1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass builds a ModuleSummaryIndex object for the module, to be written 10 // to bitcode or LLVM assembly. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/ProfileSummaryInfo.h" 28 #include "llvm/Analysis/StackSafetyAnalysis.h" 29 #include "llvm/Analysis/TypeMetadataUtils.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/GlobalValue.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/ModuleSummaryIndex.h" 45 #include "llvm/IR/Use.h" 46 #include "llvm/IR/User.h" 47 #include "llvm/InitializePasses.h" 48 #include "llvm/Object/ModuleSymbolTable.h" 49 #include "llvm/Object/SymbolicFile.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/FileSystem.h" 54 #include <algorithm> 55 #include <cassert> 56 #include <cstdint> 57 #include <vector> 58 59 using namespace llvm; 60 61 #define DEBUG_TYPE "module-summary-analysis" 62 63 // Option to force edges cold which will block importing when the 64 // -import-cold-multiplier is set to 0. Useful for debugging. 65 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold = 66 FunctionSummary::FSHT_None; 67 cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC( 68 "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold), 69 cl::desc("Force all edges in the function summary to cold"), 70 cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."), 71 clEnumValN(FunctionSummary::FSHT_AllNonCritical, 72 "all-non-critical", "All non-critical edges."), 73 clEnumValN(FunctionSummary::FSHT_All, "all", "All edges."))); 74 75 cl::opt<std::string> ModuleSummaryDotFile( 76 "module-summary-dot-file", cl::init(""), cl::Hidden, 77 cl::value_desc("filename"), 78 cl::desc("File to emit dot graph of new summary into.")); 79 80 // Walk through the operands of a given User via worklist iteration and populate 81 // the set of GlobalValue references encountered. Invoked either on an 82 // Instruction or a GlobalVariable (which walks its initializer). 83 // Return true if any of the operands contains blockaddress. This is important 84 // to know when computing summary for global var, because if global variable 85 // references basic block address we can't import it separately from function 86 // containing that basic block. For simplicity we currently don't import such 87 // global vars at all. When importing function we aren't interested if any 88 // instruction in it takes an address of any basic block, because instruction 89 // can only take an address of basic block located in the same function. 90 static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser, 91 SetVector<ValueInfo> &RefEdges, 92 SmallPtrSet<const User *, 8> &Visited) { 93 bool HasBlockAddress = false; 94 SmallVector<const User *, 32> Worklist; 95 if (Visited.insert(CurUser).second) 96 Worklist.push_back(CurUser); 97 98 while (!Worklist.empty()) { 99 const User *U = Worklist.pop_back_val(); 100 const auto *CB = dyn_cast<CallBase>(U); 101 102 for (const auto &OI : U->operands()) { 103 const User *Operand = dyn_cast<User>(OI); 104 if (!Operand) 105 continue; 106 if (isa<BlockAddress>(Operand)) { 107 HasBlockAddress = true; 108 continue; 109 } 110 if (auto *GV = dyn_cast<GlobalValue>(Operand)) { 111 // We have a reference to a global value. This should be added to 112 // the reference set unless it is a callee. Callees are handled 113 // specially by WriteFunction and are added to a separate list. 114 if (!(CB && CB->isCallee(&OI))) 115 RefEdges.insert(Index.getOrInsertValueInfo(GV)); 116 continue; 117 } 118 if (Visited.insert(Operand).second) 119 Worklist.push_back(Operand); 120 } 121 } 122 return HasBlockAddress; 123 } 124 125 static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount, 126 ProfileSummaryInfo *PSI) { 127 if (!PSI) 128 return CalleeInfo::HotnessType::Unknown; 129 if (PSI->isHotCount(ProfileCount)) 130 return CalleeInfo::HotnessType::Hot; 131 if (PSI->isColdCount(ProfileCount)) 132 return CalleeInfo::HotnessType::Cold; 133 return CalleeInfo::HotnessType::None; 134 } 135 136 static bool isNonRenamableLocal(const GlobalValue &GV) { 137 return GV.hasSection() && GV.hasLocalLinkage(); 138 } 139 140 /// Determine whether this call has all constant integer arguments (excluding 141 /// "this") and summarize it to VCalls or ConstVCalls as appropriate. 142 static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid, 143 SetVector<FunctionSummary::VFuncId> &VCalls, 144 SetVector<FunctionSummary::ConstVCall> &ConstVCalls) { 145 std::vector<uint64_t> Args; 146 // Start from the second argument to skip the "this" pointer. 147 for (auto &Arg : drop_begin(Call.CB.args())) { 148 auto *CI = dyn_cast<ConstantInt>(Arg); 149 if (!CI || CI->getBitWidth() > 64) { 150 VCalls.insert({Guid, Call.Offset}); 151 return; 152 } 153 Args.push_back(CI->getZExtValue()); 154 } 155 ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)}); 156 } 157 158 /// If this intrinsic call requires that we add information to the function 159 /// summary, do so via the non-constant reference arguments. 160 static void addIntrinsicToSummary( 161 const CallInst *CI, SetVector<GlobalValue::GUID> &TypeTests, 162 SetVector<FunctionSummary::VFuncId> &TypeTestAssumeVCalls, 163 SetVector<FunctionSummary::VFuncId> &TypeCheckedLoadVCalls, 164 SetVector<FunctionSummary::ConstVCall> &TypeTestAssumeConstVCalls, 165 SetVector<FunctionSummary::ConstVCall> &TypeCheckedLoadConstVCalls, 166 DominatorTree &DT) { 167 switch (CI->getCalledFunction()->getIntrinsicID()) { 168 case Intrinsic::type_test: { 169 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1)); 170 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); 171 if (!TypeId) 172 break; 173 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); 174 175 // Produce a summary from type.test intrinsics. We only summarize type.test 176 // intrinsics that are used other than by an llvm.assume intrinsic. 177 // Intrinsics that are assumed are relevant only to the devirtualization 178 // pass, not the type test lowering pass. 179 bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) { 180 return !isa<AssumeInst>(CIU.getUser()); 181 }); 182 if (HasNonAssumeUses) 183 TypeTests.insert(Guid); 184 185 SmallVector<DevirtCallSite, 4> DevirtCalls; 186 SmallVector<CallInst *, 4> Assumes; 187 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); 188 for (auto &Call : DevirtCalls) 189 addVCallToSet(Call, Guid, TypeTestAssumeVCalls, 190 TypeTestAssumeConstVCalls); 191 192 break; 193 } 194 195 case Intrinsic::type_checked_load: { 196 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2)); 197 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); 198 if (!TypeId) 199 break; 200 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); 201 202 SmallVector<DevirtCallSite, 4> DevirtCalls; 203 SmallVector<Instruction *, 4> LoadedPtrs; 204 SmallVector<Instruction *, 4> Preds; 205 bool HasNonCallUses = false; 206 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 207 HasNonCallUses, CI, DT); 208 // Any non-call uses of the result of llvm.type.checked.load will 209 // prevent us from optimizing away the llvm.type.test. 210 if (HasNonCallUses) 211 TypeTests.insert(Guid); 212 for (auto &Call : DevirtCalls) 213 addVCallToSet(Call, Guid, TypeCheckedLoadVCalls, 214 TypeCheckedLoadConstVCalls); 215 216 break; 217 } 218 default: 219 break; 220 } 221 } 222 223 static bool isNonVolatileLoad(const Instruction *I) { 224 if (const auto *LI = dyn_cast<LoadInst>(I)) 225 return !LI->isVolatile(); 226 227 return false; 228 } 229 230 static bool isNonVolatileStore(const Instruction *I) { 231 if (const auto *SI = dyn_cast<StoreInst>(I)) 232 return !SI->isVolatile(); 233 234 return false; 235 } 236 237 static void computeFunctionSummary( 238 ModuleSummaryIndex &Index, const Module &M, const Function &F, 239 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT, 240 bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted, 241 bool IsThinLTO, 242 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) { 243 // Summary not currently supported for anonymous functions, they should 244 // have been named. 245 assert(F.hasName()); 246 247 unsigned NumInsts = 0; 248 // Map from callee ValueId to profile count. Used to accumulate profile 249 // counts for all static calls to a given callee. 250 MapVector<ValueInfo, CalleeInfo> CallGraphEdges; 251 SetVector<ValueInfo> RefEdges, LoadRefEdges, StoreRefEdges; 252 SetVector<GlobalValue::GUID> TypeTests; 253 SetVector<FunctionSummary::VFuncId> TypeTestAssumeVCalls, 254 TypeCheckedLoadVCalls; 255 SetVector<FunctionSummary::ConstVCall> TypeTestAssumeConstVCalls, 256 TypeCheckedLoadConstVCalls; 257 ICallPromotionAnalysis ICallAnalysis; 258 SmallPtrSet<const User *, 8> Visited; 259 260 // Add personality function, prefix data and prologue data to function's ref 261 // list. 262 findRefEdges(Index, &F, RefEdges, Visited); 263 std::vector<const Instruction *> NonVolatileLoads; 264 std::vector<const Instruction *> NonVolatileStores; 265 266 bool HasInlineAsmMaybeReferencingInternal = false; 267 bool HasIndirBranchToBlockAddress = false; 268 bool HasUnknownCall = false; 269 bool MayThrow = false; 270 for (const BasicBlock &BB : F) { 271 // We don't allow inlining of function with indirect branch to blockaddress. 272 // If the blockaddress escapes the function, e.g., via a global variable, 273 // inlining may lead to an invalid cross-function reference. So we shouldn't 274 // import such function either. 275 if (BB.hasAddressTaken()) { 276 for (User *U : BlockAddress::get(const_cast<BasicBlock *>(&BB))->users()) 277 if (!isa<CallBrInst>(*U)) { 278 HasIndirBranchToBlockAddress = true; 279 break; 280 } 281 } 282 283 for (const Instruction &I : BB) { 284 if (I.isDebugOrPseudoInst()) 285 continue; 286 ++NumInsts; 287 288 // Regular LTO module doesn't participate in ThinLTO import, 289 // so no reference from it can be read/writeonly, since this 290 // would require importing variable as local copy 291 if (IsThinLTO) { 292 if (isNonVolatileLoad(&I)) { 293 // Postpone processing of non-volatile load instructions 294 // See comments below 295 Visited.insert(&I); 296 NonVolatileLoads.push_back(&I); 297 continue; 298 } else if (isNonVolatileStore(&I)) { 299 Visited.insert(&I); 300 NonVolatileStores.push_back(&I); 301 // All references from second operand of store (destination address) 302 // can be considered write-only if they're not referenced by any 303 // non-store instruction. References from first operand of store 304 // (stored value) can't be treated either as read- or as write-only 305 // so we add them to RefEdges as we do with all other instructions 306 // except non-volatile load. 307 Value *Stored = I.getOperand(0); 308 if (auto *GV = dyn_cast<GlobalValue>(Stored)) 309 // findRefEdges will try to examine GV operands, so instead 310 // of calling it we should add GV to RefEdges directly. 311 RefEdges.insert(Index.getOrInsertValueInfo(GV)); 312 else if (auto *U = dyn_cast<User>(Stored)) 313 findRefEdges(Index, U, RefEdges, Visited); 314 continue; 315 } 316 } 317 findRefEdges(Index, &I, RefEdges, Visited); 318 const auto *CB = dyn_cast<CallBase>(&I); 319 if (!CB) { 320 if (I.mayThrow()) 321 MayThrow = true; 322 continue; 323 } 324 325 const auto *CI = dyn_cast<CallInst>(&I); 326 // Since we don't know exactly which local values are referenced in inline 327 // assembly, conservatively mark the function as possibly referencing 328 // a local value from inline assembly to ensure we don't export a 329 // reference (which would require renaming and promotion of the 330 // referenced value). 331 if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm()) 332 HasInlineAsmMaybeReferencingInternal = true; 333 334 auto *CalledValue = CB->getCalledOperand(); 335 auto *CalledFunction = CB->getCalledFunction(); 336 if (CalledValue && !CalledFunction) { 337 CalledValue = CalledValue->stripPointerCasts(); 338 // Stripping pointer casts can reveal a called function. 339 CalledFunction = dyn_cast<Function>(CalledValue); 340 } 341 // Check if this is an alias to a function. If so, get the 342 // called aliasee for the checks below. 343 if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) { 344 assert(!CalledFunction && "Expected null called function in callsite for alias"); 345 CalledFunction = dyn_cast<Function>(GA->getAliaseeObject()); 346 } 347 // Check if this is a direct call to a known function or a known 348 // intrinsic, or an indirect call with profile data. 349 if (CalledFunction) { 350 if (CI && CalledFunction->isIntrinsic()) { 351 addIntrinsicToSummary( 352 CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls, 353 TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT); 354 continue; 355 } 356 // We should have named any anonymous globals 357 assert(CalledFunction->hasName()); 358 auto ScaledCount = PSI->getProfileCount(*CB, BFI); 359 auto Hotness = ScaledCount ? getHotness(ScaledCount.getValue(), PSI) 360 : CalleeInfo::HotnessType::Unknown; 361 if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None) 362 Hotness = CalleeInfo::HotnessType::Cold; 363 364 // Use the original CalledValue, in case it was an alias. We want 365 // to record the call edge to the alias in that case. Eventually 366 // an alias summary will be created to associate the alias and 367 // aliasee. 368 auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo( 369 cast<GlobalValue>(CalledValue))]; 370 ValueInfo.updateHotness(Hotness); 371 // Add the relative block frequency to CalleeInfo if there is no profile 372 // information. 373 if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) { 374 uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency(); 375 uint64_t EntryFreq = BFI->getEntryFreq(); 376 ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq); 377 } 378 } else { 379 HasUnknownCall = true; 380 // Skip inline assembly calls. 381 if (CI && CI->isInlineAsm()) 382 continue; 383 // Skip direct calls. 384 if (!CalledValue || isa<Constant>(CalledValue)) 385 continue; 386 387 // Check if the instruction has a callees metadata. If so, add callees 388 // to CallGraphEdges to reflect the references from the metadata, and 389 // to enable importing for subsequent indirect call promotion and 390 // inlining. 391 if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) { 392 for (auto &Op : MD->operands()) { 393 Function *Callee = mdconst::extract_or_null<Function>(Op); 394 if (Callee) 395 CallGraphEdges[Index.getOrInsertValueInfo(Callee)]; 396 } 397 } 398 399 uint32_t NumVals, NumCandidates; 400 uint64_t TotalCount; 401 auto CandidateProfileData = 402 ICallAnalysis.getPromotionCandidatesForInstruction( 403 &I, NumVals, TotalCount, NumCandidates); 404 for (auto &Candidate : CandidateProfileData) 405 CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)] 406 .updateHotness(getHotness(Candidate.Count, PSI)); 407 } 408 } 409 } 410 Index.addBlockCount(F.size()); 411 412 std::vector<ValueInfo> Refs; 413 if (IsThinLTO) { 414 auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs, 415 SetVector<ValueInfo> &Edges, 416 SmallPtrSet<const User *, 8> &Cache) { 417 for (const auto *I : Instrs) { 418 Cache.erase(I); 419 findRefEdges(Index, I, Edges, Cache); 420 } 421 }; 422 423 // By now we processed all instructions in a function, except 424 // non-volatile loads and non-volatile value stores. Let's find 425 // ref edges for both of instruction sets 426 AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited); 427 // We can add some values to the Visited set when processing load 428 // instructions which are also used by stores in NonVolatileStores. 429 // For example this can happen if we have following code: 430 // 431 // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**) 432 // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**) 433 // 434 // After processing loads we'll add bitcast to the Visited set, and if 435 // we use the same set while processing stores, we'll never see store 436 // to @bar and @bar will be mistakenly treated as readonly. 437 SmallPtrSet<const llvm::User *, 8> StoreCache; 438 AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache); 439 440 // If both load and store instruction reference the same variable 441 // we won't be able to optimize it. Add all such reference edges 442 // to RefEdges set. 443 for (auto &VI : StoreRefEdges) 444 if (LoadRefEdges.remove(VI)) 445 RefEdges.insert(VI); 446 447 unsigned RefCnt = RefEdges.size(); 448 // All new reference edges inserted in two loops below are either 449 // read or write only. They will be grouped in the end of RefEdges 450 // vector, so we can use a single integer value to identify them. 451 for (auto &VI : LoadRefEdges) 452 RefEdges.insert(VI); 453 454 unsigned FirstWORef = RefEdges.size(); 455 for (auto &VI : StoreRefEdges) 456 RefEdges.insert(VI); 457 458 Refs = RefEdges.takeVector(); 459 for (; RefCnt < FirstWORef; ++RefCnt) 460 Refs[RefCnt].setReadOnly(); 461 462 for (; RefCnt < Refs.size(); ++RefCnt) 463 Refs[RefCnt].setWriteOnly(); 464 } else { 465 Refs = RefEdges.takeVector(); 466 } 467 // Explicit add hot edges to enforce importing for designated GUIDs for 468 // sample PGO, to enable the same inlines as the profiled optimized binary. 469 for (auto &I : F.getImportGUIDs()) 470 CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness( 471 ForceSummaryEdgesCold == FunctionSummary::FSHT_All 472 ? CalleeInfo::HotnessType::Cold 473 : CalleeInfo::HotnessType::Critical); 474 475 bool NonRenamableLocal = isNonRenamableLocal(F); 476 bool NotEligibleForImport = NonRenamableLocal || 477 HasInlineAsmMaybeReferencingInternal || 478 HasIndirBranchToBlockAddress; 479 GlobalValueSummary::GVFlags Flags( 480 F.getLinkage(), F.getVisibility(), NotEligibleForImport, 481 /* Live = */ false, F.isDSOLocal(), 482 F.hasLinkOnceODRLinkage() && F.hasGlobalUnnamedAddr()); 483 FunctionSummary::FFlags FunFlags{ 484 F.hasFnAttribute(Attribute::ReadNone), 485 F.hasFnAttribute(Attribute::ReadOnly), 486 F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(), 487 // FIXME: refactor this to use the same code that inliner is using. 488 // Don't try to import functions with noinline attribute. 489 F.getAttributes().hasFnAttr(Attribute::NoInline), 490 F.hasFnAttribute(Attribute::AlwaysInline), 491 F.hasFnAttribute(Attribute::NoUnwind), MayThrow, HasUnknownCall}; 492 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 493 if (auto *SSI = GetSSICallback(F)) 494 ParamAccesses = SSI->getParamAccesses(Index); 495 auto FuncSummary = std::make_unique<FunctionSummary>( 496 Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs), 497 CallGraphEdges.takeVector(), TypeTests.takeVector(), 498 TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(), 499 TypeTestAssumeConstVCalls.takeVector(), 500 TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses)); 501 if (NonRenamableLocal) 502 CantBePromoted.insert(F.getGUID()); 503 Index.addGlobalValueSummary(F, std::move(FuncSummary)); 504 } 505 506 /// Find function pointers referenced within the given vtable initializer 507 /// (or subset of an initializer) \p I. The starting offset of \p I within 508 /// the vtable initializer is \p StartingOffset. Any discovered function 509 /// pointers are added to \p VTableFuncs along with their cumulative offset 510 /// within the initializer. 511 static void findFuncPointers(const Constant *I, uint64_t StartingOffset, 512 const Module &M, ModuleSummaryIndex &Index, 513 VTableFuncList &VTableFuncs) { 514 // First check if this is a function pointer. 515 if (I->getType()->isPointerTy()) { 516 auto Fn = dyn_cast<Function>(I->stripPointerCasts()); 517 // We can disregard __cxa_pure_virtual as a possible call target, as 518 // calls to pure virtuals are UB. 519 if (Fn && Fn->getName() != "__cxa_pure_virtual") 520 VTableFuncs.push_back({Index.getOrInsertValueInfo(Fn), StartingOffset}); 521 return; 522 } 523 524 // Walk through the elements in the constant struct or array and recursively 525 // look for virtual function pointers. 526 const DataLayout &DL = M.getDataLayout(); 527 if (auto *C = dyn_cast<ConstantStruct>(I)) { 528 StructType *STy = dyn_cast<StructType>(C->getType()); 529 assert(STy); 530 const StructLayout *SL = DL.getStructLayout(C->getType()); 531 532 for (auto EI : llvm::enumerate(STy->elements())) { 533 auto Offset = SL->getElementOffset(EI.index()); 534 unsigned Op = SL->getElementContainingOffset(Offset); 535 findFuncPointers(cast<Constant>(I->getOperand(Op)), 536 StartingOffset + Offset, M, Index, VTableFuncs); 537 } 538 } else if (auto *C = dyn_cast<ConstantArray>(I)) { 539 ArrayType *ATy = C->getType(); 540 Type *EltTy = ATy->getElementType(); 541 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 542 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { 543 findFuncPointers(cast<Constant>(I->getOperand(i)), 544 StartingOffset + i * EltSize, M, Index, VTableFuncs); 545 } 546 } 547 } 548 549 // Identify the function pointers referenced by vtable definition \p V. 550 static void computeVTableFuncs(ModuleSummaryIndex &Index, 551 const GlobalVariable &V, const Module &M, 552 VTableFuncList &VTableFuncs) { 553 if (!V.isConstant()) 554 return; 555 556 findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index, 557 VTableFuncs); 558 559 #ifndef NDEBUG 560 // Validate that the VTableFuncs list is ordered by offset. 561 uint64_t PrevOffset = 0; 562 for (auto &P : VTableFuncs) { 563 // The findVFuncPointers traversal should have encountered the 564 // functions in offset order. We need to use ">=" since PrevOffset 565 // starts at 0. 566 assert(P.VTableOffset >= PrevOffset); 567 PrevOffset = P.VTableOffset; 568 } 569 #endif 570 } 571 572 /// Record vtable definition \p V for each type metadata it references. 573 static void 574 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index, 575 const GlobalVariable &V, 576 SmallVectorImpl<MDNode *> &Types) { 577 for (MDNode *Type : Types) { 578 auto TypeID = Type->getOperand(1).get(); 579 580 uint64_t Offset = 581 cast<ConstantInt>( 582 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 583 ->getZExtValue(); 584 585 if (auto *TypeId = dyn_cast<MDString>(TypeID)) 586 Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString()) 587 .push_back({Offset, Index.getOrInsertValueInfo(&V)}); 588 } 589 } 590 591 static void computeVariableSummary(ModuleSummaryIndex &Index, 592 const GlobalVariable &V, 593 DenseSet<GlobalValue::GUID> &CantBePromoted, 594 const Module &M, 595 SmallVectorImpl<MDNode *> &Types) { 596 SetVector<ValueInfo> RefEdges; 597 SmallPtrSet<const User *, 8> Visited; 598 bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited); 599 bool NonRenamableLocal = isNonRenamableLocal(V); 600 GlobalValueSummary::GVFlags Flags( 601 V.getLinkage(), V.getVisibility(), NonRenamableLocal, 602 /* Live = */ false, V.isDSOLocal(), 603 V.hasLinkOnceODRLinkage() && V.hasGlobalUnnamedAddr()); 604 605 VTableFuncList VTableFuncs; 606 // If splitting is not enabled, then we compute the summary information 607 // necessary for index-based whole program devirtualization. 608 if (!Index.enableSplitLTOUnit()) { 609 Types.clear(); 610 V.getMetadata(LLVMContext::MD_type, Types); 611 if (!Types.empty()) { 612 // Identify the function pointers referenced by this vtable definition. 613 computeVTableFuncs(Index, V, M, VTableFuncs); 614 615 // Record this vtable definition for each type metadata it references. 616 recordTypeIdCompatibleVtableReferences(Index, V, Types); 617 } 618 } 619 620 // Don't mark variables we won't be able to internalize as read/write-only. 621 bool CanBeInternalized = 622 !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() && 623 !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass(); 624 bool Constant = V.isConstant(); 625 GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized, 626 Constant ? false : CanBeInternalized, 627 Constant, V.getVCallVisibility()); 628 auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags, 629 RefEdges.takeVector()); 630 if (NonRenamableLocal) 631 CantBePromoted.insert(V.getGUID()); 632 if (HasBlockAddress) 633 GVarSummary->setNotEligibleToImport(); 634 if (!VTableFuncs.empty()) 635 GVarSummary->setVTableFuncs(VTableFuncs); 636 Index.addGlobalValueSummary(V, std::move(GVarSummary)); 637 } 638 639 static void 640 computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A, 641 DenseSet<GlobalValue::GUID> &CantBePromoted) { 642 bool NonRenamableLocal = isNonRenamableLocal(A); 643 GlobalValueSummary::GVFlags Flags( 644 A.getLinkage(), A.getVisibility(), NonRenamableLocal, 645 /* Live = */ false, A.isDSOLocal(), 646 A.hasLinkOnceODRLinkage() && A.hasGlobalUnnamedAddr()); 647 auto AS = std::make_unique<AliasSummary>(Flags); 648 auto *Aliasee = A.getAliaseeObject(); 649 auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID()); 650 assert(AliaseeVI && "Alias expects aliasee summary to be available"); 651 assert(AliaseeVI.getSummaryList().size() == 1 && 652 "Expected a single entry per aliasee in per-module index"); 653 AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get()); 654 if (NonRenamableLocal) 655 CantBePromoted.insert(A.getGUID()); 656 Index.addGlobalValueSummary(A, std::move(AS)); 657 } 658 659 // Set LiveRoot flag on entries matching the given value name. 660 static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) { 661 if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name))) 662 for (auto &Summary : VI.getSummaryList()) 663 Summary->setLive(true); 664 } 665 666 ModuleSummaryIndex llvm::buildModuleSummaryIndex( 667 const Module &M, 668 std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback, 669 ProfileSummaryInfo *PSI, 670 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) { 671 assert(PSI); 672 bool EnableSplitLTOUnit = false; 673 if (auto *MD = mdconst::extract_or_null<ConstantInt>( 674 M.getModuleFlag("EnableSplitLTOUnit"))) 675 EnableSplitLTOUnit = MD->getZExtValue(); 676 ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit); 677 678 // Identify the local values in the llvm.used and llvm.compiler.used sets, 679 // which should not be exported as they would then require renaming and 680 // promotion, but we may have opaque uses e.g. in inline asm. We collect them 681 // here because we use this information to mark functions containing inline 682 // assembly calls as not importable. 683 SmallPtrSet<GlobalValue *, 4> LocalsUsed; 684 SmallVector<GlobalValue *, 4> Used; 685 // First collect those in the llvm.used set. 686 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/false); 687 // Next collect those in the llvm.compiler.used set. 688 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/true); 689 DenseSet<GlobalValue::GUID> CantBePromoted; 690 for (auto *V : Used) { 691 if (V->hasLocalLinkage()) { 692 LocalsUsed.insert(V); 693 CantBePromoted.insert(V->getGUID()); 694 } 695 } 696 697 bool HasLocalInlineAsmSymbol = false; 698 if (!M.getModuleInlineAsm().empty()) { 699 // Collect the local values defined by module level asm, and set up 700 // summaries for these symbols so that they can be marked as NoRename, 701 // to prevent export of any use of them in regular IR that would require 702 // renaming within the module level asm. Note we don't need to create a 703 // summary for weak or global defs, as they don't need to be flagged as 704 // NoRename, and defs in module level asm can't be imported anyway. 705 // Also, any values used but not defined within module level asm should 706 // be listed on the llvm.used or llvm.compiler.used global and marked as 707 // referenced from there. 708 ModuleSymbolTable::CollectAsmSymbols( 709 M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) { 710 // Symbols not marked as Weak or Global are local definitions. 711 if (Flags & (object::BasicSymbolRef::SF_Weak | 712 object::BasicSymbolRef::SF_Global)) 713 return; 714 HasLocalInlineAsmSymbol = true; 715 GlobalValue *GV = M.getNamedValue(Name); 716 if (!GV) 717 return; 718 assert(GV->isDeclaration() && "Def in module asm already has definition"); 719 GlobalValueSummary::GVFlags GVFlags( 720 GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility, 721 /* NotEligibleToImport = */ true, 722 /* Live = */ true, 723 /* Local */ GV->isDSOLocal(), 724 GV->hasLinkOnceODRLinkage() && GV->hasGlobalUnnamedAddr()); 725 CantBePromoted.insert(GV->getGUID()); 726 // Create the appropriate summary type. 727 if (Function *F = dyn_cast<Function>(GV)) { 728 std::unique_ptr<FunctionSummary> Summary = 729 std::make_unique<FunctionSummary>( 730 GVFlags, /*InstCount=*/0, 731 FunctionSummary::FFlags{ 732 F->hasFnAttribute(Attribute::ReadNone), 733 F->hasFnAttribute(Attribute::ReadOnly), 734 F->hasFnAttribute(Attribute::NoRecurse), 735 F->returnDoesNotAlias(), 736 /* NoInline = */ false, 737 F->hasFnAttribute(Attribute::AlwaysInline), 738 F->hasFnAttribute(Attribute::NoUnwind), 739 /* MayThrow */ true, 740 /* HasUnknownCall */ true}, 741 /*EntryCount=*/0, ArrayRef<ValueInfo>{}, 742 ArrayRef<FunctionSummary::EdgeTy>{}, 743 ArrayRef<GlobalValue::GUID>{}, 744 ArrayRef<FunctionSummary::VFuncId>{}, 745 ArrayRef<FunctionSummary::VFuncId>{}, 746 ArrayRef<FunctionSummary::ConstVCall>{}, 747 ArrayRef<FunctionSummary::ConstVCall>{}, 748 ArrayRef<FunctionSummary::ParamAccess>{}); 749 Index.addGlobalValueSummary(*GV, std::move(Summary)); 750 } else { 751 std::unique_ptr<GlobalVarSummary> Summary = 752 std::make_unique<GlobalVarSummary>( 753 GVFlags, 754 GlobalVarSummary::GVarFlags( 755 false, false, cast<GlobalVariable>(GV)->isConstant(), 756 GlobalObject::VCallVisibilityPublic), 757 ArrayRef<ValueInfo>{}); 758 Index.addGlobalValueSummary(*GV, std::move(Summary)); 759 } 760 }); 761 } 762 763 bool IsThinLTO = true; 764 if (auto *MD = 765 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 766 IsThinLTO = MD->getZExtValue(); 767 768 // Compute summaries for all functions defined in module, and save in the 769 // index. 770 for (auto &F : M) { 771 if (F.isDeclaration()) 772 continue; 773 774 DominatorTree DT(const_cast<Function &>(F)); 775 BlockFrequencyInfo *BFI = nullptr; 776 std::unique_ptr<BlockFrequencyInfo> BFIPtr; 777 if (GetBFICallback) 778 BFI = GetBFICallback(F); 779 else if (F.hasProfileData()) { 780 LoopInfo LI{DT}; 781 BranchProbabilityInfo BPI{F, LI}; 782 BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI); 783 BFI = BFIPtr.get(); 784 } 785 786 computeFunctionSummary(Index, M, F, BFI, PSI, DT, 787 !LocalsUsed.empty() || HasLocalInlineAsmSymbol, 788 CantBePromoted, IsThinLTO, GetSSICallback); 789 } 790 791 // Compute summaries for all variables defined in module, and save in the 792 // index. 793 SmallVector<MDNode *, 2> Types; 794 for (const GlobalVariable &G : M.globals()) { 795 if (G.isDeclaration()) 796 continue; 797 computeVariableSummary(Index, G, CantBePromoted, M, Types); 798 } 799 800 // Compute summaries for all aliases defined in module, and save in the 801 // index. 802 for (const GlobalAlias &A : M.aliases()) 803 computeAliasSummary(Index, A, CantBePromoted); 804 805 for (auto *V : LocalsUsed) { 806 auto *Summary = Index.getGlobalValueSummary(*V); 807 assert(Summary && "Missing summary for global value"); 808 Summary->setNotEligibleToImport(); 809 } 810 811 // The linker doesn't know about these LLVM produced values, so we need 812 // to flag them as live in the index to ensure index-based dead value 813 // analysis treats them as live roots of the analysis. 814 setLiveRoot(Index, "llvm.used"); 815 setLiveRoot(Index, "llvm.compiler.used"); 816 setLiveRoot(Index, "llvm.global_ctors"); 817 setLiveRoot(Index, "llvm.global_dtors"); 818 setLiveRoot(Index, "llvm.global.annotations"); 819 820 for (auto &GlobalList : Index) { 821 // Ignore entries for references that are undefined in the current module. 822 if (GlobalList.second.SummaryList.empty()) 823 continue; 824 825 assert(GlobalList.second.SummaryList.size() == 1 && 826 "Expected module's index to have one summary per GUID"); 827 auto &Summary = GlobalList.second.SummaryList[0]; 828 if (!IsThinLTO) { 829 Summary->setNotEligibleToImport(); 830 continue; 831 } 832 833 bool AllRefsCanBeExternallyReferenced = 834 llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) { 835 return !CantBePromoted.count(VI.getGUID()); 836 }); 837 if (!AllRefsCanBeExternallyReferenced) { 838 Summary->setNotEligibleToImport(); 839 continue; 840 } 841 842 if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) { 843 bool AllCallsCanBeExternallyReferenced = llvm::all_of( 844 FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) { 845 return !CantBePromoted.count(Edge.first.getGUID()); 846 }); 847 if (!AllCallsCanBeExternallyReferenced) 848 Summary->setNotEligibleToImport(); 849 } 850 } 851 852 if (!ModuleSummaryDotFile.empty()) { 853 std::error_code EC; 854 raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None); 855 if (EC) 856 report_fatal_error(Twine("Failed to open dot file ") + 857 ModuleSummaryDotFile + ": " + EC.message() + "\n"); 858 Index.exportToDot(OSDot, {}); 859 } 860 861 return Index; 862 } 863 864 AnalysisKey ModuleSummaryIndexAnalysis::Key; 865 866 ModuleSummaryIndex 867 ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) { 868 ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M); 869 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 870 bool NeedSSI = needsParamAccessSummary(M); 871 return buildModuleSummaryIndex( 872 M, 873 [&FAM](const Function &F) { 874 return &FAM.getResult<BlockFrequencyAnalysis>( 875 *const_cast<Function *>(&F)); 876 }, 877 &PSI, 878 [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * { 879 return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>( 880 const_cast<Function &>(F)) 881 : nullptr; 882 }); 883 } 884 885 char ModuleSummaryIndexWrapperPass::ID = 0; 886 887 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis", 888 "Module Summary Analysis", false, true) 889 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 890 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 891 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass) 892 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis", 893 "Module Summary Analysis", false, true) 894 895 ModulePass *llvm::createModuleSummaryIndexWrapperPass() { 896 return new ModuleSummaryIndexWrapperPass(); 897 } 898 899 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass() 900 : ModulePass(ID) { 901 initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry()); 902 } 903 904 bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) { 905 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 906 bool NeedSSI = needsParamAccessSummary(M); 907 Index.emplace(buildModuleSummaryIndex( 908 M, 909 [this](const Function &F) { 910 return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>( 911 *const_cast<Function *>(&F)) 912 .getBFI()); 913 }, 914 PSI, 915 [&](const Function &F) -> const StackSafetyInfo * { 916 return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>( 917 const_cast<Function &>(F)) 918 .getResult() 919 : nullptr; 920 })); 921 return false; 922 } 923 924 bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) { 925 Index.reset(); 926 return false; 927 } 928 929 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 930 AU.setPreservesAll(); 931 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 932 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 933 AU.addRequired<StackSafetyInfoWrapperPass>(); 934 } 935 936 char ImmutableModuleSummaryIndexWrapperPass::ID = 0; 937 938 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass( 939 const ModuleSummaryIndex *Index) 940 : ImmutablePass(ID), Index(Index) { 941 initializeImmutableModuleSummaryIndexWrapperPassPass( 942 *PassRegistry::getPassRegistry()); 943 } 944 945 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage( 946 AnalysisUsage &AU) const { 947 AU.setPreservesAll(); 948 } 949 950 ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass( 951 const ModuleSummaryIndex *Index) { 952 return new ImmutableModuleSummaryIndexWrapperPass(Index); 953 } 954 955 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info", 956 "Module summary info", false, true) 957