBB && !CurBB->empty()) 4688 return &CurBB->back(); 4689 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4690 !FunctionBBs[CurBBNo - 1]->empty()) 4691 return &FunctionBBs[CurBBNo - 1]->back(); 4692 return nullptr; 4693 }; 4694 4695 std::vector<OperandBundleDef> OperandBundles; 4696 4697 // Read all the records. 4698 SmallVector<uint64_t, 64> Record; 4699 4700 while (true) { 4701 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4702 if (!MaybeEntry) 4703 return MaybeEntry.takeError(); 4704 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4705 4706 switch (Entry.Kind) { 4707 case BitstreamEntry::Error: 4708 return error("Malformed block"); 4709 case BitstreamEntry::EndBlock: 4710 goto OutOfRecordLoop; 4711 4712 case BitstreamEntry::SubBlock: 4713 switch (Entry.ID) { 4714 default: // Skip unknown content. 4715 if (Error Err = Stream.SkipBlock()) 4716 return Err; 4717 break; 4718 case bitc::CONSTANTS_BLOCK_ID: 4719 if (Error Err = parseConstants()) 4720 return Err; 4721 NextValueNo = ValueList.size(); 4722 break; 4723 case bitc::VALUE_SYMTAB_BLOCK_ID: 4724 if (Error Err = parseValueSymbolTable()) 4725 return Err; 4726 break; 4727 case bitc::METADATA_ATTACHMENT_ID: 4728 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4729 return Err; 4730 break; 4731 case bitc::METADATA_BLOCK_ID: 4732 assert(DeferredMetadataInfo.empty() && 4733 "Must read all module-level metadata before function-level"); 4734 if (Error Err = MDLoader->parseFunctionMetadata()) 4735 return Err; 4736 break; 4737 case bitc::USELIST_BLOCK_ID: 4738 if (Error Err = parseUseLists()) 4739 return Err; 4740 break; 4741 } 4742 continue; 4743 4744 case BitstreamEntry::Record: 4745 // The interesting case. 4746 break; 4747 } 4748 4749 // Read a record. 4750 Record.clear(); 4751 Instruction *I = nullptr; 4752 unsigned ResTypeID = InvalidTypeID; 4753 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4754 if (!MaybeBitCode) 4755 return MaybeBitCode.takeError(); 4756 switch (unsigned BitCode = MaybeBitCode.get()) { 4757 default: // Default behavior: reject 4758 return error("Invalid value"); 4759 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4760 if (Record.empty() || Record[0] == 0) 4761 return error("Invalid record"); 4762 // Create all the basic blocks for the function. 4763 FunctionBBs.resize(Record[0]); 4764 4765 // See if anything took the address of blocks in this function. 4766 auto BBFRI = BasicBlockFwdRefs.find(F); 4767 if (BBFRI == BasicBlockFwdRefs.end()) { 4768 for (BasicBlock *&BB : FunctionBBs) 4769 BB = BasicBlock::Create(Context, "", F); 4770 } else { 4771 auto &BBRefs = BBFRI->second; 4772 // Check for invalid basic block references. 4773 if (BBRefs.size() > FunctionBBs.size()) 4774 return error("Invalid ID"); 4775 assert(!BBRefs.empty() && "Unexpected empty array"); 4776 assert(!BBRefs.front() && "Invalid reference to entry block"); 4777 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4778 ++I) 4779 if (I < RE && BBRefs[I]) { 4780 BBRefs[I]->insertInto(F); 4781 FunctionBBs[I] = BBRefs[I]; 4782 } else { 4783 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4784 } 4785 4786 // Erase from the table. 4787 BasicBlockFwdRefs.erase(BBFRI); 4788 } 4789 4790 CurBB = FunctionBBs[0]; 4791 continue; 4792 } 4793 4794 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4795 // The record should not be emitted if it's an empty list. 4796 if (Record.empty()) 4797 return error("Invalid record"); 4798 // When we have the RARE case of a BlockAddress Constant that is not 4799 // scoped to the Function it refers to, we need to conservatively 4800 // materialize the referred to Function, regardless of whether or not 4801 // that Function will ultimately be linked, otherwise users of 4802 // BitcodeReader might start splicing out Function bodies such that we 4803 // might no longer be able to materialize the BlockAddress since the 4804 // BasicBlock (and entire body of the Function) the BlockAddress refers 4805 // to may have been moved. In the case that the user of BitcodeReader 4806 // decides ultimately not to link the Function body, materializing here 4807 // could be considered wasteful, but it's better than a deserialization 4808 // failure as described. This keeps BitcodeReader unaware of complex 4809 // linkage policy decisions such as those use by LTO, leaving those 4810 // decisions "one layer up." 4811 for (uint64_t ValID : Record) 4812 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4813 BackwardRefFunctions.push_back(F); 4814 else 4815 return error("Invalid record"); 4816 4817 continue; 4818 4819 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4820 // This record indicates that the last instruction is at the same 4821 // location as the previous instruction with a location. 4822 I = getLastInstruction(); 4823 4824 if (!I) 4825 return error("Invalid record"); 4826 I->setDebugLoc(LastLoc); 4827 I = nullptr; 4828 continue; 4829 4830 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4831 I = getLastInstruction(); 4832 if (!I || Record.size() < 4) 4833 return error("Invalid record"); 4834 4835 unsigned Line = Record[0], Col = Record[1]; 4836 unsigned ScopeID = Record[2], IAID = Record[3]; 4837 bool isImplicitCode = Record.size() == 5 && Record[4]; 4838 4839 MDNode *Scope = nullptr, *IA = nullptr; 4840 if (ScopeID) { 4841 Scope = dyn_cast_or_null<MDNode>( 4842 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4843 if (!Scope) 4844 return error("Invalid record"); 4845 } 4846 if (IAID) { 4847 IA = dyn_cast_or_null<MDNode>( 4848 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4849 if (!IA) 4850 return error("Invalid record"); 4851 } 4852 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4853 isImplicitCode); 4854 I->setDebugLoc(LastLoc); 4855 I = nullptr; 4856 continue; 4857 } 4858 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4859 unsigned OpNum = 0; 4860 Value *LHS; 4861 unsigned TypeID; 4862 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4863 OpNum+1 > Record.size()) 4864 return error("Invalid record"); 4865 4866 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4867 if (Opc == -1) 4868 return error("Invalid record"); 4869 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4870 ResTypeID = TypeID; 4871 InstructionList.push_back(I); 4872 if (OpNum < Record.size()) { 4873 if (isa<FPMathOperator>(I)) { 4874 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4875 if (FMF.any()) 4876 I->setFastMathFlags(FMF); 4877 } 4878 } 4879 break; 4880 } 4881 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4882 unsigned OpNum = 0; 4883 Value *LHS, *RHS; 4884 unsigned TypeID; 4885 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4886 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 4887 CurBB) || 4888 OpNum+1 > Record.size()) 4889 return error("Invalid record"); 4890 4891 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4892 if (Opc == -1) 4893 return error("Invalid record"); 4894 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4895 ResTypeID = TypeID; 4896 InstructionList.push_back(I); 4897 if (OpNum < Record.size()) { 4898 if (Opc == Instruction::Add || 4899 Opc == Instruction::Sub || 4900 Opc == Instruction::Mul || 4901 Opc == Instruction::Shl) { 4902 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4903 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4904 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4905 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4906 } else if (Opc == Instruction::SDiv || 4907 Opc == Instruction::UDiv || 4908 Opc == Instruction::LShr || 4909 Opc == Instruction::AShr) { 4910 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4911 cast<BinaryOperator>(I)->setIsExact(true); 4912 } else if (Opc == Instruction::Or) { 4913 if (Record[OpNum] & (1 << bitc::PDI_DISJOINT)) 4914 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true); 4915 } else if (isa<FPMathOperator>(I)) { 4916 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4917 if (FMF.any()) 4918 I->setFastMathFlags(FMF); 4919 } 4920 } 4921 break; 4922 } 4923 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4924 unsigned OpNum = 0; 4925 Value *Op; 4926 unsigned OpTypeID; 4927 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 4928 OpNum + 1 > Record.size()) 4929 return error("Invalid record"); 4930 4931 ResTypeID = Record[OpNum++]; 4932 Type *ResTy = getTypeByID(ResTypeID); 4933 int Opc = getDecodedCastOpcode(Record[OpNum++]); 4934 4935 if (Opc == -1 || !ResTy) 4936 return error("Invalid record"); 4937 Instruction *Temp = nullptr; 4938 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4939 if (Temp) { 4940 InstructionList.push_back(Temp); 4941 assert(CurBB && "No current BB?"); 4942 Temp->insertInto(CurBB, CurBB->end()); 4943 } 4944 } else { 4945 auto CastOp = (Instruction::CastOps)Opc; 4946 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4947 return error("Invalid cast"); 4948 I = CastInst::Create(CastOp, Op, ResTy); 4949 } 4950 if (OpNum < Record.size() && isa<PossiblyNonNegInst>(I) && 4951 (Record[OpNum] & (1 << bitc::PNNI_NON_NEG))) 4952 I->setNonNeg(true); 4953 InstructionList.push_back(I); 4954 break; 4955 } 4956 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4957 case bitc::FUNC_CODE_INST_GEP_OLD: 4958 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4959 unsigned OpNum = 0; 4960 4961 unsigned TyID; 4962 Type *Ty; 4963 bool InBounds; 4964 4965 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4966 InBounds = Record[OpNum++]; 4967 TyID = Record[OpNum++]; 4968 Ty = getTypeByID(TyID); 4969 } else { 4970 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4971 TyID = InvalidTypeID; 4972 Ty = nullptr; 4973 } 4974 4975 Value *BasePtr; 4976 unsigned BasePtrTypeID; 4977 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 4978 CurBB)) 4979 return error("Invalid record"); 4980 4981 if (!Ty) { 4982 TyID = getContainedTypeID(BasePtrTypeID); 4983 if (BasePtr->getType()->isVectorTy()) 4984 TyID = getContainedTypeID(TyID); 4985 Ty = getTypeByID(TyID); 4986 } 4987 4988 SmallVector<Value*, 16> GEPIdx; 4989 while (OpNum != Record.size()) { 4990 Value *Op; 4991 unsigned OpTypeID; 4992 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 4993 return error("Invalid record"); 4994 GEPIdx.push_back(Op); 4995 } 4996 4997 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4998 4999 ResTypeID = TyID; 5000 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 5001 auto GTI = std::next(gep_type_begin(I)); 5002 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 5003 unsigned SubType = 0; 5004 if (GTI.isStruct()) { 5005 ConstantInt *IdxC = 5006 Idx->getType()->isVectorTy() 5007 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 5008 : cast<ConstantInt>(Idx); 5009 SubType = IdxC->getZExtValue(); 5010 } 5011 ResTypeID = getContainedTypeID(ResTypeID, SubType); 5012 ++GTI; 5013 } 5014 } 5015 5016 // At this point ResTypeID is the result element type. We need a pointer 5017 // or vector of pointer to it. 5018 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 5019 if (I->getType()->isVectorTy()) 5020 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5021 5022 InstructionList.push_back(I); 5023 if (InBounds) 5024 cast<GetElementPtrInst>(I)->setIsInBounds(true); 5025 break; 5026 } 5027 5028 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 5029 // EXTRACTVAL: [opty, opval, n x indices] 5030 unsigned OpNum = 0; 5031 Value *Agg; 5032 unsigned AggTypeID; 5033 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5034 return error("Invalid record"); 5035 Type *Ty = Agg->getType(); 5036 5037 unsigned RecSize = Record.size(); 5038 if (OpNum == RecSize) 5039 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5040 5041 SmallVector<unsigned, 4> EXTRACTVALIdx; 5042 ResTypeID = AggTypeID; 5043 for (; OpNum != RecSize; ++OpNum) { 5044 bool IsArray = Ty->isArrayTy(); 5045 bool IsStruct = Ty->isStructTy(); 5046 uint64_t Index = Record[OpNum]; 5047 5048 if (!IsStruct && !IsArray) 5049 return error("EXTRACTVAL: Invalid type"); 5050 if ((unsigned)Index != Index) 5051 return error("Invalid value"); 5052 if (IsStruct && Index >= Ty->getStructNumElements()) 5053 return error("EXTRACTVAL: Invalid struct index"); 5054 if (IsArray && Index >= Ty->getArrayNumElements()) 5055 return error("EXTRACTVAL: Invalid array index"); 5056 EXTRACTVALIdx.push_back((unsigned)Index); 5057 5058 if (IsStruct) { 5059 Ty = Ty->getStructElementType(Index); 5060 ResTypeID = getContainedTypeID(ResTypeID, Index); 5061 } else { 5062 Ty = Ty->getArrayElementType(); 5063 ResTypeID = getContainedTypeID(ResTypeID); 5064 } 5065 } 5066 5067 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5068 InstructionList.push_back(I); 5069 break; 5070 } 5071 5072 case bitc::FUNC_CODE_INST_INSERTVAL: { 5073 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5074 unsigned OpNum = 0; 5075 Value *Agg; 5076 unsigned AggTypeID; 5077 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5078 return error("Invalid record"); 5079 Value *Val; 5080 unsigned ValTypeID; 5081 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5082 return error("Invalid record"); 5083 5084 unsigned RecSize = Record.size(); 5085 if (OpNum == RecSize) 5086 return error("INSERTVAL: Invalid instruction with 0 indices"); 5087 5088 SmallVector<unsigned, 4> INSERTVALIdx; 5089 Type *CurTy = Agg->getType(); 5090 for (; OpNum != RecSize; ++OpNum) { 5091 bool IsArray = CurTy->isArrayTy(); 5092 bool IsStruct = CurTy->isStructTy(); 5093 uint64_t Index = Record[OpNum]; 5094 5095 if (!IsStruct && !IsArray) 5096 return error("INSERTVAL: Invalid type"); 5097 if ((unsigned)Index != Index) 5098 return error("Invalid value"); 5099 if (IsStruct && Index >= CurTy->getStructNumElements()) 5100 return error("INSERTVAL: Invalid struct index"); 5101 if (IsArray && Index >= CurTy->getArrayNumElements()) 5102 return error("INSERTVAL: Invalid array index"); 5103 5104 INSERTVALIdx.push_back((unsigned)Index); 5105 if (IsStruct) 5106 CurTy = CurTy->getStructElementType(Index); 5107 else 5108 CurTy = CurTy->getArrayElementType(); 5109 } 5110 5111 if (CurTy != Val->getType()) 5112 return error("Inserted value type doesn't match aggregate type"); 5113 5114 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5115 ResTypeID = AggTypeID; 5116 InstructionList.push_back(I); 5117 break; 5118 } 5119 5120 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5121 // obsolete form of select 5122 // handles select i1 ... in old bitcode 5123 unsigned OpNum = 0; 5124 Value *TrueVal, *FalseVal, *Cond; 5125 unsigned TypeID; 5126 Type *CondType = Type::getInt1Ty(Context); 5127 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5128 CurBB) || 5129 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5130 FalseVal, CurBB) || 5131 popValue(Record, OpNum, NextValueNo, CondType, 5132 getVirtualTypeID(CondType), Cond, CurBB)) 5133 return error("Invalid record"); 5134 5135 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5136 ResTypeID = TypeID; 5137 InstructionList.push_back(I); 5138 break; 5139 } 5140 5141 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5142 // new form of select 5143 // handles select i1 or select [N x i1] 5144 unsigned OpNum = 0; 5145 Value *TrueVal, *FalseVal, *Cond; 5146 unsigned ValTypeID, CondTypeID; 5147 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5148 CurBB) || 5149 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5150 FalseVal, CurBB) || 5151 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5152 return error("Invalid record"); 5153 5154 // select condition can be either i1 or [N x i1] 5155 if (VectorType* vector_type = 5156 dyn_cast<VectorType>(Cond->getType())) { 5157 // expect <n x i1> 5158 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5159 return error("Invalid type for value"); 5160 } else { 5161 // expect i1 5162 if (Cond->getType() != Type::getInt1Ty(Context)) 5163 return error("Invalid type for value"); 5164 } 5165 5166 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5167 ResTypeID = ValTypeID; 5168 InstructionList.push_back(I); 5169 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5170 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5171 if (FMF.any()) 5172 I->setFastMathFlags(FMF); 5173 } 5174 break; 5175 } 5176 5177 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5178 unsigned OpNum = 0; 5179 Value *Vec, *Idx; 5180 unsigned VecTypeID, IdxTypeID; 5181 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5182 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5183 return error("Invalid record"); 5184 if (!Vec->getType()->isVectorTy()) 5185 return error("Invalid type for value"); 5186 I = ExtractElementInst::Create(Vec, Idx); 5187 ResTypeID = getContainedTypeID(VecTypeID); 5188 InstructionList.push_back(I); 5189 break; 5190 } 5191 5192 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5193 unsigned OpNum = 0; 5194 Value *Vec, *Elt, *Idx; 5195 unsigned VecTypeID, IdxTypeID; 5196 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5197 return error("Invalid record"); 5198 if (!Vec->getType()->isVectorTy()) 5199 return error("Invalid type for value"); 5200 if (popValue(Record, OpNum, NextValueNo, 5201 cast<VectorType>(Vec->getType())->getElementType(), 5202 getContainedTypeID(VecTypeID), Elt, CurBB) || 5203 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5204 return error("Invalid record"); 5205 I = InsertElementInst::Create(Vec, Elt, Idx); 5206 ResTypeID = VecTypeID; 5207 InstructionList.push_back(I); 5208 break; 5209 } 5210 5211 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5212 unsigned OpNum = 0; 5213 Value *Vec1, *Vec2, *Mask; 5214 unsigned Vec1TypeID; 5215 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5216 CurBB) || 5217 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5218 Vec2, CurBB)) 5219 return error("Invalid record"); 5220 5221 unsigned MaskTypeID; 5222 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5223 return error("Invalid record"); 5224 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5225 return error("Invalid type for value"); 5226 5227 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5228 ResTypeID = 5229 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5230 InstructionList.push_back(I); 5231 break; 5232 } 5233 5234 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5235 // Old form of ICmp/FCmp returning bool 5236 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5237 // both legal on vectors but had different behaviour. 5238 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5239 // FCmp/ICmp returning bool or vector of bool 5240 5241 unsigned OpNum = 0; 5242 Value *LHS, *RHS; 5243 unsigned LHSTypeID; 5244 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5245 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5246 CurBB)) 5247 return error("Invalid record"); 5248 5249 if (OpNum >= Record.size()) 5250 return error( 5251 "Invalid record: operand number exceeded available operands"); 5252 5253 CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]); 5254 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5255 FastMathFlags FMF; 5256 if (IsFP && Record.size() > OpNum+1) 5257 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5258 5259 if (OpNum+1 != Record.size()) 5260 return error("Invalid record"); 5261 5262 if (IsFP) { 5263 if (!CmpInst::isFPPredicate(PredVal)) 5264 return error("Invalid fcmp predicate"); 5265 I = new FCmpInst(PredVal, LHS, RHS); 5266 } else { 5267 if (!CmpInst::isIntPredicate(PredVal)) 5268 return error("Invalid icmp predicate"); 5269 I = new ICmpInst(PredVal, LHS, RHS); 5270 } 5271 5272 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5273 if (LHS->getType()->isVectorTy()) 5274 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5275 5276 if (FMF.any()) 5277 I->setFastMathFlags(FMF); 5278 InstructionList.push_back(I); 5279 break; 5280 } 5281 5282 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5283 { 5284 unsigned Size = Record.size(); 5285 if (Size == 0) { 5286 I = ReturnInst::Create(Context); 5287 InstructionList.push_back(I); 5288 break; 5289 } 5290 5291 unsigned OpNum = 0; 5292 Value *Op = nullptr; 5293 unsigned OpTypeID; 5294 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5295 return error("Invalid record"); 5296 if (OpNum != Record.size()) 5297 return error("Invalid record"); 5298 5299 I = ReturnInst::Create(Context, Op); 5300 InstructionList.push_back(I); 5301 break; 5302 } 5303 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5304 if (Record.size() != 1 && Record.size() != 3) 5305 return error("Invalid record"); 5306 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5307 if (!TrueDest) 5308 return error("Invalid record"); 5309 5310 if (Record.size() == 1) { 5311 I = BranchInst::Create(TrueDest); 5312 InstructionList.push_back(I); 5313 } 5314 else { 5315 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5316 Type *CondType = Type::getInt1Ty(Context); 5317 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5318 getVirtualTypeID(CondType), CurBB); 5319 if (!FalseDest || !Cond) 5320 return error("Invalid record"); 5321 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5322 InstructionList.push_back(I); 5323 } 5324 break; 5325 } 5326 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5327 if (Record.size() != 1 && Record.size() != 2) 5328 return error("Invalid record"); 5329 unsigned Idx = 0; 5330 Type *TokenTy = Type::getTokenTy(Context); 5331 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5332 getVirtualTypeID(TokenTy), CurBB); 5333 if (!CleanupPad) 5334 return error("Invalid record"); 5335 BasicBlock *UnwindDest = nullptr; 5336 if (Record.size() == 2) { 5337 UnwindDest = getBasicBlock(Record[Idx++]); 5338 if (!UnwindDest) 5339 return error("Invalid record"); 5340 } 5341 5342 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5343 InstructionList.push_back(I); 5344 break; 5345 } 5346 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5347 if (Record.size() != 2) 5348 return error("Invalid record"); 5349 unsigned Idx = 0; 5350 Type *TokenTy = Type::getTokenTy(Context); 5351 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5352 getVirtualTypeID(TokenTy), CurBB); 5353 if (!CatchPad) 5354 return error("Invalid record"); 5355 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5356 if (!BB) 5357 return error("Invalid record"); 5358 5359 I = CatchReturnInst::Create(CatchPad, BB); 5360 InstructionList.push_back(I); 5361 break; 5362 } 5363 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5364 // We must have, at minimum, the outer scope and the number of arguments. 5365 if (Record.size() < 2) 5366 return error("Invalid record"); 5367 5368 unsigned Idx = 0; 5369 5370 Type *TokenTy = Type::getTokenTy(Context); 5371 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5372 getVirtualTypeID(TokenTy), CurBB); 5373 if (!ParentPad) 5374 return error("Invalid record"); 5375 5376 unsigned NumHandlers = Record[Idx++]; 5377 5378 SmallVector<BasicBlock *, 2> Handlers; 5379 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5380 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5381 if (!BB) 5382 return error("Invalid record"); 5383 Handlers.push_back(BB); 5384 } 5385 5386 BasicBlock *UnwindDest = nullptr; 5387 if (Idx + 1 == Record.size()) { 5388 UnwindDest = getBasicBlock(Record[Idx++]); 5389 if (!UnwindDest) 5390 return error("Invalid record"); 5391 } 5392 5393 if (Record.size() != Idx) 5394 return error("Invalid record"); 5395 5396 auto *CatchSwitch = 5397 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5398 for (BasicBlock *Handler : Handlers) 5399 CatchSwitch->addHandler(Handler); 5400 I = CatchSwitch; 5401 ResTypeID = getVirtualTypeID(I->getType()); 5402 InstructionList.push_back(I); 5403 break; 5404 } 5405 case bitc::FUNC_CODE_INST_CATCHPAD: 5406 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5407 // We must have, at minimum, the outer scope and the number of arguments. 5408 if (Record.size() < 2) 5409 return error("Invalid record"); 5410 5411 unsigned Idx = 0; 5412 5413 Type *TokenTy = Type::getTokenTy(Context); 5414 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5415 getVirtualTypeID(TokenTy), CurBB); 5416 if (!ParentPad) 5417 return error("Invald record"); 5418 5419 unsigned NumArgOperands = Record[Idx++]; 5420 5421 SmallVector<Value *, 2> Args; 5422 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5423 Value *Val; 5424 unsigned ValTypeID; 5425 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5426 return error("Invalid record"); 5427 Args.push_back(Val); 5428 } 5429 5430 if (Record.size() != Idx) 5431 return error("Invalid record"); 5432 5433 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5434 I = CleanupPadInst::Create(ParentPad, Args); 5435 else 5436 I = CatchPadInst::Create(ParentPad, Args); 5437 ResTypeID = getVirtualTypeID(I->getType()); 5438 InstructionList.push_back(I); 5439 break; 5440 } 5441 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5442 // Check magic 5443 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5444 // "New" SwitchInst format with case ranges. The changes to write this 5445 // format were reverted but we still recognize bitcode that uses it. 5446 // Hopefully someday we will have support for case ranges and can use 5447 // this format again. 5448 5449 unsigned OpTyID = Record[1]; 5450 Type *OpTy = getTypeByID(OpTyID); 5451 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5452 5453 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5454 BasicBlock *Default = getBasicBlock(Record[3]); 5455 if (!OpTy || !Cond || !Default) 5456 return error("Invalid record"); 5457 5458 unsigned NumCases = Record[4]; 5459 5460 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5461 InstructionList.push_back(SI); 5462 5463 unsigned CurIdx = 5; 5464 for (unsigned i = 0; i != NumCases; ++i) { 5465 SmallVector<ConstantInt*, 1> CaseVals; 5466 unsigned NumItems = Record[CurIdx++]; 5467 for (unsigned ci = 0; ci != NumItems; ++ci) { 5468 bool isSingleNumber = Record[CurIdx++]; 5469 5470 APInt Low; 5471 unsigned ActiveWords = 1; 5472 if (ValueBitWidth > 64) 5473 ActiveWords = Record[CurIdx++]; 5474 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5475 ValueBitWidth); 5476 CurIdx += ActiveWords; 5477 5478 if (!isSingleNumber) { 5479 ActiveWords = 1; 5480 if (ValueBitWidth > 64) 5481 ActiveWords = Record[CurIdx++]; 5482 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5483 ValueBitWidth); 5484 CurIdx += ActiveWords; 5485 5486 // FIXME: It is not clear whether values in the range should be 5487 // compared as signed or unsigned values. The partially 5488 // implemented changes that used this format in the past used 5489 // unsigned comparisons. 5490 for ( ; Low.ule(High); ++Low) 5491 CaseVals.push_back(ConstantInt::get(Context, Low)); 5492 } else 5493 CaseVals.push_back(ConstantInt::get(Context, Low)); 5494 } 5495 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5496 for (ConstantInt *Cst : CaseVals) 5497 SI->addCase(Cst, DestBB); 5498 } 5499 I = SI; 5500 break; 5501 } 5502 5503 // Old SwitchInst format without case ranges. 5504 5505 if (Record.size() < 3 || (Record.size() & 1) == 0) 5506 return error("Invalid record"); 5507 unsigned OpTyID = Record[0]; 5508 Type *OpTy = getTypeByID(OpTyID); 5509 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5510 BasicBlock *Default = getBasicBlock(Record[2]); 5511 if (!OpTy || !Cond || !Default) 5512 return error("Invalid record"); 5513 unsigned NumCases = (Record.size()-3)/2; 5514 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5515 InstructionList.push_back(SI); 5516 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5517 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5518 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5519 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5520 if (!CaseVal || !DestBB) { 5521 delete SI; 5522 return error("Invalid record"); 5523 } 5524 SI->addCase(CaseVal, DestBB); 5525 } 5526 I = SI; 5527 break; 5528 } 5529 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5530 if (Record.size() < 2) 5531 return error("Invalid record"); 5532 unsigned OpTyID = Record[0]; 5533 Type *OpTy = getTypeByID(OpTyID); 5534 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5535 if (!OpTy || !Address) 5536 return error("Invalid record"); 5537 unsigned NumDests = Record.size()-2; 5538 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5539 InstructionList.push_back(IBI); 5540 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5541 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5542 IBI->addDestination(DestBB); 5543 } else { 5544 delete IBI; 5545 return error("Invalid record"); 5546 } 5547 } 5548 I = IBI; 5549 break; 5550 } 5551 5552 case bitc::FUNC_CODE_INST_INVOKE: { 5553 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5554 if (Record.size() < 4) 5555 return error("Invalid record"); 5556 unsigned OpNum = 0; 5557 AttributeList PAL = getAttributes(Record[OpNum++]); 5558 unsigned CCInfo = Record[OpNum++]; 5559 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5560 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5561 5562 unsigned FTyID = InvalidTypeID; 5563 FunctionType *FTy = nullptr; 5564 if ((CCInfo >> 13) & 1) { 5565 FTyID = Record[OpNum++]; 5566 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5567 if (!FTy) 5568 return error("Explicit invoke type is not a function type"); 5569 } 5570 5571 Value *Callee; 5572 unsigned CalleeTypeID; 5573 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5574 CurBB)) 5575 return error("Invalid record"); 5576 5577 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5578 if (!CalleeTy) 5579 return error("Callee is not a pointer"); 5580 if (!FTy) { 5581 FTyID = getContainedTypeID(CalleeTypeID); 5582 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5583 if (!FTy) 5584 return error("Callee is not of pointer to function type"); 5585 } 5586 if (Record.size() < FTy->getNumParams() + OpNum) 5587 return error("Insufficient operands to call"); 5588 5589 SmallVector<Value*, 16> Ops; 5590 SmallVector<unsigned, 16> ArgTyIDs; 5591 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5592 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5593 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5594 ArgTyID, CurBB)); 5595 ArgTyIDs.push_back(ArgTyID); 5596 if (!Ops.back()) 5597 return error("Invalid record"); 5598 } 5599 5600 if (!FTy->isVarArg()) { 5601 if (Record.size() != OpNum) 5602 return error("Invalid record"); 5603 } else { 5604 // Read type/value pairs for varargs params. 5605 while (OpNum != Record.size()) { 5606 Value *Op; 5607 unsigned OpTypeID; 5608 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5609 return error("Invalid record"); 5610 Ops.push_back(Op); 5611 ArgTyIDs.push_back(OpTypeID); 5612 } 5613 } 5614 5615 // Upgrade the bundles if needed. 5616 if (!OperandBundles.empty()) 5617 UpgradeOperandBundles(OperandBundles); 5618 5619 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5620 OperandBundles); 5621 ResTypeID = getContainedTypeID(FTyID); 5622 OperandBundles.clear(); 5623 InstructionList.push_back(I); 5624 cast<InvokeInst>(I)->setCallingConv( 5625 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5626 cast<InvokeInst>(I)->setAttributes(PAL); 5627 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5628 I->deleteValue(); 5629 return Err; 5630 } 5631 5632 break; 5633 } 5634 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5635 unsigned Idx = 0; 5636 Value *Val = nullptr; 5637 unsigned ValTypeID; 5638 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5639 return error("Invalid record"); 5640 I = ResumeInst::Create(Val); 5641 InstructionList.push_back(I); 5642 break; 5643 } 5644 case bitc::FUNC_CODE_INST_CALLBR: { 5645 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5646 unsigned OpNum = 0; 5647 AttributeList PAL = getAttributes(Record[OpNum++]); 5648 unsigned CCInfo = Record[OpNum++]; 5649 5650 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5651 unsigned NumIndirectDests = Record[OpNum++]; 5652 SmallVector<BasicBlock *, 16> IndirectDests; 5653 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5654 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5655 5656 unsigned FTyID = InvalidTypeID; 5657 FunctionType *FTy = nullptr; 5658 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5659 FTyID = Record[OpNum++]; 5660 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5661 if (!FTy) 5662 return error("Explicit call type is not a function type"); 5663 } 5664 5665 Value *Callee; 5666 unsigned CalleeTypeID; 5667 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5668 CurBB)) 5669 return error("Invalid record"); 5670 5671 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5672 if (!OpTy) 5673 return error("Callee is not a pointer type"); 5674 if (!FTy) { 5675 FTyID = getContainedTypeID(CalleeTypeID); 5676 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5677 if (!FTy) 5678 return error("Callee is not of pointer to function type"); 5679 } 5680 if (Record.size() < FTy->getNumParams() + OpNum) 5681 return error("Insufficient operands to call"); 5682 5683 SmallVector<Value*, 16> Args; 5684 SmallVector<unsigned, 16> ArgTyIDs; 5685 // Read the fixed params. 5686 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5687 Value *Arg; 5688 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5689 if (FTy->getParamType(i)->isLabelTy()) 5690 Arg = getBasicBlock(Record[OpNum]); 5691 else 5692 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5693 ArgTyID, CurBB); 5694 if (!Arg) 5695 return error("Invalid record"); 5696 Args.push_back(Arg); 5697 ArgTyIDs.push_back(ArgTyID); 5698 } 5699 5700 // Read type/value pairs for varargs params. 5701 if (!FTy->isVarArg()) { 5702 if (OpNum != Record.size()) 5703 return error("Invalid record"); 5704 } else { 5705 while (OpNum != Record.size()) { 5706 Value *Op; 5707 unsigned OpTypeID; 5708 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5709 return error("Invalid record"); 5710 Args.push_back(Op); 5711 ArgTyIDs.push_back(OpTypeID); 5712 } 5713 } 5714 5715 // Upgrade the bundles if needed. 5716 if (!OperandBundles.empty()) 5717 UpgradeOperandBundles(OperandBundles); 5718 5719 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5720 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5721 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5722 return CI.Type == InlineAsm::isLabel; 5723 }; 5724 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5725 // Upgrade explicit blockaddress arguments to label constraints. 5726 // Verify that the last arguments are blockaddress arguments that 5727 // match the indirect destinations. Clang always generates callbr 5728 // in this form. We could support reordering with more effort. 5729 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5730 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5731 unsigned LabelNo = ArgNo - FirstBlockArg; 5732 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5733 if (!BA || BA->getFunction() != F || 5734 LabelNo > IndirectDests.size() || 5735 BA->getBasicBlock() != IndirectDests[LabelNo]) 5736 return error("callbr argument does not match indirect dest"); 5737 } 5738 5739 // Remove blockaddress arguments. 5740 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5741 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5742 5743 // Recreate the function type with less arguments. 5744 SmallVector<Type *> ArgTys; 5745 for (Value *Arg : Args) 5746 ArgTys.push_back(Arg->getType()); 5747 FTy = 5748 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5749 5750 // Update constraint string to use label constraints. 5751 std::string Constraints = IA->getConstraintString(); 5752 unsigned ArgNo = 0; 5753 size_t Pos = 0; 5754 for (const auto &CI : ConstraintInfo) { 5755 if (CI.hasArg()) { 5756 if (ArgNo >= FirstBlockArg) 5757 Constraints.insert(Pos, "!"); 5758 ++ArgNo; 5759 } 5760 5761 // Go to next constraint in string. 5762 Pos = Constraints.find(',', Pos); 5763 if (Pos == std::string::npos) 5764 break; 5765 ++Pos; 5766 } 5767 5768 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5769 IA->hasSideEffects(), IA->isAlignStack(), 5770 IA->getDialect(), IA->canThrow()); 5771 } 5772 } 5773 5774 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5775 OperandBundles); 5776 ResTypeID = getContainedTypeID(FTyID); 5777 OperandBundles.clear(); 5778 InstructionList.push_back(I); 5779 cast<CallBrInst>(I)->setCallingConv( 5780 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5781 cast<CallBrInst>(I)->setAttributes(PAL); 5782 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5783 I->deleteValue(); 5784 return Err; 5785 } 5786 break; 5787 } 5788 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5789 I = new UnreachableInst(Context); 5790 InstructionList.push_back(I); 5791 break; 5792 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5793 if (Record.empty()) 5794 return error("Invalid phi record"); 5795 // The first record specifies the type. 5796 unsigned TyID = Record[0]; 5797 Type *Ty = getTypeByID(TyID); 5798 if (!Ty) 5799 return error("Invalid phi record"); 5800 5801 // Phi arguments are pairs of records of [value, basic block]. 5802 // There is an optional final record for fast-math-flags if this phi has a 5803 // floating-point type. 5804 size_t NumArgs = (Record.size() - 1) / 2; 5805 PHINode *PN = PHINode::Create(Ty, NumArgs); 5806 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5807 PN->deleteValue(); 5808 return error("Invalid phi record"); 5809 } 5810 InstructionList.push_back(PN); 5811 5812 SmallDenseMap<BasicBlock *, Value *> Args; 5813 for (unsigned i = 0; i != NumArgs; i++) { 5814 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5815 if (!BB) { 5816 PN->deleteValue(); 5817 return error("Invalid phi BB"); 5818 } 5819 5820 // Phi nodes may contain the same predecessor multiple times, in which 5821 // case the incoming value must be identical. Directly reuse the already 5822 // seen value here, to avoid expanding a constant expression multiple 5823 // times. 5824 auto It = Args.find(BB); 5825 if (It != Args.end()) { 5826 PN->addIncoming(It->second, BB); 5827 continue; 5828 } 5829 5830 // If there already is a block for this edge (from a different phi), 5831 // use it. 5832 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 5833 if (!EdgeBB) { 5834 // Otherwise, use a temporary block (that we will discard if it 5835 // turns out to be unnecessary). 5836 if (!PhiConstExprBB) 5837 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 5838 EdgeBB = PhiConstExprBB; 5839 } 5840 5841 // With the new function encoding, it is possible that operands have 5842 // negative IDs (for forward references). Use a signed VBR 5843 // representation to keep the encoding small. 5844 Value *V; 5845 if (UseRelativeIDs) 5846 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5847 else 5848 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5849 if (!V) { 5850 PN->deleteValue(); 5851 PhiConstExprBB->eraseFromParent(); 5852 return error("Invalid phi record"); 5853 } 5854 5855 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 5856 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 5857 PhiConstExprBB = nullptr; 5858 } 5859 PN->addIncoming(V, BB); 5860 Args.insert({BB, V}); 5861 } 5862 I = PN; 5863 ResTypeID = TyID; 5864 5865 // If there are an even number of records, the final record must be FMF. 5866 if (Record.size() % 2 == 0) { 5867 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5868 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5869 if (FMF.any()) 5870 I->setFastMathFlags(FMF); 5871 } 5872 5873 break; 5874 } 5875 5876 case bitc::FUNC_CODE_INST_LANDINGPAD: 5877 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5878 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5879 unsigned Idx = 0; 5880 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5881 if (Record.size() < 3) 5882 return error("Invalid record"); 5883 } else { 5884 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5885 if (Record.size() < 4) 5886 return error("Invalid record"); 5887 } 5888 ResTypeID = Record[Idx++]; 5889 Type *Ty = getTypeByID(ResTypeID); 5890 if (!Ty) 5891 return error("Invalid record"); 5892 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5893 Value *PersFn = nullptr; 5894 unsigned PersFnTypeID; 5895 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 5896 nullptr)) 5897 return error("Invalid record"); 5898 5899 if (!F->hasPersonalityFn()) 5900 F->setPersonalityFn(cast<Constant>(PersFn)); 5901 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5902 return error("Personality function mismatch"); 5903 } 5904 5905 bool IsCleanup = !!Record[Idx++]; 5906 unsigned NumClauses = Record[Idx++]; 5907 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5908 LP->setCleanup(IsCleanup); 5909 for (unsigned J = 0; J != NumClauses; ++J) { 5910 LandingPadInst::ClauseType CT = 5911 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5912 Value *Val; 5913 unsigned ValTypeID; 5914 5915 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 5916 nullptr)) { 5917 delete LP; 5918 return error("Invalid record"); 5919 } 5920 5921 assert((CT != LandingPadInst::Catch || 5922 !isa<ArrayType>(Val->getType())) && 5923 "Catch clause has a invalid type!"); 5924 assert((CT != LandingPadInst::Filter || 5925 isa<ArrayType>(Val->getType())) && 5926 "Filter clause has invalid type!"); 5927 LP->addClause(cast<Constant>(Val)); 5928 } 5929 5930 I = LP; 5931 InstructionList.push_back(I); 5932 break; 5933 } 5934 5935 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5936 if (Record.size() != 4 && Record.size() != 5) 5937 return error("Invalid record"); 5938 using APV = AllocaPackedValues; 5939 const uint64_t Rec = Record[3]; 5940 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 5941 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 5942 unsigned TyID = Record[0]; 5943 Type *Ty = getTypeByID(TyID); 5944 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 5945 TyID = getContainedTypeID(TyID); 5946 Ty = getTypeByID(TyID); 5947 if (!Ty) 5948 return error("Missing element type for old-style alloca"); 5949 } 5950 unsigned OpTyID = Record[1]; 5951 Type *OpTy = getTypeByID(OpTyID); 5952 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 5953 MaybeAlign Align; 5954 uint64_t AlignExp = 5955 Bitfield::get<APV::AlignLower>(Rec) | 5956 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 5957 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 5958 return Err; 5959 } 5960 if (!Ty || !Size) 5961 return error("Invalid record"); 5962 5963 const DataLayout &DL = TheModule->getDataLayout(); 5964 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 5965 5966 SmallPtrSet<Type *, 4> Visited; 5967 if (!Align && !Ty->isSized(&Visited)) 5968 return error("alloca of unsized type"); 5969 if (!Align) 5970 Align = DL.getPrefTypeAlign(Ty); 5971 5972 if (!Size->getType()->isIntegerTy()) 5973 return error("alloca element count must have integer type"); 5974 5975 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5976 AI->setUsedWithInAlloca(InAlloca); 5977 AI->setSwiftError(SwiftError); 5978 I = AI; 5979 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 5980 InstructionList.push_back(I); 5981 break; 5982 } 5983 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5984 unsigned OpNum = 0; 5985 Value *Op; 5986 unsigned OpTypeID; 5987 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5988 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5989 return error("Invalid record"); 5990 5991 if (!isa<PointerType>(Op->getType())) 5992 return error("Load operand is not a pointer type"); 5993 5994 Type *Ty = nullptr; 5995 if (OpNum + 3 == Record.size()) { 5996 ResTypeID = Record[OpNum++]; 5997 Ty = getTypeByID(ResTypeID); 5998 } else { 5999 ResTypeID = getContainedTypeID(OpTypeID); 6000 Ty = getTypeByID(ResTypeID); 6001 } 6002 6003 if (!Ty) 6004 return error("Missing load type"); 6005 6006 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6007 return Err; 6008 6009 MaybeAlign Align; 6010 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6011 return Err; 6012 SmallPtrSet<Type *, 4> Visited; 6013 if (!Align && !Ty->isSized(&Visited)) 6014 return error("load of unsized type"); 6015 if (!Align) 6016 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 6017 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 6018 InstructionList.push_back(I); 6019 break; 6020 } 6021 case bitc::FUNC_CODE_INST_LOADATOMIC: { 6022 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 6023 unsigned OpNum = 0; 6024 Value *Op; 6025 unsigned OpTypeID; 6026 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6027 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 6028 return error("Invalid record"); 6029 6030 if (!isa<PointerType>(Op->getType())) 6031 return error("Load operand is not a pointer type"); 6032 6033 Type *Ty = nullptr; 6034 if (OpNum + 5 == Record.size()) { 6035 ResTypeID = Record[OpNum++]; 6036 Ty = getTypeByID(ResTypeID); 6037 } else { 6038 ResTypeID = getContainedTypeID(OpTypeID); 6039 Ty = getTypeByID(ResTypeID); 6040 } 6041 6042 if (!Ty) 6043 return error("Missing atomic load type"); 6044 6045 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6046 return Err; 6047 6048 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6049 if (Ordering == AtomicOrdering::NotAtomic || 6050 Ordering == AtomicOrdering::Release || 6051 Ordering == AtomicOrdering::AcquireRelease) 6052 return error("Invalid record"); 6053 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6054 return error("Invalid record"); 6055 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6056 6057 MaybeAlign Align; 6058 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6059 return Err; 6060 if (!Align) 6061 return error("Alignment missing from atomic load"); 6062 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6063 InstructionList.push_back(I); 6064 break; 6065 } 6066 case bitc::FUNC_CODE_INST_STORE: 6067 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6068 unsigned OpNum = 0; 6069 Value *Val, *Ptr; 6070 unsigned PtrTypeID, ValTypeID; 6071 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6072 return error("Invalid record"); 6073 6074 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6075 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6076 return error("Invalid record"); 6077 } else { 6078 ValTypeID = getContainedTypeID(PtrTypeID); 6079 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6080 ValTypeID, Val, CurBB)) 6081 return error("Invalid record"); 6082 } 6083 6084 if (OpNum + 2 != Record.size()) 6085 return error("Invalid record"); 6086 6087 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6088 return Err; 6089 MaybeAlign Align; 6090 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6091 return Err; 6092 SmallPtrSet<Type *, 4> Visited; 6093 if (!Align && !Val->getType()->isSized(&Visited)) 6094 return error("store of unsized type"); 6095 if (!Align) 6096 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6097 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6098 InstructionList.push_back(I); 6099 break; 6100 } 6101 case bitc::FUNC_CODE_INST_STOREATOMIC: 6102 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6103 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6104 unsigned OpNum = 0; 6105 Value *Val, *Ptr; 6106 unsigned PtrTypeID, ValTypeID; 6107 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6108 !isa<PointerType>(Ptr->getType())) 6109 return error("Invalid record"); 6110 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6111 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6112 return error("Invalid record"); 6113 } else { 6114 ValTypeID = getContainedTypeID(PtrTypeID); 6115 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6116 ValTypeID, Val, CurBB)) 6117 return error("Invalid record"); 6118 } 6119 6120 if (OpNum + 4 != Record.size()) 6121 return error("Invalid record"); 6122 6123 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6124 return Err; 6125 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6126 if (Ordering == AtomicOrdering::NotAtomic || 6127 Ordering == AtomicOrdering::Acquire || 6128 Ordering == AtomicOrdering::AcquireRelease) 6129 return error("Invalid record"); 6130 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6131 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6132 return error("Invalid record"); 6133 6134 MaybeAlign Align; 6135 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6136 return Err; 6137 if (!Align) 6138 return error("Alignment missing from atomic store"); 6139 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6140 InstructionList.push_back(I); 6141 break; 6142 } 6143 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6144 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6145 // failure_ordering?, weak?] 6146 const size_t NumRecords = Record.size(); 6147 unsigned OpNum = 0; 6148 Value *Ptr = nullptr; 6149 unsigned PtrTypeID; 6150 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6151 return error("Invalid record"); 6152 6153 if (!isa<PointerType>(Ptr->getType())) 6154 return error("Cmpxchg operand is not a pointer type"); 6155 6156 Value *Cmp = nullptr; 6157 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6158 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6159 CmpTypeID, Cmp, CurBB)) 6160 return error("Invalid record"); 6161 6162 Value *New = nullptr; 6163 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6164 New, CurBB) || 6165 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6166 return error("Invalid record"); 6167 6168 const AtomicOrdering SuccessOrdering = 6169 getDecodedOrdering(Record[OpNum + 1]); 6170 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6171 SuccessOrdering == AtomicOrdering::Unordered) 6172 return error("Invalid record"); 6173 6174 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6175 6176 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6177 return Err; 6178 6179 const AtomicOrdering FailureOrdering = 6180 NumRecords < 7 6181 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6182 : getDecodedOrdering(Record[OpNum + 3]); 6183 6184 if (FailureOrdering == AtomicOrdering::NotAtomic || 6185 FailureOrdering == AtomicOrdering::Unordered) 6186 return error("Invalid record"); 6187 6188 const Align Alignment( 6189 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6190 6191 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6192 FailureOrdering, SSID); 6193 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6194 6195 if (NumRecords < 8) { 6196 // Before weak cmpxchgs existed, the instruction simply returned the 6197 // value loaded from memory, so bitcode files from that era will be 6198 // expecting the first component of a modern cmpxchg. 6199 I->insertInto(CurBB, CurBB->end()); 6200 I = ExtractValueInst::Create(I, 0); 6201 ResTypeID = CmpTypeID; 6202 } else { 6203 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6204 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6205 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6206 } 6207 6208 InstructionList.push_back(I); 6209 break; 6210 } 6211 case bitc::FUNC_CODE_INST_CMPXCHG: { 6212 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6213 // failure_ordering, weak, align?] 6214 const size_t NumRecords = Record.size(); 6215 unsigned OpNum = 0; 6216 Value *Ptr = nullptr; 6217 unsigned PtrTypeID; 6218 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6219 return error("Invalid record"); 6220 6221 if (!isa<PointerType>(Ptr->getType())) 6222 return error("Cmpxchg operand is not a pointer type"); 6223 6224 Value *Cmp = nullptr; 6225 unsigned CmpTypeID; 6226 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6227 return error("Invalid record"); 6228 6229 Value *Val = nullptr; 6230 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6231 CurBB)) 6232 return error("Invalid record"); 6233 6234 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6235 return error("Invalid record"); 6236 6237 const bool IsVol = Record[OpNum]; 6238 6239 const AtomicOrdering SuccessOrdering = 6240 getDecodedOrdering(Record[OpNum + 1]); 6241 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6242 return error("Invalid cmpxchg success ordering"); 6243 6244 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6245 6246 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6247 return Err; 6248 6249 const AtomicOrdering FailureOrdering = 6250 getDecodedOrdering(Record[OpNum + 3]); 6251 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6252 return error("Invalid cmpxchg failure ordering"); 6253 6254 const bool IsWeak = Record[OpNum + 4]; 6255 6256 MaybeAlign Alignment; 6257 6258 if (NumRecords == (OpNum + 6)) { 6259 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6260 return Err; 6261 } 6262 if (!Alignment) 6263 Alignment = 6264 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6265 6266 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6267 FailureOrdering, SSID); 6268 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6269 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6270 6271 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6272 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6273 6274 InstructionList.push_back(I); 6275 break; 6276 } 6277 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6278 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6279 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6280 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6281 const size_t NumRecords = Record.size(); 6282 unsigned OpNum = 0; 6283 6284 Value *Ptr = nullptr; 6285 unsigned PtrTypeID; 6286 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6287 return error("Invalid record"); 6288 6289 if (!isa<PointerType>(Ptr->getType())) 6290 return error("Invalid record"); 6291 6292 Value *Val = nullptr; 6293 unsigned ValTypeID = InvalidTypeID; 6294 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6295 ValTypeID = getContainedTypeID(PtrTypeID); 6296 if (popValue(Record, OpNum, NextValueNo, 6297 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6298 return error("Invalid record"); 6299 } else { 6300 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6301 return error("Invalid record"); 6302 } 6303 6304 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6305 return error("Invalid record"); 6306 6307 const AtomicRMWInst::BinOp Operation = 6308 getDecodedRMWOperation(Record[OpNum]); 6309 if (Operation < AtomicRMWInst::FIRST_BINOP || 6310 Operation > AtomicRMWInst::LAST_BINOP) 6311 return error("Invalid record"); 6312 6313 const bool IsVol = Record[OpNum + 1]; 6314 6315 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6316 if (Ordering == AtomicOrdering::NotAtomic || 6317 Ordering == AtomicOrdering::Unordered) 6318 return error("Invalid record"); 6319 6320 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6321 6322 MaybeAlign Alignment; 6323 6324 if (NumRecords == (OpNum + 5)) { 6325 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6326 return Err; 6327 } 6328 6329 if (!Alignment) 6330 Alignment = 6331 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6332 6333 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6334 ResTypeID = ValTypeID; 6335 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6336 6337 InstructionList.push_back(I); 6338 break; 6339 } 6340 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6341 if (2 != Record.size()) 6342 return error("Invalid record"); 6343 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6344 if (Ordering == AtomicOrdering::NotAtomic || 6345 Ordering == AtomicOrdering::Unordered || 6346 Ordering == AtomicOrdering::Monotonic) 6347 return error("Invalid record"); 6348 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6349 I = new FenceInst(Context, Ordering, SSID); 6350 InstructionList.push_back(I); 6351 break; 6352 } 6353 case bitc::FUNC_CODE_INST_CALL: { 6354 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6355 if (Record.size() < 3) 6356 return error("Invalid record"); 6357 6358 unsigned OpNum = 0; 6359 AttributeList PAL = getAttributes(Record[OpNum++]); 6360 unsigned CCInfo = Record[OpNum++]; 6361 6362 FastMathFlags FMF; 6363 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6364 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6365 if (!FMF.any()) 6366 return error("Fast math flags indicator set for call with no FMF"); 6367 } 6368 6369 unsigned FTyID = InvalidTypeID; 6370 FunctionType *FTy = nullptr; 6371 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6372 FTyID = Record[OpNum++]; 6373 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6374 if (!FTy) 6375 return error("Explicit call type is not a function type"); 6376 } 6377 6378 Value *Callee; 6379 unsigned CalleeTypeID; 6380 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6381 CurBB)) 6382 return error("Invalid record"); 6383 6384 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6385 if (!OpTy) 6386 return error("Callee is not a pointer type"); 6387 if (!FTy) { 6388 FTyID = getContainedTypeID(CalleeTypeID); 6389 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6390 if (!FTy) 6391 return error("Callee is not of pointer to function type"); 6392 } 6393 if (Record.size() < FTy->getNumParams() + OpNum) 6394 return error("Insufficient operands to call"); 6395 6396 SmallVector<Value*, 16> Args; 6397 SmallVector<unsigned, 16> ArgTyIDs; 6398 // Read the fixed params. 6399 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6400 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6401 if (FTy->getParamType(i)->isLabelTy()) 6402 Args.push_back(getBasicBlock(Record[OpNum])); 6403 else 6404 Args.push_back(getValue(Record, OpNum, NextValueNo, 6405 FTy->getParamType(i), ArgTyID, CurBB)); 6406 ArgTyIDs.push_back(ArgTyID); 6407 if (!Args.back()) 6408 return error("Invalid record"); 6409 } 6410 6411 // Read type/value pairs for varargs params. 6412 if (!FTy->isVarArg()) { 6413 if (OpNum != Record.size()) 6414 return error("Invalid record"); 6415 } else { 6416 while (OpNum != Record.size()) { 6417 Value *Op; 6418 unsigned OpTypeID; 6419 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6420 return error("Invalid record"); 6421 Args.push_back(Op); 6422 ArgTyIDs.push_back(OpTypeID); 6423 } 6424 } 6425 6426 // Upgrade the bundles if needed. 6427 if (!OperandBundles.empty()) 6428 UpgradeOperandBundles(OperandBundles); 6429 6430 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6431 ResTypeID = getContainedTypeID(FTyID); 6432 OperandBundles.clear(); 6433 InstructionList.push_back(I); 6434 cast<CallInst>(I)->setCallingConv( 6435 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6436 CallInst::TailCallKind TCK = CallInst::TCK_None; 6437 if (CCInfo & (1 << bitc::CALL_TAIL)) 6438 TCK = CallInst::TCK_Tail; 6439 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6440 TCK = CallInst::TCK_MustTail; 6441 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6442 TCK = CallInst::TCK_NoTail; 6443 cast<CallInst>(I)->setTailCallKind(TCK); 6444 cast<CallInst>(I)->setAttributes(PAL); 6445 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6446 I->deleteValue(); 6447 return Err; 6448 } 6449 if (FMF.any()) { 6450 if (!isa<FPMathOperator>(I)) 6451 return error("Fast-math-flags specified for call without " 6452 "floating-point scalar or vector return type"); 6453 I->setFastMathFlags(FMF); 6454 } 6455 break; 6456 } 6457 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6458 if (Record.size() < 3) 6459 return error("Invalid record"); 6460 unsigned OpTyID = Record[0]; 6461 Type *OpTy = getTypeByID(OpTyID); 6462 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6463 ResTypeID = Record[2]; 6464 Type *ResTy = getTypeByID(ResTypeID); 6465 if (!OpTy || !Op || !ResTy) 6466 return error("Invalid record"); 6467 I = new VAArgInst(Op, ResTy); 6468 InstructionList.push_back(I); 6469 break; 6470 } 6471 6472 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6473 // A call or an invoke can be optionally prefixed with some variable 6474 // number of operand bundle blocks. These blocks are read into 6475 // OperandBundles and consumed at the next call or invoke instruction. 6476 6477 if (Record.empty() || Record[0] >= BundleTags.size()) 6478 return error("Invalid record"); 6479 6480 std::vector<Value *> Inputs; 6481 6482 unsigned OpNum = 1; 6483 while (OpNum != Record.size()) { 6484 Value *Op; 6485 unsigned OpTypeID; 6486 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6487 return error("Invalid record"); 6488 Inputs.push_back(Op); 6489 } 6490 6491 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6492 continue; 6493 } 6494 6495 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6496 unsigned OpNum = 0; 6497 Value *Op = nullptr; 6498 unsigned OpTypeID; 6499 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6500 return error("Invalid record"); 6501 if (OpNum != Record.size()) 6502 return error("Invalid record"); 6503 6504 I = new FreezeInst(Op); 6505 ResTypeID = OpTypeID; 6506 InstructionList.push_back(I); 6507 break; 6508 } 6509 } 6510 6511 // Add instruction to end of current BB. If there is no current BB, reject 6512 // this file. 6513 if (!CurBB) { 6514 I->deleteValue(); 6515 return error("Invalid instruction with no BB"); 6516 } 6517 if (!OperandBundles.empty()) { 6518 I->deleteValue(); 6519 return error("Operand bundles found with no consumer"); 6520 } 6521 I->insertInto(CurBB, CurBB->end()); 6522 6523 // If this was a terminator instruction, move to the next block. 6524 if (I->isTerminator()) { 6525 ++CurBBNo; 6526 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6527 } 6528 6529 // Non-void values get registered in the value table for future use. 6530 if (!I->getType()->isVoidTy()) { 6531 assert(I->getType() == getTypeByID(ResTypeID) && 6532 "Incorrect result type ID"); 6533 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6534 return Err; 6535 } 6536 } 6537 6538 OutOfRecordLoop: 6539 6540 if (!OperandBundles.empty()) 6541 return error("Operand bundles found with no consumer"); 6542 6543 // Check the function list for unresolved values. 6544 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6545 if (!A->getParent()) { 6546 // We found at least one unresolved value. Nuke them all to avoid leaks. 6547 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6548 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6549 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6550 delete A; 6551 } 6552 } 6553 return error("Never resolved value found in function"); 6554 } 6555 } 6556 6557 // Unexpected unresolved metadata about to be dropped. 6558 if (MDLoader->hasFwdRefs()) 6559 return error("Invalid function metadata: outgoing forward refs"); 6560 6561 if (PhiConstExprBB) 6562 PhiConstExprBB->eraseFromParent(); 6563 6564 for (const auto &Pair : ConstExprEdgeBBs) { 6565 BasicBlock *From = Pair.first.first; 6566 BasicBlock *To = Pair.first.second; 6567 BasicBlock *EdgeBB = Pair.second; 6568 BranchInst::Create(To, EdgeBB); 6569 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6570 To->replacePhiUsesWith(From, EdgeBB); 6571 EdgeBB->moveBefore(To); 6572 } 6573 6574 // Trim the value list down to the size it was before we parsed this function. 6575 ValueList.shrinkTo(ModuleValueListSize); 6576 MDLoader->shrinkTo(ModuleMDLoaderSize); 6577 std::vector<BasicBlock*>().swap(FunctionBBs); 6578 return Error::success(); 6579 } 6580 6581 /// Find the function body in the bitcode stream 6582 Error BitcodeReader::findFunctionInStream( 6583 Function *F, 6584 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6585 while (DeferredFunctionInfoIterator->second == 0) { 6586 // This is the fallback handling for the old format bitcode that 6587 // didn't contain the function index in the VST, or when we have 6588 // an anonymous function which would not have a VST entry. 6589 // Assert that we have one of those two cases. 6590 assert(VSTOffset == 0 || !F->hasName()); 6591 // Parse the next body in the stream and set its position in the 6592 // DeferredFunctionInfo map. 6593 if (Error Err = rememberAndSkipFunctionBodies()) 6594 return Err; 6595 } 6596 return Error::success(); 6597 } 6598 6599 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6600 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6601 return SyncScope::ID(Val); 6602 if (Val >= SSIDs.size()) 6603 return SyncScope::System; // Map unknown synchronization scopes to system. 6604 return SSIDs[Val]; 6605 } 6606 6607 //===----------------------------------------------------------------------===// 6608 // GVMaterializer implementation 6609 //===----------------------------------------------------------------------===// 6610 6611 Error BitcodeReader::materialize(GlobalValue *GV) { 6612 Function *F = dyn_cast<Function>(GV); 6613 // If it's not a function or is already material, ignore the request. 6614 if (!F || !F->isMaterializable()) 6615 return Error::success(); 6616 6617 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6618 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6619 // If its position is recorded as 0, its body is somewhere in the stream 6620 // but we haven't seen it yet. 6621 if (DFII->second == 0) 6622 if (Error Err = findFunctionInStream(F, DFII)) 6623 return Err; 6624 6625 // Materialize metadata before parsing any function bodies. 6626 if (Error Err = materializeMetadata()) 6627 return Err; 6628 6629 // Move the bit stream to the saved position of the deferred function body. 6630 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6631 return JumpFailed; 6632 if (Error Err = parseFunctionBody(F)) 6633 return Err; 6634 F->setIsMaterializable(false); 6635 6636 if (StripDebugInfo) 6637 stripDebugInfo(*F); 6638 6639 // Upgrade any old intrinsic calls in the function. 6640 for (auto &I : UpgradedIntrinsics) { 6641 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6642 if (CallInst *CI = dyn_cast<CallInst>(U)) 6643 UpgradeIntrinsicCall(CI, I.second); 6644 } 6645 6646 // Finish fn->subprogram upgrade for materialized functions. 6647 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6648 F->setSubprogram(SP); 6649 6650 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6651 if (!MDLoader->isStrippingTBAA()) { 6652 for (auto &I : instructions(F)) { 6653 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6654 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6655 continue; 6656 MDLoader->setStripTBAA(true); 6657 stripTBAA(F->getParent()); 6658 } 6659 } 6660 6661 for (auto &I : instructions(F)) { 6662 // "Upgrade" older incorrect branch weights by dropping them. 6663 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6664 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6665 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6666 StringRef ProfName = MDS->getString(); 6667 // Check consistency of !prof branch_weights metadata. 6668 if (!ProfName.equals("branch_weights")) 6669 continue; 6670 unsigned ExpectedNumOperands = 0; 6671 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6672 ExpectedNumOperands = BI->getNumSuccessors(); 6673 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6674 ExpectedNumOperands = SI->getNumSuccessors(); 6675 else if (isa<CallInst>(&I)) 6676 ExpectedNumOperands = 1; 6677 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6678 ExpectedNumOperands = IBI->getNumDestinations(); 6679 else if (isa<SelectInst>(&I)) 6680 ExpectedNumOperands = 2; 6681 else 6682 continue; // ignore and continue. 6683 6684 // If branch weight doesn't match, just strip branch weight. 6685 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 6686 I.setMetadata(LLVMContext::MD_prof, nullptr); 6687 } 6688 } 6689 6690 // Remove incompatible attributes on function calls. 6691 if (auto *CI = dyn_cast<CallBase>(&I)) { 6692 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 6693 CI->getFunctionType()->getReturnType())); 6694 6695 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 6696 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 6697 CI->getArgOperand(ArgNo)->getType())); 6698 } 6699 } 6700 6701 // Look for functions that rely on old function attribute behavior. 6702 UpgradeFunctionAttributes(*F); 6703 6704 // Bring in any functions that this function forward-referenced via 6705 // blockaddresses. 6706 return materializeForwardReferencedFunctions(); 6707 } 6708 6709 Error BitcodeReader::materializeModule() { 6710 if (Error Err = materializeMetadata()) 6711 return Err; 6712 6713 // Promise to materialize all forward references. 6714 WillMaterializeAllForwardRefs = true; 6715 6716 // Iterate over the module, deserializing any functions that are still on 6717 // disk. 6718 for (Function &F : *TheModule) { 6719 if (Error Err = materialize(&F)) 6720 return Err; 6721 } 6722 // At this point, if there are any function bodies, parse the rest of 6723 // the bits in the module past the last function block we have recorded 6724 // through either lazy scanning or the VST. 6725 if (LastFunctionBlockBit || NextUnreadBit) 6726 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 6727 ? LastFunctionBlockBit 6728 : NextUnreadBit)) 6729 return Err; 6730 6731 // Check that all block address forward references got resolved (as we 6732 // promised above). 6733 if (!BasicBlockFwdRefs.empty()) 6734 return error("Never resolved function from blockaddress"); 6735 6736 // Upgrade any intrinsic calls that slipped through (should not happen!) and 6737 // delete the old functions to clean up. We can't do this unless the entire 6738 // module is materialized because there could always be another function body 6739 // with calls to the old function. 6740 for (auto &I : UpgradedIntrinsics) { 6741 for (auto *U : I.first->users()) { 6742 if (CallInst *CI = dyn_cast<CallInst>(U)) 6743 UpgradeIntrinsicCall(CI, I.second); 6744 } 6745 if (!I.first->use_empty()) 6746 I.first->replaceAllUsesWith(I.second); 6747 I.first->eraseFromParent(); 6748 } 6749 UpgradedIntrinsics.clear(); 6750 6751 UpgradeDebugInfo(*TheModule); 6752 6753 UpgradeModuleFlags(*TheModule); 6754 6755 UpgradeARCRuntime(*TheModule); 6756 6757 return Error::success(); 6758 } 6759 6760 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 6761 return IdentifiedStructTypes; 6762 } 6763 6764 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 6765 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 6766 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing) 6767 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 6768 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {} 6769 6770 void ModuleSummaryIndexBitcodeReader::addThisModule() { 6771 TheIndex.addModule(ModulePath); 6772 } 6773 6774 ModuleSummaryIndex::ModuleInfo * 6775 ModuleSummaryIndexBitcodeReader::getThisModule() { 6776 return TheIndex.getModule(ModulePath); 6777 } 6778 6779 template <bool AllowNullValueInfo> 6780 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 6781 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 6782 auto VGI = ValueIdToValueInfoMap[ValueId]; 6783 // We can have a null value info for memprof callsite info records in 6784 // distributed ThinLTO index files when the callee function summary is not 6785 // included in the index. The bitcode writer records 0 in that case, 6786 // and the caller of this helper will set AllowNullValueInfo to true. 6787 assert(AllowNullValueInfo || std::get<0>(VGI)); 6788 return VGI; 6789 } 6790 6791 void ModuleSummaryIndexBitcodeReader::setValueGUID( 6792 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 6793 StringRef SourceFileName) { 6794 std::string GlobalId = 6795 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6796 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6797 auto OriginalNameID = ValueGUID; 6798 if (GlobalValue::isLocalLinkage(Linkage)) 6799 OriginalNameID = GlobalValue::getGUID(ValueName); 6800 if (PrintSummaryGUIDs) 6801 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6802 << ValueName << "\n"; 6803 6804 // UseStrtab is false for legacy summary formats and value names are 6805 // created on stack. In that case we save the name in a string saver in 6806 // the index so that the value name can be recorded. 6807 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6808 TheIndex.getOrInsertValueInfo( 6809 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 6810 OriginalNameID, ValueGUID); 6811 } 6812 6813 // Specialized value symbol table parser used when reading module index 6814 // blocks where we don't actually create global values. The parsed information 6815 // is saved in the bitcode reader for use when later parsing summaries. 6816 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 6817 uint64_t Offset, 6818 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 6819 // With a strtab the VST is not required to parse the summary. 6820 if (UseStrtab) 6821 return Error::success(); 6822 6823 assert(Offset > 0 && "Expected non-zero VST offset"); 6824 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 6825 if (!MaybeCurrentBit) 6826 return MaybeCurrentBit.takeError(); 6827 uint64_t CurrentBit = MaybeCurrentBit.get(); 6828 6829 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 6830 return Err; 6831 6832 SmallVector<uint64_t, 64> Record; 6833 6834 // Read all the records for this value table. 6835 SmallString<128> ValueName; 6836 6837 while (true) { 6838 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6839 if (!MaybeEntry) 6840 return MaybeEntry.takeError(); 6841 BitstreamEntry Entry = MaybeEntry.get(); 6842 6843 switch (Entry.Kind) { 6844 case BitstreamEntry::SubBlock: // Handled for us already. 6845 case BitstreamEntry::Error: 6846 return error("Malformed block"); 6847 case BitstreamEntry::EndBlock: 6848 // Done parsing VST, jump back to wherever we came from. 6849 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 6850 return JumpFailed; 6851 return Error::success(); 6852 case BitstreamEntry::Record: 6853 // The interesting case. 6854 break; 6855 } 6856 6857 // Read a record. 6858 Record.clear(); 6859 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6860 if (!MaybeRecord) 6861 return MaybeRecord.takeError(); 6862 switch (MaybeRecord.get()) { 6863 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 6864 break; 6865 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 6866 if (convertToString(Record, 1, ValueName)) 6867 return error("Invalid record"); 6868 unsigned ValueID = Record[0]; 6869 assert(!SourceFileName.empty()); 6870 auto VLI = ValueIdToLinkageMap.find(ValueID); 6871 assert(VLI != ValueIdToLinkageMap.end() && 6872 "No linkage found for VST entry?"); 6873 auto Linkage = VLI->second; 6874 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6875 ValueName.clear(); 6876 break; 6877 } 6878 case bitc::VST_CODE_FNENTRY: { 6879 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6880 if (convertToString(Record, 2, ValueName)) 6881 return error("Invalid record"); 6882 unsigned ValueID = Record[0]; 6883 assert(!SourceFileName.empty()); 6884 auto VLI = ValueIdToLinkageMap.find(ValueID); 6885 assert(VLI != ValueIdToLinkageMap.end() && 6886 "No linkage found for VST entry?"); 6887 auto Linkage = VLI->second; 6888 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6889 ValueName.clear(); 6890 break; 6891 } 6892 case bitc::VST_CODE_COMBINED_ENTRY: { 6893 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6894 unsigned ValueID = Record[0]; 6895 GlobalValue::GUID RefGUID = Record[1]; 6896 // The "original name", which is the second value of the pair will be 6897 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6898 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6899 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 6900 break; 6901 } 6902 } 6903 } 6904 } 6905 6906 // Parse just the blocks needed for building the index out of the module. 6907 // At the end of this routine the module Index is populated with a map 6908 // from global value id to GlobalValueSummary objects. 6909 Error ModuleSummaryIndexBitcodeReader::parseModule() { 6910 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6911 return Err; 6912 6913 SmallVector<uint64_t, 64> Record; 6914 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6915 unsigned ValueId = 0; 6916 6917 // Read the index for this module. 6918 while (true) { 6919 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6920 if (!MaybeEntry) 6921 return MaybeEntry.takeError(); 6922 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6923 6924 switch (Entry.Kind) { 6925 case BitstreamEntry::Error: 6926 return error("Malformed block"); 6927 case BitstreamEntry::EndBlock: 6928 return Error::success(); 6929 6930 case BitstreamEntry::SubBlock: 6931 switch (Entry.ID) { 6932 default: // Skip unknown content. 6933 if (Error Err = Stream.SkipBlock()) 6934 return Err; 6935 break; 6936 case bitc::BLOCKINFO_BLOCK_ID: 6937 // Need to parse these to get abbrev ids (e.g. for VST) 6938 if (Error Err = readBlockInfo()) 6939 return Err; 6940 break; 6941 case bitc::VALUE_SYMTAB_BLOCK_ID: 6942 // Should have been parsed earlier via VSTOffset, unless there 6943 // is no summary section. 6944 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6945 !SeenGlobalValSummary) && 6946 "Expected early VST parse via VSTOffset record"); 6947 if (Error Err = Stream.SkipBlock()) 6948 return Err; 6949 break; 6950 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6951 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 6952 // Add the module if it is a per-module index (has a source file name). 6953 if (!SourceFileName.empty()) 6954 addThisModule(); 6955 assert(!SeenValueSymbolTable && 6956 "Already read VST when parsing summary block?"); 6957 // We might not have a VST if there were no values in the 6958 // summary. An empty summary block generated when we are 6959 // performing ThinLTO compiles so we don't later invoke 6960 // the regular LTO process on them. 6961 if (VSTOffset > 0) { 6962 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6963 return Err; 6964 SeenValueSymbolTable = true; 6965 } 6966 SeenGlobalValSummary = true; 6967 if (Error Err = parseEntireSummary(Entry.ID)) 6968 return Err; 6969 break; 6970 case bitc::MODULE_STRTAB_BLOCK_ID: 6971 if (Error Err = parseModuleStringTable()) 6972 return Err; 6973 break; 6974 } 6975 continue; 6976 6977 case BitstreamEntry::Record: { 6978 Record.clear(); 6979 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6980 if (!MaybeBitCode) 6981 return MaybeBitCode.takeError(); 6982 switch (MaybeBitCode.get()) { 6983 default: 6984 break; // Default behavior, ignore unknown content. 6985 case bitc::MODULE_CODE_VERSION: { 6986 if (Error Err = parseVersionRecord(Record).takeError()) 6987 return Err; 6988 break; 6989 } 6990 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6991 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6992 SmallString<128> ValueName; 6993 if (convertToString(Record, 0, ValueName)) 6994 return error("Invalid record"); 6995 SourceFileName = ValueName.c_str(); 6996 break; 6997 } 6998 /// MODULE_CODE_HASH: [5*i32] 6999 case bitc::MODULE_CODE_HASH: { 7000 if (Record.size() != 5) 7001 return error("Invalid hash length " + Twine(Record.size()).str()); 7002 auto &Hash = getThisModule()->second; 7003 int Pos = 0; 7004 for (auto &Val : Record) { 7005 assert(!(Val >> 32) && "Unexpected high bits set"); 7006 Hash[Pos++] = Val; 7007 } 7008 break; 7009 } 7010 /// MODULE_CODE_VSTOFFSET: [offset] 7011 case bitc::MODULE_CODE_VSTOFFSET: 7012 if (Record.empty()) 7013 return error("Invalid record"); 7014 // Note that we subtract 1 here because the offset is relative to one 7015 // word before the start of the identification or module block, which 7016 // was historically always the start of the regular bitcode header. 7017 VSTOffset = Record[0] - 1; 7018 break; 7019 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 7020 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 7021 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 7022 // v2: [strtab offset, strtab size, v1] 7023 case bitc::MODULE_CODE_GLOBALVAR: 7024 case bitc::MODULE_CODE_FUNCTION: 7025 case bitc::MODULE_CODE_ALIAS: { 7026 StringRef Name; 7027 ArrayRef<uint64_t> GVRecord; 7028 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 7029 if (GVRecord.size() <= 3) 7030 return error("Invalid record"); 7031 uint64_t RawLinkage = GVRecord[3]; 7032 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 7033 if (!UseStrtab) { 7034 ValueIdToLinkageMap[ValueId++] = Linkage; 7035 break; 7036 } 7037 7038 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 7039 break; 7040 } 7041 } 7042 } 7043 continue; 7044 } 7045 } 7046 } 7047 7048 std::vector<ValueInfo> 7049 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7050 std::vector<ValueInfo> Ret; 7051 Ret.reserve(Record.size()); 7052 for (uint64_t RefValueId : Record) 7053 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7054 return Ret; 7055 } 7056 7057 std::vector<FunctionSummary::EdgeTy> 7058 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7059 bool IsOldProfileFormat, 7060 bool HasProfile, bool HasRelBF) { 7061 std::vector<FunctionSummary::EdgeTy> Ret; 7062 Ret.reserve(Record.size()); 7063 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7064 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7065 bool HasTailCall = false; 7066 uint64_t RelBF = 0; 7067 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7068 if (IsOldProfileFormat) { 7069 I += 1; // Skip old callsitecount field 7070 if (HasProfile) 7071 I += 1; // Skip old profilecount field 7072 } else if (HasProfile) 7073 std::tie(Hotness, HasTailCall) = 7074 getDecodedHotnessCallEdgeInfo(Record[++I]); 7075 else if (HasRelBF) 7076 getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall); 7077 Ret.push_back(FunctionSummary::EdgeTy{ 7078 Callee, CalleeInfo(Hotness, HasTailCall, RelBF)}); 7079 } 7080 return Ret; 7081 } 7082 7083 static void 7084 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7085 WholeProgramDevirtResolution &Wpd) { 7086 uint64_t ArgNum = Record[Slot++]; 7087 WholeProgramDevirtResolution::ByArg &B = 7088 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7089 Slot += ArgNum; 7090 7091 B.TheKind = 7092 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7093 B.Info = Record[Slot++]; 7094 B.Byte = Record[Slot++]; 7095 B.Bit = Record[Slot++]; 7096 } 7097 7098 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7099 StringRef Strtab, size_t &Slot, 7100 TypeIdSummary &TypeId) { 7101 uint64_t Id = Record[Slot++]; 7102 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7103 7104 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7105 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7106 static_cast<size_t>(Record[Slot + 1])}; 7107 Slot += 2; 7108 7109 uint64_t ResByArgNum = Record[Slot++]; 7110 for (uint64_t I = 0; I != ResByArgNum; ++I) 7111 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7112 } 7113 7114 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7115 StringRef Strtab, 7116 ModuleSummaryIndex &TheIndex) { 7117 size_t Slot = 0; 7118 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7119 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7120 Slot += 2; 7121 7122 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7123 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7124 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7125 TypeId.TTRes.SizeM1 = Record[Slot++]; 7126 TypeId.TTRes.BitMask = Record[Slot++]; 7127 TypeId.TTRes.InlineBits = Record[Slot++]; 7128 7129 while (Slot < Record.size()) 7130 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7131 } 7132 7133 std::vector<FunctionSummary::ParamAccess> 7134 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7135 auto ReadRange = [&]() { 7136 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7137 BitcodeReader::decodeSignRotatedValue(Record.front())); 7138 Record = Record.drop_front(); 7139 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7140 BitcodeReader::decodeSignRotatedValue(Record.front())); 7141 Record = Record.drop_front(); 7142 ConstantRange Range{Lower, Upper}; 7143 assert(!Range.isFullSet()); 7144 assert(!Range.isUpperSignWrapped()); 7145 return Range; 7146 }; 7147 7148 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7149 while (!Record.empty()) { 7150 PendingParamAccesses.emplace_back(); 7151 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7152 ParamAccess.ParamNo = Record.front(); 7153 Record = Record.drop_front(); 7154 ParamAccess.Use = ReadRange(); 7155 ParamAccess.Calls.resize(Record.front()); 7156 Record = Record.drop_front(); 7157 for (auto &Call : ParamAccess.Calls) { 7158 Call.ParamNo = Record.front(); 7159 Record = Record.drop_front(); 7160 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7161 Record = Record.drop_front(); 7162 Call.Offsets = ReadRange(); 7163 } 7164 } 7165 return PendingParamAccesses; 7166 } 7167 7168 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7169 ArrayRef<uint64_t> Record, size_t &Slot, 7170 TypeIdCompatibleVtableInfo &TypeId) { 7171 uint64_t Offset = Record[Slot++]; 7172 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7173 TypeId.push_back({Offset, Callee}); 7174 } 7175 7176 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7177 ArrayRef<uint64_t> Record) { 7178 size_t Slot = 0; 7179 TypeIdCompatibleVtableInfo &TypeId = 7180 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7181 {Strtab.data() + Record[Slot], 7182 static_cast<size_t>(Record[Slot + 1])}); 7183 Slot += 2; 7184 7185 while (Slot < Record.size()) 7186 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7187 } 7188 7189 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 7190 unsigned WOCnt) { 7191 // Readonly and writeonly refs are in the end of the refs list. 7192 assert(ROCnt + WOCnt <= Refs.size()); 7193 unsigned FirstWORef = Refs.size() - WOCnt; 7194 unsigned RefNo = FirstWORef - ROCnt; 7195 for (; RefNo < FirstWORef; ++RefNo) 7196 Refs[RefNo].setReadOnly(); 7197 for (; RefNo < Refs.size(); ++RefNo) 7198 Refs[RefNo].setWriteOnly(); 7199 } 7200 7201 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7202 // objects in the index. 7203 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7204 if (Error Err = Stream.EnterSubBlock(ID)) 7205 return Err; 7206 SmallVector<uint64_t, 64> Record; 7207 7208 // Parse version 7209 { 7210 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7211 if (!MaybeEntry) 7212 return MaybeEntry.takeError(); 7213 BitstreamEntry Entry = MaybeEntry.get(); 7214 7215 if (Entry.Kind != BitstreamEntry::Record) 7216 return error("Invalid Summary Block: record for version expected"); 7217 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7218 if (!MaybeRecord) 7219 return MaybeRecord.takeError(); 7220 if (MaybeRecord.get() != bitc::FS_VERSION) 7221 return error("Invalid Summary Block: version expected"); 7222 } 7223 const uint64_t Version = Record[0]; 7224 const bool IsOldProfileFormat = Version == 1; 7225 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7226 return error("Invalid summary version " + Twine(Version) + 7227 ". Version should be in the range [1-" + 7228 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7229 "]."); 7230 Record.clear(); 7231 7232 // Keep around the last seen summary to be used when we see an optional 7233 // "OriginalName" attachement. 7234 GlobalValueSummary *LastSeenSummary = nullptr; 7235 GlobalValue::GUID LastSeenGUID = 0; 7236 7237 // We can expect to see any number of type ID information records before 7238 // each function summary records; these variables store the information 7239 // collected so far so that it can be used to create the summary object. 7240 std::vector<GlobalValue::GUID> PendingTypeTests; 7241 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7242 PendingTypeCheckedLoadVCalls; 7243 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7244 PendingTypeCheckedLoadConstVCalls; 7245 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7246 7247 std::vector<CallsiteInfo> PendingCallsites; 7248 std::vector<AllocInfo> PendingAllocs; 7249 7250 while (true) { 7251 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7252 if (!MaybeEntry) 7253 return MaybeEntry.takeError(); 7254 BitstreamEntry Entry = MaybeEntry.get(); 7255 7256 switch (Entry.Kind) { 7257 case BitstreamEntry::SubBlock: // Handled for us already. 7258 case BitstreamEntry::Error: 7259 return error("Malformed block"); 7260 case BitstreamEntry::EndBlock: 7261 return Error::success(); 7262 case BitstreamEntry::Record: 7263 // The interesting case. 7264 break; 7265 } 7266 7267 // Read a record. The record format depends on whether this 7268 // is a per-module index or a combined index file. In the per-module 7269 // case the records contain the associated value's ID for correlation 7270 // with VST entries. In the combined index the correlation is done 7271 // via the bitcode offset of the summary records (which were saved 7272 // in the combined index VST entries). The records also contain 7273 // information used for ThinLTO renaming and importing. 7274 Record.clear(); 7275 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7276 if (!MaybeBitCode) 7277 return MaybeBitCode.takeError(); 7278 switch (unsigned BitCode = MaybeBitCode.get()) { 7279 default: // Default behavior: ignore. 7280 break; 7281 case bitc::FS_FLAGS: { // [flags] 7282 TheIndex.setFlags(Record[0]); 7283 break; 7284 } 7285 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 7286 uint64_t ValueID = Record[0]; 7287 GlobalValue::GUID RefGUID = Record[1]; 7288 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7289 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7290 break; 7291 } 7292 // FS_PERMODULE is legacy and does not have support for the tail call flag. 7293 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7294 // numrefs x valueid, n x (valueid)] 7295 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7296 // numrefs x valueid, 7297 // n x (valueid, hotness+tailcall flags)] 7298 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7299 // numrefs x valueid, 7300 // n x (valueid, relblockfreq+tailcall)] 7301 case bitc::FS_PERMODULE: 7302 case bitc::FS_PERMODULE_RELBF: 7303 case bitc::FS_PERMODULE_PROFILE: { 7304 unsigned ValueID = Record[0]; 7305 uint64_t RawFlags = Record[1]; 7306 unsigned InstCount = Record[2]; 7307 uint64_t RawFunFlags = 0; 7308 unsigned NumRefs = Record[3]; 7309 unsigned NumRORefs = 0, NumWORefs = 0; 7310 int RefListStartIndex = 4; 7311 if (Version >= 4) { 7312 RawFunFlags = Record[3]; 7313 NumRefs = Record[4]; 7314 RefListStartIndex = 5; 7315 if (Version >= 5) { 7316 NumRORefs = Record[5]; 7317 RefListStartIndex = 6; 7318 if (Version >= 7) { 7319 NumWORefs = Record[6]; 7320 RefListStartIndex = 7; 7321 } 7322 } 7323 } 7324 7325 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7326 // The module path string ref set in the summary must be owned by the 7327 // index's module string table. Since we don't have a module path 7328 // string table section in the per-module index, we create a single 7329 // module path string table entry with an empty (0) ID to take 7330 // ownership. 7331 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7332 assert(Record.size() >= RefListStartIndex + NumRefs && 7333 "Record size inconsistent with number of references"); 7334 std::vector<ValueInfo> Refs = makeRefList( 7335 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7336 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7337 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7338 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 7339 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7340 IsOldProfileFormat, HasProfile, HasRelBF); 7341 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7342 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7343 // In order to save memory, only record the memprof summaries if this is 7344 // the prevailing copy of a symbol. The linker doesn't resolve local 7345 // linkage values so don't check whether those are prevailing. 7346 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7347 if (IsPrevailing && 7348 !GlobalValue::isLocalLinkage(LT) && 7349 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) { 7350 PendingCallsites.clear(); 7351 PendingAllocs.clear(); 7352 } 7353 auto FS = std::make_unique<FunctionSummary>( 7354 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 7355 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 7356 std::move(PendingTypeTestAssumeVCalls), 7357 std::move(PendingTypeCheckedLoadVCalls), 7358 std::move(PendingTypeTestAssumeConstVCalls), 7359 std::move(PendingTypeCheckedLoadConstVCalls), 7360 std::move(PendingParamAccesses), std::move(PendingCallsites), 7361 std::move(PendingAllocs)); 7362 FS->setModulePath(getThisModule()->first()); 7363 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7364 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7365 std::move(FS)); 7366 break; 7367 } 7368 // FS_ALIAS: [valueid, flags, valueid] 7369 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7370 // they expect all aliasee summaries to be available. 7371 case bitc::FS_ALIAS: { 7372 unsigned ValueID = Record[0]; 7373 uint64_t RawFlags = Record[1]; 7374 unsigned AliaseeID = Record[2]; 7375 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7376 auto AS = std::make_unique<AliasSummary>(Flags); 7377 // The module path string ref set in the summary must be owned by the 7378 // index's module string table. Since we don't have a module path 7379 // string table section in the per-module index, we create a single 7380 // module path string table entry with an empty (0) ID to take 7381 // ownership. 7382 AS->setModulePath(getThisModule()->first()); 7383 7384 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7385 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7386 if (!AliaseeInModule) 7387 return error("Alias expects aliasee summary to be parsed"); 7388 AS->setAliasee(AliaseeVI, AliaseeInModule); 7389 7390 auto GUID = getValueInfoFromValueId(ValueID); 7391 AS->setOriginalName(std::get<1>(GUID)); 7392 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7393 break; 7394 } 7395 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7396 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7397 unsigned ValueID = Record[0]; 7398 uint64_t RawFlags = Record[1]; 7399 unsigned RefArrayStart = 2; 7400 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7401 /* WriteOnly */ false, 7402 /* Constant */ false, 7403 GlobalObject::VCallVisibilityPublic); 7404 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7405 if (Version >= 5) { 7406 GVF = getDecodedGVarFlags(Record[2]); 7407 RefArrayStart = 3; 7408 } 7409 std::vector<ValueInfo> Refs = 7410 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7411 auto FS = 7412 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7413 FS->setModulePath(getThisModule()->first()); 7414 auto GUID = getValueInfoFromValueId(ValueID); 7415 FS->setOriginalName(std::get<1>(GUID)); 7416 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7417 break; 7418 } 7419 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7420 // numrefs, numrefs x valueid, 7421 // n x (valueid, offset)] 7422 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7423 unsigned ValueID = Record[0]; 7424 uint64_t RawFlags = Record[1]; 7425 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7426 unsigned NumRefs = Record[3]; 7427 unsigned RefListStartIndex = 4; 7428 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7429 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7430 std::vector<ValueInfo> Refs = makeRefList( 7431 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7432 VTableFuncList VTableFuncs; 7433 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7434 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7435 uint64_t Offset = Record[++I]; 7436 VTableFuncs.push_back({Callee, Offset}); 7437 } 7438 auto VS = 7439 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7440 VS->setModulePath(getThisModule()->first()); 7441 VS->setVTableFuncs(VTableFuncs); 7442 auto GUID = getValueInfoFromValueId(ValueID); 7443 VS->setOriginalName(std::get<1>(GUID)); 7444 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7445 break; 7446 } 7447 // FS_COMBINED is legacy and does not have support for the tail call flag. 7448 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7449 // numrefs x valueid, n x (valueid)] 7450 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7451 // numrefs x valueid, 7452 // n x (valueid, hotness+tailcall flags)] 7453 case bitc::FS_COMBINED: 7454 case bitc::FS_COMBINED_PROFILE: { 7455 unsigned ValueID = Record[0]; 7456 uint64_t ModuleId = Record[1]; 7457 uint64_t RawFlags = Record[2]; 7458 unsigned InstCount = Record[3]; 7459 uint64_t RawFunFlags = 0; 7460 uint64_t EntryCount = 0; 7461 unsigned NumRefs = Record[4]; 7462 unsigned NumRORefs = 0, NumWORefs = 0; 7463 int RefListStartIndex = 5; 7464 7465 if (Version >= 4) { 7466 RawFunFlags = Record[4]; 7467 RefListStartIndex = 6; 7468 size_t NumRefsIndex = 5; 7469 if (Version >= 5) { 7470 unsigned NumRORefsOffset = 1; 7471 RefListStartIndex = 7; 7472 if (Version >= 6) { 7473 NumRefsIndex = 6; 7474 EntryCount = Record[5]; 7475 RefListStartIndex = 8; 7476 if (Version >= 7) { 7477 RefListStartIndex = 9; 7478 NumWORefs = Record[8]; 7479 NumRORefsOffset = 2; 7480 } 7481 } 7482 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7483 } 7484 NumRefs = Record[NumRefsIndex]; 7485 } 7486 7487 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7488 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7489 assert(Record.size() >= RefListStartIndex + NumRefs && 7490 "Record size inconsistent with number of references"); 7491 std::vector<ValueInfo> Refs = makeRefList( 7492 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7493 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7494 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 7495 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7496 IsOldProfileFormat, HasProfile, false); 7497 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7498 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7499 auto FS = std::make_unique<FunctionSummary>( 7500 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 7501 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 7502 std::move(PendingTypeTestAssumeVCalls), 7503 std::move(PendingTypeCheckedLoadVCalls), 7504 std::move(PendingTypeTestAssumeConstVCalls), 7505 std::move(PendingTypeCheckedLoadConstVCalls), 7506 std::move(PendingParamAccesses), std::move(PendingCallsites), 7507 std::move(PendingAllocs)); 7508 LastSeenSummary = FS.get(); 7509 LastSeenGUID = VI.getGUID(); 7510 FS->setModulePath(ModuleIdMap[ModuleId]); 7511 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7512 break; 7513 } 7514 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7515 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7516 // they expect all aliasee summaries to be available. 7517 case bitc::FS_COMBINED_ALIAS: { 7518 unsigned ValueID = Record[0]; 7519 uint64_t ModuleId = Record[1]; 7520 uint64_t RawFlags = Record[2]; 7521 unsigned AliaseeValueId = Record[3]; 7522 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7523 auto AS = std::make_unique<AliasSummary>(Flags); 7524 LastSeenSummary = AS.get(); 7525 AS->setModulePath(ModuleIdMap[ModuleId]); 7526 7527 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7528 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7529 AS->setAliasee(AliaseeVI, AliaseeInModule); 7530 7531 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7532 LastSeenGUID = VI.getGUID(); 7533 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7534 break; 7535 } 7536 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7537 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7538 unsigned ValueID = Record[0]; 7539 uint64_t ModuleId = Record[1]; 7540 uint64_t RawFlags = Record[2]; 7541 unsigned RefArrayStart = 3; 7542 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7543 /* WriteOnly */ false, 7544 /* Constant */ false, 7545 GlobalObject::VCallVisibilityPublic); 7546 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7547 if (Version >= 5) { 7548 GVF = getDecodedGVarFlags(Record[3]); 7549 RefArrayStart = 4; 7550 } 7551 std::vector<ValueInfo> Refs = 7552 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7553 auto FS = 7554 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7555 LastSeenSummary = FS.get(); 7556 FS->setModulePath(ModuleIdMap[ModuleId]); 7557 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7558 LastSeenGUID = VI.getGUID(); 7559 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7560 break; 7561 } 7562 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7563 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7564 uint64_t OriginalName = Record[0]; 7565 if (!LastSeenSummary) 7566 return error("Name attachment that does not follow a combined record"); 7567 LastSeenSummary->setOriginalName(OriginalName); 7568 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7569 // Reset the LastSeenSummary 7570 LastSeenSummary = nullptr; 7571 LastSeenGUID = 0; 7572 break; 7573 } 7574 case bitc::FS_TYPE_TESTS: 7575 assert(PendingTypeTests.empty()); 7576 llvm::append_range(PendingTypeTests, Record); 7577 break; 7578 7579 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7580 assert(PendingTypeTestAssumeVCalls.empty()); 7581 for (unsigned I = 0; I != Record.size(); I += 2) 7582 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7583 break; 7584 7585 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7586 assert(PendingTypeCheckedLoadVCalls.empty()); 7587 for (unsigned I = 0; I != Record.size(); I += 2) 7588 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7589 break; 7590 7591 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7592 PendingTypeTestAssumeConstVCalls.push_back( 7593 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7594 break; 7595 7596 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7597 PendingTypeCheckedLoadConstVCalls.push_back( 7598 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7599 break; 7600 7601 case bitc::FS_CFI_FUNCTION_DEFS: { 7602 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7603 for (unsigned I = 0; I != Record.size(); I += 2) 7604 CfiFunctionDefs.insert( 7605 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7606 break; 7607 } 7608 7609 case bitc::FS_CFI_FUNCTION_DECLS: { 7610 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7611 for (unsigned I = 0; I != Record.size(); I += 2) 7612 CfiFunctionDecls.insert( 7613 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7614 break; 7615 } 7616 7617 case bitc::FS_TYPE_ID: 7618 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7619 break; 7620 7621 case bitc::FS_TYPE_ID_METADATA: 7622 parseTypeIdCompatibleVtableSummaryRecord(Record); 7623 break; 7624 7625 case bitc::FS_BLOCK_COUNT: 7626 TheIndex.addBlockCount(Record[0]); 7627 break; 7628 7629 case bitc::FS_PARAM_ACCESS: { 7630 PendingParamAccesses = parseParamAccesses(Record); 7631 break; 7632 } 7633 7634 case bitc::FS_STACK_IDS: { // [n x stackid] 7635 // Save stack ids in the reader to consult when adding stack ids from the 7636 // lists in the stack node and alloc node entries. 7637 StackIds = ArrayRef<uint64_t>(Record); 7638 break; 7639 } 7640 7641 case bitc::FS_PERMODULE_CALLSITE_INFO: { 7642 unsigned ValueID = Record[0]; 7643 SmallVector<unsigned> StackIdList; 7644 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 7645 assert(*R < StackIds.size()); 7646 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 7647 } 7648 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7649 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 7650 break; 7651 } 7652 7653 case bitc::FS_COMBINED_CALLSITE_INFO: { 7654 auto RecordIter = Record.begin(); 7655 unsigned ValueID = *RecordIter++; 7656 unsigned NumStackIds = *RecordIter++; 7657 unsigned NumVersions = *RecordIter++; 7658 assert(Record.size() == 3 + NumStackIds + NumVersions); 7659 SmallVector<unsigned> StackIdList; 7660 for (unsigned J = 0; J < NumStackIds; J++) { 7661 assert(*RecordIter < StackIds.size()); 7662 StackIdList.push_back( 7663 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 7664 } 7665 SmallVector<unsigned> Versions; 7666 for (unsigned J = 0; J < NumVersions; J++) 7667 Versions.push_back(*RecordIter++); 7668 ValueInfo VI = std::get<0>( 7669 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 7670 PendingCallsites.push_back( 7671 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 7672 break; 7673 } 7674 7675 case bitc::FS_PERMODULE_ALLOC_INFO: { 7676 unsigned I = 0; 7677 std::vector<MIBInfo> MIBs; 7678 while (I < Record.size()) { 7679 assert(Record.size() - I >= 2); 7680 AllocationType AllocType = (AllocationType)Record[I++]; 7681 unsigned NumStackEntries = Record[I++]; 7682 assert(Record.size() - I >= NumStackEntries); 7683 SmallVector<unsigned> StackIdList; 7684 for (unsigned J = 0; J < NumStackEntries; J++) { 7685 assert(Record[I] < StackIds.size()); 7686 StackIdList.push_back( 7687 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7688 } 7689 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7690 } 7691 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 7692 break; 7693 } 7694 7695 case bitc::FS_COMBINED_ALLOC_INFO: { 7696 unsigned I = 0; 7697 std::vector<MIBInfo> MIBs; 7698 unsigned NumMIBs = Record[I++]; 7699 unsigned NumVersions = Record[I++]; 7700 unsigned MIBsRead = 0; 7701 while (MIBsRead++ < NumMIBs) { 7702 assert(Record.size() - I >= 2); 7703 AllocationType AllocType = (AllocationType)Record[I++]; 7704 unsigned NumStackEntries = Record[I++]; 7705 assert(Record.size() - I >= NumStackEntries); 7706 SmallVector<unsigned> StackIdList; 7707 for (unsigned J = 0; J < NumStackEntries; J++) { 7708 assert(Record[I] < StackIds.size()); 7709 StackIdList.push_back( 7710 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7711 } 7712 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7713 } 7714 assert(Record.size() - I >= NumVersions); 7715 SmallVector<uint8_t> Versions; 7716 for (unsigned J = 0; J < NumVersions; J++) 7717 Versions.push_back(Record[I++]); 7718 PendingAllocs.push_back( 7719 AllocInfo(std::move(Versions), std::move(MIBs))); 7720 break; 7721 } 7722 } 7723 } 7724 llvm_unreachable("Exit infinite loop"); 7725 } 7726 7727 // Parse the module string table block into the Index. 7728 // This populates the ModulePathStringTable map in the index. 7729 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 7730 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 7731 return Err; 7732 7733 SmallVector<uint64_t, 64> Record; 7734 7735 SmallString<128> ModulePath; 7736 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 7737 7738 while (true) { 7739 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7740 if (!MaybeEntry) 7741 return MaybeEntry.takeError(); 7742 BitstreamEntry Entry = MaybeEntry.get(); 7743 7744 switch (Entry.Kind) { 7745 case BitstreamEntry::SubBlock: // Handled for us already. 7746 case BitstreamEntry::Error: 7747 return error("Malformed block"); 7748 case BitstreamEntry::EndBlock: 7749 return Error::success(); 7750 case BitstreamEntry::Record: 7751 // The interesting case. 7752 break; 7753 } 7754 7755 Record.clear(); 7756 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7757 if (!MaybeRecord) 7758 return MaybeRecord.takeError(); 7759 switch (MaybeRecord.get()) { 7760 default: // Default behavior: ignore. 7761 break; 7762 case bitc::MST_CODE_ENTRY: { 7763 // MST_ENTRY: [modid, namechar x N] 7764 uint64_t ModuleId = Record[0]; 7765 7766 if (convertToString(Record, 1, ModulePath)) 7767 return error("Invalid record"); 7768 7769 LastSeenModule = TheIndex.addModule(ModulePath); 7770 ModuleIdMap[ModuleId] = LastSeenModule->first(); 7771 7772 ModulePath.clear(); 7773 break; 7774 } 7775 /// MST_CODE_HASH: [5*i32] 7776 case bitc::MST_CODE_HASH: { 7777 if (Record.size() != 5) 7778 return error("Invalid hash length " + Twine(Record.size()).str()); 7779 if (!LastSeenModule) 7780 return error("Invalid hash that does not follow a module path"); 7781 int Pos = 0; 7782 for (auto &Val : Record) { 7783 assert(!(Val >> 32) && "Unexpected high bits set"); 7784 LastSeenModule->second[Pos++] = Val; 7785 } 7786 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 7787 LastSeenModule = nullptr; 7788 break; 7789 } 7790 } 7791 } 7792 llvm_unreachable("Exit infinite loop"); 7793 } 7794 7795 namespace { 7796 7797 // FIXME: This class is only here to support the transition to llvm::Error. It 7798 // will be removed once this transition is complete. Clients should prefer to 7799 // deal with the Error value directly, rather than converting to error_code. 7800 class BitcodeErrorCategoryType : public std::error_category { 7801 const char *name() const noexcept override { 7802 return "llvm.bitcode"; 7803 } 7804 7805 std::string message(int IE) const override { 7806 BitcodeError E = static_cast<BitcodeError>(IE); 7807 switch (E) { 7808 case BitcodeError::CorruptedBitcode: 7809 return "Corrupted bitcode"; 7810 } 7811 llvm_unreachable("Unknown error type!"); 7812 } 7813 }; 7814 7815 } // end anonymous namespace 7816 7817 const std::error_category &llvm::BitcodeErrorCategory() { 7818 static BitcodeErrorCategoryType ErrorCategory; 7819 return ErrorCategory; 7820 } 7821 7822 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 7823 unsigned Block, unsigned RecordID) { 7824 if (Error Err = Stream.EnterSubBlock(Block)) 7825 return std::move(Err); 7826 7827 StringRef Strtab; 7828 while (true) { 7829 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7830 if (!MaybeEntry) 7831 return MaybeEntry.takeError(); 7832 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7833 7834 switch (Entry.Kind) { 7835 case BitstreamEntry::EndBlock: 7836 return Strtab; 7837 7838 case BitstreamEntry::Error: 7839 return error("Malformed block"); 7840 7841 case BitstreamEntry::SubBlock: 7842 if (Error Err = Stream.SkipBlock()) 7843 return std::move(Err); 7844 break; 7845 7846 case BitstreamEntry::Record: 7847 StringRef Blob; 7848 SmallVector<uint64_t, 1> Record; 7849 Expected<unsigned> MaybeRecord = 7850 Stream.readRecord(Entry.ID, Record, &Blob); 7851 if (!MaybeRecord) 7852 return MaybeRecord.takeError(); 7853 if (MaybeRecord.get() == RecordID) 7854 Strtab = Blob; 7855 break; 7856 } 7857 } 7858 } 7859 7860 //===----------------------------------------------------------------------===// 7861 // External interface 7862 //===----------------------------------------------------------------------===// 7863 7864 Expected<std::vector<BitcodeModule>> 7865 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 7866 auto FOrErr = getBitcodeFileContents(Buffer); 7867 if (!FOrErr) 7868 return FOrErr.takeError(); 7869 return std::move(FOrErr->Mods); 7870 } 7871 7872 Expected<BitcodeFileContents> 7873 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 7874 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7875 if (!StreamOrErr) 7876 return StreamOrErr.takeError(); 7877 BitstreamCursor &Stream = *StreamOrErr; 7878 7879 BitcodeFileContents F; 7880 while (true) { 7881 uint64_t BCBegin = Stream.getCurrentByteNo(); 7882 7883 // We may be consuming bitcode from a client that leaves garbage at the end 7884 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 7885 // the end that there cannot possibly be another module, stop looking. 7886 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 7887 return F; 7888 7889 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7890 if (!MaybeEntry) 7891 return MaybeEntry.takeError(); 7892 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7893 7894 switch (Entry.Kind) { 7895 case BitstreamEntry::EndBlock: 7896 case BitstreamEntry::Error: 7897 return error("Malformed block"); 7898 7899 case BitstreamEntry::SubBlock: { 7900 uint64_t IdentificationBit = -1ull; 7901 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 7902 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7903 if (Error Err = Stream.SkipBlock()) 7904 return std::move(Err); 7905 7906 { 7907 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7908 if (!MaybeEntry) 7909 return MaybeEntry.takeError(); 7910 Entry = MaybeEntry.get(); 7911 } 7912 7913 if (Entry.Kind != BitstreamEntry::SubBlock || 7914 Entry.ID != bitc::MODULE_BLOCK_ID) 7915 return error("Malformed block"); 7916 } 7917 7918 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 7919 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7920 if (Error Err = Stream.SkipBlock()) 7921 return std::move(Err); 7922 7923 F.Mods.push_back({Stream.getBitcodeBytes().slice( 7924 BCBegin, Stream.getCurrentByteNo() - BCBegin), 7925 Buffer.getBufferIdentifier(), IdentificationBit, 7926 ModuleBit}); 7927 continue; 7928 } 7929 7930 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 7931 Expected<StringRef> Strtab = 7932 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 7933 if (!Strtab) 7934 return Strtab.takeError(); 7935 // This string table is used by every preceding bitcode module that does 7936 // not have its own string table. A bitcode file may have multiple 7937 // string tables if it was created by binary concatenation, for example 7938 // with "llvm-cat -b". 7939 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 7940 if (!I.Strtab.empty()) 7941 break; 7942 I.Strtab = *Strtab; 7943 } 7944 // Similarly, the string table is used by every preceding symbol table; 7945 // normally there will be just one unless the bitcode file was created 7946 // by binary concatenation. 7947 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 7948 F.StrtabForSymtab = *Strtab; 7949 continue; 7950 } 7951 7952 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 7953 Expected<StringRef> SymtabOrErr = 7954 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 7955 if (!SymtabOrErr) 7956 return SymtabOrErr.takeError(); 7957 7958 // We can expect the bitcode file to have multiple symbol tables if it 7959 // was created by binary concatenation. In that case we silently 7960 // ignore any subsequent symbol tables, which is fine because this is a 7961 // low level function. The client is expected to notice that the number 7962 // of modules in the symbol table does not match the number of modules 7963 // in the input file and regenerate the symbol table. 7964 if (F.Symtab.empty()) 7965 F.Symtab = *SymtabOrErr; 7966 continue; 7967 } 7968 7969 if (Error Err = Stream.SkipBlock()) 7970 return std::move(Err); 7971 continue; 7972 } 7973 case BitstreamEntry::Record: 7974 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 7975 return std::move(E); 7976 continue; 7977 } 7978 } 7979 } 7980 7981 /// Get a lazy one-at-time loading module from bitcode. 7982 /// 7983 /// This isn't always used in a lazy context. In particular, it's also used by 7984 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 7985 /// in forward-referenced functions from block address references. 7986 /// 7987 /// \param[in] MaterializeAll Set to \c true if we should materialize 7988 /// everything. 7989 Expected<std::unique_ptr<Module>> 7990 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 7991 bool ShouldLazyLoadMetadata, bool IsImporting, 7992 ParserCallbacks Callbacks) { 7993 BitstreamCursor Stream(Buffer); 7994 7995 std::string ProducerIdentification; 7996 if (IdentificationBit != -1ull) { 7997 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 7998 return std::move(JumpFailed); 7999 if (Error E = 8000 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 8001 return std::move(E); 8002 } 8003 8004 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8005 return std::move(JumpFailed); 8006 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 8007 Context); 8008 8009 std::unique_ptr<Module> M = 8010 std::make_unique<Module>(ModuleIdentifier, Context); 8011 M->setMaterializer(R); 8012 8013 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 8014 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 8015 IsImporting, Callbacks)) 8016 return std::move(Err); 8017 8018 if (MaterializeAll) { 8019 // Read in the entire module, and destroy the BitcodeReader. 8020 if (Error Err = M->materializeAll()) 8021 return std::move(Err); 8022 } else { 8023 // Resolve forward references from blockaddresses. 8024 if (Error Err = R->materializeForwardReferencedFunctions()) 8025 return std::move(Err); 8026 } 8027 return std::move(M); 8028 } 8029 8030 Expected<std::unique_ptr<Module>> 8031 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 8032 bool IsImporting, ParserCallbacks Callbacks) { 8033 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 8034 Callbacks); 8035 } 8036 8037 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 8038 // We don't use ModuleIdentifier here because the client may need to control the 8039 // module path used in the combined summary (e.g. when reading summaries for 8040 // regular LTO modules). 8041 Error BitcodeModule::readSummary( 8042 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, 8043 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 8044 BitstreamCursor Stream(Buffer); 8045 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8046 return JumpFailed; 8047 8048 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 8049 ModulePath, IsPrevailing); 8050 return R.parseModule(); 8051 } 8052 8053 // Parse the specified bitcode buffer, returning the function info index. 8054 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8055 BitstreamCursor Stream(Buffer); 8056 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8057 return std::move(JumpFailed); 8058 8059 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8060 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8061 ModuleIdentifier, 0); 8062 8063 if (Error Err = R.parseModule()) 8064 return std::move(Err); 8065 8066 return std::move(Index); 8067 } 8068 8069 static Expected<std::pair<bool, bool>> 8070 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream, 8071 unsigned ID, 8072 BitcodeLTOInfo <OInfo) { 8073 if (Error Err = Stream.EnterSubBlock(ID)) 8074 return std::move(Err); 8075 SmallVector<uint64_t, 64> Record; 8076 8077 while (true) { 8078 BitstreamEntry Entry; 8079 std::pair<bool, bool> Result = {false,false}; 8080 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8081 return std::move(E); 8082 8083 switch (Entry.Kind) { 8084 case BitstreamEntry::SubBlock: // Handled for us already. 8085 case BitstreamEntry::Error: 8086 return error("Malformed block"); 8087 case BitstreamEntry::EndBlock: { 8088 // If no flags record found, set both flags to false. 8089 return Result; 8090 } 8091 case BitstreamEntry::Record: 8092 // The interesting case. 8093 break; 8094 } 8095 8096 // Look for the FS_FLAGS record. 8097 Record.clear(); 8098 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8099 if (!MaybeBitCode) 8100 return MaybeBitCode.takeError(); 8101 switch (MaybeBitCode.get()) { 8102 default: // Default behavior: ignore. 8103 break; 8104 case bitc::FS_FLAGS: { // [flags] 8105 uint64_t Flags = Record[0]; 8106 // Scan flags. 8107 assert(Flags <= 0x2ff && "Unexpected bits in flag"); 8108 8109 bool EnableSplitLTOUnit = Flags & 0x8; 8110 bool UnifiedLTO = Flags & 0x200; 8111 Result = {EnableSplitLTOUnit, UnifiedLTO}; 8112 8113 return Result; 8114 } 8115 } 8116 } 8117 llvm_unreachable("Exit infinite loop"); 8118 } 8119 8120 // Check if the given bitcode buffer contains a global value summary block. 8121 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8122 BitstreamCursor Stream(Buffer); 8123 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8124 return std::move(JumpFailed); 8125 8126 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8127 return std::move(Err); 8128 8129 while (true) { 8130 llvm::BitstreamEntry Entry; 8131 if (Error E = Stream.advance().moveInto(Entry)) 8132 return std::move(E); 8133 8134 switch (Entry.Kind) { 8135 case BitstreamEntry::Error: 8136 return error("Malformed block"); 8137 case BitstreamEntry::EndBlock: 8138 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8139 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false}; 8140 8141 case BitstreamEntry::SubBlock: 8142 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8143 BitcodeLTOInfo LTOInfo; 8144 Expected<std::pair<bool, bool>> Flags = 8145 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8146 if (!Flags) 8147 return Flags.takeError(); 8148 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8149 LTOInfo.IsThinLTO = true; 8150 LTOInfo.HasSummary = true; 8151 return LTOInfo; 8152 } 8153 8154 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8155 BitcodeLTOInfo LTOInfo; 8156 Expected<std::pair<bool, bool>> Flags = 8157 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8158 if (!Flags) 8159 return Flags.takeError(); 8160 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8161 LTOInfo.IsThinLTO = false; 8162 LTOInfo.HasSummary = true; 8163 return LTOInfo; 8164 } 8165 8166 // Ignore other sub-blocks. 8167 if (Error Err = Stream.SkipBlock()) 8168 return std::move(Err); 8169 continue; 8170 8171 case BitstreamEntry::Record: 8172 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8173 continue; 8174 else 8175 return StreamFailed.takeError(); 8176 } 8177 } 8178 } 8179 8180 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8181 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8182 if (!MsOrErr) 8183 return MsOrErr.takeError(); 8184 8185 if (MsOrErr->size() != 1) 8186 return error("Expected a single module"); 8187 8188 return (*MsOrErr)[0]; 8189 } 8190 8191 Expected<std::unique_ptr<Module>> 8192 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8193 bool ShouldLazyLoadMetadata, bool IsImporting, 8194 ParserCallbacks Callbacks) { 8195 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8196 if (!BM) 8197 return BM.takeError(); 8198 8199 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8200 Callbacks); 8201 } 8202 8203 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8204 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8205 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8206 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8207 IsImporting, Callbacks); 8208 if (MOrErr) 8209 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8210 return MOrErr; 8211 } 8212 8213 Expected<std::unique_ptr<Module>> 8214 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8215 return getModuleImpl(Context, true, false, false, Callbacks); 8216 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8217 // written. We must defer until the Module has been fully materialized. 8218 } 8219 8220 Expected<std::unique_ptr<Module>> 8221 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8222 ParserCallbacks Callbacks) { 8223 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8224 if (!BM) 8225 return BM.takeError(); 8226 8227 return BM->parseModule(Context, Callbacks); 8228 } 8229 8230 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8231 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8232 if (!StreamOrErr) 8233 return StreamOrErr.takeError(); 8234 8235 return readTriple(*StreamOrErr); 8236 } 8237 8238 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8239 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8240 if (!StreamOrErr) 8241 return StreamOrErr.takeError(); 8242 8243 return hasObjCCategory(*StreamOrErr); 8244 } 8245 8246 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8247 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8248 if (!StreamOrErr) 8249 return StreamOrErr.takeError(); 8250 8251 return readIdentificationCode(*StreamOrErr); 8252 } 8253 8254 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8255 ModuleSummaryIndex &CombinedIndex) { 8256 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8257 if (!BM) 8258 return BM.takeError(); 8259 8260 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier()); 8261 } 8262 8263 Expected<std::unique_ptr<ModuleSummaryIndex>> 8264 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8265 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8266 if (!BM) 8267 return BM.takeError(); 8268 8269 return BM->getSummary(); 8270 } 8271 8272 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8273 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8274 if (!BM) 8275 return BM.takeError(); 8276 8277 return BM->getLTOInfo(); 8278 } 8279 8280 Expected<std::unique_ptr<ModuleSummaryIndex>> 8281 llvm::getModuleSummaryIndexForFile(StringRef Path, 8282 bool IgnoreEmptyThinLTOIndexFile) { 8283 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8284 MemoryBuffer::getFileOrSTDIN(Path); 8285 if (!FileOrErr) 8286 return errorCodeToError(FileOrErr.getError()); 8287 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8288 return nullptr; 8289 return getModuleSummaryIndex(**FileOrErr); 8290 } 8291