1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSA class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/MemorySSA.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/iterator.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/CFGPrinter.h" 28 #include "llvm/Analysis/IteratedDominanceFrontier.h" 29 #include "llvm/Analysis/MemoryLocation.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/AssemblyAnnotationWriter.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/PassManager.h" 41 #include "llvm/IR/Use.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/AtomicOrdering.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Compiler.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/FormattedStream.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstdlib> 55 #include <iterator> 56 #include <memory> 57 #include <utility> 58 59 using namespace llvm; 60 61 #define DEBUG_TYPE "memoryssa" 62 63 static cl::opt<std::string> 64 DotCFGMSSA("dot-cfg-mssa", 65 cl::value_desc("file name for generated dot file"), 66 cl::desc("file name for generated dot file"), cl::init("")); 67 68 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 69 true) 70 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 71 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 72 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 73 true) 74 75 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 76 "Memory SSA Printer", false, false) 77 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 78 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 79 "Memory SSA Printer", false, false) 80 81 static cl::opt<unsigned> MaxCheckLimit( 82 "memssa-check-limit", cl::Hidden, cl::init(100), 83 cl::desc("The maximum number of stores/phis MemorySSA" 84 "will consider trying to walk past (default = 100)")); 85 86 // Always verify MemorySSA if expensive checking is enabled. 87 #ifdef EXPENSIVE_CHECKS 88 bool llvm::VerifyMemorySSA = true; 89 #else 90 bool llvm::VerifyMemorySSA = false; 91 #endif 92 /// Enables memory ssa as a dependency for loop passes in legacy pass manager. 93 cl::opt<bool> llvm::EnableMSSALoopDependency( 94 "enable-mssa-loop-dependency", cl::Hidden, cl::init(true), 95 cl::desc("Enable MemorySSA dependency for loop pass manager")); 96 97 static cl::opt<bool, true> 98 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), 99 cl::Hidden, cl::desc("Enable verification of MemorySSA.")); 100 101 namespace llvm { 102 103 /// An assembly annotator class to print Memory SSA information in 104 /// comments. 105 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 106 friend class MemorySSA; 107 108 const MemorySSA *MSSA; 109 110 public: 111 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 112 113 void emitBasicBlockStartAnnot(const BasicBlock *BB, 114 formatted_raw_ostream &OS) override { 115 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 116 OS << "; " << *MA << "\n"; 117 } 118 119 void emitInstructionAnnot(const Instruction *I, 120 formatted_raw_ostream &OS) override { 121 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 122 OS << "; " << *MA << "\n"; 123 } 124 }; 125 126 } // end namespace llvm 127 128 namespace { 129 130 /// Our current alias analysis API differentiates heavily between calls and 131 /// non-calls, and functions called on one usually assert on the other. 132 /// This class encapsulates the distinction to simplify other code that wants 133 /// "Memory affecting instructions and related data" to use as a key. 134 /// For example, this class is used as a densemap key in the use optimizer. 135 class MemoryLocOrCall { 136 public: 137 bool IsCall = false; 138 139 MemoryLocOrCall(MemoryUseOrDef *MUD) 140 : MemoryLocOrCall(MUD->getMemoryInst()) {} 141 MemoryLocOrCall(const MemoryUseOrDef *MUD) 142 : MemoryLocOrCall(MUD->getMemoryInst()) {} 143 144 MemoryLocOrCall(Instruction *Inst) { 145 if (auto *C = dyn_cast<CallBase>(Inst)) { 146 IsCall = true; 147 Call = C; 148 } else { 149 IsCall = false; 150 // There is no such thing as a memorylocation for a fence inst, and it is 151 // unique in that regard. 152 if (!isa<FenceInst>(Inst)) 153 Loc = MemoryLocation::get(Inst); 154 } 155 } 156 157 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 158 159 const CallBase *getCall() const { 160 assert(IsCall); 161 return Call; 162 } 163 164 MemoryLocation getLoc() const { 165 assert(!IsCall); 166 return Loc; 167 } 168 169 bool operator==(const MemoryLocOrCall &Other) const { 170 if (IsCall != Other.IsCall) 171 return false; 172 173 if (!IsCall) 174 return Loc == Other.Loc; 175 176 if (Call->getCalledOperand() != Other.Call->getCalledOperand()) 177 return false; 178 179 return Call->arg_size() == Other.Call->arg_size() && 180 std::equal(Call->arg_begin(), Call->arg_end(), 181 Other.Call->arg_begin()); 182 } 183 184 private: 185 union { 186 const CallBase *Call; 187 MemoryLocation Loc; 188 }; 189 }; 190 191 } // end anonymous namespace 192 193 namespace llvm { 194 195 template <> struct DenseMapInfo<MemoryLocOrCall> { 196 static inline MemoryLocOrCall getEmptyKey() { 197 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 198 } 199 200 static inline MemoryLocOrCall getTombstoneKey() { 201 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 202 } 203 204 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 205 if (!MLOC.IsCall) 206 return hash_combine( 207 MLOC.IsCall, 208 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 209 210 hash_code hash = 211 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( 212 MLOC.getCall()->getCalledOperand())); 213 214 for (const Value *Arg : MLOC.getCall()->args()) 215 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); 216 return hash; 217 } 218 219 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 220 return LHS == RHS; 221 } 222 }; 223 224 } // end namespace llvm 225 226 /// This does one-way checks to see if Use could theoretically be hoisted above 227 /// MayClobber. This will not check the other way around. 228 /// 229 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 230 /// MayClobber, with no potentially clobbering operations in between them. 231 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 232 static bool areLoadsReorderable(const LoadInst *Use, 233 const LoadInst *MayClobber) { 234 bool VolatileUse = Use->isVolatile(); 235 bool VolatileClobber = MayClobber->isVolatile(); 236 // Volatile operations may never be reordered with other volatile operations. 237 if (VolatileUse && VolatileClobber) 238 return false; 239 // Otherwise, volatile doesn't matter here. From the language reference: 240 // 'optimizers may change the order of volatile operations relative to 241 // non-volatile operations.'" 242 243 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 244 // is weaker, it can be moved above other loads. We just need to be sure that 245 // MayClobber isn't an acquire load, because loads can't be moved above 246 // acquire loads. 247 // 248 // Note that this explicitly *does* allow the free reordering of monotonic (or 249 // weaker) loads of the same address. 250 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 251 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 252 AtomicOrdering::Acquire); 253 return !(SeqCstUse || MayClobberIsAcquire); 254 } 255 256 namespace { 257 258 struct ClobberAlias { 259 bool IsClobber; 260 Optional<AliasResult> AR; 261 }; 262 263 } // end anonymous namespace 264 265 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being 266 // ignored if IsClobber = false. 267 template <typename AliasAnalysisType> 268 static ClobberAlias 269 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc, 270 const Instruction *UseInst, AliasAnalysisType &AA) { 271 Instruction *DefInst = MD->getMemoryInst(); 272 assert(DefInst && "Defining instruction not actually an instruction"); 273 Optional<AliasResult> AR; 274 275 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 276 // These intrinsics will show up as affecting memory, but they are just 277 // markers, mostly. 278 // 279 // FIXME: We probably don't actually want MemorySSA to model these at all 280 // (including creating MemoryAccesses for them): we just end up inventing 281 // clobbers where they don't really exist at all. Please see D43269 for 282 // context. 283 switch (II->getIntrinsicID()) { 284 case Intrinsic::lifetime_end: 285 case Intrinsic::invariant_start: 286 case Intrinsic::invariant_end: 287 case Intrinsic::assume: 288 case Intrinsic::experimental_noalias_scope_decl: 289 return {false, NoAlias}; 290 case Intrinsic::dbg_addr: 291 case Intrinsic::dbg_declare: 292 case Intrinsic::dbg_label: 293 case Intrinsic::dbg_value: 294 llvm_unreachable("debuginfo shouldn't have associated defs!"); 295 default: 296 break; 297 } 298 } 299 300 if (auto *CB = dyn_cast_or_null<CallBase>(UseInst)) { 301 ModRefInfo I = AA.getModRefInfo(DefInst, CB); 302 AR = isMustSet(I) ? MustAlias : MayAlias; 303 return {isModOrRefSet(I), AR}; 304 } 305 306 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 307 if (auto *UseLoad = dyn_cast_or_null<LoadInst>(UseInst)) 308 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias}; 309 310 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); 311 AR = isMustSet(I) ? MustAlias : MayAlias; 312 return {isModSet(I), AR}; 313 } 314 315 template <typename AliasAnalysisType> 316 static ClobberAlias instructionClobbersQuery(MemoryDef *MD, 317 const MemoryUseOrDef *MU, 318 const MemoryLocOrCall &UseMLOC, 319 AliasAnalysisType &AA) { 320 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 321 // to exist while MemoryLocOrCall is pushed through places. 322 if (UseMLOC.IsCall) 323 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 324 AA); 325 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 326 AA); 327 } 328 329 // Return true when MD may alias MU, return false otherwise. 330 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 331 AliasAnalysis &AA) { 332 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; 333 } 334 335 namespace { 336 337 struct UpwardsMemoryQuery { 338 // True if our original query started off as a call 339 bool IsCall = false; 340 // The pointer location we started the query with. This will be empty if 341 // IsCall is true. 342 MemoryLocation StartingLoc; 343 // This is the instruction we were querying about. 344 const Instruction *Inst = nullptr; 345 // The MemoryAccess we actually got called with, used to test local domination 346 const MemoryAccess *OriginalAccess = nullptr; 347 Optional<AliasResult> AR = MayAlias; 348 bool SkipSelfAccess = false; 349 350 UpwardsMemoryQuery() = default; 351 352 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 353 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) { 354 if (!IsCall) 355 StartingLoc = MemoryLocation::get(Inst); 356 } 357 }; 358 359 } // end anonymous namespace 360 361 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, 362 BatchAAResults &AA) { 363 Instruction *Inst = MD->getMemoryInst(); 364 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 365 switch (II->getIntrinsicID()) { 366 case Intrinsic::lifetime_end: { 367 MemoryLocation ArgLoc = MemoryLocation::getAfter(II->getArgOperand(1)); 368 return AA.alias(ArgLoc, Loc) == MustAlias; 369 } 370 default: 371 return false; 372 } 373 } 374 return false; 375 } 376 377 template <typename AliasAnalysisType> 378 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA, 379 const Instruction *I) { 380 // If the memory can't be changed, then loads of the memory can't be 381 // clobbered. 382 if (auto *LI = dyn_cast<LoadInst>(I)) 383 return I->hasMetadata(LLVMContext::MD_invariant_load) || 384 AA.pointsToConstantMemory(MemoryLocation::get(LI)); 385 return false; 386 } 387 388 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 389 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 390 /// 391 /// This is meant to be as simple and self-contained as possible. Because it 392 /// uses no cache, etc., it can be relatively expensive. 393 /// 394 /// \param Start The MemoryAccess that we want to walk from. 395 /// \param ClobberAt A clobber for Start. 396 /// \param StartLoc The MemoryLocation for Start. 397 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. 398 /// \param Query The UpwardsMemoryQuery we used for our search. 399 /// \param AA The AliasAnalysis we used for our search. 400 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. 401 402 template <typename AliasAnalysisType> 403 LLVM_ATTRIBUTE_UNUSED static void 404 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, 405 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 406 const UpwardsMemoryQuery &Query, AliasAnalysisType &AA, 407 bool AllowImpreciseClobber = false) { 408 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 409 410 if (MSSA.isLiveOnEntryDef(Start)) { 411 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 412 "liveOnEntry must clobber itself"); 413 return; 414 } 415 416 bool FoundClobber = false; 417 DenseSet<ConstMemoryAccessPair> VisitedPhis; 418 SmallVector<ConstMemoryAccessPair, 8> Worklist; 419 Worklist.emplace_back(Start, StartLoc); 420 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 421 // is found, complain. 422 while (!Worklist.empty()) { 423 auto MAP = Worklist.pop_back_val(); 424 // All we care about is that nothing from Start to ClobberAt clobbers Start. 425 // We learn nothing from revisiting nodes. 426 if (!VisitedPhis.insert(MAP).second) 427 continue; 428 429 for (const auto *MA : def_chain(MAP.first)) { 430 if (MA == ClobberAt) { 431 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 432 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 433 // since it won't let us short-circuit. 434 // 435 // Also, note that this can't be hoisted out of the `Worklist` loop, 436 // since MD may only act as a clobber for 1 of N MemoryLocations. 437 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); 438 if (!FoundClobber) { 439 ClobberAlias CA = 440 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 441 if (CA.IsClobber) { 442 FoundClobber = true; 443 // Not used: CA.AR; 444 } 445 } 446 } 447 break; 448 } 449 450 // We should never hit liveOnEntry, unless it's the clobber. 451 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 452 453 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 454 // If Start is a Def, skip self. 455 if (MD == Start) 456 continue; 457 458 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) 459 .IsClobber && 460 "Found clobber before reaching ClobberAt!"); 461 continue; 462 } 463 464 if (const auto *MU = dyn_cast<MemoryUse>(MA)) { 465 (void)MU; 466 assert (MU == Start && 467 "Can only find use in def chain if Start is a use"); 468 continue; 469 } 470 471 assert(isa<MemoryPhi>(MA)); 472 473 // Add reachable phi predecessors 474 for (auto ItB = upward_defs_begin( 475 {const_cast<MemoryAccess *>(MA), MAP.second}, 476 MSSA.getDomTree()), 477 ItE = upward_defs_end(); 478 ItB != ItE; ++ItB) 479 if (MSSA.getDomTree().isReachableFromEntry(ItB.getPhiArgBlock())) 480 Worklist.emplace_back(*ItB); 481 } 482 } 483 484 // If the verify is done following an optimization, it's possible that 485 // ClobberAt was a conservative clobbering, that we can now infer is not a 486 // true clobbering access. Don't fail the verify if that's the case. 487 // We do have accesses that claim they're optimized, but could be optimized 488 // further. Updating all these can be expensive, so allow it for now (FIXME). 489 if (AllowImpreciseClobber) 490 return; 491 492 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 493 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 494 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 495 "ClobberAt never acted as a clobber"); 496 } 497 498 namespace { 499 500 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 501 /// in one class. 502 template <class AliasAnalysisType> class ClobberWalker { 503 /// Save a few bytes by using unsigned instead of size_t. 504 using ListIndex = unsigned; 505 506 /// Represents a span of contiguous MemoryDefs, potentially ending in a 507 /// MemoryPhi. 508 struct DefPath { 509 MemoryLocation Loc; 510 // Note that, because we always walk in reverse, Last will always dominate 511 // First. Also note that First and Last are inclusive. 512 MemoryAccess *First; 513 MemoryAccess *Last; 514 Optional<ListIndex> Previous; 515 516 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 517 Optional<ListIndex> Previous) 518 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 519 520 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 521 Optional<ListIndex> Previous) 522 : DefPath(Loc, Init, Init, Previous) {} 523 }; 524 525 const MemorySSA &MSSA; 526 AliasAnalysisType &AA; 527 DominatorTree &DT; 528 UpwardsMemoryQuery *Query; 529 unsigned *UpwardWalkLimit; 530 531 // Phi optimization bookkeeping: 532 // List of DefPath to process during the current phi optimization walk. 533 SmallVector<DefPath, 32> Paths; 534 // List of visited <Access, Location> pairs; we can skip paths already 535 // visited with the same memory location. 536 DenseSet<ConstMemoryAccessPair> VisitedPhis; 537 // Record if phi translation has been performed during the current phi 538 // optimization walk, as merging alias results after phi translation can 539 // yield incorrect results. Context in PR46156. 540 bool PerformedPhiTranslation = false; 541 542 /// Find the nearest def or phi that `From` can legally be optimized to. 543 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 544 assert(From->getNumOperands() && "Phi with no operands?"); 545 546 BasicBlock *BB = From->getBlock(); 547 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 548 DomTreeNode *Node = DT.getNode(BB); 549 while ((Node = Node->getIDom())) { 550 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 551 if (Defs) 552 return &*Defs->rbegin(); 553 } 554 return Result; 555 } 556 557 /// Result of calling walkToPhiOrClobber. 558 struct UpwardsWalkResult { 559 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 560 /// both. Include alias info when clobber found. 561 MemoryAccess *Result; 562 bool IsKnownClobber; 563 Optional<AliasResult> AR; 564 }; 565 566 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 567 /// This will update Desc.Last as it walks. It will (optionally) also stop at 568 /// StopAt. 569 /// 570 /// This does not test for whether StopAt is a clobber 571 UpwardsWalkResult 572 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, 573 const MemoryAccess *SkipStopAt = nullptr) const { 574 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 575 assert(UpwardWalkLimit && "Need a valid walk limit"); 576 bool LimitAlreadyReached = false; 577 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set 578 // it to 1. This will not do any alias() calls. It either returns in the 579 // first iteration in the loop below, or is set back to 0 if all def chains 580 // are free of MemoryDefs. 581 if (!*UpwardWalkLimit) { 582 *UpwardWalkLimit = 1; 583 LimitAlreadyReached = true; 584 } 585 586 for (MemoryAccess *Current : def_chain(Desc.Last)) { 587 Desc.Last = Current; 588 if (Current == StopAt || Current == SkipStopAt) 589 return {Current, false, MayAlias}; 590 591 if (auto *MD = dyn_cast<MemoryDef>(Current)) { 592 if (MSSA.isLiveOnEntryDef(MD)) 593 return {MD, true, MustAlias}; 594 595 if (!--*UpwardWalkLimit) 596 return {Current, true, MayAlias}; 597 598 ClobberAlias CA = 599 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); 600 if (CA.IsClobber) 601 return {MD, true, CA.AR}; 602 } 603 } 604 605 if (LimitAlreadyReached) 606 *UpwardWalkLimit = 0; 607 608 assert(isa<MemoryPhi>(Desc.Last) && 609 "Ended at a non-clobber that's not a phi?"); 610 return {Desc.Last, false, MayAlias}; 611 } 612 613 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 614 ListIndex PriorNode) { 615 auto UpwardDefsBegin = upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT, 616 &PerformedPhiTranslation); 617 auto UpwardDefs = make_range(UpwardDefsBegin, upward_defs_end()); 618 for (const MemoryAccessPair &P : UpwardDefs) { 619 PausedSearches.push_back(Paths.size()); 620 Paths.emplace_back(P.second, P.first, PriorNode); 621 } 622 } 623 624 /// Represents a search that terminated after finding a clobber. This clobber 625 /// may or may not be present in the path of defs from LastNode..SearchStart, 626 /// since it may have been retrieved from cache. 627 struct TerminatedPath { 628 MemoryAccess *Clobber; 629 ListIndex LastNode; 630 }; 631 632 /// Get an access that keeps us from optimizing to the given phi. 633 /// 634 /// PausedSearches is an array of indices into the Paths array. Its incoming 635 /// value is the indices of searches that stopped at the last phi optimization 636 /// target. It's left in an unspecified state. 637 /// 638 /// If this returns None, NewPaused is a vector of searches that terminated 639 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 640 Optional<TerminatedPath> 641 getBlockingAccess(const MemoryAccess *StopWhere, 642 SmallVectorImpl<ListIndex> &PausedSearches, 643 SmallVectorImpl<ListIndex> &NewPaused, 644 SmallVectorImpl<TerminatedPath> &Terminated) { 645 assert(!PausedSearches.empty() && "No searches to continue?"); 646 647 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 648 // PausedSearches as our stack. 649 while (!PausedSearches.empty()) { 650 ListIndex PathIndex = PausedSearches.pop_back_val(); 651 DefPath &Node = Paths[PathIndex]; 652 653 // If we've already visited this path with this MemoryLocation, we don't 654 // need to do so again. 655 // 656 // NOTE: That we just drop these paths on the ground makes caching 657 // behavior sporadic. e.g. given a diamond: 658 // A 659 // B C 660 // D 661 // 662 // ...If we walk D, B, A, C, we'll only cache the result of phi 663 // optimization for A, B, and D; C will be skipped because it dies here. 664 // This arguably isn't the worst thing ever, since: 665 // - We generally query things in a top-down order, so if we got below D 666 // without needing cache entries for {C, MemLoc}, then chances are 667 // that those cache entries would end up ultimately unused. 668 // - We still cache things for A, so C only needs to walk up a bit. 669 // If this behavior becomes problematic, we can fix without a ton of extra 670 // work. 671 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) { 672 if (PerformedPhiTranslation) { 673 // If visiting this path performed Phi translation, don't continue, 674 // since it may not be correct to merge results from two paths if one 675 // relies on the phi translation. 676 TerminatedPath Term{Node.Last, PathIndex}; 677 return Term; 678 } 679 continue; 680 } 681 682 const MemoryAccess *SkipStopWhere = nullptr; 683 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { 684 assert(isa<MemoryDef>(Query->OriginalAccess)); 685 SkipStopWhere = Query->OriginalAccess; 686 } 687 688 UpwardsWalkResult Res = walkToPhiOrClobber(Node, 689 /*StopAt=*/StopWhere, 690 /*SkipStopAt=*/SkipStopWhere); 691 if (Res.IsKnownClobber) { 692 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); 693 694 // If this wasn't a cache hit, we hit a clobber when walking. That's a 695 // failure. 696 TerminatedPath Term{Res.Result, PathIndex}; 697 if (!MSSA.dominates(Res.Result, StopWhere)) 698 return Term; 699 700 // Otherwise, it's a valid thing to potentially optimize to. 701 Terminated.push_back(Term); 702 continue; 703 } 704 705 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { 706 // We've hit our target. Save this path off for if we want to continue 707 // walking. If we are in the mode of skipping the OriginalAccess, and 708 // we've reached back to the OriginalAccess, do not save path, we've 709 // just looped back to self. 710 if (Res.Result != SkipStopWhere) 711 NewPaused.push_back(PathIndex); 712 continue; 713 } 714 715 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 716 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 717 } 718 719 return None; 720 } 721 722 template <typename T, typename Walker> 723 struct generic_def_path_iterator 724 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 725 std::forward_iterator_tag, T *> { 726 generic_def_path_iterator() {} 727 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 728 729 T &operator*() const { return curNode(); } 730 731 generic_def_path_iterator &operator++() { 732 N = curNode().Previous; 733 return *this; 734 } 735 736 bool operator==(const generic_def_path_iterator &O) const { 737 if (N.hasValue() != O.N.hasValue()) 738 return false; 739 return !N.hasValue() || *N == *O.N; 740 } 741 742 private: 743 T &curNode() const { return W->Paths[*N]; } 744 745 Walker *W = nullptr; 746 Optional<ListIndex> N = None; 747 }; 748 749 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 750 using const_def_path_iterator = 751 generic_def_path_iterator<const DefPath, const ClobberWalker>; 752 753 iterator_range<def_path_iterator> def_path(ListIndex From) { 754 return make_range(def_path_iterator(this, From), def_path_iterator()); 755 } 756 757 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 758 return make_range(const_def_path_iterator(this, From), 759 const_def_path_iterator()); 760 } 761 762 struct OptznResult { 763 /// The path that contains our result. 764 TerminatedPath PrimaryClobber; 765 /// The paths that we can legally cache back from, but that aren't 766 /// necessarily the result of the Phi optimization. 767 SmallVector<TerminatedPath, 4> OtherClobbers; 768 }; 769 770 ListIndex defPathIndex(const DefPath &N) const { 771 // The assert looks nicer if we don't need to do &N 772 const DefPath *NP = &N; 773 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 774 "Out of bounds DefPath!"); 775 return NP - &Paths.front(); 776 } 777 778 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 779 /// that act as legal clobbers. Note that this won't return *all* clobbers. 780 /// 781 /// Phi optimization algorithm tl;dr: 782 /// - Find the earliest def/phi, A, we can optimize to 783 /// - Find if all paths from the starting memory access ultimately reach A 784 /// - If not, optimization isn't possible. 785 /// - Otherwise, walk from A to another clobber or phi, A'. 786 /// - If A' is a def, we're done. 787 /// - If A' is a phi, try to optimize it. 788 /// 789 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 790 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 791 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 792 const MemoryLocation &Loc) { 793 assert(Paths.empty() && VisitedPhis.empty() && !PerformedPhiTranslation && 794 "Reset the optimization state."); 795 796 Paths.emplace_back(Loc, Start, Phi, None); 797 // Stores how many "valid" optimization nodes we had prior to calling 798 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 799 auto PriorPathsSize = Paths.size(); 800 801 SmallVector<ListIndex, 16> PausedSearches; 802 SmallVector<ListIndex, 8> NewPaused; 803 SmallVector<TerminatedPath, 4> TerminatedPaths; 804 805 addSearches(Phi, PausedSearches, 0); 806 807 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 808 // Paths. 809 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 810 assert(!Paths.empty() && "Need a path to move"); 811 auto Dom = Paths.begin(); 812 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 813 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 814 Dom = I; 815 auto Last = Paths.end() - 1; 816 if (Last != Dom) 817 std::iter_swap(Last, Dom); 818 }; 819 820 MemoryPhi *Current = Phi; 821 while (true) { 822 assert(!MSSA.isLiveOnEntryDef(Current) && 823 "liveOnEntry wasn't treated as a clobber?"); 824 825 const auto *Target = getWalkTarget(Current); 826 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 827 // optimization for the prior phi. 828 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 829 return MSSA.dominates(P.Clobber, Target); 830 })); 831 832 // FIXME: This is broken, because the Blocker may be reported to be 833 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 834 // For the moment, this is fine, since we do nothing with blocker info. 835 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 836 Target, PausedSearches, NewPaused, TerminatedPaths)) { 837 838 // Find the node we started at. We can't search based on N->Last, since 839 // we may have gone around a loop with a different MemoryLocation. 840 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 841 return defPathIndex(N) < PriorPathsSize; 842 }); 843 assert(Iter != def_path_iterator()); 844 845 DefPath &CurNode = *Iter; 846 assert(CurNode.Last == Current); 847 848 // Two things: 849 // A. We can't reliably cache all of NewPaused back. Consider a case 850 // where we have two paths in NewPaused; one of which can't optimize 851 // above this phi, whereas the other can. If we cache the second path 852 // back, we'll end up with suboptimal cache entries. We can handle 853 // cases like this a bit better when we either try to find all 854 // clobbers that block phi optimization, or when our cache starts 855 // supporting unfinished searches. 856 // B. We can't reliably cache TerminatedPaths back here without doing 857 // extra checks; consider a case like: 858 // T 859 // / \ 860 // D C 861 // \ / 862 // S 863 // Where T is our target, C is a node with a clobber on it, D is a 864 // diamond (with a clobber *only* on the left or right node, N), and 865 // S is our start. Say we walk to D, through the node opposite N 866 // (read: ignoring the clobber), and see a cache entry in the top 867 // node of D. That cache entry gets put into TerminatedPaths. We then 868 // walk up to C (N is later in our worklist), find the clobber, and 869 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 870 // the bottom part of D to the cached clobber, ignoring the clobber 871 // in N. Again, this problem goes away if we start tracking all 872 // blockers for a given phi optimization. 873 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 874 return {Result, {}}; 875 } 876 877 // If there's nothing left to search, then all paths led to valid clobbers 878 // that we got from our cache; pick the nearest to the start, and allow 879 // the rest to be cached back. 880 if (NewPaused.empty()) { 881 MoveDominatedPathToEnd(TerminatedPaths); 882 TerminatedPath Result = TerminatedPaths.pop_back_val(); 883 return {Result, std::move(TerminatedPaths)}; 884 } 885 886 MemoryAccess *DefChainEnd = nullptr; 887 SmallVector<TerminatedPath, 4> Clobbers; 888 for (ListIndex Paused : NewPaused) { 889 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 890 if (WR.IsKnownClobber) 891 Clobbers.push_back({WR.Result, Paused}); 892 else 893 // Micro-opt: If we hit the end of the chain, save it. 894 DefChainEnd = WR.Result; 895 } 896 897 if (!TerminatedPaths.empty()) { 898 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 899 // do it now. 900 if (!DefChainEnd) 901 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 902 DefChainEnd = MA; 903 assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry"); 904 905 // If any of the terminated paths don't dominate the phi we'll try to 906 // optimize, we need to figure out what they are and quit. 907 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 908 for (const TerminatedPath &TP : TerminatedPaths) { 909 // Because we know that DefChainEnd is as "high" as we can go, we 910 // don't need local dominance checks; BB dominance is sufficient. 911 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 912 Clobbers.push_back(TP); 913 } 914 } 915 916 // If we have clobbers in the def chain, find the one closest to Current 917 // and quit. 918 if (!Clobbers.empty()) { 919 MoveDominatedPathToEnd(Clobbers); 920 TerminatedPath Result = Clobbers.pop_back_val(); 921 return {Result, std::move(Clobbers)}; 922 } 923 924 assert(all_of(NewPaused, 925 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 926 927 // Because liveOnEntry is a clobber, this must be a phi. 928 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 929 930 PriorPathsSize = Paths.size(); 931 PausedSearches.clear(); 932 for (ListIndex I : NewPaused) 933 addSearches(DefChainPhi, PausedSearches, I); 934 NewPaused.clear(); 935 936 Current = DefChainPhi; 937 } 938 } 939 940 void verifyOptResult(const OptznResult &R) const { 941 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 942 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 943 })); 944 } 945 946 void resetPhiOptznState() { 947 Paths.clear(); 948 VisitedPhis.clear(); 949 PerformedPhiTranslation = false; 950 } 951 952 public: 953 ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT) 954 : MSSA(MSSA), AA(AA), DT(DT) {} 955 956 AliasAnalysisType *getAA() { return &AA; } 957 /// Finds the nearest clobber for the given query, optimizing phis if 958 /// possible. 959 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q, 960 unsigned &UpWalkLimit) { 961 Query = &Q; 962 UpwardWalkLimit = &UpWalkLimit; 963 // Starting limit must be > 0. 964 if (!UpWalkLimit) 965 UpWalkLimit++; 966 967 MemoryAccess *Current = Start; 968 // This walker pretends uses don't exist. If we're handed one, silently grab 969 // its def. (This has the nice side-effect of ensuring we never cache uses) 970 if (auto *MU = dyn_cast<MemoryUse>(Start)) 971 Current = MU->getDefiningAccess(); 972 973 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 974 // Fast path for the overly-common case (no crazy phi optimization 975 // necessary) 976 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 977 MemoryAccess *Result; 978 if (WalkResult.IsKnownClobber) { 979 Result = WalkResult.Result; 980 Q.AR = WalkResult.AR; 981 } else { 982 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 983 Current, Q.StartingLoc); 984 verifyOptResult(OptRes); 985 resetPhiOptznState(); 986 Result = OptRes.PrimaryClobber.Clobber; 987 } 988 989 #ifdef EXPENSIVE_CHECKS 990 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0) 991 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 992 #endif 993 return Result; 994 } 995 }; 996 997 struct RenamePassData { 998 DomTreeNode *DTN; 999 DomTreeNode::const_iterator ChildIt; 1000 MemoryAccess *IncomingVal; 1001 1002 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 1003 MemoryAccess *M) 1004 : DTN(D), ChildIt(It), IncomingVal(M) {} 1005 1006 void swap(RenamePassData &RHS) { 1007 std::swap(DTN, RHS.DTN); 1008 std::swap(ChildIt, RHS.ChildIt); 1009 std::swap(IncomingVal, RHS.IncomingVal); 1010 } 1011 }; 1012 1013 } // end anonymous namespace 1014 1015 namespace llvm { 1016 1017 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase { 1018 ClobberWalker<AliasAnalysisType> Walker; 1019 MemorySSA *MSSA; 1020 1021 public: 1022 ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D) 1023 : Walker(*M, *A, *D), MSSA(M) {} 1024 1025 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, 1026 const MemoryLocation &, 1027 unsigned &); 1028 // Third argument (bool), defines whether the clobber search should skip the 1029 // original queried access. If true, there will be a follow-up query searching 1030 // for a clobber access past "self". Note that the Optimized access is not 1031 // updated if a new clobber is found by this SkipSelf search. If this 1032 // additional query becomes heavily used we may decide to cache the result. 1033 // Walker instantiations will decide how to set the SkipSelf bool. 1034 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool); 1035 }; 1036 1037 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no 1038 /// longer does caching on its own, but the name has been retained for the 1039 /// moment. 1040 template <class AliasAnalysisType> 1041 class MemorySSA::CachingWalker final : public MemorySSAWalker { 1042 ClobberWalkerBase<AliasAnalysisType> *Walker; 1043 1044 public: 1045 CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1046 : MemorySSAWalker(M), Walker(W) {} 1047 ~CachingWalker() override = default; 1048 1049 using MemorySSAWalker::getClobberingMemoryAccess; 1050 1051 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1052 return Walker->getClobberingMemoryAccessBase(MA, UWL, false); 1053 } 1054 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1055 const MemoryLocation &Loc, 1056 unsigned &UWL) { 1057 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1058 } 1059 1060 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1061 unsigned UpwardWalkLimit = MaxCheckLimit; 1062 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1063 } 1064 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1065 const MemoryLocation &Loc) override { 1066 unsigned UpwardWalkLimit = MaxCheckLimit; 1067 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1068 } 1069 1070 void invalidateInfo(MemoryAccess *MA) override { 1071 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1072 MUD->resetOptimized(); 1073 } 1074 }; 1075 1076 template <class AliasAnalysisType> 1077 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { 1078 ClobberWalkerBase<AliasAnalysisType> *Walker; 1079 1080 public: 1081 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1082 : MemorySSAWalker(M), Walker(W) {} 1083 ~SkipSelfWalker() override = default; 1084 1085 using MemorySSAWalker::getClobberingMemoryAccess; 1086 1087 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1088 return Walker->getClobberingMemoryAccessBase(MA, UWL, true); 1089 } 1090 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1091 const MemoryLocation &Loc, 1092 unsigned &UWL) { 1093 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1094 } 1095 1096 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1097 unsigned UpwardWalkLimit = MaxCheckLimit; 1098 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1099 } 1100 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1101 const MemoryLocation &Loc) override { 1102 unsigned UpwardWalkLimit = MaxCheckLimit; 1103 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1104 } 1105 1106 void invalidateInfo(MemoryAccess *MA) override { 1107 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1108 MUD->resetOptimized(); 1109 } 1110 }; 1111 1112 } // end namespace llvm 1113 1114 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 1115 bool RenameAllUses) { 1116 // Pass through values to our successors 1117 for (const BasicBlock *S : successors(BB)) { 1118 auto It = PerBlockAccesses.find(S); 1119 // Rename the phi nodes in our successor block 1120 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1121 continue; 1122 AccessList *Accesses = It->second.get(); 1123 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1124 if (RenameAllUses) { 1125 bool ReplacementDone = false; 1126 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) 1127 if (Phi->getIncomingBlock(I) == BB) { 1128 Phi->setIncomingValue(I, IncomingVal); 1129 ReplacementDone = true; 1130 } 1131 (void) ReplacementDone; 1132 assert(ReplacementDone && "Incomplete phi during partial rename"); 1133 } else 1134 Phi->addIncoming(IncomingVal, BB); 1135 } 1136 } 1137 1138 /// Rename a single basic block into MemorySSA form. 1139 /// Uses the standard SSA renaming algorithm. 1140 /// \returns The new incoming value. 1141 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 1142 bool RenameAllUses) { 1143 auto It = PerBlockAccesses.find(BB); 1144 // Skip most processing if the list is empty. 1145 if (It != PerBlockAccesses.end()) { 1146 AccessList *Accesses = It->second.get(); 1147 for (MemoryAccess &L : *Accesses) { 1148 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 1149 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 1150 MUD->setDefiningAccess(IncomingVal); 1151 if (isa<MemoryDef>(&L)) 1152 IncomingVal = &L; 1153 } else { 1154 IncomingVal = &L; 1155 } 1156 } 1157 } 1158 return IncomingVal; 1159 } 1160 1161 /// This is the standard SSA renaming algorithm. 1162 /// 1163 /// We walk the dominator tree in preorder, renaming accesses, and then filling 1164 /// in phi nodes in our successors. 1165 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 1166 SmallPtrSetImpl<BasicBlock *> &Visited, 1167 bool SkipVisited, bool RenameAllUses) { 1168 assert(Root && "Trying to rename accesses in an unreachable block"); 1169 1170 SmallVector<RenamePassData, 32> WorkStack; 1171 // Skip everything if we already renamed this block and we are skipping. 1172 // Note: You can't sink this into the if, because we need it to occur 1173 // regardless of whether we skip blocks or not. 1174 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 1175 if (SkipVisited && AlreadyVisited) 1176 return; 1177 1178 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 1179 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 1180 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 1181 1182 while (!WorkStack.empty()) { 1183 DomTreeNode *Node = WorkStack.back().DTN; 1184 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 1185 IncomingVal = WorkStack.back().IncomingVal; 1186 1187 if (ChildIt == Node->end()) { 1188 WorkStack.pop_back(); 1189 } else { 1190 DomTreeNode *Child = *ChildIt; 1191 ++WorkStack.back().ChildIt; 1192 BasicBlock *BB = Child->getBlock(); 1193 // Note: You can't sink this into the if, because we need it to occur 1194 // regardless of whether we skip blocks or not. 1195 AlreadyVisited = !Visited.insert(BB).second; 1196 if (SkipVisited && AlreadyVisited) { 1197 // We already visited this during our renaming, which can happen when 1198 // being asked to rename multiple blocks. Figure out the incoming val, 1199 // which is the last def. 1200 // Incoming value can only change if there is a block def, and in that 1201 // case, it's the last block def in the list. 1202 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1203 IncomingVal = &*BlockDefs->rbegin(); 1204 } else 1205 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1206 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1207 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1208 } 1209 } 1210 } 1211 1212 /// This handles unreachable block accesses by deleting phi nodes in 1213 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1214 /// being uses of the live on entry definition. 1215 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1216 assert(!DT->isReachableFromEntry(BB) && 1217 "Reachable block found while handling unreachable blocks"); 1218 1219 // Make sure phi nodes in our reachable successors end up with a 1220 // LiveOnEntryDef for our incoming edge, even though our block is forward 1221 // unreachable. We could just disconnect these blocks from the CFG fully, 1222 // but we do not right now. 1223 for (const BasicBlock *S : successors(BB)) { 1224 if (!DT->isReachableFromEntry(S)) 1225 continue; 1226 auto It = PerBlockAccesses.find(S); 1227 // Rename the phi nodes in our successor block 1228 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1229 continue; 1230 AccessList *Accesses = It->second.get(); 1231 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1232 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1233 } 1234 1235 auto It = PerBlockAccesses.find(BB); 1236 if (It == PerBlockAccesses.end()) 1237 return; 1238 1239 auto &Accesses = It->second; 1240 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1241 auto Next = std::next(AI); 1242 // If we have a phi, just remove it. We are going to replace all 1243 // users with live on entry. 1244 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1245 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1246 else 1247 Accesses->erase(AI); 1248 AI = Next; 1249 } 1250 } 1251 1252 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1253 : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1254 SkipWalker(nullptr), NextID(0) { 1255 // Build MemorySSA using a batch alias analysis. This reuses the internal 1256 // state that AA collects during an alias()/getModRefInfo() call. This is 1257 // safe because there are no CFG changes while building MemorySSA and can 1258 // significantly reduce the time spent by the compiler in AA, because we will 1259 // make queries about all the instructions in the Function. 1260 assert(AA && "No alias analysis?"); 1261 BatchAAResults BatchAA(*AA); 1262 buildMemorySSA(BatchAA); 1263 // Intentionally leave AA to nullptr while building so we don't accidently 1264 // use non-batch AliasAnalysis. 1265 this->AA = AA; 1266 // Also create the walker here. 1267 getWalker(); 1268 } 1269 1270 MemorySSA::~MemorySSA() { 1271 // Drop all our references 1272 for (const auto &Pair : PerBlockAccesses) 1273 for (MemoryAccess &MA : *Pair.second) 1274 MA.dropAllReferences(); 1275 } 1276 1277 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1278 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1279 1280 if (Res.second) 1281 Res.first->second = std::make_unique<AccessList>(); 1282 return Res.first->second.get(); 1283 } 1284 1285 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1286 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1287 1288 if (Res.second) 1289 Res.first->second = std::make_unique<DefsList>(); 1290 return Res.first->second.get(); 1291 } 1292 1293 namespace llvm { 1294 1295 /// This class is a batch walker of all MemoryUse's in the program, and points 1296 /// their defining access at the thing that actually clobbers them. Because it 1297 /// is a batch walker that touches everything, it does not operate like the 1298 /// other walkers. This walker is basically performing a top-down SSA renaming 1299 /// pass, where the version stack is used as the cache. This enables it to be 1300 /// significantly more time and memory efficient than using the regular walker, 1301 /// which is walking bottom-up. 1302 class MemorySSA::OptimizeUses { 1303 public: 1304 OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker, 1305 BatchAAResults *BAA, DominatorTree *DT) 1306 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {} 1307 1308 void optimizeUses(); 1309 1310 private: 1311 /// This represents where a given memorylocation is in the stack. 1312 struct MemlocStackInfo { 1313 // This essentially is keeping track of versions of the stack. Whenever 1314 // the stack changes due to pushes or pops, these versions increase. 1315 unsigned long StackEpoch; 1316 unsigned long PopEpoch; 1317 // This is the lower bound of places on the stack to check. It is equal to 1318 // the place the last stack walk ended. 1319 // Note: Correctness depends on this being initialized to 0, which densemap 1320 // does 1321 unsigned long LowerBound; 1322 const BasicBlock *LowerBoundBlock; 1323 // This is where the last walk for this memory location ended. 1324 unsigned long LastKill; 1325 bool LastKillValid; 1326 Optional<AliasResult> AR; 1327 }; 1328 1329 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1330 SmallVectorImpl<MemoryAccess *> &, 1331 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1332 1333 MemorySSA *MSSA; 1334 CachingWalker<BatchAAResults> *Walker; 1335 BatchAAResults *AA; 1336 DominatorTree *DT; 1337 }; 1338 1339 } // end namespace llvm 1340 1341 /// Optimize the uses in a given block This is basically the SSA renaming 1342 /// algorithm, with one caveat: We are able to use a single stack for all 1343 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1344 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1345 /// going to be some position in that stack of possible ones. 1346 /// 1347 /// We track the stack positions that each MemoryLocation needs 1348 /// to check, and last ended at. This is because we only want to check the 1349 /// things that changed since last time. The same MemoryLocation should 1350 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1351 /// things like this, and if they start, we can modify MemoryLocOrCall to 1352 /// include relevant data) 1353 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1354 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1355 SmallVectorImpl<MemoryAccess *> &VersionStack, 1356 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1357 1358 /// If no accesses, nothing to do. 1359 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1360 if (Accesses == nullptr) 1361 return; 1362 1363 // Pop everything that doesn't dominate the current block off the stack, 1364 // increment the PopEpoch to account for this. 1365 while (true) { 1366 assert( 1367 !VersionStack.empty() && 1368 "Version stack should have liveOnEntry sentinel dominating everything"); 1369 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1370 if (DT->dominates(BackBlock, BB)) 1371 break; 1372 while (VersionStack.back()->getBlock() == BackBlock) 1373 VersionStack.pop_back(); 1374 ++PopEpoch; 1375 } 1376 1377 for (MemoryAccess &MA : *Accesses) { 1378 auto *MU = dyn_cast<MemoryUse>(&MA); 1379 if (!MU) { 1380 VersionStack.push_back(&MA); 1381 ++StackEpoch; 1382 continue; 1383 } 1384 1385 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1386 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); 1387 continue; 1388 } 1389 1390 MemoryLocOrCall UseMLOC(MU); 1391 auto &LocInfo = LocStackInfo[UseMLOC]; 1392 // If the pop epoch changed, it means we've removed stuff from top of 1393 // stack due to changing blocks. We may have to reset the lower bound or 1394 // last kill info. 1395 if (LocInfo.PopEpoch != PopEpoch) { 1396 LocInfo.PopEpoch = PopEpoch; 1397 LocInfo.StackEpoch = StackEpoch; 1398 // If the lower bound was in something that no longer dominates us, we 1399 // have to reset it. 1400 // We can't simply track stack size, because the stack may have had 1401 // pushes/pops in the meantime. 1402 // XXX: This is non-optimal, but only is slower cases with heavily 1403 // branching dominator trees. To get the optimal number of queries would 1404 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1405 // the top of that stack dominates us. This does not seem worth it ATM. 1406 // A much cheaper optimization would be to always explore the deepest 1407 // branch of the dominator tree first. This will guarantee this resets on 1408 // the smallest set of blocks. 1409 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1410 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1411 // Reset the lower bound of things to check. 1412 // TODO: Some day we should be able to reset to last kill, rather than 1413 // 0. 1414 LocInfo.LowerBound = 0; 1415 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1416 LocInfo.LastKillValid = false; 1417 } 1418 } else if (LocInfo.StackEpoch != StackEpoch) { 1419 // If all that has changed is the StackEpoch, we only have to check the 1420 // new things on the stack, because we've checked everything before. In 1421 // this case, the lower bound of things to check remains the same. 1422 LocInfo.PopEpoch = PopEpoch; 1423 LocInfo.StackEpoch = StackEpoch; 1424 } 1425 if (!LocInfo.LastKillValid) { 1426 LocInfo.LastKill = VersionStack.size() - 1; 1427 LocInfo.LastKillValid = true; 1428 LocInfo.AR = MayAlias; 1429 } 1430 1431 // At this point, we should have corrected last kill and LowerBound to be 1432 // in bounds. 1433 assert(LocInfo.LowerBound < VersionStack.size() && 1434 "Lower bound out of range"); 1435 assert(LocInfo.LastKill < VersionStack.size() && 1436 "Last kill info out of range"); 1437 // In any case, the new upper bound is the top of the stack. 1438 unsigned long UpperBound = VersionStack.size() - 1; 1439 1440 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1441 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1442 << *(MU->getMemoryInst()) << ")" 1443 << " because there are " 1444 << UpperBound - LocInfo.LowerBound 1445 << " stores to disambiguate\n"); 1446 // Because we did not walk, LastKill is no longer valid, as this may 1447 // have been a kill. 1448 LocInfo.LastKillValid = false; 1449 continue; 1450 } 1451 bool FoundClobberResult = false; 1452 unsigned UpwardWalkLimit = MaxCheckLimit; 1453 while (UpperBound > LocInfo.LowerBound) { 1454 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1455 // For phis, use the walker, see where we ended up, go there 1456 MemoryAccess *Result = 1457 Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit); 1458 // We are guaranteed to find it or something is wrong 1459 while (VersionStack[UpperBound] != Result) { 1460 assert(UpperBound != 0); 1461 --UpperBound; 1462 } 1463 FoundClobberResult = true; 1464 break; 1465 } 1466 1467 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1468 // If the lifetime of the pointer ends at this instruction, it's live on 1469 // entry. 1470 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { 1471 // Reset UpperBound to liveOnEntryDef's place in the stack 1472 UpperBound = 0; 1473 FoundClobberResult = true; 1474 LocInfo.AR = MustAlias; 1475 break; 1476 } 1477 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); 1478 if (CA.IsClobber) { 1479 FoundClobberResult = true; 1480 LocInfo.AR = CA.AR; 1481 break; 1482 } 1483 --UpperBound; 1484 } 1485 1486 // Note: Phis always have AliasResult AR set to MayAlias ATM. 1487 1488 // At the end of this loop, UpperBound is either a clobber, or lower bound 1489 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1490 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1491 // We were last killed now by where we got to 1492 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) 1493 LocInfo.AR = None; 1494 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); 1495 LocInfo.LastKill = UpperBound; 1496 } else { 1497 // Otherwise, we checked all the new ones, and now we know we can get to 1498 // LastKill. 1499 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); 1500 } 1501 LocInfo.LowerBound = VersionStack.size() - 1; 1502 LocInfo.LowerBoundBlock = BB; 1503 } 1504 } 1505 1506 /// Optimize uses to point to their actual clobbering definitions. 1507 void MemorySSA::OptimizeUses::optimizeUses() { 1508 SmallVector<MemoryAccess *, 16> VersionStack; 1509 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1510 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1511 1512 unsigned long StackEpoch = 1; 1513 unsigned long PopEpoch = 1; 1514 // We perform a non-recursive top-down dominator tree walk. 1515 for (const auto *DomNode : depth_first(DT->getRootNode())) 1516 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1517 LocStackInfo); 1518 } 1519 1520 void MemorySSA::placePHINodes( 1521 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { 1522 // Determine where our MemoryPhi's should go 1523 ForwardIDFCalculator IDFs(*DT); 1524 IDFs.setDefiningBlocks(DefiningBlocks); 1525 SmallVector<BasicBlock *, 32> IDFBlocks; 1526 IDFs.calculate(IDFBlocks); 1527 1528 // Now place MemoryPhi nodes. 1529 for (auto &BB : IDFBlocks) 1530 createMemoryPhi(BB); 1531 } 1532 1533 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) { 1534 // We create an access to represent "live on entry", for things like 1535 // arguments or users of globals, where the memory they use is defined before 1536 // the beginning of the function. We do not actually insert it into the IR. 1537 // We do not define a live on exit for the immediate uses, and thus our 1538 // semantics do *not* imply that something with no immediate uses can simply 1539 // be removed. 1540 BasicBlock &StartingPoint = F.getEntryBlock(); 1541 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, 1542 &StartingPoint, NextID++)); 1543 1544 // We maintain lists of memory accesses per-block, trading memory for time. We 1545 // could just look up the memory access for every possible instruction in the 1546 // stream. 1547 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1548 // Go through each block, figure out where defs occur, and chain together all 1549 // the accesses. 1550 for (BasicBlock &B : F) { 1551 bool InsertIntoDef = false; 1552 AccessList *Accesses = nullptr; 1553 DefsList *Defs = nullptr; 1554 for (Instruction &I : B) { 1555 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA); 1556 if (!MUD) 1557 continue; 1558 1559 if (!Accesses) 1560 Accesses = getOrCreateAccessList(&B); 1561 Accesses->push_back(MUD); 1562 if (isa<MemoryDef>(MUD)) { 1563 InsertIntoDef = true; 1564 if (!Defs) 1565 Defs = getOrCreateDefsList(&B); 1566 Defs->push_back(*MUD); 1567 } 1568 } 1569 if (InsertIntoDef) 1570 DefiningBlocks.insert(&B); 1571 } 1572 placePHINodes(DefiningBlocks); 1573 1574 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1575 // filled in with all blocks. 1576 SmallPtrSet<BasicBlock *, 16> Visited; 1577 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1578 1579 ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT); 1580 CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase); 1581 OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses(); 1582 1583 // Mark the uses in unreachable blocks as live on entry, so that they go 1584 // somewhere. 1585 for (auto &BB : F) 1586 if (!Visited.count(&BB)) 1587 markUnreachableAsLiveOnEntry(&BB); 1588 } 1589 1590 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1591 1592 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() { 1593 if (Walker) 1594 return Walker.get(); 1595 1596 if (!WalkerBase) 1597 WalkerBase = 1598 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1599 1600 Walker = 1601 std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get()); 1602 return Walker.get(); 1603 } 1604 1605 MemorySSAWalker *MemorySSA::getSkipSelfWalker() { 1606 if (SkipWalker) 1607 return SkipWalker.get(); 1608 1609 if (!WalkerBase) 1610 WalkerBase = 1611 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1612 1613 SkipWalker = 1614 std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get()); 1615 return SkipWalker.get(); 1616 } 1617 1618 1619 // This is a helper function used by the creation routines. It places NewAccess 1620 // into the access and defs lists for a given basic block, at the given 1621 // insertion point. 1622 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1623 const BasicBlock *BB, 1624 InsertionPlace Point) { 1625 auto *Accesses = getOrCreateAccessList(BB); 1626 if (Point == Beginning) { 1627 // If it's a phi node, it goes first, otherwise, it goes after any phi 1628 // nodes. 1629 if (isa<MemoryPhi>(NewAccess)) { 1630 Accesses->push_front(NewAccess); 1631 auto *Defs = getOrCreateDefsList(BB); 1632 Defs->push_front(*NewAccess); 1633 } else { 1634 auto AI = find_if_not( 1635 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1636 Accesses->insert(AI, NewAccess); 1637 if (!isa<MemoryUse>(NewAccess)) { 1638 auto *Defs = getOrCreateDefsList(BB); 1639 auto DI = find_if_not( 1640 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1641 Defs->insert(DI, *NewAccess); 1642 } 1643 } 1644 } else { 1645 Accesses->push_back(NewAccess); 1646 if (!isa<MemoryUse>(NewAccess)) { 1647 auto *Defs = getOrCreateDefsList(BB); 1648 Defs->push_back(*NewAccess); 1649 } 1650 } 1651 BlockNumberingValid.erase(BB); 1652 } 1653 1654 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1655 AccessList::iterator InsertPt) { 1656 auto *Accesses = getWritableBlockAccesses(BB); 1657 bool WasEnd = InsertPt == Accesses->end(); 1658 Accesses->insert(AccessList::iterator(InsertPt), What); 1659 if (!isa<MemoryUse>(What)) { 1660 auto *Defs = getOrCreateDefsList(BB); 1661 // If we got asked to insert at the end, we have an easy job, just shove it 1662 // at the end. If we got asked to insert before an existing def, we also get 1663 // an iterator. If we got asked to insert before a use, we have to hunt for 1664 // the next def. 1665 if (WasEnd) { 1666 Defs->push_back(*What); 1667 } else if (isa<MemoryDef>(InsertPt)) { 1668 Defs->insert(InsertPt->getDefsIterator(), *What); 1669 } else { 1670 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1671 ++InsertPt; 1672 // Either we found a def, or we are inserting at the end 1673 if (InsertPt == Accesses->end()) 1674 Defs->push_back(*What); 1675 else 1676 Defs->insert(InsertPt->getDefsIterator(), *What); 1677 } 1678 } 1679 BlockNumberingValid.erase(BB); 1680 } 1681 1682 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { 1683 // Keep it in the lookup tables, remove from the lists 1684 removeFromLists(What, false); 1685 1686 // Note that moving should implicitly invalidate the optimized state of a 1687 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a 1688 // MemoryDef. 1689 if (auto *MD = dyn_cast<MemoryDef>(What)) 1690 MD->resetOptimized(); 1691 What->setBlock(BB); 1692 } 1693 1694 // Move What before Where in the IR. The end result is that What will belong to 1695 // the right lists and have the right Block set, but will not otherwise be 1696 // correct. It will not have the right defining access, and if it is a def, 1697 // things below it will not properly be updated. 1698 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1699 AccessList::iterator Where) { 1700 prepareForMoveTo(What, BB); 1701 insertIntoListsBefore(What, BB, Where); 1702 } 1703 1704 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, 1705 InsertionPlace Point) { 1706 if (isa<MemoryPhi>(What)) { 1707 assert(Point == Beginning && 1708 "Can only move a Phi at the beginning of the block"); 1709 // Update lookup table entry 1710 ValueToMemoryAccess.erase(What->getBlock()); 1711 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; 1712 (void)Inserted; 1713 assert(Inserted && "Cannot move a Phi to a block that already has one"); 1714 } 1715 1716 prepareForMoveTo(What, BB); 1717 insertIntoListsForBlock(What, BB, Point); 1718 } 1719 1720 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1721 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1722 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1723 // Phi's always are placed at the front of the block. 1724 insertIntoListsForBlock(Phi, BB, Beginning); 1725 ValueToMemoryAccess[BB] = Phi; 1726 return Phi; 1727 } 1728 1729 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1730 MemoryAccess *Definition, 1731 const MemoryUseOrDef *Template, 1732 bool CreationMustSucceed) { 1733 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1734 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template); 1735 if (CreationMustSucceed) 1736 assert(NewAccess != nullptr && "Tried to create a memory access for a " 1737 "non-memory touching instruction"); 1738 if (NewAccess) { 1739 assert((!Definition || !isa<MemoryUse>(Definition)) && 1740 "A use cannot be a defining access"); 1741 NewAccess->setDefiningAccess(Definition); 1742 } 1743 return NewAccess; 1744 } 1745 1746 // Return true if the instruction has ordering constraints. 1747 // Note specifically that this only considers stores and loads 1748 // because others are still considered ModRef by getModRefInfo. 1749 static inline bool isOrdered(const Instruction *I) { 1750 if (auto *SI = dyn_cast<StoreInst>(I)) { 1751 if (!SI->isUnordered()) 1752 return true; 1753 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1754 if (!LI->isUnordered()) 1755 return true; 1756 } 1757 return false; 1758 } 1759 1760 /// Helper function to create new memory accesses 1761 template <typename AliasAnalysisType> 1762 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, 1763 AliasAnalysisType *AAP, 1764 const MemoryUseOrDef *Template) { 1765 // The assume intrinsic has a control dependency which we model by claiming 1766 // that it writes arbitrarily. Debuginfo intrinsics may be considered 1767 // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory 1768 // dependencies here. 1769 // FIXME: Replace this special casing with a more accurate modelling of 1770 // assume's control dependency. 1771 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1772 switch (II->getIntrinsicID()) { 1773 default: 1774 break; 1775 case Intrinsic::assume: 1776 case Intrinsic::experimental_noalias_scope_decl: 1777 return nullptr; 1778 } 1779 } 1780 1781 // Using a nonstandard AA pipelines might leave us with unexpected modref 1782 // results for I, so add a check to not model instructions that may not read 1783 // from or write to memory. This is necessary for correctness. 1784 if (!I->mayReadFromMemory() && !I->mayWriteToMemory()) 1785 return nullptr; 1786 1787 bool Def, Use; 1788 if (Template) { 1789 Def = isa<MemoryDef>(Template); 1790 Use = isa<MemoryUse>(Template); 1791 #if !defined(NDEBUG) 1792 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1793 bool DefCheck, UseCheck; 1794 DefCheck = isModSet(ModRef) || isOrdered(I); 1795 UseCheck = isRefSet(ModRef); 1796 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template"); 1797 #endif 1798 } else { 1799 // Find out what affect this instruction has on memory. 1800 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1801 // The isOrdered check is used to ensure that volatiles end up as defs 1802 // (atomics end up as ModRef right now anyway). Until we separate the 1803 // ordering chain from the memory chain, this enables people to see at least 1804 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1805 // will still give an answer that bypasses other volatile loads. TODO: 1806 // Separate memory aliasing and ordering into two different chains so that 1807 // we can precisely represent both "what memory will this read/write/is 1808 // clobbered by" and "what instructions can I move this past". 1809 Def = isModSet(ModRef) || isOrdered(I); 1810 Use = isRefSet(ModRef); 1811 } 1812 1813 // It's possible for an instruction to not modify memory at all. During 1814 // construction, we ignore them. 1815 if (!Def && !Use) 1816 return nullptr; 1817 1818 MemoryUseOrDef *MUD; 1819 if (Def) 1820 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1821 else 1822 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1823 ValueToMemoryAccess[I] = MUD; 1824 return MUD; 1825 } 1826 1827 /// Properly remove \p MA from all of MemorySSA's lookup tables. 1828 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1829 assert(MA->use_empty() && 1830 "Trying to remove memory access that still has uses"); 1831 BlockNumbering.erase(MA); 1832 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1833 MUD->setDefiningAccess(nullptr); 1834 // Invalidate our walker's cache if necessary 1835 if (!isa<MemoryUse>(MA)) 1836 getWalker()->invalidateInfo(MA); 1837 1838 Value *MemoryInst; 1839 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1840 MemoryInst = MUD->getMemoryInst(); 1841 else 1842 MemoryInst = MA->getBlock(); 1843 1844 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1845 if (VMA->second == MA) 1846 ValueToMemoryAccess.erase(VMA); 1847 } 1848 1849 /// Properly remove \p MA from all of MemorySSA's lists. 1850 /// 1851 /// Because of the way the intrusive list and use lists work, it is important to 1852 /// do removal in the right order. 1853 /// ShouldDelete defaults to true, and will cause the memory access to also be 1854 /// deleted, not just removed. 1855 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1856 BasicBlock *BB = MA->getBlock(); 1857 // The access list owns the reference, so we erase it from the non-owning list 1858 // first. 1859 if (!isa<MemoryUse>(MA)) { 1860 auto DefsIt = PerBlockDefs.find(BB); 1861 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1862 Defs->remove(*MA); 1863 if (Defs->empty()) 1864 PerBlockDefs.erase(DefsIt); 1865 } 1866 1867 // The erase call here will delete it. If we don't want it deleted, we call 1868 // remove instead. 1869 auto AccessIt = PerBlockAccesses.find(BB); 1870 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1871 if (ShouldDelete) 1872 Accesses->erase(MA); 1873 else 1874 Accesses->remove(MA); 1875 1876 if (Accesses->empty()) { 1877 PerBlockAccesses.erase(AccessIt); 1878 BlockNumberingValid.erase(BB); 1879 } 1880 } 1881 1882 void MemorySSA::print(raw_ostream &OS) const { 1883 MemorySSAAnnotatedWriter Writer(this); 1884 F.print(OS, &Writer); 1885 } 1886 1887 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1888 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1889 #endif 1890 1891 void MemorySSA::verifyMemorySSA() const { 1892 verifyOrderingDominationAndDefUses(F); 1893 verifyDominationNumbers(F); 1894 verifyPrevDefInPhis(F); 1895 // Previously, the verification used to also verify that the clobberingAccess 1896 // cached by MemorySSA is the same as the clobberingAccess found at a later 1897 // query to AA. This does not hold true in general due to the current fragility 1898 // of BasicAA which has arbitrary caps on the things it analyzes before giving 1899 // up. As a result, transformations that are correct, will lead to BasicAA 1900 // returning different Alias answers before and after that transformation. 1901 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so 1902 // random, in the worst case we'd need to rebuild MemorySSA from scratch after 1903 // every transformation, which defeats the purpose of using it. For such an 1904 // example, see test4 added in D51960. 1905 } 1906 1907 void MemorySSA::verifyPrevDefInPhis(Function &F) const { 1908 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS) 1909 for (const BasicBlock &BB : F) { 1910 if (MemoryPhi *Phi = getMemoryAccess(&BB)) { 1911 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1912 auto *Pred = Phi->getIncomingBlock(I); 1913 auto *IncAcc = Phi->getIncomingValue(I); 1914 // If Pred has no unreachable predecessors, get last def looking at 1915 // IDoms. If, while walkings IDoms, any of these has an unreachable 1916 // predecessor, then the incoming def can be any access. 1917 if (auto *DTNode = DT->getNode(Pred)) { 1918 while (DTNode) { 1919 if (auto *DefList = getBlockDefs(DTNode->getBlock())) { 1920 auto *LastAcc = &*(--DefList->end()); 1921 assert(LastAcc == IncAcc && 1922 "Incorrect incoming access into phi."); 1923 break; 1924 } 1925 DTNode = DTNode->getIDom(); 1926 } 1927 } else { 1928 // If Pred has unreachable predecessors, but has at least a Def, the 1929 // incoming access can be the last Def in Pred, or it could have been 1930 // optimized to LoE. After an update, though, the LoE may have been 1931 // replaced by another access, so IncAcc may be any access. 1932 // If Pred has unreachable predecessors and no Defs, incoming access 1933 // should be LoE; However, after an update, it may be any access. 1934 } 1935 } 1936 } 1937 } 1938 #endif 1939 } 1940 1941 /// Verify that all of the blocks we believe to have valid domination numbers 1942 /// actually have valid domination numbers. 1943 void MemorySSA::verifyDominationNumbers(const Function &F) const { 1944 #ifndef NDEBUG 1945 if (BlockNumberingValid.empty()) 1946 return; 1947 1948 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; 1949 for (const BasicBlock &BB : F) { 1950 if (!ValidBlocks.count(&BB)) 1951 continue; 1952 1953 ValidBlocks.erase(&BB); 1954 1955 const AccessList *Accesses = getBlockAccesses(&BB); 1956 // It's correct to say an empty block has valid numbering. 1957 if (!Accesses) 1958 continue; 1959 1960 // Block numbering starts at 1. 1961 unsigned long LastNumber = 0; 1962 for (const MemoryAccess &MA : *Accesses) { 1963 auto ThisNumberIter = BlockNumbering.find(&MA); 1964 assert(ThisNumberIter != BlockNumbering.end() && 1965 "MemoryAccess has no domination number in a valid block!"); 1966 1967 unsigned long ThisNumber = ThisNumberIter->second; 1968 assert(ThisNumber > LastNumber && 1969 "Domination numbers should be strictly increasing!"); 1970 LastNumber = ThisNumber; 1971 } 1972 } 1973 1974 assert(ValidBlocks.empty() && 1975 "All valid BasicBlocks should exist in F -- dangling pointers?"); 1976 #endif 1977 } 1978 1979 /// Verify ordering: the order and existence of MemoryAccesses matches the 1980 /// order and existence of memory affecting instructions. 1981 /// Verify domination: each definition dominates all of its uses. 1982 /// Verify def-uses: the immediate use information - walk all the memory 1983 /// accesses and verifying that, for each use, it appears in the appropriate 1984 /// def's use list 1985 void MemorySSA::verifyOrderingDominationAndDefUses(Function &F) const { 1986 #if !defined(NDEBUG) 1987 // Walk all the blocks, comparing what the lookups think and what the access 1988 // lists think, as well as the order in the blocks vs the order in the access 1989 // lists. 1990 SmallVector<MemoryAccess *, 32> ActualAccesses; 1991 SmallVector<MemoryAccess *, 32> ActualDefs; 1992 for (BasicBlock &B : F) { 1993 const AccessList *AL = getBlockAccesses(&B); 1994 const auto *DL = getBlockDefs(&B); 1995 MemoryPhi *Phi = getMemoryAccess(&B); 1996 if (Phi) { 1997 // Verify ordering. 1998 ActualAccesses.push_back(Phi); 1999 ActualDefs.push_back(Phi); 2000 // Verify domination 2001 for (const Use &U : Phi->uses()) 2002 assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses"); 2003 #if defined(EXPENSIVE_CHECKS) 2004 // Verify def-uses. 2005 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 2006 pred_begin(&B), pred_end(&B))) && 2007 "Incomplete MemoryPhi Node"); 2008 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 2009 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 2010 assert(is_contained(predecessors(&B), Phi->getIncomingBlock(I)) && 2011 "Incoming phi block not a block predecessor"); 2012 } 2013 #endif 2014 } 2015 2016 for (Instruction &I : B) { 2017 MemoryUseOrDef *MA = getMemoryAccess(&I); 2018 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 2019 "We have memory affecting instructions " 2020 "in this block but they are not in the " 2021 "access list or defs list"); 2022 if (MA) { 2023 // Verify ordering. 2024 ActualAccesses.push_back(MA); 2025 if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) { 2026 // Verify ordering. 2027 ActualDefs.push_back(MA); 2028 // Verify domination. 2029 for (const Use &U : MD->uses()) 2030 assert(dominates(MD, U) && 2031 "Memory Def does not dominate it's uses"); 2032 } 2033 #if defined(EXPENSIVE_CHECKS) 2034 // Verify def-uses. 2035 verifyUseInDefs(MA->getDefiningAccess(), MA); 2036 #endif 2037 } 2038 } 2039 // Either we hit the assert, really have no accesses, or we have both 2040 // accesses and an access list. Same with defs. 2041 if (!AL && !DL) 2042 continue; 2043 // Verify ordering. 2044 assert(AL->size() == ActualAccesses.size() && 2045 "We don't have the same number of accesses in the block as on the " 2046 "access list"); 2047 assert((DL || ActualDefs.size() == 0) && 2048 "Either we should have a defs list, or we should have no defs"); 2049 assert((!DL || DL->size() == ActualDefs.size()) && 2050 "We don't have the same number of defs in the block as on the " 2051 "def list"); 2052 auto ALI = AL->begin(); 2053 auto AAI = ActualAccesses.begin(); 2054 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 2055 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 2056 ++ALI; 2057 ++AAI; 2058 } 2059 ActualAccesses.clear(); 2060 if (DL) { 2061 auto DLI = DL->begin(); 2062 auto ADI = ActualDefs.begin(); 2063 while (DLI != DL->end() && ADI != ActualDefs.end()) { 2064 assert(&*DLI == *ADI && "Not the same defs in the same order"); 2065 ++DLI; 2066 ++ADI; 2067 } 2068 } 2069 ActualDefs.clear(); 2070 } 2071 #endif 2072 } 2073 2074 /// Verify the def-use lists in MemorySSA, by verifying that \p Use 2075 /// appears in the use list of \p Def. 2076 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 2077 #ifndef NDEBUG 2078 // The live on entry use may cause us to get a NULL def here 2079 if (!Def) 2080 assert(isLiveOnEntryDef(Use) && 2081 "Null def but use not point to live on entry def"); 2082 else 2083 assert(is_contained(Def->users(), Use) && 2084 "Did not find use in def's use list"); 2085 #endif 2086 } 2087 2088 /// Perform a local numbering on blocks so that instruction ordering can be 2089 /// determined in constant time. 2090 /// TODO: We currently just number in order. If we numbered by N, we could 2091 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 2092 /// log2(N) sequences of mixed before and after) without needing to invalidate 2093 /// the numbering. 2094 void MemorySSA::renumberBlock(const BasicBlock *B) const { 2095 // The pre-increment ensures the numbers really start at 1. 2096 unsigned long CurrentNumber = 0; 2097 const AccessList *AL = getBlockAccesses(B); 2098 assert(AL != nullptr && "Asking to renumber an empty block"); 2099 for (const auto &I : *AL) 2100 BlockNumbering[&I] = ++CurrentNumber; 2101 BlockNumberingValid.insert(B); 2102 } 2103 2104 /// Determine, for two memory accesses in the same block, 2105 /// whether \p Dominator dominates \p Dominatee. 2106 /// \returns True if \p Dominator dominates \p Dominatee. 2107 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 2108 const MemoryAccess *Dominatee) const { 2109 const BasicBlock *DominatorBlock = Dominator->getBlock(); 2110 2111 assert((DominatorBlock == Dominatee->getBlock()) && 2112 "Asking for local domination when accesses are in different blocks!"); 2113 // A node dominates itself. 2114 if (Dominatee == Dominator) 2115 return true; 2116 2117 // When Dominatee is defined on function entry, it is not dominated by another 2118 // memory access. 2119 if (isLiveOnEntryDef(Dominatee)) 2120 return false; 2121 2122 // When Dominator is defined on function entry, it dominates the other memory 2123 // access. 2124 if (isLiveOnEntryDef(Dominator)) 2125 return true; 2126 2127 if (!BlockNumberingValid.count(DominatorBlock)) 2128 renumberBlock(DominatorBlock); 2129 2130 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 2131 // All numbers start with 1 2132 assert(DominatorNum != 0 && "Block was not numbered properly"); 2133 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 2134 assert(DominateeNum != 0 && "Block was not numbered properly"); 2135 return DominatorNum < DominateeNum; 2136 } 2137 2138 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2139 const MemoryAccess *Dominatee) const { 2140 if (Dominator == Dominatee) 2141 return true; 2142 2143 if (isLiveOnEntryDef(Dominatee)) 2144 return false; 2145 2146 if (Dominator->getBlock() != Dominatee->getBlock()) 2147 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 2148 return locallyDominates(Dominator, Dominatee); 2149 } 2150 2151 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2152 const Use &Dominatee) const { 2153 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 2154 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 2155 // The def must dominate the incoming block of the phi. 2156 if (UseBB != Dominator->getBlock()) 2157 return DT->dominates(Dominator->getBlock(), UseBB); 2158 // If the UseBB and the DefBB are the same, compare locally. 2159 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 2160 } 2161 // If it's not a PHI node use, the normal dominates can already handle it. 2162 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 2163 } 2164 2165 const static char LiveOnEntryStr[] = "liveOnEntry"; 2166 2167 void MemoryAccess::print(raw_ostream &OS) const { 2168 switch (getValueID()) { 2169 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 2170 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 2171 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 2172 } 2173 llvm_unreachable("invalid value id"); 2174 } 2175 2176 void MemoryDef::print(raw_ostream &OS) const { 2177 MemoryAccess *UO = getDefiningAccess(); 2178 2179 auto printID = [&OS](MemoryAccess *A) { 2180 if (A && A->getID()) 2181 OS << A->getID(); 2182 else 2183 OS << LiveOnEntryStr; 2184 }; 2185 2186 OS << getID() << " = MemoryDef("; 2187 printID(UO); 2188 OS << ")"; 2189 2190 if (isOptimized()) { 2191 OS << "->"; 2192 printID(getOptimized()); 2193 2194 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2195 OS << " " << *AR; 2196 } 2197 } 2198 2199 void MemoryPhi::print(raw_ostream &OS) const { 2200 bool First = true; 2201 OS << getID() << " = MemoryPhi("; 2202 for (const auto &Op : operands()) { 2203 BasicBlock *BB = getIncomingBlock(Op); 2204 MemoryAccess *MA = cast<MemoryAccess>(Op); 2205 if (!First) 2206 OS << ','; 2207 else 2208 First = false; 2209 2210 OS << '{'; 2211 if (BB->hasName()) 2212 OS << BB->getName(); 2213 else 2214 BB->printAsOperand(OS, false); 2215 OS << ','; 2216 if (unsigned ID = MA->getID()) 2217 OS << ID; 2218 else 2219 OS << LiveOnEntryStr; 2220 OS << '}'; 2221 } 2222 OS << ')'; 2223 } 2224 2225 void MemoryUse::print(raw_ostream &OS) const { 2226 MemoryAccess *UO = getDefiningAccess(); 2227 OS << "MemoryUse("; 2228 if (UO && UO->getID()) 2229 OS << UO->getID(); 2230 else 2231 OS << LiveOnEntryStr; 2232 OS << ')'; 2233 2234 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2235 OS << " " << *AR; 2236 } 2237 2238 void MemoryAccess::dump() const { 2239 // Cannot completely remove virtual function even in release mode. 2240 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2241 print(dbgs()); 2242 dbgs() << "\n"; 2243 #endif 2244 } 2245 2246 char MemorySSAPrinterLegacyPass::ID = 0; 2247 2248 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 2249 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 2250 } 2251 2252 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 2253 AU.setPreservesAll(); 2254 AU.addRequired<MemorySSAWrapperPass>(); 2255 } 2256 2257 class DOTFuncMSSAInfo { 2258 private: 2259 const Function &F; 2260 MemorySSAAnnotatedWriter MSSAWriter; 2261 2262 public: 2263 DOTFuncMSSAInfo(const Function &F, MemorySSA &MSSA) 2264 : F(F), MSSAWriter(&MSSA) {} 2265 2266 const Function *getFunction() { return &F; } 2267 MemorySSAAnnotatedWriter &getWriter() { return MSSAWriter; } 2268 }; 2269 2270 namespace llvm { 2271 2272 template <> 2273 struct GraphTraits<DOTFuncMSSAInfo *> : public GraphTraits<const BasicBlock *> { 2274 static NodeRef getEntryNode(DOTFuncMSSAInfo *CFGInfo) { 2275 return &(CFGInfo->getFunction()->getEntryBlock()); 2276 } 2277 2278 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph 2279 using nodes_iterator = pointer_iterator<Function::const_iterator>; 2280 2281 static nodes_iterator nodes_begin(DOTFuncMSSAInfo *CFGInfo) { 2282 return nodes_iterator(CFGInfo->getFunction()->begin()); 2283 } 2284 2285 static nodes_iterator nodes_end(DOTFuncMSSAInfo *CFGInfo) { 2286 return nodes_iterator(CFGInfo->getFunction()->end()); 2287 } 2288 2289 static size_t size(DOTFuncMSSAInfo *CFGInfo) { 2290 return CFGInfo->getFunction()->size(); 2291 } 2292 }; 2293 2294 template <> 2295 struct DOTGraphTraits<DOTFuncMSSAInfo *> : public DefaultDOTGraphTraits { 2296 2297 DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {} 2298 2299 static std::string getGraphName(DOTFuncMSSAInfo *CFGInfo) { 2300 return "MSSA CFG for '" + CFGInfo->getFunction()->getName().str() + 2301 "' function"; 2302 } 2303 2304 std::string getNodeLabel(const BasicBlock *Node, DOTFuncMSSAInfo *CFGInfo) { 2305 return DOTGraphTraits<DOTFuncInfo *>::getCompleteNodeLabel( 2306 Node, nullptr, 2307 [CFGInfo](raw_string_ostream &OS, const BasicBlock &BB) -> void { 2308 BB.print(OS, &CFGInfo->getWriter(), true, true); 2309 }, 2310 [](std::string &S, unsigned &I, unsigned Idx) -> void { 2311 std::string Str = S.substr(I, Idx - I); 2312 StringRef SR = Str; 2313 if (SR.count(" = MemoryDef(") || SR.count(" = MemoryPhi(") || 2314 SR.count("MemoryUse(")) 2315 return; 2316 DOTGraphTraits<DOTFuncInfo *>::eraseComment(S, I, Idx); 2317 }); 2318 } 2319 2320 static std::string getEdgeSourceLabel(const BasicBlock *Node, 2321 const_succ_iterator I) { 2322 return DOTGraphTraits<DOTFuncInfo *>::getEdgeSourceLabel(Node, I); 2323 } 2324 2325 /// Display the raw branch weights from PGO. 2326 std::string getEdgeAttributes(const BasicBlock *Node, const_succ_iterator I, 2327 DOTFuncMSSAInfo *CFGInfo) { 2328 return ""; 2329 } 2330 2331 std::string getNodeAttributes(const BasicBlock *Node, 2332 DOTFuncMSSAInfo *CFGInfo) { 2333 return getNodeLabel(Node, CFGInfo).find(';') != std::string::npos 2334 ? "style=filled, fillcolor=lightpink" 2335 : ""; 2336 } 2337 }; 2338 2339 } // namespace llvm 2340 2341 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 2342 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2343 if (DotCFGMSSA != "") { 2344 DOTFuncMSSAInfo CFGInfo(F, MSSA); 2345 WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA); 2346 } else 2347 MSSA.print(dbgs()); 2348 2349 if (VerifyMemorySSA) 2350 MSSA.verifyMemorySSA(); 2351 return false; 2352 } 2353 2354 AnalysisKey MemorySSAAnalysis::Key; 2355 2356 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 2357 FunctionAnalysisManager &AM) { 2358 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 2359 auto &AA = AM.getResult<AAManager>(F); 2360 return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT)); 2361 } 2362 2363 bool MemorySSAAnalysis::Result::invalidate( 2364 Function &F, const PreservedAnalyses &PA, 2365 FunctionAnalysisManager::Invalidator &Inv) { 2366 auto PAC = PA.getChecker<MemorySSAAnalysis>(); 2367 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 2368 Inv.invalidate<AAManager>(F, PA) || 2369 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 2370 } 2371 2372 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 2373 FunctionAnalysisManager &AM) { 2374 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 2375 if (DotCFGMSSA != "") { 2376 DOTFuncMSSAInfo CFGInfo(F, MSSA); 2377 WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA); 2378 } else { 2379 OS << "MemorySSA for function: " << F.getName() << "\n"; 2380 MSSA.print(OS); 2381 } 2382 2383 return PreservedAnalyses::all(); 2384 } 2385 2386 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 2387 FunctionAnalysisManager &AM) { 2388 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 2389 2390 return PreservedAnalyses::all(); 2391 } 2392 2393 char MemorySSAWrapperPass::ID = 0; 2394 2395 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 2396 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 2397 } 2398 2399 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 2400 2401 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2402 AU.setPreservesAll(); 2403 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2404 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2405 } 2406 2407 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 2408 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2409 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2410 MSSA.reset(new MemorySSA(F, &AA, &DT)); 2411 return false; 2412 } 2413 2414 void MemorySSAWrapperPass::verifyAnalysis() const { 2415 if (VerifyMemorySSA) 2416 MSSA->verifyMemorySSA(); 2417 } 2418 2419 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 2420 MSSA->print(OS); 2421 } 2422 2423 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 2424 2425 /// Walk the use-def chains starting at \p StartingAccess and find 2426 /// the MemoryAccess that actually clobbers Loc. 2427 /// 2428 /// \returns our clobbering memory access 2429 template <typename AliasAnalysisType> 2430 MemoryAccess * 2431 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2432 MemoryAccess *StartingAccess, const MemoryLocation &Loc, 2433 unsigned &UpwardWalkLimit) { 2434 if (isa<MemoryPhi>(StartingAccess)) 2435 return StartingAccess; 2436 2437 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); 2438 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2439 return StartingUseOrDef; 2440 2441 Instruction *I = StartingUseOrDef->getMemoryInst(); 2442 2443 // Conservatively, fences are always clobbers, so don't perform the walk if we 2444 // hit a fence. 2445 if (!isa<CallBase>(I) && I->isFenceLike()) 2446 return StartingUseOrDef; 2447 2448 UpwardsMemoryQuery Q; 2449 Q.OriginalAccess = StartingUseOrDef; 2450 Q.StartingLoc = Loc; 2451 Q.Inst = nullptr; 2452 Q.IsCall = false; 2453 2454 // Unlike the other function, do not walk to the def of a def, because we are 2455 // handed something we already believe is the clobbering access. 2456 // We never set SkipSelf to true in Q in this method. 2457 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) 2458 ? StartingUseOrDef->getDefiningAccess() 2459 : StartingUseOrDef; 2460 2461 MemoryAccess *Clobber = 2462 Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2463 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2464 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n"); 2465 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2466 LLVM_DEBUG(dbgs() << *Clobber << "\n"); 2467 return Clobber; 2468 } 2469 2470 template <typename AliasAnalysisType> 2471 MemoryAccess * 2472 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2473 MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) { 2474 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2475 // If this is a MemoryPhi, we can't do anything. 2476 if (!StartingAccess) 2477 return MA; 2478 2479 bool IsOptimized = false; 2480 2481 // If this is an already optimized use or def, return the optimized result. 2482 // Note: Currently, we store the optimized def result in a separate field, 2483 // since we can't use the defining access. 2484 if (StartingAccess->isOptimized()) { 2485 if (!SkipSelf || !isa<MemoryDef>(StartingAccess)) 2486 return StartingAccess->getOptimized(); 2487 IsOptimized = true; 2488 } 2489 2490 const Instruction *I = StartingAccess->getMemoryInst(); 2491 // We can't sanely do anything with a fence, since they conservatively clobber 2492 // all memory, and have no locations to get pointers from to try to 2493 // disambiguate. 2494 if (!isa<CallBase>(I) && I->isFenceLike()) 2495 return StartingAccess; 2496 2497 UpwardsMemoryQuery Q(I, StartingAccess); 2498 2499 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) { 2500 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2501 StartingAccess->setOptimized(LiveOnEntry); 2502 StartingAccess->setOptimizedAccessType(None); 2503 return LiveOnEntry; 2504 } 2505 2506 MemoryAccess *OptimizedAccess; 2507 if (!IsOptimized) { 2508 // Start with the thing we already think clobbers this location 2509 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2510 2511 // At this point, DefiningAccess may be the live on entry def. 2512 // If it is, we will not get a better result. 2513 if (MSSA->isLiveOnEntryDef(DefiningAccess)) { 2514 StartingAccess->setOptimized(DefiningAccess); 2515 StartingAccess->setOptimizedAccessType(None); 2516 return DefiningAccess; 2517 } 2518 2519 OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2520 StartingAccess->setOptimized(OptimizedAccess); 2521 if (MSSA->isLiveOnEntryDef(OptimizedAccess)) 2522 StartingAccess->setOptimizedAccessType(None); 2523 else if (Q.AR == MustAlias) 2524 StartingAccess->setOptimizedAccessType(MustAlias); 2525 } else 2526 OptimizedAccess = StartingAccess->getOptimized(); 2527 2528 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2529 LLVM_DEBUG(dbgs() << *StartingAccess << "\n"); 2530 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is "); 2531 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n"); 2532 2533 MemoryAccess *Result; 2534 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) && 2535 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) { 2536 assert(isa<MemoryDef>(Q.OriginalAccess)); 2537 Q.SkipSelfAccess = true; 2538 Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit); 2539 } else 2540 Result = OptimizedAccess; 2541 2542 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); 2543 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n"); 2544 2545 return Result; 2546 } 2547 2548 MemoryAccess * 2549 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2550 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2551 return Use->getDefiningAccess(); 2552 return MA; 2553 } 2554 2555 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2556 MemoryAccess *StartingAccess, const MemoryLocation &) { 2557 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2558 return Use->getDefiningAccess(); 2559 return StartingAccess; 2560 } 2561 2562 void MemoryPhi::deleteMe(DerivedUser *Self) { 2563 delete static_cast<MemoryPhi *>(Self); 2564 } 2565 2566 void MemoryDef::deleteMe(DerivedUser *Self) { 2567 delete static_cast<MemoryDef *>(Self); 2568 } 2569 2570 void MemoryUse::deleteMe(DerivedUser *Self) { 2571 delete static_cast<MemoryUse *>(Self); 2572 } 2573 2574 bool upward_defs_iterator::IsGuaranteedLoopInvariant(Value *Ptr) const { 2575 auto IsGuaranteedLoopInvariantBase = [](Value *Ptr) { 2576 Ptr = Ptr->stripPointerCasts(); 2577 if (!isa<Instruction>(Ptr)) 2578 return true; 2579 return isa<AllocaInst>(Ptr); 2580 }; 2581 2582 Ptr = Ptr->stripPointerCasts(); 2583 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 2584 return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) && 2585 GEP->hasAllConstantIndices(); 2586 } 2587 return IsGuaranteedLoopInvariantBase(Ptr); 2588 } 2589