1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/EquivalenceClasses.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AliasSetTracker.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/PassManager.h" 50 #include "llvm/IR/PatternMatch.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/IR/ValueHandle.h" 54 #include "llvm/InitializePasses.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <iterator> 65 #include <utility> 66 #include <vector> 67 68 using namespace llvm; 69 using namespace llvm::PatternMatch; 70 71 #define DEBUG_TYPE "loop-accesses" 72 73 static cl::opt<unsigned, true> 74 VectorizationFactor("force-vector-width", cl::Hidden, 75 cl::desc("Sets the SIMD width. Zero is autoselect."), 76 cl::location(VectorizerParams::VectorizationFactor)); 77 unsigned VectorizerParams::VectorizationFactor; 78 79 static cl::opt<unsigned, true> 80 VectorizationInterleave("force-vector-interleave", cl::Hidden, 81 cl::desc("Sets the vectorization interleave count. " 82 "Zero is autoselect."), 83 cl::location( 84 VectorizerParams::VectorizationInterleave)); 85 unsigned VectorizerParams::VectorizationInterleave; 86 87 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 88 "runtime-memory-check-threshold", cl::Hidden, 89 cl::desc("When performing memory disambiguation checks at runtime do not " 90 "generate more than this number of comparisons (default = 8)."), 91 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 92 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 93 94 /// The maximum iterations used to merge memory checks 95 static cl::opt<unsigned> MemoryCheckMergeThreshold( 96 "memory-check-merge-threshold", cl::Hidden, 97 cl::desc("Maximum number of comparisons done when trying to merge " 98 "runtime memory checks. (default = 100)"), 99 cl::init(100)); 100 101 /// Maximum SIMD width. 102 const unsigned VectorizerParams::MaxVectorWidth = 64; 103 104 /// We collect dependences up to this threshold. 105 static cl::opt<unsigned> 106 MaxDependences("max-dependences", cl::Hidden, 107 cl::desc("Maximum number of dependences collected by " 108 "loop-access analysis (default = 100)"), 109 cl::init(100)); 110 111 /// This enables versioning on the strides of symbolically striding memory 112 /// accesses in code like the following. 113 /// for (i = 0; i < N; ++i) 114 /// A[i * Stride1] += B[i * Stride2] ... 115 /// 116 /// Will be roughly translated to 117 /// if (Stride1 == 1 && Stride2 == 1) { 118 /// for (i = 0; i < N; i+=4) 119 /// A[i:i+3] += ... 120 /// } else 121 /// ... 122 static cl::opt<bool> EnableMemAccessVersioning( 123 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 124 cl::desc("Enable symbolic stride memory access versioning")); 125 126 /// Enable store-to-load forwarding conflict detection. This option can 127 /// be disabled for correctness testing. 128 static cl::opt<bool> EnableForwardingConflictDetection( 129 "store-to-load-forwarding-conflict-detection", cl::Hidden, 130 cl::desc("Enable conflict detection in loop-access analysis"), 131 cl::init(true)); 132 133 static cl::opt<unsigned> MaxForkedSCEVDepth( 134 "max-forked-scev-depth", cl::Hidden, 135 cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"), 136 cl::init(5)); 137 138 bool VectorizerParams::isInterleaveForced() { 139 return ::VectorizationInterleave.getNumOccurrences() > 0; 140 } 141 142 Value *llvm::stripIntegerCast(Value *V) { 143 if (auto *CI = dyn_cast<CastInst>(V)) 144 if (CI->getOperand(0)->getType()->isIntegerTy()) 145 return CI->getOperand(0); 146 return V; 147 } 148 149 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 150 const ValueToValueMap &PtrToStride, 151 Value *Ptr) { 152 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 153 154 // If there is an entry in the map return the SCEV of the pointer with the 155 // symbolic stride replaced by one. 156 ValueToValueMap::const_iterator SI = PtrToStride.find(Ptr); 157 if (SI == PtrToStride.end()) 158 // For a non-symbolic stride, just return the original expression. 159 return OrigSCEV; 160 161 Value *StrideVal = stripIntegerCast(SI->second); 162 163 ScalarEvolution *SE = PSE.getSE(); 164 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 165 const auto *CT = 166 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 167 168 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 169 auto *Expr = PSE.getSCEV(Ptr); 170 171 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 172 << " by: " << *Expr << "\n"); 173 return Expr; 174 } 175 176 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 177 unsigned Index, RuntimePointerChecking &RtCheck) 178 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start), 179 AddressSpace(RtCheck.Pointers[Index] 180 .PointerValue->getType() 181 ->getPointerAddressSpace()), 182 NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) { 183 Members.push_back(Index); 184 } 185 186 /// Calculate Start and End points of memory access. 187 /// Let's assume A is the first access and B is a memory access on N-th loop 188 /// iteration. Then B is calculated as: 189 /// B = A + Step*N . 190 /// Step value may be positive or negative. 191 /// N is a calculated back-edge taken count: 192 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 193 /// Start and End points are calculated in the following way: 194 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 195 /// where SizeOfElt is the size of single memory access in bytes. 196 /// 197 /// There is no conflict when the intervals are disjoint: 198 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 199 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, 200 Type *AccessTy, bool WritePtr, 201 unsigned DepSetId, unsigned ASId, 202 PredicatedScalarEvolution &PSE, 203 bool NeedsFreeze) { 204 ScalarEvolution *SE = PSE.getSE(); 205 206 const SCEV *ScStart; 207 const SCEV *ScEnd; 208 209 if (SE->isLoopInvariant(PtrExpr, Lp)) { 210 ScStart = ScEnd = PtrExpr; 211 } else { 212 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr); 213 assert(AR && "Invalid addrec expression"); 214 const SCEV *Ex = PSE.getBackedgeTakenCount(); 215 216 ScStart = AR->getStart(); 217 ScEnd = AR->evaluateAtIteration(Ex, *SE); 218 const SCEV *Step = AR->getStepRecurrence(*SE); 219 220 // For expressions with negative step, the upper bound is ScStart and the 221 // lower bound is ScEnd. 222 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 223 if (CStep->getValue()->isNegative()) 224 std::swap(ScStart, ScEnd); 225 } else { 226 // Fallback case: the step is not constant, but we can still 227 // get the upper and lower bounds of the interval by using min/max 228 // expressions. 229 ScStart = SE->getUMinExpr(ScStart, ScEnd); 230 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 231 } 232 } 233 // Add the size of the pointed element to ScEnd. 234 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 235 Type *IdxTy = DL.getIndexType(Ptr->getType()); 236 const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy); 237 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 238 239 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr, 240 NeedsFreeze); 241 } 242 243 void RuntimePointerChecking::tryToCreateDiffCheck( 244 const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) { 245 if (!CanUseDiffCheck) 246 return; 247 248 // If either group contains multiple different pointers, bail out. 249 // TODO: Support multiple pointers by using the minimum or maximum pointer, 250 // depending on src & sink. 251 if (CGI.Members.size() != 1 || CGJ.Members.size() != 1) { 252 CanUseDiffCheck = false; 253 return; 254 } 255 256 PointerInfo *Src = &Pointers[CGI.Members[0]]; 257 PointerInfo *Sink = &Pointers[CGJ.Members[0]]; 258 259 // If either pointer is read and written, multiple checks may be needed. Bail 260 // out. 261 if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() || 262 !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty()) { 263 CanUseDiffCheck = false; 264 return; 265 } 266 267 ArrayRef<unsigned> AccSrc = 268 DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr); 269 ArrayRef<unsigned> AccSink = 270 DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr); 271 // If either pointer is accessed multiple times, there may not be a clear 272 // src/sink relation. Bail out for now. 273 if (AccSrc.size() != 1 || AccSink.size() != 1) { 274 CanUseDiffCheck = false; 275 return; 276 } 277 // If the sink is accessed before src, swap src/sink. 278 if (AccSink[0] < AccSrc[0]) 279 std::swap(Src, Sink); 280 281 auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr); 282 auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr); 283 if (!SrcAR || !SinkAR) { 284 CanUseDiffCheck = false; 285 return; 286 } 287 288 const DataLayout &DL = 289 SinkAR->getLoop()->getHeader()->getModule()->getDataLayout(); 290 SmallVector<Instruction *, 4> SrcInsts = 291 DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr); 292 SmallVector<Instruction *, 4> SinkInsts = 293 DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr); 294 Type *SrcTy = getLoadStoreType(SrcInsts[0]); 295 Type *DstTy = getLoadStoreType(SinkInsts[0]); 296 if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy)) { 297 CanUseDiffCheck = false; 298 return; 299 } 300 unsigned AllocSize = 301 std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy)); 302 IntegerType *IntTy = 303 IntegerType::get(Src->PointerValue->getContext(), 304 DL.getPointerSizeInBits(CGI.AddressSpace)); 305 306 // Only matching constant steps matching the AllocSize are supported at the 307 // moment. This simplifies the difference computation. Can be extended in the 308 // future. 309 auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE)); 310 if (!Step || Step != SrcAR->getStepRecurrence(*SE) || 311 Step->getAPInt().abs() != AllocSize) { 312 CanUseDiffCheck = false; 313 return; 314 } 315 316 // When counting down, the dependence distance needs to be swapped. 317 if (Step->getValue()->isNegative()) 318 std::swap(SinkAR, SrcAR); 319 320 const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy); 321 const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy); 322 if (isa<SCEVCouldNotCompute>(SinkStartInt) || 323 isa<SCEVCouldNotCompute>(SrcStartInt)) { 324 CanUseDiffCheck = false; 325 return; 326 } 327 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize, 328 Src->NeedsFreeze || Sink->NeedsFreeze); 329 } 330 331 SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() { 332 SmallVector<RuntimePointerCheck, 4> Checks; 333 334 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 335 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 336 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 337 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 338 339 if (needsChecking(CGI, CGJ)) { 340 tryToCreateDiffCheck(CGI, CGJ); 341 Checks.push_back(std::make_pair(&CGI, &CGJ)); 342 } 343 } 344 } 345 return Checks; 346 } 347 348 void RuntimePointerChecking::generateChecks( 349 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 350 assert(Checks.empty() && "Checks is not empty"); 351 groupChecks(DepCands, UseDependencies); 352 Checks = generateChecks(); 353 } 354 355 bool RuntimePointerChecking::needsChecking( 356 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 357 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 358 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 359 if (needsChecking(M.Members[I], N.Members[J])) 360 return true; 361 return false; 362 } 363 364 /// Compare \p I and \p J and return the minimum. 365 /// Return nullptr in case we couldn't find an answer. 366 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 367 ScalarEvolution *SE) { 368 const SCEV *Diff = SE->getMinusSCEV(J, I); 369 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 370 371 if (!C) 372 return nullptr; 373 if (C->getValue()->isNegative()) 374 return J; 375 return I; 376 } 377 378 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, 379 RuntimePointerChecking &RtCheck) { 380 return addPointer( 381 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End, 382 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(), 383 RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE); 384 } 385 386 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start, 387 const SCEV *End, unsigned AS, 388 bool NeedsFreeze, 389 ScalarEvolution &SE) { 390 assert(AddressSpace == AS && 391 "all pointers in a checking group must be in the same address space"); 392 393 // Compare the starts and ends with the known minimum and maximum 394 // of this set. We need to know how we compare against the min/max 395 // of the set in order to be able to emit memchecks. 396 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE); 397 if (!Min0) 398 return false; 399 400 const SCEV *Min1 = getMinFromExprs(End, High, &SE); 401 if (!Min1) 402 return false; 403 404 // Update the low bound expression if we've found a new min value. 405 if (Min0 == Start) 406 Low = Start; 407 408 // Update the high bound expression if we've found a new max value. 409 if (Min1 != End) 410 High = End; 411 412 Members.push_back(Index); 413 this->NeedsFreeze |= NeedsFreeze; 414 return true; 415 } 416 417 void RuntimePointerChecking::groupChecks( 418 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 419 // We build the groups from dependency candidates equivalence classes 420 // because: 421 // - We know that pointers in the same equivalence class share 422 // the same underlying object and therefore there is a chance 423 // that we can compare pointers 424 // - We wouldn't be able to merge two pointers for which we need 425 // to emit a memcheck. The classes in DepCands are already 426 // conveniently built such that no two pointers in the same 427 // class need checking against each other. 428 429 // We use the following (greedy) algorithm to construct the groups 430 // For every pointer in the equivalence class: 431 // For each existing group: 432 // - if the difference between this pointer and the min/max bounds 433 // of the group is a constant, then make the pointer part of the 434 // group and update the min/max bounds of that group as required. 435 436 CheckingGroups.clear(); 437 438 // If we need to check two pointers to the same underlying object 439 // with a non-constant difference, we shouldn't perform any pointer 440 // grouping with those pointers. This is because we can easily get 441 // into cases where the resulting check would return false, even when 442 // the accesses are safe. 443 // 444 // The following example shows this: 445 // for (i = 0; i < 1000; ++i) 446 // a[5000 + i * m] = a[i] + a[i + 9000] 447 // 448 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 449 // (0, 10000) which is always false. However, if m is 1, there is no 450 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 451 // us to perform an accurate check in this case. 452 // 453 // The above case requires that we have an UnknownDependence between 454 // accesses to the same underlying object. This cannot happen unless 455 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 456 // is also false. In this case we will use the fallback path and create 457 // separate checking groups for all pointers. 458 459 // If we don't have the dependency partitions, construct a new 460 // checking pointer group for each pointer. This is also required 461 // for correctness, because in this case we can have checking between 462 // pointers to the same underlying object. 463 if (!UseDependencies) { 464 for (unsigned I = 0; I < Pointers.size(); ++I) 465 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this)); 466 return; 467 } 468 469 unsigned TotalComparisons = 0; 470 471 DenseMap<Value *, SmallVector<unsigned>> PositionMap; 472 for (unsigned Index = 0; Index < Pointers.size(); ++Index) { 473 auto Iter = PositionMap.insert({Pointers[Index].PointerValue, {}}); 474 Iter.first->second.push_back(Index); 475 } 476 477 // We need to keep track of what pointers we've already seen so we 478 // don't process them twice. 479 SmallSet<unsigned, 2> Seen; 480 481 // Go through all equivalence classes, get the "pointer check groups" 482 // and add them to the overall solution. We use the order in which accesses 483 // appear in 'Pointers' to enforce determinism. 484 for (unsigned I = 0; I < Pointers.size(); ++I) { 485 // We've seen this pointer before, and therefore already processed 486 // its equivalence class. 487 if (Seen.count(I)) 488 continue; 489 490 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 491 Pointers[I].IsWritePtr); 492 493 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 494 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 495 496 // Because DepCands is constructed by visiting accesses in the order in 497 // which they appear in alias sets (which is deterministic) and the 498 // iteration order within an equivalence class member is only dependent on 499 // the order in which unions and insertions are performed on the 500 // equivalence class, the iteration order is deterministic. 501 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 502 MI != ME; ++MI) { 503 auto PointerI = PositionMap.find(MI->getPointer()); 504 assert(PointerI != PositionMap.end() && 505 "pointer in equivalence class not found in PositionMap"); 506 for (unsigned Pointer : PointerI->second) { 507 bool Merged = false; 508 // Mark this pointer as seen. 509 Seen.insert(Pointer); 510 511 // Go through all the existing sets and see if we can find one 512 // which can include this pointer. 513 for (RuntimeCheckingPtrGroup &Group : Groups) { 514 // Don't perform more than a certain amount of comparisons. 515 // This should limit the cost of grouping the pointers to something 516 // reasonable. If we do end up hitting this threshold, the algorithm 517 // will create separate groups for all remaining pointers. 518 if (TotalComparisons > MemoryCheckMergeThreshold) 519 break; 520 521 TotalComparisons++; 522 523 if (Group.addPointer(Pointer, *this)) { 524 Merged = true; 525 break; 526 } 527 } 528 529 if (!Merged) 530 // We couldn't add this pointer to any existing set or the threshold 531 // for the number of comparisons has been reached. Create a new group 532 // to hold the current pointer. 533 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this)); 534 } 535 } 536 537 // We've computed the grouped checks for this partition. 538 // Save the results and continue with the next one. 539 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 540 } 541 } 542 543 bool RuntimePointerChecking::arePointersInSamePartition( 544 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 545 unsigned PtrIdx2) { 546 return (PtrToPartition[PtrIdx1] != -1 && 547 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 548 } 549 550 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 551 const PointerInfo &PointerI = Pointers[I]; 552 const PointerInfo &PointerJ = Pointers[J]; 553 554 // No need to check if two readonly pointers intersect. 555 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 556 return false; 557 558 // Only need to check pointers between two different dependency sets. 559 if (PointerI.DependencySetId == PointerJ.DependencySetId) 560 return false; 561 562 // Only need to check pointers in the same alias set. 563 if (PointerI.AliasSetId != PointerJ.AliasSetId) 564 return false; 565 566 return true; 567 } 568 569 void RuntimePointerChecking::printChecks( 570 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 571 unsigned Depth) const { 572 unsigned N = 0; 573 for (const auto &Check : Checks) { 574 const auto &First = Check.first->Members, &Second = Check.second->Members; 575 576 OS.indent(Depth) << "Check " << N++ << ":\n"; 577 578 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 579 for (unsigned K = 0; K < First.size(); ++K) 580 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 581 582 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 583 for (unsigned K = 0; K < Second.size(); ++K) 584 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 585 } 586 } 587 588 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 589 590 OS.indent(Depth) << "Run-time memory checks:\n"; 591 printChecks(OS, Checks, Depth); 592 593 OS.indent(Depth) << "Grouped accesses:\n"; 594 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 595 const auto &CG = CheckingGroups[I]; 596 597 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 598 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 599 << ")\n"; 600 for (unsigned J = 0; J < CG.Members.size(); ++J) { 601 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 602 << "\n"; 603 } 604 } 605 } 606 607 namespace { 608 609 /// Analyses memory accesses in a loop. 610 /// 611 /// Checks whether run time pointer checks are needed and builds sets for data 612 /// dependence checking. 613 class AccessAnalysis { 614 public: 615 /// Read or write access location. 616 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 617 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 618 619 AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI, 620 MemoryDepChecker::DepCandidates &DA, 621 PredicatedScalarEvolution &PSE) 622 : TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), PSE(PSE) {} 623 624 /// Register a load and whether it is only read from. 625 void addLoad(MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) { 626 Value *Ptr = const_cast<Value*>(Loc.Ptr); 627 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 628 Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy); 629 if (IsReadOnly) 630 ReadOnlyPtr.insert(Ptr); 631 } 632 633 /// Register a store. 634 void addStore(MemoryLocation &Loc, Type *AccessTy) { 635 Value *Ptr = const_cast<Value*>(Loc.Ptr); 636 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 637 Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy); 638 } 639 640 /// Check if we can emit a run-time no-alias check for \p Access. 641 /// 642 /// Returns true if we can emit a run-time no alias check for \p Access. 643 /// If we can check this access, this also adds it to a dependence set and 644 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 645 /// we will attempt to use additional run-time checks in order to get 646 /// the bounds of the pointer. 647 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 648 MemAccessInfo Access, Type *AccessTy, 649 const ValueToValueMap &Strides, 650 DenseMap<Value *, unsigned> &DepSetId, 651 Loop *TheLoop, unsigned &RunningDepId, 652 unsigned ASId, bool ShouldCheckStride, bool Assume); 653 654 /// Check whether we can check the pointers at runtime for 655 /// non-intersection. 656 /// 657 /// Returns true if we need no check or if we do and we can generate them 658 /// (i.e. the pointers have computable bounds). 659 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 660 Loop *TheLoop, const ValueToValueMap &Strides, 661 Value *&UncomputablePtr, bool ShouldCheckWrap = false); 662 663 /// Goes over all memory accesses, checks whether a RT check is needed 664 /// and builds sets of dependent accesses. 665 void buildDependenceSets() { 666 processMemAccesses(); 667 } 668 669 /// Initial processing of memory accesses determined that we need to 670 /// perform dependency checking. 671 /// 672 /// Note that this can later be cleared if we retry memcheck analysis without 673 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 674 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 675 676 /// We decided that no dependence analysis would be used. Reset the state. 677 void resetDepChecks(MemoryDepChecker &DepChecker) { 678 CheckDeps.clear(); 679 DepChecker.clearDependences(); 680 } 681 682 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 683 684 private: 685 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap; 686 687 /// Go over all memory access and check whether runtime pointer checks 688 /// are needed and build sets of dependency check candidates. 689 void processMemAccesses(); 690 691 /// Map of all accesses. Values are the types used to access memory pointed to 692 /// by the pointer. 693 PtrAccessMap Accesses; 694 695 /// The loop being checked. 696 const Loop *TheLoop; 697 698 /// List of accesses that need a further dependence check. 699 MemAccessInfoList CheckDeps; 700 701 /// Set of pointers that are read only. 702 SmallPtrSet<Value*, 16> ReadOnlyPtr; 703 704 /// An alias set tracker to partition the access set by underlying object and 705 //intrinsic property (such as TBAA metadata). 706 AliasSetTracker AST; 707 708 LoopInfo *LI; 709 710 /// Sets of potentially dependent accesses - members of one set share an 711 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 712 /// dependence check. 713 MemoryDepChecker::DepCandidates &DepCands; 714 715 /// Initial processing of memory accesses determined that we may need 716 /// to add memchecks. Perform the analysis to determine the necessary checks. 717 /// 718 /// Note that, this is different from isDependencyCheckNeeded. When we retry 719 /// memcheck analysis without dependency checking 720 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 721 /// cleared while this remains set if we have potentially dependent accesses. 722 bool IsRTCheckAnalysisNeeded = false; 723 724 /// The SCEV predicate containing all the SCEV-related assumptions. 725 PredicatedScalarEvolution &PSE; 726 }; 727 728 } // end anonymous namespace 729 730 /// Check whether a pointer can participate in a runtime bounds check. 731 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 732 /// by adding run-time checks (overflow checks) if necessary. 733 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr, 734 const SCEV *PtrScev, Loop *L, bool Assume) { 735 // The bounds for loop-invariant pointer is trivial. 736 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 737 return true; 738 739 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 740 741 if (!AR && Assume) 742 AR = PSE.getAsAddRec(Ptr); 743 744 if (!AR) 745 return false; 746 747 return AR->isAffine(); 748 } 749 750 /// Check whether a pointer address cannot wrap. 751 static bool isNoWrap(PredicatedScalarEvolution &PSE, 752 const ValueToValueMap &Strides, Value *Ptr, Type *AccessTy, 753 Loop *L) { 754 const SCEV *PtrScev = PSE.getSCEV(Ptr); 755 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 756 return true; 757 758 int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides); 759 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 760 return true; 761 762 return false; 763 } 764 765 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, 766 function_ref<void(Value *)> AddPointer) { 767 SmallPtrSet<Value *, 8> Visited; 768 SmallVector<Value *> WorkList; 769 WorkList.push_back(StartPtr); 770 771 while (!WorkList.empty()) { 772 Value *Ptr = WorkList.pop_back_val(); 773 if (!Visited.insert(Ptr).second) 774 continue; 775 auto *PN = dyn_cast<PHINode>(Ptr); 776 // SCEV does not look through non-header PHIs inside the loop. Such phis 777 // can be analyzed by adding separate accesses for each incoming pointer 778 // value. 779 if (PN && InnermostLoop.contains(PN->getParent()) && 780 PN->getParent() != InnermostLoop.getHeader()) { 781 for (const Use &Inc : PN->incoming_values()) 782 WorkList.push_back(Inc); 783 } else 784 AddPointer(Ptr); 785 } 786 } 787 788 // Walk back through the IR for a pointer, looking for a select like the 789 // following: 790 // 791 // %offset = select i1 %cmp, i64 %a, i64 %b 792 // %addr = getelementptr double, double* %base, i64 %offset 793 // %ld = load double, double* %addr, align 8 794 // 795 // We won't be able to form a single SCEVAddRecExpr from this since the 796 // address for each loop iteration depends on %cmp. We could potentially 797 // produce multiple valid SCEVAddRecExprs, though, and check all of them for 798 // memory safety/aliasing if needed. 799 // 800 // If we encounter some IR we don't yet handle, or something obviously fine 801 // like a constant, then we just add the SCEV for that term to the list passed 802 // in by the caller. If we have a node that may potentially yield a valid 803 // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms 804 // ourselves before adding to the list. 805 static void 806 findForkedSCEVs(ScalarEvolution *SE, const Loop *L, Value *Ptr, 807 SmallVectorImpl<std::pair<const SCEV *, bool>> &ScevList, 808 unsigned Depth) { 809 // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or 810 // we've exceeded our limit on recursion, just return whatever we have 811 // regardless of whether it can be used for a forked pointer or not, along 812 // with an indication of whether it might be a poison or undef value. 813 const SCEV *Scev = SE->getSCEV(Ptr); 814 if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) || 815 !isa<Instruction>(Ptr) || Depth == 0) { 816 ScevList.push_back( 817 std::make_pair(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr))); 818 return; 819 } 820 821 Depth--; 822 823 auto UndefPoisonCheck = [](std::pair<const SCEV *, bool> S) -> bool { 824 return S.second; 825 }; 826 827 Instruction *I = cast<Instruction>(Ptr); 828 unsigned Opcode = I->getOpcode(); 829 switch (Opcode) { 830 case Instruction::GetElementPtr: { 831 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 832 Type *SourceTy = GEP->getSourceElementType(); 833 // We only handle base + single offset GEPs here for now. 834 // Not dealing with preexisting gathers yet, so no vectors. 835 if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) { 836 ScevList.push_back( 837 std::make_pair(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP))); 838 break; 839 } 840 SmallVector<std::pair<const SCEV *, bool>, 2> BaseScevs; 841 SmallVector<std::pair<const SCEV *, bool>, 2> OffsetScevs; 842 findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth); 843 findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth); 844 845 // See if we need to freeze our fork... 846 bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) || 847 any_of(OffsetScevs, UndefPoisonCheck); 848 849 // Check that we only have a single fork, on either the base or the offset. 850 // Copy the SCEV across for the one without a fork in order to generate 851 // the full SCEV for both sides of the GEP. 852 if (OffsetScevs.size() == 2 && BaseScevs.size() == 1) 853 BaseScevs.push_back(BaseScevs[0]); 854 else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1) 855 OffsetScevs.push_back(OffsetScevs[0]); 856 else { 857 ScevList.push_back(std::make_pair(Scev, NeedsFreeze)); 858 break; 859 } 860 861 // Find the pointer type we need to extend to. 862 Type *IntPtrTy = SE->getEffectiveSCEVType( 863 SE->getSCEV(GEP->getPointerOperand())->getType()); 864 865 // Find the size of the type being pointed to. We only have a single 866 // index term (guarded above) so we don't need to index into arrays or 867 // structures, just get the size of the scalar value. 868 const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy); 869 870 // Scale up the offsets by the size of the type, then add to the bases. 871 const SCEV *Scaled1 = SE->getMulExpr( 872 Size, SE->getTruncateOrSignExtend(OffsetScevs[0].first, IntPtrTy)); 873 const SCEV *Scaled2 = SE->getMulExpr( 874 Size, SE->getTruncateOrSignExtend(OffsetScevs[1].first, IntPtrTy)); 875 ScevList.push_back(std::make_pair( 876 SE->getAddExpr(BaseScevs[0].first, Scaled1), NeedsFreeze)); 877 ScevList.push_back(std::make_pair( 878 SE->getAddExpr(BaseScevs[1].first, Scaled2), NeedsFreeze)); 879 break; 880 } 881 case Instruction::Select: { 882 SmallVector<std::pair<const SCEV *, bool>, 2> ChildScevs; 883 // A select means we've found a forked pointer, but we currently only 884 // support a single select per pointer so if there's another behind this 885 // then we just bail out and return the generic SCEV. 886 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth); 887 findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth); 888 if (ChildScevs.size() == 2) { 889 ScevList.push_back(ChildScevs[0]); 890 ScevList.push_back(ChildScevs[1]); 891 } else 892 ScevList.push_back( 893 std::make_pair(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr))); 894 break; 895 } 896 default: 897 // Just return the current SCEV if we haven't handled the instruction yet. 898 LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n"); 899 ScevList.push_back( 900 std::make_pair(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr))); 901 break; 902 } 903 } 904 905 static SmallVector<std::pair<const SCEV *, bool>> 906 findForkedPointer(PredicatedScalarEvolution &PSE, 907 const ValueToValueMap &StridesMap, Value *Ptr, 908 const Loop *L) { 909 ScalarEvolution *SE = PSE.getSE(); 910 assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!"); 911 SmallVector<std::pair<const SCEV *, bool>> Scevs; 912 findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth); 913 914 // For now, we will only accept a forked pointer with two possible SCEVs. 915 if (Scevs.size() == 2) 916 return Scevs; 917 918 return { 919 std::make_pair(replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false)}; 920 } 921 922 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 923 MemAccessInfo Access, Type *AccessTy, 924 const ValueToValueMap &StridesMap, 925 DenseMap<Value *, unsigned> &DepSetId, 926 Loop *TheLoop, unsigned &RunningDepId, 927 unsigned ASId, bool ShouldCheckWrap, 928 bool Assume) { 929 Value *Ptr = Access.getPointer(); 930 931 SmallVector<std::pair<const SCEV *, bool>> TranslatedPtrs = 932 findForkedPointer(PSE, StridesMap, Ptr, TheLoop); 933 934 for (auto &P : TranslatedPtrs) { 935 const SCEV *PtrExpr = P.first; 936 if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume)) 937 return false; 938 939 // When we run after a failing dependency check we have to make sure 940 // we don't have wrapping pointers. 941 if (ShouldCheckWrap) { 942 // Skip wrap checking when translating pointers. 943 if (TranslatedPtrs.size() > 1) 944 return false; 945 946 if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) { 947 auto *Expr = PSE.getSCEV(Ptr); 948 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 949 return false; 950 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 951 } 952 } 953 // If there's only one option for Ptr, look it up after bounds and wrap 954 // checking, because assumptions might have been added to PSE. 955 if (TranslatedPtrs.size() == 1) 956 TranslatedPtrs[0] = std::make_pair( 957 replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false); 958 } 959 960 for (auto &P : TranslatedPtrs) { 961 const SCEV *PtrExpr = P.first; 962 963 // The id of the dependence set. 964 unsigned DepId; 965 966 if (isDependencyCheckNeeded()) { 967 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 968 unsigned &LeaderId = DepSetId[Leader]; 969 if (!LeaderId) 970 LeaderId = RunningDepId++; 971 DepId = LeaderId; 972 } else 973 // Each access has its own dependence set. 974 DepId = RunningDepId++; 975 976 bool IsWrite = Access.getInt(); 977 RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE, 978 P.second); 979 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 980 } 981 982 return true; 983 } 984 985 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 986 ScalarEvolution *SE, Loop *TheLoop, 987 const ValueToValueMap &StridesMap, 988 Value *&UncomputablePtr, bool ShouldCheckWrap) { 989 // Find pointers with computable bounds. We are going to use this information 990 // to place a runtime bound check. 991 bool CanDoRT = true; 992 993 bool MayNeedRTCheck = false; 994 if (!IsRTCheckAnalysisNeeded) return true; 995 996 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 997 998 // We assign a consecutive id to access from different alias sets. 999 // Accesses between different groups doesn't need to be checked. 1000 unsigned ASId = 0; 1001 for (auto &AS : AST) { 1002 int NumReadPtrChecks = 0; 1003 int NumWritePtrChecks = 0; 1004 bool CanDoAliasSetRT = true; 1005 ++ASId; 1006 1007 // We assign consecutive id to access from different dependence sets. 1008 // Accesses within the same set don't need a runtime check. 1009 unsigned RunningDepId = 1; 1010 DenseMap<Value *, unsigned> DepSetId; 1011 1012 SmallVector<std::pair<MemAccessInfo, Type *>, 4> Retries; 1013 1014 // First, count how many write and read accesses are in the alias set. Also 1015 // collect MemAccessInfos for later. 1016 SmallVector<MemAccessInfo, 4> AccessInfos; 1017 for (const auto &A : AS) { 1018 Value *Ptr = A.getValue(); 1019 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 1020 1021 if (IsWrite) 1022 ++NumWritePtrChecks; 1023 else 1024 ++NumReadPtrChecks; 1025 AccessInfos.emplace_back(Ptr, IsWrite); 1026 } 1027 1028 // We do not need runtime checks for this alias set, if there are no writes 1029 // or a single write and no reads. 1030 if (NumWritePtrChecks == 0 || 1031 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) { 1032 assert((AS.size() <= 1 || 1033 all_of(AS, 1034 [this](auto AC) { 1035 MemAccessInfo AccessWrite(AC.getValue(), true); 1036 return DepCands.findValue(AccessWrite) == DepCands.end(); 1037 })) && 1038 "Can only skip updating CanDoRT below, if all entries in AS " 1039 "are reads or there is at most 1 entry"); 1040 continue; 1041 } 1042 1043 for (auto &Access : AccessInfos) { 1044 for (const auto &AccessTy : Accesses[Access]) { 1045 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 1046 DepSetId, TheLoop, RunningDepId, ASId, 1047 ShouldCheckWrap, false)) { 1048 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" 1049 << *Access.getPointer() << '\n'); 1050 Retries.push_back({Access, AccessTy}); 1051 CanDoAliasSetRT = false; 1052 } 1053 } 1054 } 1055 1056 // Note that this function computes CanDoRT and MayNeedRTCheck 1057 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that 1058 // we have a pointer for which we couldn't find the bounds but we don't 1059 // actually need to emit any checks so it does not matter. 1060 // 1061 // We need runtime checks for this alias set, if there are at least 2 1062 // dependence sets (in which case RunningDepId > 2) or if we need to re-try 1063 // any bound checks (because in that case the number of dependence sets is 1064 // incomplete). 1065 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty(); 1066 1067 // We need to perform run-time alias checks, but some pointers had bounds 1068 // that couldn't be checked. 1069 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 1070 // Reset the CanDoSetRt flag and retry all accesses that have failed. 1071 // We know that we need these checks, so we can now be more aggressive 1072 // and add further checks if required (overflow checks). 1073 CanDoAliasSetRT = true; 1074 for (auto Retry : Retries) { 1075 MemAccessInfo Access = Retry.first; 1076 Type *AccessTy = Retry.second; 1077 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 1078 DepSetId, TheLoop, RunningDepId, ASId, 1079 ShouldCheckWrap, /*Assume=*/true)) { 1080 CanDoAliasSetRT = false; 1081 UncomputablePtr = Access.getPointer(); 1082 break; 1083 } 1084 } 1085 } 1086 1087 CanDoRT &= CanDoAliasSetRT; 1088 MayNeedRTCheck |= NeedsAliasSetRTCheck; 1089 ++ASId; 1090 } 1091 1092 // If the pointers that we would use for the bounds comparison have different 1093 // address spaces, assume the values aren't directly comparable, so we can't 1094 // use them for the runtime check. We also have to assume they could 1095 // overlap. In the future there should be metadata for whether address spaces 1096 // are disjoint. 1097 unsigned NumPointers = RtCheck.Pointers.size(); 1098 for (unsigned i = 0; i < NumPointers; ++i) { 1099 for (unsigned j = i + 1; j < NumPointers; ++j) { 1100 // Only need to check pointers between two different dependency sets. 1101 if (RtCheck.Pointers[i].DependencySetId == 1102 RtCheck.Pointers[j].DependencySetId) 1103 continue; 1104 // Only need to check pointers in the same alias set. 1105 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 1106 continue; 1107 1108 Value *PtrI = RtCheck.Pointers[i].PointerValue; 1109 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 1110 1111 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 1112 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 1113 if (ASi != ASj) { 1114 LLVM_DEBUG( 1115 dbgs() << "LAA: Runtime check would require comparison between" 1116 " different address spaces\n"); 1117 return false; 1118 } 1119 } 1120 } 1121 1122 if (MayNeedRTCheck && CanDoRT) 1123 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 1124 1125 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 1126 << " pointer comparisons.\n"); 1127 1128 // If we can do run-time checks, but there are no checks, no runtime checks 1129 // are needed. This can happen when all pointers point to the same underlying 1130 // object for example. 1131 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck; 1132 1133 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT; 1134 if (!CanDoRTIfNeeded) 1135 RtCheck.reset(); 1136 return CanDoRTIfNeeded; 1137 } 1138 1139 void AccessAnalysis::processMemAccesses() { 1140 // We process the set twice: first we process read-write pointers, last we 1141 // process read-only pointers. This allows us to skip dependence tests for 1142 // read-only pointers. 1143 1144 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 1145 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 1146 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 1147 LLVM_DEBUG({ 1148 for (auto A : Accesses) 1149 dbgs() << "\t" << *A.first.getPointer() << " (" 1150 << (A.first.getInt() 1151 ? "write" 1152 : (ReadOnlyPtr.count(A.first.getPointer()) ? "read-only" 1153 : "read")) 1154 << ")\n"; 1155 }); 1156 1157 // The AliasSetTracker has nicely partitioned our pointers by metadata 1158 // compatibility and potential for underlying-object overlap. As a result, we 1159 // only need to check for potential pointer dependencies within each alias 1160 // set. 1161 for (const auto &AS : AST) { 1162 // Note that both the alias-set tracker and the alias sets themselves used 1163 // linked lists internally and so the iteration order here is deterministic 1164 // (matching the original instruction order within each set). 1165 1166 bool SetHasWrite = false; 1167 1168 // Map of pointers to last access encountered. 1169 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 1170 UnderlyingObjToAccessMap ObjToLastAccess; 1171 1172 // Set of access to check after all writes have been processed. 1173 PtrAccessMap DeferredAccesses; 1174 1175 // Iterate over each alias set twice, once to process read/write pointers, 1176 // and then to process read-only pointers. 1177 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 1178 bool UseDeferred = SetIteration > 0; 1179 PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses; 1180 1181 for (const auto &AV : AS) { 1182 Value *Ptr = AV.getValue(); 1183 1184 // For a single memory access in AliasSetTracker, Accesses may contain 1185 // both read and write, and they both need to be handled for CheckDeps. 1186 for (const auto &AC : S) { 1187 if (AC.first.getPointer() != Ptr) 1188 continue; 1189 1190 bool IsWrite = AC.first.getInt(); 1191 1192 // If we're using the deferred access set, then it contains only 1193 // reads. 1194 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 1195 if (UseDeferred && !IsReadOnlyPtr) 1196 continue; 1197 // Otherwise, the pointer must be in the PtrAccessSet, either as a 1198 // read or a write. 1199 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 1200 S.count(MemAccessInfo(Ptr, false))) && 1201 "Alias-set pointer not in the access set?"); 1202 1203 MemAccessInfo Access(Ptr, IsWrite); 1204 DepCands.insert(Access); 1205 1206 // Memorize read-only pointers for later processing and skip them in 1207 // the first round (they need to be checked after we have seen all 1208 // write pointers). Note: we also mark pointer that are not 1209 // consecutive as "read-only" pointers (so that we check 1210 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 1211 if (!UseDeferred && IsReadOnlyPtr) { 1212 // We only use the pointer keys, the types vector values don't 1213 // matter. 1214 DeferredAccesses.insert({Access, {}}); 1215 continue; 1216 } 1217 1218 // If this is a write - check other reads and writes for conflicts. If 1219 // this is a read only check other writes for conflicts (but only if 1220 // there is no other write to the ptr - this is an optimization to 1221 // catch "a[i] = a[i] + " without having to do a dependence check). 1222 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 1223 CheckDeps.push_back(Access); 1224 IsRTCheckAnalysisNeeded = true; 1225 } 1226 1227 if (IsWrite) 1228 SetHasWrite = true; 1229 1230 // Create sets of pointers connected by a shared alias set and 1231 // underlying object. 1232 typedef SmallVector<const Value *, 16> ValueVector; 1233 ValueVector TempObjects; 1234 1235 getUnderlyingObjects(Ptr, TempObjects, LI); 1236 LLVM_DEBUG(dbgs() 1237 << "Underlying objects for pointer " << *Ptr << "\n"); 1238 for (const Value *UnderlyingObj : TempObjects) { 1239 // nullptr never alias, don't join sets for pointer that have "null" 1240 // in their UnderlyingObjects list. 1241 if (isa<ConstantPointerNull>(UnderlyingObj) && 1242 !NullPointerIsDefined( 1243 TheLoop->getHeader()->getParent(), 1244 UnderlyingObj->getType()->getPointerAddressSpace())) 1245 continue; 1246 1247 UnderlyingObjToAccessMap::iterator Prev = 1248 ObjToLastAccess.find(UnderlyingObj); 1249 if (Prev != ObjToLastAccess.end()) 1250 DepCands.unionSets(Access, Prev->second); 1251 1252 ObjToLastAccess[UnderlyingObj] = Access; 1253 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 1254 } 1255 } 1256 } 1257 } 1258 } 1259 } 1260 1261 static bool isInBoundsGep(Value *Ptr) { 1262 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 1263 return GEP->isInBounds(); 1264 return false; 1265 } 1266 1267 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 1268 /// i.e. monotonically increasing/decreasing. 1269 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 1270 PredicatedScalarEvolution &PSE, const Loop *L) { 1271 // FIXME: This should probably only return true for NUW. 1272 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 1273 return true; 1274 1275 // Scalar evolution does not propagate the non-wrapping flags to values that 1276 // are derived from a non-wrapping induction variable because non-wrapping 1277 // could be flow-sensitive. 1278 // 1279 // Look through the potentially overflowing instruction to try to prove 1280 // non-wrapping for the *specific* value of Ptr. 1281 1282 // The arithmetic implied by an inbounds GEP can't overflow. 1283 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 1284 if (!GEP || !GEP->isInBounds()) 1285 return false; 1286 1287 // Make sure there is only one non-const index and analyze that. 1288 Value *NonConstIndex = nullptr; 1289 for (Value *Index : GEP->indices()) 1290 if (!isa<ConstantInt>(Index)) { 1291 if (NonConstIndex) 1292 return false; 1293 NonConstIndex = Index; 1294 } 1295 if (!NonConstIndex) 1296 // The recurrence is on the pointer, ignore for now. 1297 return false; 1298 1299 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 1300 // AddRec using a NSW operation. 1301 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 1302 if (OBO->hasNoSignedWrap() && 1303 // Assume constant for other the operand so that the AddRec can be 1304 // easily found. 1305 isa<ConstantInt>(OBO->getOperand(1))) { 1306 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 1307 1308 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 1309 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 1310 } 1311 1312 return false; 1313 } 1314 1315 /// Check whether the access through \p Ptr has a constant stride. 1316 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, 1317 Value *Ptr, const Loop *Lp, 1318 const ValueToValueMap &StridesMap, bool Assume, 1319 bool ShouldCheckWrap) { 1320 Type *Ty = Ptr->getType(); 1321 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1322 1323 if (isa<ScalableVectorType>(AccessTy)) { 1324 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy 1325 << "\n"); 1326 return 0; 1327 } 1328 1329 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1330 1331 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1332 if (Assume && !AR) 1333 AR = PSE.getAsAddRec(Ptr); 1334 1335 if (!AR) { 1336 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1337 << " SCEV: " << *PtrScev << "\n"); 1338 return 0; 1339 } 1340 1341 // The access function must stride over the innermost loop. 1342 if (Lp != AR->getLoop()) { 1343 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1344 << *Ptr << " SCEV: " << *AR << "\n"); 1345 return 0; 1346 } 1347 1348 // The address calculation must not wrap. Otherwise, a dependence could be 1349 // inverted. 1350 // An inbounds getelementptr that is a AddRec with a unit stride 1351 // cannot wrap per definition. The unit stride requirement is checked later. 1352 // An getelementptr without an inbounds attribute and unit stride would have 1353 // to access the pointer value "0" which is undefined behavior in address 1354 // space 0, therefore we can also vectorize this case. 1355 unsigned AddrSpace = Ty->getPointerAddressSpace(); 1356 bool IsInBoundsGEP = isInBoundsGep(Ptr); 1357 bool IsNoWrapAddRec = !ShouldCheckWrap || 1358 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 1359 isNoWrapAddRec(Ptr, AR, PSE, Lp); 1360 if (!IsNoWrapAddRec && !IsInBoundsGEP && 1361 NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace)) { 1362 if (Assume) { 1363 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1364 IsNoWrapAddRec = true; 1365 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 1366 << "LAA: Pointer: " << *Ptr << "\n" 1367 << "LAA: SCEV: " << *AR << "\n" 1368 << "LAA: Added an overflow assumption\n"); 1369 } else { 1370 LLVM_DEBUG( 1371 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1372 << *Ptr << " SCEV: " << *AR << "\n"); 1373 return 0; 1374 } 1375 } 1376 1377 // Check the step is constant. 1378 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1379 1380 // Calculate the pointer stride and check if it is constant. 1381 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1382 if (!C) { 1383 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1384 << " SCEV: " << *AR << "\n"); 1385 return 0; 1386 } 1387 1388 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1389 TypeSize AllocSize = DL.getTypeAllocSize(AccessTy); 1390 int64_t Size = AllocSize.getFixedSize(); 1391 const APInt &APStepVal = C->getAPInt(); 1392 1393 // Huge step value - give up. 1394 if (APStepVal.getBitWidth() > 64) 1395 return 0; 1396 1397 int64_t StepVal = APStepVal.getSExtValue(); 1398 1399 // Strided access. 1400 int64_t Stride = StepVal / Size; 1401 int64_t Rem = StepVal % Size; 1402 if (Rem) 1403 return 0; 1404 1405 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 1406 // know we can't "wrap around the address space". In case of address space 1407 // zero we know that this won't happen without triggering undefined behavior. 1408 if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && 1409 (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), 1410 AddrSpace))) { 1411 if (Assume) { 1412 // We can avoid this case by adding a run-time check. 1413 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1414 << "inbounds or in address space 0 may wrap:\n" 1415 << "LAA: Pointer: " << *Ptr << "\n" 1416 << "LAA: SCEV: " << *AR << "\n" 1417 << "LAA: Added an overflow assumption\n"); 1418 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1419 } else 1420 return 0; 1421 } 1422 1423 return Stride; 1424 } 1425 1426 Optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB, 1427 Value *PtrB, const DataLayout &DL, 1428 ScalarEvolution &SE, bool StrictCheck, 1429 bool CheckType) { 1430 assert(PtrA && PtrB && "Expected non-nullptr pointers."); 1431 assert(cast<PointerType>(PtrA->getType()) 1432 ->isOpaqueOrPointeeTypeMatches(ElemTyA) && "Wrong PtrA type"); 1433 assert(cast<PointerType>(PtrB->getType()) 1434 ->isOpaqueOrPointeeTypeMatches(ElemTyB) && "Wrong PtrB type"); 1435 1436 // Make sure that A and B are different pointers. 1437 if (PtrA == PtrB) 1438 return 0; 1439 1440 // Make sure that the element types are the same if required. 1441 if (CheckType && ElemTyA != ElemTyB) 1442 return None; 1443 1444 unsigned ASA = PtrA->getType()->getPointerAddressSpace(); 1445 unsigned ASB = PtrB->getType()->getPointerAddressSpace(); 1446 1447 // Check that the address spaces match. 1448 if (ASA != ASB) 1449 return None; 1450 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1451 1452 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1453 Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1454 Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1455 1456 int Val; 1457 if (PtrA1 == PtrB1) { 1458 // Retrieve the address space again as pointer stripping now tracks through 1459 // `addrspacecast`. 1460 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace(); 1461 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace(); 1462 // Check that the address spaces match and that the pointers are valid. 1463 if (ASA != ASB) 1464 return None; 1465 1466 IdxWidth = DL.getIndexSizeInBits(ASA); 1467 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1468 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1469 1470 OffsetB -= OffsetA; 1471 Val = OffsetB.getSExtValue(); 1472 } else { 1473 // Otherwise compute the distance with SCEV between the base pointers. 1474 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1475 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1476 const auto *Diff = 1477 dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA)); 1478 if (!Diff) 1479 return None; 1480 Val = Diff->getAPInt().getSExtValue(); 1481 } 1482 int Size = DL.getTypeStoreSize(ElemTyA); 1483 int Dist = Val / Size; 1484 1485 // Ensure that the calculated distance matches the type-based one after all 1486 // the bitcasts removal in the provided pointers. 1487 if (!StrictCheck || Dist * Size == Val) 1488 return Dist; 1489 return None; 1490 } 1491 1492 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 1493 const DataLayout &DL, ScalarEvolution &SE, 1494 SmallVectorImpl<unsigned> &SortedIndices) { 1495 assert(llvm::all_of( 1496 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1497 "Expected list of pointer operands."); 1498 // Walk over the pointers, and map each of them to an offset relative to 1499 // first pointer in the array. 1500 Value *Ptr0 = VL[0]; 1501 1502 using DistOrdPair = std::pair<int64_t, int>; 1503 auto Compare = llvm::less_first(); 1504 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare); 1505 Offsets.emplace(0, 0); 1506 int Cnt = 1; 1507 bool IsConsecutive = true; 1508 for (auto *Ptr : VL.drop_front()) { 1509 Optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE, 1510 /*StrictCheck=*/true); 1511 if (!Diff) 1512 return false; 1513 1514 // Check if the pointer with the same offset is found. 1515 int64_t Offset = *Diff; 1516 auto Res = Offsets.emplace(Offset, Cnt); 1517 if (!Res.second) 1518 return false; 1519 // Consecutive order if the inserted element is the last one. 1520 IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end(); 1521 ++Cnt; 1522 } 1523 SortedIndices.clear(); 1524 if (!IsConsecutive) { 1525 // Fill SortedIndices array only if it is non-consecutive. 1526 SortedIndices.resize(VL.size()); 1527 Cnt = 0; 1528 for (const std::pair<int64_t, int> &Pair : Offsets) { 1529 SortedIndices[Cnt] = Pair.second; 1530 ++Cnt; 1531 } 1532 } 1533 return true; 1534 } 1535 1536 /// Returns true if the memory operations \p A and \p B are consecutive. 1537 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1538 ScalarEvolution &SE, bool CheckType) { 1539 Value *PtrA = getLoadStorePointerOperand(A); 1540 Value *PtrB = getLoadStorePointerOperand(B); 1541 if (!PtrA || !PtrB) 1542 return false; 1543 Type *ElemTyA = getLoadStoreType(A); 1544 Type *ElemTyB = getLoadStoreType(B); 1545 Optional<int> Diff = getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE, 1546 /*StrictCheck=*/true, CheckType); 1547 return Diff && *Diff == 1; 1548 } 1549 1550 void MemoryDepChecker::addAccess(StoreInst *SI) { 1551 visitPointers(SI->getPointerOperand(), *InnermostLoop, 1552 [this, SI](Value *Ptr) { 1553 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 1554 InstMap.push_back(SI); 1555 ++AccessIdx; 1556 }); 1557 } 1558 1559 void MemoryDepChecker::addAccess(LoadInst *LI) { 1560 visitPointers(LI->getPointerOperand(), *InnermostLoop, 1561 [this, LI](Value *Ptr) { 1562 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 1563 InstMap.push_back(LI); 1564 ++AccessIdx; 1565 }); 1566 } 1567 1568 MemoryDepChecker::VectorizationSafetyStatus 1569 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1570 switch (Type) { 1571 case NoDep: 1572 case Forward: 1573 case BackwardVectorizable: 1574 return VectorizationSafetyStatus::Safe; 1575 1576 case Unknown: 1577 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1578 case ForwardButPreventsForwarding: 1579 case Backward: 1580 case BackwardVectorizableButPreventsForwarding: 1581 return VectorizationSafetyStatus::Unsafe; 1582 } 1583 llvm_unreachable("unexpected DepType!"); 1584 } 1585 1586 bool MemoryDepChecker::Dependence::isBackward() const { 1587 switch (Type) { 1588 case NoDep: 1589 case Forward: 1590 case ForwardButPreventsForwarding: 1591 case Unknown: 1592 return false; 1593 1594 case BackwardVectorizable: 1595 case Backward: 1596 case BackwardVectorizableButPreventsForwarding: 1597 return true; 1598 } 1599 llvm_unreachable("unexpected DepType!"); 1600 } 1601 1602 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1603 return isBackward() || Type == Unknown; 1604 } 1605 1606 bool MemoryDepChecker::Dependence::isForward() const { 1607 switch (Type) { 1608 case Forward: 1609 case ForwardButPreventsForwarding: 1610 return true; 1611 1612 case NoDep: 1613 case Unknown: 1614 case BackwardVectorizable: 1615 case Backward: 1616 case BackwardVectorizableButPreventsForwarding: 1617 return false; 1618 } 1619 llvm_unreachable("unexpected DepType!"); 1620 } 1621 1622 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1623 uint64_t TypeByteSize) { 1624 // If loads occur at a distance that is not a multiple of a feasible vector 1625 // factor store-load forwarding does not take place. 1626 // Positive dependences might cause troubles because vectorizing them might 1627 // prevent store-load forwarding making vectorized code run a lot slower. 1628 // a[i] = a[i-3] ^ a[i-8]; 1629 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1630 // hence on your typical architecture store-load forwarding does not take 1631 // place. Vectorizing in such cases does not make sense. 1632 // Store-load forwarding distance. 1633 1634 // After this many iterations store-to-load forwarding conflicts should not 1635 // cause any slowdowns. 1636 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1637 // Maximum vector factor. 1638 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1639 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1640 1641 // Compute the smallest VF at which the store and load would be misaligned. 1642 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1643 VF *= 2) { 1644 // If the number of vector iteration between the store and the load are 1645 // small we could incur conflicts. 1646 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1647 MaxVFWithoutSLForwardIssues = (VF >> 1); 1648 break; 1649 } 1650 } 1651 1652 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1653 LLVM_DEBUG( 1654 dbgs() << "LAA: Distance " << Distance 1655 << " that could cause a store-load forwarding conflict\n"); 1656 return true; 1657 } 1658 1659 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1660 MaxVFWithoutSLForwardIssues != 1661 VectorizerParams::MaxVectorWidth * TypeByteSize) 1662 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1663 return false; 1664 } 1665 1666 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1667 if (Status < S) 1668 Status = S; 1669 } 1670 1671 /// Given a non-constant (unknown) dependence-distance \p Dist between two 1672 /// memory accesses, that have the same stride whose absolute value is given 1673 /// in \p Stride, and that have the same type size \p TypeByteSize, 1674 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1675 /// possible to prove statically that the dependence distance is larger 1676 /// than the range that the accesses will travel through the execution of 1677 /// the loop. If so, return true; false otherwise. This is useful for 1678 /// example in loops such as the following (PR31098): 1679 /// for (i = 0; i < D; ++i) { 1680 /// = out[i]; 1681 /// out[i+D] = 1682 /// } 1683 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1684 const SCEV &BackedgeTakenCount, 1685 const SCEV &Dist, uint64_t Stride, 1686 uint64_t TypeByteSize) { 1687 1688 // If we can prove that 1689 // (**) |Dist| > BackedgeTakenCount * Step 1690 // where Step is the absolute stride of the memory accesses in bytes, 1691 // then there is no dependence. 1692 // 1693 // Rationale: 1694 // We basically want to check if the absolute distance (|Dist/Step|) 1695 // is >= the loop iteration count (or > BackedgeTakenCount). 1696 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1697 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1698 // that the dependence distance is >= VF; This is checked elsewhere. 1699 // But in some cases we can prune unknown dependence distances early, and 1700 // even before selecting the VF, and without a runtime test, by comparing 1701 // the distance against the loop iteration count. Since the vectorized code 1702 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1703 // also guarantees that distance >= VF. 1704 // 1705 const uint64_t ByteStride = Stride * TypeByteSize; 1706 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1707 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1708 1709 const SCEV *CastedDist = &Dist; 1710 const SCEV *CastedProduct = Product; 1711 uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType()); 1712 uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType()); 1713 1714 // The dependence distance can be positive/negative, so we sign extend Dist; 1715 // The multiplication of the absolute stride in bytes and the 1716 // backedgeTakenCount is non-negative, so we zero extend Product. 1717 if (DistTypeSizeBits > ProductTypeSizeBits) 1718 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1719 else 1720 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1721 1722 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1723 // (If so, then we have proven (**) because |Dist| >= Dist) 1724 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1725 if (SE.isKnownPositive(Minus)) 1726 return true; 1727 1728 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1729 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1730 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1731 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1732 if (SE.isKnownPositive(Minus)) 1733 return true; 1734 1735 return false; 1736 } 1737 1738 /// Check the dependence for two accesses with the same stride \p Stride. 1739 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1740 /// bytes. 1741 /// 1742 /// \returns true if they are independent. 1743 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1744 uint64_t TypeByteSize) { 1745 assert(Stride > 1 && "The stride must be greater than 1"); 1746 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1747 assert(Distance > 0 && "The distance must be non-zero"); 1748 1749 // Skip if the distance is not multiple of type byte size. 1750 if (Distance % TypeByteSize) 1751 return false; 1752 1753 uint64_t ScaledDist = Distance / TypeByteSize; 1754 1755 // No dependence if the scaled distance is not multiple of the stride. 1756 // E.g. 1757 // for (i = 0; i < 1024 ; i += 4) 1758 // A[i+2] = A[i] + 1; 1759 // 1760 // Two accesses in memory (scaled distance is 2, stride is 4): 1761 // | A[0] | | | | A[4] | | | | 1762 // | | | A[2] | | | | A[6] | | 1763 // 1764 // E.g. 1765 // for (i = 0; i < 1024 ; i += 3) 1766 // A[i+4] = A[i] + 1; 1767 // 1768 // Two accesses in memory (scaled distance is 4, stride is 3): 1769 // | A[0] | | | A[3] | | | A[6] | | | 1770 // | | | | | A[4] | | | A[7] | | 1771 return ScaledDist % Stride; 1772 } 1773 1774 MemoryDepChecker::Dependence::DepType 1775 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1776 const MemAccessInfo &B, unsigned BIdx, 1777 const ValueToValueMap &Strides) { 1778 assert (AIdx < BIdx && "Must pass arguments in program order"); 1779 1780 Value *APtr = A.getPointer(); 1781 Value *BPtr = B.getPointer(); 1782 bool AIsWrite = A.getInt(); 1783 bool BIsWrite = B.getInt(); 1784 Type *ATy = getLoadStoreType(InstMap[AIdx]); 1785 Type *BTy = getLoadStoreType(InstMap[BIdx]); 1786 1787 // Two reads are independent. 1788 if (!AIsWrite && !BIsWrite) 1789 return Dependence::NoDep; 1790 1791 // We cannot check pointers in different address spaces. 1792 if (APtr->getType()->getPointerAddressSpace() != 1793 BPtr->getType()->getPointerAddressSpace()) 1794 return Dependence::Unknown; 1795 1796 int64_t StrideAPtr = 1797 getPtrStride(PSE, ATy, APtr, InnermostLoop, Strides, true); 1798 int64_t StrideBPtr = 1799 getPtrStride(PSE, BTy, BPtr, InnermostLoop, Strides, true); 1800 1801 const SCEV *Src = PSE.getSCEV(APtr); 1802 const SCEV *Sink = PSE.getSCEV(BPtr); 1803 1804 // If the induction step is negative we have to invert source and sink of the 1805 // dependence. 1806 if (StrideAPtr < 0) { 1807 std::swap(APtr, BPtr); 1808 std::swap(ATy, BTy); 1809 std::swap(Src, Sink); 1810 std::swap(AIsWrite, BIsWrite); 1811 std::swap(AIdx, BIdx); 1812 std::swap(StrideAPtr, StrideBPtr); 1813 } 1814 1815 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1816 1817 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1818 << "(Induction step: " << StrideAPtr << ")\n"); 1819 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1820 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1821 1822 // Need accesses with constant stride. We don't want to vectorize 1823 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1824 // the address space. 1825 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1826 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1827 return Dependence::Unknown; 1828 } 1829 1830 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1831 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1832 bool HasSameSize = 1833 DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy); 1834 uint64_t Stride = std::abs(StrideAPtr); 1835 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1836 if (!C) { 1837 if (!isa<SCEVCouldNotCompute>(Dist) && HasSameSize && 1838 isSafeDependenceDistance(DL, *(PSE.getSE()), 1839 *(PSE.getBackedgeTakenCount()), *Dist, Stride, 1840 TypeByteSize)) 1841 return Dependence::NoDep; 1842 1843 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1844 FoundNonConstantDistanceDependence = true; 1845 return Dependence::Unknown; 1846 } 1847 1848 const APInt &Val = C->getAPInt(); 1849 int64_t Distance = Val.getSExtValue(); 1850 1851 // Attempt to prove strided accesses independent. 1852 if (std::abs(Distance) > 0 && Stride > 1 && HasSameSize && 1853 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1854 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1855 return Dependence::NoDep; 1856 } 1857 1858 // Negative distances are not plausible dependencies. 1859 if (Val.isNegative()) { 1860 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1861 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1862 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1863 !HasSameSize)) { 1864 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1865 return Dependence::ForwardButPreventsForwarding; 1866 } 1867 1868 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1869 return Dependence::Forward; 1870 } 1871 1872 // Write to the same location with the same size. 1873 if (Val == 0) { 1874 if (HasSameSize) 1875 return Dependence::Forward; 1876 LLVM_DEBUG( 1877 dbgs() << "LAA: Zero dependence difference but different type sizes\n"); 1878 return Dependence::Unknown; 1879 } 1880 1881 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1882 1883 if (!HasSameSize) { 1884 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with " 1885 "different type sizes\n"); 1886 return Dependence::Unknown; 1887 } 1888 1889 // Bail out early if passed-in parameters make vectorization not feasible. 1890 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1891 VectorizerParams::VectorizationFactor : 1); 1892 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1893 VectorizerParams::VectorizationInterleave : 1); 1894 // The minimum number of iterations for a vectorized/unrolled version. 1895 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1896 1897 // It's not vectorizable if the distance is smaller than the minimum distance 1898 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1899 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1900 // TypeByteSize (No need to plus the last gap distance). 1901 // 1902 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1903 // foo(int *A) { 1904 // int *B = (int *)((char *)A + 14); 1905 // for (i = 0 ; i < 1024 ; i += 2) 1906 // B[i] = A[i] + 1; 1907 // } 1908 // 1909 // Two accesses in memory (stride is 2): 1910 // | A[0] | | A[2] | | A[4] | | A[6] | | 1911 // | B[0] | | B[2] | | B[4] | 1912 // 1913 // Distance needs for vectorizing iterations except the last iteration: 1914 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1915 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1916 // 1917 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1918 // 12, which is less than distance. 1919 // 1920 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1921 // the minimum distance needed is 28, which is greater than distance. It is 1922 // not safe to do vectorization. 1923 uint64_t MinDistanceNeeded = 1924 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1925 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1926 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " 1927 << Distance << '\n'); 1928 return Dependence::Backward; 1929 } 1930 1931 // Unsafe if the minimum distance needed is greater than max safe distance. 1932 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1933 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 1934 << MinDistanceNeeded << " size in bytes"); 1935 return Dependence::Backward; 1936 } 1937 1938 // Positive distance bigger than max vectorization factor. 1939 // FIXME: Should use max factor instead of max distance in bytes, which could 1940 // not handle different types. 1941 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1942 // void foo (int *A, char *B) { 1943 // for (unsigned i = 0; i < 1024; i++) { 1944 // A[i+2] = A[i] + 1; 1945 // B[i+2] = B[i] + 1; 1946 // } 1947 // } 1948 // 1949 // This case is currently unsafe according to the max safe distance. If we 1950 // analyze the two accesses on array B, the max safe dependence distance 1951 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1952 // is 8, which is less than 2 and forbidden vectorization, But actually 1953 // both A and B could be vectorized by 2 iterations. 1954 MaxSafeDepDistBytes = 1955 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1956 1957 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1958 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1959 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1960 return Dependence::BackwardVectorizableButPreventsForwarding; 1961 1962 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 1963 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1964 << " with max VF = " << MaxVF << '\n'); 1965 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 1966 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits); 1967 return Dependence::BackwardVectorizable; 1968 } 1969 1970 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1971 MemAccessInfoList &CheckDeps, 1972 const ValueToValueMap &Strides) { 1973 1974 MaxSafeDepDistBytes = -1; 1975 SmallPtrSet<MemAccessInfo, 8> Visited; 1976 for (MemAccessInfo CurAccess : CheckDeps) { 1977 if (Visited.count(CurAccess)) 1978 continue; 1979 1980 // Get the relevant memory access set. 1981 EquivalenceClasses<MemAccessInfo>::iterator I = 1982 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1983 1984 // Check accesses within this set. 1985 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1986 AccessSets.member_begin(I); 1987 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1988 AccessSets.member_end(); 1989 1990 // Check every access pair. 1991 while (AI != AE) { 1992 Visited.insert(*AI); 1993 bool AIIsWrite = AI->getInt(); 1994 // Check loads only against next equivalent class, but stores also against 1995 // other stores in the same equivalence class - to the same address. 1996 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 1997 (AIIsWrite ? AI : std::next(AI)); 1998 while (OI != AE) { 1999 // Check every accessing instruction pair in program order. 2000 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 2001 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 2002 // Scan all accesses of another equivalence class, but only the next 2003 // accesses of the same equivalent class. 2004 for (std::vector<unsigned>::iterator 2005 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 2006 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 2007 I2 != I2E; ++I2) { 2008 auto A = std::make_pair(&*AI, *I1); 2009 auto B = std::make_pair(&*OI, *I2); 2010 2011 assert(*I1 != *I2); 2012 if (*I1 > *I2) 2013 std::swap(A, B); 2014 2015 Dependence::DepType Type = 2016 isDependent(*A.first, A.second, *B.first, B.second, Strides); 2017 mergeInStatus(Dependence::isSafeForVectorization(Type)); 2018 2019 // Gather dependences unless we accumulated MaxDependences 2020 // dependences. In that case return as soon as we find the first 2021 // unsafe dependence. This puts a limit on this quadratic 2022 // algorithm. 2023 if (RecordDependences) { 2024 if (Type != Dependence::NoDep) 2025 Dependences.push_back(Dependence(A.second, B.second, Type)); 2026 2027 if (Dependences.size() >= MaxDependences) { 2028 RecordDependences = false; 2029 Dependences.clear(); 2030 LLVM_DEBUG(dbgs() 2031 << "Too many dependences, stopped recording\n"); 2032 } 2033 } 2034 if (!RecordDependences && !isSafeForVectorization()) 2035 return false; 2036 } 2037 ++OI; 2038 } 2039 AI++; 2040 } 2041 } 2042 2043 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 2044 return isSafeForVectorization(); 2045 } 2046 2047 SmallVector<Instruction *, 4> 2048 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 2049 MemAccessInfo Access(Ptr, isWrite); 2050 auto &IndexVector = Accesses.find(Access)->second; 2051 2052 SmallVector<Instruction *, 4> Insts; 2053 transform(IndexVector, 2054 std::back_inserter(Insts), 2055 [&](unsigned Idx) { return this->InstMap[Idx]; }); 2056 return Insts; 2057 } 2058 2059 const char *MemoryDepChecker::Dependence::DepName[] = { 2060 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 2061 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 2062 2063 void MemoryDepChecker::Dependence::print( 2064 raw_ostream &OS, unsigned Depth, 2065 const SmallVectorImpl<Instruction *> &Instrs) const { 2066 OS.indent(Depth) << DepName[Type] << ":\n"; 2067 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 2068 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 2069 } 2070 2071 bool LoopAccessInfo::canAnalyzeLoop() { 2072 // We need to have a loop header. 2073 LLVM_DEBUG(dbgs() << "LAA: Found a loop in " 2074 << TheLoop->getHeader()->getParent()->getName() << ": " 2075 << TheLoop->getHeader()->getName() << '\n'); 2076 2077 // We can only analyze innermost loops. 2078 if (!TheLoop->isInnermost()) { 2079 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 2080 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 2081 return false; 2082 } 2083 2084 // We must have a single backedge. 2085 if (TheLoop->getNumBackEdges() != 1) { 2086 LLVM_DEBUG( 2087 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 2088 recordAnalysis("CFGNotUnderstood") 2089 << "loop control flow is not understood by analyzer"; 2090 return false; 2091 } 2092 2093 // ScalarEvolution needs to be able to find the exit count. 2094 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 2095 if (isa<SCEVCouldNotCompute>(ExitCount)) { 2096 recordAnalysis("CantComputeNumberOfIterations") 2097 << "could not determine number of loop iterations"; 2098 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 2099 return false; 2100 } 2101 2102 return true; 2103 } 2104 2105 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI, 2106 const TargetLibraryInfo *TLI, 2107 DominatorTree *DT) { 2108 // Holds the Load and Store instructions. 2109 SmallVector<LoadInst *, 16> Loads; 2110 SmallVector<StoreInst *, 16> Stores; 2111 2112 // Holds all the different accesses in the loop. 2113 unsigned NumReads = 0; 2114 unsigned NumReadWrites = 0; 2115 2116 bool HasComplexMemInst = false; 2117 2118 // A runtime check is only legal to insert if there are no convergent calls. 2119 HasConvergentOp = false; 2120 2121 PtrRtChecking->Pointers.clear(); 2122 PtrRtChecking->Need = false; 2123 2124 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 2125 2126 const bool EnableMemAccessVersioningOfLoop = 2127 EnableMemAccessVersioning && 2128 !TheLoop->getHeader()->getParent()->hasOptSize(); 2129 2130 // For each block. 2131 for (BasicBlock *BB : TheLoop->blocks()) { 2132 // Scan the BB and collect legal loads and stores. Also detect any 2133 // convergent instructions. 2134 for (Instruction &I : *BB) { 2135 if (auto *Call = dyn_cast<CallBase>(&I)) { 2136 if (Call->isConvergent()) 2137 HasConvergentOp = true; 2138 } 2139 2140 // With both a non-vectorizable memory instruction and a convergent 2141 // operation, found in this loop, no reason to continue the search. 2142 if (HasComplexMemInst && HasConvergentOp) { 2143 CanVecMem = false; 2144 return; 2145 } 2146 2147 // Avoid hitting recordAnalysis multiple times. 2148 if (HasComplexMemInst) 2149 continue; 2150 2151 // If this is a load, save it. If this instruction can read from memory 2152 // but is not a load, then we quit. Notice that we don't handle function 2153 // calls that read or write. 2154 if (I.mayReadFromMemory()) { 2155 // Many math library functions read the rounding mode. We will only 2156 // vectorize a loop if it contains known function calls that don't set 2157 // the flag. Therefore, it is safe to ignore this read from memory. 2158 auto *Call = dyn_cast<CallInst>(&I); 2159 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 2160 continue; 2161 2162 // If the function has an explicit vectorized counterpart, we can safely 2163 // assume that it can be vectorized. 2164 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 2165 !VFDatabase::getMappings(*Call).empty()) 2166 continue; 2167 2168 auto *Ld = dyn_cast<LoadInst>(&I); 2169 if (!Ld) { 2170 recordAnalysis("CantVectorizeInstruction", Ld) 2171 << "instruction cannot be vectorized"; 2172 HasComplexMemInst = true; 2173 continue; 2174 } 2175 if (!Ld->isSimple() && !IsAnnotatedParallel) { 2176 recordAnalysis("NonSimpleLoad", Ld) 2177 << "read with atomic ordering or volatile read"; 2178 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 2179 HasComplexMemInst = true; 2180 continue; 2181 } 2182 NumLoads++; 2183 Loads.push_back(Ld); 2184 DepChecker->addAccess(Ld); 2185 if (EnableMemAccessVersioningOfLoop) 2186 collectStridedAccess(Ld); 2187 continue; 2188 } 2189 2190 // Save 'store' instructions. Abort if other instructions write to memory. 2191 if (I.mayWriteToMemory()) { 2192 auto *St = dyn_cast<StoreInst>(&I); 2193 if (!St) { 2194 recordAnalysis("CantVectorizeInstruction", St) 2195 << "instruction cannot be vectorized"; 2196 HasComplexMemInst = true; 2197 continue; 2198 } 2199 if (!St->isSimple() && !IsAnnotatedParallel) { 2200 recordAnalysis("NonSimpleStore", St) 2201 << "write with atomic ordering or volatile write"; 2202 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 2203 HasComplexMemInst = true; 2204 continue; 2205 } 2206 NumStores++; 2207 Stores.push_back(St); 2208 DepChecker->addAccess(St); 2209 if (EnableMemAccessVersioningOfLoop) 2210 collectStridedAccess(St); 2211 } 2212 } // Next instr. 2213 } // Next block. 2214 2215 if (HasComplexMemInst) { 2216 CanVecMem = false; 2217 return; 2218 } 2219 2220 // Now we have two lists that hold the loads and the stores. 2221 // Next, we find the pointers that they use. 2222 2223 // Check if we see any stores. If there are no stores, then we don't 2224 // care if the pointers are *restrict*. 2225 if (!Stores.size()) { 2226 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 2227 CanVecMem = true; 2228 return; 2229 } 2230 2231 MemoryDepChecker::DepCandidates DependentAccesses; 2232 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE); 2233 2234 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects 2235 // multiple times on the same object. If the ptr is accessed twice, once 2236 // for read and once for write, it will only appear once (on the write 2237 // list). This is okay, since we are going to check for conflicts between 2238 // writes and between reads and writes, but not between reads and reads. 2239 SmallSet<std::pair<Value *, Type *>, 16> Seen; 2240 2241 // Record uniform store addresses to identify if we have multiple stores 2242 // to the same address. 2243 SmallPtrSet<Value *, 16> UniformStores; 2244 2245 for (StoreInst *ST : Stores) { 2246 Value *Ptr = ST->getPointerOperand(); 2247 2248 if (isUniform(Ptr)) { 2249 // Record store instructions to loop invariant addresses 2250 StoresToInvariantAddresses.push_back(ST); 2251 HasDependenceInvolvingLoopInvariantAddress |= 2252 !UniformStores.insert(Ptr).second; 2253 } 2254 2255 // If we did *not* see this pointer before, insert it to the read-write 2256 // list. At this phase it is only a 'write' list. 2257 Type *AccessTy = getLoadStoreType(ST); 2258 if (Seen.insert({Ptr, AccessTy}).second) { 2259 ++NumReadWrites; 2260 2261 MemoryLocation Loc = MemoryLocation::get(ST); 2262 // The TBAA metadata could have a control dependency on the predication 2263 // condition, so we cannot rely on it when determining whether or not we 2264 // need runtime pointer checks. 2265 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 2266 Loc.AATags.TBAA = nullptr; 2267 2268 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2269 [&Accesses, AccessTy, Loc](Value *Ptr) { 2270 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2271 Accesses.addStore(NewLoc, AccessTy); 2272 }); 2273 } 2274 } 2275 2276 if (IsAnnotatedParallel) { 2277 LLVM_DEBUG( 2278 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 2279 << "checks.\n"); 2280 CanVecMem = true; 2281 return; 2282 } 2283 2284 for (LoadInst *LD : Loads) { 2285 Value *Ptr = LD->getPointerOperand(); 2286 // If we did *not* see this pointer before, insert it to the 2287 // read list. If we *did* see it before, then it is already in 2288 // the read-write list. This allows us to vectorize expressions 2289 // such as A[i] += x; Because the address of A[i] is a read-write 2290 // pointer. This only works if the index of A[i] is consecutive. 2291 // If the address of i is unknown (for example A[B[i]]) then we may 2292 // read a few words, modify, and write a few words, and some of the 2293 // words may be written to the same address. 2294 bool IsReadOnlyPtr = false; 2295 Type *AccessTy = getLoadStoreType(LD); 2296 if (Seen.insert({Ptr, AccessTy}).second || 2297 !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides)) { 2298 ++NumReads; 2299 IsReadOnlyPtr = true; 2300 } 2301 2302 // See if there is an unsafe dependency between a load to a uniform address and 2303 // store to the same uniform address. 2304 if (UniformStores.count(Ptr)) { 2305 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 2306 "load and uniform store to the same address!\n"); 2307 HasDependenceInvolvingLoopInvariantAddress = true; 2308 } 2309 2310 MemoryLocation Loc = MemoryLocation::get(LD); 2311 // The TBAA metadata could have a control dependency on the predication 2312 // condition, so we cannot rely on it when determining whether or not we 2313 // need runtime pointer checks. 2314 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 2315 Loc.AATags.TBAA = nullptr; 2316 2317 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2318 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) { 2319 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2320 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr); 2321 }); 2322 } 2323 2324 // If we write (or read-write) to a single destination and there are no 2325 // other reads in this loop then is it safe to vectorize. 2326 if (NumReadWrites == 1 && NumReads == 0) { 2327 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2328 CanVecMem = true; 2329 return; 2330 } 2331 2332 // Build dependence sets and check whether we need a runtime pointer bounds 2333 // check. 2334 Accesses.buildDependenceSets(); 2335 2336 // Find pointers with computable bounds. We are going to use this information 2337 // to place a runtime bound check. 2338 Value *UncomputablePtr = nullptr; 2339 bool CanDoRTIfNeeded = 2340 Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop, 2341 SymbolicStrides, UncomputablePtr, false); 2342 if (!CanDoRTIfNeeded) { 2343 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2344 recordAnalysis("CantIdentifyArrayBounds", I) 2345 << "cannot identify array bounds"; 2346 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2347 << "the array bounds.\n"); 2348 CanVecMem = false; 2349 return; 2350 } 2351 2352 LLVM_DEBUG( 2353 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2354 2355 CanVecMem = true; 2356 if (Accesses.isDependencyCheckNeeded()) { 2357 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2358 CanVecMem = DepChecker->areDepsSafe( 2359 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 2360 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 2361 2362 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 2363 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2364 2365 // Clear the dependency checks. We assume they are not needed. 2366 Accesses.resetDepChecks(*DepChecker); 2367 2368 PtrRtChecking->reset(); 2369 PtrRtChecking->Need = true; 2370 2371 auto *SE = PSE->getSE(); 2372 UncomputablePtr = nullptr; 2373 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT( 2374 *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true); 2375 2376 // Check that we found the bounds for the pointer. 2377 if (!CanDoRTIfNeeded) { 2378 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2379 recordAnalysis("CantCheckMemDepsAtRunTime", I) 2380 << "cannot check memory dependencies at runtime"; 2381 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2382 CanVecMem = false; 2383 return; 2384 } 2385 2386 CanVecMem = true; 2387 } 2388 } 2389 2390 if (HasConvergentOp) { 2391 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2392 << "cannot add control dependency to convergent operation"; 2393 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2394 "would be needed with a convergent operation\n"); 2395 CanVecMem = false; 2396 return; 2397 } 2398 2399 if (CanVecMem) 2400 LLVM_DEBUG( 2401 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2402 << (PtrRtChecking->Need ? "" : " don't") 2403 << " need runtime memory checks.\n"); 2404 else 2405 emitUnsafeDependenceRemark(); 2406 } 2407 2408 void LoopAccessInfo::emitUnsafeDependenceRemark() { 2409 auto Deps = getDepChecker().getDependences(); 2410 if (!Deps) 2411 return; 2412 auto Found = std::find_if( 2413 Deps->begin(), Deps->end(), [](const MemoryDepChecker::Dependence &D) { 2414 return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) != 2415 MemoryDepChecker::VectorizationSafetyStatus::Safe; 2416 }); 2417 if (Found == Deps->end()) 2418 return; 2419 MemoryDepChecker::Dependence Dep = *Found; 2420 2421 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2422 2423 // Emit remark for first unsafe dependence 2424 OptimizationRemarkAnalysis &R = 2425 recordAnalysis("UnsafeDep", Dep.getDestination(*this)) 2426 << "unsafe dependent memory operations in loop. Use " 2427 "#pragma loop distribute(enable) to allow loop distribution " 2428 "to attempt to isolate the offending operations into a separate " 2429 "loop"; 2430 2431 switch (Dep.Type) { 2432 case MemoryDepChecker::Dependence::NoDep: 2433 case MemoryDepChecker::Dependence::Forward: 2434 case MemoryDepChecker::Dependence::BackwardVectorizable: 2435 llvm_unreachable("Unexpected dependence"); 2436 case MemoryDepChecker::Dependence::Backward: 2437 R << "\nBackward loop carried data dependence."; 2438 break; 2439 case MemoryDepChecker::Dependence::ForwardButPreventsForwarding: 2440 R << "\nForward loop carried data dependence that prevents " 2441 "store-to-load forwarding."; 2442 break; 2443 case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding: 2444 R << "\nBackward loop carried data dependence that prevents " 2445 "store-to-load forwarding."; 2446 break; 2447 case MemoryDepChecker::Dependence::Unknown: 2448 R << "\nUnknown data dependence."; 2449 break; 2450 } 2451 2452 if (Instruction *I = Dep.getSource(*this)) { 2453 DebugLoc SourceLoc = I->getDebugLoc(); 2454 if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I))) 2455 SourceLoc = DD->getDebugLoc(); 2456 if (SourceLoc) 2457 R << " Memory location is the same as accessed at " 2458 << ore::NV("Location", SourceLoc); 2459 } 2460 } 2461 2462 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2463 DominatorTree *DT) { 2464 assert(TheLoop->contains(BB) && "Unknown block used"); 2465 2466 // Blocks that do not dominate the latch need predication. 2467 BasicBlock* Latch = TheLoop->getLoopLatch(); 2468 return !DT->dominates(BB, Latch); 2469 } 2470 2471 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2472 Instruction *I) { 2473 assert(!Report && "Multiple reports generated"); 2474 2475 Value *CodeRegion = TheLoop->getHeader(); 2476 DebugLoc DL = TheLoop->getStartLoc(); 2477 2478 if (I) { 2479 CodeRegion = I->getParent(); 2480 // If there is no debug location attached to the instruction, revert back to 2481 // using the loop's. 2482 if (I->getDebugLoc()) 2483 DL = I->getDebugLoc(); 2484 } 2485 2486 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2487 CodeRegion); 2488 return *Report; 2489 } 2490 2491 bool LoopAccessInfo::isUniform(Value *V) const { 2492 auto *SE = PSE->getSE(); 2493 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 2494 // never considered uniform. 2495 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2496 // trivially loop-invariant FP values to be considered uniform. 2497 if (!SE->isSCEVable(V->getType())) 2498 return false; 2499 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 2500 } 2501 2502 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2503 Value *Ptr = getLoadStorePointerOperand(MemAccess); 2504 if (!Ptr) 2505 return; 2506 2507 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2508 if (!Stride) 2509 return; 2510 2511 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2512 "versioning:"); 2513 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2514 2515 // Avoid adding the "Stride == 1" predicate when we know that 2516 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2517 // or zero iteration loop, as Trip-Count <= Stride == 1. 2518 // 2519 // TODO: We are currently not making a very informed decision on when it is 2520 // beneficial to apply stride versioning. It might make more sense that the 2521 // users of this analysis (such as the vectorizer) will trigger it, based on 2522 // their specific cost considerations; For example, in cases where stride 2523 // versioning does not help resolving memory accesses/dependences, the 2524 // vectorizer should evaluate the cost of the runtime test, and the benefit 2525 // of various possible stride specializations, considering the alternatives 2526 // of using gather/scatters (if available). 2527 2528 const SCEV *StrideExpr = PSE->getSCEV(Stride); 2529 const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2530 2531 // Match the types so we can compare the stride and the BETakenCount. 2532 // The Stride can be positive/negative, so we sign extend Stride; 2533 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount. 2534 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2535 uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType()); 2536 uint64_t BETypeSizeBits = DL.getTypeSizeInBits(BETakenCount->getType()); 2537 const SCEV *CastedStride = StrideExpr; 2538 const SCEV *CastedBECount = BETakenCount; 2539 ScalarEvolution *SE = PSE->getSE(); 2540 if (BETypeSizeBits >= StrideTypeSizeBits) 2541 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2542 else 2543 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2544 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2545 // Since TripCount == BackEdgeTakenCount + 1, checking: 2546 // "Stride >= TripCount" is equivalent to checking: 2547 // Stride - BETakenCount > 0 2548 if (SE->isKnownPositive(StrideMinusBETaken)) { 2549 LLVM_DEBUG( 2550 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2551 "Stride==1 predicate will imply that the loop executes " 2552 "at most once.\n"); 2553 return; 2554 } 2555 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n"); 2556 2557 SymbolicStrides[Ptr] = Stride; 2558 StrideSet.insert(Stride); 2559 } 2560 2561 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2562 const TargetLibraryInfo *TLI, AAResults *AA, 2563 DominatorTree *DT, LoopInfo *LI) 2564 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2565 PtrRtChecking(nullptr), 2566 DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L) { 2567 PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE); 2568 if (canAnalyzeLoop()) { 2569 analyzeLoop(AA, LI, TLI, DT); 2570 } 2571 } 2572 2573 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2574 if (CanVecMem) { 2575 OS.indent(Depth) << "Memory dependences are safe"; 2576 if (MaxSafeDepDistBytes != -1ULL) 2577 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2578 << " bytes"; 2579 if (PtrRtChecking->Need) 2580 OS << " with run-time checks"; 2581 OS << "\n"; 2582 } 2583 2584 if (HasConvergentOp) 2585 OS.indent(Depth) << "Has convergent operation in loop\n"; 2586 2587 if (Report) 2588 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2589 2590 if (auto *Dependences = DepChecker->getDependences()) { 2591 OS.indent(Depth) << "Dependences:\n"; 2592 for (const auto &Dep : *Dependences) { 2593 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2594 OS << "\n"; 2595 } 2596 } else 2597 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2598 2599 // List the pair of accesses need run-time checks to prove independence. 2600 PtrRtChecking->print(OS, Depth); 2601 OS << "\n"; 2602 2603 OS.indent(Depth) << "Non vectorizable stores to invariant address were " 2604 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") 2605 << "found in loop.\n"; 2606 2607 OS.indent(Depth) << "SCEV assumptions:\n"; 2608 PSE->getPredicate().print(OS, Depth); 2609 2610 OS << "\n"; 2611 2612 OS.indent(Depth) << "Expressions re-written:\n"; 2613 PSE->print(OS, Depth); 2614 } 2615 2616 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) { 2617 initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry()); 2618 } 2619 2620 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 2621 auto &LAI = LoopAccessInfoMap[L]; 2622 2623 if (!LAI) 2624 LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2625 2626 return *LAI; 2627 } 2628 2629 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2630 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2631 2632 for (Loop *TopLevelLoop : *LI) 2633 for (Loop *L : depth_first(TopLevelLoop)) { 2634 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2635 auto &LAI = LAA.getInfo(L); 2636 LAI.print(OS, 4); 2637 } 2638 } 2639 2640 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2641 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2642 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2643 TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2644 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2645 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2646 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2647 2648 return false; 2649 } 2650 2651 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2652 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); 2653 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2654 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2655 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 2656 2657 AU.setPreservesAll(); 2658 } 2659 2660 char LoopAccessLegacyAnalysis::ID = 0; 2661 static const char laa_name[] = "Loop Access Analysis"; 2662 #define LAA_NAME "loop-accesses" 2663 2664 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2665 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2666 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2667 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2668 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2669 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2670 2671 AnalysisKey LoopAccessAnalysis::Key; 2672 2673 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, 2674 LoopStandardAnalysisResults &AR) { 2675 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); 2676 } 2677 2678 namespace llvm { 2679 2680 Pass *createLAAPass() { 2681 return new LoopAccessLegacyAnalysis(); 2682 } 2683 2684 } // end namespace llvm 2685