xref: /freebsd-src/contrib/llvm-project/llvm/lib/AsmParser/LLParser.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/AsmParser/LLParser.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/LLToken.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/ModRef.h"
47 #include "llvm/Support/SaveAndRestore.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstring>
52 #include <optional>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 static std::string getTypeString(Type *T) {
58   std::string Result;
59   raw_string_ostream Tmp(Result);
60   Tmp << *T;
61   return Tmp.str();
62 }
63 
64 /// Run: module ::= toplevelentity*
65 bool LLParser::Run(bool UpgradeDebugInfo,
66                    DataLayoutCallbackTy DataLayoutCallback) {
67   // Prime the lexer.
68   Lex.Lex();
69 
70   if (Context.shouldDiscardValueNames())
71     return error(
72         Lex.getLoc(),
73         "Can't read textual IR with a Context that discards named Values");
74 
75   if (M) {
76     if (parseTargetDefinitions(DataLayoutCallback))
77       return true;
78   }
79 
80   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
81          validateEndOfIndex();
82 }
83 
84 bool LLParser::parseStandaloneConstantValue(Constant *&C,
85                                             const SlotMapping *Slots) {
86   restoreParsingState(Slots);
87   Lex.Lex();
88 
89   Type *Ty = nullptr;
90   if (parseType(Ty) || parseConstantValue(Ty, C))
91     return true;
92   if (Lex.getKind() != lltok::Eof)
93     return error(Lex.getLoc(), "expected end of string");
94   return false;
95 }
96 
97 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
98                                     const SlotMapping *Slots) {
99   restoreParsingState(Slots);
100   Lex.Lex();
101 
102   Read = 0;
103   SMLoc Start = Lex.getLoc();
104   Ty = nullptr;
105   if (parseType(Ty))
106     return true;
107   SMLoc End = Lex.getLoc();
108   Read = End.getPointer() - Start.getPointer();
109 
110   return false;
111 }
112 
113 void LLParser::restoreParsingState(const SlotMapping *Slots) {
114   if (!Slots)
115     return;
116   NumberedVals = Slots->GlobalValues;
117   NumberedMetadata = Slots->MetadataNodes;
118   for (const auto &I : Slots->NamedTypes)
119     NamedTypes.insert(
120         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
121   for (const auto &I : Slots->Types)
122     NumberedTypes.insert(
123         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
124 }
125 
126 /// validateEndOfModule - Do final validity and basic correctness checks at the
127 /// end of the module.
128 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
129   if (!M)
130     return false;
131   // Handle any function attribute group forward references.
132   for (const auto &RAG : ForwardRefAttrGroups) {
133     Value *V = RAG.first;
134     const std::vector<unsigned> &Attrs = RAG.second;
135     AttrBuilder B(Context);
136 
137     for (const auto &Attr : Attrs) {
138       auto R = NumberedAttrBuilders.find(Attr);
139       if (R != NumberedAttrBuilders.end())
140         B.merge(R->second);
141     }
142 
143     if (Function *Fn = dyn_cast<Function>(V)) {
144       AttributeList AS = Fn->getAttributes();
145       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
146       AS = AS.removeFnAttributes(Context);
147 
148       FnAttrs.merge(B);
149 
150       // If the alignment was parsed as an attribute, move to the alignment
151       // field.
152       if (MaybeAlign A = FnAttrs.getAlignment()) {
153         Fn->setAlignment(*A);
154         FnAttrs.removeAttribute(Attribute::Alignment);
155       }
156 
157       AS = AS.addFnAttributes(Context, FnAttrs);
158       Fn->setAttributes(AS);
159     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
160       AttributeList AS = CI->getAttributes();
161       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
162       AS = AS.removeFnAttributes(Context);
163       FnAttrs.merge(B);
164       AS = AS.addFnAttributes(Context, FnAttrs);
165       CI->setAttributes(AS);
166     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
167       AttributeList AS = II->getAttributes();
168       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
169       AS = AS.removeFnAttributes(Context);
170       FnAttrs.merge(B);
171       AS = AS.addFnAttributes(Context, FnAttrs);
172       II->setAttributes(AS);
173     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
174       AttributeList AS = CBI->getAttributes();
175       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
176       AS = AS.removeFnAttributes(Context);
177       FnAttrs.merge(B);
178       AS = AS.addFnAttributes(Context, FnAttrs);
179       CBI->setAttributes(AS);
180     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
181       AttrBuilder Attrs(M->getContext(), GV->getAttributes());
182       Attrs.merge(B);
183       GV->setAttributes(AttributeSet::get(Context,Attrs));
184     } else {
185       llvm_unreachable("invalid object with forward attribute group reference");
186     }
187   }
188 
189   // If there are entries in ForwardRefBlockAddresses at this point, the
190   // function was never defined.
191   if (!ForwardRefBlockAddresses.empty())
192     return error(ForwardRefBlockAddresses.begin()->first.Loc,
193                  "expected function name in blockaddress");
194 
195   auto ResolveForwardRefDSOLocalEquivalents = [&](const ValID &GVRef,
196                                                   GlobalValue *FwdRef) {
197     GlobalValue *GV = nullptr;
198     if (GVRef.Kind == ValID::t_GlobalName) {
199       GV = M->getNamedValue(GVRef.StrVal);
200     } else if (GVRef.UIntVal < NumberedVals.size()) {
201       GV = dyn_cast<GlobalValue>(NumberedVals[GVRef.UIntVal]);
202     }
203 
204     if (!GV)
205       return error(GVRef.Loc, "unknown function '" + GVRef.StrVal +
206                                   "' referenced by dso_local_equivalent");
207 
208     if (!GV->getValueType()->isFunctionTy())
209       return error(GVRef.Loc,
210                    "expected a function, alias to function, or ifunc "
211                    "in dso_local_equivalent");
212 
213     auto *Equiv = DSOLocalEquivalent::get(GV);
214     FwdRef->replaceAllUsesWith(Equiv);
215     FwdRef->eraseFromParent();
216     return false;
217   };
218 
219   // If there are entries in ForwardRefDSOLocalEquivalentIDs/Names at this
220   // point, they are references after the function was defined.  Resolve those
221   // now.
222   for (auto &Iter : ForwardRefDSOLocalEquivalentIDs) {
223     if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second))
224       return true;
225   }
226   for (auto &Iter : ForwardRefDSOLocalEquivalentNames) {
227     if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second))
228       return true;
229   }
230   ForwardRefDSOLocalEquivalentIDs.clear();
231   ForwardRefDSOLocalEquivalentNames.clear();
232 
233   for (const auto &NT : NumberedTypes)
234     if (NT.second.second.isValid())
235       return error(NT.second.second,
236                    "use of undefined type '%" + Twine(NT.first) + "'");
237 
238   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
239        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
240     if (I->second.second.isValid())
241       return error(I->second.second,
242                    "use of undefined type named '" + I->getKey() + "'");
243 
244   if (!ForwardRefComdats.empty())
245     return error(ForwardRefComdats.begin()->second,
246                  "use of undefined comdat '$" +
247                      ForwardRefComdats.begin()->first + "'");
248 
249   if (!ForwardRefVals.empty())
250     return error(ForwardRefVals.begin()->second.second,
251                  "use of undefined value '@" + ForwardRefVals.begin()->first +
252                      "'");
253 
254   if (!ForwardRefValIDs.empty())
255     return error(ForwardRefValIDs.begin()->second.second,
256                  "use of undefined value '@" +
257                      Twine(ForwardRefValIDs.begin()->first) + "'");
258 
259   if (!ForwardRefMDNodes.empty())
260     return error(ForwardRefMDNodes.begin()->second.second,
261                  "use of undefined metadata '!" +
262                      Twine(ForwardRefMDNodes.begin()->first) + "'");
263 
264   // Resolve metadata cycles.
265   for (auto &N : NumberedMetadata) {
266     if (N.second && !N.second->isResolved())
267       N.second->resolveCycles();
268   }
269 
270   for (auto *Inst : InstsWithTBAATag) {
271     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
272     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
273     auto *UpgradedMD = UpgradeTBAANode(*MD);
274     if (MD != UpgradedMD)
275       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
276   }
277 
278   // Look for intrinsic functions and CallInst that need to be upgraded.  We use
279   // make_early_inc_range here because we may remove some functions.
280   for (Function &F : llvm::make_early_inc_range(*M))
281     UpgradeCallsToIntrinsic(&F);
282 
283   if (UpgradeDebugInfo)
284     llvm::UpgradeDebugInfo(*M);
285 
286   UpgradeModuleFlags(*M);
287   UpgradeSectionAttributes(*M);
288 
289   if (!Slots)
290     return false;
291   // Initialize the slot mapping.
292   // Because by this point we've parsed and validated everything, we can "steal"
293   // the mapping from LLParser as it doesn't need it anymore.
294   Slots->GlobalValues = std::move(NumberedVals);
295   Slots->MetadataNodes = std::move(NumberedMetadata);
296   for (const auto &I : NamedTypes)
297     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
298   for (const auto &I : NumberedTypes)
299     Slots->Types.insert(std::make_pair(I.first, I.second.first));
300 
301   return false;
302 }
303 
304 /// Do final validity and basic correctness checks at the end of the index.
305 bool LLParser::validateEndOfIndex() {
306   if (!Index)
307     return false;
308 
309   if (!ForwardRefValueInfos.empty())
310     return error(ForwardRefValueInfos.begin()->second.front().second,
311                  "use of undefined summary '^" +
312                      Twine(ForwardRefValueInfos.begin()->first) + "'");
313 
314   if (!ForwardRefAliasees.empty())
315     return error(ForwardRefAliasees.begin()->second.front().second,
316                  "use of undefined summary '^" +
317                      Twine(ForwardRefAliasees.begin()->first) + "'");
318 
319   if (!ForwardRefTypeIds.empty())
320     return error(ForwardRefTypeIds.begin()->second.front().second,
321                  "use of undefined type id summary '^" +
322                      Twine(ForwardRefTypeIds.begin()->first) + "'");
323 
324   return false;
325 }
326 
327 //===----------------------------------------------------------------------===//
328 // Top-Level Entities
329 //===----------------------------------------------------------------------===//
330 
331 bool LLParser::parseTargetDefinitions(DataLayoutCallbackTy DataLayoutCallback) {
332   // Delay parsing of the data layout string until the target triple is known.
333   // Then, pass both the the target triple and the tentative data layout string
334   // to DataLayoutCallback, allowing to override the DL string.
335   // This enables importing modules with invalid DL strings.
336   std::string TentativeDLStr = M->getDataLayoutStr();
337   LocTy DLStrLoc;
338 
339   bool Done = false;
340   while (!Done) {
341     switch (Lex.getKind()) {
342     case lltok::kw_target:
343       if (parseTargetDefinition(TentativeDLStr, DLStrLoc))
344         return true;
345       break;
346     case lltok::kw_source_filename:
347       if (parseSourceFileName())
348         return true;
349       break;
350     default:
351       Done = true;
352     }
353   }
354   // Run the override callback to potentially change the data layout string, and
355   // parse the data layout string.
356   if (auto LayoutOverride =
357           DataLayoutCallback(M->getTargetTriple(), TentativeDLStr)) {
358     TentativeDLStr = *LayoutOverride;
359     DLStrLoc = {};
360   }
361   Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDLStr);
362   if (!MaybeDL)
363     return error(DLStrLoc, toString(MaybeDL.takeError()));
364   M->setDataLayout(MaybeDL.get());
365   return false;
366 }
367 
368 bool LLParser::parseTopLevelEntities() {
369   // If there is no Module, then parse just the summary index entries.
370   if (!M) {
371     while (true) {
372       switch (Lex.getKind()) {
373       case lltok::Eof:
374         return false;
375       case lltok::SummaryID:
376         if (parseSummaryEntry())
377           return true;
378         break;
379       case lltok::kw_source_filename:
380         if (parseSourceFileName())
381           return true;
382         break;
383       default:
384         // Skip everything else
385         Lex.Lex();
386       }
387     }
388   }
389   while (true) {
390     switch (Lex.getKind()) {
391     default:
392       return tokError("expected top-level entity");
393     case lltok::Eof: return false;
394     case lltok::kw_declare:
395       if (parseDeclare())
396         return true;
397       break;
398     case lltok::kw_define:
399       if (parseDefine())
400         return true;
401       break;
402     case lltok::kw_module:
403       if (parseModuleAsm())
404         return true;
405       break;
406     case lltok::LocalVarID:
407       if (parseUnnamedType())
408         return true;
409       break;
410     case lltok::LocalVar:
411       if (parseNamedType())
412         return true;
413       break;
414     case lltok::GlobalID:
415       if (parseUnnamedGlobal())
416         return true;
417       break;
418     case lltok::GlobalVar:
419       if (parseNamedGlobal())
420         return true;
421       break;
422     case lltok::ComdatVar:  if (parseComdat()) return true; break;
423     case lltok::exclaim:
424       if (parseStandaloneMetadata())
425         return true;
426       break;
427     case lltok::SummaryID:
428       if (parseSummaryEntry())
429         return true;
430       break;
431     case lltok::MetadataVar:
432       if (parseNamedMetadata())
433         return true;
434       break;
435     case lltok::kw_attributes:
436       if (parseUnnamedAttrGrp())
437         return true;
438       break;
439     case lltok::kw_uselistorder:
440       if (parseUseListOrder())
441         return true;
442       break;
443     case lltok::kw_uselistorder_bb:
444       if (parseUseListOrderBB())
445         return true;
446       break;
447     }
448   }
449 }
450 
451 /// toplevelentity
452 ///   ::= 'module' 'asm' STRINGCONSTANT
453 bool LLParser::parseModuleAsm() {
454   assert(Lex.getKind() == lltok::kw_module);
455   Lex.Lex();
456 
457   std::string AsmStr;
458   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
459       parseStringConstant(AsmStr))
460     return true;
461 
462   M->appendModuleInlineAsm(AsmStr);
463   return false;
464 }
465 
466 /// toplevelentity
467 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
468 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
469 bool LLParser::parseTargetDefinition(std::string &TentativeDLStr,
470                                      LocTy &DLStrLoc) {
471   assert(Lex.getKind() == lltok::kw_target);
472   std::string Str;
473   switch (Lex.Lex()) {
474   default:
475     return tokError("unknown target property");
476   case lltok::kw_triple:
477     Lex.Lex();
478     if (parseToken(lltok::equal, "expected '=' after target triple") ||
479         parseStringConstant(Str))
480       return true;
481     M->setTargetTriple(Str);
482     return false;
483   case lltok::kw_datalayout:
484     Lex.Lex();
485     if (parseToken(lltok::equal, "expected '=' after target datalayout"))
486       return true;
487     DLStrLoc = Lex.getLoc();
488     if (parseStringConstant(TentativeDLStr))
489       return true;
490     return false;
491   }
492 }
493 
494 /// toplevelentity
495 ///   ::= 'source_filename' '=' STRINGCONSTANT
496 bool LLParser::parseSourceFileName() {
497   assert(Lex.getKind() == lltok::kw_source_filename);
498   Lex.Lex();
499   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
500       parseStringConstant(SourceFileName))
501     return true;
502   if (M)
503     M->setSourceFileName(SourceFileName);
504   return false;
505 }
506 
507 /// parseUnnamedType:
508 ///   ::= LocalVarID '=' 'type' type
509 bool LLParser::parseUnnamedType() {
510   LocTy TypeLoc = Lex.getLoc();
511   unsigned TypeID = Lex.getUIntVal();
512   Lex.Lex(); // eat LocalVarID;
513 
514   if (parseToken(lltok::equal, "expected '=' after name") ||
515       parseToken(lltok::kw_type, "expected 'type' after '='"))
516     return true;
517 
518   Type *Result = nullptr;
519   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
520     return true;
521 
522   if (!isa<StructType>(Result)) {
523     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
524     if (Entry.first)
525       return error(TypeLoc, "non-struct types may not be recursive");
526     Entry.first = Result;
527     Entry.second = SMLoc();
528   }
529 
530   return false;
531 }
532 
533 /// toplevelentity
534 ///   ::= LocalVar '=' 'type' type
535 bool LLParser::parseNamedType() {
536   std::string Name = Lex.getStrVal();
537   LocTy NameLoc = Lex.getLoc();
538   Lex.Lex();  // eat LocalVar.
539 
540   if (parseToken(lltok::equal, "expected '=' after name") ||
541       parseToken(lltok::kw_type, "expected 'type' after name"))
542     return true;
543 
544   Type *Result = nullptr;
545   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
546     return true;
547 
548   if (!isa<StructType>(Result)) {
549     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
550     if (Entry.first)
551       return error(NameLoc, "non-struct types may not be recursive");
552     Entry.first = Result;
553     Entry.second = SMLoc();
554   }
555 
556   return false;
557 }
558 
559 /// toplevelentity
560 ///   ::= 'declare' FunctionHeader
561 bool LLParser::parseDeclare() {
562   assert(Lex.getKind() == lltok::kw_declare);
563   Lex.Lex();
564 
565   std::vector<std::pair<unsigned, MDNode *>> MDs;
566   while (Lex.getKind() == lltok::MetadataVar) {
567     unsigned MDK;
568     MDNode *N;
569     if (parseMetadataAttachment(MDK, N))
570       return true;
571     MDs.push_back({MDK, N});
572   }
573 
574   Function *F;
575   if (parseFunctionHeader(F, false))
576     return true;
577   for (auto &MD : MDs)
578     F->addMetadata(MD.first, *MD.second);
579   return false;
580 }
581 
582 /// toplevelentity
583 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
584 bool LLParser::parseDefine() {
585   assert(Lex.getKind() == lltok::kw_define);
586   Lex.Lex();
587 
588   Function *F;
589   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
590          parseFunctionBody(*F);
591 }
592 
593 /// parseGlobalType
594 ///   ::= 'constant'
595 ///   ::= 'global'
596 bool LLParser::parseGlobalType(bool &IsConstant) {
597   if (Lex.getKind() == lltok::kw_constant)
598     IsConstant = true;
599   else if (Lex.getKind() == lltok::kw_global)
600     IsConstant = false;
601   else {
602     IsConstant = false;
603     return tokError("expected 'global' or 'constant'");
604   }
605   Lex.Lex();
606   return false;
607 }
608 
609 bool LLParser::parseOptionalUnnamedAddr(
610     GlobalVariable::UnnamedAddr &UnnamedAddr) {
611   if (EatIfPresent(lltok::kw_unnamed_addr))
612     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
613   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
614     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
615   else
616     UnnamedAddr = GlobalValue::UnnamedAddr::None;
617   return false;
618 }
619 
620 /// parseUnnamedGlobal:
621 ///   OptionalVisibility (ALIAS | IFUNC) ...
622 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
623 ///   OptionalDLLStorageClass
624 ///                                                     ...   -> global variable
625 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
626 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
627 ///   OptionalVisibility
628 ///                OptionalDLLStorageClass
629 ///                                                     ...   -> global variable
630 bool LLParser::parseUnnamedGlobal() {
631   unsigned VarID = NumberedVals.size();
632   std::string Name;
633   LocTy NameLoc = Lex.getLoc();
634 
635   // Handle the GlobalID form.
636   if (Lex.getKind() == lltok::GlobalID) {
637     if (Lex.getUIntVal() != VarID)
638       return error(Lex.getLoc(),
639                    "variable expected to be numbered '%" + Twine(VarID) + "'");
640     Lex.Lex(); // eat GlobalID;
641 
642     if (parseToken(lltok::equal, "expected '=' after name"))
643       return true;
644   }
645 
646   bool HasLinkage;
647   unsigned Linkage, Visibility, DLLStorageClass;
648   bool DSOLocal;
649   GlobalVariable::ThreadLocalMode TLM;
650   GlobalVariable::UnnamedAddr UnnamedAddr;
651   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
652                            DSOLocal) ||
653       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
654     return true;
655 
656   switch (Lex.getKind()) {
657   default:
658     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
659                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
660   case lltok::kw_alias:
661   case lltok::kw_ifunc:
662     return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility,
663                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
664   }
665 }
666 
667 /// parseNamedGlobal:
668 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
669 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
670 ///                 OptionalVisibility OptionalDLLStorageClass
671 ///                                                     ...   -> global variable
672 bool LLParser::parseNamedGlobal() {
673   assert(Lex.getKind() == lltok::GlobalVar);
674   LocTy NameLoc = Lex.getLoc();
675   std::string Name = Lex.getStrVal();
676   Lex.Lex();
677 
678   bool HasLinkage;
679   unsigned Linkage, Visibility, DLLStorageClass;
680   bool DSOLocal;
681   GlobalVariable::ThreadLocalMode TLM;
682   GlobalVariable::UnnamedAddr UnnamedAddr;
683   if (parseToken(lltok::equal, "expected '=' in global variable") ||
684       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
685                            DSOLocal) ||
686       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
687     return true;
688 
689   switch (Lex.getKind()) {
690   default:
691     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
692                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
693   case lltok::kw_alias:
694   case lltok::kw_ifunc:
695     return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility,
696                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
697   }
698 }
699 
700 bool LLParser::parseComdat() {
701   assert(Lex.getKind() == lltok::ComdatVar);
702   std::string Name = Lex.getStrVal();
703   LocTy NameLoc = Lex.getLoc();
704   Lex.Lex();
705 
706   if (parseToken(lltok::equal, "expected '=' here"))
707     return true;
708 
709   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
710     return tokError("expected comdat type");
711 
712   Comdat::SelectionKind SK;
713   switch (Lex.getKind()) {
714   default:
715     return tokError("unknown selection kind");
716   case lltok::kw_any:
717     SK = Comdat::Any;
718     break;
719   case lltok::kw_exactmatch:
720     SK = Comdat::ExactMatch;
721     break;
722   case lltok::kw_largest:
723     SK = Comdat::Largest;
724     break;
725   case lltok::kw_nodeduplicate:
726     SK = Comdat::NoDeduplicate;
727     break;
728   case lltok::kw_samesize:
729     SK = Comdat::SameSize;
730     break;
731   }
732   Lex.Lex();
733 
734   // See if the comdat was forward referenced, if so, use the comdat.
735   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
736   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
737   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
738     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
739 
740   Comdat *C;
741   if (I != ComdatSymTab.end())
742     C = &I->second;
743   else
744     C = M->getOrInsertComdat(Name);
745   C->setSelectionKind(SK);
746 
747   return false;
748 }
749 
750 // MDString:
751 //   ::= '!' STRINGCONSTANT
752 bool LLParser::parseMDString(MDString *&Result) {
753   std::string Str;
754   if (parseStringConstant(Str))
755     return true;
756   Result = MDString::get(Context, Str);
757   return false;
758 }
759 
760 // MDNode:
761 //   ::= '!' MDNodeNumber
762 bool LLParser::parseMDNodeID(MDNode *&Result) {
763   // !{ ..., !42, ... }
764   LocTy IDLoc = Lex.getLoc();
765   unsigned MID = 0;
766   if (parseUInt32(MID))
767     return true;
768 
769   // If not a forward reference, just return it now.
770   if (NumberedMetadata.count(MID)) {
771     Result = NumberedMetadata[MID];
772     return false;
773   }
774 
775   // Otherwise, create MDNode forward reference.
776   auto &FwdRef = ForwardRefMDNodes[MID];
777   FwdRef = std::make_pair(MDTuple::getTemporary(Context, std::nullopt), IDLoc);
778 
779   Result = FwdRef.first.get();
780   NumberedMetadata[MID].reset(Result);
781   return false;
782 }
783 
784 /// parseNamedMetadata:
785 ///   !foo = !{ !1, !2 }
786 bool LLParser::parseNamedMetadata() {
787   assert(Lex.getKind() == lltok::MetadataVar);
788   std::string Name = Lex.getStrVal();
789   Lex.Lex();
790 
791   if (parseToken(lltok::equal, "expected '=' here") ||
792       parseToken(lltok::exclaim, "Expected '!' here") ||
793       parseToken(lltok::lbrace, "Expected '{' here"))
794     return true;
795 
796   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
797   if (Lex.getKind() != lltok::rbrace)
798     do {
799       MDNode *N = nullptr;
800       // parse DIExpressions inline as a special case. They are still MDNodes,
801       // so they can still appear in named metadata. Remove this logic if they
802       // become plain Metadata.
803       if (Lex.getKind() == lltok::MetadataVar &&
804           Lex.getStrVal() == "DIExpression") {
805         if (parseDIExpression(N, /*IsDistinct=*/false))
806           return true;
807         // DIArgLists should only appear inline in a function, as they may
808         // contain LocalAsMetadata arguments which require a function context.
809       } else if (Lex.getKind() == lltok::MetadataVar &&
810                  Lex.getStrVal() == "DIArgList") {
811         return tokError("found DIArgList outside of function");
812       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
813                  parseMDNodeID(N)) {
814         return true;
815       }
816       NMD->addOperand(N);
817     } while (EatIfPresent(lltok::comma));
818 
819   return parseToken(lltok::rbrace, "expected end of metadata node");
820 }
821 
822 /// parseStandaloneMetadata:
823 ///   !42 = !{...}
824 bool LLParser::parseStandaloneMetadata() {
825   assert(Lex.getKind() == lltok::exclaim);
826   Lex.Lex();
827   unsigned MetadataID = 0;
828 
829   MDNode *Init;
830   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
831     return true;
832 
833   // Detect common error, from old metadata syntax.
834   if (Lex.getKind() == lltok::Type)
835     return tokError("unexpected type in metadata definition");
836 
837   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
838   if (Lex.getKind() == lltok::MetadataVar) {
839     if (parseSpecializedMDNode(Init, IsDistinct))
840       return true;
841   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
842              parseMDTuple(Init, IsDistinct))
843     return true;
844 
845   // See if this was forward referenced, if so, handle it.
846   auto FI = ForwardRefMDNodes.find(MetadataID);
847   if (FI != ForwardRefMDNodes.end()) {
848     auto *ToReplace = FI->second.first.get();
849     // DIAssignID has its own special forward-reference "replacement" for
850     // attachments (the temporary attachments are never actually attached).
851     if (isa<DIAssignID>(Init)) {
852       for (auto *Inst : TempDIAssignIDAttachments[ToReplace]) {
853         assert(!Inst->getMetadata(LLVMContext::MD_DIAssignID) &&
854                "Inst unexpectedly already has DIAssignID attachment");
855         Inst->setMetadata(LLVMContext::MD_DIAssignID, Init);
856       }
857     }
858 
859     ToReplace->replaceAllUsesWith(Init);
860     ForwardRefMDNodes.erase(FI);
861 
862     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
863   } else {
864     if (NumberedMetadata.count(MetadataID))
865       return tokError("Metadata id is already used");
866     NumberedMetadata[MetadataID].reset(Init);
867   }
868 
869   return false;
870 }
871 
872 // Skips a single module summary entry.
873 bool LLParser::skipModuleSummaryEntry() {
874   // Each module summary entry consists of a tag for the entry
875   // type, followed by a colon, then the fields which may be surrounded by
876   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
877   // support is in place we will look for the tokens corresponding to the
878   // expected tags.
879   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
880       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
881       Lex.getKind() != lltok::kw_blockcount)
882     return tokError(
883         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
884         "start of summary entry");
885   if (Lex.getKind() == lltok::kw_flags)
886     return parseSummaryIndexFlags();
887   if (Lex.getKind() == lltok::kw_blockcount)
888     return parseBlockCount();
889   Lex.Lex();
890   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
891       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
892     return true;
893   // Now walk through the parenthesized entry, until the number of open
894   // parentheses goes back down to 0 (the first '(' was parsed above).
895   unsigned NumOpenParen = 1;
896   do {
897     switch (Lex.getKind()) {
898     case lltok::lparen:
899       NumOpenParen++;
900       break;
901     case lltok::rparen:
902       NumOpenParen--;
903       break;
904     case lltok::Eof:
905       return tokError("found end of file while parsing summary entry");
906     default:
907       // Skip everything in between parentheses.
908       break;
909     }
910     Lex.Lex();
911   } while (NumOpenParen > 0);
912   return false;
913 }
914 
915 /// SummaryEntry
916 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
917 bool LLParser::parseSummaryEntry() {
918   assert(Lex.getKind() == lltok::SummaryID);
919   unsigned SummaryID = Lex.getUIntVal();
920 
921   // For summary entries, colons should be treated as distinct tokens,
922   // not an indication of the end of a label token.
923   Lex.setIgnoreColonInIdentifiers(true);
924 
925   Lex.Lex();
926   if (parseToken(lltok::equal, "expected '=' here"))
927     return true;
928 
929   // If we don't have an index object, skip the summary entry.
930   if (!Index)
931     return skipModuleSummaryEntry();
932 
933   bool result = false;
934   switch (Lex.getKind()) {
935   case lltok::kw_gv:
936     result = parseGVEntry(SummaryID);
937     break;
938   case lltok::kw_module:
939     result = parseModuleEntry(SummaryID);
940     break;
941   case lltok::kw_typeid:
942     result = parseTypeIdEntry(SummaryID);
943     break;
944   case lltok::kw_typeidCompatibleVTable:
945     result = parseTypeIdCompatibleVtableEntry(SummaryID);
946     break;
947   case lltok::kw_flags:
948     result = parseSummaryIndexFlags();
949     break;
950   case lltok::kw_blockcount:
951     result = parseBlockCount();
952     break;
953   default:
954     result = error(Lex.getLoc(), "unexpected summary kind");
955     break;
956   }
957   Lex.setIgnoreColonInIdentifiers(false);
958   return result;
959 }
960 
961 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
962   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
963          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
964 }
965 static bool isValidDLLStorageClassForLinkage(unsigned S, unsigned L) {
966   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
967          (GlobalValue::DLLStorageClassTypes)S == GlobalValue::DefaultStorageClass;
968 }
969 
970 // If there was an explicit dso_local, update GV. In the absence of an explicit
971 // dso_local we keep the default value.
972 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
973   if (DSOLocal)
974     GV.setDSOLocal(true);
975 }
976 
977 /// parseAliasOrIFunc:
978 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
979 ///                     OptionalVisibility OptionalDLLStorageClass
980 ///                     OptionalThreadLocal OptionalUnnamedAddr
981 ///                     'alias|ifunc' AliaseeOrResolver SymbolAttrs*
982 ///
983 /// AliaseeOrResolver
984 ///   ::= TypeAndValue
985 ///
986 /// SymbolAttrs
987 ///   ::= ',' 'partition' StringConstant
988 ///
989 /// Everything through OptionalUnnamedAddr has already been parsed.
990 ///
991 bool LLParser::parseAliasOrIFunc(const std::string &Name, LocTy NameLoc,
992                                  unsigned L, unsigned Visibility,
993                                  unsigned DLLStorageClass, bool DSOLocal,
994                                  GlobalVariable::ThreadLocalMode TLM,
995                                  GlobalVariable::UnnamedAddr UnnamedAddr) {
996   bool IsAlias;
997   if (Lex.getKind() == lltok::kw_alias)
998     IsAlias = true;
999   else if (Lex.getKind() == lltok::kw_ifunc)
1000     IsAlias = false;
1001   else
1002     llvm_unreachable("Not an alias or ifunc!");
1003   Lex.Lex();
1004 
1005   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
1006 
1007   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
1008     return error(NameLoc, "invalid linkage type for alias");
1009 
1010   if (!isValidVisibilityForLinkage(Visibility, L))
1011     return error(NameLoc,
1012                  "symbol with local linkage must have default visibility");
1013 
1014   if (!isValidDLLStorageClassForLinkage(DLLStorageClass, L))
1015     return error(NameLoc,
1016                  "symbol with local linkage cannot have a DLL storage class");
1017 
1018   Type *Ty;
1019   LocTy ExplicitTypeLoc = Lex.getLoc();
1020   if (parseType(Ty) ||
1021       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
1022     return true;
1023 
1024   Constant *Aliasee;
1025   LocTy AliaseeLoc = Lex.getLoc();
1026   if (Lex.getKind() != lltok::kw_bitcast &&
1027       Lex.getKind() != lltok::kw_getelementptr &&
1028       Lex.getKind() != lltok::kw_addrspacecast &&
1029       Lex.getKind() != lltok::kw_inttoptr) {
1030     if (parseGlobalTypeAndValue(Aliasee))
1031       return true;
1032   } else {
1033     // The bitcast dest type is not present, it is implied by the dest type.
1034     ValID ID;
1035     if (parseValID(ID, /*PFS=*/nullptr))
1036       return true;
1037     if (ID.Kind != ValID::t_Constant)
1038       return error(AliaseeLoc, "invalid aliasee");
1039     Aliasee = ID.ConstantVal;
1040   }
1041 
1042   Type *AliaseeType = Aliasee->getType();
1043   auto *PTy = dyn_cast<PointerType>(AliaseeType);
1044   if (!PTy)
1045     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
1046   unsigned AddrSpace = PTy->getAddressSpace();
1047 
1048   GlobalValue *GVal = nullptr;
1049 
1050   // See if the alias was forward referenced, if so, prepare to replace the
1051   // forward reference.
1052   if (!Name.empty()) {
1053     auto I = ForwardRefVals.find(Name);
1054     if (I != ForwardRefVals.end()) {
1055       GVal = I->second.first;
1056       ForwardRefVals.erase(Name);
1057     } else if (M->getNamedValue(Name)) {
1058       return error(NameLoc, "redefinition of global '@" + Name + "'");
1059     }
1060   } else {
1061     auto I = ForwardRefValIDs.find(NumberedVals.size());
1062     if (I != ForwardRefValIDs.end()) {
1063       GVal = I->second.first;
1064       ForwardRefValIDs.erase(I);
1065     }
1066   }
1067 
1068   // Okay, create the alias/ifunc but do not insert it into the module yet.
1069   std::unique_ptr<GlobalAlias> GA;
1070   std::unique_ptr<GlobalIFunc> GI;
1071   GlobalValue *GV;
1072   if (IsAlias) {
1073     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1074                                  (GlobalValue::LinkageTypes)Linkage, Name,
1075                                  Aliasee, /*Parent*/ nullptr));
1076     GV = GA.get();
1077   } else {
1078     GI.reset(GlobalIFunc::create(Ty, AddrSpace,
1079                                  (GlobalValue::LinkageTypes)Linkage, Name,
1080                                  Aliasee, /*Parent*/ nullptr));
1081     GV = GI.get();
1082   }
1083   GV->setThreadLocalMode(TLM);
1084   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1085   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1086   GV->setUnnamedAddr(UnnamedAddr);
1087   maybeSetDSOLocal(DSOLocal, *GV);
1088 
1089   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1090   // Now parse them if there are any.
1091   while (Lex.getKind() == lltok::comma) {
1092     Lex.Lex();
1093 
1094     if (Lex.getKind() == lltok::kw_partition) {
1095       Lex.Lex();
1096       GV->setPartition(Lex.getStrVal());
1097       if (parseToken(lltok::StringConstant, "expected partition string"))
1098         return true;
1099     } else {
1100       return tokError("unknown alias or ifunc property!");
1101     }
1102   }
1103 
1104   if (Name.empty())
1105     NumberedVals.push_back(GV);
1106 
1107   if (GVal) {
1108     // Verify that types agree.
1109     if (GVal->getType() != GV->getType())
1110       return error(
1111           ExplicitTypeLoc,
1112           "forward reference and definition of alias have different types");
1113 
1114     // If they agree, just RAUW the old value with the alias and remove the
1115     // forward ref info.
1116     GVal->replaceAllUsesWith(GV);
1117     GVal->eraseFromParent();
1118   }
1119 
1120   // Insert into the module, we know its name won't collide now.
1121   if (IsAlias)
1122     M->insertAlias(GA.release());
1123   else
1124     M->insertIFunc(GI.release());
1125   assert(GV->getName() == Name && "Should not be a name conflict!");
1126 
1127   return false;
1128 }
1129 
1130 static bool isSanitizer(lltok::Kind Kind) {
1131   switch (Kind) {
1132   case lltok::kw_no_sanitize_address:
1133   case lltok::kw_no_sanitize_hwaddress:
1134   case lltok::kw_sanitize_memtag:
1135   case lltok::kw_sanitize_address_dyninit:
1136     return true;
1137   default:
1138     return false;
1139   }
1140 }
1141 
1142 bool LLParser::parseSanitizer(GlobalVariable *GV) {
1143   using SanitizerMetadata = GlobalValue::SanitizerMetadata;
1144   SanitizerMetadata Meta;
1145   if (GV->hasSanitizerMetadata())
1146     Meta = GV->getSanitizerMetadata();
1147 
1148   switch (Lex.getKind()) {
1149   case lltok::kw_no_sanitize_address:
1150     Meta.NoAddress = true;
1151     break;
1152   case lltok::kw_no_sanitize_hwaddress:
1153     Meta.NoHWAddress = true;
1154     break;
1155   case lltok::kw_sanitize_memtag:
1156     Meta.Memtag = true;
1157     break;
1158   case lltok::kw_sanitize_address_dyninit:
1159     Meta.IsDynInit = true;
1160     break;
1161   default:
1162     return tokError("non-sanitizer token passed to LLParser::parseSanitizer()");
1163   }
1164   GV->setSanitizerMetadata(Meta);
1165   Lex.Lex();
1166   return false;
1167 }
1168 
1169 /// parseGlobal
1170 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1171 ///       OptionalVisibility OptionalDLLStorageClass
1172 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1173 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1174 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1175 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1176 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1177 ///       Const OptionalAttrs
1178 ///
1179 /// Everything up to and including OptionalUnnamedAddr has been parsed
1180 /// already.
1181 ///
1182 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1183                            unsigned Linkage, bool HasLinkage,
1184                            unsigned Visibility, unsigned DLLStorageClass,
1185                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1186                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1187   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1188     return error(NameLoc,
1189                  "symbol with local linkage must have default visibility");
1190 
1191   if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage))
1192     return error(NameLoc,
1193                  "symbol with local linkage cannot have a DLL storage class");
1194 
1195   unsigned AddrSpace;
1196   bool IsConstant, IsExternallyInitialized;
1197   LocTy IsExternallyInitializedLoc;
1198   LocTy TyLoc;
1199 
1200   Type *Ty = nullptr;
1201   if (parseOptionalAddrSpace(AddrSpace) ||
1202       parseOptionalToken(lltok::kw_externally_initialized,
1203                          IsExternallyInitialized,
1204                          &IsExternallyInitializedLoc) ||
1205       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1206     return true;
1207 
1208   // If the linkage is specified and is external, then no initializer is
1209   // present.
1210   Constant *Init = nullptr;
1211   if (!HasLinkage ||
1212       !GlobalValue::isValidDeclarationLinkage(
1213           (GlobalValue::LinkageTypes)Linkage)) {
1214     if (parseGlobalValue(Ty, Init))
1215       return true;
1216   }
1217 
1218   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1219     return error(TyLoc, "invalid type for global variable");
1220 
1221   GlobalValue *GVal = nullptr;
1222 
1223   // See if the global was forward referenced, if so, use the global.
1224   if (!Name.empty()) {
1225     auto I = ForwardRefVals.find(Name);
1226     if (I != ForwardRefVals.end()) {
1227       GVal = I->second.first;
1228       ForwardRefVals.erase(I);
1229     } else if (M->getNamedValue(Name)) {
1230       return error(NameLoc, "redefinition of global '@" + Name + "'");
1231     }
1232   } else {
1233     auto I = ForwardRefValIDs.find(NumberedVals.size());
1234     if (I != ForwardRefValIDs.end()) {
1235       GVal = I->second.first;
1236       ForwardRefValIDs.erase(I);
1237     }
1238   }
1239 
1240   GlobalVariable *GV = new GlobalVariable(
1241       *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
1242       GlobalVariable::NotThreadLocal, AddrSpace);
1243 
1244   if (Name.empty())
1245     NumberedVals.push_back(GV);
1246 
1247   // Set the parsed properties on the global.
1248   if (Init)
1249     GV->setInitializer(Init);
1250   GV->setConstant(IsConstant);
1251   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1252   maybeSetDSOLocal(DSOLocal, *GV);
1253   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1254   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1255   GV->setExternallyInitialized(IsExternallyInitialized);
1256   GV->setThreadLocalMode(TLM);
1257   GV->setUnnamedAddr(UnnamedAddr);
1258 
1259   if (GVal) {
1260     if (GVal->getAddressSpace() != AddrSpace)
1261       return error(
1262           TyLoc,
1263           "forward reference and definition of global have different types");
1264 
1265     GVal->replaceAllUsesWith(GV);
1266     GVal->eraseFromParent();
1267   }
1268 
1269   // parse attributes on the global.
1270   while (Lex.getKind() == lltok::comma) {
1271     Lex.Lex();
1272 
1273     if (Lex.getKind() == lltok::kw_section) {
1274       Lex.Lex();
1275       GV->setSection(Lex.getStrVal());
1276       if (parseToken(lltok::StringConstant, "expected global section string"))
1277         return true;
1278     } else if (Lex.getKind() == lltok::kw_partition) {
1279       Lex.Lex();
1280       GV->setPartition(Lex.getStrVal());
1281       if (parseToken(lltok::StringConstant, "expected partition string"))
1282         return true;
1283     } else if (Lex.getKind() == lltok::kw_align) {
1284       MaybeAlign Alignment;
1285       if (parseOptionalAlignment(Alignment))
1286         return true;
1287       if (Alignment)
1288         GV->setAlignment(*Alignment);
1289     } else if (Lex.getKind() == lltok::kw_code_model) {
1290       CodeModel::Model CodeModel;
1291       if (parseOptionalCodeModel(CodeModel))
1292         return true;
1293       GV->setCodeModel(CodeModel);
1294     } else if (Lex.getKind() == lltok::MetadataVar) {
1295       if (parseGlobalObjectMetadataAttachment(*GV))
1296         return true;
1297     } else if (isSanitizer(Lex.getKind())) {
1298       if (parseSanitizer(GV))
1299         return true;
1300     } else {
1301       Comdat *C;
1302       if (parseOptionalComdat(Name, C))
1303         return true;
1304       if (C)
1305         GV->setComdat(C);
1306       else
1307         return tokError("unknown global variable property!");
1308     }
1309   }
1310 
1311   AttrBuilder Attrs(M->getContext());
1312   LocTy BuiltinLoc;
1313   std::vector<unsigned> FwdRefAttrGrps;
1314   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1315     return true;
1316   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1317     GV->setAttributes(AttributeSet::get(Context, Attrs));
1318     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1319   }
1320 
1321   return false;
1322 }
1323 
1324 /// parseUnnamedAttrGrp
1325 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1326 bool LLParser::parseUnnamedAttrGrp() {
1327   assert(Lex.getKind() == lltok::kw_attributes);
1328   LocTy AttrGrpLoc = Lex.getLoc();
1329   Lex.Lex();
1330 
1331   if (Lex.getKind() != lltok::AttrGrpID)
1332     return tokError("expected attribute group id");
1333 
1334   unsigned VarID = Lex.getUIntVal();
1335   std::vector<unsigned> unused;
1336   LocTy BuiltinLoc;
1337   Lex.Lex();
1338 
1339   if (parseToken(lltok::equal, "expected '=' here") ||
1340       parseToken(lltok::lbrace, "expected '{' here"))
1341     return true;
1342 
1343   auto R = NumberedAttrBuilders.find(VarID);
1344   if (R == NumberedAttrBuilders.end())
1345     R = NumberedAttrBuilders.emplace(VarID, AttrBuilder(M->getContext())).first;
1346 
1347   if (parseFnAttributeValuePairs(R->second, unused, true, BuiltinLoc) ||
1348       parseToken(lltok::rbrace, "expected end of attribute group"))
1349     return true;
1350 
1351   if (!R->second.hasAttributes())
1352     return error(AttrGrpLoc, "attribute group has no attributes");
1353 
1354   return false;
1355 }
1356 
1357 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) {
1358   switch (Kind) {
1359 #define GET_ATTR_NAMES
1360 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
1361   case lltok::kw_##DISPLAY_NAME: \
1362     return Attribute::ENUM_NAME;
1363 #include "llvm/IR/Attributes.inc"
1364   default:
1365     return Attribute::None;
1366   }
1367 }
1368 
1369 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B,
1370                                   bool InAttrGroup) {
1371   if (Attribute::isTypeAttrKind(Attr))
1372     return parseRequiredTypeAttr(B, Lex.getKind(), Attr);
1373 
1374   switch (Attr) {
1375   case Attribute::Alignment: {
1376     MaybeAlign Alignment;
1377     if (InAttrGroup) {
1378       uint32_t Value = 0;
1379       Lex.Lex();
1380       if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1381         return true;
1382       Alignment = Align(Value);
1383     } else {
1384       if (parseOptionalAlignment(Alignment, true))
1385         return true;
1386     }
1387     B.addAlignmentAttr(Alignment);
1388     return false;
1389   }
1390   case Attribute::StackAlignment: {
1391     unsigned Alignment;
1392     if (InAttrGroup) {
1393       Lex.Lex();
1394       if (parseToken(lltok::equal, "expected '=' here") ||
1395           parseUInt32(Alignment))
1396         return true;
1397     } else {
1398       if (parseOptionalStackAlignment(Alignment))
1399         return true;
1400     }
1401     B.addStackAlignmentAttr(Alignment);
1402     return false;
1403   }
1404   case Attribute::AllocSize: {
1405     unsigned ElemSizeArg;
1406     std::optional<unsigned> NumElemsArg;
1407     if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1408       return true;
1409     B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1410     return false;
1411   }
1412   case Attribute::VScaleRange: {
1413     unsigned MinValue, MaxValue;
1414     if (parseVScaleRangeArguments(MinValue, MaxValue))
1415       return true;
1416     B.addVScaleRangeAttr(MinValue,
1417                          MaxValue > 0 ? MaxValue : std::optional<unsigned>());
1418     return false;
1419   }
1420   case Attribute::Dereferenceable: {
1421     uint64_t Bytes;
1422     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1423       return true;
1424     B.addDereferenceableAttr(Bytes);
1425     return false;
1426   }
1427   case Attribute::DereferenceableOrNull: {
1428     uint64_t Bytes;
1429     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1430       return true;
1431     B.addDereferenceableOrNullAttr(Bytes);
1432     return false;
1433   }
1434   case Attribute::UWTable: {
1435     UWTableKind Kind;
1436     if (parseOptionalUWTableKind(Kind))
1437       return true;
1438     B.addUWTableAttr(Kind);
1439     return false;
1440   }
1441   case Attribute::AllocKind: {
1442     AllocFnKind Kind = AllocFnKind::Unknown;
1443     if (parseAllocKind(Kind))
1444       return true;
1445     B.addAllocKindAttr(Kind);
1446     return false;
1447   }
1448   case Attribute::Memory: {
1449     std::optional<MemoryEffects> ME = parseMemoryAttr();
1450     if (!ME)
1451       return true;
1452     B.addMemoryAttr(*ME);
1453     return false;
1454   }
1455   case Attribute::NoFPClass: {
1456     if (FPClassTest NoFPClass =
1457             static_cast<FPClassTest>(parseNoFPClassAttr())) {
1458       B.addNoFPClassAttr(NoFPClass);
1459       return false;
1460     }
1461 
1462     return true;
1463   }
1464   default:
1465     B.addAttribute(Attr);
1466     Lex.Lex();
1467     return false;
1468   }
1469 }
1470 
1471 static bool upgradeMemoryAttr(MemoryEffects &ME, lltok::Kind Kind) {
1472   switch (Kind) {
1473   case lltok::kw_readnone:
1474     ME &= MemoryEffects::none();
1475     return true;
1476   case lltok::kw_readonly:
1477     ME &= MemoryEffects::readOnly();
1478     return true;
1479   case lltok::kw_writeonly:
1480     ME &= MemoryEffects::writeOnly();
1481     return true;
1482   case lltok::kw_argmemonly:
1483     ME &= MemoryEffects::argMemOnly();
1484     return true;
1485   case lltok::kw_inaccessiblememonly:
1486     ME &= MemoryEffects::inaccessibleMemOnly();
1487     return true;
1488   case lltok::kw_inaccessiblemem_or_argmemonly:
1489     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1490     return true;
1491   default:
1492     return false;
1493   }
1494 }
1495 
1496 /// parseFnAttributeValuePairs
1497 ///   ::= <attr> | <attr> '=' <value>
1498 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1499                                           std::vector<unsigned> &FwdRefAttrGrps,
1500                                           bool InAttrGrp, LocTy &BuiltinLoc) {
1501   bool HaveError = false;
1502 
1503   B.clear();
1504 
1505   MemoryEffects ME = MemoryEffects::unknown();
1506   while (true) {
1507     lltok::Kind Token = Lex.getKind();
1508     if (Token == lltok::rbrace)
1509       break; // Finished.
1510 
1511     if (Token == lltok::StringConstant) {
1512       if (parseStringAttribute(B))
1513         return true;
1514       continue;
1515     }
1516 
1517     if (Token == lltok::AttrGrpID) {
1518       // Allow a function to reference an attribute group:
1519       //
1520       //   define void @foo() #1 { ... }
1521       if (InAttrGrp) {
1522         HaveError |= error(
1523             Lex.getLoc(),
1524             "cannot have an attribute group reference in an attribute group");
1525       } else {
1526         // Save the reference to the attribute group. We'll fill it in later.
1527         FwdRefAttrGrps.push_back(Lex.getUIntVal());
1528       }
1529       Lex.Lex();
1530       continue;
1531     }
1532 
1533     SMLoc Loc = Lex.getLoc();
1534     if (Token == lltok::kw_builtin)
1535       BuiltinLoc = Loc;
1536 
1537     if (upgradeMemoryAttr(ME, Token)) {
1538       Lex.Lex();
1539       continue;
1540     }
1541 
1542     Attribute::AttrKind Attr = tokenToAttribute(Token);
1543     if (Attr == Attribute::None) {
1544       if (!InAttrGrp)
1545         break;
1546       return error(Lex.getLoc(), "unterminated attribute group");
1547     }
1548 
1549     if (parseEnumAttribute(Attr, B, InAttrGrp))
1550       return true;
1551 
1552     // As a hack, we allow function alignment to be initially parsed as an
1553     // attribute on a function declaration/definition or added to an attribute
1554     // group and later moved to the alignment field.
1555     if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment)
1556       HaveError |= error(Loc, "this attribute does not apply to functions");
1557   }
1558 
1559   if (ME != MemoryEffects::unknown())
1560     B.addMemoryAttr(ME);
1561   return HaveError;
1562 }
1563 
1564 //===----------------------------------------------------------------------===//
1565 // GlobalValue Reference/Resolution Routines.
1566 //===----------------------------------------------------------------------===//
1567 
1568 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) {
1569   // The used global type does not matter. We will later RAUW it with a
1570   // global/function of the correct type.
1571   return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false,
1572                             GlobalValue::ExternalWeakLinkage, nullptr, "",
1573                             nullptr, GlobalVariable::NotThreadLocal,
1574                             PTy->getAddressSpace());
1575 }
1576 
1577 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1578                                         Value *Val) {
1579   Type *ValTy = Val->getType();
1580   if (ValTy == Ty)
1581     return Val;
1582   if (Ty->isLabelTy())
1583     error(Loc, "'" + Name + "' is not a basic block");
1584   else
1585     error(Loc, "'" + Name + "' defined with type '" +
1586                    getTypeString(Val->getType()) + "' but expected '" +
1587                    getTypeString(Ty) + "'");
1588   return nullptr;
1589 }
1590 
1591 /// getGlobalVal - Get a value with the specified name or ID, creating a
1592 /// forward reference record if needed.  This can return null if the value
1593 /// exists but does not have the right type.
1594 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1595                                     LocTy Loc) {
1596   PointerType *PTy = dyn_cast<PointerType>(Ty);
1597   if (!PTy) {
1598     error(Loc, "global variable reference must have pointer type");
1599     return nullptr;
1600   }
1601 
1602   // Look this name up in the normal function symbol table.
1603   GlobalValue *Val =
1604     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1605 
1606   // If this is a forward reference for the value, see if we already created a
1607   // forward ref record.
1608   if (!Val) {
1609     auto I = ForwardRefVals.find(Name);
1610     if (I != ForwardRefVals.end())
1611       Val = I->second.first;
1612   }
1613 
1614   // If we have the value in the symbol table or fwd-ref table, return it.
1615   if (Val)
1616     return cast_or_null<GlobalValue>(
1617         checkValidVariableType(Loc, "@" + Name, Ty, Val));
1618 
1619   // Otherwise, create a new forward reference for this value and remember it.
1620   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1621   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1622   return FwdVal;
1623 }
1624 
1625 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1626   PointerType *PTy = dyn_cast<PointerType>(Ty);
1627   if (!PTy) {
1628     error(Loc, "global variable reference must have pointer type");
1629     return nullptr;
1630   }
1631 
1632   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1633 
1634   // If this is a forward reference for the value, see if we already created a
1635   // forward ref record.
1636   if (!Val) {
1637     auto I = ForwardRefValIDs.find(ID);
1638     if (I != ForwardRefValIDs.end())
1639       Val = I->second.first;
1640   }
1641 
1642   // If we have the value in the symbol table or fwd-ref table, return it.
1643   if (Val)
1644     return cast_or_null<GlobalValue>(
1645         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val));
1646 
1647   // Otherwise, create a new forward reference for this value and remember it.
1648   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1649   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1650   return FwdVal;
1651 }
1652 
1653 //===----------------------------------------------------------------------===//
1654 // Comdat Reference/Resolution Routines.
1655 //===----------------------------------------------------------------------===//
1656 
1657 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1658   // Look this name up in the comdat symbol table.
1659   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1660   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1661   if (I != ComdatSymTab.end())
1662     return &I->second;
1663 
1664   // Otherwise, create a new forward reference for this value and remember it.
1665   Comdat *C = M->getOrInsertComdat(Name);
1666   ForwardRefComdats[Name] = Loc;
1667   return C;
1668 }
1669 
1670 //===----------------------------------------------------------------------===//
1671 // Helper Routines.
1672 //===----------------------------------------------------------------------===//
1673 
1674 /// parseToken - If the current token has the specified kind, eat it and return
1675 /// success.  Otherwise, emit the specified error and return failure.
1676 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1677   if (Lex.getKind() != T)
1678     return tokError(ErrMsg);
1679   Lex.Lex();
1680   return false;
1681 }
1682 
1683 /// parseStringConstant
1684 ///   ::= StringConstant
1685 bool LLParser::parseStringConstant(std::string &Result) {
1686   if (Lex.getKind() != lltok::StringConstant)
1687     return tokError("expected string constant");
1688   Result = Lex.getStrVal();
1689   Lex.Lex();
1690   return false;
1691 }
1692 
1693 /// parseUInt32
1694 ///   ::= uint32
1695 bool LLParser::parseUInt32(uint32_t &Val) {
1696   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1697     return tokError("expected integer");
1698   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1699   if (Val64 != unsigned(Val64))
1700     return tokError("expected 32-bit integer (too large)");
1701   Val = Val64;
1702   Lex.Lex();
1703   return false;
1704 }
1705 
1706 /// parseUInt64
1707 ///   ::= uint64
1708 bool LLParser::parseUInt64(uint64_t &Val) {
1709   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1710     return tokError("expected integer");
1711   Val = Lex.getAPSIntVal().getLimitedValue();
1712   Lex.Lex();
1713   return false;
1714 }
1715 
1716 /// parseTLSModel
1717 ///   := 'localdynamic'
1718 ///   := 'initialexec'
1719 ///   := 'localexec'
1720 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1721   switch (Lex.getKind()) {
1722     default:
1723       return tokError("expected localdynamic, initialexec or localexec");
1724     case lltok::kw_localdynamic:
1725       TLM = GlobalVariable::LocalDynamicTLSModel;
1726       break;
1727     case lltok::kw_initialexec:
1728       TLM = GlobalVariable::InitialExecTLSModel;
1729       break;
1730     case lltok::kw_localexec:
1731       TLM = GlobalVariable::LocalExecTLSModel;
1732       break;
1733   }
1734 
1735   Lex.Lex();
1736   return false;
1737 }
1738 
1739 /// parseOptionalThreadLocal
1740 ///   := /*empty*/
1741 ///   := 'thread_local'
1742 ///   := 'thread_local' '(' tlsmodel ')'
1743 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1744   TLM = GlobalVariable::NotThreadLocal;
1745   if (!EatIfPresent(lltok::kw_thread_local))
1746     return false;
1747 
1748   TLM = GlobalVariable::GeneralDynamicTLSModel;
1749   if (Lex.getKind() == lltok::lparen) {
1750     Lex.Lex();
1751     return parseTLSModel(TLM) ||
1752            parseToken(lltok::rparen, "expected ')' after thread local model");
1753   }
1754   return false;
1755 }
1756 
1757 /// parseOptionalAddrSpace
1758 ///   := /*empty*/
1759 ///   := 'addrspace' '(' uint32 ')'
1760 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1761   AddrSpace = DefaultAS;
1762   if (!EatIfPresent(lltok::kw_addrspace))
1763     return false;
1764 
1765   auto ParseAddrspaceValue = [&](unsigned &AddrSpace) -> bool {
1766     if (Lex.getKind() == lltok::StringConstant) {
1767       auto AddrSpaceStr = Lex.getStrVal();
1768       if (AddrSpaceStr == "A") {
1769         AddrSpace = M->getDataLayout().getAllocaAddrSpace();
1770       } else if (AddrSpaceStr == "G") {
1771         AddrSpace = M->getDataLayout().getDefaultGlobalsAddressSpace();
1772       } else if (AddrSpaceStr == "P") {
1773         AddrSpace = M->getDataLayout().getProgramAddressSpace();
1774       } else {
1775         return tokError("invalid symbolic addrspace '" + AddrSpaceStr + "'");
1776       }
1777       Lex.Lex();
1778       return false;
1779     }
1780     if (Lex.getKind() != lltok::APSInt)
1781       return tokError("expected integer or string constant");
1782     SMLoc Loc = Lex.getLoc();
1783     if (parseUInt32(AddrSpace))
1784       return true;
1785     if (!isUInt<24>(AddrSpace))
1786       return error(Loc, "invalid address space, must be a 24-bit integer");
1787     return false;
1788   };
1789 
1790   return parseToken(lltok::lparen, "expected '(' in address space") ||
1791          ParseAddrspaceValue(AddrSpace) ||
1792          parseToken(lltok::rparen, "expected ')' in address space");
1793 }
1794 
1795 /// parseStringAttribute
1796 ///   := StringConstant
1797 ///   := StringConstant '=' StringConstant
1798 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1799   std::string Attr = Lex.getStrVal();
1800   Lex.Lex();
1801   std::string Val;
1802   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1803     return true;
1804   B.addAttribute(Attr, Val);
1805   return false;
1806 }
1807 
1808 /// Parse a potentially empty list of parameter or return attributes.
1809 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) {
1810   bool HaveError = false;
1811 
1812   B.clear();
1813 
1814   while (true) {
1815     lltok::Kind Token = Lex.getKind();
1816     if (Token == lltok::StringConstant) {
1817       if (parseStringAttribute(B))
1818         return true;
1819       continue;
1820     }
1821 
1822     SMLoc Loc = Lex.getLoc();
1823     Attribute::AttrKind Attr = tokenToAttribute(Token);
1824     if (Attr == Attribute::None)
1825       return HaveError;
1826 
1827     if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false))
1828       return true;
1829 
1830     if (IsParam && !Attribute::canUseAsParamAttr(Attr))
1831       HaveError |= error(Loc, "this attribute does not apply to parameters");
1832     if (!IsParam && !Attribute::canUseAsRetAttr(Attr))
1833       HaveError |= error(Loc, "this attribute does not apply to return values");
1834   }
1835 }
1836 
1837 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1838   HasLinkage = true;
1839   switch (Kind) {
1840   default:
1841     HasLinkage = false;
1842     return GlobalValue::ExternalLinkage;
1843   case lltok::kw_private:
1844     return GlobalValue::PrivateLinkage;
1845   case lltok::kw_internal:
1846     return GlobalValue::InternalLinkage;
1847   case lltok::kw_weak:
1848     return GlobalValue::WeakAnyLinkage;
1849   case lltok::kw_weak_odr:
1850     return GlobalValue::WeakODRLinkage;
1851   case lltok::kw_linkonce:
1852     return GlobalValue::LinkOnceAnyLinkage;
1853   case lltok::kw_linkonce_odr:
1854     return GlobalValue::LinkOnceODRLinkage;
1855   case lltok::kw_available_externally:
1856     return GlobalValue::AvailableExternallyLinkage;
1857   case lltok::kw_appending:
1858     return GlobalValue::AppendingLinkage;
1859   case lltok::kw_common:
1860     return GlobalValue::CommonLinkage;
1861   case lltok::kw_extern_weak:
1862     return GlobalValue::ExternalWeakLinkage;
1863   case lltok::kw_external:
1864     return GlobalValue::ExternalLinkage;
1865   }
1866 }
1867 
1868 /// parseOptionalLinkage
1869 ///   ::= /*empty*/
1870 ///   ::= 'private'
1871 ///   ::= 'internal'
1872 ///   ::= 'weak'
1873 ///   ::= 'weak_odr'
1874 ///   ::= 'linkonce'
1875 ///   ::= 'linkonce_odr'
1876 ///   ::= 'available_externally'
1877 ///   ::= 'appending'
1878 ///   ::= 'common'
1879 ///   ::= 'extern_weak'
1880 ///   ::= 'external'
1881 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1882                                     unsigned &Visibility,
1883                                     unsigned &DLLStorageClass, bool &DSOLocal) {
1884   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1885   if (HasLinkage)
1886     Lex.Lex();
1887   parseOptionalDSOLocal(DSOLocal);
1888   parseOptionalVisibility(Visibility);
1889   parseOptionalDLLStorageClass(DLLStorageClass);
1890 
1891   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1892     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1893   }
1894 
1895   return false;
1896 }
1897 
1898 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
1899   switch (Lex.getKind()) {
1900   default:
1901     DSOLocal = false;
1902     break;
1903   case lltok::kw_dso_local:
1904     DSOLocal = true;
1905     Lex.Lex();
1906     break;
1907   case lltok::kw_dso_preemptable:
1908     DSOLocal = false;
1909     Lex.Lex();
1910     break;
1911   }
1912 }
1913 
1914 /// parseOptionalVisibility
1915 ///   ::= /*empty*/
1916 ///   ::= 'default'
1917 ///   ::= 'hidden'
1918 ///   ::= 'protected'
1919 ///
1920 void LLParser::parseOptionalVisibility(unsigned &Res) {
1921   switch (Lex.getKind()) {
1922   default:
1923     Res = GlobalValue::DefaultVisibility;
1924     return;
1925   case lltok::kw_default:
1926     Res = GlobalValue::DefaultVisibility;
1927     break;
1928   case lltok::kw_hidden:
1929     Res = GlobalValue::HiddenVisibility;
1930     break;
1931   case lltok::kw_protected:
1932     Res = GlobalValue::ProtectedVisibility;
1933     break;
1934   }
1935   Lex.Lex();
1936 }
1937 
1938 /// parseOptionalDLLStorageClass
1939 ///   ::= /*empty*/
1940 ///   ::= 'dllimport'
1941 ///   ::= 'dllexport'
1942 ///
1943 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
1944   switch (Lex.getKind()) {
1945   default:
1946     Res = GlobalValue::DefaultStorageClass;
1947     return;
1948   case lltok::kw_dllimport:
1949     Res = GlobalValue::DLLImportStorageClass;
1950     break;
1951   case lltok::kw_dllexport:
1952     Res = GlobalValue::DLLExportStorageClass;
1953     break;
1954   }
1955   Lex.Lex();
1956 }
1957 
1958 /// parseOptionalCallingConv
1959 ///   ::= /*empty*/
1960 ///   ::= 'ccc'
1961 ///   ::= 'fastcc'
1962 ///   ::= 'intel_ocl_bicc'
1963 ///   ::= 'coldcc'
1964 ///   ::= 'cfguard_checkcc'
1965 ///   ::= 'x86_stdcallcc'
1966 ///   ::= 'x86_fastcallcc'
1967 ///   ::= 'x86_thiscallcc'
1968 ///   ::= 'x86_vectorcallcc'
1969 ///   ::= 'arm_apcscc'
1970 ///   ::= 'arm_aapcscc'
1971 ///   ::= 'arm_aapcs_vfpcc'
1972 ///   ::= 'aarch64_vector_pcs'
1973 ///   ::= 'aarch64_sve_vector_pcs'
1974 ///   ::= 'aarch64_sme_preservemost_from_x0'
1975 ///   ::= 'aarch64_sme_preservemost_from_x2'
1976 ///   ::= 'msp430_intrcc'
1977 ///   ::= 'avr_intrcc'
1978 ///   ::= 'avr_signalcc'
1979 ///   ::= 'ptx_kernel'
1980 ///   ::= 'ptx_device'
1981 ///   ::= 'spir_func'
1982 ///   ::= 'spir_kernel'
1983 ///   ::= 'x86_64_sysvcc'
1984 ///   ::= 'win64cc'
1985 ///   ::= 'anyregcc'
1986 ///   ::= 'preserve_mostcc'
1987 ///   ::= 'preserve_allcc'
1988 ///   ::= 'ghccc'
1989 ///   ::= 'swiftcc'
1990 ///   ::= 'swifttailcc'
1991 ///   ::= 'x86_intrcc'
1992 ///   ::= 'hhvmcc'
1993 ///   ::= 'hhvm_ccc'
1994 ///   ::= 'cxx_fast_tlscc'
1995 ///   ::= 'amdgpu_vs'
1996 ///   ::= 'amdgpu_ls'
1997 ///   ::= 'amdgpu_hs'
1998 ///   ::= 'amdgpu_es'
1999 ///   ::= 'amdgpu_gs'
2000 ///   ::= 'amdgpu_ps'
2001 ///   ::= 'amdgpu_cs'
2002 ///   ::= 'amdgpu_cs_chain'
2003 ///   ::= 'amdgpu_cs_chain_preserve'
2004 ///   ::= 'amdgpu_kernel'
2005 ///   ::= 'tailcc'
2006 ///   ::= 'm68k_rtdcc'
2007 ///   ::= 'graalcc'
2008 ///   ::= 'cc' UINT
2009 ///
2010 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
2011   switch (Lex.getKind()) {
2012   default:                       CC = CallingConv::C; return false;
2013   case lltok::kw_ccc:            CC = CallingConv::C; break;
2014   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2015   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2016   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2017   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2018   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2019   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2020   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2021   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2022   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2023   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2024   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2025   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2026   case lltok::kw_aarch64_sve_vector_pcs:
2027     CC = CallingConv::AArch64_SVE_VectorCall;
2028     break;
2029   case lltok::kw_aarch64_sme_preservemost_from_x0:
2030     CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0;
2031     break;
2032   case lltok::kw_aarch64_sme_preservemost_from_x2:
2033     CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2;
2034     break;
2035   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2036   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2037   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2038   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2039   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2040   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2041   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2042   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2043   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2044   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2045   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2046   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2047   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2048   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2049   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2050   case lltok::kw_swifttailcc:    CC = CallingConv::SwiftTail; break;
2051   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2052   case lltok::kw_hhvmcc:
2053     CC = CallingConv::DUMMY_HHVM;
2054     break;
2055   case lltok::kw_hhvm_ccc:
2056     CC = CallingConv::DUMMY_HHVM_C;
2057     break;
2058   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2059   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2060   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
2061   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2062   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2063   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2064   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2065   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2066   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2067   case lltok::kw_amdgpu_cs_chain:
2068     CC = CallingConv::AMDGPU_CS_Chain;
2069     break;
2070   case lltok::kw_amdgpu_cs_chain_preserve:
2071     CC = CallingConv::AMDGPU_CS_ChainPreserve;
2072     break;
2073   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2074   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2075   case lltok::kw_m68k_rtdcc:     CC = CallingConv::M68k_RTD; break;
2076   case lltok::kw_graalcc:        CC = CallingConv::GRAAL; break;
2077   case lltok::kw_cc: {
2078       Lex.Lex();
2079       return parseUInt32(CC);
2080     }
2081   }
2082 
2083   Lex.Lex();
2084   return false;
2085 }
2086 
2087 /// parseMetadataAttachment
2088 ///   ::= !dbg !42
2089 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2090   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2091 
2092   std::string Name = Lex.getStrVal();
2093   Kind = M->getMDKindID(Name);
2094   Lex.Lex();
2095 
2096   return parseMDNode(MD);
2097 }
2098 
2099 /// parseInstructionMetadata
2100 ///   ::= !dbg !42 (',' !dbg !57)*
2101 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
2102   do {
2103     if (Lex.getKind() != lltok::MetadataVar)
2104       return tokError("expected metadata after comma");
2105 
2106     unsigned MDK;
2107     MDNode *N;
2108     if (parseMetadataAttachment(MDK, N))
2109       return true;
2110 
2111     if (MDK == LLVMContext::MD_DIAssignID)
2112       TempDIAssignIDAttachments[N].push_back(&Inst);
2113     else
2114       Inst.setMetadata(MDK, N);
2115 
2116     if (MDK == LLVMContext::MD_tbaa)
2117       InstsWithTBAATag.push_back(&Inst);
2118 
2119     // If this is the end of the list, we're done.
2120   } while (EatIfPresent(lltok::comma));
2121   return false;
2122 }
2123 
2124 /// parseGlobalObjectMetadataAttachment
2125 ///   ::= !dbg !57
2126 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2127   unsigned MDK;
2128   MDNode *N;
2129   if (parseMetadataAttachment(MDK, N))
2130     return true;
2131 
2132   GO.addMetadata(MDK, *N);
2133   return false;
2134 }
2135 
2136 /// parseOptionalFunctionMetadata
2137 ///   ::= (!dbg !57)*
2138 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
2139   while (Lex.getKind() == lltok::MetadataVar)
2140     if (parseGlobalObjectMetadataAttachment(F))
2141       return true;
2142   return false;
2143 }
2144 
2145 /// parseOptionalAlignment
2146 ///   ::= /* empty */
2147 ///   ::= 'align' 4
2148 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2149   Alignment = std::nullopt;
2150   if (!EatIfPresent(lltok::kw_align))
2151     return false;
2152   LocTy AlignLoc = Lex.getLoc();
2153   uint64_t Value = 0;
2154 
2155   LocTy ParenLoc = Lex.getLoc();
2156   bool HaveParens = false;
2157   if (AllowParens) {
2158     if (EatIfPresent(lltok::lparen))
2159       HaveParens = true;
2160   }
2161 
2162   if (parseUInt64(Value))
2163     return true;
2164 
2165   if (HaveParens && !EatIfPresent(lltok::rparen))
2166     return error(ParenLoc, "expected ')'");
2167 
2168   if (!isPowerOf2_64(Value))
2169     return error(AlignLoc, "alignment is not a power of two");
2170   if (Value > Value::MaximumAlignment)
2171     return error(AlignLoc, "huge alignments are not supported yet");
2172   Alignment = Align(Value);
2173   return false;
2174 }
2175 
2176 /// parseOptionalCodeModel
2177 ///   ::= /* empty */
2178 ///   ::= 'code_model' "large"
2179 bool LLParser::parseOptionalCodeModel(CodeModel::Model &model) {
2180   Lex.Lex();
2181   auto StrVal = Lex.getStrVal();
2182   auto ErrMsg = "expected global code model string";
2183   if (StrVal == "tiny")
2184     model = CodeModel::Tiny;
2185   else if (StrVal == "small")
2186     model = CodeModel::Small;
2187   else if (StrVal == "kernel")
2188     model = CodeModel::Kernel;
2189   else if (StrVal == "medium")
2190     model = CodeModel::Medium;
2191   else if (StrVal == "large")
2192     model = CodeModel::Large;
2193   else
2194     return tokError(ErrMsg);
2195   if (parseToken(lltok::StringConstant, ErrMsg))
2196     return true;
2197   return false;
2198 }
2199 
2200 /// parseOptionalDerefAttrBytes
2201 ///   ::= /* empty */
2202 ///   ::= AttrKind '(' 4 ')'
2203 ///
2204 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2205 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2206                                            uint64_t &Bytes) {
2207   assert((AttrKind == lltok::kw_dereferenceable ||
2208           AttrKind == lltok::kw_dereferenceable_or_null) &&
2209          "contract!");
2210 
2211   Bytes = 0;
2212   if (!EatIfPresent(AttrKind))
2213     return false;
2214   LocTy ParenLoc = Lex.getLoc();
2215   if (!EatIfPresent(lltok::lparen))
2216     return error(ParenLoc, "expected '('");
2217   LocTy DerefLoc = Lex.getLoc();
2218   if (parseUInt64(Bytes))
2219     return true;
2220   ParenLoc = Lex.getLoc();
2221   if (!EatIfPresent(lltok::rparen))
2222     return error(ParenLoc, "expected ')'");
2223   if (!Bytes)
2224     return error(DerefLoc, "dereferenceable bytes must be non-zero");
2225   return false;
2226 }
2227 
2228 bool LLParser::parseOptionalUWTableKind(UWTableKind &Kind) {
2229   Lex.Lex();
2230   Kind = UWTableKind::Default;
2231   if (!EatIfPresent(lltok::lparen))
2232     return false;
2233   LocTy KindLoc = Lex.getLoc();
2234   if (Lex.getKind() == lltok::kw_sync)
2235     Kind = UWTableKind::Sync;
2236   else if (Lex.getKind() == lltok::kw_async)
2237     Kind = UWTableKind::Async;
2238   else
2239     return error(KindLoc, "expected unwind table kind");
2240   Lex.Lex();
2241   return parseToken(lltok::rparen, "expected ')'");
2242 }
2243 
2244 bool LLParser::parseAllocKind(AllocFnKind &Kind) {
2245   Lex.Lex();
2246   LocTy ParenLoc = Lex.getLoc();
2247   if (!EatIfPresent(lltok::lparen))
2248     return error(ParenLoc, "expected '('");
2249   LocTy KindLoc = Lex.getLoc();
2250   std::string Arg;
2251   if (parseStringConstant(Arg))
2252     return error(KindLoc, "expected allockind value");
2253   for (StringRef A : llvm::split(Arg, ",")) {
2254     if (A == "alloc") {
2255       Kind |= AllocFnKind::Alloc;
2256     } else if (A == "realloc") {
2257       Kind |= AllocFnKind::Realloc;
2258     } else if (A == "free") {
2259       Kind |= AllocFnKind::Free;
2260     } else if (A == "uninitialized") {
2261       Kind |= AllocFnKind::Uninitialized;
2262     } else if (A == "zeroed") {
2263       Kind |= AllocFnKind::Zeroed;
2264     } else if (A == "aligned") {
2265       Kind |= AllocFnKind::Aligned;
2266     } else {
2267       return error(KindLoc, Twine("unknown allockind ") + A);
2268     }
2269   }
2270   ParenLoc = Lex.getLoc();
2271   if (!EatIfPresent(lltok::rparen))
2272     return error(ParenLoc, "expected ')'");
2273   if (Kind == AllocFnKind::Unknown)
2274     return error(KindLoc, "expected allockind value");
2275   return false;
2276 }
2277 
2278 static std::optional<MemoryEffects::Location> keywordToLoc(lltok::Kind Tok) {
2279   switch (Tok) {
2280   case lltok::kw_argmem:
2281     return IRMemLocation::ArgMem;
2282   case lltok::kw_inaccessiblemem:
2283     return IRMemLocation::InaccessibleMem;
2284   default:
2285     return std::nullopt;
2286   }
2287 }
2288 
2289 static std::optional<ModRefInfo> keywordToModRef(lltok::Kind Tok) {
2290   switch (Tok) {
2291   case lltok::kw_none:
2292     return ModRefInfo::NoModRef;
2293   case lltok::kw_read:
2294     return ModRefInfo::Ref;
2295   case lltok::kw_write:
2296     return ModRefInfo::Mod;
2297   case lltok::kw_readwrite:
2298     return ModRefInfo::ModRef;
2299   default:
2300     return std::nullopt;
2301   }
2302 }
2303 
2304 std::optional<MemoryEffects> LLParser::parseMemoryAttr() {
2305   MemoryEffects ME = MemoryEffects::none();
2306 
2307   // We use syntax like memory(argmem: read), so the colon should not be
2308   // interpreted as a label terminator.
2309   Lex.setIgnoreColonInIdentifiers(true);
2310   auto _ = make_scope_exit([&] { Lex.setIgnoreColonInIdentifiers(false); });
2311 
2312   Lex.Lex();
2313   if (!EatIfPresent(lltok::lparen)) {
2314     tokError("expected '('");
2315     return std::nullopt;
2316   }
2317 
2318   bool SeenLoc = false;
2319   do {
2320     std::optional<IRMemLocation> Loc = keywordToLoc(Lex.getKind());
2321     if (Loc) {
2322       Lex.Lex();
2323       if (!EatIfPresent(lltok::colon)) {
2324         tokError("expected ':' after location");
2325         return std::nullopt;
2326       }
2327     }
2328 
2329     std::optional<ModRefInfo> MR = keywordToModRef(Lex.getKind());
2330     if (!MR) {
2331       if (!Loc)
2332         tokError("expected memory location (argmem, inaccessiblemem) "
2333                  "or access kind (none, read, write, readwrite)");
2334       else
2335         tokError("expected access kind (none, read, write, readwrite)");
2336       return std::nullopt;
2337     }
2338 
2339     Lex.Lex();
2340     if (Loc) {
2341       SeenLoc = true;
2342       ME = ME.getWithModRef(*Loc, *MR);
2343     } else {
2344       if (SeenLoc) {
2345         tokError("default access kind must be specified first");
2346         return std::nullopt;
2347       }
2348       ME = MemoryEffects(*MR);
2349     }
2350 
2351     if (EatIfPresent(lltok::rparen))
2352       return ME;
2353   } while (EatIfPresent(lltok::comma));
2354 
2355   tokError("unterminated memory attribute");
2356   return std::nullopt;
2357 }
2358 
2359 static unsigned keywordToFPClassTest(lltok::Kind Tok) {
2360   switch (Tok) {
2361   case lltok::kw_all:
2362     return fcAllFlags;
2363   case lltok::kw_nan:
2364     return fcNan;
2365   case lltok::kw_snan:
2366     return fcSNan;
2367   case lltok::kw_qnan:
2368     return fcQNan;
2369   case lltok::kw_inf:
2370     return fcInf;
2371   case lltok::kw_ninf:
2372     return fcNegInf;
2373   case lltok::kw_pinf:
2374     return fcPosInf;
2375   case lltok::kw_norm:
2376     return fcNormal;
2377   case lltok::kw_nnorm:
2378     return fcNegNormal;
2379   case lltok::kw_pnorm:
2380     return fcPosNormal;
2381   case lltok::kw_sub:
2382     return fcSubnormal;
2383   case lltok::kw_nsub:
2384     return fcNegSubnormal;
2385   case lltok::kw_psub:
2386     return fcPosSubnormal;
2387   case lltok::kw_zero:
2388     return fcZero;
2389   case lltok::kw_nzero:
2390     return fcNegZero;
2391   case lltok::kw_pzero:
2392     return fcPosZero;
2393   default:
2394     return 0;
2395   }
2396 }
2397 
2398 unsigned LLParser::parseNoFPClassAttr() {
2399   unsigned Mask = fcNone;
2400 
2401   Lex.Lex();
2402   if (!EatIfPresent(lltok::lparen)) {
2403     tokError("expected '('");
2404     return 0;
2405   }
2406 
2407   do {
2408     uint64_t Value = 0;
2409     unsigned TestMask = keywordToFPClassTest(Lex.getKind());
2410     if (TestMask != 0) {
2411       Mask |= TestMask;
2412       // TODO: Disallow overlapping masks to avoid copy paste errors
2413     } else if (Mask == 0 && Lex.getKind() == lltok::APSInt &&
2414                !parseUInt64(Value)) {
2415       if (Value == 0 || (Value & ~static_cast<unsigned>(fcAllFlags)) != 0) {
2416         error(Lex.getLoc(), "invalid mask value for 'nofpclass'");
2417         return 0;
2418       }
2419 
2420       if (!EatIfPresent(lltok::rparen)) {
2421         error(Lex.getLoc(), "expected ')'");
2422         return 0;
2423       }
2424 
2425       return Value;
2426     } else {
2427       error(Lex.getLoc(), "expected nofpclass test mask");
2428       return 0;
2429     }
2430 
2431     Lex.Lex();
2432     if (EatIfPresent(lltok::rparen))
2433       return Mask;
2434   } while (1);
2435 
2436   llvm_unreachable("unterminated nofpclass attribute");
2437 }
2438 
2439 /// parseOptionalCommaAlign
2440 ///   ::=
2441 ///   ::= ',' align 4
2442 ///
2443 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2444 /// end.
2445 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2446                                        bool &AteExtraComma) {
2447   AteExtraComma = false;
2448   while (EatIfPresent(lltok::comma)) {
2449     // Metadata at the end is an early exit.
2450     if (Lex.getKind() == lltok::MetadataVar) {
2451       AteExtraComma = true;
2452       return false;
2453     }
2454 
2455     if (Lex.getKind() != lltok::kw_align)
2456       return error(Lex.getLoc(), "expected metadata or 'align'");
2457 
2458     if (parseOptionalAlignment(Alignment))
2459       return true;
2460   }
2461 
2462   return false;
2463 }
2464 
2465 /// parseOptionalCommaAddrSpace
2466 ///   ::=
2467 ///   ::= ',' addrspace(1)
2468 ///
2469 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2470 /// end.
2471 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2472                                            bool &AteExtraComma) {
2473   AteExtraComma = false;
2474   while (EatIfPresent(lltok::comma)) {
2475     // Metadata at the end is an early exit.
2476     if (Lex.getKind() == lltok::MetadataVar) {
2477       AteExtraComma = true;
2478       return false;
2479     }
2480 
2481     Loc = Lex.getLoc();
2482     if (Lex.getKind() != lltok::kw_addrspace)
2483       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2484 
2485     if (parseOptionalAddrSpace(AddrSpace))
2486       return true;
2487   }
2488 
2489   return false;
2490 }
2491 
2492 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2493                                        std::optional<unsigned> &HowManyArg) {
2494   Lex.Lex();
2495 
2496   auto StartParen = Lex.getLoc();
2497   if (!EatIfPresent(lltok::lparen))
2498     return error(StartParen, "expected '('");
2499 
2500   if (parseUInt32(BaseSizeArg))
2501     return true;
2502 
2503   if (EatIfPresent(lltok::comma)) {
2504     auto HowManyAt = Lex.getLoc();
2505     unsigned HowMany;
2506     if (parseUInt32(HowMany))
2507       return true;
2508     if (HowMany == BaseSizeArg)
2509       return error(HowManyAt,
2510                    "'allocsize' indices can't refer to the same parameter");
2511     HowManyArg = HowMany;
2512   } else
2513     HowManyArg = std::nullopt;
2514 
2515   auto EndParen = Lex.getLoc();
2516   if (!EatIfPresent(lltok::rparen))
2517     return error(EndParen, "expected ')'");
2518   return false;
2519 }
2520 
2521 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2522                                          unsigned &MaxValue) {
2523   Lex.Lex();
2524 
2525   auto StartParen = Lex.getLoc();
2526   if (!EatIfPresent(lltok::lparen))
2527     return error(StartParen, "expected '('");
2528 
2529   if (parseUInt32(MinValue))
2530     return true;
2531 
2532   if (EatIfPresent(lltok::comma)) {
2533     if (parseUInt32(MaxValue))
2534       return true;
2535   } else
2536     MaxValue = MinValue;
2537 
2538   auto EndParen = Lex.getLoc();
2539   if (!EatIfPresent(lltok::rparen))
2540     return error(EndParen, "expected ')'");
2541   return false;
2542 }
2543 
2544 /// parseScopeAndOrdering
2545 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2546 ///   else: ::=
2547 ///
2548 /// This sets Scope and Ordering to the parsed values.
2549 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2550                                      AtomicOrdering &Ordering) {
2551   if (!IsAtomic)
2552     return false;
2553 
2554   return parseScope(SSID) || parseOrdering(Ordering);
2555 }
2556 
2557 /// parseScope
2558 ///   ::= syncscope("singlethread" | "<target scope>")?
2559 ///
2560 /// This sets synchronization scope ID to the ID of the parsed value.
2561 bool LLParser::parseScope(SyncScope::ID &SSID) {
2562   SSID = SyncScope::System;
2563   if (EatIfPresent(lltok::kw_syncscope)) {
2564     auto StartParenAt = Lex.getLoc();
2565     if (!EatIfPresent(lltok::lparen))
2566       return error(StartParenAt, "Expected '(' in syncscope");
2567 
2568     std::string SSN;
2569     auto SSNAt = Lex.getLoc();
2570     if (parseStringConstant(SSN))
2571       return error(SSNAt, "Expected synchronization scope name");
2572 
2573     auto EndParenAt = Lex.getLoc();
2574     if (!EatIfPresent(lltok::rparen))
2575       return error(EndParenAt, "Expected ')' in syncscope");
2576 
2577     SSID = Context.getOrInsertSyncScopeID(SSN);
2578   }
2579 
2580   return false;
2581 }
2582 
2583 /// parseOrdering
2584 ///   ::= AtomicOrdering
2585 ///
2586 /// This sets Ordering to the parsed value.
2587 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2588   switch (Lex.getKind()) {
2589   default:
2590     return tokError("Expected ordering on atomic instruction");
2591   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2592   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2593   // Not specified yet:
2594   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2595   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2596   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2597   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2598   case lltok::kw_seq_cst:
2599     Ordering = AtomicOrdering::SequentiallyConsistent;
2600     break;
2601   }
2602   Lex.Lex();
2603   return false;
2604 }
2605 
2606 /// parseOptionalStackAlignment
2607 ///   ::= /* empty */
2608 ///   ::= 'alignstack' '(' 4 ')'
2609 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2610   Alignment = 0;
2611   if (!EatIfPresent(lltok::kw_alignstack))
2612     return false;
2613   LocTy ParenLoc = Lex.getLoc();
2614   if (!EatIfPresent(lltok::lparen))
2615     return error(ParenLoc, "expected '('");
2616   LocTy AlignLoc = Lex.getLoc();
2617   if (parseUInt32(Alignment))
2618     return true;
2619   ParenLoc = Lex.getLoc();
2620   if (!EatIfPresent(lltok::rparen))
2621     return error(ParenLoc, "expected ')'");
2622   if (!isPowerOf2_32(Alignment))
2623     return error(AlignLoc, "stack alignment is not a power of two");
2624   return false;
2625 }
2626 
2627 /// parseIndexList - This parses the index list for an insert/extractvalue
2628 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2629 /// comma at the end of the line and find that it is followed by metadata.
2630 /// Clients that don't allow metadata can call the version of this function that
2631 /// only takes one argument.
2632 ///
2633 /// parseIndexList
2634 ///    ::=  (',' uint32)+
2635 ///
2636 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2637                               bool &AteExtraComma) {
2638   AteExtraComma = false;
2639 
2640   if (Lex.getKind() != lltok::comma)
2641     return tokError("expected ',' as start of index list");
2642 
2643   while (EatIfPresent(lltok::comma)) {
2644     if (Lex.getKind() == lltok::MetadataVar) {
2645       if (Indices.empty())
2646         return tokError("expected index");
2647       AteExtraComma = true;
2648       return false;
2649     }
2650     unsigned Idx = 0;
2651     if (parseUInt32(Idx))
2652       return true;
2653     Indices.push_back(Idx);
2654   }
2655 
2656   return false;
2657 }
2658 
2659 //===----------------------------------------------------------------------===//
2660 // Type Parsing.
2661 //===----------------------------------------------------------------------===//
2662 
2663 /// parseType - parse a type.
2664 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2665   SMLoc TypeLoc = Lex.getLoc();
2666   switch (Lex.getKind()) {
2667   default:
2668     return tokError(Msg);
2669   case lltok::Type:
2670     // Type ::= 'float' | 'void' (etc)
2671     Result = Lex.getTyVal();
2672     Lex.Lex();
2673 
2674     // Handle "ptr" opaque pointer type.
2675     //
2676     // Type ::= ptr ('addrspace' '(' uint32 ')')?
2677     if (Result->isPointerTy()) {
2678       unsigned AddrSpace;
2679       if (parseOptionalAddrSpace(AddrSpace))
2680         return true;
2681       Result = PointerType::get(getContext(), AddrSpace);
2682 
2683       // Give a nice error for 'ptr*'.
2684       if (Lex.getKind() == lltok::star)
2685         return tokError("ptr* is invalid - use ptr instead");
2686 
2687       // Fall through to parsing the type suffixes only if this 'ptr' is a
2688       // function return. Otherwise, return success, implicitly rejecting other
2689       // suffixes.
2690       if (Lex.getKind() != lltok::lparen)
2691         return false;
2692     }
2693     break;
2694   case lltok::kw_target: {
2695     // Type ::= TargetExtType
2696     if (parseTargetExtType(Result))
2697       return true;
2698     break;
2699   }
2700   case lltok::lbrace:
2701     // Type ::= StructType
2702     if (parseAnonStructType(Result, false))
2703       return true;
2704     break;
2705   case lltok::lsquare:
2706     // Type ::= '[' ... ']'
2707     Lex.Lex(); // eat the lsquare.
2708     if (parseArrayVectorType(Result, false))
2709       return true;
2710     break;
2711   case lltok::less: // Either vector or packed struct.
2712     // Type ::= '<' ... '>'
2713     Lex.Lex();
2714     if (Lex.getKind() == lltok::lbrace) {
2715       if (parseAnonStructType(Result, true) ||
2716           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2717         return true;
2718     } else if (parseArrayVectorType(Result, true))
2719       return true;
2720     break;
2721   case lltok::LocalVar: {
2722     // Type ::= %foo
2723     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2724 
2725     // If the type hasn't been defined yet, create a forward definition and
2726     // remember where that forward def'n was seen (in case it never is defined).
2727     if (!Entry.first) {
2728       Entry.first = StructType::create(Context, Lex.getStrVal());
2729       Entry.second = Lex.getLoc();
2730     }
2731     Result = Entry.first;
2732     Lex.Lex();
2733     break;
2734   }
2735 
2736   case lltok::LocalVarID: {
2737     // Type ::= %4
2738     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2739 
2740     // If the type hasn't been defined yet, create a forward definition and
2741     // remember where that forward def'n was seen (in case it never is defined).
2742     if (!Entry.first) {
2743       Entry.first = StructType::create(Context);
2744       Entry.second = Lex.getLoc();
2745     }
2746     Result = Entry.first;
2747     Lex.Lex();
2748     break;
2749   }
2750   }
2751 
2752   // parse the type suffixes.
2753   while (true) {
2754     switch (Lex.getKind()) {
2755     // End of type.
2756     default:
2757       if (!AllowVoid && Result->isVoidTy())
2758         return error(TypeLoc, "void type only allowed for function results");
2759       return false;
2760 
2761     // Type ::= Type '*'
2762     case lltok::star:
2763       if (Result->isLabelTy())
2764         return tokError("basic block pointers are invalid");
2765       if (Result->isVoidTy())
2766         return tokError("pointers to void are invalid - use i8* instead");
2767       if (!PointerType::isValidElementType(Result))
2768         return tokError("pointer to this type is invalid");
2769       Result = PointerType::getUnqual(Result);
2770       Lex.Lex();
2771       break;
2772 
2773     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2774     case lltok::kw_addrspace: {
2775       if (Result->isLabelTy())
2776         return tokError("basic block pointers are invalid");
2777       if (Result->isVoidTy())
2778         return tokError("pointers to void are invalid; use i8* instead");
2779       if (!PointerType::isValidElementType(Result))
2780         return tokError("pointer to this type is invalid");
2781       unsigned AddrSpace;
2782       if (parseOptionalAddrSpace(AddrSpace) ||
2783           parseToken(lltok::star, "expected '*' in address space"))
2784         return true;
2785 
2786       Result = PointerType::get(Result, AddrSpace);
2787       break;
2788     }
2789 
2790     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2791     case lltok::lparen:
2792       if (parseFunctionType(Result))
2793         return true;
2794       break;
2795     }
2796   }
2797 }
2798 
2799 /// parseParameterList
2800 ///    ::= '(' ')'
2801 ///    ::= '(' Arg (',' Arg)* ')'
2802 ///  Arg
2803 ///    ::= Type OptionalAttributes Value OptionalAttributes
2804 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2805                                   PerFunctionState &PFS, bool IsMustTailCall,
2806                                   bool InVarArgsFunc) {
2807   if (parseToken(lltok::lparen, "expected '(' in call"))
2808     return true;
2809 
2810   while (Lex.getKind() != lltok::rparen) {
2811     // If this isn't the first argument, we need a comma.
2812     if (!ArgList.empty() &&
2813         parseToken(lltok::comma, "expected ',' in argument list"))
2814       return true;
2815 
2816     // parse an ellipsis if this is a musttail call in a variadic function.
2817     if (Lex.getKind() == lltok::dotdotdot) {
2818       const char *Msg = "unexpected ellipsis in argument list for ";
2819       if (!IsMustTailCall)
2820         return tokError(Twine(Msg) + "non-musttail call");
2821       if (!InVarArgsFunc)
2822         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2823       Lex.Lex();  // Lex the '...', it is purely for readability.
2824       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2825     }
2826 
2827     // parse the argument.
2828     LocTy ArgLoc;
2829     Type *ArgTy = nullptr;
2830     Value *V;
2831     if (parseType(ArgTy, ArgLoc))
2832       return true;
2833 
2834     AttrBuilder ArgAttrs(M->getContext());
2835 
2836     if (ArgTy->isMetadataTy()) {
2837       if (parseMetadataAsValue(V, PFS))
2838         return true;
2839     } else {
2840       // Otherwise, handle normal operands.
2841       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2842         return true;
2843     }
2844     ArgList.push_back(ParamInfo(
2845         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2846   }
2847 
2848   if (IsMustTailCall && InVarArgsFunc)
2849     return tokError("expected '...' at end of argument list for musttail call "
2850                     "in varargs function");
2851 
2852   Lex.Lex();  // Lex the ')'.
2853   return false;
2854 }
2855 
2856 /// parseRequiredTypeAttr
2857 ///   ::= attrname(<ty>)
2858 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken,
2859                                      Attribute::AttrKind AttrKind) {
2860   Type *Ty = nullptr;
2861   if (!EatIfPresent(AttrToken))
2862     return true;
2863   if (!EatIfPresent(lltok::lparen))
2864     return error(Lex.getLoc(), "expected '('");
2865   if (parseType(Ty))
2866     return true;
2867   if (!EatIfPresent(lltok::rparen))
2868     return error(Lex.getLoc(), "expected ')'");
2869 
2870   B.addTypeAttr(AttrKind, Ty);
2871   return false;
2872 }
2873 
2874 /// parseOptionalOperandBundles
2875 ///    ::= /*empty*/
2876 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2877 ///
2878 /// OperandBundle
2879 ///    ::= bundle-tag '(' ')'
2880 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2881 ///
2882 /// bundle-tag ::= String Constant
2883 bool LLParser::parseOptionalOperandBundles(
2884     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2885   LocTy BeginLoc = Lex.getLoc();
2886   if (!EatIfPresent(lltok::lsquare))
2887     return false;
2888 
2889   while (Lex.getKind() != lltok::rsquare) {
2890     // If this isn't the first operand bundle, we need a comma.
2891     if (!BundleList.empty() &&
2892         parseToken(lltok::comma, "expected ',' in input list"))
2893       return true;
2894 
2895     std::string Tag;
2896     if (parseStringConstant(Tag))
2897       return true;
2898 
2899     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2900       return true;
2901 
2902     std::vector<Value *> Inputs;
2903     while (Lex.getKind() != lltok::rparen) {
2904       // If this isn't the first input, we need a comma.
2905       if (!Inputs.empty() &&
2906           parseToken(lltok::comma, "expected ',' in input list"))
2907         return true;
2908 
2909       Type *Ty = nullptr;
2910       Value *Input = nullptr;
2911       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2912         return true;
2913       Inputs.push_back(Input);
2914     }
2915 
2916     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2917 
2918     Lex.Lex(); // Lex the ')'.
2919   }
2920 
2921   if (BundleList.empty())
2922     return error(BeginLoc, "operand bundle set must not be empty");
2923 
2924   Lex.Lex(); // Lex the ']'.
2925   return false;
2926 }
2927 
2928 /// parseArgumentList - parse the argument list for a function type or function
2929 /// prototype.
2930 ///   ::= '(' ArgTypeListI ')'
2931 /// ArgTypeListI
2932 ///   ::= /*empty*/
2933 ///   ::= '...'
2934 ///   ::= ArgTypeList ',' '...'
2935 ///   ::= ArgType (',' ArgType)*
2936 ///
2937 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2938                                  bool &IsVarArg) {
2939   unsigned CurValID = 0;
2940   IsVarArg = false;
2941   assert(Lex.getKind() == lltok::lparen);
2942   Lex.Lex(); // eat the (.
2943 
2944   if (Lex.getKind() == lltok::rparen) {
2945     // empty
2946   } else if (Lex.getKind() == lltok::dotdotdot) {
2947     IsVarArg = true;
2948     Lex.Lex();
2949   } else {
2950     LocTy TypeLoc = Lex.getLoc();
2951     Type *ArgTy = nullptr;
2952     AttrBuilder Attrs(M->getContext());
2953     std::string Name;
2954 
2955     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2956       return true;
2957 
2958     if (ArgTy->isVoidTy())
2959       return error(TypeLoc, "argument can not have void type");
2960 
2961     if (Lex.getKind() == lltok::LocalVar) {
2962       Name = Lex.getStrVal();
2963       Lex.Lex();
2964     } else if (Lex.getKind() == lltok::LocalVarID) {
2965       if (Lex.getUIntVal() != CurValID)
2966         return error(TypeLoc, "argument expected to be numbered '%" +
2967                                   Twine(CurValID) + "'");
2968       ++CurValID;
2969       Lex.Lex();
2970     }
2971 
2972     if (!FunctionType::isValidArgumentType(ArgTy))
2973       return error(TypeLoc, "invalid type for function argument");
2974 
2975     ArgList.emplace_back(TypeLoc, ArgTy,
2976                          AttributeSet::get(ArgTy->getContext(), Attrs),
2977                          std::move(Name));
2978 
2979     while (EatIfPresent(lltok::comma)) {
2980       // Handle ... at end of arg list.
2981       if (EatIfPresent(lltok::dotdotdot)) {
2982         IsVarArg = true;
2983         break;
2984       }
2985 
2986       // Otherwise must be an argument type.
2987       TypeLoc = Lex.getLoc();
2988       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2989         return true;
2990 
2991       if (ArgTy->isVoidTy())
2992         return error(TypeLoc, "argument can not have void type");
2993 
2994       if (Lex.getKind() == lltok::LocalVar) {
2995         Name = Lex.getStrVal();
2996         Lex.Lex();
2997       } else {
2998         if (Lex.getKind() == lltok::LocalVarID) {
2999           if (Lex.getUIntVal() != CurValID)
3000             return error(TypeLoc, "argument expected to be numbered '%" +
3001                                       Twine(CurValID) + "'");
3002           Lex.Lex();
3003         }
3004         ++CurValID;
3005         Name = "";
3006       }
3007 
3008       if (!ArgTy->isFirstClassType())
3009         return error(TypeLoc, "invalid type for function argument");
3010 
3011       ArgList.emplace_back(TypeLoc, ArgTy,
3012                            AttributeSet::get(ArgTy->getContext(), Attrs),
3013                            std::move(Name));
3014     }
3015   }
3016 
3017   return parseToken(lltok::rparen, "expected ')' at end of argument list");
3018 }
3019 
3020 /// parseFunctionType
3021 ///  ::= Type ArgumentList OptionalAttrs
3022 bool LLParser::parseFunctionType(Type *&Result) {
3023   assert(Lex.getKind() == lltok::lparen);
3024 
3025   if (!FunctionType::isValidReturnType(Result))
3026     return tokError("invalid function return type");
3027 
3028   SmallVector<ArgInfo, 8> ArgList;
3029   bool IsVarArg;
3030   if (parseArgumentList(ArgList, IsVarArg))
3031     return true;
3032 
3033   // Reject names on the arguments lists.
3034   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3035     if (!ArgList[i].Name.empty())
3036       return error(ArgList[i].Loc, "argument name invalid in function type");
3037     if (ArgList[i].Attrs.hasAttributes())
3038       return error(ArgList[i].Loc,
3039                    "argument attributes invalid in function type");
3040   }
3041 
3042   SmallVector<Type*, 16> ArgListTy;
3043   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3044     ArgListTy.push_back(ArgList[i].Ty);
3045 
3046   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
3047   return false;
3048 }
3049 
3050 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
3051 /// other structs.
3052 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
3053   SmallVector<Type*, 8> Elts;
3054   if (parseStructBody(Elts))
3055     return true;
3056 
3057   Result = StructType::get(Context, Elts, Packed);
3058   return false;
3059 }
3060 
3061 /// parseStructDefinition - parse a struct in a 'type' definition.
3062 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
3063                                      std::pair<Type *, LocTy> &Entry,
3064                                      Type *&ResultTy) {
3065   // If the type was already defined, diagnose the redefinition.
3066   if (Entry.first && !Entry.second.isValid())
3067     return error(TypeLoc, "redefinition of type");
3068 
3069   // If we have opaque, just return without filling in the definition for the
3070   // struct.  This counts as a definition as far as the .ll file goes.
3071   if (EatIfPresent(lltok::kw_opaque)) {
3072     // This type is being defined, so clear the location to indicate this.
3073     Entry.second = SMLoc();
3074 
3075     // If this type number has never been uttered, create it.
3076     if (!Entry.first)
3077       Entry.first = StructType::create(Context, Name);
3078     ResultTy = Entry.first;
3079     return false;
3080   }
3081 
3082   // If the type starts with '<', then it is either a packed struct or a vector.
3083   bool isPacked = EatIfPresent(lltok::less);
3084 
3085   // If we don't have a struct, then we have a random type alias, which we
3086   // accept for compatibility with old files.  These types are not allowed to be
3087   // forward referenced and not allowed to be recursive.
3088   if (Lex.getKind() != lltok::lbrace) {
3089     if (Entry.first)
3090       return error(TypeLoc, "forward references to non-struct type");
3091 
3092     ResultTy = nullptr;
3093     if (isPacked)
3094       return parseArrayVectorType(ResultTy, true);
3095     return parseType(ResultTy);
3096   }
3097 
3098   // This type is being defined, so clear the location to indicate this.
3099   Entry.second = SMLoc();
3100 
3101   // If this type number has never been uttered, create it.
3102   if (!Entry.first)
3103     Entry.first = StructType::create(Context, Name);
3104 
3105   StructType *STy = cast<StructType>(Entry.first);
3106 
3107   SmallVector<Type*, 8> Body;
3108   if (parseStructBody(Body) ||
3109       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
3110     return true;
3111 
3112   STy->setBody(Body, isPacked);
3113   ResultTy = STy;
3114   return false;
3115 }
3116 
3117 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
3118 ///   StructType
3119 ///     ::= '{' '}'
3120 ///     ::= '{' Type (',' Type)* '}'
3121 ///     ::= '<' '{' '}' '>'
3122 ///     ::= '<' '{' Type (',' Type)* '}' '>'
3123 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
3124   assert(Lex.getKind() == lltok::lbrace);
3125   Lex.Lex(); // Consume the '{'
3126 
3127   // Handle the empty struct.
3128   if (EatIfPresent(lltok::rbrace))
3129     return false;
3130 
3131   LocTy EltTyLoc = Lex.getLoc();
3132   Type *Ty = nullptr;
3133   if (parseType(Ty))
3134     return true;
3135   Body.push_back(Ty);
3136 
3137   if (!StructType::isValidElementType(Ty))
3138     return error(EltTyLoc, "invalid element type for struct");
3139 
3140   while (EatIfPresent(lltok::comma)) {
3141     EltTyLoc = Lex.getLoc();
3142     if (parseType(Ty))
3143       return true;
3144 
3145     if (!StructType::isValidElementType(Ty))
3146       return error(EltTyLoc, "invalid element type for struct");
3147 
3148     Body.push_back(Ty);
3149   }
3150 
3151   return parseToken(lltok::rbrace, "expected '}' at end of struct");
3152 }
3153 
3154 /// parseArrayVectorType - parse an array or vector type, assuming the first
3155 /// token has already been consumed.
3156 ///   Type
3157 ///     ::= '[' APSINTVAL 'x' Types ']'
3158 ///     ::= '<' APSINTVAL 'x' Types '>'
3159 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
3160 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
3161   bool Scalable = false;
3162 
3163   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
3164     Lex.Lex(); // consume the 'vscale'
3165     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
3166       return true;
3167 
3168     Scalable = true;
3169   }
3170 
3171   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
3172       Lex.getAPSIntVal().getBitWidth() > 64)
3173     return tokError("expected number in address space");
3174 
3175   LocTy SizeLoc = Lex.getLoc();
3176   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
3177   Lex.Lex();
3178 
3179   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
3180     return true;
3181 
3182   LocTy TypeLoc = Lex.getLoc();
3183   Type *EltTy = nullptr;
3184   if (parseType(EltTy))
3185     return true;
3186 
3187   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
3188                  "expected end of sequential type"))
3189     return true;
3190 
3191   if (IsVector) {
3192     if (Size == 0)
3193       return error(SizeLoc, "zero element vector is illegal");
3194     if ((unsigned)Size != Size)
3195       return error(SizeLoc, "size too large for vector");
3196     if (!VectorType::isValidElementType(EltTy))
3197       return error(TypeLoc, "invalid vector element type");
3198     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
3199   } else {
3200     if (!ArrayType::isValidElementType(EltTy))
3201       return error(TypeLoc, "invalid array element type");
3202     Result = ArrayType::get(EltTy, Size);
3203   }
3204   return false;
3205 }
3206 
3207 /// parseTargetExtType - handle target extension type syntax
3208 ///   TargetExtType
3209 ///     ::= 'target' '(' STRINGCONSTANT TargetExtTypeParams TargetExtIntParams ')'
3210 ///
3211 ///   TargetExtTypeParams
3212 ///     ::= /*empty*/
3213 ///     ::= ',' Type TargetExtTypeParams
3214 ///
3215 ///   TargetExtIntParams
3216 ///     ::= /*empty*/
3217 ///     ::= ',' uint32 TargetExtIntParams
3218 bool LLParser::parseTargetExtType(Type *&Result) {
3219   Lex.Lex(); // Eat the 'target' keyword.
3220 
3221   // Get the mandatory type name.
3222   std::string TypeName;
3223   if (parseToken(lltok::lparen, "expected '(' in target extension type") ||
3224       parseStringConstant(TypeName))
3225     return true;
3226 
3227   // Parse all of the integer and type parameters at the same time; the use of
3228   // SeenInt will allow us to catch cases where type parameters follow integer
3229   // parameters.
3230   SmallVector<Type *> TypeParams;
3231   SmallVector<unsigned> IntParams;
3232   bool SeenInt = false;
3233   while (Lex.getKind() == lltok::comma) {
3234     Lex.Lex(); // Eat the comma.
3235 
3236     if (Lex.getKind() == lltok::APSInt) {
3237       SeenInt = true;
3238       unsigned IntVal;
3239       if (parseUInt32(IntVal))
3240         return true;
3241       IntParams.push_back(IntVal);
3242     } else if (SeenInt) {
3243       // The only other kind of parameter we support is type parameters, which
3244       // must precede the integer parameters. This is therefore an error.
3245       return tokError("expected uint32 param");
3246     } else {
3247       Type *TypeParam;
3248       if (parseType(TypeParam, /*AllowVoid=*/true))
3249         return true;
3250       TypeParams.push_back(TypeParam);
3251     }
3252   }
3253 
3254   if (parseToken(lltok::rparen, "expected ')' in target extension type"))
3255     return true;
3256 
3257   Result = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
3258   return false;
3259 }
3260 
3261 //===----------------------------------------------------------------------===//
3262 // Function Semantic Analysis.
3263 //===----------------------------------------------------------------------===//
3264 
3265 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
3266                                              int functionNumber)
3267   : P(p), F(f), FunctionNumber(functionNumber) {
3268 
3269   // Insert unnamed arguments into the NumberedVals list.
3270   for (Argument &A : F.args())
3271     if (!A.hasName())
3272       NumberedVals.push_back(&A);
3273 }
3274 
3275 LLParser::PerFunctionState::~PerFunctionState() {
3276   // If there were any forward referenced non-basicblock values, delete them.
3277 
3278   for (const auto &P : ForwardRefVals) {
3279     if (isa<BasicBlock>(P.second.first))
3280       continue;
3281     P.second.first->replaceAllUsesWith(
3282         UndefValue::get(P.second.first->getType()));
3283     P.second.first->deleteValue();
3284   }
3285 
3286   for (const auto &P : ForwardRefValIDs) {
3287     if (isa<BasicBlock>(P.second.first))
3288       continue;
3289     P.second.first->replaceAllUsesWith(
3290         UndefValue::get(P.second.first->getType()));
3291     P.second.first->deleteValue();
3292   }
3293 }
3294 
3295 bool LLParser::PerFunctionState::finishFunction() {
3296   if (!ForwardRefVals.empty())
3297     return P.error(ForwardRefVals.begin()->second.second,
3298                    "use of undefined value '%" + ForwardRefVals.begin()->first +
3299                        "'");
3300   if (!ForwardRefValIDs.empty())
3301     return P.error(ForwardRefValIDs.begin()->second.second,
3302                    "use of undefined value '%" +
3303                        Twine(ForwardRefValIDs.begin()->first) + "'");
3304   return false;
3305 }
3306 
3307 /// getVal - Get a value with the specified name or ID, creating a
3308 /// forward reference record if needed.  This can return null if the value
3309 /// exists but does not have the right type.
3310 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
3311                                           LocTy Loc) {
3312   // Look this name up in the normal function symbol table.
3313   Value *Val = F.getValueSymbolTable()->lookup(Name);
3314 
3315   // If this is a forward reference for the value, see if we already created a
3316   // forward ref record.
3317   if (!Val) {
3318     auto I = ForwardRefVals.find(Name);
3319     if (I != ForwardRefVals.end())
3320       Val = I->second.first;
3321   }
3322 
3323   // If we have the value in the symbol table or fwd-ref table, return it.
3324   if (Val)
3325     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val);
3326 
3327   // Don't make placeholders with invalid type.
3328   if (!Ty->isFirstClassType()) {
3329     P.error(Loc, "invalid use of a non-first-class type");
3330     return nullptr;
3331   }
3332 
3333   // Otherwise, create a new forward reference for this value and remember it.
3334   Value *FwdVal;
3335   if (Ty->isLabelTy()) {
3336     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
3337   } else {
3338     FwdVal = new Argument(Ty, Name);
3339   }
3340   if (FwdVal->getName() != Name) {
3341     P.error(Loc, "name is too long which can result in name collisions, "
3342                  "consider making the name shorter or "
3343                  "increasing -non-global-value-max-name-size");
3344     return nullptr;
3345   }
3346 
3347   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
3348   return FwdVal;
3349 }
3350 
3351 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) {
3352   // Look this name up in the normal function symbol table.
3353   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
3354 
3355   // If this is a forward reference for the value, see if we already created a
3356   // forward ref record.
3357   if (!Val) {
3358     auto I = ForwardRefValIDs.find(ID);
3359     if (I != ForwardRefValIDs.end())
3360       Val = I->second.first;
3361   }
3362 
3363   // If we have the value in the symbol table or fwd-ref table, return it.
3364   if (Val)
3365     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val);
3366 
3367   if (!Ty->isFirstClassType()) {
3368     P.error(Loc, "invalid use of a non-first-class type");
3369     return nullptr;
3370   }
3371 
3372   // Otherwise, create a new forward reference for this value and remember it.
3373   Value *FwdVal;
3374   if (Ty->isLabelTy()) {
3375     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3376   } else {
3377     FwdVal = new Argument(Ty);
3378   }
3379 
3380   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3381   return FwdVal;
3382 }
3383 
3384 /// setInstName - After an instruction is parsed and inserted into its
3385 /// basic block, this installs its name.
3386 bool LLParser::PerFunctionState::setInstName(int NameID,
3387                                              const std::string &NameStr,
3388                                              LocTy NameLoc, Instruction *Inst) {
3389   // If this instruction has void type, it cannot have a name or ID specified.
3390   if (Inst->getType()->isVoidTy()) {
3391     if (NameID != -1 || !NameStr.empty())
3392       return P.error(NameLoc, "instructions returning void cannot have a name");
3393     return false;
3394   }
3395 
3396   // If this was a numbered instruction, verify that the instruction is the
3397   // expected value and resolve any forward references.
3398   if (NameStr.empty()) {
3399     // If neither a name nor an ID was specified, just use the next ID.
3400     if (NameID == -1)
3401       NameID = NumberedVals.size();
3402 
3403     if (unsigned(NameID) != NumberedVals.size())
3404       return P.error(NameLoc, "instruction expected to be numbered '%" +
3405                                   Twine(NumberedVals.size()) + "'");
3406 
3407     auto FI = ForwardRefValIDs.find(NameID);
3408     if (FI != ForwardRefValIDs.end()) {
3409       Value *Sentinel = FI->second.first;
3410       if (Sentinel->getType() != Inst->getType())
3411         return P.error(NameLoc, "instruction forward referenced with type '" +
3412                                     getTypeString(FI->second.first->getType()) +
3413                                     "'");
3414 
3415       Sentinel->replaceAllUsesWith(Inst);
3416       Sentinel->deleteValue();
3417       ForwardRefValIDs.erase(FI);
3418     }
3419 
3420     NumberedVals.push_back(Inst);
3421     return false;
3422   }
3423 
3424   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3425   auto FI = ForwardRefVals.find(NameStr);
3426   if (FI != ForwardRefVals.end()) {
3427     Value *Sentinel = FI->second.first;
3428     if (Sentinel->getType() != Inst->getType())
3429       return P.error(NameLoc, "instruction forward referenced with type '" +
3430                                   getTypeString(FI->second.first->getType()) +
3431                                   "'");
3432 
3433     Sentinel->replaceAllUsesWith(Inst);
3434     Sentinel->deleteValue();
3435     ForwardRefVals.erase(FI);
3436   }
3437 
3438   // Set the name on the instruction.
3439   Inst->setName(NameStr);
3440 
3441   if (Inst->getName() != NameStr)
3442     return P.error(NameLoc, "multiple definition of local value named '" +
3443                                 NameStr + "'");
3444   return false;
3445 }
3446 
3447 /// getBB - Get a basic block with the specified name or ID, creating a
3448 /// forward reference record if needed.
3449 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
3450                                               LocTy Loc) {
3451   return dyn_cast_or_null<BasicBlock>(
3452       getVal(Name, Type::getLabelTy(F.getContext()), Loc));
3453 }
3454 
3455 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
3456   return dyn_cast_or_null<BasicBlock>(
3457       getVal(ID, Type::getLabelTy(F.getContext()), Loc));
3458 }
3459 
3460 /// defineBB - Define the specified basic block, which is either named or
3461 /// unnamed.  If there is an error, this returns null otherwise it returns
3462 /// the block being defined.
3463 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3464                                                  int NameID, LocTy Loc) {
3465   BasicBlock *BB;
3466   if (Name.empty()) {
3467     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3468       P.error(Loc, "label expected to be numbered '" +
3469                        Twine(NumberedVals.size()) + "'");
3470       return nullptr;
3471     }
3472     BB = getBB(NumberedVals.size(), Loc);
3473     if (!BB) {
3474       P.error(Loc, "unable to create block numbered '" +
3475                        Twine(NumberedVals.size()) + "'");
3476       return nullptr;
3477     }
3478   } else {
3479     BB = getBB(Name, Loc);
3480     if (!BB) {
3481       P.error(Loc, "unable to create block named '" + Name + "'");
3482       return nullptr;
3483     }
3484   }
3485 
3486   // Move the block to the end of the function.  Forward ref'd blocks are
3487   // inserted wherever they happen to be referenced.
3488   F.splice(F.end(), &F, BB->getIterator());
3489 
3490   // Remove the block from forward ref sets.
3491   if (Name.empty()) {
3492     ForwardRefValIDs.erase(NumberedVals.size());
3493     NumberedVals.push_back(BB);
3494   } else {
3495     // BB forward references are already in the function symbol table.
3496     ForwardRefVals.erase(Name);
3497   }
3498 
3499   return BB;
3500 }
3501 
3502 //===----------------------------------------------------------------------===//
3503 // Constants.
3504 //===----------------------------------------------------------------------===//
3505 
3506 /// parseValID - parse an abstract value that doesn't necessarily have a
3507 /// type implied.  For example, if we parse "4" we don't know what integer type
3508 /// it has.  The value will later be combined with its type and checked for
3509 /// basic correctness.  PFS is used to convert function-local operands of
3510 /// metadata (since metadata operands are not just parsed here but also
3511 /// converted to values). PFS can be null when we are not parsing metadata
3512 /// values inside a function.
3513 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) {
3514   ID.Loc = Lex.getLoc();
3515   switch (Lex.getKind()) {
3516   default:
3517     return tokError("expected value token");
3518   case lltok::GlobalID:  // @42
3519     ID.UIntVal = Lex.getUIntVal();
3520     ID.Kind = ValID::t_GlobalID;
3521     break;
3522   case lltok::GlobalVar:  // @foo
3523     ID.StrVal = Lex.getStrVal();
3524     ID.Kind = ValID::t_GlobalName;
3525     break;
3526   case lltok::LocalVarID:  // %42
3527     ID.UIntVal = Lex.getUIntVal();
3528     ID.Kind = ValID::t_LocalID;
3529     break;
3530   case lltok::LocalVar:  // %foo
3531     ID.StrVal = Lex.getStrVal();
3532     ID.Kind = ValID::t_LocalName;
3533     break;
3534   case lltok::APSInt:
3535     ID.APSIntVal = Lex.getAPSIntVal();
3536     ID.Kind = ValID::t_APSInt;
3537     break;
3538   case lltok::APFloat:
3539     ID.APFloatVal = Lex.getAPFloatVal();
3540     ID.Kind = ValID::t_APFloat;
3541     break;
3542   case lltok::kw_true:
3543     ID.ConstantVal = ConstantInt::getTrue(Context);
3544     ID.Kind = ValID::t_Constant;
3545     break;
3546   case lltok::kw_false:
3547     ID.ConstantVal = ConstantInt::getFalse(Context);
3548     ID.Kind = ValID::t_Constant;
3549     break;
3550   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3551   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3552   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3553   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3554   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3555 
3556   case lltok::lbrace: {
3557     // ValID ::= '{' ConstVector '}'
3558     Lex.Lex();
3559     SmallVector<Constant*, 16> Elts;
3560     if (parseGlobalValueVector(Elts) ||
3561         parseToken(lltok::rbrace, "expected end of struct constant"))
3562       return true;
3563 
3564     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3565     ID.UIntVal = Elts.size();
3566     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3567            Elts.size() * sizeof(Elts[0]));
3568     ID.Kind = ValID::t_ConstantStruct;
3569     return false;
3570   }
3571   case lltok::less: {
3572     // ValID ::= '<' ConstVector '>'         --> Vector.
3573     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3574     Lex.Lex();
3575     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3576 
3577     SmallVector<Constant*, 16> Elts;
3578     LocTy FirstEltLoc = Lex.getLoc();
3579     if (parseGlobalValueVector(Elts) ||
3580         (isPackedStruct &&
3581          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3582         parseToken(lltok::greater, "expected end of constant"))
3583       return true;
3584 
3585     if (isPackedStruct) {
3586       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3587       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3588              Elts.size() * sizeof(Elts[0]));
3589       ID.UIntVal = Elts.size();
3590       ID.Kind = ValID::t_PackedConstantStruct;
3591       return false;
3592     }
3593 
3594     if (Elts.empty())
3595       return error(ID.Loc, "constant vector must not be empty");
3596 
3597     if (!Elts[0]->getType()->isIntegerTy() &&
3598         !Elts[0]->getType()->isFloatingPointTy() &&
3599         !Elts[0]->getType()->isPointerTy())
3600       return error(
3601           FirstEltLoc,
3602           "vector elements must have integer, pointer or floating point type");
3603 
3604     // Verify that all the vector elements have the same type.
3605     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3606       if (Elts[i]->getType() != Elts[0]->getType())
3607         return error(FirstEltLoc, "vector element #" + Twine(i) +
3608                                       " is not of type '" +
3609                                       getTypeString(Elts[0]->getType()));
3610 
3611     ID.ConstantVal = ConstantVector::get(Elts);
3612     ID.Kind = ValID::t_Constant;
3613     return false;
3614   }
3615   case lltok::lsquare: {   // Array Constant
3616     Lex.Lex();
3617     SmallVector<Constant*, 16> Elts;
3618     LocTy FirstEltLoc = Lex.getLoc();
3619     if (parseGlobalValueVector(Elts) ||
3620         parseToken(lltok::rsquare, "expected end of array constant"))
3621       return true;
3622 
3623     // Handle empty element.
3624     if (Elts.empty()) {
3625       // Use undef instead of an array because it's inconvenient to determine
3626       // the element type at this point, there being no elements to examine.
3627       ID.Kind = ValID::t_EmptyArray;
3628       return false;
3629     }
3630 
3631     if (!Elts[0]->getType()->isFirstClassType())
3632       return error(FirstEltLoc, "invalid array element type: " +
3633                                     getTypeString(Elts[0]->getType()));
3634 
3635     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3636 
3637     // Verify all elements are correct type!
3638     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3639       if (Elts[i]->getType() != Elts[0]->getType())
3640         return error(FirstEltLoc, "array element #" + Twine(i) +
3641                                       " is not of type '" +
3642                                       getTypeString(Elts[0]->getType()));
3643     }
3644 
3645     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3646     ID.Kind = ValID::t_Constant;
3647     return false;
3648   }
3649   case lltok::kw_c:  // c "foo"
3650     Lex.Lex();
3651     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3652                                                   false);
3653     if (parseToken(lltok::StringConstant, "expected string"))
3654       return true;
3655     ID.Kind = ValID::t_Constant;
3656     return false;
3657 
3658   case lltok::kw_asm: {
3659     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3660     //             STRINGCONSTANT
3661     bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3662     Lex.Lex();
3663     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3664         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3665         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3666         parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3667         parseStringConstant(ID.StrVal) ||
3668         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3669         parseToken(lltok::StringConstant, "expected constraint string"))
3670       return true;
3671     ID.StrVal2 = Lex.getStrVal();
3672     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3673                  (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3674     ID.Kind = ValID::t_InlineAsm;
3675     return false;
3676   }
3677 
3678   case lltok::kw_blockaddress: {
3679     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3680     Lex.Lex();
3681 
3682     ValID Fn, Label;
3683 
3684     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3685         parseValID(Fn, PFS) ||
3686         parseToken(lltok::comma,
3687                    "expected comma in block address expression") ||
3688         parseValID(Label, PFS) ||
3689         parseToken(lltok::rparen, "expected ')' in block address expression"))
3690       return true;
3691 
3692     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3693       return error(Fn.Loc, "expected function name in blockaddress");
3694     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3695       return error(Label.Loc, "expected basic block name in blockaddress");
3696 
3697     // Try to find the function (but skip it if it's forward-referenced).
3698     GlobalValue *GV = nullptr;
3699     if (Fn.Kind == ValID::t_GlobalID) {
3700       if (Fn.UIntVal < NumberedVals.size())
3701         GV = NumberedVals[Fn.UIntVal];
3702     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3703       GV = M->getNamedValue(Fn.StrVal);
3704     }
3705     Function *F = nullptr;
3706     if (GV) {
3707       // Confirm that it's actually a function with a definition.
3708       if (!isa<Function>(GV))
3709         return error(Fn.Loc, "expected function name in blockaddress");
3710       F = cast<Function>(GV);
3711       if (F->isDeclaration())
3712         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3713     }
3714 
3715     if (!F) {
3716       // Make a global variable as a placeholder for this reference.
3717       GlobalValue *&FwdRef =
3718           ForwardRefBlockAddresses.insert(std::make_pair(
3719                                               std::move(Fn),
3720                                               std::map<ValID, GlobalValue *>()))
3721               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3722               .first->second;
3723       if (!FwdRef) {
3724         unsigned FwdDeclAS;
3725         if (ExpectedTy) {
3726           // If we know the type that the blockaddress is being assigned to,
3727           // we can use the address space of that type.
3728           if (!ExpectedTy->isPointerTy())
3729             return error(ID.Loc,
3730                          "type of blockaddress must be a pointer and not '" +
3731                              getTypeString(ExpectedTy) + "'");
3732           FwdDeclAS = ExpectedTy->getPointerAddressSpace();
3733         } else if (PFS) {
3734           // Otherwise, we default the address space of the current function.
3735           FwdDeclAS = PFS->getFunction().getAddressSpace();
3736         } else {
3737           llvm_unreachable("Unknown address space for blockaddress");
3738         }
3739         FwdRef = new GlobalVariable(
3740             *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage,
3741             nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS);
3742       }
3743 
3744       ID.ConstantVal = FwdRef;
3745       ID.Kind = ValID::t_Constant;
3746       return false;
3747     }
3748 
3749     // We found the function; now find the basic block.  Don't use PFS, since we
3750     // might be inside a constant expression.
3751     BasicBlock *BB;
3752     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3753       if (Label.Kind == ValID::t_LocalID)
3754         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3755       else
3756         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3757       if (!BB)
3758         return error(Label.Loc, "referenced value is not a basic block");
3759     } else {
3760       if (Label.Kind == ValID::t_LocalID)
3761         return error(Label.Loc, "cannot take address of numeric label after "
3762                                 "the function is defined");
3763       BB = dyn_cast_or_null<BasicBlock>(
3764           F->getValueSymbolTable()->lookup(Label.StrVal));
3765       if (!BB)
3766         return error(Label.Loc, "referenced value is not a basic block");
3767     }
3768 
3769     ID.ConstantVal = BlockAddress::get(F, BB);
3770     ID.Kind = ValID::t_Constant;
3771     return false;
3772   }
3773 
3774   case lltok::kw_dso_local_equivalent: {
3775     // ValID ::= 'dso_local_equivalent' @foo
3776     Lex.Lex();
3777 
3778     ValID Fn;
3779 
3780     if (parseValID(Fn, PFS))
3781       return true;
3782 
3783     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3784       return error(Fn.Loc,
3785                    "expected global value name in dso_local_equivalent");
3786 
3787     // Try to find the function (but skip it if it's forward-referenced).
3788     GlobalValue *GV = nullptr;
3789     if (Fn.Kind == ValID::t_GlobalID) {
3790       if (Fn.UIntVal < NumberedVals.size())
3791         GV = NumberedVals[Fn.UIntVal];
3792     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3793       GV = M->getNamedValue(Fn.StrVal);
3794     }
3795 
3796     if (!GV) {
3797       // Make a placeholder global variable as a placeholder for this reference.
3798       auto &FwdRefMap = (Fn.Kind == ValID::t_GlobalID)
3799                             ? ForwardRefDSOLocalEquivalentIDs
3800                             : ForwardRefDSOLocalEquivalentNames;
3801       GlobalValue *&FwdRef = FwdRefMap.try_emplace(Fn, nullptr).first->second;
3802       if (!FwdRef) {
3803         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3804                                     GlobalValue::InternalLinkage, nullptr, "",
3805                                     nullptr, GlobalValue::NotThreadLocal);
3806       }
3807 
3808       ID.ConstantVal = FwdRef;
3809       ID.Kind = ValID::t_Constant;
3810       return false;
3811     }
3812 
3813     if (!GV->getValueType()->isFunctionTy())
3814       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3815                            "in dso_local_equivalent");
3816 
3817     ID.ConstantVal = DSOLocalEquivalent::get(GV);
3818     ID.Kind = ValID::t_Constant;
3819     return false;
3820   }
3821 
3822   case lltok::kw_no_cfi: {
3823     // ValID ::= 'no_cfi' @foo
3824     Lex.Lex();
3825 
3826     if (parseValID(ID, PFS))
3827       return true;
3828 
3829     if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName)
3830       return error(ID.Loc, "expected global value name in no_cfi");
3831 
3832     ID.NoCFI = true;
3833     return false;
3834   }
3835 
3836   case lltok::kw_trunc:
3837   case lltok::kw_bitcast:
3838   case lltok::kw_addrspacecast:
3839   case lltok::kw_inttoptr:
3840   case lltok::kw_ptrtoint: {
3841     unsigned Opc = Lex.getUIntVal();
3842     Type *DestTy = nullptr;
3843     Constant *SrcVal;
3844     Lex.Lex();
3845     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3846         parseGlobalTypeAndValue(SrcVal) ||
3847         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3848         parseType(DestTy) ||
3849         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3850       return true;
3851     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3852       return error(ID.Loc, "invalid cast opcode for cast from '" +
3853                                getTypeString(SrcVal->getType()) + "' to '" +
3854                                getTypeString(DestTy) + "'");
3855     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3856                                                  SrcVal, DestTy);
3857     ID.Kind = ValID::t_Constant;
3858     return false;
3859   }
3860   case lltok::kw_extractvalue:
3861     return error(ID.Loc, "extractvalue constexprs are no longer supported");
3862   case lltok::kw_insertvalue:
3863     return error(ID.Loc, "insertvalue constexprs are no longer supported");
3864   case lltok::kw_udiv:
3865     return error(ID.Loc, "udiv constexprs are no longer supported");
3866   case lltok::kw_sdiv:
3867     return error(ID.Loc, "sdiv constexprs are no longer supported");
3868   case lltok::kw_urem:
3869     return error(ID.Loc, "urem constexprs are no longer supported");
3870   case lltok::kw_srem:
3871     return error(ID.Loc, "srem constexprs are no longer supported");
3872   case lltok::kw_fadd:
3873     return error(ID.Loc, "fadd constexprs are no longer supported");
3874   case lltok::kw_fsub:
3875     return error(ID.Loc, "fsub constexprs are no longer supported");
3876   case lltok::kw_fmul:
3877     return error(ID.Loc, "fmul constexprs are no longer supported");
3878   case lltok::kw_fdiv:
3879     return error(ID.Loc, "fdiv constexprs are no longer supported");
3880   case lltok::kw_frem:
3881     return error(ID.Loc, "frem constexprs are no longer supported");
3882   case lltok::kw_and:
3883     return error(ID.Loc, "and constexprs are no longer supported");
3884   case lltok::kw_or:
3885     return error(ID.Loc, "or constexprs are no longer supported");
3886   case lltok::kw_lshr:
3887     return error(ID.Loc, "lshr constexprs are no longer supported");
3888   case lltok::kw_ashr:
3889     return error(ID.Loc, "ashr constexprs are no longer supported");
3890   case lltok::kw_fneg:
3891     return error(ID.Loc, "fneg constexprs are no longer supported");
3892   case lltok::kw_select:
3893     return error(ID.Loc, "select constexprs are no longer supported");
3894   case lltok::kw_zext:
3895     return error(ID.Loc, "zext constexprs are no longer supported");
3896   case lltok::kw_sext:
3897     return error(ID.Loc, "sext constexprs are no longer supported");
3898   case lltok::kw_fptrunc:
3899     return error(ID.Loc, "fptrunc constexprs are no longer supported");
3900   case lltok::kw_fpext:
3901     return error(ID.Loc, "fpext constexprs are no longer supported");
3902   case lltok::kw_uitofp:
3903     return error(ID.Loc, "uitofp constexprs are no longer supported");
3904   case lltok::kw_sitofp:
3905     return error(ID.Loc, "sitofp constexprs are no longer supported");
3906   case lltok::kw_fptoui:
3907     return error(ID.Loc, "fptoui constexprs are no longer supported");
3908   case lltok::kw_fptosi:
3909     return error(ID.Loc, "fptosi constexprs are no longer supported");
3910   case lltok::kw_icmp:
3911   case lltok::kw_fcmp: {
3912     unsigned PredVal, Opc = Lex.getUIntVal();
3913     Constant *Val0, *Val1;
3914     Lex.Lex();
3915     if (parseCmpPredicate(PredVal, Opc) ||
3916         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3917         parseGlobalTypeAndValue(Val0) ||
3918         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3919         parseGlobalTypeAndValue(Val1) ||
3920         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3921       return true;
3922 
3923     if (Val0->getType() != Val1->getType())
3924       return error(ID.Loc, "compare operands must have the same type");
3925 
3926     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3927 
3928     if (Opc == Instruction::FCmp) {
3929       if (!Val0->getType()->isFPOrFPVectorTy())
3930         return error(ID.Loc, "fcmp requires floating point operands");
3931       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3932     } else {
3933       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3934       if (!Val0->getType()->isIntOrIntVectorTy() &&
3935           !Val0->getType()->isPtrOrPtrVectorTy())
3936         return error(ID.Loc, "icmp requires pointer or integer operands");
3937       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3938     }
3939     ID.Kind = ValID::t_Constant;
3940     return false;
3941   }
3942 
3943   // Binary Operators.
3944   case lltok::kw_add:
3945   case lltok::kw_sub:
3946   case lltok::kw_mul:
3947   case lltok::kw_shl:
3948   case lltok::kw_xor: {
3949     bool NUW = false;
3950     bool NSW = false;
3951     unsigned Opc = Lex.getUIntVal();
3952     Constant *Val0, *Val1;
3953     Lex.Lex();
3954     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3955         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3956       if (EatIfPresent(lltok::kw_nuw))
3957         NUW = true;
3958       if (EatIfPresent(lltok::kw_nsw)) {
3959         NSW = true;
3960         if (EatIfPresent(lltok::kw_nuw))
3961           NUW = true;
3962       }
3963     }
3964     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3965         parseGlobalTypeAndValue(Val0) ||
3966         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3967         parseGlobalTypeAndValue(Val1) ||
3968         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3969       return true;
3970     if (Val0->getType() != Val1->getType())
3971       return error(ID.Loc, "operands of constexpr must have same type");
3972     // Check that the type is valid for the operator.
3973     if (!Val0->getType()->isIntOrIntVectorTy())
3974       return error(ID.Loc,
3975                    "constexpr requires integer or integer vector operands");
3976     unsigned Flags = 0;
3977     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3978     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3979     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1, Flags);
3980     ID.Kind = ValID::t_Constant;
3981     return false;
3982   }
3983 
3984   case lltok::kw_splat: {
3985     Lex.Lex();
3986     if (parseToken(lltok::lparen, "expected '(' after vector splat"))
3987       return true;
3988     Constant *C;
3989     if (parseGlobalTypeAndValue(C))
3990       return true;
3991     if (parseToken(lltok::rparen, "expected ')' at end of vector splat"))
3992       return true;
3993 
3994     ID.ConstantVal = C;
3995     ID.Kind = ValID::t_ConstantSplat;
3996     return false;
3997   }
3998 
3999   case lltok::kw_getelementptr:
4000   case lltok::kw_shufflevector:
4001   case lltok::kw_insertelement:
4002   case lltok::kw_extractelement: {
4003     unsigned Opc = Lex.getUIntVal();
4004     SmallVector<Constant*, 16> Elts;
4005     bool InBounds = false;
4006     Type *Ty;
4007     Lex.Lex();
4008 
4009     if (Opc == Instruction::GetElementPtr)
4010       InBounds = EatIfPresent(lltok::kw_inbounds);
4011 
4012     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
4013       return true;
4014 
4015     if (Opc == Instruction::GetElementPtr) {
4016       if (parseType(Ty) ||
4017           parseToken(lltok::comma, "expected comma after getelementptr's type"))
4018         return true;
4019     }
4020 
4021     std::optional<unsigned> InRangeOp;
4022     if (parseGlobalValueVector(
4023             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
4024         parseToken(lltok::rparen, "expected ')' in constantexpr"))
4025       return true;
4026 
4027     if (Opc == Instruction::GetElementPtr) {
4028       if (Elts.size() == 0 ||
4029           !Elts[0]->getType()->isPtrOrPtrVectorTy())
4030         return error(ID.Loc, "base of getelementptr must be a pointer");
4031 
4032       Type *BaseType = Elts[0]->getType();
4033       unsigned GEPWidth =
4034           BaseType->isVectorTy()
4035               ? cast<FixedVectorType>(BaseType)->getNumElements()
4036               : 0;
4037 
4038       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
4039       for (Constant *Val : Indices) {
4040         Type *ValTy = Val->getType();
4041         if (!ValTy->isIntOrIntVectorTy())
4042           return error(ID.Loc, "getelementptr index must be an integer");
4043         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
4044           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
4045           if (GEPWidth && (ValNumEl != GEPWidth))
4046             return error(
4047                 ID.Loc,
4048                 "getelementptr vector index has a wrong number of elements");
4049           // GEPWidth may have been unknown because the base is a scalar,
4050           // but it is known now.
4051           GEPWidth = ValNumEl;
4052         }
4053       }
4054 
4055       SmallPtrSet<Type*, 4> Visited;
4056       if (!Indices.empty() && !Ty->isSized(&Visited))
4057         return error(ID.Loc, "base element of getelementptr must be sized");
4058 
4059       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
4060         return error(ID.Loc, "invalid getelementptr indices");
4061 
4062       if (InRangeOp) {
4063         if (*InRangeOp == 0)
4064           return error(ID.Loc,
4065                        "inrange keyword may not appear on pointer operand");
4066         --*InRangeOp;
4067       }
4068 
4069       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
4070                                                       InBounds, InRangeOp);
4071     } else if (Opc == Instruction::ShuffleVector) {
4072       if (Elts.size() != 3)
4073         return error(ID.Loc, "expected three operands to shufflevector");
4074       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
4075         return error(ID.Loc, "invalid operands to shufflevector");
4076       SmallVector<int, 16> Mask;
4077       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
4078       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
4079     } else if (Opc == Instruction::ExtractElement) {
4080       if (Elts.size() != 2)
4081         return error(ID.Loc, "expected two operands to extractelement");
4082       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
4083         return error(ID.Loc, "invalid extractelement operands");
4084       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
4085     } else {
4086       assert(Opc == Instruction::InsertElement && "Unknown opcode");
4087       if (Elts.size() != 3)
4088         return error(ID.Loc, "expected three operands to insertelement");
4089       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
4090         return error(ID.Loc, "invalid insertelement operands");
4091       ID.ConstantVal =
4092                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
4093     }
4094 
4095     ID.Kind = ValID::t_Constant;
4096     return false;
4097   }
4098   }
4099 
4100   Lex.Lex();
4101   return false;
4102 }
4103 
4104 /// parseGlobalValue - parse a global value with the specified type.
4105 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
4106   C = nullptr;
4107   ValID ID;
4108   Value *V = nullptr;
4109   bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) ||
4110                 convertValIDToValue(Ty, ID, V, nullptr);
4111   if (V && !(C = dyn_cast<Constant>(V)))
4112     return error(ID.Loc, "global values must be constants");
4113   return Parsed;
4114 }
4115 
4116 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
4117   Type *Ty = nullptr;
4118   return parseType(Ty) || parseGlobalValue(Ty, V);
4119 }
4120 
4121 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
4122   C = nullptr;
4123 
4124   LocTy KwLoc = Lex.getLoc();
4125   if (!EatIfPresent(lltok::kw_comdat))
4126     return false;
4127 
4128   if (EatIfPresent(lltok::lparen)) {
4129     if (Lex.getKind() != lltok::ComdatVar)
4130       return tokError("expected comdat variable");
4131     C = getComdat(Lex.getStrVal(), Lex.getLoc());
4132     Lex.Lex();
4133     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
4134       return true;
4135   } else {
4136     if (GlobalName.empty())
4137       return tokError("comdat cannot be unnamed");
4138     C = getComdat(std::string(GlobalName), KwLoc);
4139   }
4140 
4141   return false;
4142 }
4143 
4144 /// parseGlobalValueVector
4145 ///   ::= /*empty*/
4146 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
4147 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
4148                                       std::optional<unsigned> *InRangeOp) {
4149   // Empty list.
4150   if (Lex.getKind() == lltok::rbrace ||
4151       Lex.getKind() == lltok::rsquare ||
4152       Lex.getKind() == lltok::greater ||
4153       Lex.getKind() == lltok::rparen)
4154     return false;
4155 
4156   do {
4157     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
4158       *InRangeOp = Elts.size();
4159 
4160     Constant *C;
4161     if (parseGlobalTypeAndValue(C))
4162       return true;
4163     Elts.push_back(C);
4164   } while (EatIfPresent(lltok::comma));
4165 
4166   return false;
4167 }
4168 
4169 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
4170   SmallVector<Metadata *, 16> Elts;
4171   if (parseMDNodeVector(Elts))
4172     return true;
4173 
4174   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
4175   return false;
4176 }
4177 
4178 /// MDNode:
4179 ///  ::= !{ ... }
4180 ///  ::= !7
4181 ///  ::= !DILocation(...)
4182 bool LLParser::parseMDNode(MDNode *&N) {
4183   if (Lex.getKind() == lltok::MetadataVar)
4184     return parseSpecializedMDNode(N);
4185 
4186   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
4187 }
4188 
4189 bool LLParser::parseMDNodeTail(MDNode *&N) {
4190   // !{ ... }
4191   if (Lex.getKind() == lltok::lbrace)
4192     return parseMDTuple(N);
4193 
4194   // !42
4195   return parseMDNodeID(N);
4196 }
4197 
4198 namespace {
4199 
4200 /// Structure to represent an optional metadata field.
4201 template <class FieldTy> struct MDFieldImpl {
4202   typedef MDFieldImpl ImplTy;
4203   FieldTy Val;
4204   bool Seen;
4205 
4206   void assign(FieldTy Val) {
4207     Seen = true;
4208     this->Val = std::move(Val);
4209   }
4210 
4211   explicit MDFieldImpl(FieldTy Default)
4212       : Val(std::move(Default)), Seen(false) {}
4213 };
4214 
4215 /// Structure to represent an optional metadata field that
4216 /// can be of either type (A or B) and encapsulates the
4217 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
4218 /// to reimplement the specifics for representing each Field.
4219 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
4220   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
4221   FieldTypeA A;
4222   FieldTypeB B;
4223   bool Seen;
4224 
4225   enum {
4226     IsInvalid = 0,
4227     IsTypeA = 1,
4228     IsTypeB = 2
4229   } WhatIs;
4230 
4231   void assign(FieldTypeA A) {
4232     Seen = true;
4233     this->A = std::move(A);
4234     WhatIs = IsTypeA;
4235   }
4236 
4237   void assign(FieldTypeB B) {
4238     Seen = true;
4239     this->B = std::move(B);
4240     WhatIs = IsTypeB;
4241   }
4242 
4243   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
4244       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
4245         WhatIs(IsInvalid) {}
4246 };
4247 
4248 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
4249   uint64_t Max;
4250 
4251   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
4252       : ImplTy(Default), Max(Max) {}
4253 };
4254 
4255 struct LineField : public MDUnsignedField {
4256   LineField() : MDUnsignedField(0, UINT32_MAX) {}
4257 };
4258 
4259 struct ColumnField : public MDUnsignedField {
4260   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
4261 };
4262 
4263 struct DwarfTagField : public MDUnsignedField {
4264   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
4265   DwarfTagField(dwarf::Tag DefaultTag)
4266       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
4267 };
4268 
4269 struct DwarfMacinfoTypeField : public MDUnsignedField {
4270   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
4271   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
4272     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
4273 };
4274 
4275 struct DwarfAttEncodingField : public MDUnsignedField {
4276   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
4277 };
4278 
4279 struct DwarfVirtualityField : public MDUnsignedField {
4280   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
4281 };
4282 
4283 struct DwarfLangField : public MDUnsignedField {
4284   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
4285 };
4286 
4287 struct DwarfCCField : public MDUnsignedField {
4288   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
4289 };
4290 
4291 struct EmissionKindField : public MDUnsignedField {
4292   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
4293 };
4294 
4295 struct NameTableKindField : public MDUnsignedField {
4296   NameTableKindField()
4297       : MDUnsignedField(
4298             0, (unsigned)
4299                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
4300 };
4301 
4302 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
4303   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
4304 };
4305 
4306 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
4307   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
4308 };
4309 
4310 struct MDAPSIntField : public MDFieldImpl<APSInt> {
4311   MDAPSIntField() : ImplTy(APSInt()) {}
4312 };
4313 
4314 struct MDSignedField : public MDFieldImpl<int64_t> {
4315   int64_t Min = INT64_MIN;
4316   int64_t Max = INT64_MAX;
4317 
4318   MDSignedField(int64_t Default = 0)
4319       : ImplTy(Default) {}
4320   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
4321       : ImplTy(Default), Min(Min), Max(Max) {}
4322 };
4323 
4324 struct MDBoolField : public MDFieldImpl<bool> {
4325   MDBoolField(bool Default = false) : ImplTy(Default) {}
4326 };
4327 
4328 struct MDField : public MDFieldImpl<Metadata *> {
4329   bool AllowNull;
4330 
4331   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
4332 };
4333 
4334 struct MDStringField : public MDFieldImpl<MDString *> {
4335   bool AllowEmpty;
4336   MDStringField(bool AllowEmpty = true)
4337       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
4338 };
4339 
4340 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
4341   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
4342 };
4343 
4344 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
4345   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4346 };
4347 
4348 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
4349   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4350       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4351 
4352   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4353                     bool AllowNull = true)
4354       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4355 
4356   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4357   bool isMDField() const { return WhatIs == IsTypeB; }
4358   int64_t getMDSignedValue() const {
4359     assert(isMDSignedField() && "Wrong field type");
4360     return A.Val;
4361   }
4362   Metadata *getMDFieldValue() const {
4363     assert(isMDField() && "Wrong field type");
4364     return B.Val;
4365   }
4366 };
4367 
4368 } // end anonymous namespace
4369 
4370 namespace llvm {
4371 
4372 template <>
4373 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4374   if (Lex.getKind() != lltok::APSInt)
4375     return tokError("expected integer");
4376 
4377   Result.assign(Lex.getAPSIntVal());
4378   Lex.Lex();
4379   return false;
4380 }
4381 
4382 template <>
4383 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4384                             MDUnsignedField &Result) {
4385   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4386     return tokError("expected unsigned integer");
4387 
4388   auto &U = Lex.getAPSIntVal();
4389   if (U.ugt(Result.Max))
4390     return tokError("value for '" + Name + "' too large, limit is " +
4391                     Twine(Result.Max));
4392   Result.assign(U.getZExtValue());
4393   assert(Result.Val <= Result.Max && "Expected value in range");
4394   Lex.Lex();
4395   return false;
4396 }
4397 
4398 template <>
4399 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4400   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4401 }
4402 template <>
4403 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4404   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4405 }
4406 
4407 template <>
4408 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4409   if (Lex.getKind() == lltok::APSInt)
4410     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4411 
4412   if (Lex.getKind() != lltok::DwarfTag)
4413     return tokError("expected DWARF tag");
4414 
4415   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4416   if (Tag == dwarf::DW_TAG_invalid)
4417     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4418   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4419 
4420   Result.assign(Tag);
4421   Lex.Lex();
4422   return false;
4423 }
4424 
4425 template <>
4426 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4427                             DwarfMacinfoTypeField &Result) {
4428   if (Lex.getKind() == lltok::APSInt)
4429     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4430 
4431   if (Lex.getKind() != lltok::DwarfMacinfo)
4432     return tokError("expected DWARF macinfo type");
4433 
4434   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4435   if (Macinfo == dwarf::DW_MACINFO_invalid)
4436     return tokError("invalid DWARF macinfo type" + Twine(" '") +
4437                     Lex.getStrVal() + "'");
4438   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4439 
4440   Result.assign(Macinfo);
4441   Lex.Lex();
4442   return false;
4443 }
4444 
4445 template <>
4446 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4447                             DwarfVirtualityField &Result) {
4448   if (Lex.getKind() == lltok::APSInt)
4449     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4450 
4451   if (Lex.getKind() != lltok::DwarfVirtuality)
4452     return tokError("expected DWARF virtuality code");
4453 
4454   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4455   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4456     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4457                     Lex.getStrVal() + "'");
4458   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4459   Result.assign(Virtuality);
4460   Lex.Lex();
4461   return false;
4462 }
4463 
4464 template <>
4465 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4466   if (Lex.getKind() == lltok::APSInt)
4467     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4468 
4469   if (Lex.getKind() != lltok::DwarfLang)
4470     return tokError("expected DWARF language");
4471 
4472   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4473   if (!Lang)
4474     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4475                     "'");
4476   assert(Lang <= Result.Max && "Expected valid DWARF language");
4477   Result.assign(Lang);
4478   Lex.Lex();
4479   return false;
4480 }
4481 
4482 template <>
4483 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4484   if (Lex.getKind() == lltok::APSInt)
4485     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4486 
4487   if (Lex.getKind() != lltok::DwarfCC)
4488     return tokError("expected DWARF calling convention");
4489 
4490   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4491   if (!CC)
4492     return tokError("invalid DWARF calling convention" + Twine(" '") +
4493                     Lex.getStrVal() + "'");
4494   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4495   Result.assign(CC);
4496   Lex.Lex();
4497   return false;
4498 }
4499 
4500 template <>
4501 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4502                             EmissionKindField &Result) {
4503   if (Lex.getKind() == lltok::APSInt)
4504     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4505 
4506   if (Lex.getKind() != lltok::EmissionKind)
4507     return tokError("expected emission kind");
4508 
4509   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4510   if (!Kind)
4511     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4512                     "'");
4513   assert(*Kind <= Result.Max && "Expected valid emission kind");
4514   Result.assign(*Kind);
4515   Lex.Lex();
4516   return false;
4517 }
4518 
4519 template <>
4520 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4521                             NameTableKindField &Result) {
4522   if (Lex.getKind() == lltok::APSInt)
4523     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4524 
4525   if (Lex.getKind() != lltok::NameTableKind)
4526     return tokError("expected nameTable kind");
4527 
4528   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4529   if (!Kind)
4530     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4531                     "'");
4532   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4533   Result.assign((unsigned)*Kind);
4534   Lex.Lex();
4535   return false;
4536 }
4537 
4538 template <>
4539 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4540                             DwarfAttEncodingField &Result) {
4541   if (Lex.getKind() == lltok::APSInt)
4542     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4543 
4544   if (Lex.getKind() != lltok::DwarfAttEncoding)
4545     return tokError("expected DWARF type attribute encoding");
4546 
4547   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4548   if (!Encoding)
4549     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4550                     Lex.getStrVal() + "'");
4551   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4552   Result.assign(Encoding);
4553   Lex.Lex();
4554   return false;
4555 }
4556 
4557 /// DIFlagField
4558 ///  ::= uint32
4559 ///  ::= DIFlagVector
4560 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4561 template <>
4562 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4563 
4564   // parser for a single flag.
4565   auto parseFlag = [&](DINode::DIFlags &Val) {
4566     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4567       uint32_t TempVal = static_cast<uint32_t>(Val);
4568       bool Res = parseUInt32(TempVal);
4569       Val = static_cast<DINode::DIFlags>(TempVal);
4570       return Res;
4571     }
4572 
4573     if (Lex.getKind() != lltok::DIFlag)
4574       return tokError("expected debug info flag");
4575 
4576     Val = DINode::getFlag(Lex.getStrVal());
4577     if (!Val)
4578       return tokError(Twine("invalid debug info flag '") + Lex.getStrVal() +
4579                       "'");
4580     Lex.Lex();
4581     return false;
4582   };
4583 
4584   // parse the flags and combine them together.
4585   DINode::DIFlags Combined = DINode::FlagZero;
4586   do {
4587     DINode::DIFlags Val;
4588     if (parseFlag(Val))
4589       return true;
4590     Combined |= Val;
4591   } while (EatIfPresent(lltok::bar));
4592 
4593   Result.assign(Combined);
4594   return false;
4595 }
4596 
4597 /// DISPFlagField
4598 ///  ::= uint32
4599 ///  ::= DISPFlagVector
4600 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4601 template <>
4602 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4603 
4604   // parser for a single flag.
4605   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4606     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4607       uint32_t TempVal = static_cast<uint32_t>(Val);
4608       bool Res = parseUInt32(TempVal);
4609       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4610       return Res;
4611     }
4612 
4613     if (Lex.getKind() != lltok::DISPFlag)
4614       return tokError("expected debug info flag");
4615 
4616     Val = DISubprogram::getFlag(Lex.getStrVal());
4617     if (!Val)
4618       return tokError(Twine("invalid subprogram debug info flag '") +
4619                       Lex.getStrVal() + "'");
4620     Lex.Lex();
4621     return false;
4622   };
4623 
4624   // parse the flags and combine them together.
4625   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4626   do {
4627     DISubprogram::DISPFlags Val;
4628     if (parseFlag(Val))
4629       return true;
4630     Combined |= Val;
4631   } while (EatIfPresent(lltok::bar));
4632 
4633   Result.assign(Combined);
4634   return false;
4635 }
4636 
4637 template <>
4638 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4639   if (Lex.getKind() != lltok::APSInt)
4640     return tokError("expected signed integer");
4641 
4642   auto &S = Lex.getAPSIntVal();
4643   if (S < Result.Min)
4644     return tokError("value for '" + Name + "' too small, limit is " +
4645                     Twine(Result.Min));
4646   if (S > Result.Max)
4647     return tokError("value for '" + Name + "' too large, limit is " +
4648                     Twine(Result.Max));
4649   Result.assign(S.getExtValue());
4650   assert(Result.Val >= Result.Min && "Expected value in range");
4651   assert(Result.Val <= Result.Max && "Expected value in range");
4652   Lex.Lex();
4653   return false;
4654 }
4655 
4656 template <>
4657 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4658   switch (Lex.getKind()) {
4659   default:
4660     return tokError("expected 'true' or 'false'");
4661   case lltok::kw_true:
4662     Result.assign(true);
4663     break;
4664   case lltok::kw_false:
4665     Result.assign(false);
4666     break;
4667   }
4668   Lex.Lex();
4669   return false;
4670 }
4671 
4672 template <>
4673 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4674   if (Lex.getKind() == lltok::kw_null) {
4675     if (!Result.AllowNull)
4676       return tokError("'" + Name + "' cannot be null");
4677     Lex.Lex();
4678     Result.assign(nullptr);
4679     return false;
4680   }
4681 
4682   Metadata *MD;
4683   if (parseMetadata(MD, nullptr))
4684     return true;
4685 
4686   Result.assign(MD);
4687   return false;
4688 }
4689 
4690 template <>
4691 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4692                             MDSignedOrMDField &Result) {
4693   // Try to parse a signed int.
4694   if (Lex.getKind() == lltok::APSInt) {
4695     MDSignedField Res = Result.A;
4696     if (!parseMDField(Loc, Name, Res)) {
4697       Result.assign(Res);
4698       return false;
4699     }
4700     return true;
4701   }
4702 
4703   // Otherwise, try to parse as an MDField.
4704   MDField Res = Result.B;
4705   if (!parseMDField(Loc, Name, Res)) {
4706     Result.assign(Res);
4707     return false;
4708   }
4709 
4710   return true;
4711 }
4712 
4713 template <>
4714 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4715   LocTy ValueLoc = Lex.getLoc();
4716   std::string S;
4717   if (parseStringConstant(S))
4718     return true;
4719 
4720   if (!Result.AllowEmpty && S.empty())
4721     return error(ValueLoc, "'" + Name + "' cannot be empty");
4722 
4723   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4724   return false;
4725 }
4726 
4727 template <>
4728 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4729   SmallVector<Metadata *, 4> MDs;
4730   if (parseMDNodeVector(MDs))
4731     return true;
4732 
4733   Result.assign(std::move(MDs));
4734   return false;
4735 }
4736 
4737 template <>
4738 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4739                             ChecksumKindField &Result) {
4740   std::optional<DIFile::ChecksumKind> CSKind =
4741       DIFile::getChecksumKind(Lex.getStrVal());
4742 
4743   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4744     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4745                     "'");
4746 
4747   Result.assign(*CSKind);
4748   Lex.Lex();
4749   return false;
4750 }
4751 
4752 } // end namespace llvm
4753 
4754 template <class ParserTy>
4755 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4756   do {
4757     if (Lex.getKind() != lltok::LabelStr)
4758       return tokError("expected field label here");
4759 
4760     if (ParseField())
4761       return true;
4762   } while (EatIfPresent(lltok::comma));
4763 
4764   return false;
4765 }
4766 
4767 template <class ParserTy>
4768 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4769   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4770   Lex.Lex();
4771 
4772   if (parseToken(lltok::lparen, "expected '(' here"))
4773     return true;
4774   if (Lex.getKind() != lltok::rparen)
4775     if (parseMDFieldsImplBody(ParseField))
4776       return true;
4777 
4778   ClosingLoc = Lex.getLoc();
4779   return parseToken(lltok::rparen, "expected ')' here");
4780 }
4781 
4782 template <class FieldTy>
4783 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4784   if (Result.Seen)
4785     return tokError("field '" + Name + "' cannot be specified more than once");
4786 
4787   LocTy Loc = Lex.getLoc();
4788   Lex.Lex();
4789   return parseMDField(Loc, Name, Result);
4790 }
4791 
4792 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4793   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4794 
4795 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4796   if (Lex.getStrVal() == #CLASS)                                               \
4797     return parse##CLASS(N, IsDistinct);
4798 #include "llvm/IR/Metadata.def"
4799 
4800   return tokError("expected metadata type");
4801 }
4802 
4803 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4804 #define NOP_FIELD(NAME, TYPE, INIT)
4805 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4806   if (!NAME.Seen)                                                              \
4807     return error(ClosingLoc, "missing required field '" #NAME "'");
4808 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4809   if (Lex.getStrVal() == #NAME)                                                \
4810     return parseMDField(#NAME, NAME);
4811 #define PARSE_MD_FIELDS()                                                      \
4812   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4813   do {                                                                         \
4814     LocTy ClosingLoc;                                                          \
4815     if (parseMDFieldsImpl(                                                     \
4816             [&]() -> bool {                                                    \
4817               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4818               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4819                               "'");                                            \
4820             },                                                                 \
4821             ClosingLoc))                                                       \
4822       return true;                                                             \
4823     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4824   } while (false)
4825 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4826   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4827 
4828 /// parseDILocationFields:
4829 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4830 ///   isImplicitCode: true)
4831 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4832 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4833   OPTIONAL(line, LineField, );                                                 \
4834   OPTIONAL(column, ColumnField, );                                             \
4835   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4836   OPTIONAL(inlinedAt, MDField, );                                              \
4837   OPTIONAL(isImplicitCode, MDBoolField, (false));
4838   PARSE_MD_FIELDS();
4839 #undef VISIT_MD_FIELDS
4840 
4841   Result =
4842       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4843                                    inlinedAt.Val, isImplicitCode.Val));
4844   return false;
4845 }
4846 
4847 /// parseDIAssignID:
4848 ///   ::= distinct !DIAssignID()
4849 bool LLParser::parseDIAssignID(MDNode *&Result, bool IsDistinct) {
4850   if (!IsDistinct)
4851     return Lex.Error("missing 'distinct', required for !DIAssignID()");
4852 
4853   Lex.Lex();
4854 
4855   // Now eat the parens.
4856   if (parseToken(lltok::lparen, "expected '(' here"))
4857     return true;
4858   if (parseToken(lltok::rparen, "expected ')' here"))
4859     return true;
4860 
4861   Result = DIAssignID::getDistinct(Context);
4862   return false;
4863 }
4864 
4865 /// parseGenericDINode:
4866 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4867 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4868 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4869   REQUIRED(tag, DwarfTagField, );                                              \
4870   OPTIONAL(header, MDStringField, );                                           \
4871   OPTIONAL(operands, MDFieldList, );
4872   PARSE_MD_FIELDS();
4873 #undef VISIT_MD_FIELDS
4874 
4875   Result = GET_OR_DISTINCT(GenericDINode,
4876                            (Context, tag.Val, header.Val, operands.Val));
4877   return false;
4878 }
4879 
4880 /// parseDISubrange:
4881 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4882 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4883 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4884 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4885 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4886   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4887   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4888   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4889   OPTIONAL(stride, MDSignedOrMDField, );
4890   PARSE_MD_FIELDS();
4891 #undef VISIT_MD_FIELDS
4892 
4893   Metadata *Count = nullptr;
4894   Metadata *LowerBound = nullptr;
4895   Metadata *UpperBound = nullptr;
4896   Metadata *Stride = nullptr;
4897 
4898   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4899     if (Bound.isMDSignedField())
4900       return ConstantAsMetadata::get(ConstantInt::getSigned(
4901           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4902     if (Bound.isMDField())
4903       return Bound.getMDFieldValue();
4904     return nullptr;
4905   };
4906 
4907   Count = convToMetadata(count);
4908   LowerBound = convToMetadata(lowerBound);
4909   UpperBound = convToMetadata(upperBound);
4910   Stride = convToMetadata(stride);
4911 
4912   Result = GET_OR_DISTINCT(DISubrange,
4913                            (Context, Count, LowerBound, UpperBound, Stride));
4914 
4915   return false;
4916 }
4917 
4918 /// parseDIGenericSubrange:
4919 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4920 ///   !node3)
4921 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4922 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4923   OPTIONAL(count, MDSignedOrMDField, );                                        \
4924   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4925   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4926   OPTIONAL(stride, MDSignedOrMDField, );
4927   PARSE_MD_FIELDS();
4928 #undef VISIT_MD_FIELDS
4929 
4930   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4931     if (Bound.isMDSignedField())
4932       return DIExpression::get(
4933           Context, {dwarf::DW_OP_consts,
4934                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4935     if (Bound.isMDField())
4936       return Bound.getMDFieldValue();
4937     return nullptr;
4938   };
4939 
4940   Metadata *Count = ConvToMetadata(count);
4941   Metadata *LowerBound = ConvToMetadata(lowerBound);
4942   Metadata *UpperBound = ConvToMetadata(upperBound);
4943   Metadata *Stride = ConvToMetadata(stride);
4944 
4945   Result = GET_OR_DISTINCT(DIGenericSubrange,
4946                            (Context, Count, LowerBound, UpperBound, Stride));
4947 
4948   return false;
4949 }
4950 
4951 /// parseDIEnumerator:
4952 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4953 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4954 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4955   REQUIRED(name, MDStringField, );                                             \
4956   REQUIRED(value, MDAPSIntField, );                                            \
4957   OPTIONAL(isUnsigned, MDBoolField, (false));
4958   PARSE_MD_FIELDS();
4959 #undef VISIT_MD_FIELDS
4960 
4961   if (isUnsigned.Val && value.Val.isNegative())
4962     return tokError("unsigned enumerator with negative value");
4963 
4964   APSInt Value(value.Val);
4965   // Add a leading zero so that unsigned values with the msb set are not
4966   // mistaken for negative values when used for signed enumerators.
4967   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4968     Value = Value.zext(Value.getBitWidth() + 1);
4969 
4970   Result =
4971       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4972 
4973   return false;
4974 }
4975 
4976 /// parseDIBasicType:
4977 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4978 ///                    encoding: DW_ATE_encoding, flags: 0)
4979 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4980 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4981   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4982   OPTIONAL(name, MDStringField, );                                             \
4983   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4984   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4985   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4986   OPTIONAL(flags, DIFlagField, );
4987   PARSE_MD_FIELDS();
4988 #undef VISIT_MD_FIELDS
4989 
4990   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4991                                          align.Val, encoding.Val, flags.Val));
4992   return false;
4993 }
4994 
4995 /// parseDIStringType:
4996 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4997 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4998 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4999   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
5000   OPTIONAL(name, MDStringField, );                                             \
5001   OPTIONAL(stringLength, MDField, );                                           \
5002   OPTIONAL(stringLengthExpression, MDField, );                                 \
5003   OPTIONAL(stringLocationExpression, MDField, );                               \
5004   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
5005   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5006   OPTIONAL(encoding, DwarfAttEncodingField, );
5007   PARSE_MD_FIELDS();
5008 #undef VISIT_MD_FIELDS
5009 
5010   Result = GET_OR_DISTINCT(
5011       DIStringType,
5012       (Context, tag.Val, name.Val, stringLength.Val, stringLengthExpression.Val,
5013        stringLocationExpression.Val, size.Val, align.Val, encoding.Val));
5014   return false;
5015 }
5016 
5017 /// parseDIDerivedType:
5018 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
5019 ///                      line: 7, scope: !1, baseType: !2, size: 32,
5020 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
5021 ///                      dwarfAddressSpace: 3)
5022 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
5023 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5024   REQUIRED(tag, DwarfTagField, );                                              \
5025   OPTIONAL(name, MDStringField, );                                             \
5026   OPTIONAL(file, MDField, );                                                   \
5027   OPTIONAL(line, LineField, );                                                 \
5028   OPTIONAL(scope, MDField, );                                                  \
5029   REQUIRED(baseType, MDField, );                                               \
5030   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
5031   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5032   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
5033   OPTIONAL(flags, DIFlagField, );                                              \
5034   OPTIONAL(extraData, MDField, );                                              \
5035   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));      \
5036   OPTIONAL(annotations, MDField, );
5037   PARSE_MD_FIELDS();
5038 #undef VISIT_MD_FIELDS
5039 
5040   std::optional<unsigned> DWARFAddressSpace;
5041   if (dwarfAddressSpace.Val != UINT32_MAX)
5042     DWARFAddressSpace = dwarfAddressSpace.Val;
5043 
5044   Result = GET_OR_DISTINCT(DIDerivedType,
5045                            (Context, tag.Val, name.Val, file.Val, line.Val,
5046                             scope.Val, baseType.Val, size.Val, align.Val,
5047                             offset.Val, DWARFAddressSpace, flags.Val,
5048                             extraData.Val, annotations.Val));
5049   return false;
5050 }
5051 
5052 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
5053 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5054   REQUIRED(tag, DwarfTagField, );                                              \
5055   OPTIONAL(name, MDStringField, );                                             \
5056   OPTIONAL(file, MDField, );                                                   \
5057   OPTIONAL(line, LineField, );                                                 \
5058   OPTIONAL(scope, MDField, );                                                  \
5059   OPTIONAL(baseType, MDField, );                                               \
5060   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
5061   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5062   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
5063   OPTIONAL(flags, DIFlagField, );                                              \
5064   OPTIONAL(elements, MDField, );                                               \
5065   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
5066   OPTIONAL(vtableHolder, MDField, );                                           \
5067   OPTIONAL(templateParams, MDField, );                                         \
5068   OPTIONAL(identifier, MDStringField, );                                       \
5069   OPTIONAL(discriminator, MDField, );                                          \
5070   OPTIONAL(dataLocation, MDField, );                                           \
5071   OPTIONAL(associated, MDField, );                                             \
5072   OPTIONAL(allocated, MDField, );                                              \
5073   OPTIONAL(rank, MDSignedOrMDField, );                                         \
5074   OPTIONAL(annotations, MDField, );
5075   PARSE_MD_FIELDS();
5076 #undef VISIT_MD_FIELDS
5077 
5078   Metadata *Rank = nullptr;
5079   if (rank.isMDSignedField())
5080     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
5081         Type::getInt64Ty(Context), rank.getMDSignedValue()));
5082   else if (rank.isMDField())
5083     Rank = rank.getMDFieldValue();
5084 
5085   // If this has an identifier try to build an ODR type.
5086   if (identifier.Val)
5087     if (auto *CT = DICompositeType::buildODRType(
5088             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
5089             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
5090             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
5091             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
5092             Rank, annotations.Val)) {
5093       Result = CT;
5094       return false;
5095     }
5096 
5097   // Create a new node, and save it in the context if it belongs in the type
5098   // map.
5099   Result = GET_OR_DISTINCT(
5100       DICompositeType,
5101       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
5102        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
5103        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
5104        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank,
5105        annotations.Val));
5106   return false;
5107 }
5108 
5109 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
5110 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5111   OPTIONAL(flags, DIFlagField, );                                              \
5112   OPTIONAL(cc, DwarfCCField, );                                                \
5113   REQUIRED(types, MDField, );
5114   PARSE_MD_FIELDS();
5115 #undef VISIT_MD_FIELDS
5116 
5117   Result = GET_OR_DISTINCT(DISubroutineType,
5118                            (Context, flags.Val, cc.Val, types.Val));
5119   return false;
5120 }
5121 
5122 /// parseDIFileType:
5123 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
5124 ///                   checksumkind: CSK_MD5,
5125 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
5126 ///                   source: "source file contents")
5127 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
5128   // The default constructed value for checksumkind is required, but will never
5129   // be used, as the parser checks if the field was actually Seen before using
5130   // the Val.
5131 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5132   REQUIRED(filename, MDStringField, );                                         \
5133   REQUIRED(directory, MDStringField, );                                        \
5134   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
5135   OPTIONAL(checksum, MDStringField, );                                         \
5136   OPTIONAL(source, MDStringField, );
5137   PARSE_MD_FIELDS();
5138 #undef VISIT_MD_FIELDS
5139 
5140   std::optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
5141   if (checksumkind.Seen && checksum.Seen)
5142     OptChecksum.emplace(checksumkind.Val, checksum.Val);
5143   else if (checksumkind.Seen || checksum.Seen)
5144     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
5145 
5146   MDString *Source = nullptr;
5147   if (source.Seen)
5148     Source = source.Val;
5149   Result = GET_OR_DISTINCT(
5150       DIFile, (Context, filename.Val, directory.Val, OptChecksum, Source));
5151   return false;
5152 }
5153 
5154 /// parseDICompileUnit:
5155 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
5156 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
5157 ///                      splitDebugFilename: "abc.debug",
5158 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
5159 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
5160 ///                      sysroot: "/", sdk: "MacOSX.sdk")
5161 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
5162   if (!IsDistinct)
5163     return Lex.Error("missing 'distinct', required for !DICompileUnit");
5164 
5165 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5166   REQUIRED(language, DwarfLangField, );                                        \
5167   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
5168   OPTIONAL(producer, MDStringField, );                                         \
5169   OPTIONAL(isOptimized, MDBoolField, );                                        \
5170   OPTIONAL(flags, MDStringField, );                                            \
5171   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
5172   OPTIONAL(splitDebugFilename, MDStringField, );                               \
5173   OPTIONAL(emissionKind, EmissionKindField, );                                 \
5174   OPTIONAL(enums, MDField, );                                                  \
5175   OPTIONAL(retainedTypes, MDField, );                                          \
5176   OPTIONAL(globals, MDField, );                                                \
5177   OPTIONAL(imports, MDField, );                                                \
5178   OPTIONAL(macros, MDField, );                                                 \
5179   OPTIONAL(dwoId, MDUnsignedField, );                                          \
5180   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
5181   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
5182   OPTIONAL(nameTableKind, NameTableKindField, );                               \
5183   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
5184   OPTIONAL(sysroot, MDStringField, );                                          \
5185   OPTIONAL(sdk, MDStringField, );
5186   PARSE_MD_FIELDS();
5187 #undef VISIT_MD_FIELDS
5188 
5189   Result = DICompileUnit::getDistinct(
5190       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
5191       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
5192       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
5193       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
5194       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
5195   return false;
5196 }
5197 
5198 /// parseDISubprogram:
5199 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
5200 ///                     file: !1, line: 7, type: !2, isLocal: false,
5201 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
5202 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
5203 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
5204 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
5205 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7,
5206 ///                     annotations: !8)
5207 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
5208   auto Loc = Lex.getLoc();
5209 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5210   OPTIONAL(scope, MDField, );                                                  \
5211   OPTIONAL(name, MDStringField, );                                             \
5212   OPTIONAL(linkageName, MDStringField, );                                      \
5213   OPTIONAL(file, MDField, );                                                   \
5214   OPTIONAL(line, LineField, );                                                 \
5215   OPTIONAL(type, MDField, );                                                   \
5216   OPTIONAL(isLocal, MDBoolField, );                                            \
5217   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5218   OPTIONAL(scopeLine, LineField, );                                            \
5219   OPTIONAL(containingType, MDField, );                                         \
5220   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
5221   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
5222   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
5223   OPTIONAL(flags, DIFlagField, );                                              \
5224   OPTIONAL(spFlags, DISPFlagField, );                                          \
5225   OPTIONAL(isOptimized, MDBoolField, );                                        \
5226   OPTIONAL(unit, MDField, );                                                   \
5227   OPTIONAL(templateParams, MDField, );                                         \
5228   OPTIONAL(declaration, MDField, );                                            \
5229   OPTIONAL(retainedNodes, MDField, );                                          \
5230   OPTIONAL(thrownTypes, MDField, );                                            \
5231   OPTIONAL(annotations, MDField, );                                            \
5232   OPTIONAL(targetFuncName, MDStringField, );
5233   PARSE_MD_FIELDS();
5234 #undef VISIT_MD_FIELDS
5235 
5236   // An explicit spFlags field takes precedence over individual fields in
5237   // older IR versions.
5238   DISubprogram::DISPFlags SPFlags =
5239       spFlags.Seen ? spFlags.Val
5240                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
5241                                              isOptimized.Val, virtuality.Val);
5242   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
5243     return Lex.Error(
5244         Loc,
5245         "missing 'distinct', required for !DISubprogram that is a Definition");
5246   Result = GET_OR_DISTINCT(
5247       DISubprogram,
5248       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
5249        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
5250        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
5251        declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val,
5252        targetFuncName.Val));
5253   return false;
5254 }
5255 
5256 /// parseDILexicalBlock:
5257 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
5258 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
5259 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5260   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5261   OPTIONAL(file, MDField, );                                                   \
5262   OPTIONAL(line, LineField, );                                                 \
5263   OPTIONAL(column, ColumnField, );
5264   PARSE_MD_FIELDS();
5265 #undef VISIT_MD_FIELDS
5266 
5267   Result = GET_OR_DISTINCT(
5268       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
5269   return false;
5270 }
5271 
5272 /// parseDILexicalBlockFile:
5273 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
5274 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
5275 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5276   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5277   OPTIONAL(file, MDField, );                                                   \
5278   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
5279   PARSE_MD_FIELDS();
5280 #undef VISIT_MD_FIELDS
5281 
5282   Result = GET_OR_DISTINCT(DILexicalBlockFile,
5283                            (Context, scope.Val, file.Val, discriminator.Val));
5284   return false;
5285 }
5286 
5287 /// parseDICommonBlock:
5288 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
5289 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
5290 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5291   REQUIRED(scope, MDField, );                                                  \
5292   OPTIONAL(declaration, MDField, );                                            \
5293   OPTIONAL(name, MDStringField, );                                             \
5294   OPTIONAL(file, MDField, );                                                   \
5295   OPTIONAL(line, LineField, );
5296   PARSE_MD_FIELDS();
5297 #undef VISIT_MD_FIELDS
5298 
5299   Result = GET_OR_DISTINCT(DICommonBlock,
5300                            (Context, scope.Val, declaration.Val, name.Val,
5301                             file.Val, line.Val));
5302   return false;
5303 }
5304 
5305 /// parseDINamespace:
5306 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
5307 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
5308 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5309   REQUIRED(scope, MDField, );                                                  \
5310   OPTIONAL(name, MDStringField, );                                             \
5311   OPTIONAL(exportSymbols, MDBoolField, );
5312   PARSE_MD_FIELDS();
5313 #undef VISIT_MD_FIELDS
5314 
5315   Result = GET_OR_DISTINCT(DINamespace,
5316                            (Context, scope.Val, name.Val, exportSymbols.Val));
5317   return false;
5318 }
5319 
5320 /// parseDIMacro:
5321 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
5322 ///   "SomeValue")
5323 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
5324 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5325   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
5326   OPTIONAL(line, LineField, );                                                 \
5327   REQUIRED(name, MDStringField, );                                             \
5328   OPTIONAL(value, MDStringField, );
5329   PARSE_MD_FIELDS();
5330 #undef VISIT_MD_FIELDS
5331 
5332   Result = GET_OR_DISTINCT(DIMacro,
5333                            (Context, type.Val, line.Val, name.Val, value.Val));
5334   return false;
5335 }
5336 
5337 /// parseDIMacroFile:
5338 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
5339 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
5340 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5341   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
5342   OPTIONAL(line, LineField, );                                                 \
5343   REQUIRED(file, MDField, );                                                   \
5344   OPTIONAL(nodes, MDField, );
5345   PARSE_MD_FIELDS();
5346 #undef VISIT_MD_FIELDS
5347 
5348   Result = GET_OR_DISTINCT(DIMacroFile,
5349                            (Context, type.Val, line.Val, file.Val, nodes.Val));
5350   return false;
5351 }
5352 
5353 /// parseDIModule:
5354 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
5355 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
5356 ///   file: !1, line: 4, isDecl: false)
5357 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
5358 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5359   REQUIRED(scope, MDField, );                                                  \
5360   REQUIRED(name, MDStringField, );                                             \
5361   OPTIONAL(configMacros, MDStringField, );                                     \
5362   OPTIONAL(includePath, MDStringField, );                                      \
5363   OPTIONAL(apinotes, MDStringField, );                                         \
5364   OPTIONAL(file, MDField, );                                                   \
5365   OPTIONAL(line, LineField, );                                                 \
5366   OPTIONAL(isDecl, MDBoolField, );
5367   PARSE_MD_FIELDS();
5368 #undef VISIT_MD_FIELDS
5369 
5370   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
5371                                       configMacros.Val, includePath.Val,
5372                                       apinotes.Val, line.Val, isDecl.Val));
5373   return false;
5374 }
5375 
5376 /// parseDITemplateTypeParameter:
5377 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
5378 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
5379 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5380   OPTIONAL(name, MDStringField, );                                             \
5381   REQUIRED(type, MDField, );                                                   \
5382   OPTIONAL(defaulted, MDBoolField, );
5383   PARSE_MD_FIELDS();
5384 #undef VISIT_MD_FIELDS
5385 
5386   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
5387                            (Context, name.Val, type.Val, defaulted.Val));
5388   return false;
5389 }
5390 
5391 /// parseDITemplateValueParameter:
5392 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
5393 ///                                 name: "V", type: !1, defaulted: false,
5394 ///                                 value: i32 7)
5395 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5396 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5397   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
5398   OPTIONAL(name, MDStringField, );                                             \
5399   OPTIONAL(type, MDField, );                                                   \
5400   OPTIONAL(defaulted, MDBoolField, );                                          \
5401   REQUIRED(value, MDField, );
5402 
5403   PARSE_MD_FIELDS();
5404 #undef VISIT_MD_FIELDS
5405 
5406   Result = GET_OR_DISTINCT(
5407       DITemplateValueParameter,
5408       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5409   return false;
5410 }
5411 
5412 /// parseDIGlobalVariable:
5413 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5414 ///                         file: !1, line: 7, type: !2, isLocal: false,
5415 ///                         isDefinition: true, templateParams: !3,
5416 ///                         declaration: !4, align: 8)
5417 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5418 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5419   OPTIONAL(name, MDStringField, (/* AllowEmpty */ false));                     \
5420   OPTIONAL(scope, MDField, );                                                  \
5421   OPTIONAL(linkageName, MDStringField, );                                      \
5422   OPTIONAL(file, MDField, );                                                   \
5423   OPTIONAL(line, LineField, );                                                 \
5424   OPTIONAL(type, MDField, );                                                   \
5425   OPTIONAL(isLocal, MDBoolField, );                                            \
5426   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5427   OPTIONAL(templateParams, MDField, );                                         \
5428   OPTIONAL(declaration, MDField, );                                            \
5429   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5430   OPTIONAL(annotations, MDField, );
5431   PARSE_MD_FIELDS();
5432 #undef VISIT_MD_FIELDS
5433 
5434   Result =
5435       GET_OR_DISTINCT(DIGlobalVariable,
5436                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5437                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5438                        declaration.Val, templateParams.Val, align.Val,
5439                        annotations.Val));
5440   return false;
5441 }
5442 
5443 /// parseDILocalVariable:
5444 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5445 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5446 ///                        align: 8)
5447 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5448 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5449 ///                        align: 8)
5450 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5451 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5452   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5453   OPTIONAL(name, MDStringField, );                                             \
5454   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5455   OPTIONAL(file, MDField, );                                                   \
5456   OPTIONAL(line, LineField, );                                                 \
5457   OPTIONAL(type, MDField, );                                                   \
5458   OPTIONAL(flags, DIFlagField, );                                              \
5459   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5460   OPTIONAL(annotations, MDField, );
5461   PARSE_MD_FIELDS();
5462 #undef VISIT_MD_FIELDS
5463 
5464   Result = GET_OR_DISTINCT(DILocalVariable,
5465                            (Context, scope.Val, name.Val, file.Val, line.Val,
5466                             type.Val, arg.Val, flags.Val, align.Val,
5467                             annotations.Val));
5468   return false;
5469 }
5470 
5471 /// parseDILabel:
5472 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5473 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5474 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5475   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5476   REQUIRED(name, MDStringField, );                                             \
5477   REQUIRED(file, MDField, );                                                   \
5478   REQUIRED(line, LineField, );
5479   PARSE_MD_FIELDS();
5480 #undef VISIT_MD_FIELDS
5481 
5482   Result = GET_OR_DISTINCT(DILabel,
5483                            (Context, scope.Val, name.Val, file.Val, line.Val));
5484   return false;
5485 }
5486 
5487 /// parseDIExpression:
5488 ///   ::= !DIExpression(0, 7, -1)
5489 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5490   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5491   Lex.Lex();
5492 
5493   if (parseToken(lltok::lparen, "expected '(' here"))
5494     return true;
5495 
5496   SmallVector<uint64_t, 8> Elements;
5497   if (Lex.getKind() != lltok::rparen)
5498     do {
5499       if (Lex.getKind() == lltok::DwarfOp) {
5500         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5501           Lex.Lex();
5502           Elements.push_back(Op);
5503           continue;
5504         }
5505         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5506       }
5507 
5508       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5509         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5510           Lex.Lex();
5511           Elements.push_back(Op);
5512           continue;
5513         }
5514         return tokError(Twine("invalid DWARF attribute encoding '") +
5515                         Lex.getStrVal() + "'");
5516       }
5517 
5518       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5519         return tokError("expected unsigned integer");
5520 
5521       auto &U = Lex.getAPSIntVal();
5522       if (U.ugt(UINT64_MAX))
5523         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5524       Elements.push_back(U.getZExtValue());
5525       Lex.Lex();
5526     } while (EatIfPresent(lltok::comma));
5527 
5528   if (parseToken(lltok::rparen, "expected ')' here"))
5529     return true;
5530 
5531   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5532   return false;
5533 }
5534 
5535 /// ParseDIArgList:
5536 ///   ::= !DIArgList(i32 7, i64 %0)
5537 bool LLParser::parseDIArgList(Metadata *&MD, PerFunctionState *PFS) {
5538   assert(PFS && "Expected valid function state");
5539   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5540   Lex.Lex();
5541 
5542   if (parseToken(lltok::lparen, "expected '(' here"))
5543     return true;
5544 
5545   SmallVector<ValueAsMetadata *, 4> Args;
5546   if (Lex.getKind() != lltok::rparen)
5547     do {
5548       Metadata *MD;
5549       if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5550         return true;
5551       Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5552     } while (EatIfPresent(lltok::comma));
5553 
5554   if (parseToken(lltok::rparen, "expected ')' here"))
5555     return true;
5556 
5557   MD = DIArgList::get(Context, Args);
5558   return false;
5559 }
5560 
5561 /// parseDIGlobalVariableExpression:
5562 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5563 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5564                                                bool IsDistinct) {
5565 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5566   REQUIRED(var, MDField, );                                                    \
5567   REQUIRED(expr, MDField, );
5568   PARSE_MD_FIELDS();
5569 #undef VISIT_MD_FIELDS
5570 
5571   Result =
5572       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5573   return false;
5574 }
5575 
5576 /// parseDIObjCProperty:
5577 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5578 ///                       getter: "getFoo", attributes: 7, type: !2)
5579 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5580 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5581   OPTIONAL(name, MDStringField, );                                             \
5582   OPTIONAL(file, MDField, );                                                   \
5583   OPTIONAL(line, LineField, );                                                 \
5584   OPTIONAL(setter, MDStringField, );                                           \
5585   OPTIONAL(getter, MDStringField, );                                           \
5586   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5587   OPTIONAL(type, MDField, );
5588   PARSE_MD_FIELDS();
5589 #undef VISIT_MD_FIELDS
5590 
5591   Result = GET_OR_DISTINCT(DIObjCProperty,
5592                            (Context, name.Val, file.Val, line.Val, setter.Val,
5593                             getter.Val, attributes.Val, type.Val));
5594   return false;
5595 }
5596 
5597 /// parseDIImportedEntity:
5598 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5599 ///                         line: 7, name: "foo", elements: !2)
5600 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5601 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5602   REQUIRED(tag, DwarfTagField, );                                              \
5603   REQUIRED(scope, MDField, );                                                  \
5604   OPTIONAL(entity, MDField, );                                                 \
5605   OPTIONAL(file, MDField, );                                                   \
5606   OPTIONAL(line, LineField, );                                                 \
5607   OPTIONAL(name, MDStringField, );                                             \
5608   OPTIONAL(elements, MDField, );
5609   PARSE_MD_FIELDS();
5610 #undef VISIT_MD_FIELDS
5611 
5612   Result = GET_OR_DISTINCT(DIImportedEntity,
5613                            (Context, tag.Val, scope.Val, entity.Val, file.Val,
5614                             line.Val, name.Val, elements.Val));
5615   return false;
5616 }
5617 
5618 #undef PARSE_MD_FIELD
5619 #undef NOP_FIELD
5620 #undef REQUIRE_FIELD
5621 #undef DECLARE_FIELD
5622 
5623 /// parseMetadataAsValue
5624 ///  ::= metadata i32 %local
5625 ///  ::= metadata i32 @global
5626 ///  ::= metadata i32 7
5627 ///  ::= metadata !0
5628 ///  ::= metadata !{...}
5629 ///  ::= metadata !"string"
5630 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5631   // Note: the type 'metadata' has already been parsed.
5632   Metadata *MD;
5633   if (parseMetadata(MD, &PFS))
5634     return true;
5635 
5636   V = MetadataAsValue::get(Context, MD);
5637   return false;
5638 }
5639 
5640 /// parseValueAsMetadata
5641 ///  ::= i32 %local
5642 ///  ::= i32 @global
5643 ///  ::= i32 7
5644 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5645                                     PerFunctionState *PFS) {
5646   Type *Ty;
5647   LocTy Loc;
5648   if (parseType(Ty, TypeMsg, Loc))
5649     return true;
5650   if (Ty->isMetadataTy())
5651     return error(Loc, "invalid metadata-value-metadata roundtrip");
5652 
5653   Value *V;
5654   if (parseValue(Ty, V, PFS))
5655     return true;
5656 
5657   MD = ValueAsMetadata::get(V);
5658   return false;
5659 }
5660 
5661 /// parseMetadata
5662 ///  ::= i32 %local
5663 ///  ::= i32 @global
5664 ///  ::= i32 7
5665 ///  ::= !42
5666 ///  ::= !{...}
5667 ///  ::= !"string"
5668 ///  ::= !DILocation(...)
5669 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5670   if (Lex.getKind() == lltok::MetadataVar) {
5671     // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5672     // so parsing this requires a Function State.
5673     if (Lex.getStrVal() == "DIArgList") {
5674       Metadata *AL;
5675       if (parseDIArgList(AL, PFS))
5676         return true;
5677       MD = AL;
5678       return false;
5679     }
5680     MDNode *N;
5681     if (parseSpecializedMDNode(N)) {
5682       return true;
5683     }
5684     MD = N;
5685     return false;
5686   }
5687 
5688   // ValueAsMetadata:
5689   // <type> <value>
5690   if (Lex.getKind() != lltok::exclaim)
5691     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5692 
5693   // '!'.
5694   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5695   Lex.Lex();
5696 
5697   // MDString:
5698   //   ::= '!' STRINGCONSTANT
5699   if (Lex.getKind() == lltok::StringConstant) {
5700     MDString *S;
5701     if (parseMDString(S))
5702       return true;
5703     MD = S;
5704     return false;
5705   }
5706 
5707   // MDNode:
5708   // !{ ... }
5709   // !7
5710   MDNode *N;
5711   if (parseMDNodeTail(N))
5712     return true;
5713   MD = N;
5714   return false;
5715 }
5716 
5717 //===----------------------------------------------------------------------===//
5718 // Function Parsing.
5719 //===----------------------------------------------------------------------===//
5720 
5721 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5722                                    PerFunctionState *PFS) {
5723   if (Ty->isFunctionTy())
5724     return error(ID.Loc, "functions are not values, refer to them as pointers");
5725 
5726   switch (ID.Kind) {
5727   case ValID::t_LocalID:
5728     if (!PFS)
5729       return error(ID.Loc, "invalid use of function-local name");
5730     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc);
5731     return V == nullptr;
5732   case ValID::t_LocalName:
5733     if (!PFS)
5734       return error(ID.Loc, "invalid use of function-local name");
5735     V = PFS->getVal(ID.StrVal, Ty, ID.Loc);
5736     return V == nullptr;
5737   case ValID::t_InlineAsm: {
5738     if (!ID.FTy)
5739       return error(ID.Loc, "invalid type for inline asm constraint string");
5740     if (Error Err = InlineAsm::verify(ID.FTy, ID.StrVal2))
5741       return error(ID.Loc, toString(std::move(Err)));
5742     V = InlineAsm::get(
5743         ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
5744         InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
5745     return false;
5746   }
5747   case ValID::t_GlobalName:
5748     V = getGlobalVal(ID.StrVal, Ty, ID.Loc);
5749     if (V && ID.NoCFI)
5750       V = NoCFIValue::get(cast<GlobalValue>(V));
5751     return V == nullptr;
5752   case ValID::t_GlobalID:
5753     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc);
5754     if (V && ID.NoCFI)
5755       V = NoCFIValue::get(cast<GlobalValue>(V));
5756     return V == nullptr;
5757   case ValID::t_APSInt:
5758     if (!Ty->isIntegerTy())
5759       return error(ID.Loc, "integer constant must have integer type");
5760     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5761     V = ConstantInt::get(Context, ID.APSIntVal);
5762     return false;
5763   case ValID::t_APFloat:
5764     if (!Ty->isFloatingPointTy() ||
5765         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5766       return error(ID.Loc, "floating point constant invalid for type");
5767 
5768     // The lexer has no type info, so builds all half, bfloat, float, and double
5769     // FP constants as double.  Fix this here.  Long double does not need this.
5770     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5771       // Check for signaling before potentially converting and losing that info.
5772       bool IsSNAN = ID.APFloatVal.isSignaling();
5773       bool Ignored;
5774       if (Ty->isHalfTy())
5775         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5776                               &Ignored);
5777       else if (Ty->isBFloatTy())
5778         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5779                               &Ignored);
5780       else if (Ty->isFloatTy())
5781         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5782                               &Ignored);
5783       if (IsSNAN) {
5784         // The convert call above may quiet an SNaN, so manufacture another
5785         // SNaN. The bitcast works because the payload (significand) parameter
5786         // is truncated to fit.
5787         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5788         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5789                                          ID.APFloatVal.isNegative(), &Payload);
5790       }
5791     }
5792     V = ConstantFP::get(Context, ID.APFloatVal);
5793 
5794     if (V->getType() != Ty)
5795       return error(ID.Loc, "floating point constant does not have type '" +
5796                                getTypeString(Ty) + "'");
5797 
5798     return false;
5799   case ValID::t_Null:
5800     if (!Ty->isPointerTy())
5801       return error(ID.Loc, "null must be a pointer type");
5802     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5803     return false;
5804   case ValID::t_Undef:
5805     // FIXME: LabelTy should not be a first-class type.
5806     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5807       return error(ID.Loc, "invalid type for undef constant");
5808     V = UndefValue::get(Ty);
5809     return false;
5810   case ValID::t_EmptyArray:
5811     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5812       return error(ID.Loc, "invalid empty array initializer");
5813     V = UndefValue::get(Ty);
5814     return false;
5815   case ValID::t_Zero:
5816     // FIXME: LabelTy should not be a first-class type.
5817     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5818       return error(ID.Loc, "invalid type for null constant");
5819     if (auto *TETy = dyn_cast<TargetExtType>(Ty))
5820       if (!TETy->hasProperty(TargetExtType::HasZeroInit))
5821         return error(ID.Loc, "invalid type for null constant");
5822     V = Constant::getNullValue(Ty);
5823     return false;
5824   case ValID::t_None:
5825     if (!Ty->isTokenTy())
5826       return error(ID.Loc, "invalid type for none constant");
5827     V = Constant::getNullValue(Ty);
5828     return false;
5829   case ValID::t_Poison:
5830     // FIXME: LabelTy should not be a first-class type.
5831     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5832       return error(ID.Loc, "invalid type for poison constant");
5833     V = PoisonValue::get(Ty);
5834     return false;
5835   case ValID::t_Constant:
5836     if (ID.ConstantVal->getType() != Ty)
5837       return error(ID.Loc, "constant expression type mismatch: got type '" +
5838                                getTypeString(ID.ConstantVal->getType()) +
5839                                "' but expected '" + getTypeString(Ty) + "'");
5840     V = ID.ConstantVal;
5841     return false;
5842   case ValID::t_ConstantSplat:
5843     if (!Ty->isVectorTy())
5844       return error(ID.Loc, "vector constant must have vector type");
5845     if (ID.ConstantVal->getType() != Ty->getScalarType())
5846       return error(ID.Loc, "constant expression type mismatch: got type '" +
5847                                getTypeString(ID.ConstantVal->getType()) +
5848                                "' but expected '" +
5849                                getTypeString(Ty->getScalarType()) + "'");
5850     V = ConstantVector::getSplat(cast<VectorType>(Ty)->getElementCount(),
5851                                  ID.ConstantVal);
5852     return false;
5853   case ValID::t_ConstantStruct:
5854   case ValID::t_PackedConstantStruct:
5855     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5856       if (ST->getNumElements() != ID.UIntVal)
5857         return error(ID.Loc,
5858                      "initializer with struct type has wrong # elements");
5859       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5860         return error(ID.Loc, "packed'ness of initializer and type don't match");
5861 
5862       // Verify that the elements are compatible with the structtype.
5863       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5864         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5865           return error(
5866               ID.Loc,
5867               "element " + Twine(i) +
5868                   " of struct initializer doesn't match struct element type");
5869 
5870       V = ConstantStruct::get(
5871           ST, ArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5872     } else
5873       return error(ID.Loc, "constant expression type mismatch");
5874     return false;
5875   }
5876   llvm_unreachable("Invalid ValID");
5877 }
5878 
5879 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5880   C = nullptr;
5881   ValID ID;
5882   auto Loc = Lex.getLoc();
5883   if (parseValID(ID, /*PFS=*/nullptr))
5884     return true;
5885   switch (ID.Kind) {
5886   case ValID::t_APSInt:
5887   case ValID::t_APFloat:
5888   case ValID::t_Undef:
5889   case ValID::t_Constant:
5890   case ValID::t_ConstantSplat:
5891   case ValID::t_ConstantStruct:
5892   case ValID::t_PackedConstantStruct: {
5893     Value *V;
5894     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
5895       return true;
5896     assert(isa<Constant>(V) && "Expected a constant value");
5897     C = cast<Constant>(V);
5898     return false;
5899   }
5900   case ValID::t_Null:
5901     C = Constant::getNullValue(Ty);
5902     return false;
5903   default:
5904     return error(Loc, "expected a constant value");
5905   }
5906 }
5907 
5908 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5909   V = nullptr;
5910   ValID ID;
5911   return parseValID(ID, PFS, Ty) ||
5912          convertValIDToValue(Ty, ID, V, PFS);
5913 }
5914 
5915 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5916   Type *Ty = nullptr;
5917   return parseType(Ty) || parseValue(Ty, V, PFS);
5918 }
5919 
5920 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5921                                       PerFunctionState &PFS) {
5922   Value *V;
5923   Loc = Lex.getLoc();
5924   if (parseTypeAndValue(V, PFS))
5925     return true;
5926   if (!isa<BasicBlock>(V))
5927     return error(Loc, "expected a basic block");
5928   BB = cast<BasicBlock>(V);
5929   return false;
5930 }
5931 
5932 /// FunctionHeader
5933 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5934 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5935 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5936 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5937 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5938   // parse the linkage.
5939   LocTy LinkageLoc = Lex.getLoc();
5940   unsigned Linkage;
5941   unsigned Visibility;
5942   unsigned DLLStorageClass;
5943   bool DSOLocal;
5944   AttrBuilder RetAttrs(M->getContext());
5945   unsigned CC;
5946   bool HasLinkage;
5947   Type *RetType = nullptr;
5948   LocTy RetTypeLoc = Lex.getLoc();
5949   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5950                            DSOLocal) ||
5951       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5952       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5953     return true;
5954 
5955   // Verify that the linkage is ok.
5956   switch ((GlobalValue::LinkageTypes)Linkage) {
5957   case GlobalValue::ExternalLinkage:
5958     break; // always ok.
5959   case GlobalValue::ExternalWeakLinkage:
5960     if (IsDefine)
5961       return error(LinkageLoc, "invalid linkage for function definition");
5962     break;
5963   case GlobalValue::PrivateLinkage:
5964   case GlobalValue::InternalLinkage:
5965   case GlobalValue::AvailableExternallyLinkage:
5966   case GlobalValue::LinkOnceAnyLinkage:
5967   case GlobalValue::LinkOnceODRLinkage:
5968   case GlobalValue::WeakAnyLinkage:
5969   case GlobalValue::WeakODRLinkage:
5970     if (!IsDefine)
5971       return error(LinkageLoc, "invalid linkage for function declaration");
5972     break;
5973   case GlobalValue::AppendingLinkage:
5974   case GlobalValue::CommonLinkage:
5975     return error(LinkageLoc, "invalid function linkage type");
5976   }
5977 
5978   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5979     return error(LinkageLoc,
5980                  "symbol with local linkage must have default visibility");
5981 
5982   if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage))
5983     return error(LinkageLoc,
5984                  "symbol with local linkage cannot have a DLL storage class");
5985 
5986   if (!FunctionType::isValidReturnType(RetType))
5987     return error(RetTypeLoc, "invalid function return type");
5988 
5989   LocTy NameLoc = Lex.getLoc();
5990 
5991   std::string FunctionName;
5992   if (Lex.getKind() == lltok::GlobalVar) {
5993     FunctionName = Lex.getStrVal();
5994   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5995     unsigned NameID = Lex.getUIntVal();
5996 
5997     if (NameID != NumberedVals.size())
5998       return tokError("function expected to be numbered '%" +
5999                       Twine(NumberedVals.size()) + "'");
6000   } else {
6001     return tokError("expected function name");
6002   }
6003 
6004   Lex.Lex();
6005 
6006   if (Lex.getKind() != lltok::lparen)
6007     return tokError("expected '(' in function argument list");
6008 
6009   SmallVector<ArgInfo, 8> ArgList;
6010   bool IsVarArg;
6011   AttrBuilder FuncAttrs(M->getContext());
6012   std::vector<unsigned> FwdRefAttrGrps;
6013   LocTy BuiltinLoc;
6014   std::string Section;
6015   std::string Partition;
6016   MaybeAlign Alignment;
6017   std::string GC;
6018   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
6019   unsigned AddrSpace = 0;
6020   Constant *Prefix = nullptr;
6021   Constant *Prologue = nullptr;
6022   Constant *PersonalityFn = nullptr;
6023   Comdat *C;
6024 
6025   if (parseArgumentList(ArgList, IsVarArg) ||
6026       parseOptionalUnnamedAddr(UnnamedAddr) ||
6027       parseOptionalProgramAddrSpace(AddrSpace) ||
6028       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
6029                                  BuiltinLoc) ||
6030       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
6031       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
6032       parseOptionalComdat(FunctionName, C) ||
6033       parseOptionalAlignment(Alignment) ||
6034       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
6035       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
6036       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
6037       (EatIfPresent(lltok::kw_personality) &&
6038        parseGlobalTypeAndValue(PersonalityFn)))
6039     return true;
6040 
6041   if (FuncAttrs.contains(Attribute::Builtin))
6042     return error(BuiltinLoc, "'builtin' attribute not valid on function");
6043 
6044   // If the alignment was parsed as an attribute, move to the alignment field.
6045   if (MaybeAlign A = FuncAttrs.getAlignment()) {
6046     Alignment = A;
6047     FuncAttrs.removeAttribute(Attribute::Alignment);
6048   }
6049 
6050   // Okay, if we got here, the function is syntactically valid.  Convert types
6051   // and do semantic checks.
6052   std::vector<Type*> ParamTypeList;
6053   SmallVector<AttributeSet, 8> Attrs;
6054 
6055   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6056     ParamTypeList.push_back(ArgList[i].Ty);
6057     Attrs.push_back(ArgList[i].Attrs);
6058   }
6059 
6060   AttributeList PAL =
6061       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
6062                          AttributeSet::get(Context, RetAttrs), Attrs);
6063 
6064   if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy())
6065     return error(RetTypeLoc, "functions with 'sret' argument must return void");
6066 
6067   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
6068   PointerType *PFT = PointerType::get(FT, AddrSpace);
6069 
6070   Fn = nullptr;
6071   GlobalValue *FwdFn = nullptr;
6072   if (!FunctionName.empty()) {
6073     // If this was a definition of a forward reference, remove the definition
6074     // from the forward reference table and fill in the forward ref.
6075     auto FRVI = ForwardRefVals.find(FunctionName);
6076     if (FRVI != ForwardRefVals.end()) {
6077       FwdFn = FRVI->second.first;
6078       if (FwdFn->getType() != PFT)
6079         return error(FRVI->second.second,
6080                      "invalid forward reference to "
6081                      "function '" +
6082                          FunctionName +
6083                          "' with wrong type: "
6084                          "expected '" +
6085                          getTypeString(PFT) + "' but was '" +
6086                          getTypeString(FwdFn->getType()) + "'");
6087       ForwardRefVals.erase(FRVI);
6088     } else if ((Fn = M->getFunction(FunctionName))) {
6089       // Reject redefinitions.
6090       return error(NameLoc,
6091                    "invalid redefinition of function '" + FunctionName + "'");
6092     } else if (M->getNamedValue(FunctionName)) {
6093       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
6094     }
6095 
6096   } else {
6097     // If this is a definition of a forward referenced function, make sure the
6098     // types agree.
6099     auto I = ForwardRefValIDs.find(NumberedVals.size());
6100     if (I != ForwardRefValIDs.end()) {
6101       FwdFn = I->second.first;
6102       if (FwdFn->getType() != PFT)
6103         return error(NameLoc, "type of definition and forward reference of '@" +
6104                                   Twine(NumberedVals.size()) +
6105                                   "' disagree: "
6106                                   "expected '" +
6107                                   getTypeString(PFT) + "' but was '" +
6108                                   getTypeString(FwdFn->getType()) + "'");
6109       ForwardRefValIDs.erase(I);
6110     }
6111   }
6112 
6113   Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
6114                         FunctionName, M);
6115 
6116   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
6117 
6118   if (FunctionName.empty())
6119     NumberedVals.push_back(Fn);
6120 
6121   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
6122   maybeSetDSOLocal(DSOLocal, *Fn);
6123   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
6124   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
6125   Fn->setCallingConv(CC);
6126   Fn->setAttributes(PAL);
6127   Fn->setUnnamedAddr(UnnamedAddr);
6128   if (Alignment)
6129     Fn->setAlignment(*Alignment);
6130   Fn->setSection(Section);
6131   Fn->setPartition(Partition);
6132   Fn->setComdat(C);
6133   Fn->setPersonalityFn(PersonalityFn);
6134   if (!GC.empty()) Fn->setGC(GC);
6135   Fn->setPrefixData(Prefix);
6136   Fn->setPrologueData(Prologue);
6137   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
6138 
6139   // Add all of the arguments we parsed to the function.
6140   Function::arg_iterator ArgIt = Fn->arg_begin();
6141   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
6142     // If the argument has a name, insert it into the argument symbol table.
6143     if (ArgList[i].Name.empty()) continue;
6144 
6145     // Set the name, if it conflicted, it will be auto-renamed.
6146     ArgIt->setName(ArgList[i].Name);
6147 
6148     if (ArgIt->getName() != ArgList[i].Name)
6149       return error(ArgList[i].Loc,
6150                    "redefinition of argument '%" + ArgList[i].Name + "'");
6151   }
6152 
6153   if (FwdFn) {
6154     FwdFn->replaceAllUsesWith(Fn);
6155     FwdFn->eraseFromParent();
6156   }
6157 
6158   if (IsDefine)
6159     return false;
6160 
6161   // Check the declaration has no block address forward references.
6162   ValID ID;
6163   if (FunctionName.empty()) {
6164     ID.Kind = ValID::t_GlobalID;
6165     ID.UIntVal = NumberedVals.size() - 1;
6166   } else {
6167     ID.Kind = ValID::t_GlobalName;
6168     ID.StrVal = FunctionName;
6169   }
6170   auto Blocks = ForwardRefBlockAddresses.find(ID);
6171   if (Blocks != ForwardRefBlockAddresses.end())
6172     return error(Blocks->first.Loc,
6173                  "cannot take blockaddress inside a declaration");
6174   return false;
6175 }
6176 
6177 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
6178   ValID ID;
6179   if (FunctionNumber == -1) {
6180     ID.Kind = ValID::t_GlobalName;
6181     ID.StrVal = std::string(F.getName());
6182   } else {
6183     ID.Kind = ValID::t_GlobalID;
6184     ID.UIntVal = FunctionNumber;
6185   }
6186 
6187   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
6188   if (Blocks == P.ForwardRefBlockAddresses.end())
6189     return false;
6190 
6191   for (const auto &I : Blocks->second) {
6192     const ValID &BBID = I.first;
6193     GlobalValue *GV = I.second;
6194 
6195     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
6196            "Expected local id or name");
6197     BasicBlock *BB;
6198     if (BBID.Kind == ValID::t_LocalName)
6199       BB = getBB(BBID.StrVal, BBID.Loc);
6200     else
6201       BB = getBB(BBID.UIntVal, BBID.Loc);
6202     if (!BB)
6203       return P.error(BBID.Loc, "referenced value is not a basic block");
6204 
6205     Value *ResolvedVal = BlockAddress::get(&F, BB);
6206     ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(),
6207                                            ResolvedVal);
6208     if (!ResolvedVal)
6209       return true;
6210     GV->replaceAllUsesWith(ResolvedVal);
6211     GV->eraseFromParent();
6212   }
6213 
6214   P.ForwardRefBlockAddresses.erase(Blocks);
6215   return false;
6216 }
6217 
6218 /// parseFunctionBody
6219 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
6220 bool LLParser::parseFunctionBody(Function &Fn) {
6221   if (Lex.getKind() != lltok::lbrace)
6222     return tokError("expected '{' in function body");
6223   Lex.Lex();  // eat the {.
6224 
6225   int FunctionNumber = -1;
6226   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
6227 
6228   PerFunctionState PFS(*this, Fn, FunctionNumber);
6229 
6230   // Resolve block addresses and allow basic blocks to be forward-declared
6231   // within this function.
6232   if (PFS.resolveForwardRefBlockAddresses())
6233     return true;
6234   SaveAndRestore ScopeExit(BlockAddressPFS, &PFS);
6235 
6236   // We need at least one basic block.
6237   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
6238     return tokError("function body requires at least one basic block");
6239 
6240   while (Lex.getKind() != lltok::rbrace &&
6241          Lex.getKind() != lltok::kw_uselistorder)
6242     if (parseBasicBlock(PFS))
6243       return true;
6244 
6245   while (Lex.getKind() != lltok::rbrace)
6246     if (parseUseListOrder(&PFS))
6247       return true;
6248 
6249   // Eat the }.
6250   Lex.Lex();
6251 
6252   // Verify function is ok.
6253   return PFS.finishFunction();
6254 }
6255 
6256 /// parseBasicBlock
6257 ///   ::= (LabelStr|LabelID)? Instruction*
6258 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
6259   // If this basic block starts out with a name, remember it.
6260   std::string Name;
6261   int NameID = -1;
6262   LocTy NameLoc = Lex.getLoc();
6263   if (Lex.getKind() == lltok::LabelStr) {
6264     Name = Lex.getStrVal();
6265     Lex.Lex();
6266   } else if (Lex.getKind() == lltok::LabelID) {
6267     NameID = Lex.getUIntVal();
6268     Lex.Lex();
6269   }
6270 
6271   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
6272   if (!BB)
6273     return true;
6274 
6275   std::string NameStr;
6276 
6277   // parse the instructions in this block until we get a terminator.
6278   Instruction *Inst;
6279   do {
6280     // This instruction may have three possibilities for a name: a) none
6281     // specified, b) name specified "%foo =", c) number specified: "%4 =".
6282     LocTy NameLoc = Lex.getLoc();
6283     int NameID = -1;
6284     NameStr = "";
6285 
6286     if (Lex.getKind() == lltok::LocalVarID) {
6287       NameID = Lex.getUIntVal();
6288       Lex.Lex();
6289       if (parseToken(lltok::equal, "expected '=' after instruction id"))
6290         return true;
6291     } else if (Lex.getKind() == lltok::LocalVar) {
6292       NameStr = Lex.getStrVal();
6293       Lex.Lex();
6294       if (parseToken(lltok::equal, "expected '=' after instruction name"))
6295         return true;
6296     }
6297 
6298     switch (parseInstruction(Inst, BB, PFS)) {
6299     default:
6300       llvm_unreachable("Unknown parseInstruction result!");
6301     case InstError: return true;
6302     case InstNormal:
6303       Inst->insertInto(BB, BB->end());
6304 
6305       // With a normal result, we check to see if the instruction is followed by
6306       // a comma and metadata.
6307       if (EatIfPresent(lltok::comma))
6308         if (parseInstructionMetadata(*Inst))
6309           return true;
6310       break;
6311     case InstExtraComma:
6312       Inst->insertInto(BB, BB->end());
6313 
6314       // If the instruction parser ate an extra comma at the end of it, it
6315       // *must* be followed by metadata.
6316       if (parseInstructionMetadata(*Inst))
6317         return true;
6318       break;
6319     }
6320 
6321     // Set the name on the instruction.
6322     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
6323       return true;
6324   } while (!Inst->isTerminator());
6325 
6326   return false;
6327 }
6328 
6329 //===----------------------------------------------------------------------===//
6330 // Instruction Parsing.
6331 //===----------------------------------------------------------------------===//
6332 
6333 /// parseInstruction - parse one of the many different instructions.
6334 ///
6335 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
6336                                PerFunctionState &PFS) {
6337   lltok::Kind Token = Lex.getKind();
6338   if (Token == lltok::Eof)
6339     return tokError("found end of file when expecting more instructions");
6340   LocTy Loc = Lex.getLoc();
6341   unsigned KeywordVal = Lex.getUIntVal();
6342   Lex.Lex();  // Eat the keyword.
6343 
6344   switch (Token) {
6345   default:
6346     return error(Loc, "expected instruction opcode");
6347   // Terminator Instructions.
6348   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
6349   case lltok::kw_ret:
6350     return parseRet(Inst, BB, PFS);
6351   case lltok::kw_br:
6352     return parseBr(Inst, PFS);
6353   case lltok::kw_switch:
6354     return parseSwitch(Inst, PFS);
6355   case lltok::kw_indirectbr:
6356     return parseIndirectBr(Inst, PFS);
6357   case lltok::kw_invoke:
6358     return parseInvoke(Inst, PFS);
6359   case lltok::kw_resume:
6360     return parseResume(Inst, PFS);
6361   case lltok::kw_cleanupret:
6362     return parseCleanupRet(Inst, PFS);
6363   case lltok::kw_catchret:
6364     return parseCatchRet(Inst, PFS);
6365   case lltok::kw_catchswitch:
6366     return parseCatchSwitch(Inst, PFS);
6367   case lltok::kw_catchpad:
6368     return parseCatchPad(Inst, PFS);
6369   case lltok::kw_cleanuppad:
6370     return parseCleanupPad(Inst, PFS);
6371   case lltok::kw_callbr:
6372     return parseCallBr(Inst, PFS);
6373   // Unary Operators.
6374   case lltok::kw_fneg: {
6375     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6376     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
6377     if (Res != 0)
6378       return Res;
6379     if (FMF.any())
6380       Inst->setFastMathFlags(FMF);
6381     return false;
6382   }
6383   // Binary Operators.
6384   case lltok::kw_add:
6385   case lltok::kw_sub:
6386   case lltok::kw_mul:
6387   case lltok::kw_shl: {
6388     bool NUW = EatIfPresent(lltok::kw_nuw);
6389     bool NSW = EatIfPresent(lltok::kw_nsw);
6390     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
6391 
6392     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6393       return true;
6394 
6395     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
6396     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
6397     return false;
6398   }
6399   case lltok::kw_fadd:
6400   case lltok::kw_fsub:
6401   case lltok::kw_fmul:
6402   case lltok::kw_fdiv:
6403   case lltok::kw_frem: {
6404     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6405     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
6406     if (Res != 0)
6407       return Res;
6408     if (FMF.any())
6409       Inst->setFastMathFlags(FMF);
6410     return 0;
6411   }
6412 
6413   case lltok::kw_sdiv:
6414   case lltok::kw_udiv:
6415   case lltok::kw_lshr:
6416   case lltok::kw_ashr: {
6417     bool Exact = EatIfPresent(lltok::kw_exact);
6418 
6419     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6420       return true;
6421     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
6422     return false;
6423   }
6424 
6425   case lltok::kw_urem:
6426   case lltok::kw_srem:
6427     return parseArithmetic(Inst, PFS, KeywordVal,
6428                            /*IsFP*/ false);
6429   case lltok::kw_or: {
6430     bool Disjoint = EatIfPresent(lltok::kw_disjoint);
6431     if (parseLogical(Inst, PFS, KeywordVal))
6432       return true;
6433     if (Disjoint)
6434       cast<PossiblyDisjointInst>(Inst)->setIsDisjoint(true);
6435     return false;
6436   }
6437   case lltok::kw_and:
6438   case lltok::kw_xor:
6439     return parseLogical(Inst, PFS, KeywordVal);
6440   case lltok::kw_icmp:
6441     return parseCompare(Inst, PFS, KeywordVal);
6442   case lltok::kw_fcmp: {
6443     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6444     int Res = parseCompare(Inst, PFS, KeywordVal);
6445     if (Res != 0)
6446       return Res;
6447     if (FMF.any())
6448       Inst->setFastMathFlags(FMF);
6449     return 0;
6450   }
6451 
6452   // Casts.
6453   case lltok::kw_zext: {
6454     bool NonNeg = EatIfPresent(lltok::kw_nneg);
6455     bool Res = parseCast(Inst, PFS, KeywordVal);
6456     if (Res != 0)
6457       return Res;
6458     if (NonNeg)
6459       Inst->setNonNeg();
6460     return 0;
6461   }
6462   case lltok::kw_trunc:
6463   case lltok::kw_sext:
6464   case lltok::kw_fptrunc:
6465   case lltok::kw_fpext:
6466   case lltok::kw_bitcast:
6467   case lltok::kw_addrspacecast:
6468   case lltok::kw_uitofp:
6469   case lltok::kw_sitofp:
6470   case lltok::kw_fptoui:
6471   case lltok::kw_fptosi:
6472   case lltok::kw_inttoptr:
6473   case lltok::kw_ptrtoint:
6474     return parseCast(Inst, PFS, KeywordVal);
6475   // Other.
6476   case lltok::kw_select: {
6477     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6478     int Res = parseSelect(Inst, PFS);
6479     if (Res != 0)
6480       return Res;
6481     if (FMF.any()) {
6482       if (!isa<FPMathOperator>(Inst))
6483         return error(Loc, "fast-math-flags specified for select without "
6484                           "floating-point scalar or vector return type");
6485       Inst->setFastMathFlags(FMF);
6486     }
6487     return 0;
6488   }
6489   case lltok::kw_va_arg:
6490     return parseVAArg(Inst, PFS);
6491   case lltok::kw_extractelement:
6492     return parseExtractElement(Inst, PFS);
6493   case lltok::kw_insertelement:
6494     return parseInsertElement(Inst, PFS);
6495   case lltok::kw_shufflevector:
6496     return parseShuffleVector(Inst, PFS);
6497   case lltok::kw_phi: {
6498     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6499     int Res = parsePHI(Inst, PFS);
6500     if (Res != 0)
6501       return Res;
6502     if (FMF.any()) {
6503       if (!isa<FPMathOperator>(Inst))
6504         return error(Loc, "fast-math-flags specified for phi without "
6505                           "floating-point scalar or vector return type");
6506       Inst->setFastMathFlags(FMF);
6507     }
6508     return 0;
6509   }
6510   case lltok::kw_landingpad:
6511     return parseLandingPad(Inst, PFS);
6512   case lltok::kw_freeze:
6513     return parseFreeze(Inst, PFS);
6514   // Call.
6515   case lltok::kw_call:
6516     return parseCall(Inst, PFS, CallInst::TCK_None);
6517   case lltok::kw_tail:
6518     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6519   case lltok::kw_musttail:
6520     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6521   case lltok::kw_notail:
6522     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6523   // Memory.
6524   case lltok::kw_alloca:
6525     return parseAlloc(Inst, PFS);
6526   case lltok::kw_load:
6527     return parseLoad(Inst, PFS);
6528   case lltok::kw_store:
6529     return parseStore(Inst, PFS);
6530   case lltok::kw_cmpxchg:
6531     return parseCmpXchg(Inst, PFS);
6532   case lltok::kw_atomicrmw:
6533     return parseAtomicRMW(Inst, PFS);
6534   case lltok::kw_fence:
6535     return parseFence(Inst, PFS);
6536   case lltok::kw_getelementptr:
6537     return parseGetElementPtr(Inst, PFS);
6538   case lltok::kw_extractvalue:
6539     return parseExtractValue(Inst, PFS);
6540   case lltok::kw_insertvalue:
6541     return parseInsertValue(Inst, PFS);
6542   }
6543 }
6544 
6545 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6546 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6547   if (Opc == Instruction::FCmp) {
6548     switch (Lex.getKind()) {
6549     default:
6550       return tokError("expected fcmp predicate (e.g. 'oeq')");
6551     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6552     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6553     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6554     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6555     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6556     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6557     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6558     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6559     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6560     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6561     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6562     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6563     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6564     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6565     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6566     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6567     }
6568   } else {
6569     switch (Lex.getKind()) {
6570     default:
6571       return tokError("expected icmp predicate (e.g. 'eq')");
6572     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6573     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6574     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6575     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6576     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6577     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6578     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6579     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6580     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6581     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6582     }
6583   }
6584   Lex.Lex();
6585   return false;
6586 }
6587 
6588 //===----------------------------------------------------------------------===//
6589 // Terminator Instructions.
6590 //===----------------------------------------------------------------------===//
6591 
6592 /// parseRet - parse a return instruction.
6593 ///   ::= 'ret' void (',' !dbg, !1)*
6594 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6595 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6596                         PerFunctionState &PFS) {
6597   SMLoc TypeLoc = Lex.getLoc();
6598   Type *Ty = nullptr;
6599   if (parseType(Ty, true /*void allowed*/))
6600     return true;
6601 
6602   Type *ResType = PFS.getFunction().getReturnType();
6603 
6604   if (Ty->isVoidTy()) {
6605     if (!ResType->isVoidTy())
6606       return error(TypeLoc, "value doesn't match function result type '" +
6607                                 getTypeString(ResType) + "'");
6608 
6609     Inst = ReturnInst::Create(Context);
6610     return false;
6611   }
6612 
6613   Value *RV;
6614   if (parseValue(Ty, RV, PFS))
6615     return true;
6616 
6617   if (ResType != RV->getType())
6618     return error(TypeLoc, "value doesn't match function result type '" +
6619                               getTypeString(ResType) + "'");
6620 
6621   Inst = ReturnInst::Create(Context, RV);
6622   return false;
6623 }
6624 
6625 /// parseBr
6626 ///   ::= 'br' TypeAndValue
6627 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6628 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6629   LocTy Loc, Loc2;
6630   Value *Op0;
6631   BasicBlock *Op1, *Op2;
6632   if (parseTypeAndValue(Op0, Loc, PFS))
6633     return true;
6634 
6635   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6636     Inst = BranchInst::Create(BB);
6637     return false;
6638   }
6639 
6640   if (Op0->getType() != Type::getInt1Ty(Context))
6641     return error(Loc, "branch condition must have 'i1' type");
6642 
6643   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6644       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6645       parseToken(lltok::comma, "expected ',' after true destination") ||
6646       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6647     return true;
6648 
6649   Inst = BranchInst::Create(Op1, Op2, Op0);
6650   return false;
6651 }
6652 
6653 /// parseSwitch
6654 ///  Instruction
6655 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6656 ///  JumpTable
6657 ///    ::= (TypeAndValue ',' TypeAndValue)*
6658 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6659   LocTy CondLoc, BBLoc;
6660   Value *Cond;
6661   BasicBlock *DefaultBB;
6662   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6663       parseToken(lltok::comma, "expected ',' after switch condition") ||
6664       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6665       parseToken(lltok::lsquare, "expected '[' with switch table"))
6666     return true;
6667 
6668   if (!Cond->getType()->isIntegerTy())
6669     return error(CondLoc, "switch condition must have integer type");
6670 
6671   // parse the jump table pairs.
6672   SmallPtrSet<Value*, 32> SeenCases;
6673   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6674   while (Lex.getKind() != lltok::rsquare) {
6675     Value *Constant;
6676     BasicBlock *DestBB;
6677 
6678     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6679         parseToken(lltok::comma, "expected ',' after case value") ||
6680         parseTypeAndBasicBlock(DestBB, PFS))
6681       return true;
6682 
6683     if (!SeenCases.insert(Constant).second)
6684       return error(CondLoc, "duplicate case value in switch");
6685     if (!isa<ConstantInt>(Constant))
6686       return error(CondLoc, "case value is not a constant integer");
6687 
6688     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6689   }
6690 
6691   Lex.Lex();  // Eat the ']'.
6692 
6693   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6694   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6695     SI->addCase(Table[i].first, Table[i].second);
6696   Inst = SI;
6697   return false;
6698 }
6699 
6700 /// parseIndirectBr
6701 ///  Instruction
6702 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6703 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6704   LocTy AddrLoc;
6705   Value *Address;
6706   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6707       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6708       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6709     return true;
6710 
6711   if (!Address->getType()->isPointerTy())
6712     return error(AddrLoc, "indirectbr address must have pointer type");
6713 
6714   // parse the destination list.
6715   SmallVector<BasicBlock*, 16> DestList;
6716 
6717   if (Lex.getKind() != lltok::rsquare) {
6718     BasicBlock *DestBB;
6719     if (parseTypeAndBasicBlock(DestBB, PFS))
6720       return true;
6721     DestList.push_back(DestBB);
6722 
6723     while (EatIfPresent(lltok::comma)) {
6724       if (parseTypeAndBasicBlock(DestBB, PFS))
6725         return true;
6726       DestList.push_back(DestBB);
6727     }
6728   }
6729 
6730   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6731     return true;
6732 
6733   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6734   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6735     IBI->addDestination(DestList[i]);
6736   Inst = IBI;
6737   return false;
6738 }
6739 
6740 // If RetType is a non-function pointer type, then this is the short syntax
6741 // for the call, which means that RetType is just the return type.  Infer the
6742 // rest of the function argument types from the arguments that are present.
6743 bool LLParser::resolveFunctionType(Type *RetType,
6744                                    const SmallVector<ParamInfo, 16> &ArgList,
6745                                    FunctionType *&FuncTy) {
6746   FuncTy = dyn_cast<FunctionType>(RetType);
6747   if (!FuncTy) {
6748     // Pull out the types of all of the arguments...
6749     std::vector<Type*> ParamTypes;
6750     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6751       ParamTypes.push_back(ArgList[i].V->getType());
6752 
6753     if (!FunctionType::isValidReturnType(RetType))
6754       return true;
6755 
6756     FuncTy = FunctionType::get(RetType, ParamTypes, false);
6757   }
6758   return false;
6759 }
6760 
6761 /// parseInvoke
6762 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6763 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6764 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6765   LocTy CallLoc = Lex.getLoc();
6766   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
6767   std::vector<unsigned> FwdRefAttrGrps;
6768   LocTy NoBuiltinLoc;
6769   unsigned CC;
6770   unsigned InvokeAddrSpace;
6771   Type *RetType = nullptr;
6772   LocTy RetTypeLoc;
6773   ValID CalleeID;
6774   SmallVector<ParamInfo, 16> ArgList;
6775   SmallVector<OperandBundleDef, 2> BundleList;
6776 
6777   BasicBlock *NormalBB, *UnwindBB;
6778   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6779       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6780       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6781       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6782       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6783                                  NoBuiltinLoc) ||
6784       parseOptionalOperandBundles(BundleList, PFS) ||
6785       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6786       parseTypeAndBasicBlock(NormalBB, PFS) ||
6787       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6788       parseTypeAndBasicBlock(UnwindBB, PFS))
6789     return true;
6790 
6791   // If RetType is a non-function pointer type, then this is the short syntax
6792   // for the call, which means that RetType is just the return type.  Infer the
6793   // rest of the function argument types from the arguments that are present.
6794   FunctionType *Ty;
6795   if (resolveFunctionType(RetType, ArgList, Ty))
6796     return error(RetTypeLoc, "Invalid result type for LLVM function");
6797 
6798   CalleeID.FTy = Ty;
6799 
6800   // Look up the callee.
6801   Value *Callee;
6802   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6803                           Callee, &PFS))
6804     return true;
6805 
6806   // Set up the Attribute for the function.
6807   SmallVector<Value *, 8> Args;
6808   SmallVector<AttributeSet, 8> ArgAttrs;
6809 
6810   // Loop through FunctionType's arguments and ensure they are specified
6811   // correctly.  Also, gather any parameter attributes.
6812   FunctionType::param_iterator I = Ty->param_begin();
6813   FunctionType::param_iterator E = Ty->param_end();
6814   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6815     Type *ExpectedTy = nullptr;
6816     if (I != E) {
6817       ExpectedTy = *I++;
6818     } else if (!Ty->isVarArg()) {
6819       return error(ArgList[i].Loc, "too many arguments specified");
6820     }
6821 
6822     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6823       return error(ArgList[i].Loc, "argument is not of expected type '" +
6824                                        getTypeString(ExpectedTy) + "'");
6825     Args.push_back(ArgList[i].V);
6826     ArgAttrs.push_back(ArgList[i].Attrs);
6827   }
6828 
6829   if (I != E)
6830     return error(CallLoc, "not enough parameters specified for call");
6831 
6832   // Finish off the Attribute and check them
6833   AttributeList PAL =
6834       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6835                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6836 
6837   InvokeInst *II =
6838       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6839   II->setCallingConv(CC);
6840   II->setAttributes(PAL);
6841   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6842   Inst = II;
6843   return false;
6844 }
6845 
6846 /// parseResume
6847 ///   ::= 'resume' TypeAndValue
6848 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6849   Value *Exn; LocTy ExnLoc;
6850   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6851     return true;
6852 
6853   ResumeInst *RI = ResumeInst::Create(Exn);
6854   Inst = RI;
6855   return false;
6856 }
6857 
6858 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6859                                   PerFunctionState &PFS) {
6860   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6861     return true;
6862 
6863   while (Lex.getKind() != lltok::rsquare) {
6864     // If this isn't the first argument, we need a comma.
6865     if (!Args.empty() &&
6866         parseToken(lltok::comma, "expected ',' in argument list"))
6867       return true;
6868 
6869     // parse the argument.
6870     LocTy ArgLoc;
6871     Type *ArgTy = nullptr;
6872     if (parseType(ArgTy, ArgLoc))
6873       return true;
6874 
6875     Value *V;
6876     if (ArgTy->isMetadataTy()) {
6877       if (parseMetadataAsValue(V, PFS))
6878         return true;
6879     } else {
6880       if (parseValue(ArgTy, V, PFS))
6881         return true;
6882     }
6883     Args.push_back(V);
6884   }
6885 
6886   Lex.Lex();  // Lex the ']'.
6887   return false;
6888 }
6889 
6890 /// parseCleanupRet
6891 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6892 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6893   Value *CleanupPad = nullptr;
6894 
6895   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6896     return true;
6897 
6898   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6899     return true;
6900 
6901   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6902     return true;
6903 
6904   BasicBlock *UnwindBB = nullptr;
6905   if (Lex.getKind() == lltok::kw_to) {
6906     Lex.Lex();
6907     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6908       return true;
6909   } else {
6910     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6911       return true;
6912     }
6913   }
6914 
6915   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6916   return false;
6917 }
6918 
6919 /// parseCatchRet
6920 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6921 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6922   Value *CatchPad = nullptr;
6923 
6924   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6925     return true;
6926 
6927   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6928     return true;
6929 
6930   BasicBlock *BB;
6931   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6932       parseTypeAndBasicBlock(BB, PFS))
6933     return true;
6934 
6935   Inst = CatchReturnInst::Create(CatchPad, BB);
6936   return false;
6937 }
6938 
6939 /// parseCatchSwitch
6940 ///   ::= 'catchswitch' within Parent
6941 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6942   Value *ParentPad;
6943 
6944   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6945     return true;
6946 
6947   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6948       Lex.getKind() != lltok::LocalVarID)
6949     return tokError("expected scope value for catchswitch");
6950 
6951   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6952     return true;
6953 
6954   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6955     return true;
6956 
6957   SmallVector<BasicBlock *, 32> Table;
6958   do {
6959     BasicBlock *DestBB;
6960     if (parseTypeAndBasicBlock(DestBB, PFS))
6961       return true;
6962     Table.push_back(DestBB);
6963   } while (EatIfPresent(lltok::comma));
6964 
6965   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6966     return true;
6967 
6968   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6969     return true;
6970 
6971   BasicBlock *UnwindBB = nullptr;
6972   if (EatIfPresent(lltok::kw_to)) {
6973     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6974       return true;
6975   } else {
6976     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6977       return true;
6978   }
6979 
6980   auto *CatchSwitch =
6981       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6982   for (BasicBlock *DestBB : Table)
6983     CatchSwitch->addHandler(DestBB);
6984   Inst = CatchSwitch;
6985   return false;
6986 }
6987 
6988 /// parseCatchPad
6989 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6990 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6991   Value *CatchSwitch = nullptr;
6992 
6993   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6994     return true;
6995 
6996   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6997     return tokError("expected scope value for catchpad");
6998 
6999   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
7000     return true;
7001 
7002   SmallVector<Value *, 8> Args;
7003   if (parseExceptionArgs(Args, PFS))
7004     return true;
7005 
7006   Inst = CatchPadInst::Create(CatchSwitch, Args);
7007   return false;
7008 }
7009 
7010 /// parseCleanupPad
7011 ///   ::= 'cleanuppad' within Parent ParamList
7012 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
7013   Value *ParentPad = nullptr;
7014 
7015   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
7016     return true;
7017 
7018   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
7019       Lex.getKind() != lltok::LocalVarID)
7020     return tokError("expected scope value for cleanuppad");
7021 
7022   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
7023     return true;
7024 
7025   SmallVector<Value *, 8> Args;
7026   if (parseExceptionArgs(Args, PFS))
7027     return true;
7028 
7029   Inst = CleanupPadInst::Create(ParentPad, Args);
7030   return false;
7031 }
7032 
7033 //===----------------------------------------------------------------------===//
7034 // Unary Operators.
7035 //===----------------------------------------------------------------------===//
7036 
7037 /// parseUnaryOp
7038 ///  ::= UnaryOp TypeAndValue ',' Value
7039 ///
7040 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
7041 /// operand is allowed.
7042 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
7043                             unsigned Opc, bool IsFP) {
7044   LocTy Loc; Value *LHS;
7045   if (parseTypeAndValue(LHS, Loc, PFS))
7046     return true;
7047 
7048   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
7049                     : LHS->getType()->isIntOrIntVectorTy();
7050 
7051   if (!Valid)
7052     return error(Loc, "invalid operand type for instruction");
7053 
7054   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
7055   return false;
7056 }
7057 
7058 /// parseCallBr
7059 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
7060 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
7061 ///       '[' LabelList ']'
7062 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
7063   LocTy CallLoc = Lex.getLoc();
7064   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7065   std::vector<unsigned> FwdRefAttrGrps;
7066   LocTy NoBuiltinLoc;
7067   unsigned CC;
7068   Type *RetType = nullptr;
7069   LocTy RetTypeLoc;
7070   ValID CalleeID;
7071   SmallVector<ParamInfo, 16> ArgList;
7072   SmallVector<OperandBundleDef, 2> BundleList;
7073 
7074   BasicBlock *DefaultDest;
7075   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7076       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7077       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
7078       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
7079                                  NoBuiltinLoc) ||
7080       parseOptionalOperandBundles(BundleList, PFS) ||
7081       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
7082       parseTypeAndBasicBlock(DefaultDest, PFS) ||
7083       parseToken(lltok::lsquare, "expected '[' in callbr"))
7084     return true;
7085 
7086   // parse the destination list.
7087   SmallVector<BasicBlock *, 16> IndirectDests;
7088 
7089   if (Lex.getKind() != lltok::rsquare) {
7090     BasicBlock *DestBB;
7091     if (parseTypeAndBasicBlock(DestBB, PFS))
7092       return true;
7093     IndirectDests.push_back(DestBB);
7094 
7095     while (EatIfPresent(lltok::comma)) {
7096       if (parseTypeAndBasicBlock(DestBB, PFS))
7097         return true;
7098       IndirectDests.push_back(DestBB);
7099     }
7100   }
7101 
7102   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
7103     return true;
7104 
7105   // If RetType is a non-function pointer type, then this is the short syntax
7106   // for the call, which means that RetType is just the return type.  Infer the
7107   // rest of the function argument types from the arguments that are present.
7108   FunctionType *Ty;
7109   if (resolveFunctionType(RetType, ArgList, Ty))
7110     return error(RetTypeLoc, "Invalid result type for LLVM function");
7111 
7112   CalleeID.FTy = Ty;
7113 
7114   // Look up the callee.
7115   Value *Callee;
7116   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
7117     return true;
7118 
7119   // Set up the Attribute for the function.
7120   SmallVector<Value *, 8> Args;
7121   SmallVector<AttributeSet, 8> ArgAttrs;
7122 
7123   // Loop through FunctionType's arguments and ensure they are specified
7124   // correctly.  Also, gather any parameter attributes.
7125   FunctionType::param_iterator I = Ty->param_begin();
7126   FunctionType::param_iterator E = Ty->param_end();
7127   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7128     Type *ExpectedTy = nullptr;
7129     if (I != E) {
7130       ExpectedTy = *I++;
7131     } else if (!Ty->isVarArg()) {
7132       return error(ArgList[i].Loc, "too many arguments specified");
7133     }
7134 
7135     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7136       return error(ArgList[i].Loc, "argument is not of expected type '" +
7137                                        getTypeString(ExpectedTy) + "'");
7138     Args.push_back(ArgList[i].V);
7139     ArgAttrs.push_back(ArgList[i].Attrs);
7140   }
7141 
7142   if (I != E)
7143     return error(CallLoc, "not enough parameters specified for call");
7144 
7145   // Finish off the Attribute and check them
7146   AttributeList PAL =
7147       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7148                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
7149 
7150   CallBrInst *CBI =
7151       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
7152                          BundleList);
7153   CBI->setCallingConv(CC);
7154   CBI->setAttributes(PAL);
7155   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
7156   Inst = CBI;
7157   return false;
7158 }
7159 
7160 //===----------------------------------------------------------------------===//
7161 // Binary Operators.
7162 //===----------------------------------------------------------------------===//
7163 
7164 /// parseArithmetic
7165 ///  ::= ArithmeticOps TypeAndValue ',' Value
7166 ///
7167 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
7168 /// operand is allowed.
7169 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
7170                                unsigned Opc, bool IsFP) {
7171   LocTy Loc; Value *LHS, *RHS;
7172   if (parseTypeAndValue(LHS, Loc, PFS) ||
7173       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
7174       parseValue(LHS->getType(), RHS, PFS))
7175     return true;
7176 
7177   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
7178                     : LHS->getType()->isIntOrIntVectorTy();
7179 
7180   if (!Valid)
7181     return error(Loc, "invalid operand type for instruction");
7182 
7183   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
7184   return false;
7185 }
7186 
7187 /// parseLogical
7188 ///  ::= ArithmeticOps TypeAndValue ',' Value {
7189 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
7190                             unsigned Opc) {
7191   LocTy Loc; Value *LHS, *RHS;
7192   if (parseTypeAndValue(LHS, Loc, PFS) ||
7193       parseToken(lltok::comma, "expected ',' in logical operation") ||
7194       parseValue(LHS->getType(), RHS, PFS))
7195     return true;
7196 
7197   if (!LHS->getType()->isIntOrIntVectorTy())
7198     return error(Loc,
7199                  "instruction requires integer or integer vector operands");
7200 
7201   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
7202   return false;
7203 }
7204 
7205 /// parseCompare
7206 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
7207 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
7208 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
7209                             unsigned Opc) {
7210   // parse the integer/fp comparison predicate.
7211   LocTy Loc;
7212   unsigned Pred;
7213   Value *LHS, *RHS;
7214   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
7215       parseToken(lltok::comma, "expected ',' after compare value") ||
7216       parseValue(LHS->getType(), RHS, PFS))
7217     return true;
7218 
7219   if (Opc == Instruction::FCmp) {
7220     if (!LHS->getType()->isFPOrFPVectorTy())
7221       return error(Loc, "fcmp requires floating point operands");
7222     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7223   } else {
7224     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
7225     if (!LHS->getType()->isIntOrIntVectorTy() &&
7226         !LHS->getType()->isPtrOrPtrVectorTy())
7227       return error(Loc, "icmp requires integer operands");
7228     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7229   }
7230   return false;
7231 }
7232 
7233 //===----------------------------------------------------------------------===//
7234 // Other Instructions.
7235 //===----------------------------------------------------------------------===//
7236 
7237 /// parseCast
7238 ///   ::= CastOpc TypeAndValue 'to' Type
7239 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
7240                          unsigned Opc) {
7241   LocTy Loc;
7242   Value *Op;
7243   Type *DestTy = nullptr;
7244   if (parseTypeAndValue(Op, Loc, PFS) ||
7245       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
7246       parseType(DestTy))
7247     return true;
7248 
7249   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
7250     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
7251     return error(Loc, "invalid cast opcode for cast from '" +
7252                           getTypeString(Op->getType()) + "' to '" +
7253                           getTypeString(DestTy) + "'");
7254   }
7255   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
7256   return false;
7257 }
7258 
7259 /// parseSelect
7260 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7261 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
7262   LocTy Loc;
7263   Value *Op0, *Op1, *Op2;
7264   if (parseTypeAndValue(Op0, Loc, PFS) ||
7265       parseToken(lltok::comma, "expected ',' after select condition") ||
7266       parseTypeAndValue(Op1, PFS) ||
7267       parseToken(lltok::comma, "expected ',' after select value") ||
7268       parseTypeAndValue(Op2, PFS))
7269     return true;
7270 
7271   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
7272     return error(Loc, Reason);
7273 
7274   Inst = SelectInst::Create(Op0, Op1, Op2);
7275   return false;
7276 }
7277 
7278 /// parseVAArg
7279 ///   ::= 'va_arg' TypeAndValue ',' Type
7280 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
7281   Value *Op;
7282   Type *EltTy = nullptr;
7283   LocTy TypeLoc;
7284   if (parseTypeAndValue(Op, PFS) ||
7285       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
7286       parseType(EltTy, TypeLoc))
7287     return true;
7288 
7289   if (!EltTy->isFirstClassType())
7290     return error(TypeLoc, "va_arg requires operand with first class type");
7291 
7292   Inst = new VAArgInst(Op, EltTy);
7293   return false;
7294 }
7295 
7296 /// parseExtractElement
7297 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
7298 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
7299   LocTy Loc;
7300   Value *Op0, *Op1;
7301   if (parseTypeAndValue(Op0, Loc, PFS) ||
7302       parseToken(lltok::comma, "expected ',' after extract value") ||
7303       parseTypeAndValue(Op1, PFS))
7304     return true;
7305 
7306   if (!ExtractElementInst::isValidOperands(Op0, Op1))
7307     return error(Loc, "invalid extractelement operands");
7308 
7309   Inst = ExtractElementInst::Create(Op0, Op1);
7310   return false;
7311 }
7312 
7313 /// parseInsertElement
7314 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7315 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
7316   LocTy Loc;
7317   Value *Op0, *Op1, *Op2;
7318   if (parseTypeAndValue(Op0, Loc, PFS) ||
7319       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7320       parseTypeAndValue(Op1, PFS) ||
7321       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7322       parseTypeAndValue(Op2, PFS))
7323     return true;
7324 
7325   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
7326     return error(Loc, "invalid insertelement operands");
7327 
7328   Inst = InsertElementInst::Create(Op0, Op1, Op2);
7329   return false;
7330 }
7331 
7332 /// parseShuffleVector
7333 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7334 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
7335   LocTy Loc;
7336   Value *Op0, *Op1, *Op2;
7337   if (parseTypeAndValue(Op0, Loc, PFS) ||
7338       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
7339       parseTypeAndValue(Op1, PFS) ||
7340       parseToken(lltok::comma, "expected ',' after shuffle value") ||
7341       parseTypeAndValue(Op2, PFS))
7342     return true;
7343 
7344   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
7345     return error(Loc, "invalid shufflevector operands");
7346 
7347   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
7348   return false;
7349 }
7350 
7351 /// parsePHI
7352 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
7353 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
7354   Type *Ty = nullptr;  LocTy TypeLoc;
7355   Value *Op0, *Op1;
7356 
7357   if (parseType(Ty, TypeLoc))
7358     return true;
7359 
7360   if (!Ty->isFirstClassType())
7361     return error(TypeLoc, "phi node must have first class type");
7362 
7363   bool First = true;
7364   bool AteExtraComma = false;
7365   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
7366 
7367   while (true) {
7368     if (First) {
7369       if (Lex.getKind() != lltok::lsquare)
7370         break;
7371       First = false;
7372     } else if (!EatIfPresent(lltok::comma))
7373       break;
7374 
7375     if (Lex.getKind() == lltok::MetadataVar) {
7376       AteExtraComma = true;
7377       break;
7378     }
7379 
7380     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7381         parseValue(Ty, Op0, PFS) ||
7382         parseToken(lltok::comma, "expected ',' after insertelement value") ||
7383         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7384         parseToken(lltok::rsquare, "expected ']' in phi value list"))
7385       return true;
7386 
7387     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
7388   }
7389 
7390   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
7391   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
7392     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
7393   Inst = PN;
7394   return AteExtraComma ? InstExtraComma : InstNormal;
7395 }
7396 
7397 /// parseLandingPad
7398 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
7399 /// Clause
7400 ///   ::= 'catch' TypeAndValue
7401 ///   ::= 'filter'
7402 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
7403 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
7404   Type *Ty = nullptr; LocTy TyLoc;
7405 
7406   if (parseType(Ty, TyLoc))
7407     return true;
7408 
7409   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
7410   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
7411 
7412   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
7413     LandingPadInst::ClauseType CT;
7414     if (EatIfPresent(lltok::kw_catch))
7415       CT = LandingPadInst::Catch;
7416     else if (EatIfPresent(lltok::kw_filter))
7417       CT = LandingPadInst::Filter;
7418     else
7419       return tokError("expected 'catch' or 'filter' clause type");
7420 
7421     Value *V;
7422     LocTy VLoc;
7423     if (parseTypeAndValue(V, VLoc, PFS))
7424       return true;
7425 
7426     // A 'catch' type expects a non-array constant. A filter clause expects an
7427     // array constant.
7428     if (CT == LandingPadInst::Catch) {
7429       if (isa<ArrayType>(V->getType()))
7430         error(VLoc, "'catch' clause has an invalid type");
7431     } else {
7432       if (!isa<ArrayType>(V->getType()))
7433         error(VLoc, "'filter' clause has an invalid type");
7434     }
7435 
7436     Constant *CV = dyn_cast<Constant>(V);
7437     if (!CV)
7438       return error(VLoc, "clause argument must be a constant");
7439     LP->addClause(CV);
7440   }
7441 
7442   Inst = LP.release();
7443   return false;
7444 }
7445 
7446 /// parseFreeze
7447 ///   ::= 'freeze' Type Value
7448 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7449   LocTy Loc;
7450   Value *Op;
7451   if (parseTypeAndValue(Op, Loc, PFS))
7452     return true;
7453 
7454   Inst = new FreezeInst(Op);
7455   return false;
7456 }
7457 
7458 /// parseCall
7459 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
7460 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7461 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7462 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7463 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7464 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7465 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
7466 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7467 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7468                          CallInst::TailCallKind TCK) {
7469   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7470   std::vector<unsigned> FwdRefAttrGrps;
7471   LocTy BuiltinLoc;
7472   unsigned CallAddrSpace;
7473   unsigned CC;
7474   Type *RetType = nullptr;
7475   LocTy RetTypeLoc;
7476   ValID CalleeID;
7477   SmallVector<ParamInfo, 16> ArgList;
7478   SmallVector<OperandBundleDef, 2> BundleList;
7479   LocTy CallLoc = Lex.getLoc();
7480 
7481   if (TCK != CallInst::TCK_None &&
7482       parseToken(lltok::kw_call,
7483                  "expected 'tail call', 'musttail call', or 'notail call'"))
7484     return true;
7485 
7486   FastMathFlags FMF = EatFastMathFlagsIfPresent();
7487 
7488   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7489       parseOptionalProgramAddrSpace(CallAddrSpace) ||
7490       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7491       parseValID(CalleeID, &PFS) ||
7492       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
7493                          PFS.getFunction().isVarArg()) ||
7494       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
7495       parseOptionalOperandBundles(BundleList, PFS))
7496     return true;
7497 
7498   // If RetType is a non-function pointer type, then this is the short syntax
7499   // for the call, which means that RetType is just the return type.  Infer the
7500   // rest of the function argument types from the arguments that are present.
7501   FunctionType *Ty;
7502   if (resolveFunctionType(RetType, ArgList, Ty))
7503     return error(RetTypeLoc, "Invalid result type for LLVM function");
7504 
7505   CalleeID.FTy = Ty;
7506 
7507   // Look up the callee.
7508   Value *Callee;
7509   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7510                           &PFS))
7511     return true;
7512 
7513   // Set up the Attribute for the function.
7514   SmallVector<AttributeSet, 8> Attrs;
7515 
7516   SmallVector<Value*, 8> Args;
7517 
7518   // Loop through FunctionType's arguments and ensure they are specified
7519   // correctly.  Also, gather any parameter attributes.
7520   FunctionType::param_iterator I = Ty->param_begin();
7521   FunctionType::param_iterator E = Ty->param_end();
7522   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7523     Type *ExpectedTy = nullptr;
7524     if (I != E) {
7525       ExpectedTy = *I++;
7526     } else if (!Ty->isVarArg()) {
7527       return error(ArgList[i].Loc, "too many arguments specified");
7528     }
7529 
7530     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7531       return error(ArgList[i].Loc, "argument is not of expected type '" +
7532                                        getTypeString(ExpectedTy) + "'");
7533     Args.push_back(ArgList[i].V);
7534     Attrs.push_back(ArgList[i].Attrs);
7535   }
7536 
7537   if (I != E)
7538     return error(CallLoc, "not enough parameters specified for call");
7539 
7540   // Finish off the Attribute and check them
7541   AttributeList PAL =
7542       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7543                          AttributeSet::get(Context, RetAttrs), Attrs);
7544 
7545   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7546   CI->setTailCallKind(TCK);
7547   CI->setCallingConv(CC);
7548   if (FMF.any()) {
7549     if (!isa<FPMathOperator>(CI)) {
7550       CI->deleteValue();
7551       return error(CallLoc, "fast-math-flags specified for call without "
7552                             "floating-point scalar or vector return type");
7553     }
7554     CI->setFastMathFlags(FMF);
7555   }
7556   CI->setAttributes(PAL);
7557   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7558   Inst = CI;
7559   return false;
7560 }
7561 
7562 //===----------------------------------------------------------------------===//
7563 // Memory Instructions.
7564 //===----------------------------------------------------------------------===//
7565 
7566 /// parseAlloc
7567 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7568 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7569 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7570   Value *Size = nullptr;
7571   LocTy SizeLoc, TyLoc, ASLoc;
7572   MaybeAlign Alignment;
7573   unsigned AddrSpace = 0;
7574   Type *Ty = nullptr;
7575 
7576   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7577   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7578 
7579   if (parseType(Ty, TyLoc))
7580     return true;
7581 
7582   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7583     return error(TyLoc, "invalid type for alloca");
7584 
7585   bool AteExtraComma = false;
7586   if (EatIfPresent(lltok::comma)) {
7587     if (Lex.getKind() == lltok::kw_align) {
7588       if (parseOptionalAlignment(Alignment))
7589         return true;
7590       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7591         return true;
7592     } else if (Lex.getKind() == lltok::kw_addrspace) {
7593       ASLoc = Lex.getLoc();
7594       if (parseOptionalAddrSpace(AddrSpace))
7595         return true;
7596     } else if (Lex.getKind() == lltok::MetadataVar) {
7597       AteExtraComma = true;
7598     } else {
7599       if (parseTypeAndValue(Size, SizeLoc, PFS))
7600         return true;
7601       if (EatIfPresent(lltok::comma)) {
7602         if (Lex.getKind() == lltok::kw_align) {
7603           if (parseOptionalAlignment(Alignment))
7604             return true;
7605           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7606             return true;
7607         } else if (Lex.getKind() == lltok::kw_addrspace) {
7608           ASLoc = Lex.getLoc();
7609           if (parseOptionalAddrSpace(AddrSpace))
7610             return true;
7611         } else if (Lex.getKind() == lltok::MetadataVar) {
7612           AteExtraComma = true;
7613         }
7614       }
7615     }
7616   }
7617 
7618   if (Size && !Size->getType()->isIntegerTy())
7619     return error(SizeLoc, "element count must have integer type");
7620 
7621   SmallPtrSet<Type *, 4> Visited;
7622   if (!Alignment && !Ty->isSized(&Visited))
7623     return error(TyLoc, "Cannot allocate unsized type");
7624   if (!Alignment)
7625     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7626   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7627   AI->setUsedWithInAlloca(IsInAlloca);
7628   AI->setSwiftError(IsSwiftError);
7629   Inst = AI;
7630   return AteExtraComma ? InstExtraComma : InstNormal;
7631 }
7632 
7633 /// parseLoad
7634 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7635 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7636 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7637 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7638   Value *Val; LocTy Loc;
7639   MaybeAlign Alignment;
7640   bool AteExtraComma = false;
7641   bool isAtomic = false;
7642   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7643   SyncScope::ID SSID = SyncScope::System;
7644 
7645   if (Lex.getKind() == lltok::kw_atomic) {
7646     isAtomic = true;
7647     Lex.Lex();
7648   }
7649 
7650   bool isVolatile = false;
7651   if (Lex.getKind() == lltok::kw_volatile) {
7652     isVolatile = true;
7653     Lex.Lex();
7654   }
7655 
7656   Type *Ty;
7657   LocTy ExplicitTypeLoc = Lex.getLoc();
7658   if (parseType(Ty) ||
7659       parseToken(lltok::comma, "expected comma after load's type") ||
7660       parseTypeAndValue(Val, Loc, PFS) ||
7661       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7662       parseOptionalCommaAlign(Alignment, AteExtraComma))
7663     return true;
7664 
7665   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7666     return error(Loc, "load operand must be a pointer to a first class type");
7667   if (isAtomic && !Alignment)
7668     return error(Loc, "atomic load must have explicit non-zero alignment");
7669   if (Ordering == AtomicOrdering::Release ||
7670       Ordering == AtomicOrdering::AcquireRelease)
7671     return error(Loc, "atomic load cannot use Release ordering");
7672 
7673   SmallPtrSet<Type *, 4> Visited;
7674   if (!Alignment && !Ty->isSized(&Visited))
7675     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7676   if (!Alignment)
7677     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7678   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7679   return AteExtraComma ? InstExtraComma : InstNormal;
7680 }
7681 
7682 /// parseStore
7683 
7684 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7685 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7686 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7687 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7688   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7689   MaybeAlign Alignment;
7690   bool AteExtraComma = false;
7691   bool isAtomic = false;
7692   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7693   SyncScope::ID SSID = SyncScope::System;
7694 
7695   if (Lex.getKind() == lltok::kw_atomic) {
7696     isAtomic = true;
7697     Lex.Lex();
7698   }
7699 
7700   bool isVolatile = false;
7701   if (Lex.getKind() == lltok::kw_volatile) {
7702     isVolatile = true;
7703     Lex.Lex();
7704   }
7705 
7706   if (parseTypeAndValue(Val, Loc, PFS) ||
7707       parseToken(lltok::comma, "expected ',' after store operand") ||
7708       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7709       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7710       parseOptionalCommaAlign(Alignment, AteExtraComma))
7711     return true;
7712 
7713   if (!Ptr->getType()->isPointerTy())
7714     return error(PtrLoc, "store operand must be a pointer");
7715   if (!Val->getType()->isFirstClassType())
7716     return error(Loc, "store operand must be a first class value");
7717   if (isAtomic && !Alignment)
7718     return error(Loc, "atomic store must have explicit non-zero alignment");
7719   if (Ordering == AtomicOrdering::Acquire ||
7720       Ordering == AtomicOrdering::AcquireRelease)
7721     return error(Loc, "atomic store cannot use Acquire ordering");
7722   SmallPtrSet<Type *, 4> Visited;
7723   if (!Alignment && !Val->getType()->isSized(&Visited))
7724     return error(Loc, "storing unsized types is not allowed");
7725   if (!Alignment)
7726     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7727 
7728   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7729   return AteExtraComma ? InstExtraComma : InstNormal;
7730 }
7731 
7732 /// parseCmpXchg
7733 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7734 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7735 ///       'Align'?
7736 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7737   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7738   bool AteExtraComma = false;
7739   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7740   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7741   SyncScope::ID SSID = SyncScope::System;
7742   bool isVolatile = false;
7743   bool isWeak = false;
7744   MaybeAlign Alignment;
7745 
7746   if (EatIfPresent(lltok::kw_weak))
7747     isWeak = true;
7748 
7749   if (EatIfPresent(lltok::kw_volatile))
7750     isVolatile = true;
7751 
7752   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7753       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7754       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7755       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7756       parseTypeAndValue(New, NewLoc, PFS) ||
7757       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7758       parseOrdering(FailureOrdering) ||
7759       parseOptionalCommaAlign(Alignment, AteExtraComma))
7760     return true;
7761 
7762   if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
7763     return tokError("invalid cmpxchg success ordering");
7764   if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
7765     return tokError("invalid cmpxchg failure ordering");
7766   if (!Ptr->getType()->isPointerTy())
7767     return error(PtrLoc, "cmpxchg operand must be a pointer");
7768   if (Cmp->getType() != New->getType())
7769     return error(NewLoc, "compare value and new value type do not match");
7770   if (!New->getType()->isFirstClassType())
7771     return error(NewLoc, "cmpxchg operand must be a first class value");
7772 
7773   const Align DefaultAlignment(
7774       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7775           Cmp->getType()));
7776 
7777   AtomicCmpXchgInst *CXI =
7778       new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment.value_or(DefaultAlignment),
7779                             SuccessOrdering, FailureOrdering, SSID);
7780   CXI->setVolatile(isVolatile);
7781   CXI->setWeak(isWeak);
7782 
7783   Inst = CXI;
7784   return AteExtraComma ? InstExtraComma : InstNormal;
7785 }
7786 
7787 /// parseAtomicRMW
7788 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7789 ///       'singlethread'? AtomicOrdering
7790 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7791   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7792   bool AteExtraComma = false;
7793   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7794   SyncScope::ID SSID = SyncScope::System;
7795   bool isVolatile = false;
7796   bool IsFP = false;
7797   AtomicRMWInst::BinOp Operation;
7798   MaybeAlign Alignment;
7799 
7800   if (EatIfPresent(lltok::kw_volatile))
7801     isVolatile = true;
7802 
7803   switch (Lex.getKind()) {
7804   default:
7805     return tokError("expected binary operation in atomicrmw");
7806   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7807   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7808   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7809   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7810   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7811   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7812   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7813   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7814   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7815   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7816   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7817   case lltok::kw_uinc_wrap:
7818     Operation = AtomicRMWInst::UIncWrap;
7819     break;
7820   case lltok::kw_udec_wrap:
7821     Operation = AtomicRMWInst::UDecWrap;
7822     break;
7823   case lltok::kw_fadd:
7824     Operation = AtomicRMWInst::FAdd;
7825     IsFP = true;
7826     break;
7827   case lltok::kw_fsub:
7828     Operation = AtomicRMWInst::FSub;
7829     IsFP = true;
7830     break;
7831   case lltok::kw_fmax:
7832     Operation = AtomicRMWInst::FMax;
7833     IsFP = true;
7834     break;
7835   case lltok::kw_fmin:
7836     Operation = AtomicRMWInst::FMin;
7837     IsFP = true;
7838     break;
7839   }
7840   Lex.Lex();  // Eat the operation.
7841 
7842   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7843       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7844       parseTypeAndValue(Val, ValLoc, PFS) ||
7845       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7846       parseOptionalCommaAlign(Alignment, AteExtraComma))
7847     return true;
7848 
7849   if (Ordering == AtomicOrdering::Unordered)
7850     return tokError("atomicrmw cannot be unordered");
7851   if (!Ptr->getType()->isPointerTy())
7852     return error(PtrLoc, "atomicrmw operand must be a pointer");
7853 
7854   if (Operation == AtomicRMWInst::Xchg) {
7855     if (!Val->getType()->isIntegerTy() &&
7856         !Val->getType()->isFloatingPointTy() &&
7857         !Val->getType()->isPointerTy()) {
7858       return error(
7859           ValLoc,
7860           "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7861               " operand must be an integer, floating point, or pointer type");
7862     }
7863   } else if (IsFP) {
7864     if (!Val->getType()->isFloatingPointTy()) {
7865       return error(ValLoc, "atomicrmw " +
7866                                AtomicRMWInst::getOperationName(Operation) +
7867                                " operand must be a floating point type");
7868     }
7869   } else {
7870     if (!Val->getType()->isIntegerTy()) {
7871       return error(ValLoc, "atomicrmw " +
7872                                AtomicRMWInst::getOperationName(Operation) +
7873                                " operand must be an integer");
7874     }
7875   }
7876 
7877   unsigned Size =
7878       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSizeInBits(
7879           Val->getType());
7880   if (Size < 8 || (Size & (Size - 1)))
7881     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7882                          " integer");
7883   const Align DefaultAlignment(
7884       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7885           Val->getType()));
7886   AtomicRMWInst *RMWI =
7887       new AtomicRMWInst(Operation, Ptr, Val,
7888                         Alignment.value_or(DefaultAlignment), Ordering, SSID);
7889   RMWI->setVolatile(isVolatile);
7890   Inst = RMWI;
7891   return AteExtraComma ? InstExtraComma : InstNormal;
7892 }
7893 
7894 /// parseFence
7895 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7896 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7897   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7898   SyncScope::ID SSID = SyncScope::System;
7899   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7900     return true;
7901 
7902   if (Ordering == AtomicOrdering::Unordered)
7903     return tokError("fence cannot be unordered");
7904   if (Ordering == AtomicOrdering::Monotonic)
7905     return tokError("fence cannot be monotonic");
7906 
7907   Inst = new FenceInst(Context, Ordering, SSID);
7908   return InstNormal;
7909 }
7910 
7911 /// parseGetElementPtr
7912 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7913 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7914   Value *Ptr = nullptr;
7915   Value *Val = nullptr;
7916   LocTy Loc, EltLoc;
7917 
7918   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7919 
7920   Type *Ty = nullptr;
7921   if (parseType(Ty) ||
7922       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7923       parseTypeAndValue(Ptr, Loc, PFS))
7924     return true;
7925 
7926   Type *BaseType = Ptr->getType();
7927   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7928   if (!BasePointerType)
7929     return error(Loc, "base of getelementptr must be a pointer");
7930 
7931   SmallVector<Value*, 16> Indices;
7932   bool AteExtraComma = false;
7933   // GEP returns a vector of pointers if at least one of parameters is a vector.
7934   // All vector parameters should have the same vector width.
7935   ElementCount GEPWidth = BaseType->isVectorTy()
7936                               ? cast<VectorType>(BaseType)->getElementCount()
7937                               : ElementCount::getFixed(0);
7938 
7939   while (EatIfPresent(lltok::comma)) {
7940     if (Lex.getKind() == lltok::MetadataVar) {
7941       AteExtraComma = true;
7942       break;
7943     }
7944     if (parseTypeAndValue(Val, EltLoc, PFS))
7945       return true;
7946     if (!Val->getType()->isIntOrIntVectorTy())
7947       return error(EltLoc, "getelementptr index must be an integer");
7948 
7949     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7950       ElementCount ValNumEl = ValVTy->getElementCount();
7951       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7952         return error(
7953             EltLoc,
7954             "getelementptr vector index has a wrong number of elements");
7955       GEPWidth = ValNumEl;
7956     }
7957     Indices.push_back(Val);
7958   }
7959 
7960   SmallPtrSet<Type*, 4> Visited;
7961   if (!Indices.empty() && !Ty->isSized(&Visited))
7962     return error(Loc, "base element of getelementptr must be sized");
7963 
7964   auto *STy = dyn_cast<StructType>(Ty);
7965   if (STy && STy->containsScalableVectorType())
7966     return error(Loc, "getelementptr cannot target structure that contains "
7967                       "scalable vector type");
7968 
7969   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7970     return error(Loc, "invalid getelementptr indices");
7971   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7972   if (InBounds)
7973     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7974   return AteExtraComma ? InstExtraComma : InstNormal;
7975 }
7976 
7977 /// parseExtractValue
7978 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7979 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7980   Value *Val; LocTy Loc;
7981   SmallVector<unsigned, 4> Indices;
7982   bool AteExtraComma;
7983   if (parseTypeAndValue(Val, Loc, PFS) ||
7984       parseIndexList(Indices, AteExtraComma))
7985     return true;
7986 
7987   if (!Val->getType()->isAggregateType())
7988     return error(Loc, "extractvalue operand must be aggregate type");
7989 
7990   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7991     return error(Loc, "invalid indices for extractvalue");
7992   Inst = ExtractValueInst::Create(Val, Indices);
7993   return AteExtraComma ? InstExtraComma : InstNormal;
7994 }
7995 
7996 /// parseInsertValue
7997 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7998 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7999   Value *Val0, *Val1; LocTy Loc0, Loc1;
8000   SmallVector<unsigned, 4> Indices;
8001   bool AteExtraComma;
8002   if (parseTypeAndValue(Val0, Loc0, PFS) ||
8003       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
8004       parseTypeAndValue(Val1, Loc1, PFS) ||
8005       parseIndexList(Indices, AteExtraComma))
8006     return true;
8007 
8008   if (!Val0->getType()->isAggregateType())
8009     return error(Loc0, "insertvalue operand must be aggregate type");
8010 
8011   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
8012   if (!IndexedType)
8013     return error(Loc0, "invalid indices for insertvalue");
8014   if (IndexedType != Val1->getType())
8015     return error(Loc1, "insertvalue operand and field disagree in type: '" +
8016                            getTypeString(Val1->getType()) + "' instead of '" +
8017                            getTypeString(IndexedType) + "'");
8018   Inst = InsertValueInst::Create(Val0, Val1, Indices);
8019   return AteExtraComma ? InstExtraComma : InstNormal;
8020 }
8021 
8022 //===----------------------------------------------------------------------===//
8023 // Embedded metadata.
8024 //===----------------------------------------------------------------------===//
8025 
8026 /// parseMDNodeVector
8027 ///   ::= { Element (',' Element)* }
8028 /// Element
8029 ///   ::= 'null' | TypeAndValue
8030 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
8031   if (parseToken(lltok::lbrace, "expected '{' here"))
8032     return true;
8033 
8034   // Check for an empty list.
8035   if (EatIfPresent(lltok::rbrace))
8036     return false;
8037 
8038   do {
8039     // Null is a special case since it is typeless.
8040     if (EatIfPresent(lltok::kw_null)) {
8041       Elts.push_back(nullptr);
8042       continue;
8043     }
8044 
8045     Metadata *MD;
8046     if (parseMetadata(MD, nullptr))
8047       return true;
8048     Elts.push_back(MD);
8049   } while (EatIfPresent(lltok::comma));
8050 
8051   return parseToken(lltok::rbrace, "expected end of metadata node");
8052 }
8053 
8054 //===----------------------------------------------------------------------===//
8055 // Use-list order directives.
8056 //===----------------------------------------------------------------------===//
8057 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
8058                                 SMLoc Loc) {
8059   if (V->use_empty())
8060     return error(Loc, "value has no uses");
8061 
8062   unsigned NumUses = 0;
8063   SmallDenseMap<const Use *, unsigned, 16> Order;
8064   for (const Use &U : V->uses()) {
8065     if (++NumUses > Indexes.size())
8066       break;
8067     Order[&U] = Indexes[NumUses - 1];
8068   }
8069   if (NumUses < 2)
8070     return error(Loc, "value only has one use");
8071   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
8072     return error(Loc,
8073                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
8074 
8075   V->sortUseList([&](const Use &L, const Use &R) {
8076     return Order.lookup(&L) < Order.lookup(&R);
8077   });
8078   return false;
8079 }
8080 
8081 /// parseUseListOrderIndexes
8082 ///   ::= '{' uint32 (',' uint32)+ '}'
8083 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
8084   SMLoc Loc = Lex.getLoc();
8085   if (parseToken(lltok::lbrace, "expected '{' here"))
8086     return true;
8087   if (Lex.getKind() == lltok::rbrace)
8088     return Lex.Error("expected non-empty list of uselistorder indexes");
8089 
8090   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
8091   // indexes should be distinct numbers in the range [0, size-1], and should
8092   // not be in order.
8093   unsigned Offset = 0;
8094   unsigned Max = 0;
8095   bool IsOrdered = true;
8096   assert(Indexes.empty() && "Expected empty order vector");
8097   do {
8098     unsigned Index;
8099     if (parseUInt32(Index))
8100       return true;
8101 
8102     // Update consistency checks.
8103     Offset += Index - Indexes.size();
8104     Max = std::max(Max, Index);
8105     IsOrdered &= Index == Indexes.size();
8106 
8107     Indexes.push_back(Index);
8108   } while (EatIfPresent(lltok::comma));
8109 
8110   if (parseToken(lltok::rbrace, "expected '}' here"))
8111     return true;
8112 
8113   if (Indexes.size() < 2)
8114     return error(Loc, "expected >= 2 uselistorder indexes");
8115   if (Offset != 0 || Max >= Indexes.size())
8116     return error(Loc,
8117                  "expected distinct uselistorder indexes in range [0, size)");
8118   if (IsOrdered)
8119     return error(Loc, "expected uselistorder indexes to change the order");
8120 
8121   return false;
8122 }
8123 
8124 /// parseUseListOrder
8125 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
8126 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
8127   SMLoc Loc = Lex.getLoc();
8128   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
8129     return true;
8130 
8131   Value *V;
8132   SmallVector<unsigned, 16> Indexes;
8133   if (parseTypeAndValue(V, PFS) ||
8134       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
8135       parseUseListOrderIndexes(Indexes))
8136     return true;
8137 
8138   return sortUseListOrder(V, Indexes, Loc);
8139 }
8140 
8141 /// parseUseListOrderBB
8142 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
8143 bool LLParser::parseUseListOrderBB() {
8144   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
8145   SMLoc Loc = Lex.getLoc();
8146   Lex.Lex();
8147 
8148   ValID Fn, Label;
8149   SmallVector<unsigned, 16> Indexes;
8150   if (parseValID(Fn, /*PFS=*/nullptr) ||
8151       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
8152       parseValID(Label, /*PFS=*/nullptr) ||
8153       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
8154       parseUseListOrderIndexes(Indexes))
8155     return true;
8156 
8157   // Check the function.
8158   GlobalValue *GV;
8159   if (Fn.Kind == ValID::t_GlobalName)
8160     GV = M->getNamedValue(Fn.StrVal);
8161   else if (Fn.Kind == ValID::t_GlobalID)
8162     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
8163   else
8164     return error(Fn.Loc, "expected function name in uselistorder_bb");
8165   if (!GV)
8166     return error(Fn.Loc,
8167                  "invalid function forward reference in uselistorder_bb");
8168   auto *F = dyn_cast<Function>(GV);
8169   if (!F)
8170     return error(Fn.Loc, "expected function name in uselistorder_bb");
8171   if (F->isDeclaration())
8172     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
8173 
8174   // Check the basic block.
8175   if (Label.Kind == ValID::t_LocalID)
8176     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
8177   if (Label.Kind != ValID::t_LocalName)
8178     return error(Label.Loc, "expected basic block name in uselistorder_bb");
8179   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
8180   if (!V)
8181     return error(Label.Loc, "invalid basic block in uselistorder_bb");
8182   if (!isa<BasicBlock>(V))
8183     return error(Label.Loc, "expected basic block in uselistorder_bb");
8184 
8185   return sortUseListOrder(V, Indexes, Loc);
8186 }
8187 
8188 /// ModuleEntry
8189 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
8190 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
8191 bool LLParser::parseModuleEntry(unsigned ID) {
8192   assert(Lex.getKind() == lltok::kw_module);
8193   Lex.Lex();
8194 
8195   std::string Path;
8196   if (parseToken(lltok::colon, "expected ':' here") ||
8197       parseToken(lltok::lparen, "expected '(' here") ||
8198       parseToken(lltok::kw_path, "expected 'path' here") ||
8199       parseToken(lltok::colon, "expected ':' here") ||
8200       parseStringConstant(Path) ||
8201       parseToken(lltok::comma, "expected ',' here") ||
8202       parseToken(lltok::kw_hash, "expected 'hash' here") ||
8203       parseToken(lltok::colon, "expected ':' here") ||
8204       parseToken(lltok::lparen, "expected '(' here"))
8205     return true;
8206 
8207   ModuleHash Hash;
8208   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
8209       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
8210       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
8211       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
8212       parseUInt32(Hash[4]))
8213     return true;
8214 
8215   if (parseToken(lltok::rparen, "expected ')' here") ||
8216       parseToken(lltok::rparen, "expected ')' here"))
8217     return true;
8218 
8219   auto ModuleEntry = Index->addModule(Path, Hash);
8220   ModuleIdMap[ID] = ModuleEntry->first();
8221 
8222   return false;
8223 }
8224 
8225 /// TypeIdEntry
8226 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
8227 bool LLParser::parseTypeIdEntry(unsigned ID) {
8228   assert(Lex.getKind() == lltok::kw_typeid);
8229   Lex.Lex();
8230 
8231   std::string Name;
8232   if (parseToken(lltok::colon, "expected ':' here") ||
8233       parseToken(lltok::lparen, "expected '(' here") ||
8234       parseToken(lltok::kw_name, "expected 'name' here") ||
8235       parseToken(lltok::colon, "expected ':' here") ||
8236       parseStringConstant(Name))
8237     return true;
8238 
8239   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
8240   if (parseToken(lltok::comma, "expected ',' here") ||
8241       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
8242     return true;
8243 
8244   // Check if this ID was forward referenced, and if so, update the
8245   // corresponding GUIDs.
8246   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8247   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8248     for (auto TIDRef : FwdRefTIDs->second) {
8249       assert(!*TIDRef.first &&
8250              "Forward referenced type id GUID expected to be 0");
8251       *TIDRef.first = GlobalValue::getGUID(Name);
8252     }
8253     ForwardRefTypeIds.erase(FwdRefTIDs);
8254   }
8255 
8256   return false;
8257 }
8258 
8259 /// TypeIdSummary
8260 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
8261 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
8262   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
8263       parseToken(lltok::colon, "expected ':' here") ||
8264       parseToken(lltok::lparen, "expected '(' here") ||
8265       parseTypeTestResolution(TIS.TTRes))
8266     return true;
8267 
8268   if (EatIfPresent(lltok::comma)) {
8269     // Expect optional wpdResolutions field
8270     if (parseOptionalWpdResolutions(TIS.WPDRes))
8271       return true;
8272   }
8273 
8274   if (parseToken(lltok::rparen, "expected ')' here"))
8275     return true;
8276 
8277   return false;
8278 }
8279 
8280 static ValueInfo EmptyVI =
8281     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
8282 
8283 /// TypeIdCompatibleVtableEntry
8284 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
8285 ///   TypeIdCompatibleVtableInfo
8286 ///   ')'
8287 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
8288   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
8289   Lex.Lex();
8290 
8291   std::string Name;
8292   if (parseToken(lltok::colon, "expected ':' here") ||
8293       parseToken(lltok::lparen, "expected '(' here") ||
8294       parseToken(lltok::kw_name, "expected 'name' here") ||
8295       parseToken(lltok::colon, "expected ':' here") ||
8296       parseStringConstant(Name))
8297     return true;
8298 
8299   TypeIdCompatibleVtableInfo &TI =
8300       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
8301   if (parseToken(lltok::comma, "expected ',' here") ||
8302       parseToken(lltok::kw_summary, "expected 'summary' here") ||
8303       parseToken(lltok::colon, "expected ':' here") ||
8304       parseToken(lltok::lparen, "expected '(' here"))
8305     return true;
8306 
8307   IdToIndexMapType IdToIndexMap;
8308   // parse each call edge
8309   do {
8310     uint64_t Offset;
8311     if (parseToken(lltok::lparen, "expected '(' here") ||
8312         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8313         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8314         parseToken(lltok::comma, "expected ',' here"))
8315       return true;
8316 
8317     LocTy Loc = Lex.getLoc();
8318     unsigned GVId;
8319     ValueInfo VI;
8320     if (parseGVReference(VI, GVId))
8321       return true;
8322 
8323     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
8324     // forward reference. We will save the location of the ValueInfo needing an
8325     // update, but can only do so once the std::vector is finalized.
8326     if (VI == EmptyVI)
8327       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
8328     TI.push_back({Offset, VI});
8329 
8330     if (parseToken(lltok::rparen, "expected ')' in call"))
8331       return true;
8332   } while (EatIfPresent(lltok::comma));
8333 
8334   // Now that the TI vector is finalized, it is safe to save the locations
8335   // of any forward GV references that need updating later.
8336   for (auto I : IdToIndexMap) {
8337     auto &Infos = ForwardRefValueInfos[I.first];
8338     for (auto P : I.second) {
8339       assert(TI[P.first].VTableVI == EmptyVI &&
8340              "Forward referenced ValueInfo expected to be empty");
8341       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
8342     }
8343   }
8344 
8345   if (parseToken(lltok::rparen, "expected ')' here") ||
8346       parseToken(lltok::rparen, "expected ')' here"))
8347     return true;
8348 
8349   // Check if this ID was forward referenced, and if so, update the
8350   // corresponding GUIDs.
8351   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8352   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8353     for (auto TIDRef : FwdRefTIDs->second) {
8354       assert(!*TIDRef.first &&
8355              "Forward referenced type id GUID expected to be 0");
8356       *TIDRef.first = GlobalValue::getGUID(Name);
8357     }
8358     ForwardRefTypeIds.erase(FwdRefTIDs);
8359   }
8360 
8361   return false;
8362 }
8363 
8364 /// TypeTestResolution
8365 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
8366 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
8367 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
8368 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
8369 ///         [',' 'inlinesBits' ':' UInt64]? ')'
8370 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
8371   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
8372       parseToken(lltok::colon, "expected ':' here") ||
8373       parseToken(lltok::lparen, "expected '(' here") ||
8374       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8375       parseToken(lltok::colon, "expected ':' here"))
8376     return true;
8377 
8378   switch (Lex.getKind()) {
8379   case lltok::kw_unknown:
8380     TTRes.TheKind = TypeTestResolution::Unknown;
8381     break;
8382   case lltok::kw_unsat:
8383     TTRes.TheKind = TypeTestResolution::Unsat;
8384     break;
8385   case lltok::kw_byteArray:
8386     TTRes.TheKind = TypeTestResolution::ByteArray;
8387     break;
8388   case lltok::kw_inline:
8389     TTRes.TheKind = TypeTestResolution::Inline;
8390     break;
8391   case lltok::kw_single:
8392     TTRes.TheKind = TypeTestResolution::Single;
8393     break;
8394   case lltok::kw_allOnes:
8395     TTRes.TheKind = TypeTestResolution::AllOnes;
8396     break;
8397   default:
8398     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
8399   }
8400   Lex.Lex();
8401 
8402   if (parseToken(lltok::comma, "expected ',' here") ||
8403       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
8404       parseToken(lltok::colon, "expected ':' here") ||
8405       parseUInt32(TTRes.SizeM1BitWidth))
8406     return true;
8407 
8408   // parse optional fields
8409   while (EatIfPresent(lltok::comma)) {
8410     switch (Lex.getKind()) {
8411     case lltok::kw_alignLog2:
8412       Lex.Lex();
8413       if (parseToken(lltok::colon, "expected ':'") ||
8414           parseUInt64(TTRes.AlignLog2))
8415         return true;
8416       break;
8417     case lltok::kw_sizeM1:
8418       Lex.Lex();
8419       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
8420         return true;
8421       break;
8422     case lltok::kw_bitMask: {
8423       unsigned Val;
8424       Lex.Lex();
8425       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
8426         return true;
8427       assert(Val <= 0xff);
8428       TTRes.BitMask = (uint8_t)Val;
8429       break;
8430     }
8431     case lltok::kw_inlineBits:
8432       Lex.Lex();
8433       if (parseToken(lltok::colon, "expected ':'") ||
8434           parseUInt64(TTRes.InlineBits))
8435         return true;
8436       break;
8437     default:
8438       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
8439     }
8440   }
8441 
8442   if (parseToken(lltok::rparen, "expected ')' here"))
8443     return true;
8444 
8445   return false;
8446 }
8447 
8448 /// OptionalWpdResolutions
8449 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8450 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
8451 bool LLParser::parseOptionalWpdResolutions(
8452     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8453   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8454       parseToken(lltok::colon, "expected ':' here") ||
8455       parseToken(lltok::lparen, "expected '(' here"))
8456     return true;
8457 
8458   do {
8459     uint64_t Offset;
8460     WholeProgramDevirtResolution WPDRes;
8461     if (parseToken(lltok::lparen, "expected '(' here") ||
8462         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8463         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8464         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
8465         parseToken(lltok::rparen, "expected ')' here"))
8466       return true;
8467     WPDResMap[Offset] = WPDRes;
8468   } while (EatIfPresent(lltok::comma));
8469 
8470   if (parseToken(lltok::rparen, "expected ')' here"))
8471     return true;
8472 
8473   return false;
8474 }
8475 
8476 /// WpdRes
8477 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
8478 ///         [',' OptionalResByArg]? ')'
8479 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8480 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
8481 ///         [',' OptionalResByArg]? ')'
8482 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8483 ///         [',' OptionalResByArg]? ')'
8484 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8485   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
8486       parseToken(lltok::colon, "expected ':' here") ||
8487       parseToken(lltok::lparen, "expected '(' here") ||
8488       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8489       parseToken(lltok::colon, "expected ':' here"))
8490     return true;
8491 
8492   switch (Lex.getKind()) {
8493   case lltok::kw_indir:
8494     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8495     break;
8496   case lltok::kw_singleImpl:
8497     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8498     break;
8499   case lltok::kw_branchFunnel:
8500     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8501     break;
8502   default:
8503     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8504   }
8505   Lex.Lex();
8506 
8507   // parse optional fields
8508   while (EatIfPresent(lltok::comma)) {
8509     switch (Lex.getKind()) {
8510     case lltok::kw_singleImplName:
8511       Lex.Lex();
8512       if (parseToken(lltok::colon, "expected ':' here") ||
8513           parseStringConstant(WPDRes.SingleImplName))
8514         return true;
8515       break;
8516     case lltok::kw_resByArg:
8517       if (parseOptionalResByArg(WPDRes.ResByArg))
8518         return true;
8519       break;
8520     default:
8521       return error(Lex.getLoc(),
8522                    "expected optional WholeProgramDevirtResolution field");
8523     }
8524   }
8525 
8526   if (parseToken(lltok::rparen, "expected ')' here"))
8527     return true;
8528 
8529   return false;
8530 }
8531 
8532 /// OptionalResByArg
8533 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8534 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8535 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8536 ///                  'virtualConstProp' )
8537 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8538 ///                [',' 'bit' ':' UInt32]? ')'
8539 bool LLParser::parseOptionalResByArg(
8540     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8541         &ResByArg) {
8542   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8543       parseToken(lltok::colon, "expected ':' here") ||
8544       parseToken(lltok::lparen, "expected '(' here"))
8545     return true;
8546 
8547   do {
8548     std::vector<uint64_t> Args;
8549     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8550         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8551         parseToken(lltok::colon, "expected ':' here") ||
8552         parseToken(lltok::lparen, "expected '(' here") ||
8553         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8554         parseToken(lltok::colon, "expected ':' here"))
8555       return true;
8556 
8557     WholeProgramDevirtResolution::ByArg ByArg;
8558     switch (Lex.getKind()) {
8559     case lltok::kw_indir:
8560       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8561       break;
8562     case lltok::kw_uniformRetVal:
8563       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8564       break;
8565     case lltok::kw_uniqueRetVal:
8566       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8567       break;
8568     case lltok::kw_virtualConstProp:
8569       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8570       break;
8571     default:
8572       return error(Lex.getLoc(),
8573                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8574     }
8575     Lex.Lex();
8576 
8577     // parse optional fields
8578     while (EatIfPresent(lltok::comma)) {
8579       switch (Lex.getKind()) {
8580       case lltok::kw_info:
8581         Lex.Lex();
8582         if (parseToken(lltok::colon, "expected ':' here") ||
8583             parseUInt64(ByArg.Info))
8584           return true;
8585         break;
8586       case lltok::kw_byte:
8587         Lex.Lex();
8588         if (parseToken(lltok::colon, "expected ':' here") ||
8589             parseUInt32(ByArg.Byte))
8590           return true;
8591         break;
8592       case lltok::kw_bit:
8593         Lex.Lex();
8594         if (parseToken(lltok::colon, "expected ':' here") ||
8595             parseUInt32(ByArg.Bit))
8596           return true;
8597         break;
8598       default:
8599         return error(Lex.getLoc(),
8600                      "expected optional whole program devirt field");
8601       }
8602     }
8603 
8604     if (parseToken(lltok::rparen, "expected ')' here"))
8605       return true;
8606 
8607     ResByArg[Args] = ByArg;
8608   } while (EatIfPresent(lltok::comma));
8609 
8610   if (parseToken(lltok::rparen, "expected ')' here"))
8611     return true;
8612 
8613   return false;
8614 }
8615 
8616 /// OptionalResByArg
8617 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8618 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8619   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8620       parseToken(lltok::colon, "expected ':' here") ||
8621       parseToken(lltok::lparen, "expected '(' here"))
8622     return true;
8623 
8624   do {
8625     uint64_t Val;
8626     if (parseUInt64(Val))
8627       return true;
8628     Args.push_back(Val);
8629   } while (EatIfPresent(lltok::comma));
8630 
8631   if (parseToken(lltok::rparen, "expected ')' here"))
8632     return true;
8633 
8634   return false;
8635 }
8636 
8637 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8638 
8639 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8640   bool ReadOnly = Fwd->isReadOnly();
8641   bool WriteOnly = Fwd->isWriteOnly();
8642   assert(!(ReadOnly && WriteOnly));
8643   *Fwd = Resolved;
8644   if (ReadOnly)
8645     Fwd->setReadOnly();
8646   if (WriteOnly)
8647     Fwd->setWriteOnly();
8648 }
8649 
8650 /// Stores the given Name/GUID and associated summary into the Index.
8651 /// Also updates any forward references to the associated entry ID.
8652 bool LLParser::addGlobalValueToIndex(
8653     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8654     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary, LocTy Loc) {
8655   // First create the ValueInfo utilizing the Name or GUID.
8656   ValueInfo VI;
8657   if (GUID != 0) {
8658     assert(Name.empty());
8659     VI = Index->getOrInsertValueInfo(GUID);
8660   } else {
8661     assert(!Name.empty());
8662     if (M) {
8663       auto *GV = M->getNamedValue(Name);
8664       if (!GV)
8665         return error(Loc, "Reference to undefined global \"" + Name + "\"");
8666 
8667       VI = Index->getOrInsertValueInfo(GV);
8668     } else {
8669       assert(
8670           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8671           "Need a source_filename to compute GUID for local");
8672       GUID = GlobalValue::getGUID(
8673           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8674       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8675     }
8676   }
8677 
8678   // Resolve forward references from calls/refs
8679   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8680   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8681     for (auto VIRef : FwdRefVIs->second) {
8682       assert(VIRef.first->getRef() == FwdVIRef &&
8683              "Forward referenced ValueInfo expected to be empty");
8684       resolveFwdRef(VIRef.first, VI);
8685     }
8686     ForwardRefValueInfos.erase(FwdRefVIs);
8687   }
8688 
8689   // Resolve forward references from aliases
8690   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8691   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8692     for (auto AliaseeRef : FwdRefAliasees->second) {
8693       assert(!AliaseeRef.first->hasAliasee() &&
8694              "Forward referencing alias already has aliasee");
8695       assert(Summary && "Aliasee must be a definition");
8696       AliaseeRef.first->setAliasee(VI, Summary.get());
8697     }
8698     ForwardRefAliasees.erase(FwdRefAliasees);
8699   }
8700 
8701   // Add the summary if one was provided.
8702   if (Summary)
8703     Index->addGlobalValueSummary(VI, std::move(Summary));
8704 
8705   // Save the associated ValueInfo for use in later references by ID.
8706   if (ID == NumberedValueInfos.size())
8707     NumberedValueInfos.push_back(VI);
8708   else {
8709     // Handle non-continuous numbers (to make test simplification easier).
8710     if (ID > NumberedValueInfos.size())
8711       NumberedValueInfos.resize(ID + 1);
8712     NumberedValueInfos[ID] = VI;
8713   }
8714 
8715   return false;
8716 }
8717 
8718 /// parseSummaryIndexFlags
8719 ///   ::= 'flags' ':' UInt64
8720 bool LLParser::parseSummaryIndexFlags() {
8721   assert(Lex.getKind() == lltok::kw_flags);
8722   Lex.Lex();
8723 
8724   if (parseToken(lltok::colon, "expected ':' here"))
8725     return true;
8726   uint64_t Flags;
8727   if (parseUInt64(Flags))
8728     return true;
8729   if (Index)
8730     Index->setFlags(Flags);
8731   return false;
8732 }
8733 
8734 /// parseBlockCount
8735 ///   ::= 'blockcount' ':' UInt64
8736 bool LLParser::parseBlockCount() {
8737   assert(Lex.getKind() == lltok::kw_blockcount);
8738   Lex.Lex();
8739 
8740   if (parseToken(lltok::colon, "expected ':' here"))
8741     return true;
8742   uint64_t BlockCount;
8743   if (parseUInt64(BlockCount))
8744     return true;
8745   if (Index)
8746     Index->setBlockCount(BlockCount);
8747   return false;
8748 }
8749 
8750 /// parseGVEntry
8751 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8752 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8753 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8754 bool LLParser::parseGVEntry(unsigned ID) {
8755   assert(Lex.getKind() == lltok::kw_gv);
8756   Lex.Lex();
8757 
8758   if (parseToken(lltok::colon, "expected ':' here") ||
8759       parseToken(lltok::lparen, "expected '(' here"))
8760     return true;
8761 
8762   LocTy Loc = Lex.getLoc();
8763   std::string Name;
8764   GlobalValue::GUID GUID = 0;
8765   switch (Lex.getKind()) {
8766   case lltok::kw_name:
8767     Lex.Lex();
8768     if (parseToken(lltok::colon, "expected ':' here") ||
8769         parseStringConstant(Name))
8770       return true;
8771     // Can't create GUID/ValueInfo until we have the linkage.
8772     break;
8773   case lltok::kw_guid:
8774     Lex.Lex();
8775     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8776       return true;
8777     break;
8778   default:
8779     return error(Lex.getLoc(), "expected name or guid tag");
8780   }
8781 
8782   if (!EatIfPresent(lltok::comma)) {
8783     // No summaries. Wrap up.
8784     if (parseToken(lltok::rparen, "expected ')' here"))
8785       return true;
8786     // This was created for a call to an external or indirect target.
8787     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8788     // created for indirect calls with VP. A Name with no GUID came from
8789     // an external definition. We pass ExternalLinkage since that is only
8790     // used when the GUID must be computed from Name, and in that case
8791     // the symbol must have external linkage.
8792     return addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8793                                  nullptr, Loc);
8794   }
8795 
8796   // Have a list of summaries
8797   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8798       parseToken(lltok::colon, "expected ':' here") ||
8799       parseToken(lltok::lparen, "expected '(' here"))
8800     return true;
8801   do {
8802     switch (Lex.getKind()) {
8803     case lltok::kw_function:
8804       if (parseFunctionSummary(Name, GUID, ID))
8805         return true;
8806       break;
8807     case lltok::kw_variable:
8808       if (parseVariableSummary(Name, GUID, ID))
8809         return true;
8810       break;
8811     case lltok::kw_alias:
8812       if (parseAliasSummary(Name, GUID, ID))
8813         return true;
8814       break;
8815     default:
8816       return error(Lex.getLoc(), "expected summary type");
8817     }
8818   } while (EatIfPresent(lltok::comma));
8819 
8820   if (parseToken(lltok::rparen, "expected ')' here") ||
8821       parseToken(lltok::rparen, "expected ')' here"))
8822     return true;
8823 
8824   return false;
8825 }
8826 
8827 /// FunctionSummary
8828 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8829 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8830 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8831 ///         [',' OptionalRefs]? ')'
8832 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8833                                     unsigned ID) {
8834   LocTy Loc = Lex.getLoc();
8835   assert(Lex.getKind() == lltok::kw_function);
8836   Lex.Lex();
8837 
8838   StringRef ModulePath;
8839   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8840       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8841       /*NotEligibleToImport=*/false,
8842       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8843   unsigned InstCount;
8844   std::vector<FunctionSummary::EdgeTy> Calls;
8845   FunctionSummary::TypeIdInfo TypeIdInfo;
8846   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8847   std::vector<ValueInfo> Refs;
8848   std::vector<CallsiteInfo> Callsites;
8849   std::vector<AllocInfo> Allocs;
8850   // Default is all-zeros (conservative values).
8851   FunctionSummary::FFlags FFlags = {};
8852   if (parseToken(lltok::colon, "expected ':' here") ||
8853       parseToken(lltok::lparen, "expected '(' here") ||
8854       parseModuleReference(ModulePath) ||
8855       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8856       parseToken(lltok::comma, "expected ',' here") ||
8857       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8858       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8859     return true;
8860 
8861   // parse optional fields
8862   while (EatIfPresent(lltok::comma)) {
8863     switch (Lex.getKind()) {
8864     case lltok::kw_funcFlags:
8865       if (parseOptionalFFlags(FFlags))
8866         return true;
8867       break;
8868     case lltok::kw_calls:
8869       if (parseOptionalCalls(Calls))
8870         return true;
8871       break;
8872     case lltok::kw_typeIdInfo:
8873       if (parseOptionalTypeIdInfo(TypeIdInfo))
8874         return true;
8875       break;
8876     case lltok::kw_refs:
8877       if (parseOptionalRefs(Refs))
8878         return true;
8879       break;
8880     case lltok::kw_params:
8881       if (parseOptionalParamAccesses(ParamAccesses))
8882         return true;
8883       break;
8884     case lltok::kw_allocs:
8885       if (parseOptionalAllocs(Allocs))
8886         return true;
8887       break;
8888     case lltok::kw_callsites:
8889       if (parseOptionalCallsites(Callsites))
8890         return true;
8891       break;
8892     default:
8893       return error(Lex.getLoc(), "expected optional function summary field");
8894     }
8895   }
8896 
8897   if (parseToken(lltok::rparen, "expected ')' here"))
8898     return true;
8899 
8900   auto FS = std::make_unique<FunctionSummary>(
8901       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8902       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8903       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8904       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8905       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8906       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8907       std::move(ParamAccesses), std::move(Callsites), std::move(Allocs));
8908 
8909   FS->setModulePath(ModulePath);
8910 
8911   return addGlobalValueToIndex(Name, GUID,
8912                                (GlobalValue::LinkageTypes)GVFlags.Linkage, ID,
8913                                std::move(FS), Loc);
8914 }
8915 
8916 /// VariableSummary
8917 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8918 ///         [',' OptionalRefs]? ')'
8919 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8920                                     unsigned ID) {
8921   LocTy Loc = Lex.getLoc();
8922   assert(Lex.getKind() == lltok::kw_variable);
8923   Lex.Lex();
8924 
8925   StringRef ModulePath;
8926   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8927       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8928       /*NotEligibleToImport=*/false,
8929       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8930   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8931                                         /* WriteOnly */ false,
8932                                         /* Constant */ false,
8933                                         GlobalObject::VCallVisibilityPublic);
8934   std::vector<ValueInfo> Refs;
8935   VTableFuncList VTableFuncs;
8936   if (parseToken(lltok::colon, "expected ':' here") ||
8937       parseToken(lltok::lparen, "expected '(' here") ||
8938       parseModuleReference(ModulePath) ||
8939       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8940       parseToken(lltok::comma, "expected ',' here") ||
8941       parseGVarFlags(GVarFlags))
8942     return true;
8943 
8944   // parse optional fields
8945   while (EatIfPresent(lltok::comma)) {
8946     switch (Lex.getKind()) {
8947     case lltok::kw_vTableFuncs:
8948       if (parseOptionalVTableFuncs(VTableFuncs))
8949         return true;
8950       break;
8951     case lltok::kw_refs:
8952       if (parseOptionalRefs(Refs))
8953         return true;
8954       break;
8955     default:
8956       return error(Lex.getLoc(), "expected optional variable summary field");
8957     }
8958   }
8959 
8960   if (parseToken(lltok::rparen, "expected ')' here"))
8961     return true;
8962 
8963   auto GS =
8964       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8965 
8966   GS->setModulePath(ModulePath);
8967   GS->setVTableFuncs(std::move(VTableFuncs));
8968 
8969   return addGlobalValueToIndex(Name, GUID,
8970                                (GlobalValue::LinkageTypes)GVFlags.Linkage, ID,
8971                                std::move(GS), Loc);
8972 }
8973 
8974 /// AliasSummary
8975 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8976 ///         'aliasee' ':' GVReference ')'
8977 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8978                                  unsigned ID) {
8979   assert(Lex.getKind() == lltok::kw_alias);
8980   LocTy Loc = Lex.getLoc();
8981   Lex.Lex();
8982 
8983   StringRef ModulePath;
8984   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8985       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8986       /*NotEligibleToImport=*/false,
8987       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8988   if (parseToken(lltok::colon, "expected ':' here") ||
8989       parseToken(lltok::lparen, "expected '(' here") ||
8990       parseModuleReference(ModulePath) ||
8991       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8992       parseToken(lltok::comma, "expected ',' here") ||
8993       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8994       parseToken(lltok::colon, "expected ':' here"))
8995     return true;
8996 
8997   ValueInfo AliaseeVI;
8998   unsigned GVId;
8999   if (parseGVReference(AliaseeVI, GVId))
9000     return true;
9001 
9002   if (parseToken(lltok::rparen, "expected ')' here"))
9003     return true;
9004 
9005   auto AS = std::make_unique<AliasSummary>(GVFlags);
9006 
9007   AS->setModulePath(ModulePath);
9008 
9009   // Record forward reference if the aliasee is not parsed yet.
9010   if (AliaseeVI.getRef() == FwdVIRef) {
9011     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
9012   } else {
9013     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
9014     assert(Summary && "Aliasee must be a definition");
9015     AS->setAliasee(AliaseeVI, Summary);
9016   }
9017 
9018   return addGlobalValueToIndex(Name, GUID,
9019                                (GlobalValue::LinkageTypes)GVFlags.Linkage, ID,
9020                                std::move(AS), Loc);
9021 }
9022 
9023 /// Flag
9024 ///   ::= [0|1]
9025 bool LLParser::parseFlag(unsigned &Val) {
9026   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
9027     return tokError("expected integer");
9028   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
9029   Lex.Lex();
9030   return false;
9031 }
9032 
9033 /// OptionalFFlags
9034 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
9035 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
9036 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
9037 ///        [',' 'noInline' ':' Flag]? ')'
9038 ///        [',' 'alwaysInline' ':' Flag]? ')'
9039 ///        [',' 'noUnwind' ':' Flag]? ')'
9040 ///        [',' 'mayThrow' ':' Flag]? ')'
9041 ///        [',' 'hasUnknownCall' ':' Flag]? ')'
9042 ///        [',' 'mustBeUnreachable' ':' Flag]? ')'
9043 
9044 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
9045   assert(Lex.getKind() == lltok::kw_funcFlags);
9046   Lex.Lex();
9047 
9048   if (parseToken(lltok::colon, "expected ':' in funcFlags") ||
9049       parseToken(lltok::lparen, "expected '(' in funcFlags"))
9050     return true;
9051 
9052   do {
9053     unsigned Val = 0;
9054     switch (Lex.getKind()) {
9055     case lltok::kw_readNone:
9056       Lex.Lex();
9057       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9058         return true;
9059       FFlags.ReadNone = Val;
9060       break;
9061     case lltok::kw_readOnly:
9062       Lex.Lex();
9063       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9064         return true;
9065       FFlags.ReadOnly = Val;
9066       break;
9067     case lltok::kw_noRecurse:
9068       Lex.Lex();
9069       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9070         return true;
9071       FFlags.NoRecurse = Val;
9072       break;
9073     case lltok::kw_returnDoesNotAlias:
9074       Lex.Lex();
9075       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9076         return true;
9077       FFlags.ReturnDoesNotAlias = Val;
9078       break;
9079     case lltok::kw_noInline:
9080       Lex.Lex();
9081       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9082         return true;
9083       FFlags.NoInline = Val;
9084       break;
9085     case lltok::kw_alwaysInline:
9086       Lex.Lex();
9087       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9088         return true;
9089       FFlags.AlwaysInline = Val;
9090       break;
9091     case lltok::kw_noUnwind:
9092       Lex.Lex();
9093       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9094         return true;
9095       FFlags.NoUnwind = Val;
9096       break;
9097     case lltok::kw_mayThrow:
9098       Lex.Lex();
9099       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9100         return true;
9101       FFlags.MayThrow = Val;
9102       break;
9103     case lltok::kw_hasUnknownCall:
9104       Lex.Lex();
9105       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9106         return true;
9107       FFlags.HasUnknownCall = Val;
9108       break;
9109     case lltok::kw_mustBeUnreachable:
9110       Lex.Lex();
9111       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9112         return true;
9113       FFlags.MustBeUnreachable = Val;
9114       break;
9115     default:
9116       return error(Lex.getLoc(), "expected function flag type");
9117     }
9118   } while (EatIfPresent(lltok::comma));
9119 
9120   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
9121     return true;
9122 
9123   return false;
9124 }
9125 
9126 /// OptionalCalls
9127 ///   := 'calls' ':' '(' Call [',' Call]* ')'
9128 /// Call ::= '(' 'callee' ':' GVReference
9129 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]?
9130 ///            [ ',' 'tail' ]? ')'
9131 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
9132   assert(Lex.getKind() == lltok::kw_calls);
9133   Lex.Lex();
9134 
9135   if (parseToken(lltok::colon, "expected ':' in calls") ||
9136       parseToken(lltok::lparen, "expected '(' in calls"))
9137     return true;
9138 
9139   IdToIndexMapType IdToIndexMap;
9140   // parse each call edge
9141   do {
9142     ValueInfo VI;
9143     if (parseToken(lltok::lparen, "expected '(' in call") ||
9144         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
9145         parseToken(lltok::colon, "expected ':'"))
9146       return true;
9147 
9148     LocTy Loc = Lex.getLoc();
9149     unsigned GVId;
9150     if (parseGVReference(VI, GVId))
9151       return true;
9152 
9153     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
9154     unsigned RelBF = 0;
9155     unsigned HasTailCall = false;
9156 
9157     // parse optional fields
9158     while (EatIfPresent(lltok::comma)) {
9159       switch (Lex.getKind()) {
9160       case lltok::kw_hotness:
9161         Lex.Lex();
9162         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
9163           return true;
9164         break;
9165       case lltok::kw_relbf:
9166         Lex.Lex();
9167         if (parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
9168           return true;
9169         break;
9170       case lltok::kw_tail:
9171         Lex.Lex();
9172         if (parseToken(lltok::colon, "expected ':'") || parseFlag(HasTailCall))
9173           return true;
9174         break;
9175       default:
9176         return error(Lex.getLoc(), "expected hotness, relbf, or tail");
9177       }
9178     }
9179     if (Hotness != CalleeInfo::HotnessType::Unknown && RelBF > 0)
9180       return tokError("Expected only one of hotness or relbf");
9181     // Keep track of the Call array index needing a forward reference.
9182     // We will save the location of the ValueInfo needing an update, but
9183     // can only do so once the std::vector is finalized.
9184     if (VI.getRef() == FwdVIRef)
9185       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
9186     Calls.push_back(
9187         FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, HasTailCall, RelBF)});
9188 
9189     if (parseToken(lltok::rparen, "expected ')' in call"))
9190       return true;
9191   } while (EatIfPresent(lltok::comma));
9192 
9193   // Now that the Calls vector is finalized, it is safe to save the locations
9194   // of any forward GV references that need updating later.
9195   for (auto I : IdToIndexMap) {
9196     auto &Infos = ForwardRefValueInfos[I.first];
9197     for (auto P : I.second) {
9198       assert(Calls[P.first].first.getRef() == FwdVIRef &&
9199              "Forward referenced ValueInfo expected to be empty");
9200       Infos.emplace_back(&Calls[P.first].first, P.second);
9201     }
9202   }
9203 
9204   if (parseToken(lltok::rparen, "expected ')' in calls"))
9205     return true;
9206 
9207   return false;
9208 }
9209 
9210 /// Hotness
9211 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
9212 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
9213   switch (Lex.getKind()) {
9214   case lltok::kw_unknown:
9215     Hotness = CalleeInfo::HotnessType::Unknown;
9216     break;
9217   case lltok::kw_cold:
9218     Hotness = CalleeInfo::HotnessType::Cold;
9219     break;
9220   case lltok::kw_none:
9221     Hotness = CalleeInfo::HotnessType::None;
9222     break;
9223   case lltok::kw_hot:
9224     Hotness = CalleeInfo::HotnessType::Hot;
9225     break;
9226   case lltok::kw_critical:
9227     Hotness = CalleeInfo::HotnessType::Critical;
9228     break;
9229   default:
9230     return error(Lex.getLoc(), "invalid call edge hotness");
9231   }
9232   Lex.Lex();
9233   return false;
9234 }
9235 
9236 /// OptionalVTableFuncs
9237 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
9238 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
9239 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
9240   assert(Lex.getKind() == lltok::kw_vTableFuncs);
9241   Lex.Lex();
9242 
9243   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") ||
9244       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
9245     return true;
9246 
9247   IdToIndexMapType IdToIndexMap;
9248   // parse each virtual function pair
9249   do {
9250     ValueInfo VI;
9251     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
9252         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
9253         parseToken(lltok::colon, "expected ':'"))
9254       return true;
9255 
9256     LocTy Loc = Lex.getLoc();
9257     unsigned GVId;
9258     if (parseGVReference(VI, GVId))
9259       return true;
9260 
9261     uint64_t Offset;
9262     if (parseToken(lltok::comma, "expected comma") ||
9263         parseToken(lltok::kw_offset, "expected offset") ||
9264         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
9265       return true;
9266 
9267     // Keep track of the VTableFuncs array index needing a forward reference.
9268     // We will save the location of the ValueInfo needing an update, but
9269     // can only do so once the std::vector is finalized.
9270     if (VI == EmptyVI)
9271       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
9272     VTableFuncs.push_back({VI, Offset});
9273 
9274     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
9275       return true;
9276   } while (EatIfPresent(lltok::comma));
9277 
9278   // Now that the VTableFuncs vector is finalized, it is safe to save the
9279   // locations of any forward GV references that need updating later.
9280   for (auto I : IdToIndexMap) {
9281     auto &Infos = ForwardRefValueInfos[I.first];
9282     for (auto P : I.second) {
9283       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
9284              "Forward referenced ValueInfo expected to be empty");
9285       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
9286     }
9287   }
9288 
9289   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
9290     return true;
9291 
9292   return false;
9293 }
9294 
9295 /// ParamNo := 'param' ':' UInt64
9296 bool LLParser::parseParamNo(uint64_t &ParamNo) {
9297   if (parseToken(lltok::kw_param, "expected 'param' here") ||
9298       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
9299     return true;
9300   return false;
9301 }
9302 
9303 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
9304 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
9305   APSInt Lower;
9306   APSInt Upper;
9307   auto ParseAPSInt = [&](APSInt &Val) {
9308     if (Lex.getKind() != lltok::APSInt)
9309       return tokError("expected integer");
9310     Val = Lex.getAPSIntVal();
9311     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
9312     Val.setIsSigned(true);
9313     Lex.Lex();
9314     return false;
9315   };
9316   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
9317       parseToken(lltok::colon, "expected ':' here") ||
9318       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
9319       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
9320       parseToken(lltok::rsquare, "expected ']' here"))
9321     return true;
9322 
9323   ++Upper;
9324   Range =
9325       (Lower == Upper && !Lower.isMaxValue())
9326           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
9327           : ConstantRange(Lower, Upper);
9328 
9329   return false;
9330 }
9331 
9332 /// ParamAccessCall
9333 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
9334 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
9335                                     IdLocListType &IdLocList) {
9336   if (parseToken(lltok::lparen, "expected '(' here") ||
9337       parseToken(lltok::kw_callee, "expected 'callee' here") ||
9338       parseToken(lltok::colon, "expected ':' here"))
9339     return true;
9340 
9341   unsigned GVId;
9342   ValueInfo VI;
9343   LocTy Loc = Lex.getLoc();
9344   if (parseGVReference(VI, GVId))
9345     return true;
9346 
9347   Call.Callee = VI;
9348   IdLocList.emplace_back(GVId, Loc);
9349 
9350   if (parseToken(lltok::comma, "expected ',' here") ||
9351       parseParamNo(Call.ParamNo) ||
9352       parseToken(lltok::comma, "expected ',' here") ||
9353       parseParamAccessOffset(Call.Offsets))
9354     return true;
9355 
9356   if (parseToken(lltok::rparen, "expected ')' here"))
9357     return true;
9358 
9359   return false;
9360 }
9361 
9362 /// ParamAccess
9363 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
9364 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
9365 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
9366                                 IdLocListType &IdLocList) {
9367   if (parseToken(lltok::lparen, "expected '(' here") ||
9368       parseParamNo(Param.ParamNo) ||
9369       parseToken(lltok::comma, "expected ',' here") ||
9370       parseParamAccessOffset(Param.Use))
9371     return true;
9372 
9373   if (EatIfPresent(lltok::comma)) {
9374     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
9375         parseToken(lltok::colon, "expected ':' here") ||
9376         parseToken(lltok::lparen, "expected '(' here"))
9377       return true;
9378     do {
9379       FunctionSummary::ParamAccess::Call Call;
9380       if (parseParamAccessCall(Call, IdLocList))
9381         return true;
9382       Param.Calls.push_back(Call);
9383     } while (EatIfPresent(lltok::comma));
9384 
9385     if (parseToken(lltok::rparen, "expected ')' here"))
9386       return true;
9387   }
9388 
9389   if (parseToken(lltok::rparen, "expected ')' here"))
9390     return true;
9391 
9392   return false;
9393 }
9394 
9395 /// OptionalParamAccesses
9396 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
9397 bool LLParser::parseOptionalParamAccesses(
9398     std::vector<FunctionSummary::ParamAccess> &Params) {
9399   assert(Lex.getKind() == lltok::kw_params);
9400   Lex.Lex();
9401 
9402   if (parseToken(lltok::colon, "expected ':' here") ||
9403       parseToken(lltok::lparen, "expected '(' here"))
9404     return true;
9405 
9406   IdLocListType VContexts;
9407   size_t CallsNum = 0;
9408   do {
9409     FunctionSummary::ParamAccess ParamAccess;
9410     if (parseParamAccess(ParamAccess, VContexts))
9411       return true;
9412     CallsNum += ParamAccess.Calls.size();
9413     assert(VContexts.size() == CallsNum);
9414     (void)CallsNum;
9415     Params.emplace_back(std::move(ParamAccess));
9416   } while (EatIfPresent(lltok::comma));
9417 
9418   if (parseToken(lltok::rparen, "expected ')' here"))
9419     return true;
9420 
9421   // Now that the Params is finalized, it is safe to save the locations
9422   // of any forward GV references that need updating later.
9423   IdLocListType::const_iterator ItContext = VContexts.begin();
9424   for (auto &PA : Params) {
9425     for (auto &C : PA.Calls) {
9426       if (C.Callee.getRef() == FwdVIRef)
9427         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
9428                                                             ItContext->second);
9429       ++ItContext;
9430     }
9431   }
9432   assert(ItContext == VContexts.end());
9433 
9434   return false;
9435 }
9436 
9437 /// OptionalRefs
9438 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
9439 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
9440   assert(Lex.getKind() == lltok::kw_refs);
9441   Lex.Lex();
9442 
9443   if (parseToken(lltok::colon, "expected ':' in refs") ||
9444       parseToken(lltok::lparen, "expected '(' in refs"))
9445     return true;
9446 
9447   struct ValueContext {
9448     ValueInfo VI;
9449     unsigned GVId;
9450     LocTy Loc;
9451   };
9452   std::vector<ValueContext> VContexts;
9453   // parse each ref edge
9454   do {
9455     ValueContext VC;
9456     VC.Loc = Lex.getLoc();
9457     if (parseGVReference(VC.VI, VC.GVId))
9458       return true;
9459     VContexts.push_back(VC);
9460   } while (EatIfPresent(lltok::comma));
9461 
9462   // Sort value contexts so that ones with writeonly
9463   // and readonly ValueInfo  are at the end of VContexts vector.
9464   // See FunctionSummary::specialRefCounts()
9465   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
9466     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
9467   });
9468 
9469   IdToIndexMapType IdToIndexMap;
9470   for (auto &VC : VContexts) {
9471     // Keep track of the Refs array index needing a forward reference.
9472     // We will save the location of the ValueInfo needing an update, but
9473     // can only do so once the std::vector is finalized.
9474     if (VC.VI.getRef() == FwdVIRef)
9475       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
9476     Refs.push_back(VC.VI);
9477   }
9478 
9479   // Now that the Refs vector is finalized, it is safe to save the locations
9480   // of any forward GV references that need updating later.
9481   for (auto I : IdToIndexMap) {
9482     auto &Infos = ForwardRefValueInfos[I.first];
9483     for (auto P : I.second) {
9484       assert(Refs[P.first].getRef() == FwdVIRef &&
9485              "Forward referenced ValueInfo expected to be empty");
9486       Infos.emplace_back(&Refs[P.first], P.second);
9487     }
9488   }
9489 
9490   if (parseToken(lltok::rparen, "expected ')' in refs"))
9491     return true;
9492 
9493   return false;
9494 }
9495 
9496 /// OptionalTypeIdInfo
9497 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
9498 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
9499 ///         [',' TypeCheckedLoadConstVCalls]? ')'
9500 bool LLParser::parseOptionalTypeIdInfo(
9501     FunctionSummary::TypeIdInfo &TypeIdInfo) {
9502   assert(Lex.getKind() == lltok::kw_typeIdInfo);
9503   Lex.Lex();
9504 
9505   if (parseToken(lltok::colon, "expected ':' here") ||
9506       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9507     return true;
9508 
9509   do {
9510     switch (Lex.getKind()) {
9511     case lltok::kw_typeTests:
9512       if (parseTypeTests(TypeIdInfo.TypeTests))
9513         return true;
9514       break;
9515     case lltok::kw_typeTestAssumeVCalls:
9516       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
9517                            TypeIdInfo.TypeTestAssumeVCalls))
9518         return true;
9519       break;
9520     case lltok::kw_typeCheckedLoadVCalls:
9521       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
9522                            TypeIdInfo.TypeCheckedLoadVCalls))
9523         return true;
9524       break;
9525     case lltok::kw_typeTestAssumeConstVCalls:
9526       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
9527                               TypeIdInfo.TypeTestAssumeConstVCalls))
9528         return true;
9529       break;
9530     case lltok::kw_typeCheckedLoadConstVCalls:
9531       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
9532                               TypeIdInfo.TypeCheckedLoadConstVCalls))
9533         return true;
9534       break;
9535     default:
9536       return error(Lex.getLoc(), "invalid typeIdInfo list type");
9537     }
9538   } while (EatIfPresent(lltok::comma));
9539 
9540   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9541     return true;
9542 
9543   return false;
9544 }
9545 
9546 /// TypeTests
9547 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9548 ///         [',' (SummaryID | UInt64)]* ')'
9549 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9550   assert(Lex.getKind() == lltok::kw_typeTests);
9551   Lex.Lex();
9552 
9553   if (parseToken(lltok::colon, "expected ':' here") ||
9554       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9555     return true;
9556 
9557   IdToIndexMapType IdToIndexMap;
9558   do {
9559     GlobalValue::GUID GUID = 0;
9560     if (Lex.getKind() == lltok::SummaryID) {
9561       unsigned ID = Lex.getUIntVal();
9562       LocTy Loc = Lex.getLoc();
9563       // Keep track of the TypeTests array index needing a forward reference.
9564       // We will save the location of the GUID needing an update, but
9565       // can only do so once the std::vector is finalized.
9566       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9567       Lex.Lex();
9568     } else if (parseUInt64(GUID))
9569       return true;
9570     TypeTests.push_back(GUID);
9571   } while (EatIfPresent(lltok::comma));
9572 
9573   // Now that the TypeTests vector is finalized, it is safe to save the
9574   // locations of any forward GV references that need updating later.
9575   for (auto I : IdToIndexMap) {
9576     auto &Ids = ForwardRefTypeIds[I.first];
9577     for (auto P : I.second) {
9578       assert(TypeTests[P.first] == 0 &&
9579              "Forward referenced type id GUID expected to be 0");
9580       Ids.emplace_back(&TypeTests[P.first], P.second);
9581     }
9582   }
9583 
9584   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9585     return true;
9586 
9587   return false;
9588 }
9589 
9590 /// VFuncIdList
9591 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9592 bool LLParser::parseVFuncIdList(
9593     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9594   assert(Lex.getKind() == Kind);
9595   Lex.Lex();
9596 
9597   if (parseToken(lltok::colon, "expected ':' here") ||
9598       parseToken(lltok::lparen, "expected '(' here"))
9599     return true;
9600 
9601   IdToIndexMapType IdToIndexMap;
9602   do {
9603     FunctionSummary::VFuncId VFuncId;
9604     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9605       return true;
9606     VFuncIdList.push_back(VFuncId);
9607   } while (EatIfPresent(lltok::comma));
9608 
9609   if (parseToken(lltok::rparen, "expected ')' here"))
9610     return true;
9611 
9612   // Now that the VFuncIdList vector is finalized, it is safe to save the
9613   // locations of any forward GV references that need updating later.
9614   for (auto I : IdToIndexMap) {
9615     auto &Ids = ForwardRefTypeIds[I.first];
9616     for (auto P : I.second) {
9617       assert(VFuncIdList[P.first].GUID == 0 &&
9618              "Forward referenced type id GUID expected to be 0");
9619       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9620     }
9621   }
9622 
9623   return false;
9624 }
9625 
9626 /// ConstVCallList
9627 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9628 bool LLParser::parseConstVCallList(
9629     lltok::Kind Kind,
9630     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9631   assert(Lex.getKind() == Kind);
9632   Lex.Lex();
9633 
9634   if (parseToken(lltok::colon, "expected ':' here") ||
9635       parseToken(lltok::lparen, "expected '(' here"))
9636     return true;
9637 
9638   IdToIndexMapType IdToIndexMap;
9639   do {
9640     FunctionSummary::ConstVCall ConstVCall;
9641     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9642       return true;
9643     ConstVCallList.push_back(ConstVCall);
9644   } while (EatIfPresent(lltok::comma));
9645 
9646   if (parseToken(lltok::rparen, "expected ')' here"))
9647     return true;
9648 
9649   // Now that the ConstVCallList vector is finalized, it is safe to save the
9650   // locations of any forward GV references that need updating later.
9651   for (auto I : IdToIndexMap) {
9652     auto &Ids = ForwardRefTypeIds[I.first];
9653     for (auto P : I.second) {
9654       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9655              "Forward referenced type id GUID expected to be 0");
9656       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9657     }
9658   }
9659 
9660   return false;
9661 }
9662 
9663 /// ConstVCall
9664 ///   ::= '(' VFuncId ',' Args ')'
9665 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9666                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9667   if (parseToken(lltok::lparen, "expected '(' here") ||
9668       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9669     return true;
9670 
9671   if (EatIfPresent(lltok::comma))
9672     if (parseArgs(ConstVCall.Args))
9673       return true;
9674 
9675   if (parseToken(lltok::rparen, "expected ')' here"))
9676     return true;
9677 
9678   return false;
9679 }
9680 
9681 /// VFuncId
9682 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9683 ///         'offset' ':' UInt64 ')'
9684 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9685                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9686   assert(Lex.getKind() == lltok::kw_vFuncId);
9687   Lex.Lex();
9688 
9689   if (parseToken(lltok::colon, "expected ':' here") ||
9690       parseToken(lltok::lparen, "expected '(' here"))
9691     return true;
9692 
9693   if (Lex.getKind() == lltok::SummaryID) {
9694     VFuncId.GUID = 0;
9695     unsigned ID = Lex.getUIntVal();
9696     LocTy Loc = Lex.getLoc();
9697     // Keep track of the array index needing a forward reference.
9698     // We will save the location of the GUID needing an update, but
9699     // can only do so once the caller's std::vector is finalized.
9700     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9701     Lex.Lex();
9702   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9703              parseToken(lltok::colon, "expected ':' here") ||
9704              parseUInt64(VFuncId.GUID))
9705     return true;
9706 
9707   if (parseToken(lltok::comma, "expected ',' here") ||
9708       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9709       parseToken(lltok::colon, "expected ':' here") ||
9710       parseUInt64(VFuncId.Offset) ||
9711       parseToken(lltok::rparen, "expected ')' here"))
9712     return true;
9713 
9714   return false;
9715 }
9716 
9717 /// GVFlags
9718 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9719 ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9720 ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9721 ///         'canAutoHide' ':' Flag ',' ')'
9722 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9723   assert(Lex.getKind() == lltok::kw_flags);
9724   Lex.Lex();
9725 
9726   if (parseToken(lltok::colon, "expected ':' here") ||
9727       parseToken(lltok::lparen, "expected '(' here"))
9728     return true;
9729 
9730   do {
9731     unsigned Flag = 0;
9732     switch (Lex.getKind()) {
9733     case lltok::kw_linkage:
9734       Lex.Lex();
9735       if (parseToken(lltok::colon, "expected ':'"))
9736         return true;
9737       bool HasLinkage;
9738       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9739       assert(HasLinkage && "Linkage not optional in summary entry");
9740       Lex.Lex();
9741       break;
9742     case lltok::kw_visibility:
9743       Lex.Lex();
9744       if (parseToken(lltok::colon, "expected ':'"))
9745         return true;
9746       parseOptionalVisibility(Flag);
9747       GVFlags.Visibility = Flag;
9748       break;
9749     case lltok::kw_notEligibleToImport:
9750       Lex.Lex();
9751       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9752         return true;
9753       GVFlags.NotEligibleToImport = Flag;
9754       break;
9755     case lltok::kw_live:
9756       Lex.Lex();
9757       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9758         return true;
9759       GVFlags.Live = Flag;
9760       break;
9761     case lltok::kw_dsoLocal:
9762       Lex.Lex();
9763       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9764         return true;
9765       GVFlags.DSOLocal = Flag;
9766       break;
9767     case lltok::kw_canAutoHide:
9768       Lex.Lex();
9769       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9770         return true;
9771       GVFlags.CanAutoHide = Flag;
9772       break;
9773     default:
9774       return error(Lex.getLoc(), "expected gv flag type");
9775     }
9776   } while (EatIfPresent(lltok::comma));
9777 
9778   if (parseToken(lltok::rparen, "expected ')' here"))
9779     return true;
9780 
9781   return false;
9782 }
9783 
9784 /// GVarFlags
9785 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9786 ///                      ',' 'writeonly' ':' Flag
9787 ///                      ',' 'constant' ':' Flag ')'
9788 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9789   assert(Lex.getKind() == lltok::kw_varFlags);
9790   Lex.Lex();
9791 
9792   if (parseToken(lltok::colon, "expected ':' here") ||
9793       parseToken(lltok::lparen, "expected '(' here"))
9794     return true;
9795 
9796   auto ParseRest = [this](unsigned int &Val) {
9797     Lex.Lex();
9798     if (parseToken(lltok::colon, "expected ':'"))
9799       return true;
9800     return parseFlag(Val);
9801   };
9802 
9803   do {
9804     unsigned Flag = 0;
9805     switch (Lex.getKind()) {
9806     case lltok::kw_readonly:
9807       if (ParseRest(Flag))
9808         return true;
9809       GVarFlags.MaybeReadOnly = Flag;
9810       break;
9811     case lltok::kw_writeonly:
9812       if (ParseRest(Flag))
9813         return true;
9814       GVarFlags.MaybeWriteOnly = Flag;
9815       break;
9816     case lltok::kw_constant:
9817       if (ParseRest(Flag))
9818         return true;
9819       GVarFlags.Constant = Flag;
9820       break;
9821     case lltok::kw_vcall_visibility:
9822       if (ParseRest(Flag))
9823         return true;
9824       GVarFlags.VCallVisibility = Flag;
9825       break;
9826     default:
9827       return error(Lex.getLoc(), "expected gvar flag type");
9828     }
9829   } while (EatIfPresent(lltok::comma));
9830   return parseToken(lltok::rparen, "expected ')' here");
9831 }
9832 
9833 /// ModuleReference
9834 ///   ::= 'module' ':' UInt
9835 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9836   // parse module id.
9837   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9838       parseToken(lltok::colon, "expected ':' here") ||
9839       parseToken(lltok::SummaryID, "expected module ID"))
9840     return true;
9841 
9842   unsigned ModuleID = Lex.getUIntVal();
9843   auto I = ModuleIdMap.find(ModuleID);
9844   // We should have already parsed all module IDs
9845   assert(I != ModuleIdMap.end());
9846   ModulePath = I->second;
9847   return false;
9848 }
9849 
9850 /// GVReference
9851 ///   ::= SummaryID
9852 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9853   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9854   if (!ReadOnly)
9855     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9856   if (parseToken(lltok::SummaryID, "expected GV ID"))
9857     return true;
9858 
9859   GVId = Lex.getUIntVal();
9860   // Check if we already have a VI for this GV
9861   if (GVId < NumberedValueInfos.size() && NumberedValueInfos[GVId]) {
9862     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9863     VI = NumberedValueInfos[GVId];
9864   } else
9865     // We will create a forward reference to the stored location.
9866     VI = ValueInfo(false, FwdVIRef);
9867 
9868   if (ReadOnly)
9869     VI.setReadOnly();
9870   if (WriteOnly)
9871     VI.setWriteOnly();
9872   return false;
9873 }
9874 
9875 /// OptionalAllocs
9876 ///   := 'allocs' ':' '(' Alloc [',' Alloc]* ')'
9877 /// Alloc ::= '(' 'versions' ':' '(' Version [',' Version]* ')'
9878 ///              ',' MemProfs ')'
9879 /// Version ::= UInt32
9880 bool LLParser::parseOptionalAllocs(std::vector<AllocInfo> &Allocs) {
9881   assert(Lex.getKind() == lltok::kw_allocs);
9882   Lex.Lex();
9883 
9884   if (parseToken(lltok::colon, "expected ':' in allocs") ||
9885       parseToken(lltok::lparen, "expected '(' in allocs"))
9886     return true;
9887 
9888   // parse each alloc
9889   do {
9890     if (parseToken(lltok::lparen, "expected '(' in alloc") ||
9891         parseToken(lltok::kw_versions, "expected 'versions' in alloc") ||
9892         parseToken(lltok::colon, "expected ':'") ||
9893         parseToken(lltok::lparen, "expected '(' in versions"))
9894       return true;
9895 
9896     SmallVector<uint8_t> Versions;
9897     do {
9898       uint8_t V = 0;
9899       if (parseAllocType(V))
9900         return true;
9901       Versions.push_back(V);
9902     } while (EatIfPresent(lltok::comma));
9903 
9904     if (parseToken(lltok::rparen, "expected ')' in versions") ||
9905         parseToken(lltok::comma, "expected ',' in alloc"))
9906       return true;
9907 
9908     std::vector<MIBInfo> MIBs;
9909     if (parseMemProfs(MIBs))
9910       return true;
9911 
9912     Allocs.push_back({Versions, MIBs});
9913 
9914     if (parseToken(lltok::rparen, "expected ')' in alloc"))
9915       return true;
9916   } while (EatIfPresent(lltok::comma));
9917 
9918   if (parseToken(lltok::rparen, "expected ')' in allocs"))
9919     return true;
9920 
9921   return false;
9922 }
9923 
9924 /// MemProfs
9925 ///   := 'memProf' ':' '(' MemProf [',' MemProf]* ')'
9926 /// MemProf ::= '(' 'type' ':' AllocType
9927 ///              ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')'
9928 /// StackId ::= UInt64
9929 bool LLParser::parseMemProfs(std::vector<MIBInfo> &MIBs) {
9930   assert(Lex.getKind() == lltok::kw_memProf);
9931   Lex.Lex();
9932 
9933   if (parseToken(lltok::colon, "expected ':' in memprof") ||
9934       parseToken(lltok::lparen, "expected '(' in memprof"))
9935     return true;
9936 
9937   // parse each MIB
9938   do {
9939     if (parseToken(lltok::lparen, "expected '(' in memprof") ||
9940         parseToken(lltok::kw_type, "expected 'type' in memprof") ||
9941         parseToken(lltok::colon, "expected ':'"))
9942       return true;
9943 
9944     uint8_t AllocType;
9945     if (parseAllocType(AllocType))
9946       return true;
9947 
9948     if (parseToken(lltok::comma, "expected ',' in memprof") ||
9949         parseToken(lltok::kw_stackIds, "expected 'stackIds' in memprof") ||
9950         parseToken(lltok::colon, "expected ':'") ||
9951         parseToken(lltok::lparen, "expected '(' in stackIds"))
9952       return true;
9953 
9954     SmallVector<unsigned> StackIdIndices;
9955     do {
9956       uint64_t StackId = 0;
9957       if (parseUInt64(StackId))
9958         return true;
9959       StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId));
9960     } while (EatIfPresent(lltok::comma));
9961 
9962     if (parseToken(lltok::rparen, "expected ')' in stackIds"))
9963       return true;
9964 
9965     MIBs.push_back({(AllocationType)AllocType, StackIdIndices});
9966 
9967     if (parseToken(lltok::rparen, "expected ')' in memprof"))
9968       return true;
9969   } while (EatIfPresent(lltok::comma));
9970 
9971   if (parseToken(lltok::rparen, "expected ')' in memprof"))
9972     return true;
9973 
9974   return false;
9975 }
9976 
9977 /// AllocType
9978 ///   := ('none'|'notcold'|'cold'|'hot')
9979 bool LLParser::parseAllocType(uint8_t &AllocType) {
9980   switch (Lex.getKind()) {
9981   case lltok::kw_none:
9982     AllocType = (uint8_t)AllocationType::None;
9983     break;
9984   case lltok::kw_notcold:
9985     AllocType = (uint8_t)AllocationType::NotCold;
9986     break;
9987   case lltok::kw_cold:
9988     AllocType = (uint8_t)AllocationType::Cold;
9989     break;
9990   case lltok::kw_hot:
9991     AllocType = (uint8_t)AllocationType::Hot;
9992     break;
9993   default:
9994     return error(Lex.getLoc(), "invalid alloc type");
9995   }
9996   Lex.Lex();
9997   return false;
9998 }
9999 
10000 /// OptionalCallsites
10001 ///   := 'callsites' ':' '(' Callsite [',' Callsite]* ')'
10002 /// Callsite ::= '(' 'callee' ':' GVReference
10003 ///              ',' 'clones' ':' '(' Version [',' Version]* ')'
10004 ///              ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')'
10005 /// Version ::= UInt32
10006 /// StackId ::= UInt64
10007 bool LLParser::parseOptionalCallsites(std::vector<CallsiteInfo> &Callsites) {
10008   assert(Lex.getKind() == lltok::kw_callsites);
10009   Lex.Lex();
10010 
10011   if (parseToken(lltok::colon, "expected ':' in callsites") ||
10012       parseToken(lltok::lparen, "expected '(' in callsites"))
10013     return true;
10014 
10015   IdToIndexMapType IdToIndexMap;
10016   // parse each callsite
10017   do {
10018     if (parseToken(lltok::lparen, "expected '(' in callsite") ||
10019         parseToken(lltok::kw_callee, "expected 'callee' in callsite") ||
10020         parseToken(lltok::colon, "expected ':'"))
10021       return true;
10022 
10023     ValueInfo VI;
10024     unsigned GVId = 0;
10025     LocTy Loc = Lex.getLoc();
10026     if (!EatIfPresent(lltok::kw_null)) {
10027       if (parseGVReference(VI, GVId))
10028         return true;
10029     }
10030 
10031     if (parseToken(lltok::comma, "expected ',' in callsite") ||
10032         parseToken(lltok::kw_clones, "expected 'clones' in callsite") ||
10033         parseToken(lltok::colon, "expected ':'") ||
10034         parseToken(lltok::lparen, "expected '(' in clones"))
10035       return true;
10036 
10037     SmallVector<unsigned> Clones;
10038     do {
10039       unsigned V = 0;
10040       if (parseUInt32(V))
10041         return true;
10042       Clones.push_back(V);
10043     } while (EatIfPresent(lltok::comma));
10044 
10045     if (parseToken(lltok::rparen, "expected ')' in clones") ||
10046         parseToken(lltok::comma, "expected ',' in callsite") ||
10047         parseToken(lltok::kw_stackIds, "expected 'stackIds' in callsite") ||
10048         parseToken(lltok::colon, "expected ':'") ||
10049         parseToken(lltok::lparen, "expected '(' in stackIds"))
10050       return true;
10051 
10052     SmallVector<unsigned> StackIdIndices;
10053     do {
10054       uint64_t StackId = 0;
10055       if (parseUInt64(StackId))
10056         return true;
10057       StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId));
10058     } while (EatIfPresent(lltok::comma));
10059 
10060     if (parseToken(lltok::rparen, "expected ')' in stackIds"))
10061       return true;
10062 
10063     // Keep track of the Callsites array index needing a forward reference.
10064     // We will save the location of the ValueInfo needing an update, but
10065     // can only do so once the SmallVector is finalized.
10066     if (VI.getRef() == FwdVIRef)
10067       IdToIndexMap[GVId].push_back(std::make_pair(Callsites.size(), Loc));
10068     Callsites.push_back({VI, Clones, StackIdIndices});
10069 
10070     if (parseToken(lltok::rparen, "expected ')' in callsite"))
10071       return true;
10072   } while (EatIfPresent(lltok::comma));
10073 
10074   // Now that the Callsites vector is finalized, it is safe to save the
10075   // locations of any forward GV references that need updating later.
10076   for (auto I : IdToIndexMap) {
10077     auto &Infos = ForwardRefValueInfos[I.first];
10078     for (auto P : I.second) {
10079       assert(Callsites[P.first].Callee.getRef() == FwdVIRef &&
10080              "Forward referenced ValueInfo expected to be empty");
10081       Infos.emplace_back(&Callsites[P.first].Callee, P.second);
10082     }
10083   }
10084 
10085   if (parseToken(lltok::rparen, "expected ')' in callsites"))
10086     return true;
10087 
10088   return false;
10089 }
10090