1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/EquivalenceClasses.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AliasSetTracker.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/PassManager.h" 50 #include "llvm/IR/PatternMatch.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/IR/ValueHandle.h" 54 #include "llvm/InitializePasses.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <iterator> 65 #include <utility> 66 #include <vector> 67 68 using namespace llvm; 69 using namespace llvm::PatternMatch; 70 71 #define DEBUG_TYPE "loop-accesses" 72 73 static cl::opt<unsigned, true> 74 VectorizationFactor("force-vector-width", cl::Hidden, 75 cl::desc("Sets the SIMD width. Zero is autoselect."), 76 cl::location(VectorizerParams::VectorizationFactor)); 77 unsigned VectorizerParams::VectorizationFactor; 78 79 static cl::opt<unsigned, true> 80 VectorizationInterleave("force-vector-interleave", cl::Hidden, 81 cl::desc("Sets the vectorization interleave count. " 82 "Zero is autoselect."), 83 cl::location( 84 VectorizerParams::VectorizationInterleave)); 85 unsigned VectorizerParams::VectorizationInterleave; 86 87 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 88 "runtime-memory-check-threshold", cl::Hidden, 89 cl::desc("When performing memory disambiguation checks at runtime do not " 90 "generate more than this number of comparisons (default = 8)."), 91 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 92 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 93 94 /// The maximum iterations used to merge memory checks 95 static cl::opt<unsigned> MemoryCheckMergeThreshold( 96 "memory-check-merge-threshold", cl::Hidden, 97 cl::desc("Maximum number of comparisons done when trying to merge " 98 "runtime memory checks. (default = 100)"), 99 cl::init(100)); 100 101 /// Maximum SIMD width. 102 const unsigned VectorizerParams::MaxVectorWidth = 64; 103 104 /// We collect dependences up to this threshold. 105 static cl::opt<unsigned> 106 MaxDependences("max-dependences", cl::Hidden, 107 cl::desc("Maximum number of dependences collected by " 108 "loop-access analysis (default = 100)"), 109 cl::init(100)); 110 111 /// This enables versioning on the strides of symbolically striding memory 112 /// accesses in code like the following. 113 /// for (i = 0; i < N; ++i) 114 /// A[i * Stride1] += B[i * Stride2] ... 115 /// 116 /// Will be roughly translated to 117 /// if (Stride1 == 1 && Stride2 == 1) { 118 /// for (i = 0; i < N; i+=4) 119 /// A[i:i+3] += ... 120 /// } else 121 /// ... 122 static cl::opt<bool> EnableMemAccessVersioning( 123 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 124 cl::desc("Enable symbolic stride memory access versioning")); 125 126 /// Enable store-to-load forwarding conflict detection. This option can 127 /// be disabled for correctness testing. 128 static cl::opt<bool> EnableForwardingConflictDetection( 129 "store-to-load-forwarding-conflict-detection", cl::Hidden, 130 cl::desc("Enable conflict detection in loop-access analysis"), 131 cl::init(true)); 132 133 bool VectorizerParams::isInterleaveForced() { 134 return ::VectorizationInterleave.getNumOccurrences() > 0; 135 } 136 137 Value *llvm::stripIntegerCast(Value *V) { 138 if (auto *CI = dyn_cast<CastInst>(V)) 139 if (CI->getOperand(0)->getType()->isIntegerTy()) 140 return CI->getOperand(0); 141 return V; 142 } 143 144 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 145 const ValueToValueMap &PtrToStride, 146 Value *Ptr) { 147 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 148 149 // If there is an entry in the map return the SCEV of the pointer with the 150 // symbolic stride replaced by one. 151 ValueToValueMap::const_iterator SI = PtrToStride.find(Ptr); 152 if (SI == PtrToStride.end()) 153 // For a non-symbolic stride, just return the original expression. 154 return OrigSCEV; 155 156 Value *StrideVal = stripIntegerCast(SI->second); 157 158 ScalarEvolution *SE = PSE.getSE(); 159 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 160 const auto *CT = 161 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 162 163 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 164 auto *Expr = PSE.getSCEV(Ptr); 165 166 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 167 << " by: " << *Expr << "\n"); 168 return Expr; 169 } 170 171 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 172 unsigned Index, RuntimePointerChecking &RtCheck) 173 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start), 174 AddressSpace(RtCheck.Pointers[Index] 175 .PointerValue->getType() 176 ->getPointerAddressSpace()), 177 NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) { 178 Members.push_back(Index); 179 } 180 181 /// Calculate Start and End points of memory access. 182 /// Let's assume A is the first access and B is a memory access on N-th loop 183 /// iteration. Then B is calculated as: 184 /// B = A + Step*N . 185 /// Step value may be positive or negative. 186 /// N is a calculated back-edge taken count: 187 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 188 /// Start and End points are calculated in the following way: 189 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 190 /// where SizeOfElt is the size of single memory access in bytes. 191 /// 192 /// There is no conflict when the intervals are disjoint: 193 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 194 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, 195 Type *AccessTy, bool WritePtr, 196 unsigned DepSetId, unsigned ASId, 197 PredicatedScalarEvolution &PSE, 198 bool NeedsFreeze) { 199 ScalarEvolution *SE = PSE.getSE(); 200 201 const SCEV *ScStart; 202 const SCEV *ScEnd; 203 204 if (SE->isLoopInvariant(PtrExpr, Lp)) { 205 ScStart = ScEnd = PtrExpr; 206 } else { 207 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr); 208 assert(AR && "Invalid addrec expression"); 209 const SCEV *Ex = PSE.getBackedgeTakenCount(); 210 211 ScStart = AR->getStart(); 212 ScEnd = AR->evaluateAtIteration(Ex, *SE); 213 const SCEV *Step = AR->getStepRecurrence(*SE); 214 215 // For expressions with negative step, the upper bound is ScStart and the 216 // lower bound is ScEnd. 217 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 218 if (CStep->getValue()->isNegative()) 219 std::swap(ScStart, ScEnd); 220 } else { 221 // Fallback case: the step is not constant, but we can still 222 // get the upper and lower bounds of the interval by using min/max 223 // expressions. 224 ScStart = SE->getUMinExpr(ScStart, ScEnd); 225 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 226 } 227 } 228 // Add the size of the pointed element to ScEnd. 229 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 230 Type *IdxTy = DL.getIndexType(Ptr->getType()); 231 const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy); 232 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 233 234 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr, 235 NeedsFreeze); 236 } 237 238 void RuntimePointerChecking::tryToCreateDiffCheck( 239 const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) { 240 if (!CanUseDiffCheck) 241 return; 242 243 // If either group contains multiple different pointers, bail out. 244 // TODO: Support multiple pointers by using the minimum or maximum pointer, 245 // depending on src & sink. 246 if (CGI.Members.size() != 1 || CGJ.Members.size() != 1) { 247 CanUseDiffCheck = false; 248 return; 249 } 250 251 PointerInfo *Src = &Pointers[CGI.Members[0]]; 252 PointerInfo *Sink = &Pointers[CGJ.Members[0]]; 253 254 // If either pointer is read and written, multiple checks may be needed. Bail 255 // out. 256 if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() || 257 !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty()) { 258 CanUseDiffCheck = false; 259 return; 260 } 261 262 ArrayRef<unsigned> AccSrc = 263 DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr); 264 ArrayRef<unsigned> AccSink = 265 DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr); 266 // If either pointer is accessed multiple times, there may not be a clear 267 // src/sink relation. Bail out for now. 268 if (AccSrc.size() != 1 || AccSink.size() != 1) { 269 CanUseDiffCheck = false; 270 return; 271 } 272 // If the sink is accessed before src, swap src/sink. 273 if (AccSink[0] < AccSrc[0]) 274 std::swap(Src, Sink); 275 276 auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr); 277 auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr); 278 if (!SrcAR || !SinkAR) { 279 CanUseDiffCheck = false; 280 return; 281 } 282 283 const DataLayout &DL = 284 SinkAR->getLoop()->getHeader()->getModule()->getDataLayout(); 285 SmallVector<Instruction *, 4> SrcInsts = 286 DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr); 287 SmallVector<Instruction *, 4> SinkInsts = 288 DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr); 289 Type *SrcTy = getLoadStoreType(SrcInsts[0]); 290 Type *DstTy = getLoadStoreType(SinkInsts[0]); 291 if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy)) 292 return; 293 unsigned AllocSize = 294 std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy)); 295 IntegerType *IntTy = 296 IntegerType::get(Src->PointerValue->getContext(), 297 DL.getPointerSizeInBits(CGI.AddressSpace)); 298 299 // Only matching constant steps matching the AllocSize are supported at the 300 // moment. This simplifies the difference computation. Can be extended in the 301 // future. 302 auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE)); 303 if (!Step || Step != SrcAR->getStepRecurrence(*SE) || 304 Step->getAPInt().abs() != AllocSize) { 305 CanUseDiffCheck = false; 306 return; 307 } 308 309 // When counting down, the dependence distance needs to be swapped. 310 if (Step->getValue()->isNegative()) 311 std::swap(SinkAR, SrcAR); 312 313 const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy); 314 const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy); 315 if (isa<SCEVCouldNotCompute>(SinkStartInt) || 316 isa<SCEVCouldNotCompute>(SrcStartInt)) { 317 CanUseDiffCheck = false; 318 return; 319 } 320 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize, 321 Src->NeedsFreeze || Sink->NeedsFreeze); 322 } 323 324 SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() { 325 SmallVector<RuntimePointerCheck, 4> Checks; 326 327 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 328 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 329 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 330 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 331 332 if (needsChecking(CGI, CGJ)) { 333 tryToCreateDiffCheck(CGI, CGJ); 334 Checks.push_back(std::make_pair(&CGI, &CGJ)); 335 } 336 } 337 } 338 return Checks; 339 } 340 341 void RuntimePointerChecking::generateChecks( 342 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 343 assert(Checks.empty() && "Checks is not empty"); 344 groupChecks(DepCands, UseDependencies); 345 Checks = generateChecks(); 346 } 347 348 bool RuntimePointerChecking::needsChecking( 349 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 350 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 351 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 352 if (needsChecking(M.Members[I], N.Members[J])) 353 return true; 354 return false; 355 } 356 357 /// Compare \p I and \p J and return the minimum. 358 /// Return nullptr in case we couldn't find an answer. 359 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 360 ScalarEvolution *SE) { 361 const SCEV *Diff = SE->getMinusSCEV(J, I); 362 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 363 364 if (!C) 365 return nullptr; 366 if (C->getValue()->isNegative()) 367 return J; 368 return I; 369 } 370 371 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, 372 RuntimePointerChecking &RtCheck) { 373 return addPointer( 374 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End, 375 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(), 376 RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE); 377 } 378 379 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start, 380 const SCEV *End, unsigned AS, 381 bool NeedsFreeze, 382 ScalarEvolution &SE) { 383 assert(AddressSpace == AS && 384 "all pointers in a checking group must be in the same address space"); 385 386 // Compare the starts and ends with the known minimum and maximum 387 // of this set. We need to know how we compare against the min/max 388 // of the set in order to be able to emit memchecks. 389 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE); 390 if (!Min0) 391 return false; 392 393 const SCEV *Min1 = getMinFromExprs(End, High, &SE); 394 if (!Min1) 395 return false; 396 397 // Update the low bound expression if we've found a new min value. 398 if (Min0 == Start) 399 Low = Start; 400 401 // Update the high bound expression if we've found a new max value. 402 if (Min1 != End) 403 High = End; 404 405 Members.push_back(Index); 406 this->NeedsFreeze |= NeedsFreeze; 407 return true; 408 } 409 410 void RuntimePointerChecking::groupChecks( 411 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 412 // We build the groups from dependency candidates equivalence classes 413 // because: 414 // - We know that pointers in the same equivalence class share 415 // the same underlying object and therefore there is a chance 416 // that we can compare pointers 417 // - We wouldn't be able to merge two pointers for which we need 418 // to emit a memcheck. The classes in DepCands are already 419 // conveniently built such that no two pointers in the same 420 // class need checking against each other. 421 422 // We use the following (greedy) algorithm to construct the groups 423 // For every pointer in the equivalence class: 424 // For each existing group: 425 // - if the difference between this pointer and the min/max bounds 426 // of the group is a constant, then make the pointer part of the 427 // group and update the min/max bounds of that group as required. 428 429 CheckingGroups.clear(); 430 431 // If we need to check two pointers to the same underlying object 432 // with a non-constant difference, we shouldn't perform any pointer 433 // grouping with those pointers. This is because we can easily get 434 // into cases where the resulting check would return false, even when 435 // the accesses are safe. 436 // 437 // The following example shows this: 438 // for (i = 0; i < 1000; ++i) 439 // a[5000 + i * m] = a[i] + a[i + 9000] 440 // 441 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 442 // (0, 10000) which is always false. However, if m is 1, there is no 443 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 444 // us to perform an accurate check in this case. 445 // 446 // The above case requires that we have an UnknownDependence between 447 // accesses to the same underlying object. This cannot happen unless 448 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 449 // is also false. In this case we will use the fallback path and create 450 // separate checking groups for all pointers. 451 452 // If we don't have the dependency partitions, construct a new 453 // checking pointer group for each pointer. This is also required 454 // for correctness, because in this case we can have checking between 455 // pointers to the same underlying object. 456 if (!UseDependencies) { 457 for (unsigned I = 0; I < Pointers.size(); ++I) 458 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this)); 459 return; 460 } 461 462 unsigned TotalComparisons = 0; 463 464 DenseMap<Value *, SmallVector<unsigned>> PositionMap; 465 for (unsigned Index = 0; Index < Pointers.size(); ++Index) { 466 auto Iter = PositionMap.insert({Pointers[Index].PointerValue, {}}); 467 Iter.first->second.push_back(Index); 468 } 469 470 // We need to keep track of what pointers we've already seen so we 471 // don't process them twice. 472 SmallSet<unsigned, 2> Seen; 473 474 // Go through all equivalence classes, get the "pointer check groups" 475 // and add them to the overall solution. We use the order in which accesses 476 // appear in 'Pointers' to enforce determinism. 477 for (unsigned I = 0; I < Pointers.size(); ++I) { 478 // We've seen this pointer before, and therefore already processed 479 // its equivalence class. 480 if (Seen.count(I)) 481 continue; 482 483 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 484 Pointers[I].IsWritePtr); 485 486 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 487 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 488 489 // Because DepCands is constructed by visiting accesses in the order in 490 // which they appear in alias sets (which is deterministic) and the 491 // iteration order within an equivalence class member is only dependent on 492 // the order in which unions and insertions are performed on the 493 // equivalence class, the iteration order is deterministic. 494 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 495 MI != ME; ++MI) { 496 auto PointerI = PositionMap.find(MI->getPointer()); 497 assert(PointerI != PositionMap.end() && 498 "pointer in equivalence class not found in PositionMap"); 499 for (unsigned Pointer : PointerI->second) { 500 bool Merged = false; 501 // Mark this pointer as seen. 502 Seen.insert(Pointer); 503 504 // Go through all the existing sets and see if we can find one 505 // which can include this pointer. 506 for (RuntimeCheckingPtrGroup &Group : Groups) { 507 // Don't perform more than a certain amount of comparisons. 508 // This should limit the cost of grouping the pointers to something 509 // reasonable. If we do end up hitting this threshold, the algorithm 510 // will create separate groups for all remaining pointers. 511 if (TotalComparisons > MemoryCheckMergeThreshold) 512 break; 513 514 TotalComparisons++; 515 516 if (Group.addPointer(Pointer, *this)) { 517 Merged = true; 518 break; 519 } 520 } 521 522 if (!Merged) 523 // We couldn't add this pointer to any existing set or the threshold 524 // for the number of comparisons has been reached. Create a new group 525 // to hold the current pointer. 526 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this)); 527 } 528 } 529 530 // We've computed the grouped checks for this partition. 531 // Save the results and continue with the next one. 532 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 533 } 534 } 535 536 bool RuntimePointerChecking::arePointersInSamePartition( 537 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 538 unsigned PtrIdx2) { 539 return (PtrToPartition[PtrIdx1] != -1 && 540 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 541 } 542 543 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 544 const PointerInfo &PointerI = Pointers[I]; 545 const PointerInfo &PointerJ = Pointers[J]; 546 547 // No need to check if two readonly pointers intersect. 548 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 549 return false; 550 551 // Only need to check pointers between two different dependency sets. 552 if (PointerI.DependencySetId == PointerJ.DependencySetId) 553 return false; 554 555 // Only need to check pointers in the same alias set. 556 if (PointerI.AliasSetId != PointerJ.AliasSetId) 557 return false; 558 559 return true; 560 } 561 562 void RuntimePointerChecking::printChecks( 563 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 564 unsigned Depth) const { 565 unsigned N = 0; 566 for (const auto &Check : Checks) { 567 const auto &First = Check.first->Members, &Second = Check.second->Members; 568 569 OS.indent(Depth) << "Check " << N++ << ":\n"; 570 571 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 572 for (unsigned K = 0; K < First.size(); ++K) 573 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 574 575 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 576 for (unsigned K = 0; K < Second.size(); ++K) 577 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 578 } 579 } 580 581 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 582 583 OS.indent(Depth) << "Run-time memory checks:\n"; 584 printChecks(OS, Checks, Depth); 585 586 OS.indent(Depth) << "Grouped accesses:\n"; 587 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 588 const auto &CG = CheckingGroups[I]; 589 590 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 591 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 592 << ")\n"; 593 for (unsigned J = 0; J < CG.Members.size(); ++J) { 594 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 595 << "\n"; 596 } 597 } 598 } 599 600 namespace { 601 602 /// Analyses memory accesses in a loop. 603 /// 604 /// Checks whether run time pointer checks are needed and builds sets for data 605 /// dependence checking. 606 class AccessAnalysis { 607 public: 608 /// Read or write access location. 609 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 610 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 611 612 AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI, 613 MemoryDepChecker::DepCandidates &DA, 614 PredicatedScalarEvolution &PSE) 615 : TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), PSE(PSE) {} 616 617 /// Register a load and whether it is only read from. 618 void addLoad(MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) { 619 Value *Ptr = const_cast<Value*>(Loc.Ptr); 620 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 621 Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy); 622 if (IsReadOnly) 623 ReadOnlyPtr.insert(Ptr); 624 } 625 626 /// Register a store. 627 void addStore(MemoryLocation &Loc, Type *AccessTy) { 628 Value *Ptr = const_cast<Value*>(Loc.Ptr); 629 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 630 Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy); 631 } 632 633 /// Check if we can emit a run-time no-alias check for \p Access. 634 /// 635 /// Returns true if we can emit a run-time no alias check for \p Access. 636 /// If we can check this access, this also adds it to a dependence set and 637 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 638 /// we will attempt to use additional run-time checks in order to get 639 /// the bounds of the pointer. 640 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 641 MemAccessInfo Access, Type *AccessTy, 642 const ValueToValueMap &Strides, 643 DenseMap<Value *, unsigned> &DepSetId, 644 Loop *TheLoop, unsigned &RunningDepId, 645 unsigned ASId, bool ShouldCheckStride, bool Assume); 646 647 /// Check whether we can check the pointers at runtime for 648 /// non-intersection. 649 /// 650 /// Returns true if we need no check or if we do and we can generate them 651 /// (i.e. the pointers have computable bounds). 652 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 653 Loop *TheLoop, const ValueToValueMap &Strides, 654 Value *&UncomputablePtr, bool ShouldCheckWrap = false); 655 656 /// Goes over all memory accesses, checks whether a RT check is needed 657 /// and builds sets of dependent accesses. 658 void buildDependenceSets() { 659 processMemAccesses(); 660 } 661 662 /// Initial processing of memory accesses determined that we need to 663 /// perform dependency checking. 664 /// 665 /// Note that this can later be cleared if we retry memcheck analysis without 666 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 667 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 668 669 /// We decided that no dependence analysis would be used. Reset the state. 670 void resetDepChecks(MemoryDepChecker &DepChecker) { 671 CheckDeps.clear(); 672 DepChecker.clearDependences(); 673 } 674 675 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 676 677 private: 678 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap; 679 680 /// Go over all memory access and check whether runtime pointer checks 681 /// are needed and build sets of dependency check candidates. 682 void processMemAccesses(); 683 684 /// Map of all accesses. Values are the types used to access memory pointed to 685 /// by the pointer. 686 PtrAccessMap Accesses; 687 688 /// The loop being checked. 689 const Loop *TheLoop; 690 691 /// List of accesses that need a further dependence check. 692 MemAccessInfoList CheckDeps; 693 694 /// Set of pointers that are read only. 695 SmallPtrSet<Value*, 16> ReadOnlyPtr; 696 697 /// An alias set tracker to partition the access set by underlying object and 698 //intrinsic property (such as TBAA metadata). 699 AliasSetTracker AST; 700 701 LoopInfo *LI; 702 703 /// Sets of potentially dependent accesses - members of one set share an 704 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 705 /// dependence check. 706 MemoryDepChecker::DepCandidates &DepCands; 707 708 /// Initial processing of memory accesses determined that we may need 709 /// to add memchecks. Perform the analysis to determine the necessary checks. 710 /// 711 /// Note that, this is different from isDependencyCheckNeeded. When we retry 712 /// memcheck analysis without dependency checking 713 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 714 /// cleared while this remains set if we have potentially dependent accesses. 715 bool IsRTCheckAnalysisNeeded = false; 716 717 /// The SCEV predicate containing all the SCEV-related assumptions. 718 PredicatedScalarEvolution &PSE; 719 }; 720 721 } // end anonymous namespace 722 723 /// Check whether a pointer can participate in a runtime bounds check. 724 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 725 /// by adding run-time checks (overflow checks) if necessary. 726 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr, 727 const SCEV *PtrScev, Loop *L, bool Assume) { 728 // The bounds for loop-invariant pointer is trivial. 729 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 730 return true; 731 732 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 733 734 if (!AR && Assume) 735 AR = PSE.getAsAddRec(Ptr); 736 737 if (!AR) 738 return false; 739 740 return AR->isAffine(); 741 } 742 743 /// Check whether a pointer address cannot wrap. 744 static bool isNoWrap(PredicatedScalarEvolution &PSE, 745 const ValueToValueMap &Strides, Value *Ptr, Type *AccessTy, 746 Loop *L) { 747 const SCEV *PtrScev = PSE.getSCEV(Ptr); 748 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 749 return true; 750 751 int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides); 752 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 753 return true; 754 755 return false; 756 } 757 758 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, 759 function_ref<void(Value *)> AddPointer) { 760 SmallPtrSet<Value *, 8> Visited; 761 SmallVector<Value *> WorkList; 762 WorkList.push_back(StartPtr); 763 764 while (!WorkList.empty()) { 765 Value *Ptr = WorkList.pop_back_val(); 766 if (!Visited.insert(Ptr).second) 767 continue; 768 auto *PN = dyn_cast<PHINode>(Ptr); 769 // SCEV does not look through non-header PHIs inside the loop. Such phis 770 // can be analyzed by adding separate accesses for each incoming pointer 771 // value. 772 if (PN && InnermostLoop.contains(PN->getParent()) && 773 PN->getParent() != InnermostLoop.getHeader()) { 774 for (const Use &Inc : PN->incoming_values()) 775 WorkList.push_back(Inc); 776 } else 777 AddPointer(Ptr); 778 } 779 } 780 781 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 782 MemAccessInfo Access, Type *AccessTy, 783 const ValueToValueMap &StridesMap, 784 DenseMap<Value *, unsigned> &DepSetId, 785 Loop *TheLoop, unsigned &RunningDepId, 786 unsigned ASId, bool ShouldCheckWrap, 787 bool Assume) { 788 Value *Ptr = Access.getPointer(); 789 790 ScalarEvolution &SE = *PSE.getSE(); 791 SmallVector<std::pair<const SCEV *, bool>> TranslatedPtrs; 792 auto *SI = dyn_cast<SelectInst>(Ptr); 793 // Look through selects in the current loop. 794 if (SI && !TheLoop->isLoopInvariant(SI)) { 795 TranslatedPtrs = { 796 std::make_pair(SE.getSCEV(SI->getOperand(1)), 797 !isGuaranteedNotToBeUndefOrPoison(SI->getOperand(1))), 798 std::make_pair(SE.getSCEV(SI->getOperand(2)), 799 !isGuaranteedNotToBeUndefOrPoison(SI->getOperand(2)))}; 800 } else 801 TranslatedPtrs = { 802 std::make_pair(replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false)}; 803 804 for (auto &P : TranslatedPtrs) { 805 const SCEV *PtrExpr = P.first; 806 if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume)) 807 return false; 808 809 // When we run after a failing dependency check we have to make sure 810 // we don't have wrapping pointers. 811 if (ShouldCheckWrap) { 812 // Skip wrap checking when translating pointers. 813 if (TranslatedPtrs.size() > 1) 814 return false; 815 816 if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) { 817 auto *Expr = PSE.getSCEV(Ptr); 818 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 819 return false; 820 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 821 } 822 } 823 // If there's only one option for Ptr, look it up after bounds and wrap 824 // checking, because assumptions might have been added to PSE. 825 if (TranslatedPtrs.size() == 1) 826 TranslatedPtrs[0] = std::make_pair( 827 replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false); 828 } 829 830 for (auto &P : TranslatedPtrs) { 831 const SCEV *PtrExpr = P.first; 832 833 // The id of the dependence set. 834 unsigned DepId; 835 836 if (isDependencyCheckNeeded()) { 837 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 838 unsigned &LeaderId = DepSetId[Leader]; 839 if (!LeaderId) 840 LeaderId = RunningDepId++; 841 DepId = LeaderId; 842 } else 843 // Each access has its own dependence set. 844 DepId = RunningDepId++; 845 846 bool IsWrite = Access.getInt(); 847 RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE, 848 P.second); 849 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 850 } 851 852 return true; 853 } 854 855 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 856 ScalarEvolution *SE, Loop *TheLoop, 857 const ValueToValueMap &StridesMap, 858 Value *&UncomputablePtr, bool ShouldCheckWrap) { 859 // Find pointers with computable bounds. We are going to use this information 860 // to place a runtime bound check. 861 bool CanDoRT = true; 862 863 bool MayNeedRTCheck = false; 864 if (!IsRTCheckAnalysisNeeded) return true; 865 866 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 867 868 // We assign a consecutive id to access from different alias sets. 869 // Accesses between different groups doesn't need to be checked. 870 unsigned ASId = 0; 871 for (auto &AS : AST) { 872 int NumReadPtrChecks = 0; 873 int NumWritePtrChecks = 0; 874 bool CanDoAliasSetRT = true; 875 ++ASId; 876 877 // We assign consecutive id to access from different dependence sets. 878 // Accesses within the same set don't need a runtime check. 879 unsigned RunningDepId = 1; 880 DenseMap<Value *, unsigned> DepSetId; 881 882 SmallVector<MemAccessInfo, 4> Retries; 883 884 // First, count how many write and read accesses are in the alias set. Also 885 // collect MemAccessInfos for later. 886 SmallVector<MemAccessInfo, 4> AccessInfos; 887 for (const auto &A : AS) { 888 Value *Ptr = A.getValue(); 889 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 890 891 if (IsWrite) 892 ++NumWritePtrChecks; 893 else 894 ++NumReadPtrChecks; 895 AccessInfos.emplace_back(Ptr, IsWrite); 896 } 897 898 // We do not need runtime checks for this alias set, if there are no writes 899 // or a single write and no reads. 900 if (NumWritePtrChecks == 0 || 901 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) { 902 assert((AS.size() <= 1 || 903 all_of(AS, 904 [this](auto AC) { 905 MemAccessInfo AccessWrite(AC.getValue(), true); 906 return DepCands.findValue(AccessWrite) == DepCands.end(); 907 })) && 908 "Can only skip updating CanDoRT below, if all entries in AS " 909 "are reads or there is at most 1 entry"); 910 continue; 911 } 912 913 for (auto &Access : AccessInfos) { 914 for (auto &AccessTy : Accesses[Access]) { 915 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 916 DepSetId, TheLoop, RunningDepId, ASId, 917 ShouldCheckWrap, false)) { 918 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" 919 << *Access.getPointer() << '\n'); 920 Retries.push_back(Access); 921 CanDoAliasSetRT = false; 922 } 923 } 924 } 925 926 // Note that this function computes CanDoRT and MayNeedRTCheck 927 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that 928 // we have a pointer for which we couldn't find the bounds but we don't 929 // actually need to emit any checks so it does not matter. 930 // 931 // We need runtime checks for this alias set, if there are at least 2 932 // dependence sets (in which case RunningDepId > 2) or if we need to re-try 933 // any bound checks (because in that case the number of dependence sets is 934 // incomplete). 935 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty(); 936 937 // We need to perform run-time alias checks, but some pointers had bounds 938 // that couldn't be checked. 939 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 940 // Reset the CanDoSetRt flag and retry all accesses that have failed. 941 // We know that we need these checks, so we can now be more aggressive 942 // and add further checks if required (overflow checks). 943 CanDoAliasSetRT = true; 944 for (auto Access : Retries) { 945 for (auto &AccessTy : Accesses[Access]) { 946 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 947 DepSetId, TheLoop, RunningDepId, ASId, 948 ShouldCheckWrap, /*Assume=*/true)) { 949 CanDoAliasSetRT = false; 950 UncomputablePtr = Access.getPointer(); 951 break; 952 } 953 } 954 } 955 } 956 957 CanDoRT &= CanDoAliasSetRT; 958 MayNeedRTCheck |= NeedsAliasSetRTCheck; 959 ++ASId; 960 } 961 962 // If the pointers that we would use for the bounds comparison have different 963 // address spaces, assume the values aren't directly comparable, so we can't 964 // use them for the runtime check. We also have to assume they could 965 // overlap. In the future there should be metadata for whether address spaces 966 // are disjoint. 967 unsigned NumPointers = RtCheck.Pointers.size(); 968 for (unsigned i = 0; i < NumPointers; ++i) { 969 for (unsigned j = i + 1; j < NumPointers; ++j) { 970 // Only need to check pointers between two different dependency sets. 971 if (RtCheck.Pointers[i].DependencySetId == 972 RtCheck.Pointers[j].DependencySetId) 973 continue; 974 // Only need to check pointers in the same alias set. 975 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 976 continue; 977 978 Value *PtrI = RtCheck.Pointers[i].PointerValue; 979 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 980 981 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 982 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 983 if (ASi != ASj) { 984 LLVM_DEBUG( 985 dbgs() << "LAA: Runtime check would require comparison between" 986 " different address spaces\n"); 987 return false; 988 } 989 } 990 } 991 992 if (MayNeedRTCheck && CanDoRT) 993 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 994 995 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 996 << " pointer comparisons.\n"); 997 998 // If we can do run-time checks, but there are no checks, no runtime checks 999 // are needed. This can happen when all pointers point to the same underlying 1000 // object for example. 1001 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck; 1002 1003 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT; 1004 if (!CanDoRTIfNeeded) 1005 RtCheck.reset(); 1006 return CanDoRTIfNeeded; 1007 } 1008 1009 void AccessAnalysis::processMemAccesses() { 1010 // We process the set twice: first we process read-write pointers, last we 1011 // process read-only pointers. This allows us to skip dependence tests for 1012 // read-only pointers. 1013 1014 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 1015 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 1016 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 1017 LLVM_DEBUG({ 1018 for (auto A : Accesses) 1019 dbgs() << "\t" << *A.first.getPointer() << " (" 1020 << (A.first.getInt() 1021 ? "write" 1022 : (ReadOnlyPtr.count(A.first.getPointer()) ? "read-only" 1023 : "read")) 1024 << ")\n"; 1025 }); 1026 1027 // The AliasSetTracker has nicely partitioned our pointers by metadata 1028 // compatibility and potential for underlying-object overlap. As a result, we 1029 // only need to check for potential pointer dependencies within each alias 1030 // set. 1031 for (const auto &AS : AST) { 1032 // Note that both the alias-set tracker and the alias sets themselves used 1033 // linked lists internally and so the iteration order here is deterministic 1034 // (matching the original instruction order within each set). 1035 1036 bool SetHasWrite = false; 1037 1038 // Map of pointers to last access encountered. 1039 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 1040 UnderlyingObjToAccessMap ObjToLastAccess; 1041 1042 // Set of access to check after all writes have been processed. 1043 PtrAccessMap DeferredAccesses; 1044 1045 // Iterate over each alias set twice, once to process read/write pointers, 1046 // and then to process read-only pointers. 1047 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 1048 bool UseDeferred = SetIteration > 0; 1049 PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses; 1050 1051 for (const auto &AV : AS) { 1052 Value *Ptr = AV.getValue(); 1053 1054 // For a single memory access in AliasSetTracker, Accesses may contain 1055 // both read and write, and they both need to be handled for CheckDeps. 1056 for (const auto &AC : S) { 1057 if (AC.first.getPointer() != Ptr) 1058 continue; 1059 1060 bool IsWrite = AC.first.getInt(); 1061 1062 // If we're using the deferred access set, then it contains only 1063 // reads. 1064 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 1065 if (UseDeferred && !IsReadOnlyPtr) 1066 continue; 1067 // Otherwise, the pointer must be in the PtrAccessSet, either as a 1068 // read or a write. 1069 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 1070 S.count(MemAccessInfo(Ptr, false))) && 1071 "Alias-set pointer not in the access set?"); 1072 1073 MemAccessInfo Access(Ptr, IsWrite); 1074 DepCands.insert(Access); 1075 1076 // Memorize read-only pointers for later processing and skip them in 1077 // the first round (they need to be checked after we have seen all 1078 // write pointers). Note: we also mark pointer that are not 1079 // consecutive as "read-only" pointers (so that we check 1080 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 1081 if (!UseDeferred && IsReadOnlyPtr) { 1082 // We only use the pointer keys, the types vector values don't 1083 // matter. 1084 DeferredAccesses.insert({Access, {}}); 1085 continue; 1086 } 1087 1088 // If this is a write - check other reads and writes for conflicts. If 1089 // this is a read only check other writes for conflicts (but only if 1090 // there is no other write to the ptr - this is an optimization to 1091 // catch "a[i] = a[i] + " without having to do a dependence check). 1092 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 1093 CheckDeps.push_back(Access); 1094 IsRTCheckAnalysisNeeded = true; 1095 } 1096 1097 if (IsWrite) 1098 SetHasWrite = true; 1099 1100 // Create sets of pointers connected by a shared alias set and 1101 // underlying object. 1102 typedef SmallVector<const Value *, 16> ValueVector; 1103 ValueVector TempObjects; 1104 1105 getUnderlyingObjects(Ptr, TempObjects, LI); 1106 LLVM_DEBUG(dbgs() 1107 << "Underlying objects for pointer " << *Ptr << "\n"); 1108 for (const Value *UnderlyingObj : TempObjects) { 1109 // nullptr never alias, don't join sets for pointer that have "null" 1110 // in their UnderlyingObjects list. 1111 if (isa<ConstantPointerNull>(UnderlyingObj) && 1112 !NullPointerIsDefined( 1113 TheLoop->getHeader()->getParent(), 1114 UnderlyingObj->getType()->getPointerAddressSpace())) 1115 continue; 1116 1117 UnderlyingObjToAccessMap::iterator Prev = 1118 ObjToLastAccess.find(UnderlyingObj); 1119 if (Prev != ObjToLastAccess.end()) 1120 DepCands.unionSets(Access, Prev->second); 1121 1122 ObjToLastAccess[UnderlyingObj] = Access; 1123 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 1124 } 1125 } 1126 } 1127 } 1128 } 1129 } 1130 1131 static bool isInBoundsGep(Value *Ptr) { 1132 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 1133 return GEP->isInBounds(); 1134 return false; 1135 } 1136 1137 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 1138 /// i.e. monotonically increasing/decreasing. 1139 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 1140 PredicatedScalarEvolution &PSE, const Loop *L) { 1141 // FIXME: This should probably only return true for NUW. 1142 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 1143 return true; 1144 1145 // Scalar evolution does not propagate the non-wrapping flags to values that 1146 // are derived from a non-wrapping induction variable because non-wrapping 1147 // could be flow-sensitive. 1148 // 1149 // Look through the potentially overflowing instruction to try to prove 1150 // non-wrapping for the *specific* value of Ptr. 1151 1152 // The arithmetic implied by an inbounds GEP can't overflow. 1153 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 1154 if (!GEP || !GEP->isInBounds()) 1155 return false; 1156 1157 // Make sure there is only one non-const index and analyze that. 1158 Value *NonConstIndex = nullptr; 1159 for (Value *Index : GEP->indices()) 1160 if (!isa<ConstantInt>(Index)) { 1161 if (NonConstIndex) 1162 return false; 1163 NonConstIndex = Index; 1164 } 1165 if (!NonConstIndex) 1166 // The recurrence is on the pointer, ignore for now. 1167 return false; 1168 1169 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 1170 // AddRec using a NSW operation. 1171 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 1172 if (OBO->hasNoSignedWrap() && 1173 // Assume constant for other the operand so that the AddRec can be 1174 // easily found. 1175 isa<ConstantInt>(OBO->getOperand(1))) { 1176 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 1177 1178 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 1179 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 1180 } 1181 1182 return false; 1183 } 1184 1185 /// Check whether the access through \p Ptr has a constant stride. 1186 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, 1187 Value *Ptr, const Loop *Lp, 1188 const ValueToValueMap &StridesMap, bool Assume, 1189 bool ShouldCheckWrap) { 1190 Type *Ty = Ptr->getType(); 1191 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1192 1193 if (isa<ScalableVectorType>(AccessTy)) { 1194 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy 1195 << "\n"); 1196 return 0; 1197 } 1198 1199 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1200 1201 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1202 if (Assume && !AR) 1203 AR = PSE.getAsAddRec(Ptr); 1204 1205 if (!AR) { 1206 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1207 << " SCEV: " << *PtrScev << "\n"); 1208 return 0; 1209 } 1210 1211 // The access function must stride over the innermost loop. 1212 if (Lp != AR->getLoop()) { 1213 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1214 << *Ptr << " SCEV: " << *AR << "\n"); 1215 return 0; 1216 } 1217 1218 // The address calculation must not wrap. Otherwise, a dependence could be 1219 // inverted. 1220 // An inbounds getelementptr that is a AddRec with a unit stride 1221 // cannot wrap per definition. The unit stride requirement is checked later. 1222 // An getelementptr without an inbounds attribute and unit stride would have 1223 // to access the pointer value "0" which is undefined behavior in address 1224 // space 0, therefore we can also vectorize this case. 1225 unsigned AddrSpace = Ty->getPointerAddressSpace(); 1226 bool IsInBoundsGEP = isInBoundsGep(Ptr); 1227 bool IsNoWrapAddRec = !ShouldCheckWrap || 1228 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 1229 isNoWrapAddRec(Ptr, AR, PSE, Lp); 1230 if (!IsNoWrapAddRec && !IsInBoundsGEP && 1231 NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace)) { 1232 if (Assume) { 1233 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1234 IsNoWrapAddRec = true; 1235 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 1236 << "LAA: Pointer: " << *Ptr << "\n" 1237 << "LAA: SCEV: " << *AR << "\n" 1238 << "LAA: Added an overflow assumption\n"); 1239 } else { 1240 LLVM_DEBUG( 1241 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1242 << *Ptr << " SCEV: " << *AR << "\n"); 1243 return 0; 1244 } 1245 } 1246 1247 // Check the step is constant. 1248 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1249 1250 // Calculate the pointer stride and check if it is constant. 1251 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1252 if (!C) { 1253 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1254 << " SCEV: " << *AR << "\n"); 1255 return 0; 1256 } 1257 1258 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1259 TypeSize AllocSize = DL.getTypeAllocSize(AccessTy); 1260 int64_t Size = AllocSize.getFixedSize(); 1261 const APInt &APStepVal = C->getAPInt(); 1262 1263 // Huge step value - give up. 1264 if (APStepVal.getBitWidth() > 64) 1265 return 0; 1266 1267 int64_t StepVal = APStepVal.getSExtValue(); 1268 1269 // Strided access. 1270 int64_t Stride = StepVal / Size; 1271 int64_t Rem = StepVal % Size; 1272 if (Rem) 1273 return 0; 1274 1275 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 1276 // know we can't "wrap around the address space". In case of address space 1277 // zero we know that this won't happen without triggering undefined behavior. 1278 if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && 1279 (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), 1280 AddrSpace))) { 1281 if (Assume) { 1282 // We can avoid this case by adding a run-time check. 1283 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1284 << "inbounds or in address space 0 may wrap:\n" 1285 << "LAA: Pointer: " << *Ptr << "\n" 1286 << "LAA: SCEV: " << *AR << "\n" 1287 << "LAA: Added an overflow assumption\n"); 1288 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1289 } else 1290 return 0; 1291 } 1292 1293 return Stride; 1294 } 1295 1296 Optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB, 1297 Value *PtrB, const DataLayout &DL, 1298 ScalarEvolution &SE, bool StrictCheck, 1299 bool CheckType) { 1300 assert(PtrA && PtrB && "Expected non-nullptr pointers."); 1301 assert(cast<PointerType>(PtrA->getType()) 1302 ->isOpaqueOrPointeeTypeMatches(ElemTyA) && "Wrong PtrA type"); 1303 assert(cast<PointerType>(PtrB->getType()) 1304 ->isOpaqueOrPointeeTypeMatches(ElemTyB) && "Wrong PtrB type"); 1305 1306 // Make sure that A and B are different pointers. 1307 if (PtrA == PtrB) 1308 return 0; 1309 1310 // Make sure that the element types are the same if required. 1311 if (CheckType && ElemTyA != ElemTyB) 1312 return None; 1313 1314 unsigned ASA = PtrA->getType()->getPointerAddressSpace(); 1315 unsigned ASB = PtrB->getType()->getPointerAddressSpace(); 1316 1317 // Check that the address spaces match. 1318 if (ASA != ASB) 1319 return None; 1320 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1321 1322 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1323 Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1324 Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1325 1326 int Val; 1327 if (PtrA1 == PtrB1) { 1328 // Retrieve the address space again as pointer stripping now tracks through 1329 // `addrspacecast`. 1330 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace(); 1331 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace(); 1332 // Check that the address spaces match and that the pointers are valid. 1333 if (ASA != ASB) 1334 return None; 1335 1336 IdxWidth = DL.getIndexSizeInBits(ASA); 1337 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1338 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1339 1340 OffsetB -= OffsetA; 1341 Val = OffsetB.getSExtValue(); 1342 } else { 1343 // Otherwise compute the distance with SCEV between the base pointers. 1344 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1345 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1346 const auto *Diff = 1347 dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA)); 1348 if (!Diff) 1349 return None; 1350 Val = Diff->getAPInt().getSExtValue(); 1351 } 1352 int Size = DL.getTypeStoreSize(ElemTyA); 1353 int Dist = Val / Size; 1354 1355 // Ensure that the calculated distance matches the type-based one after all 1356 // the bitcasts removal in the provided pointers. 1357 if (!StrictCheck || Dist * Size == Val) 1358 return Dist; 1359 return None; 1360 } 1361 1362 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 1363 const DataLayout &DL, ScalarEvolution &SE, 1364 SmallVectorImpl<unsigned> &SortedIndices) { 1365 assert(llvm::all_of( 1366 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1367 "Expected list of pointer operands."); 1368 // Walk over the pointers, and map each of them to an offset relative to 1369 // first pointer in the array. 1370 Value *Ptr0 = VL[0]; 1371 1372 using DistOrdPair = std::pair<int64_t, int>; 1373 auto Compare = [](const DistOrdPair &L, const DistOrdPair &R) { 1374 return L.first < R.first; 1375 }; 1376 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare); 1377 Offsets.emplace(0, 0); 1378 int Cnt = 1; 1379 bool IsConsecutive = true; 1380 for (auto *Ptr : VL.drop_front()) { 1381 Optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE, 1382 /*StrictCheck=*/true); 1383 if (!Diff) 1384 return false; 1385 1386 // Check if the pointer with the same offset is found. 1387 int64_t Offset = *Diff; 1388 auto Res = Offsets.emplace(Offset, Cnt); 1389 if (!Res.second) 1390 return false; 1391 // Consecutive order if the inserted element is the last one. 1392 IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end(); 1393 ++Cnt; 1394 } 1395 SortedIndices.clear(); 1396 if (!IsConsecutive) { 1397 // Fill SortedIndices array only if it is non-consecutive. 1398 SortedIndices.resize(VL.size()); 1399 Cnt = 0; 1400 for (const std::pair<int64_t, int> &Pair : Offsets) { 1401 SortedIndices[Cnt] = Pair.second; 1402 ++Cnt; 1403 } 1404 } 1405 return true; 1406 } 1407 1408 /// Returns true if the memory operations \p A and \p B are consecutive. 1409 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1410 ScalarEvolution &SE, bool CheckType) { 1411 Value *PtrA = getLoadStorePointerOperand(A); 1412 Value *PtrB = getLoadStorePointerOperand(B); 1413 if (!PtrA || !PtrB) 1414 return false; 1415 Type *ElemTyA = getLoadStoreType(A); 1416 Type *ElemTyB = getLoadStoreType(B); 1417 Optional<int> Diff = getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE, 1418 /*StrictCheck=*/true, CheckType); 1419 return Diff && *Diff == 1; 1420 } 1421 1422 void MemoryDepChecker::addAccess(StoreInst *SI) { 1423 visitPointers(SI->getPointerOperand(), *InnermostLoop, 1424 [this, SI](Value *Ptr) { 1425 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 1426 InstMap.push_back(SI); 1427 ++AccessIdx; 1428 }); 1429 } 1430 1431 void MemoryDepChecker::addAccess(LoadInst *LI) { 1432 visitPointers(LI->getPointerOperand(), *InnermostLoop, 1433 [this, LI](Value *Ptr) { 1434 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 1435 InstMap.push_back(LI); 1436 ++AccessIdx; 1437 }); 1438 } 1439 1440 MemoryDepChecker::VectorizationSafetyStatus 1441 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1442 switch (Type) { 1443 case NoDep: 1444 case Forward: 1445 case BackwardVectorizable: 1446 return VectorizationSafetyStatus::Safe; 1447 1448 case Unknown: 1449 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1450 case ForwardButPreventsForwarding: 1451 case Backward: 1452 case BackwardVectorizableButPreventsForwarding: 1453 return VectorizationSafetyStatus::Unsafe; 1454 } 1455 llvm_unreachable("unexpected DepType!"); 1456 } 1457 1458 bool MemoryDepChecker::Dependence::isBackward() const { 1459 switch (Type) { 1460 case NoDep: 1461 case Forward: 1462 case ForwardButPreventsForwarding: 1463 case Unknown: 1464 return false; 1465 1466 case BackwardVectorizable: 1467 case Backward: 1468 case BackwardVectorizableButPreventsForwarding: 1469 return true; 1470 } 1471 llvm_unreachable("unexpected DepType!"); 1472 } 1473 1474 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1475 return isBackward() || Type == Unknown; 1476 } 1477 1478 bool MemoryDepChecker::Dependence::isForward() const { 1479 switch (Type) { 1480 case Forward: 1481 case ForwardButPreventsForwarding: 1482 return true; 1483 1484 case NoDep: 1485 case Unknown: 1486 case BackwardVectorizable: 1487 case Backward: 1488 case BackwardVectorizableButPreventsForwarding: 1489 return false; 1490 } 1491 llvm_unreachable("unexpected DepType!"); 1492 } 1493 1494 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1495 uint64_t TypeByteSize) { 1496 // If loads occur at a distance that is not a multiple of a feasible vector 1497 // factor store-load forwarding does not take place. 1498 // Positive dependences might cause troubles because vectorizing them might 1499 // prevent store-load forwarding making vectorized code run a lot slower. 1500 // a[i] = a[i-3] ^ a[i-8]; 1501 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1502 // hence on your typical architecture store-load forwarding does not take 1503 // place. Vectorizing in such cases does not make sense. 1504 // Store-load forwarding distance. 1505 1506 // After this many iterations store-to-load forwarding conflicts should not 1507 // cause any slowdowns. 1508 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1509 // Maximum vector factor. 1510 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1511 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1512 1513 // Compute the smallest VF at which the store and load would be misaligned. 1514 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1515 VF *= 2) { 1516 // If the number of vector iteration between the store and the load are 1517 // small we could incur conflicts. 1518 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1519 MaxVFWithoutSLForwardIssues = (VF >> 1); 1520 break; 1521 } 1522 } 1523 1524 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1525 LLVM_DEBUG( 1526 dbgs() << "LAA: Distance " << Distance 1527 << " that could cause a store-load forwarding conflict\n"); 1528 return true; 1529 } 1530 1531 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1532 MaxVFWithoutSLForwardIssues != 1533 VectorizerParams::MaxVectorWidth * TypeByteSize) 1534 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1535 return false; 1536 } 1537 1538 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1539 if (Status < S) 1540 Status = S; 1541 } 1542 1543 /// Given a non-constant (unknown) dependence-distance \p Dist between two 1544 /// memory accesses, that have the same stride whose absolute value is given 1545 /// in \p Stride, and that have the same type size \p TypeByteSize, 1546 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1547 /// possible to prove statically that the dependence distance is larger 1548 /// than the range that the accesses will travel through the execution of 1549 /// the loop. If so, return true; false otherwise. This is useful for 1550 /// example in loops such as the following (PR31098): 1551 /// for (i = 0; i < D; ++i) { 1552 /// = out[i]; 1553 /// out[i+D] = 1554 /// } 1555 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1556 const SCEV &BackedgeTakenCount, 1557 const SCEV &Dist, uint64_t Stride, 1558 uint64_t TypeByteSize) { 1559 1560 // If we can prove that 1561 // (**) |Dist| > BackedgeTakenCount * Step 1562 // where Step is the absolute stride of the memory accesses in bytes, 1563 // then there is no dependence. 1564 // 1565 // Rationale: 1566 // We basically want to check if the absolute distance (|Dist/Step|) 1567 // is >= the loop iteration count (or > BackedgeTakenCount). 1568 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1569 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1570 // that the dependence distance is >= VF; This is checked elsewhere. 1571 // But in some cases we can prune unknown dependence distances early, and 1572 // even before selecting the VF, and without a runtime test, by comparing 1573 // the distance against the loop iteration count. Since the vectorized code 1574 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1575 // also guarantees that distance >= VF. 1576 // 1577 const uint64_t ByteStride = Stride * TypeByteSize; 1578 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1579 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1580 1581 const SCEV *CastedDist = &Dist; 1582 const SCEV *CastedProduct = Product; 1583 uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType()); 1584 uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType()); 1585 1586 // The dependence distance can be positive/negative, so we sign extend Dist; 1587 // The multiplication of the absolute stride in bytes and the 1588 // backedgeTakenCount is non-negative, so we zero extend Product. 1589 if (DistTypeSizeBits > ProductTypeSizeBits) 1590 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1591 else 1592 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1593 1594 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1595 // (If so, then we have proven (**) because |Dist| >= Dist) 1596 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1597 if (SE.isKnownPositive(Minus)) 1598 return true; 1599 1600 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1601 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1602 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1603 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1604 if (SE.isKnownPositive(Minus)) 1605 return true; 1606 1607 return false; 1608 } 1609 1610 /// Check the dependence for two accesses with the same stride \p Stride. 1611 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1612 /// bytes. 1613 /// 1614 /// \returns true if they are independent. 1615 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1616 uint64_t TypeByteSize) { 1617 assert(Stride > 1 && "The stride must be greater than 1"); 1618 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1619 assert(Distance > 0 && "The distance must be non-zero"); 1620 1621 // Skip if the distance is not multiple of type byte size. 1622 if (Distance % TypeByteSize) 1623 return false; 1624 1625 uint64_t ScaledDist = Distance / TypeByteSize; 1626 1627 // No dependence if the scaled distance is not multiple of the stride. 1628 // E.g. 1629 // for (i = 0; i < 1024 ; i += 4) 1630 // A[i+2] = A[i] + 1; 1631 // 1632 // Two accesses in memory (scaled distance is 2, stride is 4): 1633 // | A[0] | | | | A[4] | | | | 1634 // | | | A[2] | | | | A[6] | | 1635 // 1636 // E.g. 1637 // for (i = 0; i < 1024 ; i += 3) 1638 // A[i+4] = A[i] + 1; 1639 // 1640 // Two accesses in memory (scaled distance is 4, stride is 3): 1641 // | A[0] | | | A[3] | | | A[6] | | | 1642 // | | | | | A[4] | | | A[7] | | 1643 return ScaledDist % Stride; 1644 } 1645 1646 MemoryDepChecker::Dependence::DepType 1647 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1648 const MemAccessInfo &B, unsigned BIdx, 1649 const ValueToValueMap &Strides) { 1650 assert (AIdx < BIdx && "Must pass arguments in program order"); 1651 1652 Value *APtr = A.getPointer(); 1653 Value *BPtr = B.getPointer(); 1654 bool AIsWrite = A.getInt(); 1655 bool BIsWrite = B.getInt(); 1656 Type *ATy = getLoadStoreType(InstMap[AIdx]); 1657 Type *BTy = getLoadStoreType(InstMap[BIdx]); 1658 1659 // Two reads are independent. 1660 if (!AIsWrite && !BIsWrite) 1661 return Dependence::NoDep; 1662 1663 // We cannot check pointers in different address spaces. 1664 if (APtr->getType()->getPointerAddressSpace() != 1665 BPtr->getType()->getPointerAddressSpace()) 1666 return Dependence::Unknown; 1667 1668 int64_t StrideAPtr = 1669 getPtrStride(PSE, ATy, APtr, InnermostLoop, Strides, true); 1670 int64_t StrideBPtr = 1671 getPtrStride(PSE, BTy, BPtr, InnermostLoop, Strides, true); 1672 1673 const SCEV *Src = PSE.getSCEV(APtr); 1674 const SCEV *Sink = PSE.getSCEV(BPtr); 1675 1676 // If the induction step is negative we have to invert source and sink of the 1677 // dependence. 1678 if (StrideAPtr < 0) { 1679 std::swap(APtr, BPtr); 1680 std::swap(ATy, BTy); 1681 std::swap(Src, Sink); 1682 std::swap(AIsWrite, BIsWrite); 1683 std::swap(AIdx, BIdx); 1684 std::swap(StrideAPtr, StrideBPtr); 1685 } 1686 1687 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1688 1689 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1690 << "(Induction step: " << StrideAPtr << ")\n"); 1691 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1692 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1693 1694 // Need accesses with constant stride. We don't want to vectorize 1695 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1696 // the address space. 1697 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1698 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1699 return Dependence::Unknown; 1700 } 1701 1702 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1703 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1704 bool HasSameSize = 1705 DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy); 1706 uint64_t Stride = std::abs(StrideAPtr); 1707 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1708 if (!C) { 1709 if (!isa<SCEVCouldNotCompute>(Dist) && HasSameSize && 1710 isSafeDependenceDistance(DL, *(PSE.getSE()), 1711 *(PSE.getBackedgeTakenCount()), *Dist, Stride, 1712 TypeByteSize)) 1713 return Dependence::NoDep; 1714 1715 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1716 FoundNonConstantDistanceDependence = true; 1717 return Dependence::Unknown; 1718 } 1719 1720 const APInt &Val = C->getAPInt(); 1721 int64_t Distance = Val.getSExtValue(); 1722 1723 // Attempt to prove strided accesses independent. 1724 if (std::abs(Distance) > 0 && Stride > 1 && HasSameSize && 1725 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1726 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1727 return Dependence::NoDep; 1728 } 1729 1730 // Negative distances are not plausible dependencies. 1731 if (Val.isNegative()) { 1732 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1733 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1734 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1735 !HasSameSize)) { 1736 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1737 return Dependence::ForwardButPreventsForwarding; 1738 } 1739 1740 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1741 return Dependence::Forward; 1742 } 1743 1744 // Write to the same location with the same size. 1745 if (Val == 0) { 1746 if (HasSameSize) 1747 return Dependence::Forward; 1748 LLVM_DEBUG( 1749 dbgs() << "LAA: Zero dependence difference but different type sizes\n"); 1750 return Dependence::Unknown; 1751 } 1752 1753 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1754 1755 if (!HasSameSize) { 1756 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with " 1757 "different type sizes\n"); 1758 return Dependence::Unknown; 1759 } 1760 1761 // Bail out early if passed-in parameters make vectorization not feasible. 1762 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1763 VectorizerParams::VectorizationFactor : 1); 1764 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1765 VectorizerParams::VectorizationInterleave : 1); 1766 // The minimum number of iterations for a vectorized/unrolled version. 1767 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1768 1769 // It's not vectorizable if the distance is smaller than the minimum distance 1770 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1771 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1772 // TypeByteSize (No need to plus the last gap distance). 1773 // 1774 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1775 // foo(int *A) { 1776 // int *B = (int *)((char *)A + 14); 1777 // for (i = 0 ; i < 1024 ; i += 2) 1778 // B[i] = A[i] + 1; 1779 // } 1780 // 1781 // Two accesses in memory (stride is 2): 1782 // | A[0] | | A[2] | | A[4] | | A[6] | | 1783 // | B[0] | | B[2] | | B[4] | 1784 // 1785 // Distance needs for vectorizing iterations except the last iteration: 1786 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1787 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1788 // 1789 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1790 // 12, which is less than distance. 1791 // 1792 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1793 // the minimum distance needed is 28, which is greater than distance. It is 1794 // not safe to do vectorization. 1795 uint64_t MinDistanceNeeded = 1796 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1797 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1798 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " 1799 << Distance << '\n'); 1800 return Dependence::Backward; 1801 } 1802 1803 // Unsafe if the minimum distance needed is greater than max safe distance. 1804 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1805 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 1806 << MinDistanceNeeded << " size in bytes"); 1807 return Dependence::Backward; 1808 } 1809 1810 // Positive distance bigger than max vectorization factor. 1811 // FIXME: Should use max factor instead of max distance in bytes, which could 1812 // not handle different types. 1813 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1814 // void foo (int *A, char *B) { 1815 // for (unsigned i = 0; i < 1024; i++) { 1816 // A[i+2] = A[i] + 1; 1817 // B[i+2] = B[i] + 1; 1818 // } 1819 // } 1820 // 1821 // This case is currently unsafe according to the max safe distance. If we 1822 // analyze the two accesses on array B, the max safe dependence distance 1823 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1824 // is 8, which is less than 2 and forbidden vectorization, But actually 1825 // both A and B could be vectorized by 2 iterations. 1826 MaxSafeDepDistBytes = 1827 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1828 1829 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1830 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1831 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1832 return Dependence::BackwardVectorizableButPreventsForwarding; 1833 1834 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 1835 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1836 << " with max VF = " << MaxVF << '\n'); 1837 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 1838 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits); 1839 return Dependence::BackwardVectorizable; 1840 } 1841 1842 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1843 MemAccessInfoList &CheckDeps, 1844 const ValueToValueMap &Strides) { 1845 1846 MaxSafeDepDistBytes = -1; 1847 SmallPtrSet<MemAccessInfo, 8> Visited; 1848 for (MemAccessInfo CurAccess : CheckDeps) { 1849 if (Visited.count(CurAccess)) 1850 continue; 1851 1852 // Get the relevant memory access set. 1853 EquivalenceClasses<MemAccessInfo>::iterator I = 1854 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1855 1856 // Check accesses within this set. 1857 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1858 AccessSets.member_begin(I); 1859 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1860 AccessSets.member_end(); 1861 1862 // Check every access pair. 1863 while (AI != AE) { 1864 Visited.insert(*AI); 1865 bool AIIsWrite = AI->getInt(); 1866 // Check loads only against next equivalent class, but stores also against 1867 // other stores in the same equivalence class - to the same address. 1868 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 1869 (AIIsWrite ? AI : std::next(AI)); 1870 while (OI != AE) { 1871 // Check every accessing instruction pair in program order. 1872 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1873 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1874 // Scan all accesses of another equivalence class, but only the next 1875 // accesses of the same equivalent class. 1876 for (std::vector<unsigned>::iterator 1877 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 1878 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 1879 I2 != I2E; ++I2) { 1880 auto A = std::make_pair(&*AI, *I1); 1881 auto B = std::make_pair(&*OI, *I2); 1882 1883 assert(*I1 != *I2); 1884 if (*I1 > *I2) 1885 std::swap(A, B); 1886 1887 Dependence::DepType Type = 1888 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1889 mergeInStatus(Dependence::isSafeForVectorization(Type)); 1890 1891 // Gather dependences unless we accumulated MaxDependences 1892 // dependences. In that case return as soon as we find the first 1893 // unsafe dependence. This puts a limit on this quadratic 1894 // algorithm. 1895 if (RecordDependences) { 1896 if (Type != Dependence::NoDep) 1897 Dependences.push_back(Dependence(A.second, B.second, Type)); 1898 1899 if (Dependences.size() >= MaxDependences) { 1900 RecordDependences = false; 1901 Dependences.clear(); 1902 LLVM_DEBUG(dbgs() 1903 << "Too many dependences, stopped recording\n"); 1904 } 1905 } 1906 if (!RecordDependences && !isSafeForVectorization()) 1907 return false; 1908 } 1909 ++OI; 1910 } 1911 AI++; 1912 } 1913 } 1914 1915 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1916 return isSafeForVectorization(); 1917 } 1918 1919 SmallVector<Instruction *, 4> 1920 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1921 MemAccessInfo Access(Ptr, isWrite); 1922 auto &IndexVector = Accesses.find(Access)->second; 1923 1924 SmallVector<Instruction *, 4> Insts; 1925 transform(IndexVector, 1926 std::back_inserter(Insts), 1927 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1928 return Insts; 1929 } 1930 1931 const char *MemoryDepChecker::Dependence::DepName[] = { 1932 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1933 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1934 1935 void MemoryDepChecker::Dependence::print( 1936 raw_ostream &OS, unsigned Depth, 1937 const SmallVectorImpl<Instruction *> &Instrs) const { 1938 OS.indent(Depth) << DepName[Type] << ":\n"; 1939 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1940 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1941 } 1942 1943 bool LoopAccessInfo::canAnalyzeLoop() { 1944 // We need to have a loop header. 1945 LLVM_DEBUG(dbgs() << "LAA: Found a loop in " 1946 << TheLoop->getHeader()->getParent()->getName() << ": " 1947 << TheLoop->getHeader()->getName() << '\n'); 1948 1949 // We can only analyze innermost loops. 1950 if (!TheLoop->isInnermost()) { 1951 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1952 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1953 return false; 1954 } 1955 1956 // We must have a single backedge. 1957 if (TheLoop->getNumBackEdges() != 1) { 1958 LLVM_DEBUG( 1959 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1960 recordAnalysis("CFGNotUnderstood") 1961 << "loop control flow is not understood by analyzer"; 1962 return false; 1963 } 1964 1965 // ScalarEvolution needs to be able to find the exit count. 1966 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 1967 if (isa<SCEVCouldNotCompute>(ExitCount)) { 1968 recordAnalysis("CantComputeNumberOfIterations") 1969 << "could not determine number of loop iterations"; 1970 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1971 return false; 1972 } 1973 1974 return true; 1975 } 1976 1977 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI, 1978 const TargetLibraryInfo *TLI, 1979 DominatorTree *DT) { 1980 // Holds the Load and Store instructions. 1981 SmallVector<LoadInst *, 16> Loads; 1982 SmallVector<StoreInst *, 16> Stores; 1983 1984 // Holds all the different accesses in the loop. 1985 unsigned NumReads = 0; 1986 unsigned NumReadWrites = 0; 1987 1988 bool HasComplexMemInst = false; 1989 1990 // A runtime check is only legal to insert if there are no convergent calls. 1991 HasConvergentOp = false; 1992 1993 PtrRtChecking->Pointers.clear(); 1994 PtrRtChecking->Need = false; 1995 1996 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1997 1998 const bool EnableMemAccessVersioningOfLoop = 1999 EnableMemAccessVersioning && 2000 !TheLoop->getHeader()->getParent()->hasOptSize(); 2001 2002 // For each block. 2003 for (BasicBlock *BB : TheLoop->blocks()) { 2004 // Scan the BB and collect legal loads and stores. Also detect any 2005 // convergent instructions. 2006 for (Instruction &I : *BB) { 2007 if (auto *Call = dyn_cast<CallBase>(&I)) { 2008 if (Call->isConvergent()) 2009 HasConvergentOp = true; 2010 } 2011 2012 // With both a non-vectorizable memory instruction and a convergent 2013 // operation, found in this loop, no reason to continue the search. 2014 if (HasComplexMemInst && HasConvergentOp) { 2015 CanVecMem = false; 2016 return; 2017 } 2018 2019 // Avoid hitting recordAnalysis multiple times. 2020 if (HasComplexMemInst) 2021 continue; 2022 2023 // If this is a load, save it. If this instruction can read from memory 2024 // but is not a load, then we quit. Notice that we don't handle function 2025 // calls that read or write. 2026 if (I.mayReadFromMemory()) { 2027 // Many math library functions read the rounding mode. We will only 2028 // vectorize a loop if it contains known function calls that don't set 2029 // the flag. Therefore, it is safe to ignore this read from memory. 2030 auto *Call = dyn_cast<CallInst>(&I); 2031 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 2032 continue; 2033 2034 // If the function has an explicit vectorized counterpart, we can safely 2035 // assume that it can be vectorized. 2036 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 2037 !VFDatabase::getMappings(*Call).empty()) 2038 continue; 2039 2040 auto *Ld = dyn_cast<LoadInst>(&I); 2041 if (!Ld) { 2042 recordAnalysis("CantVectorizeInstruction", Ld) 2043 << "instruction cannot be vectorized"; 2044 HasComplexMemInst = true; 2045 continue; 2046 } 2047 if (!Ld->isSimple() && !IsAnnotatedParallel) { 2048 recordAnalysis("NonSimpleLoad", Ld) 2049 << "read with atomic ordering or volatile read"; 2050 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 2051 HasComplexMemInst = true; 2052 continue; 2053 } 2054 NumLoads++; 2055 Loads.push_back(Ld); 2056 DepChecker->addAccess(Ld); 2057 if (EnableMemAccessVersioningOfLoop) 2058 collectStridedAccess(Ld); 2059 continue; 2060 } 2061 2062 // Save 'store' instructions. Abort if other instructions write to memory. 2063 if (I.mayWriteToMemory()) { 2064 auto *St = dyn_cast<StoreInst>(&I); 2065 if (!St) { 2066 recordAnalysis("CantVectorizeInstruction", St) 2067 << "instruction cannot be vectorized"; 2068 HasComplexMemInst = true; 2069 continue; 2070 } 2071 if (!St->isSimple() && !IsAnnotatedParallel) { 2072 recordAnalysis("NonSimpleStore", St) 2073 << "write with atomic ordering or volatile write"; 2074 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 2075 HasComplexMemInst = true; 2076 continue; 2077 } 2078 NumStores++; 2079 Stores.push_back(St); 2080 DepChecker->addAccess(St); 2081 if (EnableMemAccessVersioningOfLoop) 2082 collectStridedAccess(St); 2083 } 2084 } // Next instr. 2085 } // Next block. 2086 2087 if (HasComplexMemInst) { 2088 CanVecMem = false; 2089 return; 2090 } 2091 2092 // Now we have two lists that hold the loads and the stores. 2093 // Next, we find the pointers that they use. 2094 2095 // Check if we see any stores. If there are no stores, then we don't 2096 // care if the pointers are *restrict*. 2097 if (!Stores.size()) { 2098 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 2099 CanVecMem = true; 2100 return; 2101 } 2102 2103 MemoryDepChecker::DepCandidates DependentAccesses; 2104 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE); 2105 2106 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects 2107 // multiple times on the same object. If the ptr is accessed twice, once 2108 // for read and once for write, it will only appear once (on the write 2109 // list). This is okay, since we are going to check for conflicts between 2110 // writes and between reads and writes, but not between reads and reads. 2111 SmallSet<std::pair<Value *, Type *>, 16> Seen; 2112 2113 // Record uniform store addresses to identify if we have multiple stores 2114 // to the same address. 2115 SmallPtrSet<Value *, 16> UniformStores; 2116 2117 for (StoreInst *ST : Stores) { 2118 Value *Ptr = ST->getPointerOperand(); 2119 2120 if (isUniform(Ptr)) { 2121 // Record store instructions to loop invariant addresses 2122 StoresToInvariantAddresses.push_back(ST); 2123 HasDependenceInvolvingLoopInvariantAddress |= 2124 !UniformStores.insert(Ptr).second; 2125 } 2126 2127 // If we did *not* see this pointer before, insert it to the read-write 2128 // list. At this phase it is only a 'write' list. 2129 Type *AccessTy = getLoadStoreType(ST); 2130 if (Seen.insert({Ptr, AccessTy}).second) { 2131 ++NumReadWrites; 2132 2133 MemoryLocation Loc = MemoryLocation::get(ST); 2134 // The TBAA metadata could have a control dependency on the predication 2135 // condition, so we cannot rely on it when determining whether or not we 2136 // need runtime pointer checks. 2137 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 2138 Loc.AATags.TBAA = nullptr; 2139 2140 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2141 [&Accesses, AccessTy, Loc](Value *Ptr) { 2142 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2143 Accesses.addStore(NewLoc, AccessTy); 2144 }); 2145 } 2146 } 2147 2148 if (IsAnnotatedParallel) { 2149 LLVM_DEBUG( 2150 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 2151 << "checks.\n"); 2152 CanVecMem = true; 2153 return; 2154 } 2155 2156 for (LoadInst *LD : Loads) { 2157 Value *Ptr = LD->getPointerOperand(); 2158 // If we did *not* see this pointer before, insert it to the 2159 // read list. If we *did* see it before, then it is already in 2160 // the read-write list. This allows us to vectorize expressions 2161 // such as A[i] += x; Because the address of A[i] is a read-write 2162 // pointer. This only works if the index of A[i] is consecutive. 2163 // If the address of i is unknown (for example A[B[i]]) then we may 2164 // read a few words, modify, and write a few words, and some of the 2165 // words may be written to the same address. 2166 bool IsReadOnlyPtr = false; 2167 Type *AccessTy = getLoadStoreType(LD); 2168 if (Seen.insert({Ptr, AccessTy}).second || 2169 !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides)) { 2170 ++NumReads; 2171 IsReadOnlyPtr = true; 2172 } 2173 2174 // See if there is an unsafe dependency between a load to a uniform address and 2175 // store to the same uniform address. 2176 if (UniformStores.count(Ptr)) { 2177 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 2178 "load and uniform store to the same address!\n"); 2179 HasDependenceInvolvingLoopInvariantAddress = true; 2180 } 2181 2182 MemoryLocation Loc = MemoryLocation::get(LD); 2183 // The TBAA metadata could have a control dependency on the predication 2184 // condition, so we cannot rely on it when determining whether or not we 2185 // need runtime pointer checks. 2186 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 2187 Loc.AATags.TBAA = nullptr; 2188 2189 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2190 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) { 2191 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2192 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr); 2193 }); 2194 } 2195 2196 // If we write (or read-write) to a single destination and there are no 2197 // other reads in this loop then is it safe to vectorize. 2198 if (NumReadWrites == 1 && NumReads == 0) { 2199 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2200 CanVecMem = true; 2201 return; 2202 } 2203 2204 // Build dependence sets and check whether we need a runtime pointer bounds 2205 // check. 2206 Accesses.buildDependenceSets(); 2207 2208 // Find pointers with computable bounds. We are going to use this information 2209 // to place a runtime bound check. 2210 Value *UncomputablePtr = nullptr; 2211 bool CanDoRTIfNeeded = 2212 Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop, 2213 SymbolicStrides, UncomputablePtr, false); 2214 if (!CanDoRTIfNeeded) { 2215 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2216 recordAnalysis("CantIdentifyArrayBounds", I) 2217 << "cannot identify array bounds"; 2218 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2219 << "the array bounds.\n"); 2220 CanVecMem = false; 2221 return; 2222 } 2223 2224 LLVM_DEBUG( 2225 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2226 2227 CanVecMem = true; 2228 if (Accesses.isDependencyCheckNeeded()) { 2229 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2230 CanVecMem = DepChecker->areDepsSafe( 2231 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 2232 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 2233 2234 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 2235 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2236 2237 // Clear the dependency checks. We assume they are not needed. 2238 Accesses.resetDepChecks(*DepChecker); 2239 2240 PtrRtChecking->reset(); 2241 PtrRtChecking->Need = true; 2242 2243 auto *SE = PSE->getSE(); 2244 UncomputablePtr = nullptr; 2245 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT( 2246 *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true); 2247 2248 // Check that we found the bounds for the pointer. 2249 if (!CanDoRTIfNeeded) { 2250 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2251 recordAnalysis("CantCheckMemDepsAtRunTime", I) 2252 << "cannot check memory dependencies at runtime"; 2253 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2254 CanVecMem = false; 2255 return; 2256 } 2257 2258 CanVecMem = true; 2259 } 2260 } 2261 2262 if (HasConvergentOp) { 2263 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2264 << "cannot add control dependency to convergent operation"; 2265 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2266 "would be needed with a convergent operation\n"); 2267 CanVecMem = false; 2268 return; 2269 } 2270 2271 if (CanVecMem) 2272 LLVM_DEBUG( 2273 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2274 << (PtrRtChecking->Need ? "" : " don't") 2275 << " need runtime memory checks.\n"); 2276 else 2277 emitUnsafeDependenceRemark(); 2278 } 2279 2280 void LoopAccessInfo::emitUnsafeDependenceRemark() { 2281 auto Deps = getDepChecker().getDependences(); 2282 if (!Deps) 2283 return; 2284 auto Found = std::find_if( 2285 Deps->begin(), Deps->end(), [](const MemoryDepChecker::Dependence &D) { 2286 return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) != 2287 MemoryDepChecker::VectorizationSafetyStatus::Safe; 2288 }); 2289 if (Found == Deps->end()) 2290 return; 2291 MemoryDepChecker::Dependence Dep = *Found; 2292 2293 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2294 2295 // Emit remark for first unsafe dependence 2296 OptimizationRemarkAnalysis &R = 2297 recordAnalysis("UnsafeDep", Dep.getDestination(*this)) 2298 << "unsafe dependent memory operations in loop. Use " 2299 "#pragma loop distribute(enable) to allow loop distribution " 2300 "to attempt to isolate the offending operations into a separate " 2301 "loop"; 2302 2303 switch (Dep.Type) { 2304 case MemoryDepChecker::Dependence::NoDep: 2305 case MemoryDepChecker::Dependence::Forward: 2306 case MemoryDepChecker::Dependence::BackwardVectorizable: 2307 llvm_unreachable("Unexpected dependence"); 2308 case MemoryDepChecker::Dependence::Backward: 2309 R << "\nBackward loop carried data dependence."; 2310 break; 2311 case MemoryDepChecker::Dependence::ForwardButPreventsForwarding: 2312 R << "\nForward loop carried data dependence that prevents " 2313 "store-to-load forwarding."; 2314 break; 2315 case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding: 2316 R << "\nBackward loop carried data dependence that prevents " 2317 "store-to-load forwarding."; 2318 break; 2319 case MemoryDepChecker::Dependence::Unknown: 2320 R << "\nUnknown data dependence."; 2321 break; 2322 } 2323 2324 if (Instruction *I = Dep.getSource(*this)) { 2325 DebugLoc SourceLoc = I->getDebugLoc(); 2326 if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I))) 2327 SourceLoc = DD->getDebugLoc(); 2328 if (SourceLoc) 2329 R << " Memory location is the same as accessed at " 2330 << ore::NV("Location", SourceLoc); 2331 } 2332 } 2333 2334 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2335 DominatorTree *DT) { 2336 assert(TheLoop->contains(BB) && "Unknown block used"); 2337 2338 // Blocks that do not dominate the latch need predication. 2339 BasicBlock* Latch = TheLoop->getLoopLatch(); 2340 return !DT->dominates(BB, Latch); 2341 } 2342 2343 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2344 Instruction *I) { 2345 assert(!Report && "Multiple reports generated"); 2346 2347 Value *CodeRegion = TheLoop->getHeader(); 2348 DebugLoc DL = TheLoop->getStartLoc(); 2349 2350 if (I) { 2351 CodeRegion = I->getParent(); 2352 // If there is no debug location attached to the instruction, revert back to 2353 // using the loop's. 2354 if (I->getDebugLoc()) 2355 DL = I->getDebugLoc(); 2356 } 2357 2358 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2359 CodeRegion); 2360 return *Report; 2361 } 2362 2363 bool LoopAccessInfo::isUniform(Value *V) const { 2364 auto *SE = PSE->getSE(); 2365 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 2366 // never considered uniform. 2367 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2368 // trivially loop-invariant FP values to be considered uniform. 2369 if (!SE->isSCEVable(V->getType())) 2370 return false; 2371 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 2372 } 2373 2374 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2375 Value *Ptr = getLoadStorePointerOperand(MemAccess); 2376 if (!Ptr) 2377 return; 2378 2379 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2380 if (!Stride) 2381 return; 2382 2383 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2384 "versioning:"); 2385 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2386 2387 // Avoid adding the "Stride == 1" predicate when we know that 2388 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2389 // or zero iteration loop, as Trip-Count <= Stride == 1. 2390 // 2391 // TODO: We are currently not making a very informed decision on when it is 2392 // beneficial to apply stride versioning. It might make more sense that the 2393 // users of this analysis (such as the vectorizer) will trigger it, based on 2394 // their specific cost considerations; For example, in cases where stride 2395 // versioning does not help resolving memory accesses/dependences, the 2396 // vectorizer should evaluate the cost of the runtime test, and the benefit 2397 // of various possible stride specializations, considering the alternatives 2398 // of using gather/scatters (if available). 2399 2400 const SCEV *StrideExpr = PSE->getSCEV(Stride); 2401 const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2402 2403 // Match the types so we can compare the stride and the BETakenCount. 2404 // The Stride can be positive/negative, so we sign extend Stride; 2405 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount. 2406 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2407 uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType()); 2408 uint64_t BETypeSizeBits = DL.getTypeSizeInBits(BETakenCount->getType()); 2409 const SCEV *CastedStride = StrideExpr; 2410 const SCEV *CastedBECount = BETakenCount; 2411 ScalarEvolution *SE = PSE->getSE(); 2412 if (BETypeSizeBits >= StrideTypeSizeBits) 2413 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2414 else 2415 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2416 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2417 // Since TripCount == BackEdgeTakenCount + 1, checking: 2418 // "Stride >= TripCount" is equivalent to checking: 2419 // Stride - BETakenCount > 0 2420 if (SE->isKnownPositive(StrideMinusBETaken)) { 2421 LLVM_DEBUG( 2422 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2423 "Stride==1 predicate will imply that the loop executes " 2424 "at most once.\n"); 2425 return; 2426 } 2427 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n"); 2428 2429 SymbolicStrides[Ptr] = Stride; 2430 StrideSet.insert(Stride); 2431 } 2432 2433 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2434 const TargetLibraryInfo *TLI, AAResults *AA, 2435 DominatorTree *DT, LoopInfo *LI) 2436 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2437 PtrRtChecking(nullptr), 2438 DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L) { 2439 PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE); 2440 if (canAnalyzeLoop()) { 2441 analyzeLoop(AA, LI, TLI, DT); 2442 } 2443 } 2444 2445 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2446 if (CanVecMem) { 2447 OS.indent(Depth) << "Memory dependences are safe"; 2448 if (MaxSafeDepDistBytes != -1ULL) 2449 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2450 << " bytes"; 2451 if (PtrRtChecking->Need) 2452 OS << " with run-time checks"; 2453 OS << "\n"; 2454 } 2455 2456 if (HasConvergentOp) 2457 OS.indent(Depth) << "Has convergent operation in loop\n"; 2458 2459 if (Report) 2460 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2461 2462 if (auto *Dependences = DepChecker->getDependences()) { 2463 OS.indent(Depth) << "Dependences:\n"; 2464 for (auto &Dep : *Dependences) { 2465 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2466 OS << "\n"; 2467 } 2468 } else 2469 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2470 2471 // List the pair of accesses need run-time checks to prove independence. 2472 PtrRtChecking->print(OS, Depth); 2473 OS << "\n"; 2474 2475 OS.indent(Depth) << "Non vectorizable stores to invariant address were " 2476 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") 2477 << "found in loop.\n"; 2478 2479 OS.indent(Depth) << "SCEV assumptions:\n"; 2480 PSE->getPredicate().print(OS, Depth); 2481 2482 OS << "\n"; 2483 2484 OS.indent(Depth) << "Expressions re-written:\n"; 2485 PSE->print(OS, Depth); 2486 } 2487 2488 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) { 2489 initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry()); 2490 } 2491 2492 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 2493 auto &LAI = LoopAccessInfoMap[L]; 2494 2495 if (!LAI) 2496 LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2497 2498 return *LAI; 2499 } 2500 2501 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2502 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2503 2504 for (Loop *TopLevelLoop : *LI) 2505 for (Loop *L : depth_first(TopLevelLoop)) { 2506 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2507 auto &LAI = LAA.getInfo(L); 2508 LAI.print(OS, 4); 2509 } 2510 } 2511 2512 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2513 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2514 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2515 TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2516 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2517 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2518 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2519 2520 return false; 2521 } 2522 2523 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2524 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); 2525 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2526 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2527 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 2528 2529 AU.setPreservesAll(); 2530 } 2531 2532 char LoopAccessLegacyAnalysis::ID = 0; 2533 static const char laa_name[] = "Loop Access Analysis"; 2534 #define LAA_NAME "loop-accesses" 2535 2536 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2537 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2538 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2539 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2540 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2541 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2542 2543 AnalysisKey LoopAccessAnalysis::Key; 2544 2545 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, 2546 LoopStandardAnalysisResults &AR) { 2547 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); 2548 } 2549 2550 namespace llvm { 2551 2552 Pass *createLAAPass() { 2553 return new LoopAccessLegacyAnalysis(); 2554 } 2555 2556 } // end namespace llvm 2557