1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/AsmParser/LLParser.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/LLToken.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/IR/ValueSymbolTable.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/SaveAndRestore.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstring> 50 #include <iterator> 51 #include <vector> 52 53 using namespace llvm; 54 55 static std::string getTypeString(Type *T) { 56 std::string Result; 57 raw_string_ostream Tmp(Result); 58 Tmp << *T; 59 return Tmp.str(); 60 } 61 62 /// Run: module ::= toplevelentity* 63 bool LLParser::Run(bool UpgradeDebugInfo, 64 DataLayoutCallbackTy DataLayoutCallback) { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 if (M) { 74 if (parseTargetDefinitions()) 75 return true; 76 77 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple())) 78 M->setDataLayout(*LayoutOverride); 79 } 80 81 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 82 validateEndOfIndex(); 83 } 84 85 bool LLParser::parseStandaloneConstantValue(Constant *&C, 86 const SlotMapping *Slots) { 87 restoreParsingState(Slots); 88 Lex.Lex(); 89 90 Type *Ty = nullptr; 91 if (parseType(Ty) || parseConstantValue(Ty, C)) 92 return true; 93 if (Lex.getKind() != lltok::Eof) 94 return error(Lex.getLoc(), "expected end of string"); 95 return false; 96 } 97 98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 99 const SlotMapping *Slots) { 100 restoreParsingState(Slots); 101 Lex.Lex(); 102 103 Read = 0; 104 SMLoc Start = Lex.getLoc(); 105 Ty = nullptr; 106 if (parseType(Ty)) 107 return true; 108 SMLoc End = Lex.getLoc(); 109 Read = End.getPointer() - Start.getPointer(); 110 111 return false; 112 } 113 114 void LLParser::restoreParsingState(const SlotMapping *Slots) { 115 if (!Slots) 116 return; 117 NumberedVals = Slots->GlobalValues; 118 NumberedMetadata = Slots->MetadataNodes; 119 for (const auto &I : Slots->NamedTypes) 120 NamedTypes.insert( 121 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 122 for (const auto &I : Slots->Types) 123 NumberedTypes.insert( 124 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 125 } 126 127 /// validateEndOfModule - Do final validity and basic correctness checks at the 128 /// end of the module. 129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 130 if (!M) 131 return false; 132 // Handle any function attribute group forward references. 133 for (const auto &RAG : ForwardRefAttrGroups) { 134 Value *V = RAG.first; 135 const std::vector<unsigned> &Attrs = RAG.second; 136 AttrBuilder B; 137 138 for (const auto &Attr : Attrs) 139 B.merge(NumberedAttrBuilders[Attr]); 140 141 if (Function *Fn = dyn_cast<Function>(V)) { 142 AttributeList AS = Fn->getAttributes(); 143 AttrBuilder FnAttrs(AS.getFnAttrs()); 144 AS = AS.removeFnAttributes(Context); 145 146 FnAttrs.merge(B); 147 148 // If the alignment was parsed as an attribute, move to the alignment 149 // field. 150 if (FnAttrs.hasAlignmentAttr()) { 151 Fn->setAlignment(FnAttrs.getAlignment()); 152 FnAttrs.removeAttribute(Attribute::Alignment); 153 } 154 155 AS = AS.addFnAttributes(Context, FnAttrs); 156 Fn->setAttributes(AS); 157 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 158 AttributeList AS = CI->getAttributes(); 159 AttrBuilder FnAttrs(AS.getFnAttrs()); 160 AS = AS.removeFnAttributes(Context); 161 FnAttrs.merge(B); 162 AS = AS.addFnAttributes(Context, FnAttrs); 163 CI->setAttributes(AS); 164 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 165 AttributeList AS = II->getAttributes(); 166 AttrBuilder FnAttrs(AS.getFnAttrs()); 167 AS = AS.removeFnAttributes(Context); 168 FnAttrs.merge(B); 169 AS = AS.addFnAttributes(Context, FnAttrs); 170 II->setAttributes(AS); 171 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 172 AttributeList AS = CBI->getAttributes(); 173 AttrBuilder FnAttrs(AS.getFnAttrs()); 174 AS = AS.removeFnAttributes(Context); 175 FnAttrs.merge(B); 176 AS = AS.addFnAttributes(Context, FnAttrs); 177 CBI->setAttributes(AS); 178 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 179 AttrBuilder Attrs(GV->getAttributes()); 180 Attrs.merge(B); 181 GV->setAttributes(AttributeSet::get(Context,Attrs)); 182 } else { 183 llvm_unreachable("invalid object with forward attribute group reference"); 184 } 185 } 186 187 // If there are entries in ForwardRefBlockAddresses at this point, the 188 // function was never defined. 189 if (!ForwardRefBlockAddresses.empty()) 190 return error(ForwardRefBlockAddresses.begin()->first.Loc, 191 "expected function name in blockaddress"); 192 193 for (const auto &NT : NumberedTypes) 194 if (NT.second.second.isValid()) 195 return error(NT.second.second, 196 "use of undefined type '%" + Twine(NT.first) + "'"); 197 198 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 199 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 200 if (I->second.second.isValid()) 201 return error(I->second.second, 202 "use of undefined type named '" + I->getKey() + "'"); 203 204 if (!ForwardRefComdats.empty()) 205 return error(ForwardRefComdats.begin()->second, 206 "use of undefined comdat '$" + 207 ForwardRefComdats.begin()->first + "'"); 208 209 if (!ForwardRefVals.empty()) 210 return error(ForwardRefVals.begin()->second.second, 211 "use of undefined value '@" + ForwardRefVals.begin()->first + 212 "'"); 213 214 if (!ForwardRefValIDs.empty()) 215 return error(ForwardRefValIDs.begin()->second.second, 216 "use of undefined value '@" + 217 Twine(ForwardRefValIDs.begin()->first) + "'"); 218 219 if (!ForwardRefMDNodes.empty()) 220 return error(ForwardRefMDNodes.begin()->second.second, 221 "use of undefined metadata '!" + 222 Twine(ForwardRefMDNodes.begin()->first) + "'"); 223 224 // Resolve metadata cycles. 225 for (auto &N : NumberedMetadata) { 226 if (N.second && !N.second->isResolved()) 227 N.second->resolveCycles(); 228 } 229 230 for (auto *Inst : InstsWithTBAATag) { 231 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 232 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 233 auto *UpgradedMD = UpgradeTBAANode(*MD); 234 if (MD != UpgradedMD) 235 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 236 } 237 238 // Look for intrinsic functions and CallInst that need to be upgraded. We use 239 // make_early_inc_range here because we may remove some functions. 240 for (Function &F : llvm::make_early_inc_range(*M)) 241 UpgradeCallsToIntrinsic(&F); 242 243 // Some types could be renamed during loading if several modules are 244 // loaded in the same LLVMContext (LTO scenario). In this case we should 245 // remangle intrinsics names as well. 246 for (Function &F : llvm::make_early_inc_range(*M)) { 247 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) { 248 F.replaceAllUsesWith(Remangled.getValue()); 249 F.eraseFromParent(); 250 } 251 } 252 253 if (UpgradeDebugInfo) 254 llvm::UpgradeDebugInfo(*M); 255 256 UpgradeModuleFlags(*M); 257 UpgradeSectionAttributes(*M); 258 259 if (!Slots) 260 return false; 261 // Initialize the slot mapping. 262 // Because by this point we've parsed and validated everything, we can "steal" 263 // the mapping from LLParser as it doesn't need it anymore. 264 Slots->GlobalValues = std::move(NumberedVals); 265 Slots->MetadataNodes = std::move(NumberedMetadata); 266 for (const auto &I : NamedTypes) 267 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 268 for (const auto &I : NumberedTypes) 269 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 270 271 return false; 272 } 273 274 /// Do final validity and basic correctness checks at the end of the index. 275 bool LLParser::validateEndOfIndex() { 276 if (!Index) 277 return false; 278 279 if (!ForwardRefValueInfos.empty()) 280 return error(ForwardRefValueInfos.begin()->second.front().second, 281 "use of undefined summary '^" + 282 Twine(ForwardRefValueInfos.begin()->first) + "'"); 283 284 if (!ForwardRefAliasees.empty()) 285 return error(ForwardRefAliasees.begin()->second.front().second, 286 "use of undefined summary '^" + 287 Twine(ForwardRefAliasees.begin()->first) + "'"); 288 289 if (!ForwardRefTypeIds.empty()) 290 return error(ForwardRefTypeIds.begin()->second.front().second, 291 "use of undefined type id summary '^" + 292 Twine(ForwardRefTypeIds.begin()->first) + "'"); 293 294 return false; 295 } 296 297 //===----------------------------------------------------------------------===// 298 // Top-Level Entities 299 //===----------------------------------------------------------------------===// 300 301 bool LLParser::parseTargetDefinitions() { 302 while (true) { 303 switch (Lex.getKind()) { 304 case lltok::kw_target: 305 if (parseTargetDefinition()) 306 return true; 307 break; 308 case lltok::kw_source_filename: 309 if (parseSourceFileName()) 310 return true; 311 break; 312 default: 313 return false; 314 } 315 } 316 } 317 318 bool LLParser::parseTopLevelEntities() { 319 // If there is no Module, then parse just the summary index entries. 320 if (!M) { 321 while (true) { 322 switch (Lex.getKind()) { 323 case lltok::Eof: 324 return false; 325 case lltok::SummaryID: 326 if (parseSummaryEntry()) 327 return true; 328 break; 329 case lltok::kw_source_filename: 330 if (parseSourceFileName()) 331 return true; 332 break; 333 default: 334 // Skip everything else 335 Lex.Lex(); 336 } 337 } 338 } 339 while (true) { 340 switch (Lex.getKind()) { 341 default: 342 return tokError("expected top-level entity"); 343 case lltok::Eof: return false; 344 case lltok::kw_declare: 345 if (parseDeclare()) 346 return true; 347 break; 348 case lltok::kw_define: 349 if (parseDefine()) 350 return true; 351 break; 352 case lltok::kw_module: 353 if (parseModuleAsm()) 354 return true; 355 break; 356 case lltok::LocalVarID: 357 if (parseUnnamedType()) 358 return true; 359 break; 360 case lltok::LocalVar: 361 if (parseNamedType()) 362 return true; 363 break; 364 case lltok::GlobalID: 365 if (parseUnnamedGlobal()) 366 return true; 367 break; 368 case lltok::GlobalVar: 369 if (parseNamedGlobal()) 370 return true; 371 break; 372 case lltok::ComdatVar: if (parseComdat()) return true; break; 373 case lltok::exclaim: 374 if (parseStandaloneMetadata()) 375 return true; 376 break; 377 case lltok::SummaryID: 378 if (parseSummaryEntry()) 379 return true; 380 break; 381 case lltok::MetadataVar: 382 if (parseNamedMetadata()) 383 return true; 384 break; 385 case lltok::kw_attributes: 386 if (parseUnnamedAttrGrp()) 387 return true; 388 break; 389 case lltok::kw_uselistorder: 390 if (parseUseListOrder()) 391 return true; 392 break; 393 case lltok::kw_uselistorder_bb: 394 if (parseUseListOrderBB()) 395 return true; 396 break; 397 } 398 } 399 } 400 401 /// toplevelentity 402 /// ::= 'module' 'asm' STRINGCONSTANT 403 bool LLParser::parseModuleAsm() { 404 assert(Lex.getKind() == lltok::kw_module); 405 Lex.Lex(); 406 407 std::string AsmStr; 408 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 409 parseStringConstant(AsmStr)) 410 return true; 411 412 M->appendModuleInlineAsm(AsmStr); 413 return false; 414 } 415 416 /// toplevelentity 417 /// ::= 'target' 'triple' '=' STRINGCONSTANT 418 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 419 bool LLParser::parseTargetDefinition() { 420 assert(Lex.getKind() == lltok::kw_target); 421 std::string Str; 422 switch (Lex.Lex()) { 423 default: 424 return tokError("unknown target property"); 425 case lltok::kw_triple: 426 Lex.Lex(); 427 if (parseToken(lltok::equal, "expected '=' after target triple") || 428 parseStringConstant(Str)) 429 return true; 430 M->setTargetTriple(Str); 431 return false; 432 case lltok::kw_datalayout: 433 Lex.Lex(); 434 if (parseToken(lltok::equal, "expected '=' after target datalayout") || 435 parseStringConstant(Str)) 436 return true; 437 M->setDataLayout(Str); 438 return false; 439 } 440 } 441 442 /// toplevelentity 443 /// ::= 'source_filename' '=' STRINGCONSTANT 444 bool LLParser::parseSourceFileName() { 445 assert(Lex.getKind() == lltok::kw_source_filename); 446 Lex.Lex(); 447 if (parseToken(lltok::equal, "expected '=' after source_filename") || 448 parseStringConstant(SourceFileName)) 449 return true; 450 if (M) 451 M->setSourceFileName(SourceFileName); 452 return false; 453 } 454 455 /// parseUnnamedType: 456 /// ::= LocalVarID '=' 'type' type 457 bool LLParser::parseUnnamedType() { 458 LocTy TypeLoc = Lex.getLoc(); 459 unsigned TypeID = Lex.getUIntVal(); 460 Lex.Lex(); // eat LocalVarID; 461 462 if (parseToken(lltok::equal, "expected '=' after name") || 463 parseToken(lltok::kw_type, "expected 'type' after '='")) 464 return true; 465 466 Type *Result = nullptr; 467 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 468 return true; 469 470 if (!isa<StructType>(Result)) { 471 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 472 if (Entry.first) 473 return error(TypeLoc, "non-struct types may not be recursive"); 474 Entry.first = Result; 475 Entry.second = SMLoc(); 476 } 477 478 return false; 479 } 480 481 /// toplevelentity 482 /// ::= LocalVar '=' 'type' type 483 bool LLParser::parseNamedType() { 484 std::string Name = Lex.getStrVal(); 485 LocTy NameLoc = Lex.getLoc(); 486 Lex.Lex(); // eat LocalVar. 487 488 if (parseToken(lltok::equal, "expected '=' after name") || 489 parseToken(lltok::kw_type, "expected 'type' after name")) 490 return true; 491 492 Type *Result = nullptr; 493 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 494 return true; 495 496 if (!isa<StructType>(Result)) { 497 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 498 if (Entry.first) 499 return error(NameLoc, "non-struct types may not be recursive"); 500 Entry.first = Result; 501 Entry.second = SMLoc(); 502 } 503 504 return false; 505 } 506 507 /// toplevelentity 508 /// ::= 'declare' FunctionHeader 509 bool LLParser::parseDeclare() { 510 assert(Lex.getKind() == lltok::kw_declare); 511 Lex.Lex(); 512 513 std::vector<std::pair<unsigned, MDNode *>> MDs; 514 while (Lex.getKind() == lltok::MetadataVar) { 515 unsigned MDK; 516 MDNode *N; 517 if (parseMetadataAttachment(MDK, N)) 518 return true; 519 MDs.push_back({MDK, N}); 520 } 521 522 Function *F; 523 if (parseFunctionHeader(F, false)) 524 return true; 525 for (auto &MD : MDs) 526 F->addMetadata(MD.first, *MD.second); 527 return false; 528 } 529 530 /// toplevelentity 531 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 532 bool LLParser::parseDefine() { 533 assert(Lex.getKind() == lltok::kw_define); 534 Lex.Lex(); 535 536 Function *F; 537 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) || 538 parseFunctionBody(*F); 539 } 540 541 /// parseGlobalType 542 /// ::= 'constant' 543 /// ::= 'global' 544 bool LLParser::parseGlobalType(bool &IsConstant) { 545 if (Lex.getKind() == lltok::kw_constant) 546 IsConstant = true; 547 else if (Lex.getKind() == lltok::kw_global) 548 IsConstant = false; 549 else { 550 IsConstant = false; 551 return tokError("expected 'global' or 'constant'"); 552 } 553 Lex.Lex(); 554 return false; 555 } 556 557 bool LLParser::parseOptionalUnnamedAddr( 558 GlobalVariable::UnnamedAddr &UnnamedAddr) { 559 if (EatIfPresent(lltok::kw_unnamed_addr)) 560 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 561 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 562 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 563 else 564 UnnamedAddr = GlobalValue::UnnamedAddr::None; 565 return false; 566 } 567 568 /// parseUnnamedGlobal: 569 /// OptionalVisibility (ALIAS | IFUNC) ... 570 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 571 /// OptionalDLLStorageClass 572 /// ... -> global variable 573 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 574 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 575 /// OptionalVisibility 576 /// OptionalDLLStorageClass 577 /// ... -> global variable 578 bool LLParser::parseUnnamedGlobal() { 579 unsigned VarID = NumberedVals.size(); 580 std::string Name; 581 LocTy NameLoc = Lex.getLoc(); 582 583 // Handle the GlobalID form. 584 if (Lex.getKind() == lltok::GlobalID) { 585 if (Lex.getUIntVal() != VarID) 586 return error(Lex.getLoc(), 587 "variable expected to be numbered '%" + Twine(VarID) + "'"); 588 Lex.Lex(); // eat GlobalID; 589 590 if (parseToken(lltok::equal, "expected '=' after name")) 591 return true; 592 } 593 594 bool HasLinkage; 595 unsigned Linkage, Visibility, DLLStorageClass; 596 bool DSOLocal; 597 GlobalVariable::ThreadLocalMode TLM; 598 GlobalVariable::UnnamedAddr UnnamedAddr; 599 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 600 DSOLocal) || 601 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 602 return true; 603 604 switch (Lex.getKind()) { 605 default: 606 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 607 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 608 case lltok::kw_alias: 609 case lltok::kw_ifunc: 610 return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility, 611 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 612 } 613 } 614 615 /// parseNamedGlobal: 616 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 617 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 618 /// OptionalVisibility OptionalDLLStorageClass 619 /// ... -> global variable 620 bool LLParser::parseNamedGlobal() { 621 assert(Lex.getKind() == lltok::GlobalVar); 622 LocTy NameLoc = Lex.getLoc(); 623 std::string Name = Lex.getStrVal(); 624 Lex.Lex(); 625 626 bool HasLinkage; 627 unsigned Linkage, Visibility, DLLStorageClass; 628 bool DSOLocal; 629 GlobalVariable::ThreadLocalMode TLM; 630 GlobalVariable::UnnamedAddr UnnamedAddr; 631 if (parseToken(lltok::equal, "expected '=' in global variable") || 632 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 633 DSOLocal) || 634 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 635 return true; 636 637 switch (Lex.getKind()) { 638 default: 639 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 640 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 641 case lltok::kw_alias: 642 case lltok::kw_ifunc: 643 return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility, 644 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 645 } 646 } 647 648 bool LLParser::parseComdat() { 649 assert(Lex.getKind() == lltok::ComdatVar); 650 std::string Name = Lex.getStrVal(); 651 LocTy NameLoc = Lex.getLoc(); 652 Lex.Lex(); 653 654 if (parseToken(lltok::equal, "expected '=' here")) 655 return true; 656 657 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 658 return tokError("expected comdat type"); 659 660 Comdat::SelectionKind SK; 661 switch (Lex.getKind()) { 662 default: 663 return tokError("unknown selection kind"); 664 case lltok::kw_any: 665 SK = Comdat::Any; 666 break; 667 case lltok::kw_exactmatch: 668 SK = Comdat::ExactMatch; 669 break; 670 case lltok::kw_largest: 671 SK = Comdat::Largest; 672 break; 673 case lltok::kw_nodeduplicate: 674 SK = Comdat::NoDeduplicate; 675 break; 676 case lltok::kw_samesize: 677 SK = Comdat::SameSize; 678 break; 679 } 680 Lex.Lex(); 681 682 // See if the comdat was forward referenced, if so, use the comdat. 683 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 684 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 685 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 686 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 687 688 Comdat *C; 689 if (I != ComdatSymTab.end()) 690 C = &I->second; 691 else 692 C = M->getOrInsertComdat(Name); 693 C->setSelectionKind(SK); 694 695 return false; 696 } 697 698 // MDString: 699 // ::= '!' STRINGCONSTANT 700 bool LLParser::parseMDString(MDString *&Result) { 701 std::string Str; 702 if (parseStringConstant(Str)) 703 return true; 704 Result = MDString::get(Context, Str); 705 return false; 706 } 707 708 // MDNode: 709 // ::= '!' MDNodeNumber 710 bool LLParser::parseMDNodeID(MDNode *&Result) { 711 // !{ ..., !42, ... } 712 LocTy IDLoc = Lex.getLoc(); 713 unsigned MID = 0; 714 if (parseUInt32(MID)) 715 return true; 716 717 // If not a forward reference, just return it now. 718 if (NumberedMetadata.count(MID)) { 719 Result = NumberedMetadata[MID]; 720 return false; 721 } 722 723 // Otherwise, create MDNode forward reference. 724 auto &FwdRef = ForwardRefMDNodes[MID]; 725 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 726 727 Result = FwdRef.first.get(); 728 NumberedMetadata[MID].reset(Result); 729 return false; 730 } 731 732 /// parseNamedMetadata: 733 /// !foo = !{ !1, !2 } 734 bool LLParser::parseNamedMetadata() { 735 assert(Lex.getKind() == lltok::MetadataVar); 736 std::string Name = Lex.getStrVal(); 737 Lex.Lex(); 738 739 if (parseToken(lltok::equal, "expected '=' here") || 740 parseToken(lltok::exclaim, "Expected '!' here") || 741 parseToken(lltok::lbrace, "Expected '{' here")) 742 return true; 743 744 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 745 if (Lex.getKind() != lltok::rbrace) 746 do { 747 MDNode *N = nullptr; 748 // parse DIExpressions inline as a special case. They are still MDNodes, 749 // so they can still appear in named metadata. Remove this logic if they 750 // become plain Metadata. 751 if (Lex.getKind() == lltok::MetadataVar && 752 Lex.getStrVal() == "DIExpression") { 753 if (parseDIExpression(N, /*IsDistinct=*/false)) 754 return true; 755 // DIArgLists should only appear inline in a function, as they may 756 // contain LocalAsMetadata arguments which require a function context. 757 } else if (Lex.getKind() == lltok::MetadataVar && 758 Lex.getStrVal() == "DIArgList") { 759 return tokError("found DIArgList outside of function"); 760 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 761 parseMDNodeID(N)) { 762 return true; 763 } 764 NMD->addOperand(N); 765 } while (EatIfPresent(lltok::comma)); 766 767 return parseToken(lltok::rbrace, "expected end of metadata node"); 768 } 769 770 /// parseStandaloneMetadata: 771 /// !42 = !{...} 772 bool LLParser::parseStandaloneMetadata() { 773 assert(Lex.getKind() == lltok::exclaim); 774 Lex.Lex(); 775 unsigned MetadataID = 0; 776 777 MDNode *Init; 778 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 779 return true; 780 781 // Detect common error, from old metadata syntax. 782 if (Lex.getKind() == lltok::Type) 783 return tokError("unexpected type in metadata definition"); 784 785 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 786 if (Lex.getKind() == lltok::MetadataVar) { 787 if (parseSpecializedMDNode(Init, IsDistinct)) 788 return true; 789 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 790 parseMDTuple(Init, IsDistinct)) 791 return true; 792 793 // See if this was forward referenced, if so, handle it. 794 auto FI = ForwardRefMDNodes.find(MetadataID); 795 if (FI != ForwardRefMDNodes.end()) { 796 FI->second.first->replaceAllUsesWith(Init); 797 ForwardRefMDNodes.erase(FI); 798 799 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 800 } else { 801 if (NumberedMetadata.count(MetadataID)) 802 return tokError("Metadata id is already used"); 803 NumberedMetadata[MetadataID].reset(Init); 804 } 805 806 return false; 807 } 808 809 // Skips a single module summary entry. 810 bool LLParser::skipModuleSummaryEntry() { 811 // Each module summary entry consists of a tag for the entry 812 // type, followed by a colon, then the fields which may be surrounded by 813 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 814 // support is in place we will look for the tokens corresponding to the 815 // expected tags. 816 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 817 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 818 Lex.getKind() != lltok::kw_blockcount) 819 return tokError( 820 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 821 "start of summary entry"); 822 if (Lex.getKind() == lltok::kw_flags) 823 return parseSummaryIndexFlags(); 824 if (Lex.getKind() == lltok::kw_blockcount) 825 return parseBlockCount(); 826 Lex.Lex(); 827 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 828 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 829 return true; 830 // Now walk through the parenthesized entry, until the number of open 831 // parentheses goes back down to 0 (the first '(' was parsed above). 832 unsigned NumOpenParen = 1; 833 do { 834 switch (Lex.getKind()) { 835 case lltok::lparen: 836 NumOpenParen++; 837 break; 838 case lltok::rparen: 839 NumOpenParen--; 840 break; 841 case lltok::Eof: 842 return tokError("found end of file while parsing summary entry"); 843 default: 844 // Skip everything in between parentheses. 845 break; 846 } 847 Lex.Lex(); 848 } while (NumOpenParen > 0); 849 return false; 850 } 851 852 /// SummaryEntry 853 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 854 bool LLParser::parseSummaryEntry() { 855 assert(Lex.getKind() == lltok::SummaryID); 856 unsigned SummaryID = Lex.getUIntVal(); 857 858 // For summary entries, colons should be treated as distinct tokens, 859 // not an indication of the end of a label token. 860 Lex.setIgnoreColonInIdentifiers(true); 861 862 Lex.Lex(); 863 if (parseToken(lltok::equal, "expected '=' here")) 864 return true; 865 866 // If we don't have an index object, skip the summary entry. 867 if (!Index) 868 return skipModuleSummaryEntry(); 869 870 bool result = false; 871 switch (Lex.getKind()) { 872 case lltok::kw_gv: 873 result = parseGVEntry(SummaryID); 874 break; 875 case lltok::kw_module: 876 result = parseModuleEntry(SummaryID); 877 break; 878 case lltok::kw_typeid: 879 result = parseTypeIdEntry(SummaryID); 880 break; 881 case lltok::kw_typeidCompatibleVTable: 882 result = parseTypeIdCompatibleVtableEntry(SummaryID); 883 break; 884 case lltok::kw_flags: 885 result = parseSummaryIndexFlags(); 886 break; 887 case lltok::kw_blockcount: 888 result = parseBlockCount(); 889 break; 890 default: 891 result = error(Lex.getLoc(), "unexpected summary kind"); 892 break; 893 } 894 Lex.setIgnoreColonInIdentifiers(false); 895 return result; 896 } 897 898 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 899 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 900 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 901 } 902 903 // If there was an explicit dso_local, update GV. In the absence of an explicit 904 // dso_local we keep the default value. 905 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 906 if (DSOLocal) 907 GV.setDSOLocal(true); 908 } 909 910 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1, 911 Type *Ty2) { 912 std::string ErrString; 913 raw_string_ostream ErrOS(ErrString); 914 ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")"; 915 return ErrOS.str(); 916 } 917 918 /// parseAliasOrIFunc: 919 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 920 /// OptionalVisibility OptionalDLLStorageClass 921 /// OptionalThreadLocal OptionalUnnamedAddr 922 /// 'alias|ifunc' AliaseeOrResolver SymbolAttrs* 923 /// 924 /// AliaseeOrResolver 925 /// ::= TypeAndValue 926 /// 927 /// SymbolAttrs 928 /// ::= ',' 'partition' StringConstant 929 /// 930 /// Everything through OptionalUnnamedAddr has already been parsed. 931 /// 932 bool LLParser::parseAliasOrIFunc(const std::string &Name, LocTy NameLoc, 933 unsigned L, unsigned Visibility, 934 unsigned DLLStorageClass, bool DSOLocal, 935 GlobalVariable::ThreadLocalMode TLM, 936 GlobalVariable::UnnamedAddr UnnamedAddr) { 937 bool IsAlias; 938 if (Lex.getKind() == lltok::kw_alias) 939 IsAlias = true; 940 else if (Lex.getKind() == lltok::kw_ifunc) 941 IsAlias = false; 942 else 943 llvm_unreachable("Not an alias or ifunc!"); 944 Lex.Lex(); 945 946 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 947 948 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 949 return error(NameLoc, "invalid linkage type for alias"); 950 951 if (!isValidVisibilityForLinkage(Visibility, L)) 952 return error(NameLoc, 953 "symbol with local linkage must have default visibility"); 954 955 Type *Ty; 956 LocTy ExplicitTypeLoc = Lex.getLoc(); 957 if (parseType(Ty) || 958 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 959 return true; 960 961 Constant *Aliasee; 962 LocTy AliaseeLoc = Lex.getLoc(); 963 if (Lex.getKind() != lltok::kw_bitcast && 964 Lex.getKind() != lltok::kw_getelementptr && 965 Lex.getKind() != lltok::kw_addrspacecast && 966 Lex.getKind() != lltok::kw_inttoptr) { 967 if (parseGlobalTypeAndValue(Aliasee)) 968 return true; 969 } else { 970 // The bitcast dest type is not present, it is implied by the dest type. 971 ValID ID; 972 if (parseValID(ID, /*PFS=*/nullptr)) 973 return true; 974 if (ID.Kind != ValID::t_Constant) 975 return error(AliaseeLoc, "invalid aliasee"); 976 Aliasee = ID.ConstantVal; 977 } 978 979 Type *AliaseeType = Aliasee->getType(); 980 auto *PTy = dyn_cast<PointerType>(AliaseeType); 981 if (!PTy) 982 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 983 unsigned AddrSpace = PTy->getAddressSpace(); 984 985 if (IsAlias && !PTy->isOpaqueOrPointeeTypeMatches(Ty)) { 986 return error( 987 ExplicitTypeLoc, 988 typeComparisonErrorMessage( 989 "explicit pointee type doesn't match operand's pointee type", Ty, 990 PTy->getElementType())); 991 } 992 993 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) { 994 return error(ExplicitTypeLoc, 995 "explicit pointee type should be a function type"); 996 } 997 998 GlobalValue *GVal = nullptr; 999 1000 // See if the alias was forward referenced, if so, prepare to replace the 1001 // forward reference. 1002 if (!Name.empty()) { 1003 auto I = ForwardRefVals.find(Name); 1004 if (I != ForwardRefVals.end()) { 1005 GVal = I->second.first; 1006 ForwardRefVals.erase(Name); 1007 } else if (M->getNamedValue(Name)) { 1008 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1009 } 1010 } else { 1011 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1012 if (I != ForwardRefValIDs.end()) { 1013 GVal = I->second.first; 1014 ForwardRefValIDs.erase(I); 1015 } 1016 } 1017 1018 // Okay, create the alias/ifunc but do not insert it into the module yet. 1019 std::unique_ptr<GlobalAlias> GA; 1020 std::unique_ptr<GlobalIFunc> GI; 1021 GlobalValue *GV; 1022 if (IsAlias) { 1023 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1024 (GlobalValue::LinkageTypes)Linkage, Name, 1025 Aliasee, /*Parent*/ nullptr)); 1026 GV = GA.get(); 1027 } else { 1028 GI.reset(GlobalIFunc::create(Ty, AddrSpace, 1029 (GlobalValue::LinkageTypes)Linkage, Name, 1030 Aliasee, /*Parent*/ nullptr)); 1031 GV = GI.get(); 1032 } 1033 GV->setThreadLocalMode(TLM); 1034 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1035 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1036 GV->setUnnamedAddr(UnnamedAddr); 1037 maybeSetDSOLocal(DSOLocal, *GV); 1038 1039 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1040 // Now parse them if there are any. 1041 while (Lex.getKind() == lltok::comma) { 1042 Lex.Lex(); 1043 1044 if (Lex.getKind() == lltok::kw_partition) { 1045 Lex.Lex(); 1046 GV->setPartition(Lex.getStrVal()); 1047 if (parseToken(lltok::StringConstant, "expected partition string")) 1048 return true; 1049 } else { 1050 return tokError("unknown alias or ifunc property!"); 1051 } 1052 } 1053 1054 if (Name.empty()) 1055 NumberedVals.push_back(GV); 1056 1057 if (GVal) { 1058 // Verify that types agree. 1059 if (GVal->getType() != GV->getType()) 1060 return error( 1061 ExplicitTypeLoc, 1062 "forward reference and definition of alias have different types"); 1063 1064 // If they agree, just RAUW the old value with the alias and remove the 1065 // forward ref info. 1066 GVal->replaceAllUsesWith(GV); 1067 GVal->eraseFromParent(); 1068 } 1069 1070 // Insert into the module, we know its name won't collide now. 1071 if (IsAlias) 1072 M->getAliasList().push_back(GA.release()); 1073 else 1074 M->getIFuncList().push_back(GI.release()); 1075 assert(GV->getName() == Name && "Should not be a name conflict!"); 1076 1077 return false; 1078 } 1079 1080 /// parseGlobal 1081 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1082 /// OptionalVisibility OptionalDLLStorageClass 1083 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1084 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1085 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1086 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1087 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1088 /// Const OptionalAttrs 1089 /// 1090 /// Everything up to and including OptionalUnnamedAddr has been parsed 1091 /// already. 1092 /// 1093 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1094 unsigned Linkage, bool HasLinkage, 1095 unsigned Visibility, unsigned DLLStorageClass, 1096 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1097 GlobalVariable::UnnamedAddr UnnamedAddr) { 1098 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1099 return error(NameLoc, 1100 "symbol with local linkage must have default visibility"); 1101 1102 unsigned AddrSpace; 1103 bool IsConstant, IsExternallyInitialized; 1104 LocTy IsExternallyInitializedLoc; 1105 LocTy TyLoc; 1106 1107 Type *Ty = nullptr; 1108 if (parseOptionalAddrSpace(AddrSpace) || 1109 parseOptionalToken(lltok::kw_externally_initialized, 1110 IsExternallyInitialized, 1111 &IsExternallyInitializedLoc) || 1112 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1113 return true; 1114 1115 // If the linkage is specified and is external, then no initializer is 1116 // present. 1117 Constant *Init = nullptr; 1118 if (!HasLinkage || 1119 !GlobalValue::isValidDeclarationLinkage( 1120 (GlobalValue::LinkageTypes)Linkage)) { 1121 if (parseGlobalValue(Ty, Init)) 1122 return true; 1123 } 1124 1125 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1126 return error(TyLoc, "invalid type for global variable"); 1127 1128 GlobalValue *GVal = nullptr; 1129 1130 // See if the global was forward referenced, if so, use the global. 1131 if (!Name.empty()) { 1132 auto I = ForwardRefVals.find(Name); 1133 if (I != ForwardRefVals.end()) { 1134 GVal = I->second.first; 1135 ForwardRefVals.erase(I); 1136 } else if (M->getNamedValue(Name)) { 1137 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1138 } 1139 } else { 1140 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1141 if (I != ForwardRefValIDs.end()) { 1142 GVal = I->second.first; 1143 ForwardRefValIDs.erase(I); 1144 } 1145 } 1146 1147 GlobalVariable *GV = new GlobalVariable( 1148 *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr, 1149 GlobalVariable::NotThreadLocal, AddrSpace); 1150 1151 if (Name.empty()) 1152 NumberedVals.push_back(GV); 1153 1154 // Set the parsed properties on the global. 1155 if (Init) 1156 GV->setInitializer(Init); 1157 GV->setConstant(IsConstant); 1158 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1159 maybeSetDSOLocal(DSOLocal, *GV); 1160 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1161 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1162 GV->setExternallyInitialized(IsExternallyInitialized); 1163 GV->setThreadLocalMode(TLM); 1164 GV->setUnnamedAddr(UnnamedAddr); 1165 1166 if (GVal) { 1167 if (!GVal->getType()->isOpaque() && GVal->getValueType() != Ty) 1168 return error( 1169 TyLoc, 1170 "forward reference and definition of global have different types"); 1171 1172 GVal->replaceAllUsesWith(GV); 1173 GVal->eraseFromParent(); 1174 } 1175 1176 // parse attributes on the global. 1177 while (Lex.getKind() == lltok::comma) { 1178 Lex.Lex(); 1179 1180 if (Lex.getKind() == lltok::kw_section) { 1181 Lex.Lex(); 1182 GV->setSection(Lex.getStrVal()); 1183 if (parseToken(lltok::StringConstant, "expected global section string")) 1184 return true; 1185 } else if (Lex.getKind() == lltok::kw_partition) { 1186 Lex.Lex(); 1187 GV->setPartition(Lex.getStrVal()); 1188 if (parseToken(lltok::StringConstant, "expected partition string")) 1189 return true; 1190 } else if (Lex.getKind() == lltok::kw_align) { 1191 MaybeAlign Alignment; 1192 if (parseOptionalAlignment(Alignment)) 1193 return true; 1194 GV->setAlignment(Alignment); 1195 } else if (Lex.getKind() == lltok::MetadataVar) { 1196 if (parseGlobalObjectMetadataAttachment(*GV)) 1197 return true; 1198 } else { 1199 Comdat *C; 1200 if (parseOptionalComdat(Name, C)) 1201 return true; 1202 if (C) 1203 GV->setComdat(C); 1204 else 1205 return tokError("unknown global variable property!"); 1206 } 1207 } 1208 1209 AttrBuilder Attrs; 1210 LocTy BuiltinLoc; 1211 std::vector<unsigned> FwdRefAttrGrps; 1212 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1213 return true; 1214 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1215 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1216 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1217 } 1218 1219 return false; 1220 } 1221 1222 /// parseUnnamedAttrGrp 1223 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1224 bool LLParser::parseUnnamedAttrGrp() { 1225 assert(Lex.getKind() == lltok::kw_attributes); 1226 LocTy AttrGrpLoc = Lex.getLoc(); 1227 Lex.Lex(); 1228 1229 if (Lex.getKind() != lltok::AttrGrpID) 1230 return tokError("expected attribute group id"); 1231 1232 unsigned VarID = Lex.getUIntVal(); 1233 std::vector<unsigned> unused; 1234 LocTy BuiltinLoc; 1235 Lex.Lex(); 1236 1237 if (parseToken(lltok::equal, "expected '=' here") || 1238 parseToken(lltok::lbrace, "expected '{' here") || 1239 parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1240 BuiltinLoc) || 1241 parseToken(lltok::rbrace, "expected end of attribute group")) 1242 return true; 1243 1244 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1245 return error(AttrGrpLoc, "attribute group has no attributes"); 1246 1247 return false; 1248 } 1249 1250 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) { 1251 switch (Kind) { 1252 #define GET_ATTR_NAMES 1253 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \ 1254 case lltok::kw_##DISPLAY_NAME: \ 1255 return Attribute::ENUM_NAME; 1256 #include "llvm/IR/Attributes.inc" 1257 default: 1258 return Attribute::None; 1259 } 1260 } 1261 1262 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B, 1263 bool InAttrGroup) { 1264 if (Attribute::isTypeAttrKind(Attr)) 1265 return parseRequiredTypeAttr(B, Lex.getKind(), Attr); 1266 1267 switch (Attr) { 1268 case Attribute::Alignment: { 1269 MaybeAlign Alignment; 1270 if (InAttrGroup) { 1271 uint32_t Value = 0; 1272 Lex.Lex(); 1273 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1274 return true; 1275 Alignment = Align(Value); 1276 } else { 1277 if (parseOptionalAlignment(Alignment, true)) 1278 return true; 1279 } 1280 B.addAlignmentAttr(Alignment); 1281 return false; 1282 } 1283 case Attribute::StackAlignment: { 1284 unsigned Alignment; 1285 if (InAttrGroup) { 1286 Lex.Lex(); 1287 if (parseToken(lltok::equal, "expected '=' here") || 1288 parseUInt32(Alignment)) 1289 return true; 1290 } else { 1291 if (parseOptionalStackAlignment(Alignment)) 1292 return true; 1293 } 1294 B.addStackAlignmentAttr(Alignment); 1295 return false; 1296 } 1297 case Attribute::AllocSize: { 1298 unsigned ElemSizeArg; 1299 Optional<unsigned> NumElemsArg; 1300 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1301 return true; 1302 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1303 return false; 1304 } 1305 case Attribute::VScaleRange: { 1306 unsigned MinValue, MaxValue; 1307 if (parseVScaleRangeArguments(MinValue, MaxValue)) 1308 return true; 1309 B.addVScaleRangeAttr(MinValue, 1310 MaxValue > 0 ? MaxValue : Optional<unsigned>()); 1311 return false; 1312 } 1313 case Attribute::Dereferenceable: { 1314 uint64_t Bytes; 1315 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1316 return true; 1317 B.addDereferenceableAttr(Bytes); 1318 return false; 1319 } 1320 case Attribute::DereferenceableOrNull: { 1321 uint64_t Bytes; 1322 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1323 return true; 1324 B.addDereferenceableOrNullAttr(Bytes); 1325 return false; 1326 } 1327 default: 1328 B.addAttribute(Attr); 1329 Lex.Lex(); 1330 return false; 1331 } 1332 } 1333 1334 /// parseFnAttributeValuePairs 1335 /// ::= <attr> | <attr> '=' <value> 1336 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1337 std::vector<unsigned> &FwdRefAttrGrps, 1338 bool InAttrGrp, LocTy &BuiltinLoc) { 1339 bool HaveError = false; 1340 1341 B.clear(); 1342 1343 while (true) { 1344 lltok::Kind Token = Lex.getKind(); 1345 if (Token == lltok::rbrace) 1346 return HaveError; // Finished. 1347 1348 if (Token == lltok::StringConstant) { 1349 if (parseStringAttribute(B)) 1350 return true; 1351 continue; 1352 } 1353 1354 if (Token == lltok::AttrGrpID) { 1355 // Allow a function to reference an attribute group: 1356 // 1357 // define void @foo() #1 { ... } 1358 if (InAttrGrp) { 1359 HaveError |= error( 1360 Lex.getLoc(), 1361 "cannot have an attribute group reference in an attribute group"); 1362 } else { 1363 // Save the reference to the attribute group. We'll fill it in later. 1364 FwdRefAttrGrps.push_back(Lex.getUIntVal()); 1365 } 1366 Lex.Lex(); 1367 continue; 1368 } 1369 1370 SMLoc Loc = Lex.getLoc(); 1371 if (Token == lltok::kw_builtin) 1372 BuiltinLoc = Loc; 1373 1374 Attribute::AttrKind Attr = tokenToAttribute(Token); 1375 if (Attr == Attribute::None) { 1376 if (!InAttrGrp) 1377 return HaveError; 1378 return error(Lex.getLoc(), "unterminated attribute group"); 1379 } 1380 1381 if (parseEnumAttribute(Attr, B, InAttrGrp)) 1382 return true; 1383 1384 // As a hack, we allow function alignment to be initially parsed as an 1385 // attribute on a function declaration/definition or added to an attribute 1386 // group and later moved to the alignment field. 1387 if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment) 1388 HaveError |= error(Loc, "this attribute does not apply to functions"); 1389 } 1390 } 1391 1392 //===----------------------------------------------------------------------===// 1393 // GlobalValue Reference/Resolution Routines. 1394 //===----------------------------------------------------------------------===// 1395 1396 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) { 1397 // For opaque pointers, the used global type does not matter. We will later 1398 // RAUW it with a global/function of the correct type. 1399 if (PTy->isOpaque()) 1400 return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false, 1401 GlobalValue::ExternalWeakLinkage, nullptr, "", 1402 nullptr, GlobalVariable::NotThreadLocal, 1403 PTy->getAddressSpace()); 1404 1405 if (auto *FT = dyn_cast<FunctionType>(PTy->getPointerElementType())) 1406 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1407 PTy->getAddressSpace(), "", M); 1408 else 1409 return new GlobalVariable(*M, PTy->getPointerElementType(), false, 1410 GlobalValue::ExternalWeakLinkage, nullptr, "", 1411 nullptr, GlobalVariable::NotThreadLocal, 1412 PTy->getAddressSpace()); 1413 } 1414 1415 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1416 Value *Val) { 1417 Type *ValTy = Val->getType(); 1418 if (ValTy == Ty) 1419 return Val; 1420 if (Ty->isLabelTy()) 1421 error(Loc, "'" + Name + "' is not a basic block"); 1422 else 1423 error(Loc, "'" + Name + "' defined with type '" + 1424 getTypeString(Val->getType()) + "' but expected '" + 1425 getTypeString(Ty) + "'"); 1426 return nullptr; 1427 } 1428 1429 /// getGlobalVal - Get a value with the specified name or ID, creating a 1430 /// forward reference record if needed. This can return null if the value 1431 /// exists but does not have the right type. 1432 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1433 LocTy Loc) { 1434 PointerType *PTy = dyn_cast<PointerType>(Ty); 1435 if (!PTy) { 1436 error(Loc, "global variable reference must have pointer type"); 1437 return nullptr; 1438 } 1439 1440 // Look this name up in the normal function symbol table. 1441 GlobalValue *Val = 1442 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1443 1444 // If this is a forward reference for the value, see if we already created a 1445 // forward ref record. 1446 if (!Val) { 1447 auto I = ForwardRefVals.find(Name); 1448 if (I != ForwardRefVals.end()) 1449 Val = I->second.first; 1450 } 1451 1452 // If we have the value in the symbol table or fwd-ref table, return it. 1453 if (Val) 1454 return cast_or_null<GlobalValue>( 1455 checkValidVariableType(Loc, "@" + Name, Ty, Val)); 1456 1457 // Otherwise, create a new forward reference for this value and remember it. 1458 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1459 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1460 return FwdVal; 1461 } 1462 1463 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1464 PointerType *PTy = dyn_cast<PointerType>(Ty); 1465 if (!PTy) { 1466 error(Loc, "global variable reference must have pointer type"); 1467 return nullptr; 1468 } 1469 1470 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1471 1472 // If this is a forward reference for the value, see if we already created a 1473 // forward ref record. 1474 if (!Val) { 1475 auto I = ForwardRefValIDs.find(ID); 1476 if (I != ForwardRefValIDs.end()) 1477 Val = I->second.first; 1478 } 1479 1480 // If we have the value in the symbol table or fwd-ref table, return it. 1481 if (Val) 1482 return cast_or_null<GlobalValue>( 1483 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val)); 1484 1485 // Otherwise, create a new forward reference for this value and remember it. 1486 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1487 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1488 return FwdVal; 1489 } 1490 1491 //===----------------------------------------------------------------------===// 1492 // Comdat Reference/Resolution Routines. 1493 //===----------------------------------------------------------------------===// 1494 1495 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1496 // Look this name up in the comdat symbol table. 1497 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1498 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1499 if (I != ComdatSymTab.end()) 1500 return &I->second; 1501 1502 // Otherwise, create a new forward reference for this value and remember it. 1503 Comdat *C = M->getOrInsertComdat(Name); 1504 ForwardRefComdats[Name] = Loc; 1505 return C; 1506 } 1507 1508 //===----------------------------------------------------------------------===// 1509 // Helper Routines. 1510 //===----------------------------------------------------------------------===// 1511 1512 /// parseToken - If the current token has the specified kind, eat it and return 1513 /// success. Otherwise, emit the specified error and return failure. 1514 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1515 if (Lex.getKind() != T) 1516 return tokError(ErrMsg); 1517 Lex.Lex(); 1518 return false; 1519 } 1520 1521 /// parseStringConstant 1522 /// ::= StringConstant 1523 bool LLParser::parseStringConstant(std::string &Result) { 1524 if (Lex.getKind() != lltok::StringConstant) 1525 return tokError("expected string constant"); 1526 Result = Lex.getStrVal(); 1527 Lex.Lex(); 1528 return false; 1529 } 1530 1531 /// parseUInt32 1532 /// ::= uint32 1533 bool LLParser::parseUInt32(uint32_t &Val) { 1534 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1535 return tokError("expected integer"); 1536 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1537 if (Val64 != unsigned(Val64)) 1538 return tokError("expected 32-bit integer (too large)"); 1539 Val = Val64; 1540 Lex.Lex(); 1541 return false; 1542 } 1543 1544 /// parseUInt64 1545 /// ::= uint64 1546 bool LLParser::parseUInt64(uint64_t &Val) { 1547 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1548 return tokError("expected integer"); 1549 Val = Lex.getAPSIntVal().getLimitedValue(); 1550 Lex.Lex(); 1551 return false; 1552 } 1553 1554 /// parseTLSModel 1555 /// := 'localdynamic' 1556 /// := 'initialexec' 1557 /// := 'localexec' 1558 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1559 switch (Lex.getKind()) { 1560 default: 1561 return tokError("expected localdynamic, initialexec or localexec"); 1562 case lltok::kw_localdynamic: 1563 TLM = GlobalVariable::LocalDynamicTLSModel; 1564 break; 1565 case lltok::kw_initialexec: 1566 TLM = GlobalVariable::InitialExecTLSModel; 1567 break; 1568 case lltok::kw_localexec: 1569 TLM = GlobalVariable::LocalExecTLSModel; 1570 break; 1571 } 1572 1573 Lex.Lex(); 1574 return false; 1575 } 1576 1577 /// parseOptionalThreadLocal 1578 /// := /*empty*/ 1579 /// := 'thread_local' 1580 /// := 'thread_local' '(' tlsmodel ')' 1581 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1582 TLM = GlobalVariable::NotThreadLocal; 1583 if (!EatIfPresent(lltok::kw_thread_local)) 1584 return false; 1585 1586 TLM = GlobalVariable::GeneralDynamicTLSModel; 1587 if (Lex.getKind() == lltok::lparen) { 1588 Lex.Lex(); 1589 return parseTLSModel(TLM) || 1590 parseToken(lltok::rparen, "expected ')' after thread local model"); 1591 } 1592 return false; 1593 } 1594 1595 /// parseOptionalAddrSpace 1596 /// := /*empty*/ 1597 /// := 'addrspace' '(' uint32 ')' 1598 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1599 AddrSpace = DefaultAS; 1600 if (!EatIfPresent(lltok::kw_addrspace)) 1601 return false; 1602 return parseToken(lltok::lparen, "expected '(' in address space") || 1603 parseUInt32(AddrSpace) || 1604 parseToken(lltok::rparen, "expected ')' in address space"); 1605 } 1606 1607 /// parseStringAttribute 1608 /// := StringConstant 1609 /// := StringConstant '=' StringConstant 1610 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1611 std::string Attr = Lex.getStrVal(); 1612 Lex.Lex(); 1613 std::string Val; 1614 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1615 return true; 1616 B.addAttribute(Attr, Val); 1617 return false; 1618 } 1619 1620 /// Parse a potentially empty list of parameter or return attributes. 1621 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) { 1622 bool HaveError = false; 1623 1624 B.clear(); 1625 1626 while (true) { 1627 lltok::Kind Token = Lex.getKind(); 1628 if (Token == lltok::StringConstant) { 1629 if (parseStringAttribute(B)) 1630 return true; 1631 continue; 1632 } 1633 1634 SMLoc Loc = Lex.getLoc(); 1635 Attribute::AttrKind Attr = tokenToAttribute(Token); 1636 if (Attr == Attribute::None) 1637 return HaveError; 1638 1639 if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false)) 1640 return true; 1641 1642 if (IsParam && !Attribute::canUseAsParamAttr(Attr)) 1643 HaveError |= error(Loc, "this attribute does not apply to parameters"); 1644 if (!IsParam && !Attribute::canUseAsRetAttr(Attr)) 1645 HaveError |= error(Loc, "this attribute does not apply to return values"); 1646 } 1647 } 1648 1649 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1650 HasLinkage = true; 1651 switch (Kind) { 1652 default: 1653 HasLinkage = false; 1654 return GlobalValue::ExternalLinkage; 1655 case lltok::kw_private: 1656 return GlobalValue::PrivateLinkage; 1657 case lltok::kw_internal: 1658 return GlobalValue::InternalLinkage; 1659 case lltok::kw_weak: 1660 return GlobalValue::WeakAnyLinkage; 1661 case lltok::kw_weak_odr: 1662 return GlobalValue::WeakODRLinkage; 1663 case lltok::kw_linkonce: 1664 return GlobalValue::LinkOnceAnyLinkage; 1665 case lltok::kw_linkonce_odr: 1666 return GlobalValue::LinkOnceODRLinkage; 1667 case lltok::kw_available_externally: 1668 return GlobalValue::AvailableExternallyLinkage; 1669 case lltok::kw_appending: 1670 return GlobalValue::AppendingLinkage; 1671 case lltok::kw_common: 1672 return GlobalValue::CommonLinkage; 1673 case lltok::kw_extern_weak: 1674 return GlobalValue::ExternalWeakLinkage; 1675 case lltok::kw_external: 1676 return GlobalValue::ExternalLinkage; 1677 } 1678 } 1679 1680 /// parseOptionalLinkage 1681 /// ::= /*empty*/ 1682 /// ::= 'private' 1683 /// ::= 'internal' 1684 /// ::= 'weak' 1685 /// ::= 'weak_odr' 1686 /// ::= 'linkonce' 1687 /// ::= 'linkonce_odr' 1688 /// ::= 'available_externally' 1689 /// ::= 'appending' 1690 /// ::= 'common' 1691 /// ::= 'extern_weak' 1692 /// ::= 'external' 1693 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1694 unsigned &Visibility, 1695 unsigned &DLLStorageClass, bool &DSOLocal) { 1696 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1697 if (HasLinkage) 1698 Lex.Lex(); 1699 parseOptionalDSOLocal(DSOLocal); 1700 parseOptionalVisibility(Visibility); 1701 parseOptionalDLLStorageClass(DLLStorageClass); 1702 1703 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1704 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1705 } 1706 1707 return false; 1708 } 1709 1710 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 1711 switch (Lex.getKind()) { 1712 default: 1713 DSOLocal = false; 1714 break; 1715 case lltok::kw_dso_local: 1716 DSOLocal = true; 1717 Lex.Lex(); 1718 break; 1719 case lltok::kw_dso_preemptable: 1720 DSOLocal = false; 1721 Lex.Lex(); 1722 break; 1723 } 1724 } 1725 1726 /// parseOptionalVisibility 1727 /// ::= /*empty*/ 1728 /// ::= 'default' 1729 /// ::= 'hidden' 1730 /// ::= 'protected' 1731 /// 1732 void LLParser::parseOptionalVisibility(unsigned &Res) { 1733 switch (Lex.getKind()) { 1734 default: 1735 Res = GlobalValue::DefaultVisibility; 1736 return; 1737 case lltok::kw_default: 1738 Res = GlobalValue::DefaultVisibility; 1739 break; 1740 case lltok::kw_hidden: 1741 Res = GlobalValue::HiddenVisibility; 1742 break; 1743 case lltok::kw_protected: 1744 Res = GlobalValue::ProtectedVisibility; 1745 break; 1746 } 1747 Lex.Lex(); 1748 } 1749 1750 /// parseOptionalDLLStorageClass 1751 /// ::= /*empty*/ 1752 /// ::= 'dllimport' 1753 /// ::= 'dllexport' 1754 /// 1755 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 1756 switch (Lex.getKind()) { 1757 default: 1758 Res = GlobalValue::DefaultStorageClass; 1759 return; 1760 case lltok::kw_dllimport: 1761 Res = GlobalValue::DLLImportStorageClass; 1762 break; 1763 case lltok::kw_dllexport: 1764 Res = GlobalValue::DLLExportStorageClass; 1765 break; 1766 } 1767 Lex.Lex(); 1768 } 1769 1770 /// parseOptionalCallingConv 1771 /// ::= /*empty*/ 1772 /// ::= 'ccc' 1773 /// ::= 'fastcc' 1774 /// ::= 'intel_ocl_bicc' 1775 /// ::= 'coldcc' 1776 /// ::= 'cfguard_checkcc' 1777 /// ::= 'x86_stdcallcc' 1778 /// ::= 'x86_fastcallcc' 1779 /// ::= 'x86_thiscallcc' 1780 /// ::= 'x86_vectorcallcc' 1781 /// ::= 'arm_apcscc' 1782 /// ::= 'arm_aapcscc' 1783 /// ::= 'arm_aapcs_vfpcc' 1784 /// ::= 'aarch64_vector_pcs' 1785 /// ::= 'aarch64_sve_vector_pcs' 1786 /// ::= 'msp430_intrcc' 1787 /// ::= 'avr_intrcc' 1788 /// ::= 'avr_signalcc' 1789 /// ::= 'ptx_kernel' 1790 /// ::= 'ptx_device' 1791 /// ::= 'spir_func' 1792 /// ::= 'spir_kernel' 1793 /// ::= 'x86_64_sysvcc' 1794 /// ::= 'win64cc' 1795 /// ::= 'webkit_jscc' 1796 /// ::= 'anyregcc' 1797 /// ::= 'preserve_mostcc' 1798 /// ::= 'preserve_allcc' 1799 /// ::= 'ghccc' 1800 /// ::= 'swiftcc' 1801 /// ::= 'swifttailcc' 1802 /// ::= 'x86_intrcc' 1803 /// ::= 'hhvmcc' 1804 /// ::= 'hhvm_ccc' 1805 /// ::= 'cxx_fast_tlscc' 1806 /// ::= 'amdgpu_vs' 1807 /// ::= 'amdgpu_ls' 1808 /// ::= 'amdgpu_hs' 1809 /// ::= 'amdgpu_es' 1810 /// ::= 'amdgpu_gs' 1811 /// ::= 'amdgpu_ps' 1812 /// ::= 'amdgpu_cs' 1813 /// ::= 'amdgpu_kernel' 1814 /// ::= 'tailcc' 1815 /// ::= 'cc' UINT 1816 /// 1817 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 1818 switch (Lex.getKind()) { 1819 default: CC = CallingConv::C; return false; 1820 case lltok::kw_ccc: CC = CallingConv::C; break; 1821 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1822 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1823 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 1824 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1825 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1826 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1827 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1828 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1829 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1830 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1831 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1832 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1833 case lltok::kw_aarch64_sve_vector_pcs: 1834 CC = CallingConv::AArch64_SVE_VectorCall; 1835 break; 1836 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1837 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1838 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1839 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1840 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1841 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1842 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1843 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1844 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1845 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1846 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1847 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1848 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1849 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1850 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1851 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1852 case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break; 1853 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1854 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1855 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1856 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1857 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1858 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 1859 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1860 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1861 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1862 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1863 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1864 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1865 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1866 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 1867 case lltok::kw_cc: { 1868 Lex.Lex(); 1869 return parseUInt32(CC); 1870 } 1871 } 1872 1873 Lex.Lex(); 1874 return false; 1875 } 1876 1877 /// parseMetadataAttachment 1878 /// ::= !dbg !42 1879 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1880 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1881 1882 std::string Name = Lex.getStrVal(); 1883 Kind = M->getMDKindID(Name); 1884 Lex.Lex(); 1885 1886 return parseMDNode(MD); 1887 } 1888 1889 /// parseInstructionMetadata 1890 /// ::= !dbg !42 (',' !dbg !57)* 1891 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 1892 do { 1893 if (Lex.getKind() != lltok::MetadataVar) 1894 return tokError("expected metadata after comma"); 1895 1896 unsigned MDK; 1897 MDNode *N; 1898 if (parseMetadataAttachment(MDK, N)) 1899 return true; 1900 1901 Inst.setMetadata(MDK, N); 1902 if (MDK == LLVMContext::MD_tbaa) 1903 InstsWithTBAATag.push_back(&Inst); 1904 1905 // If this is the end of the list, we're done. 1906 } while (EatIfPresent(lltok::comma)); 1907 return false; 1908 } 1909 1910 /// parseGlobalObjectMetadataAttachment 1911 /// ::= !dbg !57 1912 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1913 unsigned MDK; 1914 MDNode *N; 1915 if (parseMetadataAttachment(MDK, N)) 1916 return true; 1917 1918 GO.addMetadata(MDK, *N); 1919 return false; 1920 } 1921 1922 /// parseOptionalFunctionMetadata 1923 /// ::= (!dbg !57)* 1924 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 1925 while (Lex.getKind() == lltok::MetadataVar) 1926 if (parseGlobalObjectMetadataAttachment(F)) 1927 return true; 1928 return false; 1929 } 1930 1931 /// parseOptionalAlignment 1932 /// ::= /* empty */ 1933 /// ::= 'align' 4 1934 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 1935 Alignment = None; 1936 if (!EatIfPresent(lltok::kw_align)) 1937 return false; 1938 LocTy AlignLoc = Lex.getLoc(); 1939 uint64_t Value = 0; 1940 1941 LocTy ParenLoc = Lex.getLoc(); 1942 bool HaveParens = false; 1943 if (AllowParens) { 1944 if (EatIfPresent(lltok::lparen)) 1945 HaveParens = true; 1946 } 1947 1948 if (parseUInt64(Value)) 1949 return true; 1950 1951 if (HaveParens && !EatIfPresent(lltok::rparen)) 1952 return error(ParenLoc, "expected ')'"); 1953 1954 if (!isPowerOf2_64(Value)) 1955 return error(AlignLoc, "alignment is not a power of two"); 1956 if (Value > Value::MaximumAlignment) 1957 return error(AlignLoc, "huge alignments are not supported yet"); 1958 Alignment = Align(Value); 1959 return false; 1960 } 1961 1962 /// parseOptionalDerefAttrBytes 1963 /// ::= /* empty */ 1964 /// ::= AttrKind '(' 4 ')' 1965 /// 1966 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1967 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1968 uint64_t &Bytes) { 1969 assert((AttrKind == lltok::kw_dereferenceable || 1970 AttrKind == lltok::kw_dereferenceable_or_null) && 1971 "contract!"); 1972 1973 Bytes = 0; 1974 if (!EatIfPresent(AttrKind)) 1975 return false; 1976 LocTy ParenLoc = Lex.getLoc(); 1977 if (!EatIfPresent(lltok::lparen)) 1978 return error(ParenLoc, "expected '('"); 1979 LocTy DerefLoc = Lex.getLoc(); 1980 if (parseUInt64(Bytes)) 1981 return true; 1982 ParenLoc = Lex.getLoc(); 1983 if (!EatIfPresent(lltok::rparen)) 1984 return error(ParenLoc, "expected ')'"); 1985 if (!Bytes) 1986 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 1987 return false; 1988 } 1989 1990 /// parseOptionalCommaAlign 1991 /// ::= 1992 /// ::= ',' align 4 1993 /// 1994 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1995 /// end. 1996 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 1997 bool &AteExtraComma) { 1998 AteExtraComma = false; 1999 while (EatIfPresent(lltok::comma)) { 2000 // Metadata at the end is an early exit. 2001 if (Lex.getKind() == lltok::MetadataVar) { 2002 AteExtraComma = true; 2003 return false; 2004 } 2005 2006 if (Lex.getKind() != lltok::kw_align) 2007 return error(Lex.getLoc(), "expected metadata or 'align'"); 2008 2009 if (parseOptionalAlignment(Alignment)) 2010 return true; 2011 } 2012 2013 return false; 2014 } 2015 2016 /// parseOptionalCommaAddrSpace 2017 /// ::= 2018 /// ::= ',' addrspace(1) 2019 /// 2020 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2021 /// end. 2022 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2023 bool &AteExtraComma) { 2024 AteExtraComma = false; 2025 while (EatIfPresent(lltok::comma)) { 2026 // Metadata at the end is an early exit. 2027 if (Lex.getKind() == lltok::MetadataVar) { 2028 AteExtraComma = true; 2029 return false; 2030 } 2031 2032 Loc = Lex.getLoc(); 2033 if (Lex.getKind() != lltok::kw_addrspace) 2034 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2035 2036 if (parseOptionalAddrSpace(AddrSpace)) 2037 return true; 2038 } 2039 2040 return false; 2041 } 2042 2043 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2044 Optional<unsigned> &HowManyArg) { 2045 Lex.Lex(); 2046 2047 auto StartParen = Lex.getLoc(); 2048 if (!EatIfPresent(lltok::lparen)) 2049 return error(StartParen, "expected '('"); 2050 2051 if (parseUInt32(BaseSizeArg)) 2052 return true; 2053 2054 if (EatIfPresent(lltok::comma)) { 2055 auto HowManyAt = Lex.getLoc(); 2056 unsigned HowMany; 2057 if (parseUInt32(HowMany)) 2058 return true; 2059 if (HowMany == BaseSizeArg) 2060 return error(HowManyAt, 2061 "'allocsize' indices can't refer to the same parameter"); 2062 HowManyArg = HowMany; 2063 } else 2064 HowManyArg = None; 2065 2066 auto EndParen = Lex.getLoc(); 2067 if (!EatIfPresent(lltok::rparen)) 2068 return error(EndParen, "expected ')'"); 2069 return false; 2070 } 2071 2072 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue, 2073 unsigned &MaxValue) { 2074 Lex.Lex(); 2075 2076 auto StartParen = Lex.getLoc(); 2077 if (!EatIfPresent(lltok::lparen)) 2078 return error(StartParen, "expected '('"); 2079 2080 if (parseUInt32(MinValue)) 2081 return true; 2082 2083 if (EatIfPresent(lltok::comma)) { 2084 if (parseUInt32(MaxValue)) 2085 return true; 2086 } else 2087 MaxValue = MinValue; 2088 2089 auto EndParen = Lex.getLoc(); 2090 if (!EatIfPresent(lltok::rparen)) 2091 return error(EndParen, "expected ')'"); 2092 return false; 2093 } 2094 2095 /// parseScopeAndOrdering 2096 /// if isAtomic: ::= SyncScope? AtomicOrdering 2097 /// else: ::= 2098 /// 2099 /// This sets Scope and Ordering to the parsed values. 2100 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2101 AtomicOrdering &Ordering) { 2102 if (!IsAtomic) 2103 return false; 2104 2105 return parseScope(SSID) || parseOrdering(Ordering); 2106 } 2107 2108 /// parseScope 2109 /// ::= syncscope("singlethread" | "<target scope>")? 2110 /// 2111 /// This sets synchronization scope ID to the ID of the parsed value. 2112 bool LLParser::parseScope(SyncScope::ID &SSID) { 2113 SSID = SyncScope::System; 2114 if (EatIfPresent(lltok::kw_syncscope)) { 2115 auto StartParenAt = Lex.getLoc(); 2116 if (!EatIfPresent(lltok::lparen)) 2117 return error(StartParenAt, "Expected '(' in syncscope"); 2118 2119 std::string SSN; 2120 auto SSNAt = Lex.getLoc(); 2121 if (parseStringConstant(SSN)) 2122 return error(SSNAt, "Expected synchronization scope name"); 2123 2124 auto EndParenAt = Lex.getLoc(); 2125 if (!EatIfPresent(lltok::rparen)) 2126 return error(EndParenAt, "Expected ')' in syncscope"); 2127 2128 SSID = Context.getOrInsertSyncScopeID(SSN); 2129 } 2130 2131 return false; 2132 } 2133 2134 /// parseOrdering 2135 /// ::= AtomicOrdering 2136 /// 2137 /// This sets Ordering to the parsed value. 2138 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2139 switch (Lex.getKind()) { 2140 default: 2141 return tokError("Expected ordering on atomic instruction"); 2142 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2143 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2144 // Not specified yet: 2145 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2146 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2147 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2148 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2149 case lltok::kw_seq_cst: 2150 Ordering = AtomicOrdering::SequentiallyConsistent; 2151 break; 2152 } 2153 Lex.Lex(); 2154 return false; 2155 } 2156 2157 /// parseOptionalStackAlignment 2158 /// ::= /* empty */ 2159 /// ::= 'alignstack' '(' 4 ')' 2160 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2161 Alignment = 0; 2162 if (!EatIfPresent(lltok::kw_alignstack)) 2163 return false; 2164 LocTy ParenLoc = Lex.getLoc(); 2165 if (!EatIfPresent(lltok::lparen)) 2166 return error(ParenLoc, "expected '('"); 2167 LocTy AlignLoc = Lex.getLoc(); 2168 if (parseUInt32(Alignment)) 2169 return true; 2170 ParenLoc = Lex.getLoc(); 2171 if (!EatIfPresent(lltok::rparen)) 2172 return error(ParenLoc, "expected ')'"); 2173 if (!isPowerOf2_32(Alignment)) 2174 return error(AlignLoc, "stack alignment is not a power of two"); 2175 return false; 2176 } 2177 2178 /// parseIndexList - This parses the index list for an insert/extractvalue 2179 /// instruction. This sets AteExtraComma in the case where we eat an extra 2180 /// comma at the end of the line and find that it is followed by metadata. 2181 /// Clients that don't allow metadata can call the version of this function that 2182 /// only takes one argument. 2183 /// 2184 /// parseIndexList 2185 /// ::= (',' uint32)+ 2186 /// 2187 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2188 bool &AteExtraComma) { 2189 AteExtraComma = false; 2190 2191 if (Lex.getKind() != lltok::comma) 2192 return tokError("expected ',' as start of index list"); 2193 2194 while (EatIfPresent(lltok::comma)) { 2195 if (Lex.getKind() == lltok::MetadataVar) { 2196 if (Indices.empty()) 2197 return tokError("expected index"); 2198 AteExtraComma = true; 2199 return false; 2200 } 2201 unsigned Idx = 0; 2202 if (parseUInt32(Idx)) 2203 return true; 2204 Indices.push_back(Idx); 2205 } 2206 2207 return false; 2208 } 2209 2210 //===----------------------------------------------------------------------===// 2211 // Type Parsing. 2212 //===----------------------------------------------------------------------===// 2213 2214 /// parseType - parse a type. 2215 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2216 SMLoc TypeLoc = Lex.getLoc(); 2217 switch (Lex.getKind()) { 2218 default: 2219 return tokError(Msg); 2220 case lltok::Type: 2221 // Type ::= 'float' | 'void' (etc) 2222 Result = Lex.getTyVal(); 2223 Lex.Lex(); 2224 2225 // Handle "ptr" opaque pointer type. 2226 // 2227 // Type ::= ptr ('addrspace' '(' uint32 ')')? 2228 if (Result->isOpaquePointerTy()) { 2229 unsigned AddrSpace; 2230 if (parseOptionalAddrSpace(AddrSpace)) 2231 return true; 2232 Result = PointerType::get(getContext(), AddrSpace); 2233 2234 // Give a nice error for 'ptr*'. 2235 if (Lex.getKind() == lltok::star) 2236 return tokError("ptr* is invalid - use ptr instead"); 2237 2238 // Fall through to parsing the type suffixes only if this 'ptr' is a 2239 // function return. Otherwise, return success, implicitly rejecting other 2240 // suffixes. 2241 if (Lex.getKind() != lltok::lparen) 2242 return false; 2243 } 2244 break; 2245 case lltok::lbrace: 2246 // Type ::= StructType 2247 if (parseAnonStructType(Result, false)) 2248 return true; 2249 break; 2250 case lltok::lsquare: 2251 // Type ::= '[' ... ']' 2252 Lex.Lex(); // eat the lsquare. 2253 if (parseArrayVectorType(Result, false)) 2254 return true; 2255 break; 2256 case lltok::less: // Either vector or packed struct. 2257 // Type ::= '<' ... '>' 2258 Lex.Lex(); 2259 if (Lex.getKind() == lltok::lbrace) { 2260 if (parseAnonStructType(Result, true) || 2261 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2262 return true; 2263 } else if (parseArrayVectorType(Result, true)) 2264 return true; 2265 break; 2266 case lltok::LocalVar: { 2267 // Type ::= %foo 2268 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2269 2270 // If the type hasn't been defined yet, create a forward definition and 2271 // remember where that forward def'n was seen (in case it never is defined). 2272 if (!Entry.first) { 2273 Entry.first = StructType::create(Context, Lex.getStrVal()); 2274 Entry.second = Lex.getLoc(); 2275 } 2276 Result = Entry.first; 2277 Lex.Lex(); 2278 break; 2279 } 2280 2281 case lltok::LocalVarID: { 2282 // Type ::= %4 2283 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2284 2285 // If the type hasn't been defined yet, create a forward definition and 2286 // remember where that forward def'n was seen (in case it never is defined). 2287 if (!Entry.first) { 2288 Entry.first = StructType::create(Context); 2289 Entry.second = Lex.getLoc(); 2290 } 2291 Result = Entry.first; 2292 Lex.Lex(); 2293 break; 2294 } 2295 } 2296 2297 // parse the type suffixes. 2298 while (true) { 2299 switch (Lex.getKind()) { 2300 // End of type. 2301 default: 2302 if (!AllowVoid && Result->isVoidTy()) 2303 return error(TypeLoc, "void type only allowed for function results"); 2304 return false; 2305 2306 // Type ::= Type '*' 2307 case lltok::star: 2308 if (Result->isLabelTy()) 2309 return tokError("basic block pointers are invalid"); 2310 if (Result->isVoidTy()) 2311 return tokError("pointers to void are invalid - use i8* instead"); 2312 if (!PointerType::isValidElementType(Result)) 2313 return tokError("pointer to this type is invalid"); 2314 Result = PointerType::getUnqual(Result); 2315 Lex.Lex(); 2316 break; 2317 2318 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2319 case lltok::kw_addrspace: { 2320 if (Result->isLabelTy()) 2321 return tokError("basic block pointers are invalid"); 2322 if (Result->isVoidTy()) 2323 return tokError("pointers to void are invalid; use i8* instead"); 2324 if (!PointerType::isValidElementType(Result)) 2325 return tokError("pointer to this type is invalid"); 2326 unsigned AddrSpace; 2327 if (parseOptionalAddrSpace(AddrSpace) || 2328 parseToken(lltok::star, "expected '*' in address space")) 2329 return true; 2330 2331 Result = PointerType::get(Result, AddrSpace); 2332 break; 2333 } 2334 2335 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2336 case lltok::lparen: 2337 if (parseFunctionType(Result)) 2338 return true; 2339 break; 2340 } 2341 } 2342 } 2343 2344 /// parseParameterList 2345 /// ::= '(' ')' 2346 /// ::= '(' Arg (',' Arg)* ')' 2347 /// Arg 2348 /// ::= Type OptionalAttributes Value OptionalAttributes 2349 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2350 PerFunctionState &PFS, bool IsMustTailCall, 2351 bool InVarArgsFunc) { 2352 if (parseToken(lltok::lparen, "expected '(' in call")) 2353 return true; 2354 2355 while (Lex.getKind() != lltok::rparen) { 2356 // If this isn't the first argument, we need a comma. 2357 if (!ArgList.empty() && 2358 parseToken(lltok::comma, "expected ',' in argument list")) 2359 return true; 2360 2361 // parse an ellipsis if this is a musttail call in a variadic function. 2362 if (Lex.getKind() == lltok::dotdotdot) { 2363 const char *Msg = "unexpected ellipsis in argument list for "; 2364 if (!IsMustTailCall) 2365 return tokError(Twine(Msg) + "non-musttail call"); 2366 if (!InVarArgsFunc) 2367 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2368 Lex.Lex(); // Lex the '...', it is purely for readability. 2369 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2370 } 2371 2372 // parse the argument. 2373 LocTy ArgLoc; 2374 Type *ArgTy = nullptr; 2375 AttrBuilder ArgAttrs; 2376 Value *V; 2377 if (parseType(ArgTy, ArgLoc)) 2378 return true; 2379 2380 if (ArgTy->isMetadataTy()) { 2381 if (parseMetadataAsValue(V, PFS)) 2382 return true; 2383 } else { 2384 // Otherwise, handle normal operands. 2385 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2386 return true; 2387 } 2388 ArgList.push_back(ParamInfo( 2389 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2390 } 2391 2392 if (IsMustTailCall && InVarArgsFunc) 2393 return tokError("expected '...' at end of argument list for musttail call " 2394 "in varargs function"); 2395 2396 Lex.Lex(); // Lex the ')'. 2397 return false; 2398 } 2399 2400 /// parseRequiredTypeAttr 2401 /// ::= attrname(<ty>) 2402 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken, 2403 Attribute::AttrKind AttrKind) { 2404 Type *Ty = nullptr; 2405 if (!EatIfPresent(AttrToken)) 2406 return true; 2407 if (!EatIfPresent(lltok::lparen)) 2408 return error(Lex.getLoc(), "expected '('"); 2409 if (parseType(Ty)) 2410 return true; 2411 if (!EatIfPresent(lltok::rparen)) 2412 return error(Lex.getLoc(), "expected ')'"); 2413 2414 B.addTypeAttr(AttrKind, Ty); 2415 return false; 2416 } 2417 2418 /// parseOptionalOperandBundles 2419 /// ::= /*empty*/ 2420 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2421 /// 2422 /// OperandBundle 2423 /// ::= bundle-tag '(' ')' 2424 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2425 /// 2426 /// bundle-tag ::= String Constant 2427 bool LLParser::parseOptionalOperandBundles( 2428 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2429 LocTy BeginLoc = Lex.getLoc(); 2430 if (!EatIfPresent(lltok::lsquare)) 2431 return false; 2432 2433 while (Lex.getKind() != lltok::rsquare) { 2434 // If this isn't the first operand bundle, we need a comma. 2435 if (!BundleList.empty() && 2436 parseToken(lltok::comma, "expected ',' in input list")) 2437 return true; 2438 2439 std::string Tag; 2440 if (parseStringConstant(Tag)) 2441 return true; 2442 2443 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2444 return true; 2445 2446 std::vector<Value *> Inputs; 2447 while (Lex.getKind() != lltok::rparen) { 2448 // If this isn't the first input, we need a comma. 2449 if (!Inputs.empty() && 2450 parseToken(lltok::comma, "expected ',' in input list")) 2451 return true; 2452 2453 Type *Ty = nullptr; 2454 Value *Input = nullptr; 2455 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 2456 return true; 2457 Inputs.push_back(Input); 2458 } 2459 2460 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2461 2462 Lex.Lex(); // Lex the ')'. 2463 } 2464 2465 if (BundleList.empty()) 2466 return error(BeginLoc, "operand bundle set must not be empty"); 2467 2468 Lex.Lex(); // Lex the ']'. 2469 return false; 2470 } 2471 2472 /// parseArgumentList - parse the argument list for a function type or function 2473 /// prototype. 2474 /// ::= '(' ArgTypeListI ')' 2475 /// ArgTypeListI 2476 /// ::= /*empty*/ 2477 /// ::= '...' 2478 /// ::= ArgTypeList ',' '...' 2479 /// ::= ArgType (',' ArgType)* 2480 /// 2481 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2482 bool &IsVarArg) { 2483 unsigned CurValID = 0; 2484 IsVarArg = false; 2485 assert(Lex.getKind() == lltok::lparen); 2486 Lex.Lex(); // eat the (. 2487 2488 if (Lex.getKind() == lltok::rparen) { 2489 // empty 2490 } else if (Lex.getKind() == lltok::dotdotdot) { 2491 IsVarArg = true; 2492 Lex.Lex(); 2493 } else { 2494 LocTy TypeLoc = Lex.getLoc(); 2495 Type *ArgTy = nullptr; 2496 AttrBuilder Attrs; 2497 std::string Name; 2498 2499 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2500 return true; 2501 2502 if (ArgTy->isVoidTy()) 2503 return error(TypeLoc, "argument can not have void type"); 2504 2505 if (Lex.getKind() == lltok::LocalVar) { 2506 Name = Lex.getStrVal(); 2507 Lex.Lex(); 2508 } else if (Lex.getKind() == lltok::LocalVarID) { 2509 if (Lex.getUIntVal() != CurValID) 2510 return error(TypeLoc, "argument expected to be numbered '%" + 2511 Twine(CurValID) + "'"); 2512 ++CurValID; 2513 Lex.Lex(); 2514 } 2515 2516 if (!FunctionType::isValidArgumentType(ArgTy)) 2517 return error(TypeLoc, "invalid type for function argument"); 2518 2519 ArgList.emplace_back(TypeLoc, ArgTy, 2520 AttributeSet::get(ArgTy->getContext(), Attrs), 2521 std::move(Name)); 2522 2523 while (EatIfPresent(lltok::comma)) { 2524 // Handle ... at end of arg list. 2525 if (EatIfPresent(lltok::dotdotdot)) { 2526 IsVarArg = true; 2527 break; 2528 } 2529 2530 // Otherwise must be an argument type. 2531 TypeLoc = Lex.getLoc(); 2532 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2533 return true; 2534 2535 if (ArgTy->isVoidTy()) 2536 return error(TypeLoc, "argument can not have void type"); 2537 2538 if (Lex.getKind() == lltok::LocalVar) { 2539 Name = Lex.getStrVal(); 2540 Lex.Lex(); 2541 } else { 2542 if (Lex.getKind() == lltok::LocalVarID) { 2543 if (Lex.getUIntVal() != CurValID) 2544 return error(TypeLoc, "argument expected to be numbered '%" + 2545 Twine(CurValID) + "'"); 2546 Lex.Lex(); 2547 } 2548 ++CurValID; 2549 Name = ""; 2550 } 2551 2552 if (!ArgTy->isFirstClassType()) 2553 return error(TypeLoc, "invalid type for function argument"); 2554 2555 ArgList.emplace_back(TypeLoc, ArgTy, 2556 AttributeSet::get(ArgTy->getContext(), Attrs), 2557 std::move(Name)); 2558 } 2559 } 2560 2561 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2562 } 2563 2564 /// parseFunctionType 2565 /// ::= Type ArgumentList OptionalAttrs 2566 bool LLParser::parseFunctionType(Type *&Result) { 2567 assert(Lex.getKind() == lltok::lparen); 2568 2569 if (!FunctionType::isValidReturnType(Result)) 2570 return tokError("invalid function return type"); 2571 2572 SmallVector<ArgInfo, 8> ArgList; 2573 bool IsVarArg; 2574 if (parseArgumentList(ArgList, IsVarArg)) 2575 return true; 2576 2577 // Reject names on the arguments lists. 2578 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2579 if (!ArgList[i].Name.empty()) 2580 return error(ArgList[i].Loc, "argument name invalid in function type"); 2581 if (ArgList[i].Attrs.hasAttributes()) 2582 return error(ArgList[i].Loc, 2583 "argument attributes invalid in function type"); 2584 } 2585 2586 SmallVector<Type*, 16> ArgListTy; 2587 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2588 ArgListTy.push_back(ArgList[i].Ty); 2589 2590 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 2591 return false; 2592 } 2593 2594 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 2595 /// other structs. 2596 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 2597 SmallVector<Type*, 8> Elts; 2598 if (parseStructBody(Elts)) 2599 return true; 2600 2601 Result = StructType::get(Context, Elts, Packed); 2602 return false; 2603 } 2604 2605 /// parseStructDefinition - parse a struct in a 'type' definition. 2606 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 2607 std::pair<Type *, LocTy> &Entry, 2608 Type *&ResultTy) { 2609 // If the type was already defined, diagnose the redefinition. 2610 if (Entry.first && !Entry.second.isValid()) 2611 return error(TypeLoc, "redefinition of type"); 2612 2613 // If we have opaque, just return without filling in the definition for the 2614 // struct. This counts as a definition as far as the .ll file goes. 2615 if (EatIfPresent(lltok::kw_opaque)) { 2616 // This type is being defined, so clear the location to indicate this. 2617 Entry.second = SMLoc(); 2618 2619 // If this type number has never been uttered, create it. 2620 if (!Entry.first) 2621 Entry.first = StructType::create(Context, Name); 2622 ResultTy = Entry.first; 2623 return false; 2624 } 2625 2626 // If the type starts with '<', then it is either a packed struct or a vector. 2627 bool isPacked = EatIfPresent(lltok::less); 2628 2629 // If we don't have a struct, then we have a random type alias, which we 2630 // accept for compatibility with old files. These types are not allowed to be 2631 // forward referenced and not allowed to be recursive. 2632 if (Lex.getKind() != lltok::lbrace) { 2633 if (Entry.first) 2634 return error(TypeLoc, "forward references to non-struct type"); 2635 2636 ResultTy = nullptr; 2637 if (isPacked) 2638 return parseArrayVectorType(ResultTy, true); 2639 return parseType(ResultTy); 2640 } 2641 2642 // This type is being defined, so clear the location to indicate this. 2643 Entry.second = SMLoc(); 2644 2645 // If this type number has never been uttered, create it. 2646 if (!Entry.first) 2647 Entry.first = StructType::create(Context, Name); 2648 2649 StructType *STy = cast<StructType>(Entry.first); 2650 2651 SmallVector<Type*, 8> Body; 2652 if (parseStructBody(Body) || 2653 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 2654 return true; 2655 2656 STy->setBody(Body, isPacked); 2657 ResultTy = STy; 2658 return false; 2659 } 2660 2661 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2662 /// StructType 2663 /// ::= '{' '}' 2664 /// ::= '{' Type (',' Type)* '}' 2665 /// ::= '<' '{' '}' '>' 2666 /// ::= '<' '{' Type (',' Type)* '}' '>' 2667 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 2668 assert(Lex.getKind() == lltok::lbrace); 2669 Lex.Lex(); // Consume the '{' 2670 2671 // Handle the empty struct. 2672 if (EatIfPresent(lltok::rbrace)) 2673 return false; 2674 2675 LocTy EltTyLoc = Lex.getLoc(); 2676 Type *Ty = nullptr; 2677 if (parseType(Ty)) 2678 return true; 2679 Body.push_back(Ty); 2680 2681 if (!StructType::isValidElementType(Ty)) 2682 return error(EltTyLoc, "invalid element type for struct"); 2683 2684 while (EatIfPresent(lltok::comma)) { 2685 EltTyLoc = Lex.getLoc(); 2686 if (parseType(Ty)) 2687 return true; 2688 2689 if (!StructType::isValidElementType(Ty)) 2690 return error(EltTyLoc, "invalid element type for struct"); 2691 2692 Body.push_back(Ty); 2693 } 2694 2695 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 2696 } 2697 2698 /// parseArrayVectorType - parse an array or vector type, assuming the first 2699 /// token has already been consumed. 2700 /// Type 2701 /// ::= '[' APSINTVAL 'x' Types ']' 2702 /// ::= '<' APSINTVAL 'x' Types '>' 2703 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2704 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 2705 bool Scalable = false; 2706 2707 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 2708 Lex.Lex(); // consume the 'vscale' 2709 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 2710 return true; 2711 2712 Scalable = true; 2713 } 2714 2715 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2716 Lex.getAPSIntVal().getBitWidth() > 64) 2717 return tokError("expected number in address space"); 2718 2719 LocTy SizeLoc = Lex.getLoc(); 2720 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2721 Lex.Lex(); 2722 2723 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 2724 return true; 2725 2726 LocTy TypeLoc = Lex.getLoc(); 2727 Type *EltTy = nullptr; 2728 if (parseType(EltTy)) 2729 return true; 2730 2731 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 2732 "expected end of sequential type")) 2733 return true; 2734 2735 if (IsVector) { 2736 if (Size == 0) 2737 return error(SizeLoc, "zero element vector is illegal"); 2738 if ((unsigned)Size != Size) 2739 return error(SizeLoc, "size too large for vector"); 2740 if (!VectorType::isValidElementType(EltTy)) 2741 return error(TypeLoc, "invalid vector element type"); 2742 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2743 } else { 2744 if (!ArrayType::isValidElementType(EltTy)) 2745 return error(TypeLoc, "invalid array element type"); 2746 Result = ArrayType::get(EltTy, Size); 2747 } 2748 return false; 2749 } 2750 2751 //===----------------------------------------------------------------------===// 2752 // Function Semantic Analysis. 2753 //===----------------------------------------------------------------------===// 2754 2755 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2756 int functionNumber) 2757 : P(p), F(f), FunctionNumber(functionNumber) { 2758 2759 // Insert unnamed arguments into the NumberedVals list. 2760 for (Argument &A : F.args()) 2761 if (!A.hasName()) 2762 NumberedVals.push_back(&A); 2763 } 2764 2765 LLParser::PerFunctionState::~PerFunctionState() { 2766 // If there were any forward referenced non-basicblock values, delete them. 2767 2768 for (const auto &P : ForwardRefVals) { 2769 if (isa<BasicBlock>(P.second.first)) 2770 continue; 2771 P.second.first->replaceAllUsesWith( 2772 UndefValue::get(P.second.first->getType())); 2773 P.second.first->deleteValue(); 2774 } 2775 2776 for (const auto &P : ForwardRefValIDs) { 2777 if (isa<BasicBlock>(P.second.first)) 2778 continue; 2779 P.second.first->replaceAllUsesWith( 2780 UndefValue::get(P.second.first->getType())); 2781 P.second.first->deleteValue(); 2782 } 2783 } 2784 2785 bool LLParser::PerFunctionState::finishFunction() { 2786 if (!ForwardRefVals.empty()) 2787 return P.error(ForwardRefVals.begin()->second.second, 2788 "use of undefined value '%" + ForwardRefVals.begin()->first + 2789 "'"); 2790 if (!ForwardRefValIDs.empty()) 2791 return P.error(ForwardRefValIDs.begin()->second.second, 2792 "use of undefined value '%" + 2793 Twine(ForwardRefValIDs.begin()->first) + "'"); 2794 return false; 2795 } 2796 2797 /// getVal - Get a value with the specified name or ID, creating a 2798 /// forward reference record if needed. This can return null if the value 2799 /// exists but does not have the right type. 2800 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 2801 LocTy Loc) { 2802 // Look this name up in the normal function symbol table. 2803 Value *Val = F.getValueSymbolTable()->lookup(Name); 2804 2805 // If this is a forward reference for the value, see if we already created a 2806 // forward ref record. 2807 if (!Val) { 2808 auto I = ForwardRefVals.find(Name); 2809 if (I != ForwardRefVals.end()) 2810 Val = I->second.first; 2811 } 2812 2813 // If we have the value in the symbol table or fwd-ref table, return it. 2814 if (Val) 2815 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val); 2816 2817 // Don't make placeholders with invalid type. 2818 if (!Ty->isFirstClassType()) { 2819 P.error(Loc, "invalid use of a non-first-class type"); 2820 return nullptr; 2821 } 2822 2823 // Otherwise, create a new forward reference for this value and remember it. 2824 Value *FwdVal; 2825 if (Ty->isLabelTy()) { 2826 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2827 } else { 2828 FwdVal = new Argument(Ty, Name); 2829 } 2830 2831 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2832 return FwdVal; 2833 } 2834 2835 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) { 2836 // Look this name up in the normal function symbol table. 2837 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2838 2839 // If this is a forward reference for the value, see if we already created a 2840 // forward ref record. 2841 if (!Val) { 2842 auto I = ForwardRefValIDs.find(ID); 2843 if (I != ForwardRefValIDs.end()) 2844 Val = I->second.first; 2845 } 2846 2847 // If we have the value in the symbol table or fwd-ref table, return it. 2848 if (Val) 2849 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val); 2850 2851 if (!Ty->isFirstClassType()) { 2852 P.error(Loc, "invalid use of a non-first-class type"); 2853 return nullptr; 2854 } 2855 2856 // Otherwise, create a new forward reference for this value and remember it. 2857 Value *FwdVal; 2858 if (Ty->isLabelTy()) { 2859 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2860 } else { 2861 FwdVal = new Argument(Ty); 2862 } 2863 2864 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2865 return FwdVal; 2866 } 2867 2868 /// setInstName - After an instruction is parsed and inserted into its 2869 /// basic block, this installs its name. 2870 bool LLParser::PerFunctionState::setInstName(int NameID, 2871 const std::string &NameStr, 2872 LocTy NameLoc, Instruction *Inst) { 2873 // If this instruction has void type, it cannot have a name or ID specified. 2874 if (Inst->getType()->isVoidTy()) { 2875 if (NameID != -1 || !NameStr.empty()) 2876 return P.error(NameLoc, "instructions returning void cannot have a name"); 2877 return false; 2878 } 2879 2880 // If this was a numbered instruction, verify that the instruction is the 2881 // expected value and resolve any forward references. 2882 if (NameStr.empty()) { 2883 // If neither a name nor an ID was specified, just use the next ID. 2884 if (NameID == -1) 2885 NameID = NumberedVals.size(); 2886 2887 if (unsigned(NameID) != NumberedVals.size()) 2888 return P.error(NameLoc, "instruction expected to be numbered '%" + 2889 Twine(NumberedVals.size()) + "'"); 2890 2891 auto FI = ForwardRefValIDs.find(NameID); 2892 if (FI != ForwardRefValIDs.end()) { 2893 Value *Sentinel = FI->second.first; 2894 if (Sentinel->getType() != Inst->getType()) 2895 return P.error(NameLoc, "instruction forward referenced with type '" + 2896 getTypeString(FI->second.first->getType()) + 2897 "'"); 2898 2899 Sentinel->replaceAllUsesWith(Inst); 2900 Sentinel->deleteValue(); 2901 ForwardRefValIDs.erase(FI); 2902 } 2903 2904 NumberedVals.push_back(Inst); 2905 return false; 2906 } 2907 2908 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2909 auto FI = ForwardRefVals.find(NameStr); 2910 if (FI != ForwardRefVals.end()) { 2911 Value *Sentinel = FI->second.first; 2912 if (Sentinel->getType() != Inst->getType()) 2913 return P.error(NameLoc, "instruction forward referenced with type '" + 2914 getTypeString(FI->second.first->getType()) + 2915 "'"); 2916 2917 Sentinel->replaceAllUsesWith(Inst); 2918 Sentinel->deleteValue(); 2919 ForwardRefVals.erase(FI); 2920 } 2921 2922 // Set the name on the instruction. 2923 Inst->setName(NameStr); 2924 2925 if (Inst->getName() != NameStr) 2926 return P.error(NameLoc, "multiple definition of local value named '" + 2927 NameStr + "'"); 2928 return false; 2929 } 2930 2931 /// getBB - Get a basic block with the specified name or ID, creating a 2932 /// forward reference record if needed. 2933 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 2934 LocTy Loc) { 2935 return dyn_cast_or_null<BasicBlock>( 2936 getVal(Name, Type::getLabelTy(F.getContext()), Loc)); 2937 } 2938 2939 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 2940 return dyn_cast_or_null<BasicBlock>( 2941 getVal(ID, Type::getLabelTy(F.getContext()), Loc)); 2942 } 2943 2944 /// defineBB - Define the specified basic block, which is either named or 2945 /// unnamed. If there is an error, this returns null otherwise it returns 2946 /// the block being defined. 2947 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 2948 int NameID, LocTy Loc) { 2949 BasicBlock *BB; 2950 if (Name.empty()) { 2951 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 2952 P.error(Loc, "label expected to be numbered '" + 2953 Twine(NumberedVals.size()) + "'"); 2954 return nullptr; 2955 } 2956 BB = getBB(NumberedVals.size(), Loc); 2957 if (!BB) { 2958 P.error(Loc, "unable to create block numbered '" + 2959 Twine(NumberedVals.size()) + "'"); 2960 return nullptr; 2961 } 2962 } else { 2963 BB = getBB(Name, Loc); 2964 if (!BB) { 2965 P.error(Loc, "unable to create block named '" + Name + "'"); 2966 return nullptr; 2967 } 2968 } 2969 2970 // Move the block to the end of the function. Forward ref'd blocks are 2971 // inserted wherever they happen to be referenced. 2972 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2973 2974 // Remove the block from forward ref sets. 2975 if (Name.empty()) { 2976 ForwardRefValIDs.erase(NumberedVals.size()); 2977 NumberedVals.push_back(BB); 2978 } else { 2979 // BB forward references are already in the function symbol table. 2980 ForwardRefVals.erase(Name); 2981 } 2982 2983 return BB; 2984 } 2985 2986 //===----------------------------------------------------------------------===// 2987 // Constants. 2988 //===----------------------------------------------------------------------===// 2989 2990 /// parseValID - parse an abstract value that doesn't necessarily have a 2991 /// type implied. For example, if we parse "4" we don't know what integer type 2992 /// it has. The value will later be combined with its type and checked for 2993 /// basic correctness. PFS is used to convert function-local operands of 2994 /// metadata (since metadata operands are not just parsed here but also 2995 /// converted to values). PFS can be null when we are not parsing metadata 2996 /// values inside a function. 2997 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) { 2998 ID.Loc = Lex.getLoc(); 2999 switch (Lex.getKind()) { 3000 default: 3001 return tokError("expected value token"); 3002 case lltok::GlobalID: // @42 3003 ID.UIntVal = Lex.getUIntVal(); 3004 ID.Kind = ValID::t_GlobalID; 3005 break; 3006 case lltok::GlobalVar: // @foo 3007 ID.StrVal = Lex.getStrVal(); 3008 ID.Kind = ValID::t_GlobalName; 3009 break; 3010 case lltok::LocalVarID: // %42 3011 ID.UIntVal = Lex.getUIntVal(); 3012 ID.Kind = ValID::t_LocalID; 3013 break; 3014 case lltok::LocalVar: // %foo 3015 ID.StrVal = Lex.getStrVal(); 3016 ID.Kind = ValID::t_LocalName; 3017 break; 3018 case lltok::APSInt: 3019 ID.APSIntVal = Lex.getAPSIntVal(); 3020 ID.Kind = ValID::t_APSInt; 3021 break; 3022 case lltok::APFloat: 3023 ID.APFloatVal = Lex.getAPFloatVal(); 3024 ID.Kind = ValID::t_APFloat; 3025 break; 3026 case lltok::kw_true: 3027 ID.ConstantVal = ConstantInt::getTrue(Context); 3028 ID.Kind = ValID::t_Constant; 3029 break; 3030 case lltok::kw_false: 3031 ID.ConstantVal = ConstantInt::getFalse(Context); 3032 ID.Kind = ValID::t_Constant; 3033 break; 3034 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3035 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3036 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; 3037 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3038 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3039 3040 case lltok::lbrace: { 3041 // ValID ::= '{' ConstVector '}' 3042 Lex.Lex(); 3043 SmallVector<Constant*, 16> Elts; 3044 if (parseGlobalValueVector(Elts) || 3045 parseToken(lltok::rbrace, "expected end of struct constant")) 3046 return true; 3047 3048 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3049 ID.UIntVal = Elts.size(); 3050 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3051 Elts.size() * sizeof(Elts[0])); 3052 ID.Kind = ValID::t_ConstantStruct; 3053 return false; 3054 } 3055 case lltok::less: { 3056 // ValID ::= '<' ConstVector '>' --> Vector. 3057 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3058 Lex.Lex(); 3059 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3060 3061 SmallVector<Constant*, 16> Elts; 3062 LocTy FirstEltLoc = Lex.getLoc(); 3063 if (parseGlobalValueVector(Elts) || 3064 (isPackedStruct && 3065 parseToken(lltok::rbrace, "expected end of packed struct")) || 3066 parseToken(lltok::greater, "expected end of constant")) 3067 return true; 3068 3069 if (isPackedStruct) { 3070 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3071 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3072 Elts.size() * sizeof(Elts[0])); 3073 ID.UIntVal = Elts.size(); 3074 ID.Kind = ValID::t_PackedConstantStruct; 3075 return false; 3076 } 3077 3078 if (Elts.empty()) 3079 return error(ID.Loc, "constant vector must not be empty"); 3080 3081 if (!Elts[0]->getType()->isIntegerTy() && 3082 !Elts[0]->getType()->isFloatingPointTy() && 3083 !Elts[0]->getType()->isPointerTy()) 3084 return error( 3085 FirstEltLoc, 3086 "vector elements must have integer, pointer or floating point type"); 3087 3088 // Verify that all the vector elements have the same type. 3089 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3090 if (Elts[i]->getType() != Elts[0]->getType()) 3091 return error(FirstEltLoc, "vector element #" + Twine(i) + 3092 " is not of type '" + 3093 getTypeString(Elts[0]->getType())); 3094 3095 ID.ConstantVal = ConstantVector::get(Elts); 3096 ID.Kind = ValID::t_Constant; 3097 return false; 3098 } 3099 case lltok::lsquare: { // Array Constant 3100 Lex.Lex(); 3101 SmallVector<Constant*, 16> Elts; 3102 LocTy FirstEltLoc = Lex.getLoc(); 3103 if (parseGlobalValueVector(Elts) || 3104 parseToken(lltok::rsquare, "expected end of array constant")) 3105 return true; 3106 3107 // Handle empty element. 3108 if (Elts.empty()) { 3109 // Use undef instead of an array because it's inconvenient to determine 3110 // the element type at this point, there being no elements to examine. 3111 ID.Kind = ValID::t_EmptyArray; 3112 return false; 3113 } 3114 3115 if (!Elts[0]->getType()->isFirstClassType()) 3116 return error(FirstEltLoc, "invalid array element type: " + 3117 getTypeString(Elts[0]->getType())); 3118 3119 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3120 3121 // Verify all elements are correct type! 3122 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3123 if (Elts[i]->getType() != Elts[0]->getType()) 3124 return error(FirstEltLoc, "array element #" + Twine(i) + 3125 " is not of type '" + 3126 getTypeString(Elts[0]->getType())); 3127 } 3128 3129 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3130 ID.Kind = ValID::t_Constant; 3131 return false; 3132 } 3133 case lltok::kw_c: // c "foo" 3134 Lex.Lex(); 3135 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3136 false); 3137 if (parseToken(lltok::StringConstant, "expected string")) 3138 return true; 3139 ID.Kind = ValID::t_Constant; 3140 return false; 3141 3142 case lltok::kw_asm: { 3143 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3144 // STRINGCONSTANT 3145 bool HasSideEffect, AlignStack, AsmDialect, CanThrow; 3146 Lex.Lex(); 3147 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3148 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3149 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3150 parseOptionalToken(lltok::kw_unwind, CanThrow) || 3151 parseStringConstant(ID.StrVal) || 3152 parseToken(lltok::comma, "expected comma in inline asm expression") || 3153 parseToken(lltok::StringConstant, "expected constraint string")) 3154 return true; 3155 ID.StrVal2 = Lex.getStrVal(); 3156 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) | 3157 (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3); 3158 ID.Kind = ValID::t_InlineAsm; 3159 return false; 3160 } 3161 3162 case lltok::kw_blockaddress: { 3163 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3164 Lex.Lex(); 3165 3166 ValID Fn, Label; 3167 3168 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3169 parseValID(Fn, PFS) || 3170 parseToken(lltok::comma, 3171 "expected comma in block address expression") || 3172 parseValID(Label, PFS) || 3173 parseToken(lltok::rparen, "expected ')' in block address expression")) 3174 return true; 3175 3176 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3177 return error(Fn.Loc, "expected function name in blockaddress"); 3178 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3179 return error(Label.Loc, "expected basic block name in blockaddress"); 3180 3181 // Try to find the function (but skip it if it's forward-referenced). 3182 GlobalValue *GV = nullptr; 3183 if (Fn.Kind == ValID::t_GlobalID) { 3184 if (Fn.UIntVal < NumberedVals.size()) 3185 GV = NumberedVals[Fn.UIntVal]; 3186 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3187 GV = M->getNamedValue(Fn.StrVal); 3188 } 3189 Function *F = nullptr; 3190 if (GV) { 3191 // Confirm that it's actually a function with a definition. 3192 if (!isa<Function>(GV)) 3193 return error(Fn.Loc, "expected function name in blockaddress"); 3194 F = cast<Function>(GV); 3195 if (F->isDeclaration()) 3196 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3197 } 3198 3199 if (!F) { 3200 // Make a global variable as a placeholder for this reference. 3201 GlobalValue *&FwdRef = 3202 ForwardRefBlockAddresses.insert(std::make_pair( 3203 std::move(Fn), 3204 std::map<ValID, GlobalValue *>())) 3205 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3206 .first->second; 3207 if (!FwdRef) { 3208 unsigned FwdDeclAS; 3209 if (ExpectedTy) { 3210 // If we know the type that the blockaddress is being assigned to, 3211 // we can use the address space of that type. 3212 if (!ExpectedTy->isPointerTy()) 3213 return error(ID.Loc, 3214 "type of blockaddress must be a pointer and not '" + 3215 getTypeString(ExpectedTy) + "'"); 3216 FwdDeclAS = ExpectedTy->getPointerAddressSpace(); 3217 } else if (PFS) { 3218 // Otherwise, we default the address space of the current function. 3219 FwdDeclAS = PFS->getFunction().getAddressSpace(); 3220 } else { 3221 llvm_unreachable("Unknown address space for blockaddress"); 3222 } 3223 FwdRef = new GlobalVariable( 3224 *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage, 3225 nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS); 3226 } 3227 3228 ID.ConstantVal = FwdRef; 3229 ID.Kind = ValID::t_Constant; 3230 return false; 3231 } 3232 3233 // We found the function; now find the basic block. Don't use PFS, since we 3234 // might be inside a constant expression. 3235 BasicBlock *BB; 3236 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3237 if (Label.Kind == ValID::t_LocalID) 3238 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3239 else 3240 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3241 if (!BB) 3242 return error(Label.Loc, "referenced value is not a basic block"); 3243 } else { 3244 if (Label.Kind == ValID::t_LocalID) 3245 return error(Label.Loc, "cannot take address of numeric label after " 3246 "the function is defined"); 3247 BB = dyn_cast_or_null<BasicBlock>( 3248 F->getValueSymbolTable()->lookup(Label.StrVal)); 3249 if (!BB) 3250 return error(Label.Loc, "referenced value is not a basic block"); 3251 } 3252 3253 ID.ConstantVal = BlockAddress::get(F, BB); 3254 ID.Kind = ValID::t_Constant; 3255 return false; 3256 } 3257 3258 case lltok::kw_dso_local_equivalent: { 3259 // ValID ::= 'dso_local_equivalent' @foo 3260 Lex.Lex(); 3261 3262 ValID Fn; 3263 3264 if (parseValID(Fn, PFS)) 3265 return true; 3266 3267 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3268 return error(Fn.Loc, 3269 "expected global value name in dso_local_equivalent"); 3270 3271 // Try to find the function (but skip it if it's forward-referenced). 3272 GlobalValue *GV = nullptr; 3273 if (Fn.Kind == ValID::t_GlobalID) { 3274 if (Fn.UIntVal < NumberedVals.size()) 3275 GV = NumberedVals[Fn.UIntVal]; 3276 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3277 GV = M->getNamedValue(Fn.StrVal); 3278 } 3279 3280 assert(GV && "Could not find a corresponding global variable"); 3281 3282 if (!GV->getValueType()->isFunctionTy()) 3283 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 3284 "in dso_local_equivalent"); 3285 3286 ID.ConstantVal = DSOLocalEquivalent::get(GV); 3287 ID.Kind = ValID::t_Constant; 3288 return false; 3289 } 3290 3291 case lltok::kw_no_cfi: { 3292 // ValID ::= 'no_cfi' @foo 3293 Lex.Lex(); 3294 3295 if (parseValID(ID, PFS)) 3296 return true; 3297 3298 if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName) 3299 return error(ID.Loc, "expected global value name in no_cfi"); 3300 3301 ID.NoCFI = true; 3302 return false; 3303 } 3304 3305 case lltok::kw_trunc: 3306 case lltok::kw_zext: 3307 case lltok::kw_sext: 3308 case lltok::kw_fptrunc: 3309 case lltok::kw_fpext: 3310 case lltok::kw_bitcast: 3311 case lltok::kw_addrspacecast: 3312 case lltok::kw_uitofp: 3313 case lltok::kw_sitofp: 3314 case lltok::kw_fptoui: 3315 case lltok::kw_fptosi: 3316 case lltok::kw_inttoptr: 3317 case lltok::kw_ptrtoint: { 3318 unsigned Opc = Lex.getUIntVal(); 3319 Type *DestTy = nullptr; 3320 Constant *SrcVal; 3321 Lex.Lex(); 3322 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3323 parseGlobalTypeAndValue(SrcVal) || 3324 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3325 parseType(DestTy) || 3326 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3327 return true; 3328 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3329 return error(ID.Loc, "invalid cast opcode for cast from '" + 3330 getTypeString(SrcVal->getType()) + "' to '" + 3331 getTypeString(DestTy) + "'"); 3332 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3333 SrcVal, DestTy); 3334 ID.Kind = ValID::t_Constant; 3335 return false; 3336 } 3337 case lltok::kw_extractvalue: { 3338 Lex.Lex(); 3339 Constant *Val; 3340 SmallVector<unsigned, 4> Indices; 3341 if (parseToken(lltok::lparen, 3342 "expected '(' in extractvalue constantexpr") || 3343 parseGlobalTypeAndValue(Val) || parseIndexList(Indices) || 3344 parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3345 return true; 3346 3347 if (!Val->getType()->isAggregateType()) 3348 return error(ID.Loc, "extractvalue operand must be aggregate type"); 3349 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3350 return error(ID.Loc, "invalid indices for extractvalue"); 3351 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3352 ID.Kind = ValID::t_Constant; 3353 return false; 3354 } 3355 case lltok::kw_insertvalue: { 3356 Lex.Lex(); 3357 Constant *Val0, *Val1; 3358 SmallVector<unsigned, 4> Indices; 3359 if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") || 3360 parseGlobalTypeAndValue(Val0) || 3361 parseToken(lltok::comma, 3362 "expected comma in insertvalue constantexpr") || 3363 parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) || 3364 parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3365 return true; 3366 if (!Val0->getType()->isAggregateType()) 3367 return error(ID.Loc, "insertvalue operand must be aggregate type"); 3368 Type *IndexedType = 3369 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3370 if (!IndexedType) 3371 return error(ID.Loc, "invalid indices for insertvalue"); 3372 if (IndexedType != Val1->getType()) 3373 return error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3374 getTypeString(Val1->getType()) + 3375 "' instead of '" + getTypeString(IndexedType) + 3376 "'"); 3377 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3378 ID.Kind = ValID::t_Constant; 3379 return false; 3380 } 3381 case lltok::kw_icmp: 3382 case lltok::kw_fcmp: { 3383 unsigned PredVal, Opc = Lex.getUIntVal(); 3384 Constant *Val0, *Val1; 3385 Lex.Lex(); 3386 if (parseCmpPredicate(PredVal, Opc) || 3387 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3388 parseGlobalTypeAndValue(Val0) || 3389 parseToken(lltok::comma, "expected comma in compare constantexpr") || 3390 parseGlobalTypeAndValue(Val1) || 3391 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3392 return true; 3393 3394 if (Val0->getType() != Val1->getType()) 3395 return error(ID.Loc, "compare operands must have the same type"); 3396 3397 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3398 3399 if (Opc == Instruction::FCmp) { 3400 if (!Val0->getType()->isFPOrFPVectorTy()) 3401 return error(ID.Loc, "fcmp requires floating point operands"); 3402 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3403 } else { 3404 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3405 if (!Val0->getType()->isIntOrIntVectorTy() && 3406 !Val0->getType()->isPtrOrPtrVectorTy()) 3407 return error(ID.Loc, "icmp requires pointer or integer operands"); 3408 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3409 } 3410 ID.Kind = ValID::t_Constant; 3411 return false; 3412 } 3413 3414 // Unary Operators. 3415 case lltok::kw_fneg: { 3416 unsigned Opc = Lex.getUIntVal(); 3417 Constant *Val; 3418 Lex.Lex(); 3419 if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3420 parseGlobalTypeAndValue(Val) || 3421 parseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3422 return true; 3423 3424 // Check that the type is valid for the operator. 3425 switch (Opc) { 3426 case Instruction::FNeg: 3427 if (!Val->getType()->isFPOrFPVectorTy()) 3428 return error(ID.Loc, "constexpr requires fp operands"); 3429 break; 3430 default: llvm_unreachable("Unknown unary operator!"); 3431 } 3432 unsigned Flags = 0; 3433 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3434 ID.ConstantVal = C; 3435 ID.Kind = ValID::t_Constant; 3436 return false; 3437 } 3438 // Binary Operators. 3439 case lltok::kw_add: 3440 case lltok::kw_fadd: 3441 case lltok::kw_sub: 3442 case lltok::kw_fsub: 3443 case lltok::kw_mul: 3444 case lltok::kw_fmul: 3445 case lltok::kw_udiv: 3446 case lltok::kw_sdiv: 3447 case lltok::kw_fdiv: 3448 case lltok::kw_urem: 3449 case lltok::kw_srem: 3450 case lltok::kw_frem: 3451 case lltok::kw_shl: 3452 case lltok::kw_lshr: 3453 case lltok::kw_ashr: { 3454 bool NUW = false; 3455 bool NSW = false; 3456 bool Exact = false; 3457 unsigned Opc = Lex.getUIntVal(); 3458 Constant *Val0, *Val1; 3459 Lex.Lex(); 3460 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3461 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3462 if (EatIfPresent(lltok::kw_nuw)) 3463 NUW = true; 3464 if (EatIfPresent(lltok::kw_nsw)) { 3465 NSW = true; 3466 if (EatIfPresent(lltok::kw_nuw)) 3467 NUW = true; 3468 } 3469 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3470 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3471 if (EatIfPresent(lltok::kw_exact)) 3472 Exact = true; 3473 } 3474 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3475 parseGlobalTypeAndValue(Val0) || 3476 parseToken(lltok::comma, "expected comma in binary constantexpr") || 3477 parseGlobalTypeAndValue(Val1) || 3478 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3479 return true; 3480 if (Val0->getType() != Val1->getType()) 3481 return error(ID.Loc, "operands of constexpr must have same type"); 3482 // Check that the type is valid for the operator. 3483 switch (Opc) { 3484 case Instruction::Add: 3485 case Instruction::Sub: 3486 case Instruction::Mul: 3487 case Instruction::UDiv: 3488 case Instruction::SDiv: 3489 case Instruction::URem: 3490 case Instruction::SRem: 3491 case Instruction::Shl: 3492 case Instruction::AShr: 3493 case Instruction::LShr: 3494 if (!Val0->getType()->isIntOrIntVectorTy()) 3495 return error(ID.Loc, "constexpr requires integer operands"); 3496 break; 3497 case Instruction::FAdd: 3498 case Instruction::FSub: 3499 case Instruction::FMul: 3500 case Instruction::FDiv: 3501 case Instruction::FRem: 3502 if (!Val0->getType()->isFPOrFPVectorTy()) 3503 return error(ID.Loc, "constexpr requires fp operands"); 3504 break; 3505 default: llvm_unreachable("Unknown binary operator!"); 3506 } 3507 unsigned Flags = 0; 3508 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3509 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3510 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3511 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3512 ID.ConstantVal = C; 3513 ID.Kind = ValID::t_Constant; 3514 return false; 3515 } 3516 3517 // Logical Operations 3518 case lltok::kw_and: 3519 case lltok::kw_or: 3520 case lltok::kw_xor: { 3521 unsigned Opc = Lex.getUIntVal(); 3522 Constant *Val0, *Val1; 3523 Lex.Lex(); 3524 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3525 parseGlobalTypeAndValue(Val0) || 3526 parseToken(lltok::comma, "expected comma in logical constantexpr") || 3527 parseGlobalTypeAndValue(Val1) || 3528 parseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3529 return true; 3530 if (Val0->getType() != Val1->getType()) 3531 return error(ID.Loc, "operands of constexpr must have same type"); 3532 if (!Val0->getType()->isIntOrIntVectorTy()) 3533 return error(ID.Loc, 3534 "constexpr requires integer or integer vector operands"); 3535 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3536 ID.Kind = ValID::t_Constant; 3537 return false; 3538 } 3539 3540 case lltok::kw_getelementptr: 3541 case lltok::kw_shufflevector: 3542 case lltok::kw_insertelement: 3543 case lltok::kw_extractelement: 3544 case lltok::kw_select: { 3545 unsigned Opc = Lex.getUIntVal(); 3546 SmallVector<Constant*, 16> Elts; 3547 bool InBounds = false; 3548 Type *Ty; 3549 Lex.Lex(); 3550 3551 if (Opc == Instruction::GetElementPtr) 3552 InBounds = EatIfPresent(lltok::kw_inbounds); 3553 3554 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 3555 return true; 3556 3557 LocTy ExplicitTypeLoc = Lex.getLoc(); 3558 if (Opc == Instruction::GetElementPtr) { 3559 if (parseType(Ty) || 3560 parseToken(lltok::comma, "expected comma after getelementptr's type")) 3561 return true; 3562 } 3563 3564 Optional<unsigned> InRangeOp; 3565 if (parseGlobalValueVector( 3566 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3567 parseToken(lltok::rparen, "expected ')' in constantexpr")) 3568 return true; 3569 3570 if (Opc == Instruction::GetElementPtr) { 3571 if (Elts.size() == 0 || 3572 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3573 return error(ID.Loc, "base of getelementptr must be a pointer"); 3574 3575 Type *BaseType = Elts[0]->getType(); 3576 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3577 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 3578 return error( 3579 ExplicitTypeLoc, 3580 typeComparisonErrorMessage( 3581 "explicit pointee type doesn't match operand's pointee type", 3582 Ty, BasePointerType->getElementType())); 3583 } 3584 3585 unsigned GEPWidth = 3586 BaseType->isVectorTy() 3587 ? cast<FixedVectorType>(BaseType)->getNumElements() 3588 : 0; 3589 3590 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3591 for (Constant *Val : Indices) { 3592 Type *ValTy = Val->getType(); 3593 if (!ValTy->isIntOrIntVectorTy()) 3594 return error(ID.Loc, "getelementptr index must be an integer"); 3595 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3596 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3597 if (GEPWidth && (ValNumEl != GEPWidth)) 3598 return error( 3599 ID.Loc, 3600 "getelementptr vector index has a wrong number of elements"); 3601 // GEPWidth may have been unknown because the base is a scalar, 3602 // but it is known now. 3603 GEPWidth = ValNumEl; 3604 } 3605 } 3606 3607 SmallPtrSet<Type*, 4> Visited; 3608 if (!Indices.empty() && !Ty->isSized(&Visited)) 3609 return error(ID.Loc, "base element of getelementptr must be sized"); 3610 3611 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3612 return error(ID.Loc, "invalid getelementptr indices"); 3613 3614 if (InRangeOp) { 3615 if (*InRangeOp == 0) 3616 return error(ID.Loc, 3617 "inrange keyword may not appear on pointer operand"); 3618 --*InRangeOp; 3619 } 3620 3621 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3622 InBounds, InRangeOp); 3623 } else if (Opc == Instruction::Select) { 3624 if (Elts.size() != 3) 3625 return error(ID.Loc, "expected three operands to select"); 3626 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3627 Elts[2])) 3628 return error(ID.Loc, Reason); 3629 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3630 } else if (Opc == Instruction::ShuffleVector) { 3631 if (Elts.size() != 3) 3632 return error(ID.Loc, "expected three operands to shufflevector"); 3633 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3634 return error(ID.Loc, "invalid operands to shufflevector"); 3635 SmallVector<int, 16> Mask; 3636 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3637 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3638 } else if (Opc == Instruction::ExtractElement) { 3639 if (Elts.size() != 2) 3640 return error(ID.Loc, "expected two operands to extractelement"); 3641 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3642 return error(ID.Loc, "invalid extractelement operands"); 3643 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3644 } else { 3645 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3646 if (Elts.size() != 3) 3647 return error(ID.Loc, "expected three operands to insertelement"); 3648 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3649 return error(ID.Loc, "invalid insertelement operands"); 3650 ID.ConstantVal = 3651 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3652 } 3653 3654 ID.Kind = ValID::t_Constant; 3655 return false; 3656 } 3657 } 3658 3659 Lex.Lex(); 3660 return false; 3661 } 3662 3663 /// parseGlobalValue - parse a global value with the specified type. 3664 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 3665 C = nullptr; 3666 ValID ID; 3667 Value *V = nullptr; 3668 bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) || 3669 convertValIDToValue(Ty, ID, V, nullptr); 3670 if (V && !(C = dyn_cast<Constant>(V))) 3671 return error(ID.Loc, "global values must be constants"); 3672 return Parsed; 3673 } 3674 3675 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 3676 Type *Ty = nullptr; 3677 return parseType(Ty) || parseGlobalValue(Ty, V); 3678 } 3679 3680 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3681 C = nullptr; 3682 3683 LocTy KwLoc = Lex.getLoc(); 3684 if (!EatIfPresent(lltok::kw_comdat)) 3685 return false; 3686 3687 if (EatIfPresent(lltok::lparen)) { 3688 if (Lex.getKind() != lltok::ComdatVar) 3689 return tokError("expected comdat variable"); 3690 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3691 Lex.Lex(); 3692 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 3693 return true; 3694 } else { 3695 if (GlobalName.empty()) 3696 return tokError("comdat cannot be unnamed"); 3697 C = getComdat(std::string(GlobalName), KwLoc); 3698 } 3699 3700 return false; 3701 } 3702 3703 /// parseGlobalValueVector 3704 /// ::= /*empty*/ 3705 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3706 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3707 Optional<unsigned> *InRangeOp) { 3708 // Empty list. 3709 if (Lex.getKind() == lltok::rbrace || 3710 Lex.getKind() == lltok::rsquare || 3711 Lex.getKind() == lltok::greater || 3712 Lex.getKind() == lltok::rparen) 3713 return false; 3714 3715 do { 3716 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3717 *InRangeOp = Elts.size(); 3718 3719 Constant *C; 3720 if (parseGlobalTypeAndValue(C)) 3721 return true; 3722 Elts.push_back(C); 3723 } while (EatIfPresent(lltok::comma)); 3724 3725 return false; 3726 } 3727 3728 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 3729 SmallVector<Metadata *, 16> Elts; 3730 if (parseMDNodeVector(Elts)) 3731 return true; 3732 3733 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3734 return false; 3735 } 3736 3737 /// MDNode: 3738 /// ::= !{ ... } 3739 /// ::= !7 3740 /// ::= !DILocation(...) 3741 bool LLParser::parseMDNode(MDNode *&N) { 3742 if (Lex.getKind() == lltok::MetadataVar) 3743 return parseSpecializedMDNode(N); 3744 3745 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 3746 } 3747 3748 bool LLParser::parseMDNodeTail(MDNode *&N) { 3749 // !{ ... } 3750 if (Lex.getKind() == lltok::lbrace) 3751 return parseMDTuple(N); 3752 3753 // !42 3754 return parseMDNodeID(N); 3755 } 3756 3757 namespace { 3758 3759 /// Structure to represent an optional metadata field. 3760 template <class FieldTy> struct MDFieldImpl { 3761 typedef MDFieldImpl ImplTy; 3762 FieldTy Val; 3763 bool Seen; 3764 3765 void assign(FieldTy Val) { 3766 Seen = true; 3767 this->Val = std::move(Val); 3768 } 3769 3770 explicit MDFieldImpl(FieldTy Default) 3771 : Val(std::move(Default)), Seen(false) {} 3772 }; 3773 3774 /// Structure to represent an optional metadata field that 3775 /// can be of either type (A or B) and encapsulates the 3776 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3777 /// to reimplement the specifics for representing each Field. 3778 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3779 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3780 FieldTypeA A; 3781 FieldTypeB B; 3782 bool Seen; 3783 3784 enum { 3785 IsInvalid = 0, 3786 IsTypeA = 1, 3787 IsTypeB = 2 3788 } WhatIs; 3789 3790 void assign(FieldTypeA A) { 3791 Seen = true; 3792 this->A = std::move(A); 3793 WhatIs = IsTypeA; 3794 } 3795 3796 void assign(FieldTypeB B) { 3797 Seen = true; 3798 this->B = std::move(B); 3799 WhatIs = IsTypeB; 3800 } 3801 3802 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3803 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3804 WhatIs(IsInvalid) {} 3805 }; 3806 3807 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3808 uint64_t Max; 3809 3810 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3811 : ImplTy(Default), Max(Max) {} 3812 }; 3813 3814 struct LineField : public MDUnsignedField { 3815 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3816 }; 3817 3818 struct ColumnField : public MDUnsignedField { 3819 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3820 }; 3821 3822 struct DwarfTagField : public MDUnsignedField { 3823 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3824 DwarfTagField(dwarf::Tag DefaultTag) 3825 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3826 }; 3827 3828 struct DwarfMacinfoTypeField : public MDUnsignedField { 3829 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3830 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3831 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3832 }; 3833 3834 struct DwarfAttEncodingField : public MDUnsignedField { 3835 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3836 }; 3837 3838 struct DwarfVirtualityField : public MDUnsignedField { 3839 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3840 }; 3841 3842 struct DwarfLangField : public MDUnsignedField { 3843 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3844 }; 3845 3846 struct DwarfCCField : public MDUnsignedField { 3847 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3848 }; 3849 3850 struct EmissionKindField : public MDUnsignedField { 3851 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3852 }; 3853 3854 struct NameTableKindField : public MDUnsignedField { 3855 NameTableKindField() 3856 : MDUnsignedField( 3857 0, (unsigned) 3858 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3859 }; 3860 3861 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3862 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3863 }; 3864 3865 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3866 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3867 }; 3868 3869 struct MDAPSIntField : public MDFieldImpl<APSInt> { 3870 MDAPSIntField() : ImplTy(APSInt()) {} 3871 }; 3872 3873 struct MDSignedField : public MDFieldImpl<int64_t> { 3874 int64_t Min; 3875 int64_t Max; 3876 3877 MDSignedField(int64_t Default = 0) 3878 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3879 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3880 : ImplTy(Default), Min(Min), Max(Max) {} 3881 }; 3882 3883 struct MDBoolField : public MDFieldImpl<bool> { 3884 MDBoolField(bool Default = false) : ImplTy(Default) {} 3885 }; 3886 3887 struct MDField : public MDFieldImpl<Metadata *> { 3888 bool AllowNull; 3889 3890 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3891 }; 3892 3893 struct MDStringField : public MDFieldImpl<MDString *> { 3894 bool AllowEmpty; 3895 MDStringField(bool AllowEmpty = true) 3896 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3897 }; 3898 3899 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3900 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3901 }; 3902 3903 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3904 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3905 }; 3906 3907 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3908 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3909 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3910 3911 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3912 bool AllowNull = true) 3913 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3914 3915 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3916 bool isMDField() const { return WhatIs == IsTypeB; } 3917 int64_t getMDSignedValue() const { 3918 assert(isMDSignedField() && "Wrong field type"); 3919 return A.Val; 3920 } 3921 Metadata *getMDFieldValue() const { 3922 assert(isMDField() && "Wrong field type"); 3923 return B.Val; 3924 } 3925 }; 3926 3927 } // end anonymous namespace 3928 3929 namespace llvm { 3930 3931 template <> 3932 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 3933 if (Lex.getKind() != lltok::APSInt) 3934 return tokError("expected integer"); 3935 3936 Result.assign(Lex.getAPSIntVal()); 3937 Lex.Lex(); 3938 return false; 3939 } 3940 3941 template <> 3942 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 3943 MDUnsignedField &Result) { 3944 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3945 return tokError("expected unsigned integer"); 3946 3947 auto &U = Lex.getAPSIntVal(); 3948 if (U.ugt(Result.Max)) 3949 return tokError("value for '" + Name + "' too large, limit is " + 3950 Twine(Result.Max)); 3951 Result.assign(U.getZExtValue()); 3952 assert(Result.Val <= Result.Max && "Expected value in range"); 3953 Lex.Lex(); 3954 return false; 3955 } 3956 3957 template <> 3958 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3959 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3960 } 3961 template <> 3962 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3963 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3964 } 3965 3966 template <> 3967 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3968 if (Lex.getKind() == lltok::APSInt) 3969 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3970 3971 if (Lex.getKind() != lltok::DwarfTag) 3972 return tokError("expected DWARF tag"); 3973 3974 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3975 if (Tag == dwarf::DW_TAG_invalid) 3976 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3977 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3978 3979 Result.assign(Tag); 3980 Lex.Lex(); 3981 return false; 3982 } 3983 3984 template <> 3985 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 3986 DwarfMacinfoTypeField &Result) { 3987 if (Lex.getKind() == lltok::APSInt) 3988 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3989 3990 if (Lex.getKind() != lltok::DwarfMacinfo) 3991 return tokError("expected DWARF macinfo type"); 3992 3993 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3994 if (Macinfo == dwarf::DW_MACINFO_invalid) 3995 return tokError("invalid DWARF macinfo type" + Twine(" '") + 3996 Lex.getStrVal() + "'"); 3997 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3998 3999 Result.assign(Macinfo); 4000 Lex.Lex(); 4001 return false; 4002 } 4003 4004 template <> 4005 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4006 DwarfVirtualityField &Result) { 4007 if (Lex.getKind() == lltok::APSInt) 4008 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4009 4010 if (Lex.getKind() != lltok::DwarfVirtuality) 4011 return tokError("expected DWARF virtuality code"); 4012 4013 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4014 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4015 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4016 Lex.getStrVal() + "'"); 4017 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4018 Result.assign(Virtuality); 4019 Lex.Lex(); 4020 return false; 4021 } 4022 4023 template <> 4024 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4025 if (Lex.getKind() == lltok::APSInt) 4026 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4027 4028 if (Lex.getKind() != lltok::DwarfLang) 4029 return tokError("expected DWARF language"); 4030 4031 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4032 if (!Lang) 4033 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4034 "'"); 4035 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4036 Result.assign(Lang); 4037 Lex.Lex(); 4038 return false; 4039 } 4040 4041 template <> 4042 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4043 if (Lex.getKind() == lltok::APSInt) 4044 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4045 4046 if (Lex.getKind() != lltok::DwarfCC) 4047 return tokError("expected DWARF calling convention"); 4048 4049 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4050 if (!CC) 4051 return tokError("invalid DWARF calling convention" + Twine(" '") + 4052 Lex.getStrVal() + "'"); 4053 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4054 Result.assign(CC); 4055 Lex.Lex(); 4056 return false; 4057 } 4058 4059 template <> 4060 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4061 EmissionKindField &Result) { 4062 if (Lex.getKind() == lltok::APSInt) 4063 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4064 4065 if (Lex.getKind() != lltok::EmissionKind) 4066 return tokError("expected emission kind"); 4067 4068 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4069 if (!Kind) 4070 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4071 "'"); 4072 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4073 Result.assign(*Kind); 4074 Lex.Lex(); 4075 return false; 4076 } 4077 4078 template <> 4079 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4080 NameTableKindField &Result) { 4081 if (Lex.getKind() == lltok::APSInt) 4082 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4083 4084 if (Lex.getKind() != lltok::NameTableKind) 4085 return tokError("expected nameTable kind"); 4086 4087 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4088 if (!Kind) 4089 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4090 "'"); 4091 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4092 Result.assign((unsigned)*Kind); 4093 Lex.Lex(); 4094 return false; 4095 } 4096 4097 template <> 4098 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4099 DwarfAttEncodingField &Result) { 4100 if (Lex.getKind() == lltok::APSInt) 4101 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4102 4103 if (Lex.getKind() != lltok::DwarfAttEncoding) 4104 return tokError("expected DWARF type attribute encoding"); 4105 4106 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4107 if (!Encoding) 4108 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4109 Lex.getStrVal() + "'"); 4110 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4111 Result.assign(Encoding); 4112 Lex.Lex(); 4113 return false; 4114 } 4115 4116 /// DIFlagField 4117 /// ::= uint32 4118 /// ::= DIFlagVector 4119 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4120 template <> 4121 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4122 4123 // parser for a single flag. 4124 auto parseFlag = [&](DINode::DIFlags &Val) { 4125 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4126 uint32_t TempVal = static_cast<uint32_t>(Val); 4127 bool Res = parseUInt32(TempVal); 4128 Val = static_cast<DINode::DIFlags>(TempVal); 4129 return Res; 4130 } 4131 4132 if (Lex.getKind() != lltok::DIFlag) 4133 return tokError("expected debug info flag"); 4134 4135 Val = DINode::getFlag(Lex.getStrVal()); 4136 if (!Val) 4137 return tokError(Twine("invalid debug info flag flag '") + 4138 Lex.getStrVal() + "'"); 4139 Lex.Lex(); 4140 return false; 4141 }; 4142 4143 // parse the flags and combine them together. 4144 DINode::DIFlags Combined = DINode::FlagZero; 4145 do { 4146 DINode::DIFlags Val; 4147 if (parseFlag(Val)) 4148 return true; 4149 Combined |= Val; 4150 } while (EatIfPresent(lltok::bar)); 4151 4152 Result.assign(Combined); 4153 return false; 4154 } 4155 4156 /// DISPFlagField 4157 /// ::= uint32 4158 /// ::= DISPFlagVector 4159 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4160 template <> 4161 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4162 4163 // parser for a single flag. 4164 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4165 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4166 uint32_t TempVal = static_cast<uint32_t>(Val); 4167 bool Res = parseUInt32(TempVal); 4168 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4169 return Res; 4170 } 4171 4172 if (Lex.getKind() != lltok::DISPFlag) 4173 return tokError("expected debug info flag"); 4174 4175 Val = DISubprogram::getFlag(Lex.getStrVal()); 4176 if (!Val) 4177 return tokError(Twine("invalid subprogram debug info flag '") + 4178 Lex.getStrVal() + "'"); 4179 Lex.Lex(); 4180 return false; 4181 }; 4182 4183 // parse the flags and combine them together. 4184 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4185 do { 4186 DISubprogram::DISPFlags Val; 4187 if (parseFlag(Val)) 4188 return true; 4189 Combined |= Val; 4190 } while (EatIfPresent(lltok::bar)); 4191 4192 Result.assign(Combined); 4193 return false; 4194 } 4195 4196 template <> 4197 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4198 if (Lex.getKind() != lltok::APSInt) 4199 return tokError("expected signed integer"); 4200 4201 auto &S = Lex.getAPSIntVal(); 4202 if (S < Result.Min) 4203 return tokError("value for '" + Name + "' too small, limit is " + 4204 Twine(Result.Min)); 4205 if (S > Result.Max) 4206 return tokError("value for '" + Name + "' too large, limit is " + 4207 Twine(Result.Max)); 4208 Result.assign(S.getExtValue()); 4209 assert(Result.Val >= Result.Min && "Expected value in range"); 4210 assert(Result.Val <= Result.Max && "Expected value in range"); 4211 Lex.Lex(); 4212 return false; 4213 } 4214 4215 template <> 4216 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4217 switch (Lex.getKind()) { 4218 default: 4219 return tokError("expected 'true' or 'false'"); 4220 case lltok::kw_true: 4221 Result.assign(true); 4222 break; 4223 case lltok::kw_false: 4224 Result.assign(false); 4225 break; 4226 } 4227 Lex.Lex(); 4228 return false; 4229 } 4230 4231 template <> 4232 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4233 if (Lex.getKind() == lltok::kw_null) { 4234 if (!Result.AllowNull) 4235 return tokError("'" + Name + "' cannot be null"); 4236 Lex.Lex(); 4237 Result.assign(nullptr); 4238 return false; 4239 } 4240 4241 Metadata *MD; 4242 if (parseMetadata(MD, nullptr)) 4243 return true; 4244 4245 Result.assign(MD); 4246 return false; 4247 } 4248 4249 template <> 4250 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4251 MDSignedOrMDField &Result) { 4252 // Try to parse a signed int. 4253 if (Lex.getKind() == lltok::APSInt) { 4254 MDSignedField Res = Result.A; 4255 if (!parseMDField(Loc, Name, Res)) { 4256 Result.assign(Res); 4257 return false; 4258 } 4259 return true; 4260 } 4261 4262 // Otherwise, try to parse as an MDField. 4263 MDField Res = Result.B; 4264 if (!parseMDField(Loc, Name, Res)) { 4265 Result.assign(Res); 4266 return false; 4267 } 4268 4269 return true; 4270 } 4271 4272 template <> 4273 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4274 LocTy ValueLoc = Lex.getLoc(); 4275 std::string S; 4276 if (parseStringConstant(S)) 4277 return true; 4278 4279 if (!Result.AllowEmpty && S.empty()) 4280 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4281 4282 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4283 return false; 4284 } 4285 4286 template <> 4287 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4288 SmallVector<Metadata *, 4> MDs; 4289 if (parseMDNodeVector(MDs)) 4290 return true; 4291 4292 Result.assign(std::move(MDs)); 4293 return false; 4294 } 4295 4296 template <> 4297 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4298 ChecksumKindField &Result) { 4299 Optional<DIFile::ChecksumKind> CSKind = 4300 DIFile::getChecksumKind(Lex.getStrVal()); 4301 4302 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4303 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4304 "'"); 4305 4306 Result.assign(*CSKind); 4307 Lex.Lex(); 4308 return false; 4309 } 4310 4311 } // end namespace llvm 4312 4313 template <class ParserTy> 4314 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4315 do { 4316 if (Lex.getKind() != lltok::LabelStr) 4317 return tokError("expected field label here"); 4318 4319 if (ParseField()) 4320 return true; 4321 } while (EatIfPresent(lltok::comma)); 4322 4323 return false; 4324 } 4325 4326 template <class ParserTy> 4327 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4328 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4329 Lex.Lex(); 4330 4331 if (parseToken(lltok::lparen, "expected '(' here")) 4332 return true; 4333 if (Lex.getKind() != lltok::rparen) 4334 if (parseMDFieldsImplBody(ParseField)) 4335 return true; 4336 4337 ClosingLoc = Lex.getLoc(); 4338 return parseToken(lltok::rparen, "expected ')' here"); 4339 } 4340 4341 template <class FieldTy> 4342 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4343 if (Result.Seen) 4344 return tokError("field '" + Name + "' cannot be specified more than once"); 4345 4346 LocTy Loc = Lex.getLoc(); 4347 Lex.Lex(); 4348 return parseMDField(Loc, Name, Result); 4349 } 4350 4351 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4352 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4353 4354 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4355 if (Lex.getStrVal() == #CLASS) \ 4356 return parse##CLASS(N, IsDistinct); 4357 #include "llvm/IR/Metadata.def" 4358 4359 return tokError("expected metadata type"); 4360 } 4361 4362 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4363 #define NOP_FIELD(NAME, TYPE, INIT) 4364 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4365 if (!NAME.Seen) \ 4366 return error(ClosingLoc, "missing required field '" #NAME "'"); 4367 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4368 if (Lex.getStrVal() == #NAME) \ 4369 return parseMDField(#NAME, NAME); 4370 #define PARSE_MD_FIELDS() \ 4371 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4372 do { \ 4373 LocTy ClosingLoc; \ 4374 if (parseMDFieldsImpl( \ 4375 [&]() -> bool { \ 4376 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4377 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4378 "'"); \ 4379 }, \ 4380 ClosingLoc)) \ 4381 return true; \ 4382 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4383 } while (false) 4384 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4385 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4386 4387 /// parseDILocationFields: 4388 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4389 /// isImplicitCode: true) 4390 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4391 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4392 OPTIONAL(line, LineField, ); \ 4393 OPTIONAL(column, ColumnField, ); \ 4394 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4395 OPTIONAL(inlinedAt, MDField, ); \ 4396 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4397 PARSE_MD_FIELDS(); 4398 #undef VISIT_MD_FIELDS 4399 4400 Result = 4401 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4402 inlinedAt.Val, isImplicitCode.Val)); 4403 return false; 4404 } 4405 4406 /// parseGenericDINode: 4407 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4408 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4409 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4410 REQUIRED(tag, DwarfTagField, ); \ 4411 OPTIONAL(header, MDStringField, ); \ 4412 OPTIONAL(operands, MDFieldList, ); 4413 PARSE_MD_FIELDS(); 4414 #undef VISIT_MD_FIELDS 4415 4416 Result = GET_OR_DISTINCT(GenericDINode, 4417 (Context, tag.Val, header.Val, operands.Val)); 4418 return false; 4419 } 4420 4421 /// parseDISubrange: 4422 /// ::= !DISubrange(count: 30, lowerBound: 2) 4423 /// ::= !DISubrange(count: !node, lowerBound: 2) 4424 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4425 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4426 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4427 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4428 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4429 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4430 OPTIONAL(stride, MDSignedOrMDField, ); 4431 PARSE_MD_FIELDS(); 4432 #undef VISIT_MD_FIELDS 4433 4434 Metadata *Count = nullptr; 4435 Metadata *LowerBound = nullptr; 4436 Metadata *UpperBound = nullptr; 4437 Metadata *Stride = nullptr; 4438 4439 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4440 if (Bound.isMDSignedField()) 4441 return ConstantAsMetadata::get(ConstantInt::getSigned( 4442 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4443 if (Bound.isMDField()) 4444 return Bound.getMDFieldValue(); 4445 return nullptr; 4446 }; 4447 4448 Count = convToMetadata(count); 4449 LowerBound = convToMetadata(lowerBound); 4450 UpperBound = convToMetadata(upperBound); 4451 Stride = convToMetadata(stride); 4452 4453 Result = GET_OR_DISTINCT(DISubrange, 4454 (Context, Count, LowerBound, UpperBound, Stride)); 4455 4456 return false; 4457 } 4458 4459 /// parseDIGenericSubrange: 4460 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 4461 /// !node3) 4462 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 4463 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4464 OPTIONAL(count, MDSignedOrMDField, ); \ 4465 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4466 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4467 OPTIONAL(stride, MDSignedOrMDField, ); 4468 PARSE_MD_FIELDS(); 4469 #undef VISIT_MD_FIELDS 4470 4471 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4472 if (Bound.isMDSignedField()) 4473 return DIExpression::get( 4474 Context, {dwarf::DW_OP_consts, 4475 static_cast<uint64_t>(Bound.getMDSignedValue())}); 4476 if (Bound.isMDField()) 4477 return Bound.getMDFieldValue(); 4478 return nullptr; 4479 }; 4480 4481 Metadata *Count = ConvToMetadata(count); 4482 Metadata *LowerBound = ConvToMetadata(lowerBound); 4483 Metadata *UpperBound = ConvToMetadata(upperBound); 4484 Metadata *Stride = ConvToMetadata(stride); 4485 4486 Result = GET_OR_DISTINCT(DIGenericSubrange, 4487 (Context, Count, LowerBound, UpperBound, Stride)); 4488 4489 return false; 4490 } 4491 4492 /// parseDIEnumerator: 4493 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4494 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4495 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4496 REQUIRED(name, MDStringField, ); \ 4497 REQUIRED(value, MDAPSIntField, ); \ 4498 OPTIONAL(isUnsigned, MDBoolField, (false)); 4499 PARSE_MD_FIELDS(); 4500 #undef VISIT_MD_FIELDS 4501 4502 if (isUnsigned.Val && value.Val.isNegative()) 4503 return tokError("unsigned enumerator with negative value"); 4504 4505 APSInt Value(value.Val); 4506 // Add a leading zero so that unsigned values with the msb set are not 4507 // mistaken for negative values when used for signed enumerators. 4508 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4509 Value = Value.zext(Value.getBitWidth() + 1); 4510 4511 Result = 4512 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4513 4514 return false; 4515 } 4516 4517 /// parseDIBasicType: 4518 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4519 /// encoding: DW_ATE_encoding, flags: 0) 4520 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 4521 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4522 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4523 OPTIONAL(name, MDStringField, ); \ 4524 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4525 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4526 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4527 OPTIONAL(flags, DIFlagField, ); 4528 PARSE_MD_FIELDS(); 4529 #undef VISIT_MD_FIELDS 4530 4531 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4532 align.Val, encoding.Val, flags.Val)); 4533 return false; 4534 } 4535 4536 /// parseDIStringType: 4537 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4538 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 4539 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4540 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4541 OPTIONAL(name, MDStringField, ); \ 4542 OPTIONAL(stringLength, MDField, ); \ 4543 OPTIONAL(stringLengthExpression, MDField, ); \ 4544 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4545 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4546 OPTIONAL(encoding, DwarfAttEncodingField, ); 4547 PARSE_MD_FIELDS(); 4548 #undef VISIT_MD_FIELDS 4549 4550 Result = GET_OR_DISTINCT(DIStringType, 4551 (Context, tag.Val, name.Val, stringLength.Val, 4552 stringLengthExpression.Val, size.Val, align.Val, 4553 encoding.Val)); 4554 return false; 4555 } 4556 4557 /// parseDIDerivedType: 4558 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4559 /// line: 7, scope: !1, baseType: !2, size: 32, 4560 /// align: 32, offset: 0, flags: 0, extraData: !3, 4561 /// dwarfAddressSpace: 3) 4562 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4563 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4564 REQUIRED(tag, DwarfTagField, ); \ 4565 OPTIONAL(name, MDStringField, ); \ 4566 OPTIONAL(file, MDField, ); \ 4567 OPTIONAL(line, LineField, ); \ 4568 OPTIONAL(scope, MDField, ); \ 4569 REQUIRED(baseType, MDField, ); \ 4570 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4571 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4572 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4573 OPTIONAL(flags, DIFlagField, ); \ 4574 OPTIONAL(extraData, MDField, ); \ 4575 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); \ 4576 OPTIONAL(annotations, MDField, ); 4577 PARSE_MD_FIELDS(); 4578 #undef VISIT_MD_FIELDS 4579 4580 Optional<unsigned> DWARFAddressSpace; 4581 if (dwarfAddressSpace.Val != UINT32_MAX) 4582 DWARFAddressSpace = dwarfAddressSpace.Val; 4583 4584 Result = GET_OR_DISTINCT(DIDerivedType, 4585 (Context, tag.Val, name.Val, file.Val, line.Val, 4586 scope.Val, baseType.Val, size.Val, align.Val, 4587 offset.Val, DWARFAddressSpace, flags.Val, 4588 extraData.Val, annotations.Val)); 4589 return false; 4590 } 4591 4592 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 4593 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4594 REQUIRED(tag, DwarfTagField, ); \ 4595 OPTIONAL(name, MDStringField, ); \ 4596 OPTIONAL(file, MDField, ); \ 4597 OPTIONAL(line, LineField, ); \ 4598 OPTIONAL(scope, MDField, ); \ 4599 OPTIONAL(baseType, MDField, ); \ 4600 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4601 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4602 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4603 OPTIONAL(flags, DIFlagField, ); \ 4604 OPTIONAL(elements, MDField, ); \ 4605 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4606 OPTIONAL(vtableHolder, MDField, ); \ 4607 OPTIONAL(templateParams, MDField, ); \ 4608 OPTIONAL(identifier, MDStringField, ); \ 4609 OPTIONAL(discriminator, MDField, ); \ 4610 OPTIONAL(dataLocation, MDField, ); \ 4611 OPTIONAL(associated, MDField, ); \ 4612 OPTIONAL(allocated, MDField, ); \ 4613 OPTIONAL(rank, MDSignedOrMDField, ); \ 4614 OPTIONAL(annotations, MDField, ); 4615 PARSE_MD_FIELDS(); 4616 #undef VISIT_MD_FIELDS 4617 4618 Metadata *Rank = nullptr; 4619 if (rank.isMDSignedField()) 4620 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 4621 Type::getInt64Ty(Context), rank.getMDSignedValue())); 4622 else if (rank.isMDField()) 4623 Rank = rank.getMDFieldValue(); 4624 4625 // If this has an identifier try to build an ODR type. 4626 if (identifier.Val) 4627 if (auto *CT = DICompositeType::buildODRType( 4628 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4629 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4630 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 4631 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4632 Rank, annotations.Val)) { 4633 Result = CT; 4634 return false; 4635 } 4636 4637 // Create a new node, and save it in the context if it belongs in the type 4638 // map. 4639 Result = GET_OR_DISTINCT( 4640 DICompositeType, 4641 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4642 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4643 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4644 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank, 4645 annotations.Val)); 4646 return false; 4647 } 4648 4649 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4650 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4651 OPTIONAL(flags, DIFlagField, ); \ 4652 OPTIONAL(cc, DwarfCCField, ); \ 4653 REQUIRED(types, MDField, ); 4654 PARSE_MD_FIELDS(); 4655 #undef VISIT_MD_FIELDS 4656 4657 Result = GET_OR_DISTINCT(DISubroutineType, 4658 (Context, flags.Val, cc.Val, types.Val)); 4659 return false; 4660 } 4661 4662 /// parseDIFileType: 4663 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4664 /// checksumkind: CSK_MD5, 4665 /// checksum: "000102030405060708090a0b0c0d0e0f", 4666 /// source: "source file contents") 4667 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 4668 // The default constructed value for checksumkind is required, but will never 4669 // be used, as the parser checks if the field was actually Seen before using 4670 // the Val. 4671 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4672 REQUIRED(filename, MDStringField, ); \ 4673 REQUIRED(directory, MDStringField, ); \ 4674 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4675 OPTIONAL(checksum, MDStringField, ); \ 4676 OPTIONAL(source, MDStringField, ); 4677 PARSE_MD_FIELDS(); 4678 #undef VISIT_MD_FIELDS 4679 4680 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4681 if (checksumkind.Seen && checksum.Seen) 4682 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4683 else if (checksumkind.Seen || checksum.Seen) 4684 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4685 4686 Optional<MDString *> OptSource; 4687 if (source.Seen) 4688 OptSource = source.Val; 4689 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4690 OptChecksum, OptSource)); 4691 return false; 4692 } 4693 4694 /// parseDICompileUnit: 4695 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4696 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4697 /// splitDebugFilename: "abc.debug", 4698 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4699 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 4700 /// sysroot: "/", sdk: "MacOSX.sdk") 4701 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4702 if (!IsDistinct) 4703 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4704 4705 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4706 REQUIRED(language, DwarfLangField, ); \ 4707 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4708 OPTIONAL(producer, MDStringField, ); \ 4709 OPTIONAL(isOptimized, MDBoolField, ); \ 4710 OPTIONAL(flags, MDStringField, ); \ 4711 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4712 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4713 OPTIONAL(emissionKind, EmissionKindField, ); \ 4714 OPTIONAL(enums, MDField, ); \ 4715 OPTIONAL(retainedTypes, MDField, ); \ 4716 OPTIONAL(globals, MDField, ); \ 4717 OPTIONAL(imports, MDField, ); \ 4718 OPTIONAL(macros, MDField, ); \ 4719 OPTIONAL(dwoId, MDUnsignedField, ); \ 4720 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4721 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4722 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4723 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 4724 OPTIONAL(sysroot, MDStringField, ); \ 4725 OPTIONAL(sdk, MDStringField, ); 4726 PARSE_MD_FIELDS(); 4727 #undef VISIT_MD_FIELDS 4728 4729 Result = DICompileUnit::getDistinct( 4730 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4731 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4732 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4733 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4734 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 4735 return false; 4736 } 4737 4738 /// parseDISubprogram: 4739 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4740 /// file: !1, line: 7, type: !2, isLocal: false, 4741 /// isDefinition: true, scopeLine: 8, containingType: !3, 4742 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4743 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4744 /// spFlags: 10, isOptimized: false, templateParams: !4, 4745 /// declaration: !5, retainedNodes: !6, thrownTypes: !7, 4746 /// annotations: !8) 4747 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 4748 auto Loc = Lex.getLoc(); 4749 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4750 OPTIONAL(scope, MDField, ); \ 4751 OPTIONAL(name, MDStringField, ); \ 4752 OPTIONAL(linkageName, MDStringField, ); \ 4753 OPTIONAL(file, MDField, ); \ 4754 OPTIONAL(line, LineField, ); \ 4755 OPTIONAL(type, MDField, ); \ 4756 OPTIONAL(isLocal, MDBoolField, ); \ 4757 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4758 OPTIONAL(scopeLine, LineField, ); \ 4759 OPTIONAL(containingType, MDField, ); \ 4760 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4761 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4762 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4763 OPTIONAL(flags, DIFlagField, ); \ 4764 OPTIONAL(spFlags, DISPFlagField, ); \ 4765 OPTIONAL(isOptimized, MDBoolField, ); \ 4766 OPTIONAL(unit, MDField, ); \ 4767 OPTIONAL(templateParams, MDField, ); \ 4768 OPTIONAL(declaration, MDField, ); \ 4769 OPTIONAL(retainedNodes, MDField, ); \ 4770 OPTIONAL(thrownTypes, MDField, ); \ 4771 OPTIONAL(annotations, MDField, ); 4772 PARSE_MD_FIELDS(); 4773 #undef VISIT_MD_FIELDS 4774 4775 // An explicit spFlags field takes precedence over individual fields in 4776 // older IR versions. 4777 DISubprogram::DISPFlags SPFlags = 4778 spFlags.Seen ? spFlags.Val 4779 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4780 isOptimized.Val, virtuality.Val); 4781 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4782 return Lex.Error( 4783 Loc, 4784 "missing 'distinct', required for !DISubprogram that is a Definition"); 4785 Result = GET_OR_DISTINCT( 4786 DISubprogram, 4787 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4788 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4789 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4790 declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val)); 4791 return false; 4792 } 4793 4794 /// parseDILexicalBlock: 4795 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4796 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4797 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4798 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4799 OPTIONAL(file, MDField, ); \ 4800 OPTIONAL(line, LineField, ); \ 4801 OPTIONAL(column, ColumnField, ); 4802 PARSE_MD_FIELDS(); 4803 #undef VISIT_MD_FIELDS 4804 4805 Result = GET_OR_DISTINCT( 4806 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4807 return false; 4808 } 4809 4810 /// parseDILexicalBlockFile: 4811 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4812 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4813 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4814 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4815 OPTIONAL(file, MDField, ); \ 4816 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4817 PARSE_MD_FIELDS(); 4818 #undef VISIT_MD_FIELDS 4819 4820 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4821 (Context, scope.Val, file.Val, discriminator.Val)); 4822 return false; 4823 } 4824 4825 /// parseDICommonBlock: 4826 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 4827 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 4828 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4829 REQUIRED(scope, MDField, ); \ 4830 OPTIONAL(declaration, MDField, ); \ 4831 OPTIONAL(name, MDStringField, ); \ 4832 OPTIONAL(file, MDField, ); \ 4833 OPTIONAL(line, LineField, ); 4834 PARSE_MD_FIELDS(); 4835 #undef VISIT_MD_FIELDS 4836 4837 Result = GET_OR_DISTINCT(DICommonBlock, 4838 (Context, scope.Val, declaration.Val, name.Val, 4839 file.Val, line.Val)); 4840 return false; 4841 } 4842 4843 /// parseDINamespace: 4844 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4845 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 4846 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4847 REQUIRED(scope, MDField, ); \ 4848 OPTIONAL(name, MDStringField, ); \ 4849 OPTIONAL(exportSymbols, MDBoolField, ); 4850 PARSE_MD_FIELDS(); 4851 #undef VISIT_MD_FIELDS 4852 4853 Result = GET_OR_DISTINCT(DINamespace, 4854 (Context, scope.Val, name.Val, exportSymbols.Val)); 4855 return false; 4856 } 4857 4858 /// parseDIMacro: 4859 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 4860 /// "SomeValue") 4861 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 4862 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4863 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4864 OPTIONAL(line, LineField, ); \ 4865 REQUIRED(name, MDStringField, ); \ 4866 OPTIONAL(value, MDStringField, ); 4867 PARSE_MD_FIELDS(); 4868 #undef VISIT_MD_FIELDS 4869 4870 Result = GET_OR_DISTINCT(DIMacro, 4871 (Context, type.Val, line.Val, name.Val, value.Val)); 4872 return false; 4873 } 4874 4875 /// parseDIMacroFile: 4876 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4877 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4878 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4879 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4880 OPTIONAL(line, LineField, ); \ 4881 REQUIRED(file, MDField, ); \ 4882 OPTIONAL(nodes, MDField, ); 4883 PARSE_MD_FIELDS(); 4884 #undef VISIT_MD_FIELDS 4885 4886 Result = GET_OR_DISTINCT(DIMacroFile, 4887 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4888 return false; 4889 } 4890 4891 /// parseDIModule: 4892 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 4893 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 4894 /// file: !1, line: 4, isDecl: false) 4895 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 4896 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4897 REQUIRED(scope, MDField, ); \ 4898 REQUIRED(name, MDStringField, ); \ 4899 OPTIONAL(configMacros, MDStringField, ); \ 4900 OPTIONAL(includePath, MDStringField, ); \ 4901 OPTIONAL(apinotes, MDStringField, ); \ 4902 OPTIONAL(file, MDField, ); \ 4903 OPTIONAL(line, LineField, ); \ 4904 OPTIONAL(isDecl, MDBoolField, ); 4905 PARSE_MD_FIELDS(); 4906 #undef VISIT_MD_FIELDS 4907 4908 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 4909 configMacros.Val, includePath.Val, 4910 apinotes.Val, line.Val, isDecl.Val)); 4911 return false; 4912 } 4913 4914 /// parseDITemplateTypeParameter: 4915 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 4916 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4917 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4918 OPTIONAL(name, MDStringField, ); \ 4919 REQUIRED(type, MDField, ); \ 4920 OPTIONAL(defaulted, MDBoolField, ); 4921 PARSE_MD_FIELDS(); 4922 #undef VISIT_MD_FIELDS 4923 4924 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 4925 (Context, name.Val, type.Val, defaulted.Val)); 4926 return false; 4927 } 4928 4929 /// parseDITemplateValueParameter: 4930 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4931 /// name: "V", type: !1, defaulted: false, 4932 /// value: i32 7) 4933 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4934 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4935 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4936 OPTIONAL(name, MDStringField, ); \ 4937 OPTIONAL(type, MDField, ); \ 4938 OPTIONAL(defaulted, MDBoolField, ); \ 4939 REQUIRED(value, MDField, ); 4940 4941 PARSE_MD_FIELDS(); 4942 #undef VISIT_MD_FIELDS 4943 4944 Result = GET_OR_DISTINCT( 4945 DITemplateValueParameter, 4946 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 4947 return false; 4948 } 4949 4950 /// parseDIGlobalVariable: 4951 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4952 /// file: !1, line: 7, type: !2, isLocal: false, 4953 /// isDefinition: true, templateParams: !3, 4954 /// declaration: !4, align: 8) 4955 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4956 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4957 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4958 OPTIONAL(scope, MDField, ); \ 4959 OPTIONAL(linkageName, MDStringField, ); \ 4960 OPTIONAL(file, MDField, ); \ 4961 OPTIONAL(line, LineField, ); \ 4962 OPTIONAL(type, MDField, ); \ 4963 OPTIONAL(isLocal, MDBoolField, ); \ 4964 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4965 OPTIONAL(templateParams, MDField, ); \ 4966 OPTIONAL(declaration, MDField, ); \ 4967 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4968 OPTIONAL(annotations, MDField, ); 4969 PARSE_MD_FIELDS(); 4970 #undef VISIT_MD_FIELDS 4971 4972 Result = 4973 GET_OR_DISTINCT(DIGlobalVariable, 4974 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4975 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4976 declaration.Val, templateParams.Val, align.Val, 4977 annotations.Val)); 4978 return false; 4979 } 4980 4981 /// parseDILocalVariable: 4982 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4983 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4984 /// align: 8) 4985 /// ::= !DILocalVariable(scope: !0, name: "foo", 4986 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4987 /// align: 8) 4988 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4989 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4990 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4991 OPTIONAL(name, MDStringField, ); \ 4992 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4993 OPTIONAL(file, MDField, ); \ 4994 OPTIONAL(line, LineField, ); \ 4995 OPTIONAL(type, MDField, ); \ 4996 OPTIONAL(flags, DIFlagField, ); \ 4997 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4998 OPTIONAL(annotations, MDField, ); 4999 PARSE_MD_FIELDS(); 5000 #undef VISIT_MD_FIELDS 5001 5002 Result = GET_OR_DISTINCT(DILocalVariable, 5003 (Context, scope.Val, name.Val, file.Val, line.Val, 5004 type.Val, arg.Val, flags.Val, align.Val, 5005 annotations.Val)); 5006 return false; 5007 } 5008 5009 /// parseDILabel: 5010 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 5011 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 5012 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5013 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5014 REQUIRED(name, MDStringField, ); \ 5015 REQUIRED(file, MDField, ); \ 5016 REQUIRED(line, LineField, ); 5017 PARSE_MD_FIELDS(); 5018 #undef VISIT_MD_FIELDS 5019 5020 Result = GET_OR_DISTINCT(DILabel, 5021 (Context, scope.Val, name.Val, file.Val, line.Val)); 5022 return false; 5023 } 5024 5025 /// parseDIExpression: 5026 /// ::= !DIExpression(0, 7, -1) 5027 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5028 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5029 Lex.Lex(); 5030 5031 if (parseToken(lltok::lparen, "expected '(' here")) 5032 return true; 5033 5034 SmallVector<uint64_t, 8> Elements; 5035 if (Lex.getKind() != lltok::rparen) 5036 do { 5037 if (Lex.getKind() == lltok::DwarfOp) { 5038 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5039 Lex.Lex(); 5040 Elements.push_back(Op); 5041 continue; 5042 } 5043 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5044 } 5045 5046 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5047 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5048 Lex.Lex(); 5049 Elements.push_back(Op); 5050 continue; 5051 } 5052 return tokError(Twine("invalid DWARF attribute encoding '") + 5053 Lex.getStrVal() + "'"); 5054 } 5055 5056 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5057 return tokError("expected unsigned integer"); 5058 5059 auto &U = Lex.getAPSIntVal(); 5060 if (U.ugt(UINT64_MAX)) 5061 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5062 Elements.push_back(U.getZExtValue()); 5063 Lex.Lex(); 5064 } while (EatIfPresent(lltok::comma)); 5065 5066 if (parseToken(lltok::rparen, "expected ')' here")) 5067 return true; 5068 5069 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5070 return false; 5071 } 5072 5073 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) { 5074 return parseDIArgList(Result, IsDistinct, nullptr); 5075 } 5076 /// ParseDIArgList: 5077 /// ::= !DIArgList(i32 7, i64 %0) 5078 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct, 5079 PerFunctionState *PFS) { 5080 assert(PFS && "Expected valid function state"); 5081 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5082 Lex.Lex(); 5083 5084 if (parseToken(lltok::lparen, "expected '(' here")) 5085 return true; 5086 5087 SmallVector<ValueAsMetadata *, 4> Args; 5088 if (Lex.getKind() != lltok::rparen) 5089 do { 5090 Metadata *MD; 5091 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS)) 5092 return true; 5093 Args.push_back(dyn_cast<ValueAsMetadata>(MD)); 5094 } while (EatIfPresent(lltok::comma)); 5095 5096 if (parseToken(lltok::rparen, "expected ')' here")) 5097 return true; 5098 5099 Result = GET_OR_DISTINCT(DIArgList, (Context, Args)); 5100 return false; 5101 } 5102 5103 /// parseDIGlobalVariableExpression: 5104 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5105 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5106 bool IsDistinct) { 5107 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5108 REQUIRED(var, MDField, ); \ 5109 REQUIRED(expr, MDField, ); 5110 PARSE_MD_FIELDS(); 5111 #undef VISIT_MD_FIELDS 5112 5113 Result = 5114 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5115 return false; 5116 } 5117 5118 /// parseDIObjCProperty: 5119 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5120 /// getter: "getFoo", attributes: 7, type: !2) 5121 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5122 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5123 OPTIONAL(name, MDStringField, ); \ 5124 OPTIONAL(file, MDField, ); \ 5125 OPTIONAL(line, LineField, ); \ 5126 OPTIONAL(setter, MDStringField, ); \ 5127 OPTIONAL(getter, MDStringField, ); \ 5128 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5129 OPTIONAL(type, MDField, ); 5130 PARSE_MD_FIELDS(); 5131 #undef VISIT_MD_FIELDS 5132 5133 Result = GET_OR_DISTINCT(DIObjCProperty, 5134 (Context, name.Val, file.Val, line.Val, setter.Val, 5135 getter.Val, attributes.Val, type.Val)); 5136 return false; 5137 } 5138 5139 /// parseDIImportedEntity: 5140 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5141 /// line: 7, name: "foo", elements: !2) 5142 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5143 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5144 REQUIRED(tag, DwarfTagField, ); \ 5145 REQUIRED(scope, MDField, ); \ 5146 OPTIONAL(entity, MDField, ); \ 5147 OPTIONAL(file, MDField, ); \ 5148 OPTIONAL(line, LineField, ); \ 5149 OPTIONAL(name, MDStringField, ); \ 5150 OPTIONAL(elements, MDField, ); 5151 PARSE_MD_FIELDS(); 5152 #undef VISIT_MD_FIELDS 5153 5154 Result = GET_OR_DISTINCT(DIImportedEntity, 5155 (Context, tag.Val, scope.Val, entity.Val, file.Val, 5156 line.Val, name.Val, elements.Val)); 5157 return false; 5158 } 5159 5160 #undef PARSE_MD_FIELD 5161 #undef NOP_FIELD 5162 #undef REQUIRE_FIELD 5163 #undef DECLARE_FIELD 5164 5165 /// parseMetadataAsValue 5166 /// ::= metadata i32 %local 5167 /// ::= metadata i32 @global 5168 /// ::= metadata i32 7 5169 /// ::= metadata !0 5170 /// ::= metadata !{...} 5171 /// ::= metadata !"string" 5172 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5173 // Note: the type 'metadata' has already been parsed. 5174 Metadata *MD; 5175 if (parseMetadata(MD, &PFS)) 5176 return true; 5177 5178 V = MetadataAsValue::get(Context, MD); 5179 return false; 5180 } 5181 5182 /// parseValueAsMetadata 5183 /// ::= i32 %local 5184 /// ::= i32 @global 5185 /// ::= i32 7 5186 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5187 PerFunctionState *PFS) { 5188 Type *Ty; 5189 LocTy Loc; 5190 if (parseType(Ty, TypeMsg, Loc)) 5191 return true; 5192 if (Ty->isMetadataTy()) 5193 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5194 5195 Value *V; 5196 if (parseValue(Ty, V, PFS)) 5197 return true; 5198 5199 MD = ValueAsMetadata::get(V); 5200 return false; 5201 } 5202 5203 /// parseMetadata 5204 /// ::= i32 %local 5205 /// ::= i32 @global 5206 /// ::= i32 7 5207 /// ::= !42 5208 /// ::= !{...} 5209 /// ::= !"string" 5210 /// ::= !DILocation(...) 5211 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5212 if (Lex.getKind() == lltok::MetadataVar) { 5213 MDNode *N; 5214 // DIArgLists are a special case, as they are a list of ValueAsMetadata and 5215 // so parsing this requires a Function State. 5216 if (Lex.getStrVal() == "DIArgList") { 5217 if (parseDIArgList(N, false, PFS)) 5218 return true; 5219 } else if (parseSpecializedMDNode(N)) { 5220 return true; 5221 } 5222 MD = N; 5223 return false; 5224 } 5225 5226 // ValueAsMetadata: 5227 // <type> <value> 5228 if (Lex.getKind() != lltok::exclaim) 5229 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5230 5231 // '!'. 5232 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5233 Lex.Lex(); 5234 5235 // MDString: 5236 // ::= '!' STRINGCONSTANT 5237 if (Lex.getKind() == lltok::StringConstant) { 5238 MDString *S; 5239 if (parseMDString(S)) 5240 return true; 5241 MD = S; 5242 return false; 5243 } 5244 5245 // MDNode: 5246 // !{ ... } 5247 // !7 5248 MDNode *N; 5249 if (parseMDNodeTail(N)) 5250 return true; 5251 MD = N; 5252 return false; 5253 } 5254 5255 //===----------------------------------------------------------------------===// 5256 // Function Parsing. 5257 //===----------------------------------------------------------------------===// 5258 5259 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5260 PerFunctionState *PFS) { 5261 if (Ty->isFunctionTy()) 5262 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5263 5264 switch (ID.Kind) { 5265 case ValID::t_LocalID: 5266 if (!PFS) 5267 return error(ID.Loc, "invalid use of function-local name"); 5268 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc); 5269 return V == nullptr; 5270 case ValID::t_LocalName: 5271 if (!PFS) 5272 return error(ID.Loc, "invalid use of function-local name"); 5273 V = PFS->getVal(ID.StrVal, Ty, ID.Loc); 5274 return V == nullptr; 5275 case ValID::t_InlineAsm: { 5276 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5277 return error(ID.Loc, "invalid type for inline asm constraint string"); 5278 V = InlineAsm::get( 5279 ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1, 5280 InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1); 5281 return false; 5282 } 5283 case ValID::t_GlobalName: 5284 V = getGlobalVal(ID.StrVal, Ty, ID.Loc); 5285 if (V && ID.NoCFI) 5286 V = NoCFIValue::get(cast<GlobalValue>(V)); 5287 return V == nullptr; 5288 case ValID::t_GlobalID: 5289 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc); 5290 if (V && ID.NoCFI) 5291 V = NoCFIValue::get(cast<GlobalValue>(V)); 5292 return V == nullptr; 5293 case ValID::t_APSInt: 5294 if (!Ty->isIntegerTy()) 5295 return error(ID.Loc, "integer constant must have integer type"); 5296 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5297 V = ConstantInt::get(Context, ID.APSIntVal); 5298 return false; 5299 case ValID::t_APFloat: 5300 if (!Ty->isFloatingPointTy() || 5301 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5302 return error(ID.Loc, "floating point constant invalid for type"); 5303 5304 // The lexer has no type info, so builds all half, bfloat, float, and double 5305 // FP constants as double. Fix this here. Long double does not need this. 5306 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5307 // Check for signaling before potentially converting and losing that info. 5308 bool IsSNAN = ID.APFloatVal.isSignaling(); 5309 bool Ignored; 5310 if (Ty->isHalfTy()) 5311 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5312 &Ignored); 5313 else if (Ty->isBFloatTy()) 5314 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5315 &Ignored); 5316 else if (Ty->isFloatTy()) 5317 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5318 &Ignored); 5319 if (IsSNAN) { 5320 // The convert call above may quiet an SNaN, so manufacture another 5321 // SNaN. The bitcast works because the payload (significand) parameter 5322 // is truncated to fit. 5323 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5324 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5325 ID.APFloatVal.isNegative(), &Payload); 5326 } 5327 } 5328 V = ConstantFP::get(Context, ID.APFloatVal); 5329 5330 if (V->getType() != Ty) 5331 return error(ID.Loc, "floating point constant does not have type '" + 5332 getTypeString(Ty) + "'"); 5333 5334 return false; 5335 case ValID::t_Null: 5336 if (!Ty->isPointerTy()) 5337 return error(ID.Loc, "null must be a pointer type"); 5338 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5339 return false; 5340 case ValID::t_Undef: 5341 // FIXME: LabelTy should not be a first-class type. 5342 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5343 return error(ID.Loc, "invalid type for undef constant"); 5344 V = UndefValue::get(Ty); 5345 return false; 5346 case ValID::t_EmptyArray: 5347 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5348 return error(ID.Loc, "invalid empty array initializer"); 5349 V = UndefValue::get(Ty); 5350 return false; 5351 case ValID::t_Zero: 5352 // FIXME: LabelTy should not be a first-class type. 5353 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5354 return error(ID.Loc, "invalid type for null constant"); 5355 V = Constant::getNullValue(Ty); 5356 return false; 5357 case ValID::t_None: 5358 if (!Ty->isTokenTy()) 5359 return error(ID.Loc, "invalid type for none constant"); 5360 V = Constant::getNullValue(Ty); 5361 return false; 5362 case ValID::t_Poison: 5363 // FIXME: LabelTy should not be a first-class type. 5364 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5365 return error(ID.Loc, "invalid type for poison constant"); 5366 V = PoisonValue::get(Ty); 5367 return false; 5368 case ValID::t_Constant: 5369 if (ID.ConstantVal->getType() != Ty) 5370 return error(ID.Loc, "constant expression type mismatch: got type '" + 5371 getTypeString(ID.ConstantVal->getType()) + 5372 "' but expected '" + getTypeString(Ty) + "'"); 5373 V = ID.ConstantVal; 5374 return false; 5375 case ValID::t_ConstantStruct: 5376 case ValID::t_PackedConstantStruct: 5377 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5378 if (ST->getNumElements() != ID.UIntVal) 5379 return error(ID.Loc, 5380 "initializer with struct type has wrong # elements"); 5381 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5382 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5383 5384 // Verify that the elements are compatible with the structtype. 5385 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5386 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5387 return error( 5388 ID.Loc, 5389 "element " + Twine(i) + 5390 " of struct initializer doesn't match struct element type"); 5391 5392 V = ConstantStruct::get( 5393 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5394 } else 5395 return error(ID.Loc, "constant expression type mismatch"); 5396 return false; 5397 } 5398 llvm_unreachable("Invalid ValID"); 5399 } 5400 5401 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5402 C = nullptr; 5403 ValID ID; 5404 auto Loc = Lex.getLoc(); 5405 if (parseValID(ID, /*PFS=*/nullptr)) 5406 return true; 5407 switch (ID.Kind) { 5408 case ValID::t_APSInt: 5409 case ValID::t_APFloat: 5410 case ValID::t_Undef: 5411 case ValID::t_Constant: 5412 case ValID::t_ConstantStruct: 5413 case ValID::t_PackedConstantStruct: { 5414 Value *V; 5415 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 5416 return true; 5417 assert(isa<Constant>(V) && "Expected a constant value"); 5418 C = cast<Constant>(V); 5419 return false; 5420 } 5421 case ValID::t_Null: 5422 C = Constant::getNullValue(Ty); 5423 return false; 5424 default: 5425 return error(Loc, "expected a constant value"); 5426 } 5427 } 5428 5429 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5430 V = nullptr; 5431 ValID ID; 5432 return parseValID(ID, PFS, Ty) || 5433 convertValIDToValue(Ty, ID, V, PFS); 5434 } 5435 5436 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5437 Type *Ty = nullptr; 5438 return parseType(Ty) || parseValue(Ty, V, PFS); 5439 } 5440 5441 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5442 PerFunctionState &PFS) { 5443 Value *V; 5444 Loc = Lex.getLoc(); 5445 if (parseTypeAndValue(V, PFS)) 5446 return true; 5447 if (!isa<BasicBlock>(V)) 5448 return error(Loc, "expected a basic block"); 5449 BB = cast<BasicBlock>(V); 5450 return false; 5451 } 5452 5453 /// FunctionHeader 5454 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5455 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5456 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5457 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5458 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) { 5459 // parse the linkage. 5460 LocTy LinkageLoc = Lex.getLoc(); 5461 unsigned Linkage; 5462 unsigned Visibility; 5463 unsigned DLLStorageClass; 5464 bool DSOLocal; 5465 AttrBuilder RetAttrs; 5466 unsigned CC; 5467 bool HasLinkage; 5468 Type *RetType = nullptr; 5469 LocTy RetTypeLoc = Lex.getLoc(); 5470 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5471 DSOLocal) || 5472 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 5473 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 5474 return true; 5475 5476 // Verify that the linkage is ok. 5477 switch ((GlobalValue::LinkageTypes)Linkage) { 5478 case GlobalValue::ExternalLinkage: 5479 break; // always ok. 5480 case GlobalValue::ExternalWeakLinkage: 5481 if (IsDefine) 5482 return error(LinkageLoc, "invalid linkage for function definition"); 5483 break; 5484 case GlobalValue::PrivateLinkage: 5485 case GlobalValue::InternalLinkage: 5486 case GlobalValue::AvailableExternallyLinkage: 5487 case GlobalValue::LinkOnceAnyLinkage: 5488 case GlobalValue::LinkOnceODRLinkage: 5489 case GlobalValue::WeakAnyLinkage: 5490 case GlobalValue::WeakODRLinkage: 5491 if (!IsDefine) 5492 return error(LinkageLoc, "invalid linkage for function declaration"); 5493 break; 5494 case GlobalValue::AppendingLinkage: 5495 case GlobalValue::CommonLinkage: 5496 return error(LinkageLoc, "invalid function linkage type"); 5497 } 5498 5499 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5500 return error(LinkageLoc, 5501 "symbol with local linkage must have default visibility"); 5502 5503 if (!FunctionType::isValidReturnType(RetType)) 5504 return error(RetTypeLoc, "invalid function return type"); 5505 5506 LocTy NameLoc = Lex.getLoc(); 5507 5508 std::string FunctionName; 5509 if (Lex.getKind() == lltok::GlobalVar) { 5510 FunctionName = Lex.getStrVal(); 5511 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5512 unsigned NameID = Lex.getUIntVal(); 5513 5514 if (NameID != NumberedVals.size()) 5515 return tokError("function expected to be numbered '%" + 5516 Twine(NumberedVals.size()) + "'"); 5517 } else { 5518 return tokError("expected function name"); 5519 } 5520 5521 Lex.Lex(); 5522 5523 if (Lex.getKind() != lltok::lparen) 5524 return tokError("expected '(' in function argument list"); 5525 5526 SmallVector<ArgInfo, 8> ArgList; 5527 bool IsVarArg; 5528 AttrBuilder FuncAttrs; 5529 std::vector<unsigned> FwdRefAttrGrps; 5530 LocTy BuiltinLoc; 5531 std::string Section; 5532 std::string Partition; 5533 MaybeAlign Alignment; 5534 std::string GC; 5535 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5536 unsigned AddrSpace = 0; 5537 Constant *Prefix = nullptr; 5538 Constant *Prologue = nullptr; 5539 Constant *PersonalityFn = nullptr; 5540 Comdat *C; 5541 5542 if (parseArgumentList(ArgList, IsVarArg) || 5543 parseOptionalUnnamedAddr(UnnamedAddr) || 5544 parseOptionalProgramAddrSpace(AddrSpace) || 5545 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5546 BuiltinLoc) || 5547 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 5548 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 5549 parseOptionalComdat(FunctionName, C) || 5550 parseOptionalAlignment(Alignment) || 5551 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 5552 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 5553 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 5554 (EatIfPresent(lltok::kw_personality) && 5555 parseGlobalTypeAndValue(PersonalityFn))) 5556 return true; 5557 5558 if (FuncAttrs.contains(Attribute::Builtin)) 5559 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 5560 5561 // If the alignment was parsed as an attribute, move to the alignment field. 5562 if (FuncAttrs.hasAlignmentAttr()) { 5563 Alignment = FuncAttrs.getAlignment(); 5564 FuncAttrs.removeAttribute(Attribute::Alignment); 5565 } 5566 5567 // Okay, if we got here, the function is syntactically valid. Convert types 5568 // and do semantic checks. 5569 std::vector<Type*> ParamTypeList; 5570 SmallVector<AttributeSet, 8> Attrs; 5571 5572 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5573 ParamTypeList.push_back(ArgList[i].Ty); 5574 Attrs.push_back(ArgList[i].Attrs); 5575 } 5576 5577 AttributeList PAL = 5578 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5579 AttributeSet::get(Context, RetAttrs), Attrs); 5580 5581 if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy()) 5582 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 5583 5584 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 5585 PointerType *PFT = PointerType::get(FT, AddrSpace); 5586 5587 Fn = nullptr; 5588 GlobalValue *FwdFn = nullptr; 5589 if (!FunctionName.empty()) { 5590 // If this was a definition of a forward reference, remove the definition 5591 // from the forward reference table and fill in the forward ref. 5592 auto FRVI = ForwardRefVals.find(FunctionName); 5593 if (FRVI != ForwardRefVals.end()) { 5594 FwdFn = FRVI->second.first; 5595 if (!FwdFn->getType()->isOpaque()) { 5596 if (!FwdFn->getType()->getPointerElementType()->isFunctionTy()) 5597 return error(FRVI->second.second, "invalid forward reference to " 5598 "function as global value!"); 5599 if (FwdFn->getType() != PFT) 5600 return error(FRVI->second.second, 5601 "invalid forward reference to " 5602 "function '" + 5603 FunctionName + 5604 "' with wrong type: " 5605 "expected '" + 5606 getTypeString(PFT) + "' but was '" + 5607 getTypeString(FwdFn->getType()) + "'"); 5608 } 5609 ForwardRefVals.erase(FRVI); 5610 } else if ((Fn = M->getFunction(FunctionName))) { 5611 // Reject redefinitions. 5612 return error(NameLoc, 5613 "invalid redefinition of function '" + FunctionName + "'"); 5614 } else if (M->getNamedValue(FunctionName)) { 5615 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5616 } 5617 5618 } else { 5619 // If this is a definition of a forward referenced function, make sure the 5620 // types agree. 5621 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5622 if (I != ForwardRefValIDs.end()) { 5623 FwdFn = cast<Function>(I->second.first); 5624 if (!FwdFn->getType()->isOpaque() && FwdFn->getType() != PFT) 5625 return error(NameLoc, "type of definition and forward reference of '@" + 5626 Twine(NumberedVals.size()) + 5627 "' disagree: " 5628 "expected '" + 5629 getTypeString(PFT) + "' but was '" + 5630 getTypeString(FwdFn->getType()) + "'"); 5631 ForwardRefValIDs.erase(I); 5632 } 5633 } 5634 5635 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5636 FunctionName, M); 5637 5638 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5639 5640 if (FunctionName.empty()) 5641 NumberedVals.push_back(Fn); 5642 5643 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5644 maybeSetDSOLocal(DSOLocal, *Fn); 5645 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5646 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5647 Fn->setCallingConv(CC); 5648 Fn->setAttributes(PAL); 5649 Fn->setUnnamedAddr(UnnamedAddr); 5650 Fn->setAlignment(MaybeAlign(Alignment)); 5651 Fn->setSection(Section); 5652 Fn->setPartition(Partition); 5653 Fn->setComdat(C); 5654 Fn->setPersonalityFn(PersonalityFn); 5655 if (!GC.empty()) Fn->setGC(GC); 5656 Fn->setPrefixData(Prefix); 5657 Fn->setPrologueData(Prologue); 5658 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5659 5660 // Add all of the arguments we parsed to the function. 5661 Function::arg_iterator ArgIt = Fn->arg_begin(); 5662 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5663 // If the argument has a name, insert it into the argument symbol table. 5664 if (ArgList[i].Name.empty()) continue; 5665 5666 // Set the name, if it conflicted, it will be auto-renamed. 5667 ArgIt->setName(ArgList[i].Name); 5668 5669 if (ArgIt->getName() != ArgList[i].Name) 5670 return error(ArgList[i].Loc, 5671 "redefinition of argument '%" + ArgList[i].Name + "'"); 5672 } 5673 5674 if (FwdFn) { 5675 FwdFn->replaceAllUsesWith(Fn); 5676 FwdFn->eraseFromParent(); 5677 } 5678 5679 if (IsDefine) 5680 return false; 5681 5682 // Check the declaration has no block address forward references. 5683 ValID ID; 5684 if (FunctionName.empty()) { 5685 ID.Kind = ValID::t_GlobalID; 5686 ID.UIntVal = NumberedVals.size() - 1; 5687 } else { 5688 ID.Kind = ValID::t_GlobalName; 5689 ID.StrVal = FunctionName; 5690 } 5691 auto Blocks = ForwardRefBlockAddresses.find(ID); 5692 if (Blocks != ForwardRefBlockAddresses.end()) 5693 return error(Blocks->first.Loc, 5694 "cannot take blockaddress inside a declaration"); 5695 return false; 5696 } 5697 5698 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5699 ValID ID; 5700 if (FunctionNumber == -1) { 5701 ID.Kind = ValID::t_GlobalName; 5702 ID.StrVal = std::string(F.getName()); 5703 } else { 5704 ID.Kind = ValID::t_GlobalID; 5705 ID.UIntVal = FunctionNumber; 5706 } 5707 5708 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5709 if (Blocks == P.ForwardRefBlockAddresses.end()) 5710 return false; 5711 5712 for (const auto &I : Blocks->second) { 5713 const ValID &BBID = I.first; 5714 GlobalValue *GV = I.second; 5715 5716 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5717 "Expected local id or name"); 5718 BasicBlock *BB; 5719 if (BBID.Kind == ValID::t_LocalName) 5720 BB = getBB(BBID.StrVal, BBID.Loc); 5721 else 5722 BB = getBB(BBID.UIntVal, BBID.Loc); 5723 if (!BB) 5724 return P.error(BBID.Loc, "referenced value is not a basic block"); 5725 5726 Value *ResolvedVal = BlockAddress::get(&F, BB); 5727 ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(), 5728 ResolvedVal); 5729 if (!ResolvedVal) 5730 return true; 5731 GV->replaceAllUsesWith(ResolvedVal); 5732 GV->eraseFromParent(); 5733 } 5734 5735 P.ForwardRefBlockAddresses.erase(Blocks); 5736 return false; 5737 } 5738 5739 /// parseFunctionBody 5740 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5741 bool LLParser::parseFunctionBody(Function &Fn) { 5742 if (Lex.getKind() != lltok::lbrace) 5743 return tokError("expected '{' in function body"); 5744 Lex.Lex(); // eat the {. 5745 5746 int FunctionNumber = -1; 5747 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5748 5749 PerFunctionState PFS(*this, Fn, FunctionNumber); 5750 5751 // Resolve block addresses and allow basic blocks to be forward-declared 5752 // within this function. 5753 if (PFS.resolveForwardRefBlockAddresses()) 5754 return true; 5755 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5756 5757 // We need at least one basic block. 5758 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5759 return tokError("function body requires at least one basic block"); 5760 5761 while (Lex.getKind() != lltok::rbrace && 5762 Lex.getKind() != lltok::kw_uselistorder) 5763 if (parseBasicBlock(PFS)) 5764 return true; 5765 5766 while (Lex.getKind() != lltok::rbrace) 5767 if (parseUseListOrder(&PFS)) 5768 return true; 5769 5770 // Eat the }. 5771 Lex.Lex(); 5772 5773 // Verify function is ok. 5774 return PFS.finishFunction(); 5775 } 5776 5777 /// parseBasicBlock 5778 /// ::= (LabelStr|LabelID)? Instruction* 5779 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 5780 // If this basic block starts out with a name, remember it. 5781 std::string Name; 5782 int NameID = -1; 5783 LocTy NameLoc = Lex.getLoc(); 5784 if (Lex.getKind() == lltok::LabelStr) { 5785 Name = Lex.getStrVal(); 5786 Lex.Lex(); 5787 } else if (Lex.getKind() == lltok::LabelID) { 5788 NameID = Lex.getUIntVal(); 5789 Lex.Lex(); 5790 } 5791 5792 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 5793 if (!BB) 5794 return true; 5795 5796 std::string NameStr; 5797 5798 // parse the instructions in this block until we get a terminator. 5799 Instruction *Inst; 5800 do { 5801 // This instruction may have three possibilities for a name: a) none 5802 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5803 LocTy NameLoc = Lex.getLoc(); 5804 int NameID = -1; 5805 NameStr = ""; 5806 5807 if (Lex.getKind() == lltok::LocalVarID) { 5808 NameID = Lex.getUIntVal(); 5809 Lex.Lex(); 5810 if (parseToken(lltok::equal, "expected '=' after instruction id")) 5811 return true; 5812 } else if (Lex.getKind() == lltok::LocalVar) { 5813 NameStr = Lex.getStrVal(); 5814 Lex.Lex(); 5815 if (parseToken(lltok::equal, "expected '=' after instruction name")) 5816 return true; 5817 } 5818 5819 switch (parseInstruction(Inst, BB, PFS)) { 5820 default: 5821 llvm_unreachable("Unknown parseInstruction result!"); 5822 case InstError: return true; 5823 case InstNormal: 5824 BB->getInstList().push_back(Inst); 5825 5826 // With a normal result, we check to see if the instruction is followed by 5827 // a comma and metadata. 5828 if (EatIfPresent(lltok::comma)) 5829 if (parseInstructionMetadata(*Inst)) 5830 return true; 5831 break; 5832 case InstExtraComma: 5833 BB->getInstList().push_back(Inst); 5834 5835 // If the instruction parser ate an extra comma at the end of it, it 5836 // *must* be followed by metadata. 5837 if (parseInstructionMetadata(*Inst)) 5838 return true; 5839 break; 5840 } 5841 5842 // Set the name on the instruction. 5843 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 5844 return true; 5845 } while (!Inst->isTerminator()); 5846 5847 return false; 5848 } 5849 5850 //===----------------------------------------------------------------------===// 5851 // Instruction Parsing. 5852 //===----------------------------------------------------------------------===// 5853 5854 /// parseInstruction - parse one of the many different instructions. 5855 /// 5856 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 5857 PerFunctionState &PFS) { 5858 lltok::Kind Token = Lex.getKind(); 5859 if (Token == lltok::Eof) 5860 return tokError("found end of file when expecting more instructions"); 5861 LocTy Loc = Lex.getLoc(); 5862 unsigned KeywordVal = Lex.getUIntVal(); 5863 Lex.Lex(); // Eat the keyword. 5864 5865 switch (Token) { 5866 default: 5867 return error(Loc, "expected instruction opcode"); 5868 // Terminator Instructions. 5869 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5870 case lltok::kw_ret: 5871 return parseRet(Inst, BB, PFS); 5872 case lltok::kw_br: 5873 return parseBr(Inst, PFS); 5874 case lltok::kw_switch: 5875 return parseSwitch(Inst, PFS); 5876 case lltok::kw_indirectbr: 5877 return parseIndirectBr(Inst, PFS); 5878 case lltok::kw_invoke: 5879 return parseInvoke(Inst, PFS); 5880 case lltok::kw_resume: 5881 return parseResume(Inst, PFS); 5882 case lltok::kw_cleanupret: 5883 return parseCleanupRet(Inst, PFS); 5884 case lltok::kw_catchret: 5885 return parseCatchRet(Inst, PFS); 5886 case lltok::kw_catchswitch: 5887 return parseCatchSwitch(Inst, PFS); 5888 case lltok::kw_catchpad: 5889 return parseCatchPad(Inst, PFS); 5890 case lltok::kw_cleanuppad: 5891 return parseCleanupPad(Inst, PFS); 5892 case lltok::kw_callbr: 5893 return parseCallBr(Inst, PFS); 5894 // Unary Operators. 5895 case lltok::kw_fneg: { 5896 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5897 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 5898 if (Res != 0) 5899 return Res; 5900 if (FMF.any()) 5901 Inst->setFastMathFlags(FMF); 5902 return false; 5903 } 5904 // Binary Operators. 5905 case lltok::kw_add: 5906 case lltok::kw_sub: 5907 case lltok::kw_mul: 5908 case lltok::kw_shl: { 5909 bool NUW = EatIfPresent(lltok::kw_nuw); 5910 bool NSW = EatIfPresent(lltok::kw_nsw); 5911 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5912 5913 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 5914 return true; 5915 5916 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5917 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5918 return false; 5919 } 5920 case lltok::kw_fadd: 5921 case lltok::kw_fsub: 5922 case lltok::kw_fmul: 5923 case lltok::kw_fdiv: 5924 case lltok::kw_frem: { 5925 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5926 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 5927 if (Res != 0) 5928 return Res; 5929 if (FMF.any()) 5930 Inst->setFastMathFlags(FMF); 5931 return 0; 5932 } 5933 5934 case lltok::kw_sdiv: 5935 case lltok::kw_udiv: 5936 case lltok::kw_lshr: 5937 case lltok::kw_ashr: { 5938 bool Exact = EatIfPresent(lltok::kw_exact); 5939 5940 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 5941 return true; 5942 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5943 return false; 5944 } 5945 5946 case lltok::kw_urem: 5947 case lltok::kw_srem: 5948 return parseArithmetic(Inst, PFS, KeywordVal, 5949 /*IsFP*/ false); 5950 case lltok::kw_and: 5951 case lltok::kw_or: 5952 case lltok::kw_xor: 5953 return parseLogical(Inst, PFS, KeywordVal); 5954 case lltok::kw_icmp: 5955 return parseCompare(Inst, PFS, KeywordVal); 5956 case lltok::kw_fcmp: { 5957 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5958 int Res = parseCompare(Inst, PFS, KeywordVal); 5959 if (Res != 0) 5960 return Res; 5961 if (FMF.any()) 5962 Inst->setFastMathFlags(FMF); 5963 return 0; 5964 } 5965 5966 // Casts. 5967 case lltok::kw_trunc: 5968 case lltok::kw_zext: 5969 case lltok::kw_sext: 5970 case lltok::kw_fptrunc: 5971 case lltok::kw_fpext: 5972 case lltok::kw_bitcast: 5973 case lltok::kw_addrspacecast: 5974 case lltok::kw_uitofp: 5975 case lltok::kw_sitofp: 5976 case lltok::kw_fptoui: 5977 case lltok::kw_fptosi: 5978 case lltok::kw_inttoptr: 5979 case lltok::kw_ptrtoint: 5980 return parseCast(Inst, PFS, KeywordVal); 5981 // Other. 5982 case lltok::kw_select: { 5983 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5984 int Res = parseSelect(Inst, PFS); 5985 if (Res != 0) 5986 return Res; 5987 if (FMF.any()) { 5988 if (!isa<FPMathOperator>(Inst)) 5989 return error(Loc, "fast-math-flags specified for select without " 5990 "floating-point scalar or vector return type"); 5991 Inst->setFastMathFlags(FMF); 5992 } 5993 return 0; 5994 } 5995 case lltok::kw_va_arg: 5996 return parseVAArg(Inst, PFS); 5997 case lltok::kw_extractelement: 5998 return parseExtractElement(Inst, PFS); 5999 case lltok::kw_insertelement: 6000 return parseInsertElement(Inst, PFS); 6001 case lltok::kw_shufflevector: 6002 return parseShuffleVector(Inst, PFS); 6003 case lltok::kw_phi: { 6004 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6005 int Res = parsePHI(Inst, PFS); 6006 if (Res != 0) 6007 return Res; 6008 if (FMF.any()) { 6009 if (!isa<FPMathOperator>(Inst)) 6010 return error(Loc, "fast-math-flags specified for phi without " 6011 "floating-point scalar or vector return type"); 6012 Inst->setFastMathFlags(FMF); 6013 } 6014 return 0; 6015 } 6016 case lltok::kw_landingpad: 6017 return parseLandingPad(Inst, PFS); 6018 case lltok::kw_freeze: 6019 return parseFreeze(Inst, PFS); 6020 // Call. 6021 case lltok::kw_call: 6022 return parseCall(Inst, PFS, CallInst::TCK_None); 6023 case lltok::kw_tail: 6024 return parseCall(Inst, PFS, CallInst::TCK_Tail); 6025 case lltok::kw_musttail: 6026 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 6027 case lltok::kw_notail: 6028 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 6029 // Memory. 6030 case lltok::kw_alloca: 6031 return parseAlloc(Inst, PFS); 6032 case lltok::kw_load: 6033 return parseLoad(Inst, PFS); 6034 case lltok::kw_store: 6035 return parseStore(Inst, PFS); 6036 case lltok::kw_cmpxchg: 6037 return parseCmpXchg(Inst, PFS); 6038 case lltok::kw_atomicrmw: 6039 return parseAtomicRMW(Inst, PFS); 6040 case lltok::kw_fence: 6041 return parseFence(Inst, PFS); 6042 case lltok::kw_getelementptr: 6043 return parseGetElementPtr(Inst, PFS); 6044 case lltok::kw_extractvalue: 6045 return parseExtractValue(Inst, PFS); 6046 case lltok::kw_insertvalue: 6047 return parseInsertValue(Inst, PFS); 6048 } 6049 } 6050 6051 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6052 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6053 if (Opc == Instruction::FCmp) { 6054 switch (Lex.getKind()) { 6055 default: 6056 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6057 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6058 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6059 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6060 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6061 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6062 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6063 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6064 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6065 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6066 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6067 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6068 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6069 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6070 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6071 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6072 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6073 } 6074 } else { 6075 switch (Lex.getKind()) { 6076 default: 6077 return tokError("expected icmp predicate (e.g. 'eq')"); 6078 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6079 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6080 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6081 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6082 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6083 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6084 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6085 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6086 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6087 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6088 } 6089 } 6090 Lex.Lex(); 6091 return false; 6092 } 6093 6094 //===----------------------------------------------------------------------===// 6095 // Terminator Instructions. 6096 //===----------------------------------------------------------------------===// 6097 6098 /// parseRet - parse a return instruction. 6099 /// ::= 'ret' void (',' !dbg, !1)* 6100 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6101 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6102 PerFunctionState &PFS) { 6103 SMLoc TypeLoc = Lex.getLoc(); 6104 Type *Ty = nullptr; 6105 if (parseType(Ty, true /*void allowed*/)) 6106 return true; 6107 6108 Type *ResType = PFS.getFunction().getReturnType(); 6109 6110 if (Ty->isVoidTy()) { 6111 if (!ResType->isVoidTy()) 6112 return error(TypeLoc, "value doesn't match function result type '" + 6113 getTypeString(ResType) + "'"); 6114 6115 Inst = ReturnInst::Create(Context); 6116 return false; 6117 } 6118 6119 Value *RV; 6120 if (parseValue(Ty, RV, PFS)) 6121 return true; 6122 6123 if (ResType != RV->getType()) 6124 return error(TypeLoc, "value doesn't match function result type '" + 6125 getTypeString(ResType) + "'"); 6126 6127 Inst = ReturnInst::Create(Context, RV); 6128 return false; 6129 } 6130 6131 /// parseBr 6132 /// ::= 'br' TypeAndValue 6133 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6134 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6135 LocTy Loc, Loc2; 6136 Value *Op0; 6137 BasicBlock *Op1, *Op2; 6138 if (parseTypeAndValue(Op0, Loc, PFS)) 6139 return true; 6140 6141 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6142 Inst = BranchInst::Create(BB); 6143 return false; 6144 } 6145 6146 if (Op0->getType() != Type::getInt1Ty(Context)) 6147 return error(Loc, "branch condition must have 'i1' type"); 6148 6149 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6150 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6151 parseToken(lltok::comma, "expected ',' after true destination") || 6152 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6153 return true; 6154 6155 Inst = BranchInst::Create(Op1, Op2, Op0); 6156 return false; 6157 } 6158 6159 /// parseSwitch 6160 /// Instruction 6161 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6162 /// JumpTable 6163 /// ::= (TypeAndValue ',' TypeAndValue)* 6164 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6165 LocTy CondLoc, BBLoc; 6166 Value *Cond; 6167 BasicBlock *DefaultBB; 6168 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6169 parseToken(lltok::comma, "expected ',' after switch condition") || 6170 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6171 parseToken(lltok::lsquare, "expected '[' with switch table")) 6172 return true; 6173 6174 if (!Cond->getType()->isIntegerTy()) 6175 return error(CondLoc, "switch condition must have integer type"); 6176 6177 // parse the jump table pairs. 6178 SmallPtrSet<Value*, 32> SeenCases; 6179 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6180 while (Lex.getKind() != lltok::rsquare) { 6181 Value *Constant; 6182 BasicBlock *DestBB; 6183 6184 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6185 parseToken(lltok::comma, "expected ',' after case value") || 6186 parseTypeAndBasicBlock(DestBB, PFS)) 6187 return true; 6188 6189 if (!SeenCases.insert(Constant).second) 6190 return error(CondLoc, "duplicate case value in switch"); 6191 if (!isa<ConstantInt>(Constant)) 6192 return error(CondLoc, "case value is not a constant integer"); 6193 6194 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6195 } 6196 6197 Lex.Lex(); // Eat the ']'. 6198 6199 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6200 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6201 SI->addCase(Table[i].first, Table[i].second); 6202 Inst = SI; 6203 return false; 6204 } 6205 6206 /// parseIndirectBr 6207 /// Instruction 6208 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6209 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6210 LocTy AddrLoc; 6211 Value *Address; 6212 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6213 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6214 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6215 return true; 6216 6217 if (!Address->getType()->isPointerTy()) 6218 return error(AddrLoc, "indirectbr address must have pointer type"); 6219 6220 // parse the destination list. 6221 SmallVector<BasicBlock*, 16> DestList; 6222 6223 if (Lex.getKind() != lltok::rsquare) { 6224 BasicBlock *DestBB; 6225 if (parseTypeAndBasicBlock(DestBB, PFS)) 6226 return true; 6227 DestList.push_back(DestBB); 6228 6229 while (EatIfPresent(lltok::comma)) { 6230 if (parseTypeAndBasicBlock(DestBB, PFS)) 6231 return true; 6232 DestList.push_back(DestBB); 6233 } 6234 } 6235 6236 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6237 return true; 6238 6239 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6240 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6241 IBI->addDestination(DestList[i]); 6242 Inst = IBI; 6243 return false; 6244 } 6245 6246 /// parseInvoke 6247 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6248 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6249 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6250 LocTy CallLoc = Lex.getLoc(); 6251 AttrBuilder RetAttrs, FnAttrs; 6252 std::vector<unsigned> FwdRefAttrGrps; 6253 LocTy NoBuiltinLoc; 6254 unsigned CC; 6255 unsigned InvokeAddrSpace; 6256 Type *RetType = nullptr; 6257 LocTy RetTypeLoc; 6258 ValID CalleeID; 6259 SmallVector<ParamInfo, 16> ArgList; 6260 SmallVector<OperandBundleDef, 2> BundleList; 6261 6262 BasicBlock *NormalBB, *UnwindBB; 6263 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6264 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6265 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6266 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6267 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6268 NoBuiltinLoc) || 6269 parseOptionalOperandBundles(BundleList, PFS) || 6270 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6271 parseTypeAndBasicBlock(NormalBB, PFS) || 6272 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6273 parseTypeAndBasicBlock(UnwindBB, PFS)) 6274 return true; 6275 6276 // If RetType is a non-function pointer type, then this is the short syntax 6277 // for the call, which means that RetType is just the return type. Infer the 6278 // rest of the function argument types from the arguments that are present. 6279 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6280 if (!Ty) { 6281 // Pull out the types of all of the arguments... 6282 std::vector<Type*> ParamTypes; 6283 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6284 ParamTypes.push_back(ArgList[i].V->getType()); 6285 6286 if (!FunctionType::isValidReturnType(RetType)) 6287 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6288 6289 Ty = FunctionType::get(RetType, ParamTypes, false); 6290 } 6291 6292 CalleeID.FTy = Ty; 6293 6294 // Look up the callee. 6295 Value *Callee; 6296 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6297 Callee, &PFS)) 6298 return true; 6299 6300 // Set up the Attribute for the function. 6301 SmallVector<Value *, 8> Args; 6302 SmallVector<AttributeSet, 8> ArgAttrs; 6303 6304 // Loop through FunctionType's arguments and ensure they are specified 6305 // correctly. Also, gather any parameter attributes. 6306 FunctionType::param_iterator I = Ty->param_begin(); 6307 FunctionType::param_iterator E = Ty->param_end(); 6308 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6309 Type *ExpectedTy = nullptr; 6310 if (I != E) { 6311 ExpectedTy = *I++; 6312 } else if (!Ty->isVarArg()) { 6313 return error(ArgList[i].Loc, "too many arguments specified"); 6314 } 6315 6316 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6317 return error(ArgList[i].Loc, "argument is not of expected type '" + 6318 getTypeString(ExpectedTy) + "'"); 6319 Args.push_back(ArgList[i].V); 6320 ArgAttrs.push_back(ArgList[i].Attrs); 6321 } 6322 6323 if (I != E) 6324 return error(CallLoc, "not enough parameters specified for call"); 6325 6326 if (FnAttrs.hasAlignmentAttr()) 6327 return error(CallLoc, "invoke instructions may not have an alignment"); 6328 6329 // Finish off the Attribute and check them 6330 AttributeList PAL = 6331 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6332 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6333 6334 InvokeInst *II = 6335 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6336 II->setCallingConv(CC); 6337 II->setAttributes(PAL); 6338 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6339 Inst = II; 6340 return false; 6341 } 6342 6343 /// parseResume 6344 /// ::= 'resume' TypeAndValue 6345 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6346 Value *Exn; LocTy ExnLoc; 6347 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6348 return true; 6349 6350 ResumeInst *RI = ResumeInst::Create(Exn); 6351 Inst = RI; 6352 return false; 6353 } 6354 6355 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6356 PerFunctionState &PFS) { 6357 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6358 return true; 6359 6360 while (Lex.getKind() != lltok::rsquare) { 6361 // If this isn't the first argument, we need a comma. 6362 if (!Args.empty() && 6363 parseToken(lltok::comma, "expected ',' in argument list")) 6364 return true; 6365 6366 // parse the argument. 6367 LocTy ArgLoc; 6368 Type *ArgTy = nullptr; 6369 if (parseType(ArgTy, ArgLoc)) 6370 return true; 6371 6372 Value *V; 6373 if (ArgTy->isMetadataTy()) { 6374 if (parseMetadataAsValue(V, PFS)) 6375 return true; 6376 } else { 6377 if (parseValue(ArgTy, V, PFS)) 6378 return true; 6379 } 6380 Args.push_back(V); 6381 } 6382 6383 Lex.Lex(); // Lex the ']'. 6384 return false; 6385 } 6386 6387 /// parseCleanupRet 6388 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6389 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6390 Value *CleanupPad = nullptr; 6391 6392 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6393 return true; 6394 6395 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6396 return true; 6397 6398 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6399 return true; 6400 6401 BasicBlock *UnwindBB = nullptr; 6402 if (Lex.getKind() == lltok::kw_to) { 6403 Lex.Lex(); 6404 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6405 return true; 6406 } else { 6407 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6408 return true; 6409 } 6410 } 6411 6412 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6413 return false; 6414 } 6415 6416 /// parseCatchRet 6417 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6418 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6419 Value *CatchPad = nullptr; 6420 6421 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 6422 return true; 6423 6424 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6425 return true; 6426 6427 BasicBlock *BB; 6428 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 6429 parseTypeAndBasicBlock(BB, PFS)) 6430 return true; 6431 6432 Inst = CatchReturnInst::Create(CatchPad, BB); 6433 return false; 6434 } 6435 6436 /// parseCatchSwitch 6437 /// ::= 'catchswitch' within Parent 6438 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6439 Value *ParentPad; 6440 6441 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6442 return true; 6443 6444 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6445 Lex.getKind() != lltok::LocalVarID) 6446 return tokError("expected scope value for catchswitch"); 6447 6448 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6449 return true; 6450 6451 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6452 return true; 6453 6454 SmallVector<BasicBlock *, 32> Table; 6455 do { 6456 BasicBlock *DestBB; 6457 if (parseTypeAndBasicBlock(DestBB, PFS)) 6458 return true; 6459 Table.push_back(DestBB); 6460 } while (EatIfPresent(lltok::comma)); 6461 6462 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6463 return true; 6464 6465 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 6466 return true; 6467 6468 BasicBlock *UnwindBB = nullptr; 6469 if (EatIfPresent(lltok::kw_to)) { 6470 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6471 return true; 6472 } else { 6473 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 6474 return true; 6475 } 6476 6477 auto *CatchSwitch = 6478 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6479 for (BasicBlock *DestBB : Table) 6480 CatchSwitch->addHandler(DestBB); 6481 Inst = CatchSwitch; 6482 return false; 6483 } 6484 6485 /// parseCatchPad 6486 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6487 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6488 Value *CatchSwitch = nullptr; 6489 6490 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 6491 return true; 6492 6493 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6494 return tokError("expected scope value for catchpad"); 6495 6496 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6497 return true; 6498 6499 SmallVector<Value *, 8> Args; 6500 if (parseExceptionArgs(Args, PFS)) 6501 return true; 6502 6503 Inst = CatchPadInst::Create(CatchSwitch, Args); 6504 return false; 6505 } 6506 6507 /// parseCleanupPad 6508 /// ::= 'cleanuppad' within Parent ParamList 6509 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6510 Value *ParentPad = nullptr; 6511 6512 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6513 return true; 6514 6515 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6516 Lex.getKind() != lltok::LocalVarID) 6517 return tokError("expected scope value for cleanuppad"); 6518 6519 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6520 return true; 6521 6522 SmallVector<Value *, 8> Args; 6523 if (parseExceptionArgs(Args, PFS)) 6524 return true; 6525 6526 Inst = CleanupPadInst::Create(ParentPad, Args); 6527 return false; 6528 } 6529 6530 //===----------------------------------------------------------------------===// 6531 // Unary Operators. 6532 //===----------------------------------------------------------------------===// 6533 6534 /// parseUnaryOp 6535 /// ::= UnaryOp TypeAndValue ',' Value 6536 /// 6537 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6538 /// operand is allowed. 6539 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6540 unsigned Opc, bool IsFP) { 6541 LocTy Loc; Value *LHS; 6542 if (parseTypeAndValue(LHS, Loc, PFS)) 6543 return true; 6544 6545 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6546 : LHS->getType()->isIntOrIntVectorTy(); 6547 6548 if (!Valid) 6549 return error(Loc, "invalid operand type for instruction"); 6550 6551 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6552 return false; 6553 } 6554 6555 /// parseCallBr 6556 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6557 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6558 /// '[' LabelList ']' 6559 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6560 LocTy CallLoc = Lex.getLoc(); 6561 AttrBuilder RetAttrs, FnAttrs; 6562 std::vector<unsigned> FwdRefAttrGrps; 6563 LocTy NoBuiltinLoc; 6564 unsigned CC; 6565 Type *RetType = nullptr; 6566 LocTy RetTypeLoc; 6567 ValID CalleeID; 6568 SmallVector<ParamInfo, 16> ArgList; 6569 SmallVector<OperandBundleDef, 2> BundleList; 6570 6571 BasicBlock *DefaultDest; 6572 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6573 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6574 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6575 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6576 NoBuiltinLoc) || 6577 parseOptionalOperandBundles(BundleList, PFS) || 6578 parseToken(lltok::kw_to, "expected 'to' in callbr") || 6579 parseTypeAndBasicBlock(DefaultDest, PFS) || 6580 parseToken(lltok::lsquare, "expected '[' in callbr")) 6581 return true; 6582 6583 // parse the destination list. 6584 SmallVector<BasicBlock *, 16> IndirectDests; 6585 6586 if (Lex.getKind() != lltok::rsquare) { 6587 BasicBlock *DestBB; 6588 if (parseTypeAndBasicBlock(DestBB, PFS)) 6589 return true; 6590 IndirectDests.push_back(DestBB); 6591 6592 while (EatIfPresent(lltok::comma)) { 6593 if (parseTypeAndBasicBlock(DestBB, PFS)) 6594 return true; 6595 IndirectDests.push_back(DestBB); 6596 } 6597 } 6598 6599 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6600 return true; 6601 6602 // If RetType is a non-function pointer type, then this is the short syntax 6603 // for the call, which means that RetType is just the return type. Infer the 6604 // rest of the function argument types from the arguments that are present. 6605 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6606 if (!Ty) { 6607 // Pull out the types of all of the arguments... 6608 std::vector<Type *> ParamTypes; 6609 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6610 ParamTypes.push_back(ArgList[i].V->getType()); 6611 6612 if (!FunctionType::isValidReturnType(RetType)) 6613 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6614 6615 Ty = FunctionType::get(RetType, ParamTypes, false); 6616 } 6617 6618 CalleeID.FTy = Ty; 6619 6620 // Look up the callee. 6621 Value *Callee; 6622 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 6623 return true; 6624 6625 // Set up the Attribute for the function. 6626 SmallVector<Value *, 8> Args; 6627 SmallVector<AttributeSet, 8> ArgAttrs; 6628 6629 // Loop through FunctionType's arguments and ensure they are specified 6630 // correctly. Also, gather any parameter attributes. 6631 FunctionType::param_iterator I = Ty->param_begin(); 6632 FunctionType::param_iterator E = Ty->param_end(); 6633 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6634 Type *ExpectedTy = nullptr; 6635 if (I != E) { 6636 ExpectedTy = *I++; 6637 } else if (!Ty->isVarArg()) { 6638 return error(ArgList[i].Loc, "too many arguments specified"); 6639 } 6640 6641 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6642 return error(ArgList[i].Loc, "argument is not of expected type '" + 6643 getTypeString(ExpectedTy) + "'"); 6644 Args.push_back(ArgList[i].V); 6645 ArgAttrs.push_back(ArgList[i].Attrs); 6646 } 6647 6648 if (I != E) 6649 return error(CallLoc, "not enough parameters specified for call"); 6650 6651 if (FnAttrs.hasAlignmentAttr()) 6652 return error(CallLoc, "callbr instructions may not have an alignment"); 6653 6654 // Finish off the Attribute and check them 6655 AttributeList PAL = 6656 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6657 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6658 6659 CallBrInst *CBI = 6660 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6661 BundleList); 6662 CBI->setCallingConv(CC); 6663 CBI->setAttributes(PAL); 6664 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6665 Inst = CBI; 6666 return false; 6667 } 6668 6669 //===----------------------------------------------------------------------===// 6670 // Binary Operators. 6671 //===----------------------------------------------------------------------===// 6672 6673 /// parseArithmetic 6674 /// ::= ArithmeticOps TypeAndValue ',' Value 6675 /// 6676 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6677 /// operand is allowed. 6678 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6679 unsigned Opc, bool IsFP) { 6680 LocTy Loc; Value *LHS, *RHS; 6681 if (parseTypeAndValue(LHS, Loc, PFS) || 6682 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 6683 parseValue(LHS->getType(), RHS, PFS)) 6684 return true; 6685 6686 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6687 : LHS->getType()->isIntOrIntVectorTy(); 6688 6689 if (!Valid) 6690 return error(Loc, "invalid operand type for instruction"); 6691 6692 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6693 return false; 6694 } 6695 6696 /// parseLogical 6697 /// ::= ArithmeticOps TypeAndValue ',' Value { 6698 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 6699 unsigned Opc) { 6700 LocTy Loc; Value *LHS, *RHS; 6701 if (parseTypeAndValue(LHS, Loc, PFS) || 6702 parseToken(lltok::comma, "expected ',' in logical operation") || 6703 parseValue(LHS->getType(), RHS, PFS)) 6704 return true; 6705 6706 if (!LHS->getType()->isIntOrIntVectorTy()) 6707 return error(Loc, 6708 "instruction requires integer or integer vector operands"); 6709 6710 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6711 return false; 6712 } 6713 6714 /// parseCompare 6715 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6716 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6717 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 6718 unsigned Opc) { 6719 // parse the integer/fp comparison predicate. 6720 LocTy Loc; 6721 unsigned Pred; 6722 Value *LHS, *RHS; 6723 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 6724 parseToken(lltok::comma, "expected ',' after compare value") || 6725 parseValue(LHS->getType(), RHS, PFS)) 6726 return true; 6727 6728 if (Opc == Instruction::FCmp) { 6729 if (!LHS->getType()->isFPOrFPVectorTy()) 6730 return error(Loc, "fcmp requires floating point operands"); 6731 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6732 } else { 6733 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6734 if (!LHS->getType()->isIntOrIntVectorTy() && 6735 !LHS->getType()->isPtrOrPtrVectorTy()) 6736 return error(Loc, "icmp requires integer operands"); 6737 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6738 } 6739 return false; 6740 } 6741 6742 //===----------------------------------------------------------------------===// 6743 // Other Instructions. 6744 //===----------------------------------------------------------------------===// 6745 6746 /// parseCast 6747 /// ::= CastOpc TypeAndValue 'to' Type 6748 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 6749 unsigned Opc) { 6750 LocTy Loc; 6751 Value *Op; 6752 Type *DestTy = nullptr; 6753 if (parseTypeAndValue(Op, Loc, PFS) || 6754 parseToken(lltok::kw_to, "expected 'to' after cast value") || 6755 parseType(DestTy)) 6756 return true; 6757 6758 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6759 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6760 return error(Loc, "invalid cast opcode for cast from '" + 6761 getTypeString(Op->getType()) + "' to '" + 6762 getTypeString(DestTy) + "'"); 6763 } 6764 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6765 return false; 6766 } 6767 6768 /// parseSelect 6769 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6770 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6771 LocTy Loc; 6772 Value *Op0, *Op1, *Op2; 6773 if (parseTypeAndValue(Op0, Loc, PFS) || 6774 parseToken(lltok::comma, "expected ',' after select condition") || 6775 parseTypeAndValue(Op1, PFS) || 6776 parseToken(lltok::comma, "expected ',' after select value") || 6777 parseTypeAndValue(Op2, PFS)) 6778 return true; 6779 6780 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6781 return error(Loc, Reason); 6782 6783 Inst = SelectInst::Create(Op0, Op1, Op2); 6784 return false; 6785 } 6786 6787 /// parseVAArg 6788 /// ::= 'va_arg' TypeAndValue ',' Type 6789 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 6790 Value *Op; 6791 Type *EltTy = nullptr; 6792 LocTy TypeLoc; 6793 if (parseTypeAndValue(Op, PFS) || 6794 parseToken(lltok::comma, "expected ',' after vaarg operand") || 6795 parseType(EltTy, TypeLoc)) 6796 return true; 6797 6798 if (!EltTy->isFirstClassType()) 6799 return error(TypeLoc, "va_arg requires operand with first class type"); 6800 6801 Inst = new VAArgInst(Op, EltTy); 6802 return false; 6803 } 6804 6805 /// parseExtractElement 6806 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6807 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6808 LocTy Loc; 6809 Value *Op0, *Op1; 6810 if (parseTypeAndValue(Op0, Loc, PFS) || 6811 parseToken(lltok::comma, "expected ',' after extract value") || 6812 parseTypeAndValue(Op1, PFS)) 6813 return true; 6814 6815 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6816 return error(Loc, "invalid extractelement operands"); 6817 6818 Inst = ExtractElementInst::Create(Op0, Op1); 6819 return false; 6820 } 6821 6822 /// parseInsertElement 6823 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6824 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6825 LocTy Loc; 6826 Value *Op0, *Op1, *Op2; 6827 if (parseTypeAndValue(Op0, Loc, PFS) || 6828 parseToken(lltok::comma, "expected ',' after insertelement value") || 6829 parseTypeAndValue(Op1, PFS) || 6830 parseToken(lltok::comma, "expected ',' after insertelement value") || 6831 parseTypeAndValue(Op2, PFS)) 6832 return true; 6833 6834 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6835 return error(Loc, "invalid insertelement operands"); 6836 6837 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6838 return false; 6839 } 6840 6841 /// parseShuffleVector 6842 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6843 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6844 LocTy Loc; 6845 Value *Op0, *Op1, *Op2; 6846 if (parseTypeAndValue(Op0, Loc, PFS) || 6847 parseToken(lltok::comma, "expected ',' after shuffle mask") || 6848 parseTypeAndValue(Op1, PFS) || 6849 parseToken(lltok::comma, "expected ',' after shuffle value") || 6850 parseTypeAndValue(Op2, PFS)) 6851 return true; 6852 6853 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6854 return error(Loc, "invalid shufflevector operands"); 6855 6856 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6857 return false; 6858 } 6859 6860 /// parsePHI 6861 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6862 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6863 Type *Ty = nullptr; LocTy TypeLoc; 6864 Value *Op0, *Op1; 6865 6866 if (parseType(Ty, TypeLoc) || 6867 parseToken(lltok::lsquare, "expected '[' in phi value list") || 6868 parseValue(Ty, Op0, PFS) || 6869 parseToken(lltok::comma, "expected ',' after insertelement value") || 6870 parseValue(Type::getLabelTy(Context), Op1, PFS) || 6871 parseToken(lltok::rsquare, "expected ']' in phi value list")) 6872 return true; 6873 6874 bool AteExtraComma = false; 6875 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6876 6877 while (true) { 6878 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6879 6880 if (!EatIfPresent(lltok::comma)) 6881 break; 6882 6883 if (Lex.getKind() == lltok::MetadataVar) { 6884 AteExtraComma = true; 6885 break; 6886 } 6887 6888 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 6889 parseValue(Ty, Op0, PFS) || 6890 parseToken(lltok::comma, "expected ',' after insertelement value") || 6891 parseValue(Type::getLabelTy(Context), Op1, PFS) || 6892 parseToken(lltok::rsquare, "expected ']' in phi value list")) 6893 return true; 6894 } 6895 6896 if (!Ty->isFirstClassType()) 6897 return error(TypeLoc, "phi node must have first class type"); 6898 6899 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6900 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6901 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6902 Inst = PN; 6903 return AteExtraComma ? InstExtraComma : InstNormal; 6904 } 6905 6906 /// parseLandingPad 6907 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6908 /// Clause 6909 /// ::= 'catch' TypeAndValue 6910 /// ::= 'filter' 6911 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6912 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6913 Type *Ty = nullptr; LocTy TyLoc; 6914 6915 if (parseType(Ty, TyLoc)) 6916 return true; 6917 6918 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6919 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6920 6921 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6922 LandingPadInst::ClauseType CT; 6923 if (EatIfPresent(lltok::kw_catch)) 6924 CT = LandingPadInst::Catch; 6925 else if (EatIfPresent(lltok::kw_filter)) 6926 CT = LandingPadInst::Filter; 6927 else 6928 return tokError("expected 'catch' or 'filter' clause type"); 6929 6930 Value *V; 6931 LocTy VLoc; 6932 if (parseTypeAndValue(V, VLoc, PFS)) 6933 return true; 6934 6935 // A 'catch' type expects a non-array constant. A filter clause expects an 6936 // array constant. 6937 if (CT == LandingPadInst::Catch) { 6938 if (isa<ArrayType>(V->getType())) 6939 error(VLoc, "'catch' clause has an invalid type"); 6940 } else { 6941 if (!isa<ArrayType>(V->getType())) 6942 error(VLoc, "'filter' clause has an invalid type"); 6943 } 6944 6945 Constant *CV = dyn_cast<Constant>(V); 6946 if (!CV) 6947 return error(VLoc, "clause argument must be a constant"); 6948 LP->addClause(CV); 6949 } 6950 6951 Inst = LP.release(); 6952 return false; 6953 } 6954 6955 /// parseFreeze 6956 /// ::= 'freeze' Type Value 6957 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 6958 LocTy Loc; 6959 Value *Op; 6960 if (parseTypeAndValue(Op, Loc, PFS)) 6961 return true; 6962 6963 Inst = new FreezeInst(Op); 6964 return false; 6965 } 6966 6967 /// parseCall 6968 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6969 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6970 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6971 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6972 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6973 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6974 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6975 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6976 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 6977 CallInst::TailCallKind TCK) { 6978 AttrBuilder RetAttrs, FnAttrs; 6979 std::vector<unsigned> FwdRefAttrGrps; 6980 LocTy BuiltinLoc; 6981 unsigned CallAddrSpace; 6982 unsigned CC; 6983 Type *RetType = nullptr; 6984 LocTy RetTypeLoc; 6985 ValID CalleeID; 6986 SmallVector<ParamInfo, 16> ArgList; 6987 SmallVector<OperandBundleDef, 2> BundleList; 6988 LocTy CallLoc = Lex.getLoc(); 6989 6990 if (TCK != CallInst::TCK_None && 6991 parseToken(lltok::kw_call, 6992 "expected 'tail call', 'musttail call', or 'notail call'")) 6993 return true; 6994 6995 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6996 6997 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6998 parseOptionalProgramAddrSpace(CallAddrSpace) || 6999 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 7000 parseValID(CalleeID, &PFS) || 7001 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 7002 PFS.getFunction().isVarArg()) || 7003 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 7004 parseOptionalOperandBundles(BundleList, PFS)) 7005 return true; 7006 7007 // If RetType is a non-function pointer type, then this is the short syntax 7008 // for the call, which means that RetType is just the return type. Infer the 7009 // rest of the function argument types from the arguments that are present. 7010 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 7011 if (!Ty) { 7012 // Pull out the types of all of the arguments... 7013 std::vector<Type*> ParamTypes; 7014 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 7015 ParamTypes.push_back(ArgList[i].V->getType()); 7016 7017 if (!FunctionType::isValidReturnType(RetType)) 7018 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7019 7020 Ty = FunctionType::get(RetType, ParamTypes, false); 7021 } 7022 7023 CalleeID.FTy = Ty; 7024 7025 // Look up the callee. 7026 Value *Callee; 7027 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7028 &PFS)) 7029 return true; 7030 7031 // Set up the Attribute for the function. 7032 SmallVector<AttributeSet, 8> Attrs; 7033 7034 SmallVector<Value*, 8> Args; 7035 7036 // Loop through FunctionType's arguments and ensure they are specified 7037 // correctly. Also, gather any parameter attributes. 7038 FunctionType::param_iterator I = Ty->param_begin(); 7039 FunctionType::param_iterator E = Ty->param_end(); 7040 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7041 Type *ExpectedTy = nullptr; 7042 if (I != E) { 7043 ExpectedTy = *I++; 7044 } else if (!Ty->isVarArg()) { 7045 return error(ArgList[i].Loc, "too many arguments specified"); 7046 } 7047 7048 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7049 return error(ArgList[i].Loc, "argument is not of expected type '" + 7050 getTypeString(ExpectedTy) + "'"); 7051 Args.push_back(ArgList[i].V); 7052 Attrs.push_back(ArgList[i].Attrs); 7053 } 7054 7055 if (I != E) 7056 return error(CallLoc, "not enough parameters specified for call"); 7057 7058 if (FnAttrs.hasAlignmentAttr()) 7059 return error(CallLoc, "call instructions may not have an alignment"); 7060 7061 // Finish off the Attribute and check them 7062 AttributeList PAL = 7063 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7064 AttributeSet::get(Context, RetAttrs), Attrs); 7065 7066 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7067 CI->setTailCallKind(TCK); 7068 CI->setCallingConv(CC); 7069 if (FMF.any()) { 7070 if (!isa<FPMathOperator>(CI)) { 7071 CI->deleteValue(); 7072 return error(CallLoc, "fast-math-flags specified for call without " 7073 "floating-point scalar or vector return type"); 7074 } 7075 CI->setFastMathFlags(FMF); 7076 } 7077 CI->setAttributes(PAL); 7078 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7079 Inst = CI; 7080 return false; 7081 } 7082 7083 //===----------------------------------------------------------------------===// 7084 // Memory Instructions. 7085 //===----------------------------------------------------------------------===// 7086 7087 /// parseAlloc 7088 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7089 /// (',' 'align' i32)? (',', 'addrspace(n))? 7090 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7091 Value *Size = nullptr; 7092 LocTy SizeLoc, TyLoc, ASLoc; 7093 MaybeAlign Alignment; 7094 unsigned AddrSpace = 0; 7095 Type *Ty = nullptr; 7096 7097 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7098 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7099 7100 if (parseType(Ty, TyLoc)) 7101 return true; 7102 7103 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7104 return error(TyLoc, "invalid type for alloca"); 7105 7106 bool AteExtraComma = false; 7107 if (EatIfPresent(lltok::comma)) { 7108 if (Lex.getKind() == lltok::kw_align) { 7109 if (parseOptionalAlignment(Alignment)) 7110 return true; 7111 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7112 return true; 7113 } else if (Lex.getKind() == lltok::kw_addrspace) { 7114 ASLoc = Lex.getLoc(); 7115 if (parseOptionalAddrSpace(AddrSpace)) 7116 return true; 7117 } else if (Lex.getKind() == lltok::MetadataVar) { 7118 AteExtraComma = true; 7119 } else { 7120 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7121 return true; 7122 if (EatIfPresent(lltok::comma)) { 7123 if (Lex.getKind() == lltok::kw_align) { 7124 if (parseOptionalAlignment(Alignment)) 7125 return true; 7126 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7127 return true; 7128 } else if (Lex.getKind() == lltok::kw_addrspace) { 7129 ASLoc = Lex.getLoc(); 7130 if (parseOptionalAddrSpace(AddrSpace)) 7131 return true; 7132 } else if (Lex.getKind() == lltok::MetadataVar) { 7133 AteExtraComma = true; 7134 } 7135 } 7136 } 7137 } 7138 7139 if (Size && !Size->getType()->isIntegerTy()) 7140 return error(SizeLoc, "element count must have integer type"); 7141 7142 SmallPtrSet<Type *, 4> Visited; 7143 if (!Alignment && !Ty->isSized(&Visited)) 7144 return error(TyLoc, "Cannot allocate unsized type"); 7145 if (!Alignment) 7146 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7147 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7148 AI->setUsedWithInAlloca(IsInAlloca); 7149 AI->setSwiftError(IsSwiftError); 7150 Inst = AI; 7151 return AteExtraComma ? InstExtraComma : InstNormal; 7152 } 7153 7154 /// parseLoad 7155 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7156 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7157 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7158 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7159 Value *Val; LocTy Loc; 7160 MaybeAlign Alignment; 7161 bool AteExtraComma = false; 7162 bool isAtomic = false; 7163 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7164 SyncScope::ID SSID = SyncScope::System; 7165 7166 if (Lex.getKind() == lltok::kw_atomic) { 7167 isAtomic = true; 7168 Lex.Lex(); 7169 } 7170 7171 bool isVolatile = false; 7172 if (Lex.getKind() == lltok::kw_volatile) { 7173 isVolatile = true; 7174 Lex.Lex(); 7175 } 7176 7177 Type *Ty; 7178 LocTy ExplicitTypeLoc = Lex.getLoc(); 7179 if (parseType(Ty) || 7180 parseToken(lltok::comma, "expected comma after load's type") || 7181 parseTypeAndValue(Val, Loc, PFS) || 7182 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7183 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7184 return true; 7185 7186 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7187 return error(Loc, "load operand must be a pointer to a first class type"); 7188 if (isAtomic && !Alignment) 7189 return error(Loc, "atomic load must have explicit non-zero alignment"); 7190 if (Ordering == AtomicOrdering::Release || 7191 Ordering == AtomicOrdering::AcquireRelease) 7192 return error(Loc, "atomic load cannot use Release ordering"); 7193 7194 if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) { 7195 return error( 7196 ExplicitTypeLoc, 7197 typeComparisonErrorMessage( 7198 "explicit pointee type doesn't match operand's pointee type", Ty, 7199 cast<PointerType>(Val->getType())->getElementType())); 7200 } 7201 SmallPtrSet<Type *, 4> Visited; 7202 if (!Alignment && !Ty->isSized(&Visited)) 7203 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7204 if (!Alignment) 7205 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7206 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7207 return AteExtraComma ? InstExtraComma : InstNormal; 7208 } 7209 7210 /// parseStore 7211 7212 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7213 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7214 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7215 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7216 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7217 MaybeAlign Alignment; 7218 bool AteExtraComma = false; 7219 bool isAtomic = false; 7220 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7221 SyncScope::ID SSID = SyncScope::System; 7222 7223 if (Lex.getKind() == lltok::kw_atomic) { 7224 isAtomic = true; 7225 Lex.Lex(); 7226 } 7227 7228 bool isVolatile = false; 7229 if (Lex.getKind() == lltok::kw_volatile) { 7230 isVolatile = true; 7231 Lex.Lex(); 7232 } 7233 7234 if (parseTypeAndValue(Val, Loc, PFS) || 7235 parseToken(lltok::comma, "expected ',' after store operand") || 7236 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7237 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7238 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7239 return true; 7240 7241 if (!Ptr->getType()->isPointerTy()) 7242 return error(PtrLoc, "store operand must be a pointer"); 7243 if (!Val->getType()->isFirstClassType()) 7244 return error(Loc, "store operand must be a first class value"); 7245 if (!cast<PointerType>(Ptr->getType()) 7246 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7247 return error(Loc, "stored value and pointer type do not match"); 7248 if (isAtomic && !Alignment) 7249 return error(Loc, "atomic store must have explicit non-zero alignment"); 7250 if (Ordering == AtomicOrdering::Acquire || 7251 Ordering == AtomicOrdering::AcquireRelease) 7252 return error(Loc, "atomic store cannot use Acquire ordering"); 7253 SmallPtrSet<Type *, 4> Visited; 7254 if (!Alignment && !Val->getType()->isSized(&Visited)) 7255 return error(Loc, "storing unsized types is not allowed"); 7256 if (!Alignment) 7257 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7258 7259 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7260 return AteExtraComma ? InstExtraComma : InstNormal; 7261 } 7262 7263 /// parseCmpXchg 7264 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7265 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ',' 7266 /// 'Align'? 7267 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7268 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7269 bool AteExtraComma = false; 7270 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7271 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7272 SyncScope::ID SSID = SyncScope::System; 7273 bool isVolatile = false; 7274 bool isWeak = false; 7275 MaybeAlign Alignment; 7276 7277 if (EatIfPresent(lltok::kw_weak)) 7278 isWeak = true; 7279 7280 if (EatIfPresent(lltok::kw_volatile)) 7281 isVolatile = true; 7282 7283 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7284 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7285 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7286 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7287 parseTypeAndValue(New, NewLoc, PFS) || 7288 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7289 parseOrdering(FailureOrdering) || 7290 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7291 return true; 7292 7293 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 7294 return tokError("invalid cmpxchg success ordering"); 7295 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 7296 return tokError("invalid cmpxchg failure ordering"); 7297 if (!Ptr->getType()->isPointerTy()) 7298 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7299 if (!cast<PointerType>(Ptr->getType()) 7300 ->isOpaqueOrPointeeTypeMatches(Cmp->getType())) 7301 return error(CmpLoc, "compare value and pointer type do not match"); 7302 if (!cast<PointerType>(Ptr->getType()) 7303 ->isOpaqueOrPointeeTypeMatches(New->getType())) 7304 return error(NewLoc, "new value and pointer type do not match"); 7305 if (Cmp->getType() != New->getType()) 7306 return error(NewLoc, "compare value and new value type do not match"); 7307 if (!New->getType()->isFirstClassType()) 7308 return error(NewLoc, "cmpxchg operand must be a first class value"); 7309 7310 const Align DefaultAlignment( 7311 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7312 Cmp->getType())); 7313 7314 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7315 Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering, 7316 FailureOrdering, SSID); 7317 CXI->setVolatile(isVolatile); 7318 CXI->setWeak(isWeak); 7319 7320 Inst = CXI; 7321 return AteExtraComma ? InstExtraComma : InstNormal; 7322 } 7323 7324 /// parseAtomicRMW 7325 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7326 /// 'singlethread'? AtomicOrdering 7327 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7328 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7329 bool AteExtraComma = false; 7330 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7331 SyncScope::ID SSID = SyncScope::System; 7332 bool isVolatile = false; 7333 bool IsFP = false; 7334 AtomicRMWInst::BinOp Operation; 7335 MaybeAlign Alignment; 7336 7337 if (EatIfPresent(lltok::kw_volatile)) 7338 isVolatile = true; 7339 7340 switch (Lex.getKind()) { 7341 default: 7342 return tokError("expected binary operation in atomicrmw"); 7343 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7344 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7345 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7346 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7347 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7348 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7349 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7350 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7351 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7352 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7353 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7354 case lltok::kw_fadd: 7355 Operation = AtomicRMWInst::FAdd; 7356 IsFP = true; 7357 break; 7358 case lltok::kw_fsub: 7359 Operation = AtomicRMWInst::FSub; 7360 IsFP = true; 7361 break; 7362 } 7363 Lex.Lex(); // Eat the operation. 7364 7365 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7366 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7367 parseTypeAndValue(Val, ValLoc, PFS) || 7368 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) || 7369 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7370 return true; 7371 7372 if (Ordering == AtomicOrdering::Unordered) 7373 return tokError("atomicrmw cannot be unordered"); 7374 if (!Ptr->getType()->isPointerTy()) 7375 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7376 if (!cast<PointerType>(Ptr->getType()) 7377 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7378 return error(ValLoc, "atomicrmw value and pointer type do not match"); 7379 7380 if (Operation == AtomicRMWInst::Xchg) { 7381 if (!Val->getType()->isIntegerTy() && 7382 !Val->getType()->isFloatingPointTy()) { 7383 return error(ValLoc, 7384 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7385 " operand must be an integer or floating point type"); 7386 } 7387 } else if (IsFP) { 7388 if (!Val->getType()->isFloatingPointTy()) { 7389 return error(ValLoc, "atomicrmw " + 7390 AtomicRMWInst::getOperationName(Operation) + 7391 " operand must be a floating point type"); 7392 } 7393 } else { 7394 if (!Val->getType()->isIntegerTy()) { 7395 return error(ValLoc, "atomicrmw " + 7396 AtomicRMWInst::getOperationName(Operation) + 7397 " operand must be an integer"); 7398 } 7399 } 7400 7401 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7402 if (Size < 8 || (Size & (Size - 1))) 7403 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7404 " integer"); 7405 const Align DefaultAlignment( 7406 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7407 Val->getType())); 7408 AtomicRMWInst *RMWI = 7409 new AtomicRMWInst(Operation, Ptr, Val, 7410 Alignment.getValueOr(DefaultAlignment), Ordering, SSID); 7411 RMWI->setVolatile(isVolatile); 7412 Inst = RMWI; 7413 return AteExtraComma ? InstExtraComma : InstNormal; 7414 } 7415 7416 /// parseFence 7417 /// ::= 'fence' 'singlethread'? AtomicOrdering 7418 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7419 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7420 SyncScope::ID SSID = SyncScope::System; 7421 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7422 return true; 7423 7424 if (Ordering == AtomicOrdering::Unordered) 7425 return tokError("fence cannot be unordered"); 7426 if (Ordering == AtomicOrdering::Monotonic) 7427 return tokError("fence cannot be monotonic"); 7428 7429 Inst = new FenceInst(Context, Ordering, SSID); 7430 return InstNormal; 7431 } 7432 7433 /// parseGetElementPtr 7434 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7435 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7436 Value *Ptr = nullptr; 7437 Value *Val = nullptr; 7438 LocTy Loc, EltLoc; 7439 7440 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7441 7442 Type *Ty = nullptr; 7443 LocTy ExplicitTypeLoc = Lex.getLoc(); 7444 if (parseType(Ty) || 7445 parseToken(lltok::comma, "expected comma after getelementptr's type") || 7446 parseTypeAndValue(Ptr, Loc, PFS)) 7447 return true; 7448 7449 Type *BaseType = Ptr->getType(); 7450 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7451 if (!BasePointerType) 7452 return error(Loc, "base of getelementptr must be a pointer"); 7453 7454 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 7455 return error( 7456 ExplicitTypeLoc, 7457 typeComparisonErrorMessage( 7458 "explicit pointee type doesn't match operand's pointee type", Ty, 7459 BasePointerType->getElementType())); 7460 } 7461 7462 SmallVector<Value*, 16> Indices; 7463 bool AteExtraComma = false; 7464 // GEP returns a vector of pointers if at least one of parameters is a vector. 7465 // All vector parameters should have the same vector width. 7466 ElementCount GEPWidth = BaseType->isVectorTy() 7467 ? cast<VectorType>(BaseType)->getElementCount() 7468 : ElementCount::getFixed(0); 7469 7470 while (EatIfPresent(lltok::comma)) { 7471 if (Lex.getKind() == lltok::MetadataVar) { 7472 AteExtraComma = true; 7473 break; 7474 } 7475 if (parseTypeAndValue(Val, EltLoc, PFS)) 7476 return true; 7477 if (!Val->getType()->isIntOrIntVectorTy()) 7478 return error(EltLoc, "getelementptr index must be an integer"); 7479 7480 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7481 ElementCount ValNumEl = ValVTy->getElementCount(); 7482 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7483 return error( 7484 EltLoc, 7485 "getelementptr vector index has a wrong number of elements"); 7486 GEPWidth = ValNumEl; 7487 } 7488 Indices.push_back(Val); 7489 } 7490 7491 SmallPtrSet<Type*, 4> Visited; 7492 if (!Indices.empty() && !Ty->isSized(&Visited)) 7493 return error(Loc, "base element of getelementptr must be sized"); 7494 7495 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7496 return error(Loc, "invalid getelementptr indices"); 7497 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7498 if (InBounds) 7499 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7500 return AteExtraComma ? InstExtraComma : InstNormal; 7501 } 7502 7503 /// parseExtractValue 7504 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7505 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7506 Value *Val; LocTy Loc; 7507 SmallVector<unsigned, 4> Indices; 7508 bool AteExtraComma; 7509 if (parseTypeAndValue(Val, Loc, PFS) || 7510 parseIndexList(Indices, AteExtraComma)) 7511 return true; 7512 7513 if (!Val->getType()->isAggregateType()) 7514 return error(Loc, "extractvalue operand must be aggregate type"); 7515 7516 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7517 return error(Loc, "invalid indices for extractvalue"); 7518 Inst = ExtractValueInst::Create(Val, Indices); 7519 return AteExtraComma ? InstExtraComma : InstNormal; 7520 } 7521 7522 /// parseInsertValue 7523 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7524 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7525 Value *Val0, *Val1; LocTy Loc0, Loc1; 7526 SmallVector<unsigned, 4> Indices; 7527 bool AteExtraComma; 7528 if (parseTypeAndValue(Val0, Loc0, PFS) || 7529 parseToken(lltok::comma, "expected comma after insertvalue operand") || 7530 parseTypeAndValue(Val1, Loc1, PFS) || 7531 parseIndexList(Indices, AteExtraComma)) 7532 return true; 7533 7534 if (!Val0->getType()->isAggregateType()) 7535 return error(Loc0, "insertvalue operand must be aggregate type"); 7536 7537 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7538 if (!IndexedType) 7539 return error(Loc0, "invalid indices for insertvalue"); 7540 if (IndexedType != Val1->getType()) 7541 return error(Loc1, "insertvalue operand and field disagree in type: '" + 7542 getTypeString(Val1->getType()) + "' instead of '" + 7543 getTypeString(IndexedType) + "'"); 7544 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7545 return AteExtraComma ? InstExtraComma : InstNormal; 7546 } 7547 7548 //===----------------------------------------------------------------------===// 7549 // Embedded metadata. 7550 //===----------------------------------------------------------------------===// 7551 7552 /// parseMDNodeVector 7553 /// ::= { Element (',' Element)* } 7554 /// Element 7555 /// ::= 'null' | TypeAndValue 7556 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7557 if (parseToken(lltok::lbrace, "expected '{' here")) 7558 return true; 7559 7560 // Check for an empty list. 7561 if (EatIfPresent(lltok::rbrace)) 7562 return false; 7563 7564 do { 7565 // Null is a special case since it is typeless. 7566 if (EatIfPresent(lltok::kw_null)) { 7567 Elts.push_back(nullptr); 7568 continue; 7569 } 7570 7571 Metadata *MD; 7572 if (parseMetadata(MD, nullptr)) 7573 return true; 7574 Elts.push_back(MD); 7575 } while (EatIfPresent(lltok::comma)); 7576 7577 return parseToken(lltok::rbrace, "expected end of metadata node"); 7578 } 7579 7580 //===----------------------------------------------------------------------===// 7581 // Use-list order directives. 7582 //===----------------------------------------------------------------------===// 7583 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7584 SMLoc Loc) { 7585 if (V->use_empty()) 7586 return error(Loc, "value has no uses"); 7587 7588 unsigned NumUses = 0; 7589 SmallDenseMap<const Use *, unsigned, 16> Order; 7590 for (const Use &U : V->uses()) { 7591 if (++NumUses > Indexes.size()) 7592 break; 7593 Order[&U] = Indexes[NumUses - 1]; 7594 } 7595 if (NumUses < 2) 7596 return error(Loc, "value only has one use"); 7597 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7598 return error(Loc, 7599 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7600 7601 V->sortUseList([&](const Use &L, const Use &R) { 7602 return Order.lookup(&L) < Order.lookup(&R); 7603 }); 7604 return false; 7605 } 7606 7607 /// parseUseListOrderIndexes 7608 /// ::= '{' uint32 (',' uint32)+ '}' 7609 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7610 SMLoc Loc = Lex.getLoc(); 7611 if (parseToken(lltok::lbrace, "expected '{' here")) 7612 return true; 7613 if (Lex.getKind() == lltok::rbrace) 7614 return Lex.Error("expected non-empty list of uselistorder indexes"); 7615 7616 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7617 // indexes should be distinct numbers in the range [0, size-1], and should 7618 // not be in order. 7619 unsigned Offset = 0; 7620 unsigned Max = 0; 7621 bool IsOrdered = true; 7622 assert(Indexes.empty() && "Expected empty order vector"); 7623 do { 7624 unsigned Index; 7625 if (parseUInt32(Index)) 7626 return true; 7627 7628 // Update consistency checks. 7629 Offset += Index - Indexes.size(); 7630 Max = std::max(Max, Index); 7631 IsOrdered &= Index == Indexes.size(); 7632 7633 Indexes.push_back(Index); 7634 } while (EatIfPresent(lltok::comma)); 7635 7636 if (parseToken(lltok::rbrace, "expected '}' here")) 7637 return true; 7638 7639 if (Indexes.size() < 2) 7640 return error(Loc, "expected >= 2 uselistorder indexes"); 7641 if (Offset != 0 || Max >= Indexes.size()) 7642 return error(Loc, 7643 "expected distinct uselistorder indexes in range [0, size)"); 7644 if (IsOrdered) 7645 return error(Loc, "expected uselistorder indexes to change the order"); 7646 7647 return false; 7648 } 7649 7650 /// parseUseListOrder 7651 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7652 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 7653 SMLoc Loc = Lex.getLoc(); 7654 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7655 return true; 7656 7657 Value *V; 7658 SmallVector<unsigned, 16> Indexes; 7659 if (parseTypeAndValue(V, PFS) || 7660 parseToken(lltok::comma, "expected comma in uselistorder directive") || 7661 parseUseListOrderIndexes(Indexes)) 7662 return true; 7663 7664 return sortUseListOrder(V, Indexes, Loc); 7665 } 7666 7667 /// parseUseListOrderBB 7668 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7669 bool LLParser::parseUseListOrderBB() { 7670 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7671 SMLoc Loc = Lex.getLoc(); 7672 Lex.Lex(); 7673 7674 ValID Fn, Label; 7675 SmallVector<unsigned, 16> Indexes; 7676 if (parseValID(Fn, /*PFS=*/nullptr) || 7677 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7678 parseValID(Label, /*PFS=*/nullptr) || 7679 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7680 parseUseListOrderIndexes(Indexes)) 7681 return true; 7682 7683 // Check the function. 7684 GlobalValue *GV; 7685 if (Fn.Kind == ValID::t_GlobalName) 7686 GV = M->getNamedValue(Fn.StrVal); 7687 else if (Fn.Kind == ValID::t_GlobalID) 7688 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7689 else 7690 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7691 if (!GV) 7692 return error(Fn.Loc, 7693 "invalid function forward reference in uselistorder_bb"); 7694 auto *F = dyn_cast<Function>(GV); 7695 if (!F) 7696 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7697 if (F->isDeclaration()) 7698 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7699 7700 // Check the basic block. 7701 if (Label.Kind == ValID::t_LocalID) 7702 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7703 if (Label.Kind != ValID::t_LocalName) 7704 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 7705 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7706 if (!V) 7707 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 7708 if (!isa<BasicBlock>(V)) 7709 return error(Label.Loc, "expected basic block in uselistorder_bb"); 7710 7711 return sortUseListOrder(V, Indexes, Loc); 7712 } 7713 7714 /// ModuleEntry 7715 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7716 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7717 bool LLParser::parseModuleEntry(unsigned ID) { 7718 assert(Lex.getKind() == lltok::kw_module); 7719 Lex.Lex(); 7720 7721 std::string Path; 7722 if (parseToken(lltok::colon, "expected ':' here") || 7723 parseToken(lltok::lparen, "expected '(' here") || 7724 parseToken(lltok::kw_path, "expected 'path' here") || 7725 parseToken(lltok::colon, "expected ':' here") || 7726 parseStringConstant(Path) || 7727 parseToken(lltok::comma, "expected ',' here") || 7728 parseToken(lltok::kw_hash, "expected 'hash' here") || 7729 parseToken(lltok::colon, "expected ':' here") || 7730 parseToken(lltok::lparen, "expected '(' here")) 7731 return true; 7732 7733 ModuleHash Hash; 7734 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 7735 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 7736 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 7737 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 7738 parseUInt32(Hash[4])) 7739 return true; 7740 7741 if (parseToken(lltok::rparen, "expected ')' here") || 7742 parseToken(lltok::rparen, "expected ')' here")) 7743 return true; 7744 7745 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7746 ModuleIdMap[ID] = ModuleEntry->first(); 7747 7748 return false; 7749 } 7750 7751 /// TypeIdEntry 7752 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7753 bool LLParser::parseTypeIdEntry(unsigned ID) { 7754 assert(Lex.getKind() == lltok::kw_typeid); 7755 Lex.Lex(); 7756 7757 std::string Name; 7758 if (parseToken(lltok::colon, "expected ':' here") || 7759 parseToken(lltok::lparen, "expected '(' here") || 7760 parseToken(lltok::kw_name, "expected 'name' here") || 7761 parseToken(lltok::colon, "expected ':' here") || 7762 parseStringConstant(Name)) 7763 return true; 7764 7765 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7766 if (parseToken(lltok::comma, "expected ',' here") || 7767 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 7768 return true; 7769 7770 // Check if this ID was forward referenced, and if so, update the 7771 // corresponding GUIDs. 7772 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7773 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7774 for (auto TIDRef : FwdRefTIDs->second) { 7775 assert(!*TIDRef.first && 7776 "Forward referenced type id GUID expected to be 0"); 7777 *TIDRef.first = GlobalValue::getGUID(Name); 7778 } 7779 ForwardRefTypeIds.erase(FwdRefTIDs); 7780 } 7781 7782 return false; 7783 } 7784 7785 /// TypeIdSummary 7786 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7787 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 7788 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 7789 parseToken(lltok::colon, "expected ':' here") || 7790 parseToken(lltok::lparen, "expected '(' here") || 7791 parseTypeTestResolution(TIS.TTRes)) 7792 return true; 7793 7794 if (EatIfPresent(lltok::comma)) { 7795 // Expect optional wpdResolutions field 7796 if (parseOptionalWpdResolutions(TIS.WPDRes)) 7797 return true; 7798 } 7799 7800 if (parseToken(lltok::rparen, "expected ')' here")) 7801 return true; 7802 7803 return false; 7804 } 7805 7806 static ValueInfo EmptyVI = 7807 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7808 7809 /// TypeIdCompatibleVtableEntry 7810 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7811 /// TypeIdCompatibleVtableInfo 7812 /// ')' 7813 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 7814 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7815 Lex.Lex(); 7816 7817 std::string Name; 7818 if (parseToken(lltok::colon, "expected ':' here") || 7819 parseToken(lltok::lparen, "expected '(' here") || 7820 parseToken(lltok::kw_name, "expected 'name' here") || 7821 parseToken(lltok::colon, "expected ':' here") || 7822 parseStringConstant(Name)) 7823 return true; 7824 7825 TypeIdCompatibleVtableInfo &TI = 7826 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7827 if (parseToken(lltok::comma, "expected ',' here") || 7828 parseToken(lltok::kw_summary, "expected 'summary' here") || 7829 parseToken(lltok::colon, "expected ':' here") || 7830 parseToken(lltok::lparen, "expected '(' here")) 7831 return true; 7832 7833 IdToIndexMapType IdToIndexMap; 7834 // parse each call edge 7835 do { 7836 uint64_t Offset; 7837 if (parseToken(lltok::lparen, "expected '(' here") || 7838 parseToken(lltok::kw_offset, "expected 'offset' here") || 7839 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 7840 parseToken(lltok::comma, "expected ',' here")) 7841 return true; 7842 7843 LocTy Loc = Lex.getLoc(); 7844 unsigned GVId; 7845 ValueInfo VI; 7846 if (parseGVReference(VI, GVId)) 7847 return true; 7848 7849 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 7850 // forward reference. We will save the location of the ValueInfo needing an 7851 // update, but can only do so once the std::vector is finalized. 7852 if (VI == EmptyVI) 7853 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 7854 TI.push_back({Offset, VI}); 7855 7856 if (parseToken(lltok::rparen, "expected ')' in call")) 7857 return true; 7858 } while (EatIfPresent(lltok::comma)); 7859 7860 // Now that the TI vector is finalized, it is safe to save the locations 7861 // of any forward GV references that need updating later. 7862 for (auto I : IdToIndexMap) { 7863 auto &Infos = ForwardRefValueInfos[I.first]; 7864 for (auto P : I.second) { 7865 assert(TI[P.first].VTableVI == EmptyVI && 7866 "Forward referenced ValueInfo expected to be empty"); 7867 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 7868 } 7869 } 7870 7871 if (parseToken(lltok::rparen, "expected ')' here") || 7872 parseToken(lltok::rparen, "expected ')' here")) 7873 return true; 7874 7875 // Check if this ID was forward referenced, and if so, update the 7876 // corresponding GUIDs. 7877 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7878 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7879 for (auto TIDRef : FwdRefTIDs->second) { 7880 assert(!*TIDRef.first && 7881 "Forward referenced type id GUID expected to be 0"); 7882 *TIDRef.first = GlobalValue::getGUID(Name); 7883 } 7884 ForwardRefTypeIds.erase(FwdRefTIDs); 7885 } 7886 7887 return false; 7888 } 7889 7890 /// TypeTestResolution 7891 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7892 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7893 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7894 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7895 /// [',' 'inlinesBits' ':' UInt64]? ')' 7896 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 7897 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7898 parseToken(lltok::colon, "expected ':' here") || 7899 parseToken(lltok::lparen, "expected '(' here") || 7900 parseToken(lltok::kw_kind, "expected 'kind' here") || 7901 parseToken(lltok::colon, "expected ':' here")) 7902 return true; 7903 7904 switch (Lex.getKind()) { 7905 case lltok::kw_unknown: 7906 TTRes.TheKind = TypeTestResolution::Unknown; 7907 break; 7908 case lltok::kw_unsat: 7909 TTRes.TheKind = TypeTestResolution::Unsat; 7910 break; 7911 case lltok::kw_byteArray: 7912 TTRes.TheKind = TypeTestResolution::ByteArray; 7913 break; 7914 case lltok::kw_inline: 7915 TTRes.TheKind = TypeTestResolution::Inline; 7916 break; 7917 case lltok::kw_single: 7918 TTRes.TheKind = TypeTestResolution::Single; 7919 break; 7920 case lltok::kw_allOnes: 7921 TTRes.TheKind = TypeTestResolution::AllOnes; 7922 break; 7923 default: 7924 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7925 } 7926 Lex.Lex(); 7927 7928 if (parseToken(lltok::comma, "expected ',' here") || 7929 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7930 parseToken(lltok::colon, "expected ':' here") || 7931 parseUInt32(TTRes.SizeM1BitWidth)) 7932 return true; 7933 7934 // parse optional fields 7935 while (EatIfPresent(lltok::comma)) { 7936 switch (Lex.getKind()) { 7937 case lltok::kw_alignLog2: 7938 Lex.Lex(); 7939 if (parseToken(lltok::colon, "expected ':'") || 7940 parseUInt64(TTRes.AlignLog2)) 7941 return true; 7942 break; 7943 case lltok::kw_sizeM1: 7944 Lex.Lex(); 7945 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 7946 return true; 7947 break; 7948 case lltok::kw_bitMask: { 7949 unsigned Val; 7950 Lex.Lex(); 7951 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 7952 return true; 7953 assert(Val <= 0xff); 7954 TTRes.BitMask = (uint8_t)Val; 7955 break; 7956 } 7957 case lltok::kw_inlineBits: 7958 Lex.Lex(); 7959 if (parseToken(lltok::colon, "expected ':'") || 7960 parseUInt64(TTRes.InlineBits)) 7961 return true; 7962 break; 7963 default: 7964 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7965 } 7966 } 7967 7968 if (parseToken(lltok::rparen, "expected ')' here")) 7969 return true; 7970 7971 return false; 7972 } 7973 7974 /// OptionalWpdResolutions 7975 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7976 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7977 bool LLParser::parseOptionalWpdResolutions( 7978 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7979 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7980 parseToken(lltok::colon, "expected ':' here") || 7981 parseToken(lltok::lparen, "expected '(' here")) 7982 return true; 7983 7984 do { 7985 uint64_t Offset; 7986 WholeProgramDevirtResolution WPDRes; 7987 if (parseToken(lltok::lparen, "expected '(' here") || 7988 parseToken(lltok::kw_offset, "expected 'offset' here") || 7989 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 7990 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 7991 parseToken(lltok::rparen, "expected ')' here")) 7992 return true; 7993 WPDResMap[Offset] = WPDRes; 7994 } while (EatIfPresent(lltok::comma)); 7995 7996 if (parseToken(lltok::rparen, "expected ')' here")) 7997 return true; 7998 7999 return false; 8000 } 8001 8002 /// WpdRes 8003 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 8004 /// [',' OptionalResByArg]? ')' 8005 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 8006 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 8007 /// [',' OptionalResByArg]? ')' 8008 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 8009 /// [',' OptionalResByArg]? ')' 8010 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 8011 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 8012 parseToken(lltok::colon, "expected ':' here") || 8013 parseToken(lltok::lparen, "expected '(' here") || 8014 parseToken(lltok::kw_kind, "expected 'kind' here") || 8015 parseToken(lltok::colon, "expected ':' here")) 8016 return true; 8017 8018 switch (Lex.getKind()) { 8019 case lltok::kw_indir: 8020 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 8021 break; 8022 case lltok::kw_singleImpl: 8023 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 8024 break; 8025 case lltok::kw_branchFunnel: 8026 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 8027 break; 8028 default: 8029 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8030 } 8031 Lex.Lex(); 8032 8033 // parse optional fields 8034 while (EatIfPresent(lltok::comma)) { 8035 switch (Lex.getKind()) { 8036 case lltok::kw_singleImplName: 8037 Lex.Lex(); 8038 if (parseToken(lltok::colon, "expected ':' here") || 8039 parseStringConstant(WPDRes.SingleImplName)) 8040 return true; 8041 break; 8042 case lltok::kw_resByArg: 8043 if (parseOptionalResByArg(WPDRes.ResByArg)) 8044 return true; 8045 break; 8046 default: 8047 return error(Lex.getLoc(), 8048 "expected optional WholeProgramDevirtResolution field"); 8049 } 8050 } 8051 8052 if (parseToken(lltok::rparen, "expected ')' here")) 8053 return true; 8054 8055 return false; 8056 } 8057 8058 /// OptionalResByArg 8059 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8060 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8061 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8062 /// 'virtualConstProp' ) 8063 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8064 /// [',' 'bit' ':' UInt32]? ')' 8065 bool LLParser::parseOptionalResByArg( 8066 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8067 &ResByArg) { 8068 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8069 parseToken(lltok::colon, "expected ':' here") || 8070 parseToken(lltok::lparen, "expected '(' here")) 8071 return true; 8072 8073 do { 8074 std::vector<uint64_t> Args; 8075 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8076 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8077 parseToken(lltok::colon, "expected ':' here") || 8078 parseToken(lltok::lparen, "expected '(' here") || 8079 parseToken(lltok::kw_kind, "expected 'kind' here") || 8080 parseToken(lltok::colon, "expected ':' here")) 8081 return true; 8082 8083 WholeProgramDevirtResolution::ByArg ByArg; 8084 switch (Lex.getKind()) { 8085 case lltok::kw_indir: 8086 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8087 break; 8088 case lltok::kw_uniformRetVal: 8089 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8090 break; 8091 case lltok::kw_uniqueRetVal: 8092 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8093 break; 8094 case lltok::kw_virtualConstProp: 8095 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8096 break; 8097 default: 8098 return error(Lex.getLoc(), 8099 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8100 } 8101 Lex.Lex(); 8102 8103 // parse optional fields 8104 while (EatIfPresent(lltok::comma)) { 8105 switch (Lex.getKind()) { 8106 case lltok::kw_info: 8107 Lex.Lex(); 8108 if (parseToken(lltok::colon, "expected ':' here") || 8109 parseUInt64(ByArg.Info)) 8110 return true; 8111 break; 8112 case lltok::kw_byte: 8113 Lex.Lex(); 8114 if (parseToken(lltok::colon, "expected ':' here") || 8115 parseUInt32(ByArg.Byte)) 8116 return true; 8117 break; 8118 case lltok::kw_bit: 8119 Lex.Lex(); 8120 if (parseToken(lltok::colon, "expected ':' here") || 8121 parseUInt32(ByArg.Bit)) 8122 return true; 8123 break; 8124 default: 8125 return error(Lex.getLoc(), 8126 "expected optional whole program devirt field"); 8127 } 8128 } 8129 8130 if (parseToken(lltok::rparen, "expected ')' here")) 8131 return true; 8132 8133 ResByArg[Args] = ByArg; 8134 } while (EatIfPresent(lltok::comma)); 8135 8136 if (parseToken(lltok::rparen, "expected ')' here")) 8137 return true; 8138 8139 return false; 8140 } 8141 8142 /// OptionalResByArg 8143 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8144 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8145 if (parseToken(lltok::kw_args, "expected 'args' here") || 8146 parseToken(lltok::colon, "expected ':' here") || 8147 parseToken(lltok::lparen, "expected '(' here")) 8148 return true; 8149 8150 do { 8151 uint64_t Val; 8152 if (parseUInt64(Val)) 8153 return true; 8154 Args.push_back(Val); 8155 } while (EatIfPresent(lltok::comma)); 8156 8157 if (parseToken(lltok::rparen, "expected ')' here")) 8158 return true; 8159 8160 return false; 8161 } 8162 8163 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8164 8165 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8166 bool ReadOnly = Fwd->isReadOnly(); 8167 bool WriteOnly = Fwd->isWriteOnly(); 8168 assert(!(ReadOnly && WriteOnly)); 8169 *Fwd = Resolved; 8170 if (ReadOnly) 8171 Fwd->setReadOnly(); 8172 if (WriteOnly) 8173 Fwd->setWriteOnly(); 8174 } 8175 8176 /// Stores the given Name/GUID and associated summary into the Index. 8177 /// Also updates any forward references to the associated entry ID. 8178 void LLParser::addGlobalValueToIndex( 8179 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8180 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8181 // First create the ValueInfo utilizing the Name or GUID. 8182 ValueInfo VI; 8183 if (GUID != 0) { 8184 assert(Name.empty()); 8185 VI = Index->getOrInsertValueInfo(GUID); 8186 } else { 8187 assert(!Name.empty()); 8188 if (M) { 8189 auto *GV = M->getNamedValue(Name); 8190 assert(GV); 8191 VI = Index->getOrInsertValueInfo(GV); 8192 } else { 8193 assert( 8194 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8195 "Need a source_filename to compute GUID for local"); 8196 GUID = GlobalValue::getGUID( 8197 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8198 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8199 } 8200 } 8201 8202 // Resolve forward references from calls/refs 8203 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8204 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8205 for (auto VIRef : FwdRefVIs->second) { 8206 assert(VIRef.first->getRef() == FwdVIRef && 8207 "Forward referenced ValueInfo expected to be empty"); 8208 resolveFwdRef(VIRef.first, VI); 8209 } 8210 ForwardRefValueInfos.erase(FwdRefVIs); 8211 } 8212 8213 // Resolve forward references from aliases 8214 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8215 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8216 for (auto AliaseeRef : FwdRefAliasees->second) { 8217 assert(!AliaseeRef.first->hasAliasee() && 8218 "Forward referencing alias already has aliasee"); 8219 assert(Summary && "Aliasee must be a definition"); 8220 AliaseeRef.first->setAliasee(VI, Summary.get()); 8221 } 8222 ForwardRefAliasees.erase(FwdRefAliasees); 8223 } 8224 8225 // Add the summary if one was provided. 8226 if (Summary) 8227 Index->addGlobalValueSummary(VI, std::move(Summary)); 8228 8229 // Save the associated ValueInfo for use in later references by ID. 8230 if (ID == NumberedValueInfos.size()) 8231 NumberedValueInfos.push_back(VI); 8232 else { 8233 // Handle non-continuous numbers (to make test simplification easier). 8234 if (ID > NumberedValueInfos.size()) 8235 NumberedValueInfos.resize(ID + 1); 8236 NumberedValueInfos[ID] = VI; 8237 } 8238 } 8239 8240 /// parseSummaryIndexFlags 8241 /// ::= 'flags' ':' UInt64 8242 bool LLParser::parseSummaryIndexFlags() { 8243 assert(Lex.getKind() == lltok::kw_flags); 8244 Lex.Lex(); 8245 8246 if (parseToken(lltok::colon, "expected ':' here")) 8247 return true; 8248 uint64_t Flags; 8249 if (parseUInt64(Flags)) 8250 return true; 8251 if (Index) 8252 Index->setFlags(Flags); 8253 return false; 8254 } 8255 8256 /// parseBlockCount 8257 /// ::= 'blockcount' ':' UInt64 8258 bool LLParser::parseBlockCount() { 8259 assert(Lex.getKind() == lltok::kw_blockcount); 8260 Lex.Lex(); 8261 8262 if (parseToken(lltok::colon, "expected ':' here")) 8263 return true; 8264 uint64_t BlockCount; 8265 if (parseUInt64(BlockCount)) 8266 return true; 8267 if (Index) 8268 Index->setBlockCount(BlockCount); 8269 return false; 8270 } 8271 8272 /// parseGVEntry 8273 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8274 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8275 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8276 bool LLParser::parseGVEntry(unsigned ID) { 8277 assert(Lex.getKind() == lltok::kw_gv); 8278 Lex.Lex(); 8279 8280 if (parseToken(lltok::colon, "expected ':' here") || 8281 parseToken(lltok::lparen, "expected '(' here")) 8282 return true; 8283 8284 std::string Name; 8285 GlobalValue::GUID GUID = 0; 8286 switch (Lex.getKind()) { 8287 case lltok::kw_name: 8288 Lex.Lex(); 8289 if (parseToken(lltok::colon, "expected ':' here") || 8290 parseStringConstant(Name)) 8291 return true; 8292 // Can't create GUID/ValueInfo until we have the linkage. 8293 break; 8294 case lltok::kw_guid: 8295 Lex.Lex(); 8296 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8297 return true; 8298 break; 8299 default: 8300 return error(Lex.getLoc(), "expected name or guid tag"); 8301 } 8302 8303 if (!EatIfPresent(lltok::comma)) { 8304 // No summaries. Wrap up. 8305 if (parseToken(lltok::rparen, "expected ')' here")) 8306 return true; 8307 // This was created for a call to an external or indirect target. 8308 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8309 // created for indirect calls with VP. A Name with no GUID came from 8310 // an external definition. We pass ExternalLinkage since that is only 8311 // used when the GUID must be computed from Name, and in that case 8312 // the symbol must have external linkage. 8313 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8314 nullptr); 8315 return false; 8316 } 8317 8318 // Have a list of summaries 8319 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8320 parseToken(lltok::colon, "expected ':' here") || 8321 parseToken(lltok::lparen, "expected '(' here")) 8322 return true; 8323 do { 8324 switch (Lex.getKind()) { 8325 case lltok::kw_function: 8326 if (parseFunctionSummary(Name, GUID, ID)) 8327 return true; 8328 break; 8329 case lltok::kw_variable: 8330 if (parseVariableSummary(Name, GUID, ID)) 8331 return true; 8332 break; 8333 case lltok::kw_alias: 8334 if (parseAliasSummary(Name, GUID, ID)) 8335 return true; 8336 break; 8337 default: 8338 return error(Lex.getLoc(), "expected summary type"); 8339 } 8340 } while (EatIfPresent(lltok::comma)); 8341 8342 if (parseToken(lltok::rparen, "expected ')' here") || 8343 parseToken(lltok::rparen, "expected ')' here")) 8344 return true; 8345 8346 return false; 8347 } 8348 8349 /// FunctionSummary 8350 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8351 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8352 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8353 /// [',' OptionalRefs]? ')' 8354 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8355 unsigned ID) { 8356 assert(Lex.getKind() == lltok::kw_function); 8357 Lex.Lex(); 8358 8359 StringRef ModulePath; 8360 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8361 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8362 /*NotEligibleToImport=*/false, 8363 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8364 unsigned InstCount; 8365 std::vector<FunctionSummary::EdgeTy> Calls; 8366 FunctionSummary::TypeIdInfo TypeIdInfo; 8367 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8368 std::vector<ValueInfo> Refs; 8369 // Default is all-zeros (conservative values). 8370 FunctionSummary::FFlags FFlags = {}; 8371 if (parseToken(lltok::colon, "expected ':' here") || 8372 parseToken(lltok::lparen, "expected '(' here") || 8373 parseModuleReference(ModulePath) || 8374 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8375 parseToken(lltok::comma, "expected ',' here") || 8376 parseToken(lltok::kw_insts, "expected 'insts' here") || 8377 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8378 return true; 8379 8380 // parse optional fields 8381 while (EatIfPresent(lltok::comma)) { 8382 switch (Lex.getKind()) { 8383 case lltok::kw_funcFlags: 8384 if (parseOptionalFFlags(FFlags)) 8385 return true; 8386 break; 8387 case lltok::kw_calls: 8388 if (parseOptionalCalls(Calls)) 8389 return true; 8390 break; 8391 case lltok::kw_typeIdInfo: 8392 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8393 return true; 8394 break; 8395 case lltok::kw_refs: 8396 if (parseOptionalRefs(Refs)) 8397 return true; 8398 break; 8399 case lltok::kw_params: 8400 if (parseOptionalParamAccesses(ParamAccesses)) 8401 return true; 8402 break; 8403 default: 8404 return error(Lex.getLoc(), "expected optional function summary field"); 8405 } 8406 } 8407 8408 if (parseToken(lltok::rparen, "expected ')' here")) 8409 return true; 8410 8411 auto FS = std::make_unique<FunctionSummary>( 8412 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8413 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8414 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8415 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8416 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8417 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8418 std::move(ParamAccesses)); 8419 8420 FS->setModulePath(ModulePath); 8421 8422 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8423 ID, std::move(FS)); 8424 8425 return false; 8426 } 8427 8428 /// VariableSummary 8429 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8430 /// [',' OptionalRefs]? ')' 8431 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8432 unsigned ID) { 8433 assert(Lex.getKind() == lltok::kw_variable); 8434 Lex.Lex(); 8435 8436 StringRef ModulePath; 8437 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8438 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8439 /*NotEligibleToImport=*/false, 8440 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8441 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8442 /* WriteOnly */ false, 8443 /* Constant */ false, 8444 GlobalObject::VCallVisibilityPublic); 8445 std::vector<ValueInfo> Refs; 8446 VTableFuncList VTableFuncs; 8447 if (parseToken(lltok::colon, "expected ':' here") || 8448 parseToken(lltok::lparen, "expected '(' here") || 8449 parseModuleReference(ModulePath) || 8450 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8451 parseToken(lltok::comma, "expected ',' here") || 8452 parseGVarFlags(GVarFlags)) 8453 return true; 8454 8455 // parse optional fields 8456 while (EatIfPresent(lltok::comma)) { 8457 switch (Lex.getKind()) { 8458 case lltok::kw_vTableFuncs: 8459 if (parseOptionalVTableFuncs(VTableFuncs)) 8460 return true; 8461 break; 8462 case lltok::kw_refs: 8463 if (parseOptionalRefs(Refs)) 8464 return true; 8465 break; 8466 default: 8467 return error(Lex.getLoc(), "expected optional variable summary field"); 8468 } 8469 } 8470 8471 if (parseToken(lltok::rparen, "expected ')' here")) 8472 return true; 8473 8474 auto GS = 8475 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8476 8477 GS->setModulePath(ModulePath); 8478 GS->setVTableFuncs(std::move(VTableFuncs)); 8479 8480 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8481 ID, std::move(GS)); 8482 8483 return false; 8484 } 8485 8486 /// AliasSummary 8487 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8488 /// 'aliasee' ':' GVReference ')' 8489 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8490 unsigned ID) { 8491 assert(Lex.getKind() == lltok::kw_alias); 8492 LocTy Loc = Lex.getLoc(); 8493 Lex.Lex(); 8494 8495 StringRef ModulePath; 8496 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8497 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8498 /*NotEligibleToImport=*/false, 8499 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8500 if (parseToken(lltok::colon, "expected ':' here") || 8501 parseToken(lltok::lparen, "expected '(' here") || 8502 parseModuleReference(ModulePath) || 8503 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8504 parseToken(lltok::comma, "expected ',' here") || 8505 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8506 parseToken(lltok::colon, "expected ':' here")) 8507 return true; 8508 8509 ValueInfo AliaseeVI; 8510 unsigned GVId; 8511 if (parseGVReference(AliaseeVI, GVId)) 8512 return true; 8513 8514 if (parseToken(lltok::rparen, "expected ')' here")) 8515 return true; 8516 8517 auto AS = std::make_unique<AliasSummary>(GVFlags); 8518 8519 AS->setModulePath(ModulePath); 8520 8521 // Record forward reference if the aliasee is not parsed yet. 8522 if (AliaseeVI.getRef() == FwdVIRef) { 8523 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8524 } else { 8525 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8526 assert(Summary && "Aliasee must be a definition"); 8527 AS->setAliasee(AliaseeVI, Summary); 8528 } 8529 8530 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8531 ID, std::move(AS)); 8532 8533 return false; 8534 } 8535 8536 /// Flag 8537 /// ::= [0|1] 8538 bool LLParser::parseFlag(unsigned &Val) { 8539 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8540 return tokError("expected integer"); 8541 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8542 Lex.Lex(); 8543 return false; 8544 } 8545 8546 /// OptionalFFlags 8547 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8548 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8549 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8550 /// [',' 'noInline' ':' Flag]? ')' 8551 /// [',' 'alwaysInline' ':' Flag]? ')' 8552 /// [',' 'noUnwind' ':' Flag]? ')' 8553 /// [',' 'mayThrow' ':' Flag]? ')' 8554 /// [',' 'hasUnknownCall' ':' Flag]? ')' 8555 /// [',' 'mustBeUnreachable' ':' Flag]? ')' 8556 8557 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8558 assert(Lex.getKind() == lltok::kw_funcFlags); 8559 Lex.Lex(); 8560 8561 if (parseToken(lltok::colon, "expected ':' in funcFlags") || 8562 parseToken(lltok::lparen, "expected '(' in funcFlags")) 8563 return true; 8564 8565 do { 8566 unsigned Val = 0; 8567 switch (Lex.getKind()) { 8568 case lltok::kw_readNone: 8569 Lex.Lex(); 8570 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8571 return true; 8572 FFlags.ReadNone = Val; 8573 break; 8574 case lltok::kw_readOnly: 8575 Lex.Lex(); 8576 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8577 return true; 8578 FFlags.ReadOnly = Val; 8579 break; 8580 case lltok::kw_noRecurse: 8581 Lex.Lex(); 8582 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8583 return true; 8584 FFlags.NoRecurse = Val; 8585 break; 8586 case lltok::kw_returnDoesNotAlias: 8587 Lex.Lex(); 8588 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8589 return true; 8590 FFlags.ReturnDoesNotAlias = Val; 8591 break; 8592 case lltok::kw_noInline: 8593 Lex.Lex(); 8594 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8595 return true; 8596 FFlags.NoInline = Val; 8597 break; 8598 case lltok::kw_alwaysInline: 8599 Lex.Lex(); 8600 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8601 return true; 8602 FFlags.AlwaysInline = Val; 8603 break; 8604 case lltok::kw_noUnwind: 8605 Lex.Lex(); 8606 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8607 return true; 8608 FFlags.NoUnwind = Val; 8609 break; 8610 case lltok::kw_mayThrow: 8611 Lex.Lex(); 8612 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8613 return true; 8614 FFlags.MayThrow = Val; 8615 break; 8616 case lltok::kw_hasUnknownCall: 8617 Lex.Lex(); 8618 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8619 return true; 8620 FFlags.HasUnknownCall = Val; 8621 break; 8622 case lltok::kw_mustBeUnreachable: 8623 Lex.Lex(); 8624 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8625 return true; 8626 FFlags.MustBeUnreachable = Val; 8627 break; 8628 default: 8629 return error(Lex.getLoc(), "expected function flag type"); 8630 } 8631 } while (EatIfPresent(lltok::comma)); 8632 8633 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 8634 return true; 8635 8636 return false; 8637 } 8638 8639 /// OptionalCalls 8640 /// := 'calls' ':' '(' Call [',' Call]* ')' 8641 /// Call ::= '(' 'callee' ':' GVReference 8642 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8643 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8644 assert(Lex.getKind() == lltok::kw_calls); 8645 Lex.Lex(); 8646 8647 if (parseToken(lltok::colon, "expected ':' in calls") || 8648 parseToken(lltok::lparen, "expected '(' in calls")) 8649 return true; 8650 8651 IdToIndexMapType IdToIndexMap; 8652 // parse each call edge 8653 do { 8654 ValueInfo VI; 8655 if (parseToken(lltok::lparen, "expected '(' in call") || 8656 parseToken(lltok::kw_callee, "expected 'callee' in call") || 8657 parseToken(lltok::colon, "expected ':'")) 8658 return true; 8659 8660 LocTy Loc = Lex.getLoc(); 8661 unsigned GVId; 8662 if (parseGVReference(VI, GVId)) 8663 return true; 8664 8665 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8666 unsigned RelBF = 0; 8667 if (EatIfPresent(lltok::comma)) { 8668 // Expect either hotness or relbf 8669 if (EatIfPresent(lltok::kw_hotness)) { 8670 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 8671 return true; 8672 } else { 8673 if (parseToken(lltok::kw_relbf, "expected relbf") || 8674 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 8675 return true; 8676 } 8677 } 8678 // Keep track of the Call array index needing a forward reference. 8679 // We will save the location of the ValueInfo needing an update, but 8680 // can only do so once the std::vector is finalized. 8681 if (VI.getRef() == FwdVIRef) 8682 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8683 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8684 8685 if (parseToken(lltok::rparen, "expected ')' in call")) 8686 return true; 8687 } while (EatIfPresent(lltok::comma)); 8688 8689 // Now that the Calls vector is finalized, it is safe to save the locations 8690 // of any forward GV references that need updating later. 8691 for (auto I : IdToIndexMap) { 8692 auto &Infos = ForwardRefValueInfos[I.first]; 8693 for (auto P : I.second) { 8694 assert(Calls[P.first].first.getRef() == FwdVIRef && 8695 "Forward referenced ValueInfo expected to be empty"); 8696 Infos.emplace_back(&Calls[P.first].first, P.second); 8697 } 8698 } 8699 8700 if (parseToken(lltok::rparen, "expected ')' in calls")) 8701 return true; 8702 8703 return false; 8704 } 8705 8706 /// Hotness 8707 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8708 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 8709 switch (Lex.getKind()) { 8710 case lltok::kw_unknown: 8711 Hotness = CalleeInfo::HotnessType::Unknown; 8712 break; 8713 case lltok::kw_cold: 8714 Hotness = CalleeInfo::HotnessType::Cold; 8715 break; 8716 case lltok::kw_none: 8717 Hotness = CalleeInfo::HotnessType::None; 8718 break; 8719 case lltok::kw_hot: 8720 Hotness = CalleeInfo::HotnessType::Hot; 8721 break; 8722 case lltok::kw_critical: 8723 Hotness = CalleeInfo::HotnessType::Critical; 8724 break; 8725 default: 8726 return error(Lex.getLoc(), "invalid call edge hotness"); 8727 } 8728 Lex.Lex(); 8729 return false; 8730 } 8731 8732 /// OptionalVTableFuncs 8733 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8734 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8735 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8736 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8737 Lex.Lex(); 8738 8739 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") || 8740 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8741 return true; 8742 8743 IdToIndexMapType IdToIndexMap; 8744 // parse each virtual function pair 8745 do { 8746 ValueInfo VI; 8747 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 8748 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8749 parseToken(lltok::colon, "expected ':'")) 8750 return true; 8751 8752 LocTy Loc = Lex.getLoc(); 8753 unsigned GVId; 8754 if (parseGVReference(VI, GVId)) 8755 return true; 8756 8757 uint64_t Offset; 8758 if (parseToken(lltok::comma, "expected comma") || 8759 parseToken(lltok::kw_offset, "expected offset") || 8760 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 8761 return true; 8762 8763 // Keep track of the VTableFuncs array index needing a forward reference. 8764 // We will save the location of the ValueInfo needing an update, but 8765 // can only do so once the std::vector is finalized. 8766 if (VI == EmptyVI) 8767 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8768 VTableFuncs.push_back({VI, Offset}); 8769 8770 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 8771 return true; 8772 } while (EatIfPresent(lltok::comma)); 8773 8774 // Now that the VTableFuncs vector is finalized, it is safe to save the 8775 // locations of any forward GV references that need updating later. 8776 for (auto I : IdToIndexMap) { 8777 auto &Infos = ForwardRefValueInfos[I.first]; 8778 for (auto P : I.second) { 8779 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8780 "Forward referenced ValueInfo expected to be empty"); 8781 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 8782 } 8783 } 8784 8785 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8786 return true; 8787 8788 return false; 8789 } 8790 8791 /// ParamNo := 'param' ':' UInt64 8792 bool LLParser::parseParamNo(uint64_t &ParamNo) { 8793 if (parseToken(lltok::kw_param, "expected 'param' here") || 8794 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 8795 return true; 8796 return false; 8797 } 8798 8799 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 8800 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 8801 APSInt Lower; 8802 APSInt Upper; 8803 auto ParseAPSInt = [&](APSInt &Val) { 8804 if (Lex.getKind() != lltok::APSInt) 8805 return tokError("expected integer"); 8806 Val = Lex.getAPSIntVal(); 8807 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 8808 Val.setIsSigned(true); 8809 Lex.Lex(); 8810 return false; 8811 }; 8812 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 8813 parseToken(lltok::colon, "expected ':' here") || 8814 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 8815 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 8816 parseToken(lltok::rsquare, "expected ']' here")) 8817 return true; 8818 8819 ++Upper; 8820 Range = 8821 (Lower == Upper && !Lower.isMaxValue()) 8822 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 8823 : ConstantRange(Lower, Upper); 8824 8825 return false; 8826 } 8827 8828 /// ParamAccessCall 8829 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 8830 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 8831 IdLocListType &IdLocList) { 8832 if (parseToken(lltok::lparen, "expected '(' here") || 8833 parseToken(lltok::kw_callee, "expected 'callee' here") || 8834 parseToken(lltok::colon, "expected ':' here")) 8835 return true; 8836 8837 unsigned GVId; 8838 ValueInfo VI; 8839 LocTy Loc = Lex.getLoc(); 8840 if (parseGVReference(VI, GVId)) 8841 return true; 8842 8843 Call.Callee = VI; 8844 IdLocList.emplace_back(GVId, Loc); 8845 8846 if (parseToken(lltok::comma, "expected ',' here") || 8847 parseParamNo(Call.ParamNo) || 8848 parseToken(lltok::comma, "expected ',' here") || 8849 parseParamAccessOffset(Call.Offsets)) 8850 return true; 8851 8852 if (parseToken(lltok::rparen, "expected ')' here")) 8853 return true; 8854 8855 return false; 8856 } 8857 8858 /// ParamAccess 8859 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 8860 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 8861 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 8862 IdLocListType &IdLocList) { 8863 if (parseToken(lltok::lparen, "expected '(' here") || 8864 parseParamNo(Param.ParamNo) || 8865 parseToken(lltok::comma, "expected ',' here") || 8866 parseParamAccessOffset(Param.Use)) 8867 return true; 8868 8869 if (EatIfPresent(lltok::comma)) { 8870 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 8871 parseToken(lltok::colon, "expected ':' here") || 8872 parseToken(lltok::lparen, "expected '(' here")) 8873 return true; 8874 do { 8875 FunctionSummary::ParamAccess::Call Call; 8876 if (parseParamAccessCall(Call, IdLocList)) 8877 return true; 8878 Param.Calls.push_back(Call); 8879 } while (EatIfPresent(lltok::comma)); 8880 8881 if (parseToken(lltok::rparen, "expected ')' here")) 8882 return true; 8883 } 8884 8885 if (parseToken(lltok::rparen, "expected ')' here")) 8886 return true; 8887 8888 return false; 8889 } 8890 8891 /// OptionalParamAccesses 8892 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 8893 bool LLParser::parseOptionalParamAccesses( 8894 std::vector<FunctionSummary::ParamAccess> &Params) { 8895 assert(Lex.getKind() == lltok::kw_params); 8896 Lex.Lex(); 8897 8898 if (parseToken(lltok::colon, "expected ':' here") || 8899 parseToken(lltok::lparen, "expected '(' here")) 8900 return true; 8901 8902 IdLocListType VContexts; 8903 size_t CallsNum = 0; 8904 do { 8905 FunctionSummary::ParamAccess ParamAccess; 8906 if (parseParamAccess(ParamAccess, VContexts)) 8907 return true; 8908 CallsNum += ParamAccess.Calls.size(); 8909 assert(VContexts.size() == CallsNum); 8910 (void)CallsNum; 8911 Params.emplace_back(std::move(ParamAccess)); 8912 } while (EatIfPresent(lltok::comma)); 8913 8914 if (parseToken(lltok::rparen, "expected ')' here")) 8915 return true; 8916 8917 // Now that the Params is finalized, it is safe to save the locations 8918 // of any forward GV references that need updating later. 8919 IdLocListType::const_iterator ItContext = VContexts.begin(); 8920 for (auto &PA : Params) { 8921 for (auto &C : PA.Calls) { 8922 if (C.Callee.getRef() == FwdVIRef) 8923 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 8924 ItContext->second); 8925 ++ItContext; 8926 } 8927 } 8928 assert(ItContext == VContexts.end()); 8929 8930 return false; 8931 } 8932 8933 /// OptionalRefs 8934 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 8935 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 8936 assert(Lex.getKind() == lltok::kw_refs); 8937 Lex.Lex(); 8938 8939 if (parseToken(lltok::colon, "expected ':' in refs") || 8940 parseToken(lltok::lparen, "expected '(' in refs")) 8941 return true; 8942 8943 struct ValueContext { 8944 ValueInfo VI; 8945 unsigned GVId; 8946 LocTy Loc; 8947 }; 8948 std::vector<ValueContext> VContexts; 8949 // parse each ref edge 8950 do { 8951 ValueContext VC; 8952 VC.Loc = Lex.getLoc(); 8953 if (parseGVReference(VC.VI, VC.GVId)) 8954 return true; 8955 VContexts.push_back(VC); 8956 } while (EatIfPresent(lltok::comma)); 8957 8958 // Sort value contexts so that ones with writeonly 8959 // and readonly ValueInfo are at the end of VContexts vector. 8960 // See FunctionSummary::specialRefCounts() 8961 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8962 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 8963 }); 8964 8965 IdToIndexMapType IdToIndexMap; 8966 for (auto &VC : VContexts) { 8967 // Keep track of the Refs array index needing a forward reference. 8968 // We will save the location of the ValueInfo needing an update, but 8969 // can only do so once the std::vector is finalized. 8970 if (VC.VI.getRef() == FwdVIRef) 8971 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8972 Refs.push_back(VC.VI); 8973 } 8974 8975 // Now that the Refs vector is finalized, it is safe to save the locations 8976 // of any forward GV references that need updating later. 8977 for (auto I : IdToIndexMap) { 8978 auto &Infos = ForwardRefValueInfos[I.first]; 8979 for (auto P : I.second) { 8980 assert(Refs[P.first].getRef() == FwdVIRef && 8981 "Forward referenced ValueInfo expected to be empty"); 8982 Infos.emplace_back(&Refs[P.first], P.second); 8983 } 8984 } 8985 8986 if (parseToken(lltok::rparen, "expected ')' in refs")) 8987 return true; 8988 8989 return false; 8990 } 8991 8992 /// OptionalTypeIdInfo 8993 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 8994 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 8995 /// [',' TypeCheckedLoadConstVCalls]? ')' 8996 bool LLParser::parseOptionalTypeIdInfo( 8997 FunctionSummary::TypeIdInfo &TypeIdInfo) { 8998 assert(Lex.getKind() == lltok::kw_typeIdInfo); 8999 Lex.Lex(); 9000 9001 if (parseToken(lltok::colon, "expected ':' here") || 9002 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9003 return true; 9004 9005 do { 9006 switch (Lex.getKind()) { 9007 case lltok::kw_typeTests: 9008 if (parseTypeTests(TypeIdInfo.TypeTests)) 9009 return true; 9010 break; 9011 case lltok::kw_typeTestAssumeVCalls: 9012 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 9013 TypeIdInfo.TypeTestAssumeVCalls)) 9014 return true; 9015 break; 9016 case lltok::kw_typeCheckedLoadVCalls: 9017 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 9018 TypeIdInfo.TypeCheckedLoadVCalls)) 9019 return true; 9020 break; 9021 case lltok::kw_typeTestAssumeConstVCalls: 9022 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 9023 TypeIdInfo.TypeTestAssumeConstVCalls)) 9024 return true; 9025 break; 9026 case lltok::kw_typeCheckedLoadConstVCalls: 9027 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 9028 TypeIdInfo.TypeCheckedLoadConstVCalls)) 9029 return true; 9030 break; 9031 default: 9032 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 9033 } 9034 } while (EatIfPresent(lltok::comma)); 9035 9036 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9037 return true; 9038 9039 return false; 9040 } 9041 9042 /// TypeTests 9043 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 9044 /// [',' (SummaryID | UInt64)]* ')' 9045 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 9046 assert(Lex.getKind() == lltok::kw_typeTests); 9047 Lex.Lex(); 9048 9049 if (parseToken(lltok::colon, "expected ':' here") || 9050 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9051 return true; 9052 9053 IdToIndexMapType IdToIndexMap; 9054 do { 9055 GlobalValue::GUID GUID = 0; 9056 if (Lex.getKind() == lltok::SummaryID) { 9057 unsigned ID = Lex.getUIntVal(); 9058 LocTy Loc = Lex.getLoc(); 9059 // Keep track of the TypeTests array index needing a forward reference. 9060 // We will save the location of the GUID needing an update, but 9061 // can only do so once the std::vector is finalized. 9062 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9063 Lex.Lex(); 9064 } else if (parseUInt64(GUID)) 9065 return true; 9066 TypeTests.push_back(GUID); 9067 } while (EatIfPresent(lltok::comma)); 9068 9069 // Now that the TypeTests vector is finalized, it is safe to save the 9070 // locations of any forward GV references that need updating later. 9071 for (auto I : IdToIndexMap) { 9072 auto &Ids = ForwardRefTypeIds[I.first]; 9073 for (auto P : I.second) { 9074 assert(TypeTests[P.first] == 0 && 9075 "Forward referenced type id GUID expected to be 0"); 9076 Ids.emplace_back(&TypeTests[P.first], P.second); 9077 } 9078 } 9079 9080 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9081 return true; 9082 9083 return false; 9084 } 9085 9086 /// VFuncIdList 9087 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9088 bool LLParser::parseVFuncIdList( 9089 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9090 assert(Lex.getKind() == Kind); 9091 Lex.Lex(); 9092 9093 if (parseToken(lltok::colon, "expected ':' here") || 9094 parseToken(lltok::lparen, "expected '(' here")) 9095 return true; 9096 9097 IdToIndexMapType IdToIndexMap; 9098 do { 9099 FunctionSummary::VFuncId VFuncId; 9100 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9101 return true; 9102 VFuncIdList.push_back(VFuncId); 9103 } while (EatIfPresent(lltok::comma)); 9104 9105 if (parseToken(lltok::rparen, "expected ')' here")) 9106 return true; 9107 9108 // Now that the VFuncIdList vector is finalized, it is safe to save the 9109 // locations of any forward GV references that need updating later. 9110 for (auto I : IdToIndexMap) { 9111 auto &Ids = ForwardRefTypeIds[I.first]; 9112 for (auto P : I.second) { 9113 assert(VFuncIdList[P.first].GUID == 0 && 9114 "Forward referenced type id GUID expected to be 0"); 9115 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9116 } 9117 } 9118 9119 return false; 9120 } 9121 9122 /// ConstVCallList 9123 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9124 bool LLParser::parseConstVCallList( 9125 lltok::Kind Kind, 9126 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9127 assert(Lex.getKind() == Kind); 9128 Lex.Lex(); 9129 9130 if (parseToken(lltok::colon, "expected ':' here") || 9131 parseToken(lltok::lparen, "expected '(' here")) 9132 return true; 9133 9134 IdToIndexMapType IdToIndexMap; 9135 do { 9136 FunctionSummary::ConstVCall ConstVCall; 9137 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9138 return true; 9139 ConstVCallList.push_back(ConstVCall); 9140 } while (EatIfPresent(lltok::comma)); 9141 9142 if (parseToken(lltok::rparen, "expected ')' here")) 9143 return true; 9144 9145 // Now that the ConstVCallList vector is finalized, it is safe to save the 9146 // locations of any forward GV references that need updating later. 9147 for (auto I : IdToIndexMap) { 9148 auto &Ids = ForwardRefTypeIds[I.first]; 9149 for (auto P : I.second) { 9150 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9151 "Forward referenced type id GUID expected to be 0"); 9152 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9153 } 9154 } 9155 9156 return false; 9157 } 9158 9159 /// ConstVCall 9160 /// ::= '(' VFuncId ',' Args ')' 9161 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9162 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9163 if (parseToken(lltok::lparen, "expected '(' here") || 9164 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9165 return true; 9166 9167 if (EatIfPresent(lltok::comma)) 9168 if (parseArgs(ConstVCall.Args)) 9169 return true; 9170 9171 if (parseToken(lltok::rparen, "expected ')' here")) 9172 return true; 9173 9174 return false; 9175 } 9176 9177 /// VFuncId 9178 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9179 /// 'offset' ':' UInt64 ')' 9180 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9181 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9182 assert(Lex.getKind() == lltok::kw_vFuncId); 9183 Lex.Lex(); 9184 9185 if (parseToken(lltok::colon, "expected ':' here") || 9186 parseToken(lltok::lparen, "expected '(' here")) 9187 return true; 9188 9189 if (Lex.getKind() == lltok::SummaryID) { 9190 VFuncId.GUID = 0; 9191 unsigned ID = Lex.getUIntVal(); 9192 LocTy Loc = Lex.getLoc(); 9193 // Keep track of the array index needing a forward reference. 9194 // We will save the location of the GUID needing an update, but 9195 // can only do so once the caller's std::vector is finalized. 9196 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9197 Lex.Lex(); 9198 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9199 parseToken(lltok::colon, "expected ':' here") || 9200 parseUInt64(VFuncId.GUID)) 9201 return true; 9202 9203 if (parseToken(lltok::comma, "expected ',' here") || 9204 parseToken(lltok::kw_offset, "expected 'offset' here") || 9205 parseToken(lltok::colon, "expected ':' here") || 9206 parseUInt64(VFuncId.Offset) || 9207 parseToken(lltok::rparen, "expected ')' here")) 9208 return true; 9209 9210 return false; 9211 } 9212 9213 /// GVFlags 9214 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9215 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ',' 9216 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ',' 9217 /// 'canAutoHide' ':' Flag ',' ')' 9218 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9219 assert(Lex.getKind() == lltok::kw_flags); 9220 Lex.Lex(); 9221 9222 if (parseToken(lltok::colon, "expected ':' here") || 9223 parseToken(lltok::lparen, "expected '(' here")) 9224 return true; 9225 9226 do { 9227 unsigned Flag = 0; 9228 switch (Lex.getKind()) { 9229 case lltok::kw_linkage: 9230 Lex.Lex(); 9231 if (parseToken(lltok::colon, "expected ':'")) 9232 return true; 9233 bool HasLinkage; 9234 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9235 assert(HasLinkage && "Linkage not optional in summary entry"); 9236 Lex.Lex(); 9237 break; 9238 case lltok::kw_visibility: 9239 Lex.Lex(); 9240 if (parseToken(lltok::colon, "expected ':'")) 9241 return true; 9242 parseOptionalVisibility(Flag); 9243 GVFlags.Visibility = Flag; 9244 break; 9245 case lltok::kw_notEligibleToImport: 9246 Lex.Lex(); 9247 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9248 return true; 9249 GVFlags.NotEligibleToImport = Flag; 9250 break; 9251 case lltok::kw_live: 9252 Lex.Lex(); 9253 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9254 return true; 9255 GVFlags.Live = Flag; 9256 break; 9257 case lltok::kw_dsoLocal: 9258 Lex.Lex(); 9259 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9260 return true; 9261 GVFlags.DSOLocal = Flag; 9262 break; 9263 case lltok::kw_canAutoHide: 9264 Lex.Lex(); 9265 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9266 return true; 9267 GVFlags.CanAutoHide = Flag; 9268 break; 9269 default: 9270 return error(Lex.getLoc(), "expected gv flag type"); 9271 } 9272 } while (EatIfPresent(lltok::comma)); 9273 9274 if (parseToken(lltok::rparen, "expected ')' here")) 9275 return true; 9276 9277 return false; 9278 } 9279 9280 /// GVarFlags 9281 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9282 /// ',' 'writeonly' ':' Flag 9283 /// ',' 'constant' ':' Flag ')' 9284 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9285 assert(Lex.getKind() == lltok::kw_varFlags); 9286 Lex.Lex(); 9287 9288 if (parseToken(lltok::colon, "expected ':' here") || 9289 parseToken(lltok::lparen, "expected '(' here")) 9290 return true; 9291 9292 auto ParseRest = [this](unsigned int &Val) { 9293 Lex.Lex(); 9294 if (parseToken(lltok::colon, "expected ':'")) 9295 return true; 9296 return parseFlag(Val); 9297 }; 9298 9299 do { 9300 unsigned Flag = 0; 9301 switch (Lex.getKind()) { 9302 case lltok::kw_readonly: 9303 if (ParseRest(Flag)) 9304 return true; 9305 GVarFlags.MaybeReadOnly = Flag; 9306 break; 9307 case lltok::kw_writeonly: 9308 if (ParseRest(Flag)) 9309 return true; 9310 GVarFlags.MaybeWriteOnly = Flag; 9311 break; 9312 case lltok::kw_constant: 9313 if (ParseRest(Flag)) 9314 return true; 9315 GVarFlags.Constant = Flag; 9316 break; 9317 case lltok::kw_vcall_visibility: 9318 if (ParseRest(Flag)) 9319 return true; 9320 GVarFlags.VCallVisibility = Flag; 9321 break; 9322 default: 9323 return error(Lex.getLoc(), "expected gvar flag type"); 9324 } 9325 } while (EatIfPresent(lltok::comma)); 9326 return parseToken(lltok::rparen, "expected ')' here"); 9327 } 9328 9329 /// ModuleReference 9330 /// ::= 'module' ':' UInt 9331 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9332 // parse module id. 9333 if (parseToken(lltok::kw_module, "expected 'module' here") || 9334 parseToken(lltok::colon, "expected ':' here") || 9335 parseToken(lltok::SummaryID, "expected module ID")) 9336 return true; 9337 9338 unsigned ModuleID = Lex.getUIntVal(); 9339 auto I = ModuleIdMap.find(ModuleID); 9340 // We should have already parsed all module IDs 9341 assert(I != ModuleIdMap.end()); 9342 ModulePath = I->second; 9343 return false; 9344 } 9345 9346 /// GVReference 9347 /// ::= SummaryID 9348 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9349 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9350 if (!ReadOnly) 9351 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9352 if (parseToken(lltok::SummaryID, "expected GV ID")) 9353 return true; 9354 9355 GVId = Lex.getUIntVal(); 9356 // Check if we already have a VI for this GV 9357 if (GVId < NumberedValueInfos.size()) { 9358 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9359 VI = NumberedValueInfos[GVId]; 9360 } else 9361 // We will create a forward reference to the stored location. 9362 VI = ValueInfo(false, FwdVIRef); 9363 9364 if (ReadOnly) 9365 VI.setReadOnly(); 9366 if (WriteOnly) 9367 VI.setWriteOnly(); 9368 return false; 9369 } 9370