1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions identifies calls to builtin functions that allocate 10 // or free memory. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/MemoryBuiltins.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/AliasAnalysis.h" 19 #include "llvm/Analysis/TargetFolder.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/Utils/Local.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalAlias.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <cassert> 43 #include <cstdint> 44 #include <iterator> 45 #include <numeric> 46 #include <optional> 47 #include <type_traits> 48 #include <utility> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "memory-builtins" 53 54 static cl::opt<unsigned> ObjectSizeOffsetVisitorMaxVisitInstructions( 55 "object-size-offset-visitor-max-visit-instructions", 56 cl::desc("Maximum number of instructions for ObjectSizeOffsetVisitor to " 57 "look at"), 58 cl::init(100)); 59 60 enum AllocType : uint8_t { 61 OpNewLike = 1<<0, // allocates; never returns null 62 MallocLike = 1<<1, // allocates; may return null 63 StrDupLike = 1<<2, 64 MallocOrOpNewLike = MallocLike | OpNewLike, 65 AllocLike = MallocOrOpNewLike | StrDupLike, 66 AnyAlloc = AllocLike 67 }; 68 69 enum class MallocFamily { 70 Malloc, 71 CPPNew, // new(unsigned int) 72 CPPNewAligned, // new(unsigned int, align_val_t) 73 CPPNewArray, // new[](unsigned int) 74 CPPNewArrayAligned, // new[](unsigned long, align_val_t) 75 MSVCNew, // new(unsigned int) 76 MSVCArrayNew, // new[](unsigned int) 77 VecMalloc, 78 KmpcAllocShared, 79 }; 80 81 StringRef mangledNameForMallocFamily(const MallocFamily &Family) { 82 switch (Family) { 83 case MallocFamily::Malloc: 84 return "malloc"; 85 case MallocFamily::CPPNew: 86 return "_Znwm"; 87 case MallocFamily::CPPNewAligned: 88 return "_ZnwmSt11align_val_t"; 89 case MallocFamily::CPPNewArray: 90 return "_Znam"; 91 case MallocFamily::CPPNewArrayAligned: 92 return "_ZnamSt11align_val_t"; 93 case MallocFamily::MSVCNew: 94 return "??2@YAPAXI@Z"; 95 case MallocFamily::MSVCArrayNew: 96 return "??_U@YAPAXI@Z"; 97 case MallocFamily::VecMalloc: 98 return "vec_malloc"; 99 case MallocFamily::KmpcAllocShared: 100 return "__kmpc_alloc_shared"; 101 } 102 llvm_unreachable("missing an alloc family"); 103 } 104 105 struct AllocFnsTy { 106 AllocType AllocTy; 107 unsigned NumParams; 108 // First and Second size parameters (or -1 if unused) 109 int FstParam, SndParam; 110 // Alignment parameter for aligned_alloc and aligned new 111 int AlignParam; 112 // Name of default allocator function to group malloc/free calls by family 113 MallocFamily Family; 114 }; 115 116 // clang-format off 117 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to 118 // know which functions are nounwind, noalias, nocapture parameters, etc. 119 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = { 120 {LibFunc_Znwj, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned int) 121 {LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned int, nothrow) 122 {LibFunc_ZnwjSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned int, align_val_t) 123 {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned int, align_val_t, nothrow) 124 {LibFunc_Znwm, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long) 125 {LibFunc_Znwm12__hot_cold_t, {OpNewLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, __hot_cold_t) 126 {LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, nothrow) 127 {LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, {MallocLike, 3, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, nothrow, __hot_cold_t) 128 {LibFunc_ZnwmSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t) 129 {LibFunc_ZnwmSt11align_val_t12__hot_cold_t, {OpNewLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, __hot_cold_t) 130 {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, nothrow) 131 {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, {MallocLike, 4, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, nothrow, __hot_cold_t) 132 {LibFunc_Znaj, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned int) 133 {LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned int, nothrow) 134 {LibFunc_ZnajSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t) 135 {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t, nothrow) 136 {LibFunc_Znam, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned long) 137 {LibFunc_Znam12__hot_cold_t, {OpNewLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new[](unsigned long, __hot_cold_t) 138 {LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned long, nothrow) 139 {LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, {MallocLike, 3, 0, -1, -1, MallocFamily::CPPNew}}, // new[](unsigned long, nothrow, __hot_cold_t) 140 {LibFunc_ZnamSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t) 141 {LibFunc_ZnamSt11align_val_t12__hot_cold_t, {OpNewLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new[](unsigned long, align_val_t, __hot_cold_t) 142 {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t, nothrow) 143 {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, {MallocLike, 4, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new[](unsigned long, align_val_t, nothrow, __hot_cold_t) 144 {LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned int) 145 {LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned int, nothrow) 146 {LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned long long) 147 {LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned long long, nothrow) 148 {LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned int) 149 {LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned int, nothrow) 150 {LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned long long) 151 {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned long long, nothrow) 152 {LibFunc_strdup, {StrDupLike, 1, -1, -1, -1, MallocFamily::Malloc}}, 153 {LibFunc_dunder_strdup, {StrDupLike, 1, -1, -1, -1, MallocFamily::Malloc}}, 154 {LibFunc_strndup, {StrDupLike, 2, 1, -1, -1, MallocFamily::Malloc}}, 155 {LibFunc_dunder_strndup, {StrDupLike, 2, 1, -1, -1, MallocFamily::Malloc}}, 156 {LibFunc___kmpc_alloc_shared, {MallocLike, 1, 0, -1, -1, MallocFamily::KmpcAllocShared}}, 157 }; 158 // clang-format on 159 160 static const Function *getCalledFunction(const Value *V, 161 bool &IsNoBuiltin) { 162 // Don't care about intrinsics in this case. 163 if (isa<IntrinsicInst>(V)) 164 return nullptr; 165 166 const auto *CB = dyn_cast<CallBase>(V); 167 if (!CB) 168 return nullptr; 169 170 IsNoBuiltin = CB->isNoBuiltin(); 171 172 if (const Function *Callee = CB->getCalledFunction()) 173 return Callee; 174 return nullptr; 175 } 176 177 /// Returns the allocation data for the given value if it's a call to a known 178 /// allocation function. 179 static std::optional<AllocFnsTy> 180 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy, 181 const TargetLibraryInfo *TLI) { 182 // Don't perform a slow TLI lookup, if this function doesn't return a pointer 183 // and thus can't be an allocation function. 184 if (!Callee->getReturnType()->isPointerTy()) 185 return std::nullopt; 186 187 // Make sure that the function is available. 188 LibFunc TLIFn; 189 if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn)) 190 return std::nullopt; 191 192 const auto *Iter = find_if( 193 AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) { 194 return P.first == TLIFn; 195 }); 196 197 if (Iter == std::end(AllocationFnData)) 198 return std::nullopt; 199 200 const AllocFnsTy *FnData = &Iter->second; 201 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) 202 return std::nullopt; 203 204 // Check function prototype. 205 int FstParam = FnData->FstParam; 206 int SndParam = FnData->SndParam; 207 FunctionType *FTy = Callee->getFunctionType(); 208 209 if (FTy->getReturnType()->isPointerTy() && 210 FTy->getNumParams() == FnData->NumParams && 211 (FstParam < 0 || 212 (FTy->getParamType(FstParam)->isIntegerTy(32) || 213 FTy->getParamType(FstParam)->isIntegerTy(64))) && 214 (SndParam < 0 || 215 FTy->getParamType(SndParam)->isIntegerTy(32) || 216 FTy->getParamType(SndParam)->isIntegerTy(64))) 217 return *FnData; 218 return std::nullopt; 219 } 220 221 static std::optional<AllocFnsTy> 222 getAllocationData(const Value *V, AllocType AllocTy, 223 const TargetLibraryInfo *TLI) { 224 bool IsNoBuiltinCall; 225 if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall)) 226 if (!IsNoBuiltinCall) 227 return getAllocationDataForFunction(Callee, AllocTy, TLI); 228 return std::nullopt; 229 } 230 231 static std::optional<AllocFnsTy> 232 getAllocationData(const Value *V, AllocType AllocTy, 233 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 234 bool IsNoBuiltinCall; 235 if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall)) 236 if (!IsNoBuiltinCall) 237 return getAllocationDataForFunction( 238 Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee))); 239 return std::nullopt; 240 } 241 242 static std::optional<AllocFnsTy> 243 getAllocationSize(const Value *V, const TargetLibraryInfo *TLI) { 244 bool IsNoBuiltinCall; 245 const Function *Callee = 246 getCalledFunction(V, IsNoBuiltinCall); 247 if (!Callee) 248 return std::nullopt; 249 250 // Prefer to use existing information over allocsize. This will give us an 251 // accurate AllocTy. 252 if (!IsNoBuiltinCall) 253 if (std::optional<AllocFnsTy> Data = 254 getAllocationDataForFunction(Callee, AnyAlloc, TLI)) 255 return Data; 256 257 Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize); 258 if (Attr == Attribute()) 259 return std::nullopt; 260 261 std::pair<unsigned, std::optional<unsigned>> Args = Attr.getAllocSizeArgs(); 262 263 AllocFnsTy Result; 264 // Because allocsize only tells us how many bytes are allocated, we're not 265 // really allowed to assume anything, so we use MallocLike. 266 Result.AllocTy = MallocLike; 267 Result.NumParams = Callee->getNumOperands(); 268 Result.FstParam = Args.first; 269 Result.SndParam = Args.second.value_or(-1); 270 // Allocsize has no way to specify an alignment argument 271 Result.AlignParam = -1; 272 return Result; 273 } 274 275 static AllocFnKind getAllocFnKind(const Value *V) { 276 if (const auto *CB = dyn_cast<CallBase>(V)) { 277 Attribute Attr = CB->getFnAttr(Attribute::AllocKind); 278 if (Attr.isValid()) 279 return AllocFnKind(Attr.getValueAsInt()); 280 } 281 return AllocFnKind::Unknown; 282 } 283 284 static AllocFnKind getAllocFnKind(const Function *F) { 285 return F->getAttributes().getAllocKind(); 286 } 287 288 static bool checkFnAllocKind(const Value *V, AllocFnKind Wanted) { 289 return (getAllocFnKind(V) & Wanted) != AllocFnKind::Unknown; 290 } 291 292 static bool checkFnAllocKind(const Function *F, AllocFnKind Wanted) { 293 return (getAllocFnKind(F) & Wanted) != AllocFnKind::Unknown; 294 } 295 296 /// Tests if a value is a call or invoke to a library function that 297 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup 298 /// like). 299 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI) { 300 return getAllocationData(V, AnyAlloc, TLI).has_value() || 301 checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc); 302 } 303 bool llvm::isAllocationFn( 304 const Value *V, 305 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 306 return getAllocationData(V, AnyAlloc, GetTLI).has_value() || 307 checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc); 308 } 309 310 /// Tests if a value is a call or invoke to a library function that 311 /// allocates memory via new. 312 bool llvm::isNewLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 313 return getAllocationData(V, OpNewLike, TLI).has_value(); 314 } 315 316 /// Tests if a value is a call or invoke to a library function that 317 /// allocates memory similar to malloc or calloc. 318 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 319 // TODO: Function behavior does not match name. 320 return getAllocationData(V, MallocOrOpNewLike, TLI).has_value(); 321 } 322 323 /// Tests if a value is a call or invoke to a library function that 324 /// allocates memory (either malloc, calloc, or strdup like). 325 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 326 return getAllocationData(V, AllocLike, TLI).has_value() || 327 checkFnAllocKind(V, AllocFnKind::Alloc); 328 } 329 330 /// Tests if a functions is a call or invoke to a library function that 331 /// reallocates memory (e.g., realloc). 332 bool llvm::isReallocLikeFn(const Function *F) { 333 return checkFnAllocKind(F, AllocFnKind::Realloc); 334 } 335 336 Value *llvm::getReallocatedOperand(const CallBase *CB) { 337 if (checkFnAllocKind(CB, AllocFnKind::Realloc)) 338 return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer); 339 return nullptr; 340 } 341 342 bool llvm::isRemovableAlloc(const CallBase *CB, const TargetLibraryInfo *TLI) { 343 // Note: Removability is highly dependent on the source language. For 344 // example, recent C++ requires direct calls to the global allocation 345 // [basic.stc.dynamic.allocation] to be observable unless part of a new 346 // expression [expr.new paragraph 13]. 347 348 // Historically we've treated the C family allocation routines and operator 349 // new as removable 350 return isAllocLikeFn(CB, TLI); 351 } 352 353 Value *llvm::getAllocAlignment(const CallBase *V, 354 const TargetLibraryInfo *TLI) { 355 const std::optional<AllocFnsTy> FnData = getAllocationData(V, AnyAlloc, TLI); 356 if (FnData && FnData->AlignParam >= 0) { 357 return V->getOperand(FnData->AlignParam); 358 } 359 return V->getArgOperandWithAttribute(Attribute::AllocAlign); 360 } 361 362 /// When we're compiling N-bit code, and the user uses parameters that are 363 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into 364 /// trouble with APInt size issues. This function handles resizing + overflow 365 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and 366 /// I's value. 367 static bool CheckedZextOrTrunc(APInt &I, unsigned IntTyBits) { 368 // More bits than we can handle. Checking the bit width isn't necessary, but 369 // it's faster than checking active bits, and should give `false` in the 370 // vast majority of cases. 371 if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits) 372 return false; 373 if (I.getBitWidth() != IntTyBits) 374 I = I.zextOrTrunc(IntTyBits); 375 return true; 376 } 377 378 std::optional<APInt> 379 llvm::getAllocSize(const CallBase *CB, const TargetLibraryInfo *TLI, 380 function_ref<const Value *(const Value *)> Mapper) { 381 // Note: This handles both explicitly listed allocation functions and 382 // allocsize. The code structure could stand to be cleaned up a bit. 383 std::optional<AllocFnsTy> FnData = getAllocationSize(CB, TLI); 384 if (!FnData) 385 return std::nullopt; 386 387 // Get the index type for this address space, results and intermediate 388 // computations are performed at that width. 389 auto &DL = CB->getModule()->getDataLayout(); 390 const unsigned IntTyBits = DL.getIndexTypeSizeInBits(CB->getType()); 391 392 // Handle strdup-like functions separately. 393 if (FnData->AllocTy == StrDupLike) { 394 APInt Size(IntTyBits, GetStringLength(Mapper(CB->getArgOperand(0)))); 395 if (!Size) 396 return std::nullopt; 397 398 // Strndup limits strlen. 399 if (FnData->FstParam > 0) { 400 const ConstantInt *Arg = 401 dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam))); 402 if (!Arg) 403 return std::nullopt; 404 405 APInt MaxSize = Arg->getValue().zext(IntTyBits); 406 if (Size.ugt(MaxSize)) 407 Size = MaxSize + 1; 408 } 409 return Size; 410 } 411 412 const ConstantInt *Arg = 413 dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam))); 414 if (!Arg) 415 return std::nullopt; 416 417 APInt Size = Arg->getValue(); 418 if (!CheckedZextOrTrunc(Size, IntTyBits)) 419 return std::nullopt; 420 421 // Size is determined by just 1 parameter. 422 if (FnData->SndParam < 0) 423 return Size; 424 425 Arg = dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->SndParam))); 426 if (!Arg) 427 return std::nullopt; 428 429 APInt NumElems = Arg->getValue(); 430 if (!CheckedZextOrTrunc(NumElems, IntTyBits)) 431 return std::nullopt; 432 433 bool Overflow; 434 Size = Size.umul_ov(NumElems, Overflow); 435 if (Overflow) 436 return std::nullopt; 437 return Size; 438 } 439 440 Constant *llvm::getInitialValueOfAllocation(const Value *V, 441 const TargetLibraryInfo *TLI, 442 Type *Ty) { 443 auto *Alloc = dyn_cast<CallBase>(V); 444 if (!Alloc) 445 return nullptr; 446 447 // malloc are uninitialized (undef) 448 if (getAllocationData(Alloc, MallocOrOpNewLike, TLI).has_value()) 449 return UndefValue::get(Ty); 450 451 AllocFnKind AK = getAllocFnKind(Alloc); 452 if ((AK & AllocFnKind::Uninitialized) != AllocFnKind::Unknown) 453 return UndefValue::get(Ty); 454 if ((AK & AllocFnKind::Zeroed) != AllocFnKind::Unknown) 455 return Constant::getNullValue(Ty); 456 457 return nullptr; 458 } 459 460 struct FreeFnsTy { 461 unsigned NumParams; 462 // Name of default allocator function to group malloc/free calls by family 463 MallocFamily Family; 464 }; 465 466 // clang-format off 467 static const std::pair<LibFunc, FreeFnsTy> FreeFnData[] = { 468 {LibFunc_ZdlPv, {1, MallocFamily::CPPNew}}, // operator delete(void*) 469 {LibFunc_ZdaPv, {1, MallocFamily::CPPNewArray}}, // operator delete[](void*) 470 {LibFunc_msvc_delete_ptr32, {1, MallocFamily::MSVCNew}}, // operator delete(void*) 471 {LibFunc_msvc_delete_ptr64, {1, MallocFamily::MSVCNew}}, // operator delete(void*) 472 {LibFunc_msvc_delete_array_ptr32, {1, MallocFamily::MSVCArrayNew}}, // operator delete[](void*) 473 {LibFunc_msvc_delete_array_ptr64, {1, MallocFamily::MSVCArrayNew}}, // operator delete[](void*) 474 {LibFunc_ZdlPvj, {2, MallocFamily::CPPNew}}, // delete(void*, uint) 475 {LibFunc_ZdlPvm, {2, MallocFamily::CPPNew}}, // delete(void*, ulong) 476 {LibFunc_ZdlPvRKSt9nothrow_t, {2, MallocFamily::CPPNew}}, // delete(void*, nothrow) 477 {LibFunc_ZdlPvSt11align_val_t, {2, MallocFamily::CPPNewAligned}}, // delete(void*, align_val_t) 478 {LibFunc_ZdaPvj, {2, MallocFamily::CPPNewArray}}, // delete[](void*, uint) 479 {LibFunc_ZdaPvm, {2, MallocFamily::CPPNewArray}}, // delete[](void*, ulong) 480 {LibFunc_ZdaPvRKSt9nothrow_t, {2, MallocFamily::CPPNewArray}}, // delete[](void*, nothrow) 481 {LibFunc_ZdaPvSt11align_val_t, {2, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t) 482 {LibFunc_msvc_delete_ptr32_int, {2, MallocFamily::MSVCNew}}, // delete(void*, uint) 483 {LibFunc_msvc_delete_ptr64_longlong, {2, MallocFamily::MSVCNew}}, // delete(void*, ulonglong) 484 {LibFunc_msvc_delete_ptr32_nothrow, {2, MallocFamily::MSVCNew}}, // delete(void*, nothrow) 485 {LibFunc_msvc_delete_ptr64_nothrow, {2, MallocFamily::MSVCNew}}, // delete(void*, nothrow) 486 {LibFunc_msvc_delete_array_ptr32_int, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, uint) 487 {LibFunc_msvc_delete_array_ptr64_longlong, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, ulonglong) 488 {LibFunc_msvc_delete_array_ptr32_nothrow, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, nothrow) 489 {LibFunc_msvc_delete_array_ptr64_nothrow, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, nothrow) 490 {LibFunc___kmpc_free_shared, {2, MallocFamily::KmpcAllocShared}}, // OpenMP Offloading RTL free 491 {LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, align_val_t, nothrow) 492 {LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t, nothrow) 493 {LibFunc_ZdlPvjSt11align_val_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, unsigned int, align_val_t) 494 {LibFunc_ZdlPvmSt11align_val_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, unsigned long, align_val_t) 495 {LibFunc_ZdaPvjSt11align_val_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned int, align_val_t) 496 {LibFunc_ZdaPvmSt11align_val_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned long, align_val_t) 497 }; 498 // clang-format on 499 500 std::optional<FreeFnsTy> getFreeFunctionDataForFunction(const Function *Callee, 501 const LibFunc TLIFn) { 502 const auto *Iter = 503 find_if(FreeFnData, [TLIFn](const std::pair<LibFunc, FreeFnsTy> &P) { 504 return P.first == TLIFn; 505 }); 506 if (Iter == std::end(FreeFnData)) 507 return std::nullopt; 508 return Iter->second; 509 } 510 511 std::optional<StringRef> 512 llvm::getAllocationFamily(const Value *I, const TargetLibraryInfo *TLI) { 513 bool IsNoBuiltin; 514 const Function *Callee = getCalledFunction(I, IsNoBuiltin); 515 if (Callee == nullptr || IsNoBuiltin) 516 return std::nullopt; 517 LibFunc TLIFn; 518 519 if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn)) { 520 // Callee is some known library function. 521 const auto AllocData = getAllocationDataForFunction(Callee, AnyAlloc, TLI); 522 if (AllocData) 523 return mangledNameForMallocFamily(AllocData->Family); 524 const auto FreeData = getFreeFunctionDataForFunction(Callee, TLIFn); 525 if (FreeData) 526 return mangledNameForMallocFamily(FreeData->Family); 527 } 528 // Callee isn't a known library function, still check attributes. 529 if (checkFnAllocKind(I, AllocFnKind::Free | AllocFnKind::Alloc | 530 AllocFnKind::Realloc)) { 531 Attribute Attr = cast<CallBase>(I)->getFnAttr("alloc-family"); 532 if (Attr.isValid()) 533 return Attr.getValueAsString(); 534 } 535 return std::nullopt; 536 } 537 538 /// isLibFreeFunction - Returns true if the function is a builtin free() 539 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) { 540 std::optional<FreeFnsTy> FnData = getFreeFunctionDataForFunction(F, TLIFn); 541 if (!FnData) 542 return checkFnAllocKind(F, AllocFnKind::Free); 543 544 // Check free prototype. 545 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin 546 // attribute will exist. 547 FunctionType *FTy = F->getFunctionType(); 548 if (!FTy->getReturnType()->isVoidTy()) 549 return false; 550 if (FTy->getNumParams() != FnData->NumParams) 551 return false; 552 if (!FTy->getParamType(0)->isPointerTy()) 553 return false; 554 555 return true; 556 } 557 558 Value *llvm::getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI) { 559 bool IsNoBuiltinCall; 560 const Function *Callee = getCalledFunction(CB, IsNoBuiltinCall); 561 if (Callee == nullptr || IsNoBuiltinCall) 562 return nullptr; 563 564 LibFunc TLIFn; 565 if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn) && 566 isLibFreeFunction(Callee, TLIFn)) { 567 // All currently supported free functions free the first argument. 568 return CB->getArgOperand(0); 569 } 570 571 if (checkFnAllocKind(CB, AllocFnKind::Free)) 572 return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer); 573 574 return nullptr; 575 } 576 577 //===----------------------------------------------------------------------===// 578 // Utility functions to compute size of objects. 579 // 580 static APInt getSizeWithOverflow(const SizeOffsetType &Data) { 581 if (Data.second.isNegative() || Data.first.ult(Data.second)) 582 return APInt(Data.first.getBitWidth(), 0); 583 return Data.first - Data.second; 584 } 585 586 /// Compute the size of the object pointed by Ptr. Returns true and the 587 /// object size in Size if successful, and false otherwise. 588 /// If RoundToAlign is true, then Size is rounded up to the alignment of 589 /// allocas, byval arguments, and global variables. 590 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, 591 const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) { 592 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts); 593 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr)); 594 if (!Visitor.bothKnown(Data)) 595 return false; 596 597 Size = getSizeWithOverflow(Data).getZExtValue(); 598 return true; 599 } 600 601 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize, 602 const DataLayout &DL, 603 const TargetLibraryInfo *TLI, 604 bool MustSucceed) { 605 return lowerObjectSizeCall(ObjectSize, DL, TLI, /*AAResults=*/nullptr, 606 MustSucceed); 607 } 608 609 Value *llvm::lowerObjectSizeCall( 610 IntrinsicInst *ObjectSize, const DataLayout &DL, 611 const TargetLibraryInfo *TLI, AAResults *AA, bool MustSucceed, 612 SmallVectorImpl<Instruction *> *InsertedInstructions) { 613 assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize && 614 "ObjectSize must be a call to llvm.objectsize!"); 615 616 bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero(); 617 ObjectSizeOpts EvalOptions; 618 EvalOptions.AA = AA; 619 620 // Unless we have to fold this to something, try to be as accurate as 621 // possible. 622 if (MustSucceed) 623 EvalOptions.EvalMode = 624 MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min; 625 else 626 EvalOptions.EvalMode = ObjectSizeOpts::Mode::ExactSizeFromOffset; 627 628 EvalOptions.NullIsUnknownSize = 629 cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne(); 630 631 auto *ResultType = cast<IntegerType>(ObjectSize->getType()); 632 bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero(); 633 if (StaticOnly) { 634 // FIXME: Does it make sense to just return a failure value if the size won't 635 // fit in the output and `!MustSucceed`? 636 uint64_t Size; 637 if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) && 638 isUIntN(ResultType->getBitWidth(), Size)) 639 return ConstantInt::get(ResultType, Size); 640 } else { 641 LLVMContext &Ctx = ObjectSize->getFunction()->getContext(); 642 ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions); 643 SizeOffsetEvalType SizeOffsetPair = 644 Eval.compute(ObjectSize->getArgOperand(0)); 645 646 if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) { 647 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 648 Ctx, TargetFolder(DL), IRBuilderCallbackInserter([&](Instruction *I) { 649 if (InsertedInstructions) 650 InsertedInstructions->push_back(I); 651 })); 652 Builder.SetInsertPoint(ObjectSize); 653 654 // If we've outside the end of the object, then we can always access 655 // exactly 0 bytes. 656 Value *ResultSize = 657 Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second); 658 Value *UseZero = 659 Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second); 660 ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType); 661 Value *Ret = Builder.CreateSelect( 662 UseZero, ConstantInt::get(ResultType, 0), ResultSize); 663 664 // The non-constant size expression cannot evaluate to -1. 665 if (!isa<Constant>(SizeOffsetPair.first) || 666 !isa<Constant>(SizeOffsetPair.second)) 667 Builder.CreateAssumption( 668 Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1))); 669 670 return Ret; 671 } 672 } 673 674 if (!MustSucceed) 675 return nullptr; 676 677 return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0); 678 } 679 680 STATISTIC(ObjectVisitorArgument, 681 "Number of arguments with unsolved size and offset"); 682 STATISTIC(ObjectVisitorLoad, 683 "Number of load instructions with unsolved size and offset"); 684 685 APInt ObjectSizeOffsetVisitor::align(APInt Size, MaybeAlign Alignment) { 686 if (Options.RoundToAlign && Alignment) 687 return APInt(IntTyBits, alignTo(Size.getZExtValue(), *Alignment)); 688 return Size; 689 } 690 691 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL, 692 const TargetLibraryInfo *TLI, 693 LLVMContext &Context, 694 ObjectSizeOpts Options) 695 : DL(DL), TLI(TLI), Options(Options) { 696 // Pointer size must be rechecked for each object visited since it could have 697 // a different address space. 698 } 699 700 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) { 701 InstructionsVisited = 0; 702 return computeImpl(V); 703 } 704 705 SizeOffsetType ObjectSizeOffsetVisitor::computeImpl(Value *V) { 706 unsigned InitialIntTyBits = DL.getIndexTypeSizeInBits(V->getType()); 707 708 // Stripping pointer casts can strip address space casts which can change the 709 // index type size. The invariant is that we use the value type to determine 710 // the index type size and if we stripped address space casts we have to 711 // readjust the APInt as we pass it upwards in order for the APInt to match 712 // the type the caller passed in. 713 APInt Offset(InitialIntTyBits, 0); 714 V = V->stripAndAccumulateConstantOffsets( 715 DL, Offset, /* AllowNonInbounds */ true, /* AllowInvariantGroup */ true); 716 717 // Later we use the index type size and zero but it will match the type of the 718 // value that is passed to computeImpl. 719 IntTyBits = DL.getIndexTypeSizeInBits(V->getType()); 720 Zero = APInt::getZero(IntTyBits); 721 722 SizeOffsetType SOT = computeValue(V); 723 724 bool IndexTypeSizeChanged = InitialIntTyBits != IntTyBits; 725 if (!IndexTypeSizeChanged && Offset.isZero()) 726 return SOT; 727 728 // We stripped an address space cast that changed the index type size or we 729 // accumulated some constant offset (or both). Readjust the bit width to match 730 // the argument index type size and apply the offset, as required. 731 if (IndexTypeSizeChanged) { 732 if (knownSize(SOT) && !::CheckedZextOrTrunc(SOT.first, InitialIntTyBits)) 733 SOT.first = APInt(); 734 if (knownOffset(SOT) && !::CheckedZextOrTrunc(SOT.second, InitialIntTyBits)) 735 SOT.second = APInt(); 736 } 737 // If the computed offset is "unknown" we cannot add the stripped offset. 738 return {SOT.first, 739 SOT.second.getBitWidth() > 1 ? SOT.second + Offset : SOT.second}; 740 } 741 742 SizeOffsetType ObjectSizeOffsetVisitor::computeValue(Value *V) { 743 if (Instruction *I = dyn_cast<Instruction>(V)) { 744 // If we have already seen this instruction, bail out. Cycles can happen in 745 // unreachable code after constant propagation. 746 auto P = SeenInsts.try_emplace(I, unknown()); 747 if (!P.second) 748 return P.first->second; 749 ++InstructionsVisited; 750 if (InstructionsVisited > ObjectSizeOffsetVisitorMaxVisitInstructions) 751 return unknown(); 752 SizeOffsetType Res = visit(*I); 753 // Cache the result for later visits. If we happened to visit this during 754 // the above recursion, we would consider it unknown until now. 755 SeenInsts[I] = Res; 756 return Res; 757 } 758 if (Argument *A = dyn_cast<Argument>(V)) 759 return visitArgument(*A); 760 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V)) 761 return visitConstantPointerNull(*P); 762 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 763 return visitGlobalAlias(*GA); 764 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 765 return visitGlobalVariable(*GV); 766 if (UndefValue *UV = dyn_cast<UndefValue>(V)) 767 return visitUndefValue(*UV); 768 769 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " 770 << *V << '\n'); 771 return unknown(); 772 } 773 774 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) { 775 return ::CheckedZextOrTrunc(I, IntTyBits); 776 } 777 778 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { 779 TypeSize ElemSize = DL.getTypeAllocSize(I.getAllocatedType()); 780 if (ElemSize.isScalable() && Options.EvalMode != ObjectSizeOpts::Mode::Min) 781 return unknown(); 782 APInt Size(IntTyBits, ElemSize.getKnownMinValue()); 783 if (!I.isArrayAllocation()) 784 return std::make_pair(align(Size, I.getAlign()), Zero); 785 786 Value *ArraySize = I.getArraySize(); 787 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) { 788 APInt NumElems = C->getValue(); 789 if (!CheckedZextOrTrunc(NumElems)) 790 return unknown(); 791 792 bool Overflow; 793 Size = Size.umul_ov(NumElems, Overflow); 794 return Overflow ? unknown() 795 : std::make_pair(align(Size, I.getAlign()), Zero); 796 } 797 return unknown(); 798 } 799 800 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) { 801 Type *MemoryTy = A.getPointeeInMemoryValueType(); 802 // No interprocedural analysis is done at the moment. 803 if (!MemoryTy|| !MemoryTy->isSized()) { 804 ++ObjectVisitorArgument; 805 return unknown(); 806 } 807 808 APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy)); 809 return std::make_pair(align(Size, A.getParamAlign()), Zero); 810 } 811 812 SizeOffsetType ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) { 813 if (std::optional<APInt> Size = getAllocSize(&CB, TLI)) 814 return std::make_pair(*Size, Zero); 815 return unknown(); 816 } 817 818 SizeOffsetType 819 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) { 820 // If null is unknown, there's nothing we can do. Additionally, non-zero 821 // address spaces can make use of null, so we don't presume to know anything 822 // about that. 823 // 824 // TODO: How should this work with address space casts? We currently just drop 825 // them on the floor, but it's unclear what we should do when a NULL from 826 // addrspace(1) gets casted to addrspace(0) (or vice-versa). 827 if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace()) 828 return unknown(); 829 return std::make_pair(Zero, Zero); 830 } 831 832 SizeOffsetType 833 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) { 834 return unknown(); 835 } 836 837 SizeOffsetType 838 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) { 839 // Easy cases were already folded by previous passes. 840 return unknown(); 841 } 842 843 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { 844 if (GA.isInterposable()) 845 return unknown(); 846 return computeImpl(GA.getAliasee()); 847 } 848 849 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){ 850 if (!GV.getValueType()->isSized() || GV.hasExternalWeakLinkage() || 851 ((!GV.hasInitializer() || GV.isInterposable()) && 852 Options.EvalMode != ObjectSizeOpts::Mode::Min)) 853 return unknown(); 854 855 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType())); 856 return std::make_pair(align(Size, GV.getAlign()), Zero); 857 } 858 859 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) { 860 // clueless 861 return unknown(); 862 } 863 864 SizeOffsetType ObjectSizeOffsetVisitor::findLoadSizeOffset( 865 LoadInst &Load, BasicBlock &BB, BasicBlock::iterator From, 866 SmallDenseMap<BasicBlock *, SizeOffsetType, 8> &VisitedBlocks, 867 unsigned &ScannedInstCount) { 868 constexpr unsigned MaxInstsToScan = 128; 869 870 auto Where = VisitedBlocks.find(&BB); 871 if (Where != VisitedBlocks.end()) 872 return Where->second; 873 874 auto Unknown = [this, &BB, &VisitedBlocks]() { 875 return VisitedBlocks[&BB] = unknown(); 876 }; 877 auto Known = [&BB, &VisitedBlocks](SizeOffsetType SO) { 878 return VisitedBlocks[&BB] = SO; 879 }; 880 881 do { 882 Instruction &I = *From; 883 884 if (I.isDebugOrPseudoInst()) 885 continue; 886 887 if (++ScannedInstCount > MaxInstsToScan) 888 return Unknown(); 889 890 if (!I.mayWriteToMemory()) 891 continue; 892 893 if (auto *SI = dyn_cast<StoreInst>(&I)) { 894 AliasResult AR = 895 Options.AA->alias(SI->getPointerOperand(), Load.getPointerOperand()); 896 switch ((AliasResult::Kind)AR) { 897 case AliasResult::NoAlias: 898 continue; 899 case AliasResult::MustAlias: 900 if (SI->getValueOperand()->getType()->isPointerTy()) 901 return Known(computeImpl(SI->getValueOperand())); 902 else 903 return Unknown(); // No handling of non-pointer values by `compute`. 904 default: 905 return Unknown(); 906 } 907 } 908 909 if (auto *CB = dyn_cast<CallBase>(&I)) { 910 Function *Callee = CB->getCalledFunction(); 911 // Bail out on indirect call. 912 if (!Callee) 913 return Unknown(); 914 915 LibFunc TLIFn; 916 if (!TLI || !TLI->getLibFunc(*CB->getCalledFunction(), TLIFn) || 917 !TLI->has(TLIFn)) 918 return Unknown(); 919 920 // TODO: There's probably more interesting case to support here. 921 if (TLIFn != LibFunc_posix_memalign) 922 return Unknown(); 923 924 AliasResult AR = 925 Options.AA->alias(CB->getOperand(0), Load.getPointerOperand()); 926 switch ((AliasResult::Kind)AR) { 927 case AliasResult::NoAlias: 928 continue; 929 case AliasResult::MustAlias: 930 break; 931 default: 932 return Unknown(); 933 } 934 935 // Is the error status of posix_memalign correctly checked? If not it 936 // would be incorrect to assume it succeeds and load doesn't see the 937 // previous value. 938 std::optional<bool> Checked = isImpliedByDomCondition( 939 ICmpInst::ICMP_EQ, CB, ConstantInt::get(CB->getType(), 0), &Load, DL); 940 if (!Checked || !*Checked) 941 return Unknown(); 942 943 Value *Size = CB->getOperand(2); 944 auto *C = dyn_cast<ConstantInt>(Size); 945 if (!C) 946 return Unknown(); 947 948 return Known({C->getValue(), APInt(C->getValue().getBitWidth(), 0)}); 949 } 950 951 return Unknown(); 952 } while (From-- != BB.begin()); 953 954 SmallVector<SizeOffsetType> PredecessorSizeOffsets; 955 for (auto *PredBB : predecessors(&BB)) { 956 PredecessorSizeOffsets.push_back(findLoadSizeOffset( 957 Load, *PredBB, BasicBlock::iterator(PredBB->getTerminator()), 958 VisitedBlocks, ScannedInstCount)); 959 if (!bothKnown(PredecessorSizeOffsets.back())) 960 return Unknown(); 961 } 962 963 if (PredecessorSizeOffsets.empty()) 964 return Unknown(); 965 966 return Known(std::accumulate(PredecessorSizeOffsets.begin() + 1, 967 PredecessorSizeOffsets.end(), 968 PredecessorSizeOffsets.front(), 969 [this](SizeOffsetType LHS, SizeOffsetType RHS) { 970 return combineSizeOffset(LHS, RHS); 971 })); 972 } 973 974 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst &LI) { 975 if (!Options.AA) { 976 ++ObjectVisitorLoad; 977 return unknown(); 978 } 979 980 SmallDenseMap<BasicBlock *, SizeOffsetType, 8> VisitedBlocks; 981 unsigned ScannedInstCount = 0; 982 SizeOffsetType SO = 983 findLoadSizeOffset(LI, *LI.getParent(), BasicBlock::iterator(LI), 984 VisitedBlocks, ScannedInstCount); 985 if (!bothKnown(SO)) 986 ++ObjectVisitorLoad; 987 return SO; 988 } 989 990 SizeOffsetType ObjectSizeOffsetVisitor::combineSizeOffset(SizeOffsetType LHS, 991 SizeOffsetType RHS) { 992 if (!bothKnown(LHS) || !bothKnown(RHS)) 993 return unknown(); 994 995 switch (Options.EvalMode) { 996 case ObjectSizeOpts::Mode::Min: 997 return (getSizeWithOverflow(LHS).slt(getSizeWithOverflow(RHS))) ? LHS : RHS; 998 case ObjectSizeOpts::Mode::Max: 999 return (getSizeWithOverflow(LHS).sgt(getSizeWithOverflow(RHS))) ? LHS : RHS; 1000 case ObjectSizeOpts::Mode::ExactSizeFromOffset: 1001 return (getSizeWithOverflow(LHS).eq(getSizeWithOverflow(RHS))) ? LHS 1002 : unknown(); 1003 case ObjectSizeOpts::Mode::ExactUnderlyingSizeAndOffset: 1004 return LHS == RHS ? LHS : unknown(); 1005 } 1006 llvm_unreachable("missing an eval mode"); 1007 } 1008 1009 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode &PN) { 1010 if (PN.getNumIncomingValues() == 0) 1011 return unknown(); 1012 auto IncomingValues = PN.incoming_values(); 1013 return std::accumulate(IncomingValues.begin() + 1, IncomingValues.end(), 1014 computeImpl(*IncomingValues.begin()), 1015 [this](SizeOffsetType LHS, Value *VRHS) { 1016 return combineSizeOffset(LHS, computeImpl(VRHS)); 1017 }); 1018 } 1019 1020 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { 1021 return combineSizeOffset(computeImpl(I.getTrueValue()), 1022 computeImpl(I.getFalseValue())); 1023 } 1024 1025 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) { 1026 return std::make_pair(Zero, Zero); 1027 } 1028 1029 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { 1030 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I 1031 << '\n'); 1032 return unknown(); 1033 } 1034 1035 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator( 1036 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context, 1037 ObjectSizeOpts EvalOpts) 1038 : DL(DL), TLI(TLI), Context(Context), 1039 Builder(Context, TargetFolder(DL), 1040 IRBuilderCallbackInserter( 1041 [&](Instruction *I) { InsertedInstructions.insert(I); })), 1042 EvalOpts(EvalOpts) { 1043 // IntTy and Zero must be set for each compute() since the address space may 1044 // be different for later objects. 1045 } 1046 1047 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) { 1048 // XXX - Are vectors of pointers possible here? 1049 IntTy = cast<IntegerType>(DL.getIndexType(V->getType())); 1050 Zero = ConstantInt::get(IntTy, 0); 1051 1052 SizeOffsetEvalType Result = compute_(V); 1053 1054 if (!bothKnown(Result)) { 1055 // Erase everything that was computed in this iteration from the cache, so 1056 // that no dangling references are left behind. We could be a bit smarter if 1057 // we kept a dependency graph. It's probably not worth the complexity. 1058 for (const Value *SeenVal : SeenVals) { 1059 CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal); 1060 // non-computable results can be safely cached 1061 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second)) 1062 CacheMap.erase(CacheIt); 1063 } 1064 1065 // Erase any instructions we inserted as part of the traversal. 1066 for (Instruction *I : InsertedInstructions) { 1067 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 1068 I->eraseFromParent(); 1069 } 1070 } 1071 1072 SeenVals.clear(); 1073 InsertedInstructions.clear(); 1074 return Result; 1075 } 1076 1077 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) { 1078 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts); 1079 SizeOffsetType Const = Visitor.compute(V); 1080 if (Visitor.bothKnown(Const)) 1081 return std::make_pair(ConstantInt::get(Context, Const.first), 1082 ConstantInt::get(Context, Const.second)); 1083 1084 V = V->stripPointerCasts(); 1085 1086 // Check cache. 1087 CacheMapTy::iterator CacheIt = CacheMap.find(V); 1088 if (CacheIt != CacheMap.end()) 1089 return CacheIt->second; 1090 1091 // Always generate code immediately before the instruction being 1092 // processed, so that the generated code dominates the same BBs. 1093 BuilderTy::InsertPointGuard Guard(Builder); 1094 if (Instruction *I = dyn_cast<Instruction>(V)) 1095 Builder.SetInsertPoint(I); 1096 1097 // Now compute the size and offset. 1098 SizeOffsetEvalType Result; 1099 1100 // Record the pointers that were handled in this run, so that they can be 1101 // cleaned later if something fails. We also use this set to break cycles that 1102 // can occur in dead code. 1103 if (!SeenVals.insert(V).second) { 1104 Result = unknown(); 1105 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1106 Result = visitGEPOperator(*GEP); 1107 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 1108 Result = visit(*I); 1109 } else if (isa<Argument>(V) || 1110 (isa<ConstantExpr>(V) && 1111 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) || 1112 isa<GlobalAlias>(V) || 1113 isa<GlobalVariable>(V)) { 1114 // Ignore values where we cannot do more than ObjectSizeVisitor. 1115 Result = unknown(); 1116 } else { 1117 LLVM_DEBUG( 1118 dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V 1119 << '\n'); 1120 Result = unknown(); 1121 } 1122 1123 // Don't reuse CacheIt since it may be invalid at this point. 1124 CacheMap[V] = Result; 1125 return Result; 1126 } 1127 1128 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { 1129 if (!I.getAllocatedType()->isSized()) 1130 return unknown(); 1131 1132 // must be a VLA 1133 assert(I.isArrayAllocation()); 1134 1135 // If needed, adjust the alloca's operand size to match the pointer indexing 1136 // size. Subsequent math operations expect the types to match. 1137 Value *ArraySize = Builder.CreateZExtOrTrunc( 1138 I.getArraySize(), 1139 DL.getIndexType(I.getContext(), DL.getAllocaAddrSpace())); 1140 assert(ArraySize->getType() == Zero->getType() && 1141 "Expected zero constant to have pointer index type"); 1142 1143 Value *Size = ConstantInt::get(ArraySize->getType(), 1144 DL.getTypeAllocSize(I.getAllocatedType())); 1145 Size = Builder.CreateMul(Size, ArraySize); 1146 return std::make_pair(Size, Zero); 1147 } 1148 1149 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) { 1150 std::optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI); 1151 if (!FnData) 1152 return unknown(); 1153 1154 // Handle strdup-like functions separately. 1155 if (FnData->AllocTy == StrDupLike) { 1156 // TODO: implement evaluation of strdup/strndup 1157 return unknown(); 1158 } 1159 1160 Value *FirstArg = CB.getArgOperand(FnData->FstParam); 1161 FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy); 1162 if (FnData->SndParam < 0) 1163 return std::make_pair(FirstArg, Zero); 1164 1165 Value *SecondArg = CB.getArgOperand(FnData->SndParam); 1166 SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy); 1167 Value *Size = Builder.CreateMul(FirstArg, SecondArg); 1168 return std::make_pair(Size, Zero); 1169 } 1170 1171 SizeOffsetEvalType 1172 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) { 1173 return unknown(); 1174 } 1175 1176 SizeOffsetEvalType 1177 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) { 1178 return unknown(); 1179 } 1180 1181 SizeOffsetEvalType 1182 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { 1183 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand()); 1184 if (!bothKnown(PtrData)) 1185 return unknown(); 1186 1187 Value *Offset = emitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true); 1188 Offset = Builder.CreateAdd(PtrData.second, Offset); 1189 return std::make_pair(PtrData.first, Offset); 1190 } 1191 1192 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) { 1193 // clueless 1194 return unknown(); 1195 } 1196 1197 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst &LI) { 1198 return unknown(); 1199 } 1200 1201 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { 1202 // Create 2 PHIs: one for size and another for offset. 1203 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 1204 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 1205 1206 // Insert right away in the cache to handle recursive PHIs. 1207 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI); 1208 1209 // Compute offset/size for each PHI incoming pointer. 1210 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { 1211 BasicBlock *IncomingBlock = PHI.getIncomingBlock(i); 1212 Builder.SetInsertPoint(IncomingBlock, IncomingBlock->getFirstInsertionPt()); 1213 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i)); 1214 1215 if (!bothKnown(EdgeData)) { 1216 OffsetPHI->replaceAllUsesWith(PoisonValue::get(IntTy)); 1217 OffsetPHI->eraseFromParent(); 1218 InsertedInstructions.erase(OffsetPHI); 1219 SizePHI->replaceAllUsesWith(PoisonValue::get(IntTy)); 1220 SizePHI->eraseFromParent(); 1221 InsertedInstructions.erase(SizePHI); 1222 return unknown(); 1223 } 1224 SizePHI->addIncoming(EdgeData.first, IncomingBlock); 1225 OffsetPHI->addIncoming(EdgeData.second, IncomingBlock); 1226 } 1227 1228 Value *Size = SizePHI, *Offset = OffsetPHI; 1229 if (Value *Tmp = SizePHI->hasConstantValue()) { 1230 Size = Tmp; 1231 SizePHI->replaceAllUsesWith(Size); 1232 SizePHI->eraseFromParent(); 1233 InsertedInstructions.erase(SizePHI); 1234 } 1235 if (Value *Tmp = OffsetPHI->hasConstantValue()) { 1236 Offset = Tmp; 1237 OffsetPHI->replaceAllUsesWith(Offset); 1238 OffsetPHI->eraseFromParent(); 1239 InsertedInstructions.erase(OffsetPHI); 1240 } 1241 return std::make_pair(Size, Offset); 1242 } 1243 1244 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { 1245 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue()); 1246 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue()); 1247 1248 if (!bothKnown(TrueSide) || !bothKnown(FalseSide)) 1249 return unknown(); 1250 if (TrueSide == FalseSide) 1251 return TrueSide; 1252 1253 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first, 1254 FalseSide.first); 1255 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second, 1256 FalseSide.second); 1257 return std::make_pair(Size, Offset); 1258 } 1259 1260 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { 1261 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I 1262 << '\n'); 1263 return unknown(); 1264 } 1265