1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/EquivalenceClasses.h" 18 #include "llvm/ADT/PointerIntPair.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AliasSetTracker.h" 26 #include "llvm/Analysis/LoopAnalysisManager.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/LoopIterator.h" 29 #include "llvm/Analysis/MemoryLocation.h" 30 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 31 #include "llvm/Analysis/ScalarEvolution.h" 32 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/Analysis/VectorUtils.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GetElementPtrTypeIterator.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/PassManager.h" 50 #include "llvm/IR/PatternMatch.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/IR/ValueHandle.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <cstdint> 62 #include <iterator> 63 #include <utility> 64 #include <variant> 65 #include <vector> 66 67 using namespace llvm; 68 using namespace llvm::PatternMatch; 69 70 #define DEBUG_TYPE "loop-accesses" 71 72 static cl::opt<unsigned, true> 73 VectorizationFactor("force-vector-width", cl::Hidden, 74 cl::desc("Sets the SIMD width. Zero is autoselect."), 75 cl::location(VectorizerParams::VectorizationFactor)); 76 unsigned VectorizerParams::VectorizationFactor; 77 78 static cl::opt<unsigned, true> 79 VectorizationInterleave("force-vector-interleave", cl::Hidden, 80 cl::desc("Sets the vectorization interleave count. " 81 "Zero is autoselect."), 82 cl::location( 83 VectorizerParams::VectorizationInterleave)); 84 unsigned VectorizerParams::VectorizationInterleave; 85 86 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 87 "runtime-memory-check-threshold", cl::Hidden, 88 cl::desc("When performing memory disambiguation checks at runtime do not " 89 "generate more than this number of comparisons (default = 8)."), 90 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 91 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 92 93 /// The maximum iterations used to merge memory checks 94 static cl::opt<unsigned> MemoryCheckMergeThreshold( 95 "memory-check-merge-threshold", cl::Hidden, 96 cl::desc("Maximum number of comparisons done when trying to merge " 97 "runtime memory checks. (default = 100)"), 98 cl::init(100)); 99 100 /// Maximum SIMD width. 101 const unsigned VectorizerParams::MaxVectorWidth = 64; 102 103 /// We collect dependences up to this threshold. 104 static cl::opt<unsigned> 105 MaxDependences("max-dependences", cl::Hidden, 106 cl::desc("Maximum number of dependences collected by " 107 "loop-access analysis (default = 100)"), 108 cl::init(100)); 109 110 /// This enables versioning on the strides of symbolically striding memory 111 /// accesses in code like the following. 112 /// for (i = 0; i < N; ++i) 113 /// A[i * Stride1] += B[i * Stride2] ... 114 /// 115 /// Will be roughly translated to 116 /// if (Stride1 == 1 && Stride2 == 1) { 117 /// for (i = 0; i < N; i+=4) 118 /// A[i:i+3] += ... 119 /// } else 120 /// ... 121 static cl::opt<bool> EnableMemAccessVersioning( 122 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 123 cl::desc("Enable symbolic stride memory access versioning")); 124 125 /// Enable store-to-load forwarding conflict detection. This option can 126 /// be disabled for correctness testing. 127 static cl::opt<bool> EnableForwardingConflictDetection( 128 "store-to-load-forwarding-conflict-detection", cl::Hidden, 129 cl::desc("Enable conflict detection in loop-access analysis"), 130 cl::init(true)); 131 132 static cl::opt<unsigned> MaxForkedSCEVDepth( 133 "max-forked-scev-depth", cl::Hidden, 134 cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"), 135 cl::init(5)); 136 137 static cl::opt<bool> SpeculateUnitStride( 138 "laa-speculate-unit-stride", cl::Hidden, 139 cl::desc("Speculate that non-constant strides are unit in LAA"), 140 cl::init(true)); 141 142 static cl::opt<bool, true> HoistRuntimeChecks( 143 "hoist-runtime-checks", cl::Hidden, 144 cl::desc( 145 "Hoist inner loop runtime memory checks to outer loop if possible"), 146 cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true)); 147 bool VectorizerParams::HoistRuntimeChecks; 148 149 bool VectorizerParams::isInterleaveForced() { 150 return ::VectorizationInterleave.getNumOccurrences() > 0; 151 } 152 153 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 154 const DenseMap<Value *, const SCEV *> &PtrToStride, 155 Value *Ptr) { 156 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 157 158 // If there is an entry in the map return the SCEV of the pointer with the 159 // symbolic stride replaced by one. 160 DenseMap<Value *, const SCEV *>::const_iterator SI = PtrToStride.find(Ptr); 161 if (SI == PtrToStride.end()) 162 // For a non-symbolic stride, just return the original expression. 163 return OrigSCEV; 164 165 const SCEV *StrideSCEV = SI->second; 166 // Note: This assert is both overly strong and overly weak. The actual 167 // invariant here is that StrideSCEV should be loop invariant. The only 168 // such invariant strides we happen to speculate right now are unknowns 169 // and thus this is a reasonable proxy of the actual invariant. 170 assert(isa<SCEVUnknown>(StrideSCEV) && "shouldn't be in map"); 171 172 ScalarEvolution *SE = PSE.getSE(); 173 const auto *CT = SE->getOne(StrideSCEV->getType()); 174 PSE.addPredicate(*SE->getEqualPredicate(StrideSCEV, CT)); 175 auto *Expr = PSE.getSCEV(Ptr); 176 177 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 178 << " by: " << *Expr << "\n"); 179 return Expr; 180 } 181 182 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 183 unsigned Index, RuntimePointerChecking &RtCheck) 184 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start), 185 AddressSpace(RtCheck.Pointers[Index] 186 .PointerValue->getType() 187 ->getPointerAddressSpace()), 188 NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) { 189 Members.push_back(Index); 190 } 191 192 /// Calculate Start and End points of memory access. 193 /// Let's assume A is the first access and B is a memory access on N-th loop 194 /// iteration. Then B is calculated as: 195 /// B = A + Step*N . 196 /// Step value may be positive or negative. 197 /// N is a calculated back-edge taken count: 198 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 199 /// Start and End points are calculated in the following way: 200 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 201 /// where SizeOfElt is the size of single memory access in bytes. 202 /// 203 /// There is no conflict when the intervals are disjoint: 204 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 205 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, 206 Type *AccessTy, bool WritePtr, 207 unsigned DepSetId, unsigned ASId, 208 PredicatedScalarEvolution &PSE, 209 bool NeedsFreeze) { 210 ScalarEvolution *SE = PSE.getSE(); 211 212 const SCEV *ScStart; 213 const SCEV *ScEnd; 214 215 if (SE->isLoopInvariant(PtrExpr, Lp)) { 216 ScStart = ScEnd = PtrExpr; 217 } else { 218 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr); 219 assert(AR && "Invalid addrec expression"); 220 const SCEV *Ex = PSE.getBackedgeTakenCount(); 221 222 ScStart = AR->getStart(); 223 ScEnd = AR->evaluateAtIteration(Ex, *SE); 224 const SCEV *Step = AR->getStepRecurrence(*SE); 225 226 // For expressions with negative step, the upper bound is ScStart and the 227 // lower bound is ScEnd. 228 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 229 if (CStep->getValue()->isNegative()) 230 std::swap(ScStart, ScEnd); 231 } else { 232 // Fallback case: the step is not constant, but we can still 233 // get the upper and lower bounds of the interval by using min/max 234 // expressions. 235 ScStart = SE->getUMinExpr(ScStart, ScEnd); 236 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 237 } 238 } 239 assert(SE->isLoopInvariant(ScStart, Lp) && "ScStart needs to be invariant"); 240 assert(SE->isLoopInvariant(ScEnd, Lp)&& "ScEnd needs to be invariant"); 241 242 // Add the size of the pointed element to ScEnd. 243 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 244 Type *IdxTy = DL.getIndexType(Ptr->getType()); 245 const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy); 246 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 247 248 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr, 249 NeedsFreeze); 250 } 251 252 void RuntimePointerChecking::tryToCreateDiffCheck( 253 const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) { 254 if (!CanUseDiffCheck) 255 return; 256 257 // If either group contains multiple different pointers, bail out. 258 // TODO: Support multiple pointers by using the minimum or maximum pointer, 259 // depending on src & sink. 260 if (CGI.Members.size() != 1 || CGJ.Members.size() != 1) { 261 CanUseDiffCheck = false; 262 return; 263 } 264 265 PointerInfo *Src = &Pointers[CGI.Members[0]]; 266 PointerInfo *Sink = &Pointers[CGJ.Members[0]]; 267 268 // If either pointer is read and written, multiple checks may be needed. Bail 269 // out. 270 if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() || 271 !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty()) { 272 CanUseDiffCheck = false; 273 return; 274 } 275 276 ArrayRef<unsigned> AccSrc = 277 DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr); 278 ArrayRef<unsigned> AccSink = 279 DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr); 280 // If either pointer is accessed multiple times, there may not be a clear 281 // src/sink relation. Bail out for now. 282 if (AccSrc.size() != 1 || AccSink.size() != 1) { 283 CanUseDiffCheck = false; 284 return; 285 } 286 // If the sink is accessed before src, swap src/sink. 287 if (AccSink[0] < AccSrc[0]) 288 std::swap(Src, Sink); 289 290 auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr); 291 auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr); 292 if (!SrcAR || !SinkAR || SrcAR->getLoop() != DC.getInnermostLoop() || 293 SinkAR->getLoop() != DC.getInnermostLoop()) { 294 CanUseDiffCheck = false; 295 return; 296 } 297 298 SmallVector<Instruction *, 4> SrcInsts = 299 DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr); 300 SmallVector<Instruction *, 4> SinkInsts = 301 DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr); 302 Type *SrcTy = getLoadStoreType(SrcInsts[0]); 303 Type *DstTy = getLoadStoreType(SinkInsts[0]); 304 if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy)) { 305 CanUseDiffCheck = false; 306 return; 307 } 308 const DataLayout &DL = 309 SinkAR->getLoop()->getHeader()->getModule()->getDataLayout(); 310 unsigned AllocSize = 311 std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy)); 312 313 // Only matching constant steps matching the AllocSize are supported at the 314 // moment. This simplifies the difference computation. Can be extended in the 315 // future. 316 auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE)); 317 if (!Step || Step != SrcAR->getStepRecurrence(*SE) || 318 Step->getAPInt().abs() != AllocSize) { 319 CanUseDiffCheck = false; 320 return; 321 } 322 323 IntegerType *IntTy = 324 IntegerType::get(Src->PointerValue->getContext(), 325 DL.getPointerSizeInBits(CGI.AddressSpace)); 326 327 // When counting down, the dependence distance needs to be swapped. 328 if (Step->getValue()->isNegative()) 329 std::swap(SinkAR, SrcAR); 330 331 const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy); 332 const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy); 333 if (isa<SCEVCouldNotCompute>(SinkStartInt) || 334 isa<SCEVCouldNotCompute>(SrcStartInt)) { 335 CanUseDiffCheck = false; 336 return; 337 } 338 339 const Loop *InnerLoop = SrcAR->getLoop(); 340 // If the start values for both Src and Sink also vary according to an outer 341 // loop, then it's probably better to avoid creating diff checks because 342 // they may not be hoisted. We should instead let llvm::addRuntimeChecks 343 // do the expanded full range overlap checks, which can be hoisted. 344 if (HoistRuntimeChecks && InnerLoop->getParentLoop() && 345 isa<SCEVAddRecExpr>(SinkStartInt) && isa<SCEVAddRecExpr>(SrcStartInt)) { 346 auto *SrcStartAR = cast<SCEVAddRecExpr>(SrcStartInt); 347 auto *SinkStartAR = cast<SCEVAddRecExpr>(SinkStartInt); 348 const Loop *StartARLoop = SrcStartAR->getLoop(); 349 if (StartARLoop == SinkStartAR->getLoop() && 350 StartARLoop == InnerLoop->getParentLoop() && 351 // If the diff check would already be loop invariant (due to the 352 // recurrences being the same), then we prefer to keep the diff checks 353 // because they are cheaper. 354 SrcStartAR->getStepRecurrence(*SE) != 355 SinkStartAR->getStepRecurrence(*SE)) { 356 LLVM_DEBUG(dbgs() << "LAA: Not creating diff runtime check, since these " 357 "cannot be hoisted out of the outer loop\n"); 358 CanUseDiffCheck = false; 359 return; 360 } 361 } 362 363 LLVM_DEBUG(dbgs() << "LAA: Creating diff runtime check for:\n" 364 << "SrcStart: " << *SrcStartInt << '\n' 365 << "SinkStartInt: " << *SinkStartInt << '\n'); 366 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize, 367 Src->NeedsFreeze || Sink->NeedsFreeze); 368 } 369 370 SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() { 371 SmallVector<RuntimePointerCheck, 4> Checks; 372 373 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 374 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 375 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 376 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 377 378 if (needsChecking(CGI, CGJ)) { 379 tryToCreateDiffCheck(CGI, CGJ); 380 Checks.push_back(std::make_pair(&CGI, &CGJ)); 381 } 382 } 383 } 384 return Checks; 385 } 386 387 void RuntimePointerChecking::generateChecks( 388 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 389 assert(Checks.empty() && "Checks is not empty"); 390 groupChecks(DepCands, UseDependencies); 391 Checks = generateChecks(); 392 } 393 394 bool RuntimePointerChecking::needsChecking( 395 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 396 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 397 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 398 if (needsChecking(M.Members[I], N.Members[J])) 399 return true; 400 return false; 401 } 402 403 /// Compare \p I and \p J and return the minimum. 404 /// Return nullptr in case we couldn't find an answer. 405 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 406 ScalarEvolution *SE) { 407 const SCEV *Diff = SE->getMinusSCEV(J, I); 408 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 409 410 if (!C) 411 return nullptr; 412 if (C->getValue()->isNegative()) 413 return J; 414 return I; 415 } 416 417 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, 418 RuntimePointerChecking &RtCheck) { 419 return addPointer( 420 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End, 421 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(), 422 RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE); 423 } 424 425 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start, 426 const SCEV *End, unsigned AS, 427 bool NeedsFreeze, 428 ScalarEvolution &SE) { 429 assert(AddressSpace == AS && 430 "all pointers in a checking group must be in the same address space"); 431 432 // Compare the starts and ends with the known minimum and maximum 433 // of this set. We need to know how we compare against the min/max 434 // of the set in order to be able to emit memchecks. 435 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE); 436 if (!Min0) 437 return false; 438 439 const SCEV *Min1 = getMinFromExprs(End, High, &SE); 440 if (!Min1) 441 return false; 442 443 // Update the low bound expression if we've found a new min value. 444 if (Min0 == Start) 445 Low = Start; 446 447 // Update the high bound expression if we've found a new max value. 448 if (Min1 != End) 449 High = End; 450 451 Members.push_back(Index); 452 this->NeedsFreeze |= NeedsFreeze; 453 return true; 454 } 455 456 void RuntimePointerChecking::groupChecks( 457 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 458 // We build the groups from dependency candidates equivalence classes 459 // because: 460 // - We know that pointers in the same equivalence class share 461 // the same underlying object and therefore there is a chance 462 // that we can compare pointers 463 // - We wouldn't be able to merge two pointers for which we need 464 // to emit a memcheck. The classes in DepCands are already 465 // conveniently built such that no two pointers in the same 466 // class need checking against each other. 467 468 // We use the following (greedy) algorithm to construct the groups 469 // For every pointer in the equivalence class: 470 // For each existing group: 471 // - if the difference between this pointer and the min/max bounds 472 // of the group is a constant, then make the pointer part of the 473 // group and update the min/max bounds of that group as required. 474 475 CheckingGroups.clear(); 476 477 // If we need to check two pointers to the same underlying object 478 // with a non-constant difference, we shouldn't perform any pointer 479 // grouping with those pointers. This is because we can easily get 480 // into cases where the resulting check would return false, even when 481 // the accesses are safe. 482 // 483 // The following example shows this: 484 // for (i = 0; i < 1000; ++i) 485 // a[5000 + i * m] = a[i] + a[i + 9000] 486 // 487 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 488 // (0, 10000) which is always false. However, if m is 1, there is no 489 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 490 // us to perform an accurate check in this case. 491 // 492 // The above case requires that we have an UnknownDependence between 493 // accesses to the same underlying object. This cannot happen unless 494 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 495 // is also false. In this case we will use the fallback path and create 496 // separate checking groups for all pointers. 497 498 // If we don't have the dependency partitions, construct a new 499 // checking pointer group for each pointer. This is also required 500 // for correctness, because in this case we can have checking between 501 // pointers to the same underlying object. 502 if (!UseDependencies) { 503 for (unsigned I = 0; I < Pointers.size(); ++I) 504 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this)); 505 return; 506 } 507 508 unsigned TotalComparisons = 0; 509 510 DenseMap<Value *, SmallVector<unsigned>> PositionMap; 511 for (unsigned Index = 0; Index < Pointers.size(); ++Index) { 512 auto Iter = PositionMap.insert({Pointers[Index].PointerValue, {}}); 513 Iter.first->second.push_back(Index); 514 } 515 516 // We need to keep track of what pointers we've already seen so we 517 // don't process them twice. 518 SmallSet<unsigned, 2> Seen; 519 520 // Go through all equivalence classes, get the "pointer check groups" 521 // and add them to the overall solution. We use the order in which accesses 522 // appear in 'Pointers' to enforce determinism. 523 for (unsigned I = 0; I < Pointers.size(); ++I) { 524 // We've seen this pointer before, and therefore already processed 525 // its equivalence class. 526 if (Seen.count(I)) 527 continue; 528 529 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 530 Pointers[I].IsWritePtr); 531 532 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 533 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 534 535 // Because DepCands is constructed by visiting accesses in the order in 536 // which they appear in alias sets (which is deterministic) and the 537 // iteration order within an equivalence class member is only dependent on 538 // the order in which unions and insertions are performed on the 539 // equivalence class, the iteration order is deterministic. 540 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 541 MI != ME; ++MI) { 542 auto PointerI = PositionMap.find(MI->getPointer()); 543 assert(PointerI != PositionMap.end() && 544 "pointer in equivalence class not found in PositionMap"); 545 for (unsigned Pointer : PointerI->second) { 546 bool Merged = false; 547 // Mark this pointer as seen. 548 Seen.insert(Pointer); 549 550 // Go through all the existing sets and see if we can find one 551 // which can include this pointer. 552 for (RuntimeCheckingPtrGroup &Group : Groups) { 553 // Don't perform more than a certain amount of comparisons. 554 // This should limit the cost of grouping the pointers to something 555 // reasonable. If we do end up hitting this threshold, the algorithm 556 // will create separate groups for all remaining pointers. 557 if (TotalComparisons > MemoryCheckMergeThreshold) 558 break; 559 560 TotalComparisons++; 561 562 if (Group.addPointer(Pointer, *this)) { 563 Merged = true; 564 break; 565 } 566 } 567 568 if (!Merged) 569 // We couldn't add this pointer to any existing set or the threshold 570 // for the number of comparisons has been reached. Create a new group 571 // to hold the current pointer. 572 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this)); 573 } 574 } 575 576 // We've computed the grouped checks for this partition. 577 // Save the results and continue with the next one. 578 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 579 } 580 } 581 582 bool RuntimePointerChecking::arePointersInSamePartition( 583 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 584 unsigned PtrIdx2) { 585 return (PtrToPartition[PtrIdx1] != -1 && 586 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 587 } 588 589 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 590 const PointerInfo &PointerI = Pointers[I]; 591 const PointerInfo &PointerJ = Pointers[J]; 592 593 // No need to check if two readonly pointers intersect. 594 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 595 return false; 596 597 // Only need to check pointers between two different dependency sets. 598 if (PointerI.DependencySetId == PointerJ.DependencySetId) 599 return false; 600 601 // Only need to check pointers in the same alias set. 602 if (PointerI.AliasSetId != PointerJ.AliasSetId) 603 return false; 604 605 return true; 606 } 607 608 void RuntimePointerChecking::printChecks( 609 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 610 unsigned Depth) const { 611 unsigned N = 0; 612 for (const auto &Check : Checks) { 613 const auto &First = Check.first->Members, &Second = Check.second->Members; 614 615 OS.indent(Depth) << "Check " << N++ << ":\n"; 616 617 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 618 for (unsigned K = 0; K < First.size(); ++K) 619 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 620 621 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 622 for (unsigned K = 0; K < Second.size(); ++K) 623 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 624 } 625 } 626 627 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 628 629 OS.indent(Depth) << "Run-time memory checks:\n"; 630 printChecks(OS, Checks, Depth); 631 632 OS.indent(Depth) << "Grouped accesses:\n"; 633 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 634 const auto &CG = CheckingGroups[I]; 635 636 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 637 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 638 << ")\n"; 639 for (unsigned J = 0; J < CG.Members.size(); ++J) { 640 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 641 << "\n"; 642 } 643 } 644 } 645 646 namespace { 647 648 /// Analyses memory accesses in a loop. 649 /// 650 /// Checks whether run time pointer checks are needed and builds sets for data 651 /// dependence checking. 652 class AccessAnalysis { 653 public: 654 /// Read or write access location. 655 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 656 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 657 658 AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI, 659 MemoryDepChecker::DepCandidates &DA, 660 PredicatedScalarEvolution &PSE) 661 : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE) { 662 // We're analyzing dependences across loop iterations. 663 BAA.enableCrossIterationMode(); 664 } 665 666 /// Register a load and whether it is only read from. 667 void addLoad(MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) { 668 Value *Ptr = const_cast<Value*>(Loc.Ptr); 669 AST.add(Loc.getWithNewSize(LocationSize::beforeOrAfterPointer())); 670 Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy); 671 if (IsReadOnly) 672 ReadOnlyPtr.insert(Ptr); 673 } 674 675 /// Register a store. 676 void addStore(MemoryLocation &Loc, Type *AccessTy) { 677 Value *Ptr = const_cast<Value*>(Loc.Ptr); 678 AST.add(Loc.getWithNewSize(LocationSize::beforeOrAfterPointer())); 679 Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy); 680 } 681 682 /// Check if we can emit a run-time no-alias check for \p Access. 683 /// 684 /// Returns true if we can emit a run-time no alias check for \p Access. 685 /// If we can check this access, this also adds it to a dependence set and 686 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 687 /// we will attempt to use additional run-time checks in order to get 688 /// the bounds of the pointer. 689 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 690 MemAccessInfo Access, Type *AccessTy, 691 const DenseMap<Value *, const SCEV *> &Strides, 692 DenseMap<Value *, unsigned> &DepSetId, 693 Loop *TheLoop, unsigned &RunningDepId, 694 unsigned ASId, bool ShouldCheckStride, bool Assume); 695 696 /// Check whether we can check the pointers at runtime for 697 /// non-intersection. 698 /// 699 /// Returns true if we need no check or if we do and we can generate them 700 /// (i.e. the pointers have computable bounds). 701 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 702 Loop *TheLoop, const DenseMap<Value *, const SCEV *> &Strides, 703 Value *&UncomputablePtr, bool ShouldCheckWrap = false); 704 705 /// Goes over all memory accesses, checks whether a RT check is needed 706 /// and builds sets of dependent accesses. 707 void buildDependenceSets() { 708 processMemAccesses(); 709 } 710 711 /// Initial processing of memory accesses determined that we need to 712 /// perform dependency checking. 713 /// 714 /// Note that this can later be cleared if we retry memcheck analysis without 715 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 716 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 717 718 /// We decided that no dependence analysis would be used. Reset the state. 719 void resetDepChecks(MemoryDepChecker &DepChecker) { 720 CheckDeps.clear(); 721 DepChecker.clearDependences(); 722 } 723 724 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 725 726 const DenseMap<Value *, SmallVector<const Value *, 16>> & 727 getUnderlyingObjects() { 728 return UnderlyingObjects; 729 } 730 731 private: 732 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap; 733 734 /// Go over all memory access and check whether runtime pointer checks 735 /// are needed and build sets of dependency check candidates. 736 void processMemAccesses(); 737 738 /// Map of all accesses. Values are the types used to access memory pointed to 739 /// by the pointer. 740 PtrAccessMap Accesses; 741 742 /// The loop being checked. 743 const Loop *TheLoop; 744 745 /// List of accesses that need a further dependence check. 746 MemAccessInfoList CheckDeps; 747 748 /// Set of pointers that are read only. 749 SmallPtrSet<Value*, 16> ReadOnlyPtr; 750 751 /// Batched alias analysis results. 752 BatchAAResults BAA; 753 754 /// An alias set tracker to partition the access set by underlying object and 755 //intrinsic property (such as TBAA metadata). 756 AliasSetTracker AST; 757 758 LoopInfo *LI; 759 760 /// Sets of potentially dependent accesses - members of one set share an 761 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 762 /// dependence check. 763 MemoryDepChecker::DepCandidates &DepCands; 764 765 /// Initial processing of memory accesses determined that we may need 766 /// to add memchecks. Perform the analysis to determine the necessary checks. 767 /// 768 /// Note that, this is different from isDependencyCheckNeeded. When we retry 769 /// memcheck analysis without dependency checking 770 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 771 /// cleared while this remains set if we have potentially dependent accesses. 772 bool IsRTCheckAnalysisNeeded = false; 773 774 /// The SCEV predicate containing all the SCEV-related assumptions. 775 PredicatedScalarEvolution &PSE; 776 777 DenseMap<Value *, SmallVector<const Value *, 16>> UnderlyingObjects; 778 }; 779 780 } // end anonymous namespace 781 782 /// Check whether a pointer can participate in a runtime bounds check. 783 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 784 /// by adding run-time checks (overflow checks) if necessary. 785 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr, 786 const SCEV *PtrScev, Loop *L, bool Assume) { 787 // The bounds for loop-invariant pointer is trivial. 788 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 789 return true; 790 791 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 792 793 if (!AR && Assume) 794 AR = PSE.getAsAddRec(Ptr); 795 796 if (!AR) 797 return false; 798 799 return AR->isAffine(); 800 } 801 802 /// Check whether a pointer address cannot wrap. 803 static bool isNoWrap(PredicatedScalarEvolution &PSE, 804 const DenseMap<Value *, const SCEV *> &Strides, Value *Ptr, Type *AccessTy, 805 Loop *L) { 806 const SCEV *PtrScev = PSE.getSCEV(Ptr); 807 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 808 return true; 809 810 int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides).value_or(0); 811 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 812 return true; 813 814 return false; 815 } 816 817 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, 818 function_ref<void(Value *)> AddPointer) { 819 SmallPtrSet<Value *, 8> Visited; 820 SmallVector<Value *> WorkList; 821 WorkList.push_back(StartPtr); 822 823 while (!WorkList.empty()) { 824 Value *Ptr = WorkList.pop_back_val(); 825 if (!Visited.insert(Ptr).second) 826 continue; 827 auto *PN = dyn_cast<PHINode>(Ptr); 828 // SCEV does not look through non-header PHIs inside the loop. Such phis 829 // can be analyzed by adding separate accesses for each incoming pointer 830 // value. 831 if (PN && InnermostLoop.contains(PN->getParent()) && 832 PN->getParent() != InnermostLoop.getHeader()) { 833 for (const Use &Inc : PN->incoming_values()) 834 WorkList.push_back(Inc); 835 } else 836 AddPointer(Ptr); 837 } 838 } 839 840 // Walk back through the IR for a pointer, looking for a select like the 841 // following: 842 // 843 // %offset = select i1 %cmp, i64 %a, i64 %b 844 // %addr = getelementptr double, double* %base, i64 %offset 845 // %ld = load double, double* %addr, align 8 846 // 847 // We won't be able to form a single SCEVAddRecExpr from this since the 848 // address for each loop iteration depends on %cmp. We could potentially 849 // produce multiple valid SCEVAddRecExprs, though, and check all of them for 850 // memory safety/aliasing if needed. 851 // 852 // If we encounter some IR we don't yet handle, or something obviously fine 853 // like a constant, then we just add the SCEV for that term to the list passed 854 // in by the caller. If we have a node that may potentially yield a valid 855 // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms 856 // ourselves before adding to the list. 857 static void findForkedSCEVs( 858 ScalarEvolution *SE, const Loop *L, Value *Ptr, 859 SmallVectorImpl<PointerIntPair<const SCEV *, 1, bool>> &ScevList, 860 unsigned Depth) { 861 // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or 862 // we've exceeded our limit on recursion, just return whatever we have 863 // regardless of whether it can be used for a forked pointer or not, along 864 // with an indication of whether it might be a poison or undef value. 865 const SCEV *Scev = SE->getSCEV(Ptr); 866 if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) || 867 !isa<Instruction>(Ptr) || Depth == 0) { 868 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 869 return; 870 } 871 872 Depth--; 873 874 auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) { 875 return get<1>(S); 876 }; 877 878 auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) { 879 switch (Opcode) { 880 case Instruction::Add: 881 return SE->getAddExpr(L, R); 882 case Instruction::Sub: 883 return SE->getMinusSCEV(L, R); 884 default: 885 llvm_unreachable("Unexpected binary operator when walking ForkedPtrs"); 886 } 887 }; 888 889 Instruction *I = cast<Instruction>(Ptr); 890 unsigned Opcode = I->getOpcode(); 891 switch (Opcode) { 892 case Instruction::GetElementPtr: { 893 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 894 Type *SourceTy = GEP->getSourceElementType(); 895 // We only handle base + single offset GEPs here for now. 896 // Not dealing with preexisting gathers yet, so no vectors. 897 if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) { 898 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP)); 899 break; 900 } 901 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> BaseScevs; 902 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> OffsetScevs; 903 findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth); 904 findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth); 905 906 // See if we need to freeze our fork... 907 bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) || 908 any_of(OffsetScevs, UndefPoisonCheck); 909 910 // Check that we only have a single fork, on either the base or the offset. 911 // Copy the SCEV across for the one without a fork in order to generate 912 // the full SCEV for both sides of the GEP. 913 if (OffsetScevs.size() == 2 && BaseScevs.size() == 1) 914 BaseScevs.push_back(BaseScevs[0]); 915 else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1) 916 OffsetScevs.push_back(OffsetScevs[0]); 917 else { 918 ScevList.emplace_back(Scev, NeedsFreeze); 919 break; 920 } 921 922 // Find the pointer type we need to extend to. 923 Type *IntPtrTy = SE->getEffectiveSCEVType( 924 SE->getSCEV(GEP->getPointerOperand())->getType()); 925 926 // Find the size of the type being pointed to. We only have a single 927 // index term (guarded above) so we don't need to index into arrays or 928 // structures, just get the size of the scalar value. 929 const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy); 930 931 // Scale up the offsets by the size of the type, then add to the bases. 932 const SCEV *Scaled1 = SE->getMulExpr( 933 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[0]), IntPtrTy)); 934 const SCEV *Scaled2 = SE->getMulExpr( 935 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[1]), IntPtrTy)); 936 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[0]), Scaled1), 937 NeedsFreeze); 938 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[1]), Scaled2), 939 NeedsFreeze); 940 break; 941 } 942 case Instruction::Select: { 943 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs; 944 // A select means we've found a forked pointer, but we currently only 945 // support a single select per pointer so if there's another behind this 946 // then we just bail out and return the generic SCEV. 947 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth); 948 findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth); 949 if (ChildScevs.size() == 2) { 950 ScevList.push_back(ChildScevs[0]); 951 ScevList.push_back(ChildScevs[1]); 952 } else 953 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 954 break; 955 } 956 case Instruction::PHI: { 957 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs; 958 // A phi means we've found a forked pointer, but we currently only 959 // support a single phi per pointer so if there's another behind this 960 // then we just bail out and return the generic SCEV. 961 if (I->getNumOperands() == 2) { 962 findForkedSCEVs(SE, L, I->getOperand(0), ChildScevs, Depth); 963 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth); 964 } 965 if (ChildScevs.size() == 2) { 966 ScevList.push_back(ChildScevs[0]); 967 ScevList.push_back(ChildScevs[1]); 968 } else 969 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 970 break; 971 } 972 case Instruction::Add: 973 case Instruction::Sub: { 974 SmallVector<PointerIntPair<const SCEV *, 1, bool>> LScevs; 975 SmallVector<PointerIntPair<const SCEV *, 1, bool>> RScevs; 976 findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth); 977 findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth); 978 979 // See if we need to freeze our fork... 980 bool NeedsFreeze = 981 any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck); 982 983 // Check that we only have a single fork, on either the left or right side. 984 // Copy the SCEV across for the one without a fork in order to generate 985 // the full SCEV for both sides of the BinOp. 986 if (LScevs.size() == 2 && RScevs.size() == 1) 987 RScevs.push_back(RScevs[0]); 988 else if (RScevs.size() == 2 && LScevs.size() == 1) 989 LScevs.push_back(LScevs[0]); 990 else { 991 ScevList.emplace_back(Scev, NeedsFreeze); 992 break; 993 } 994 995 ScevList.emplace_back( 996 GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])), 997 NeedsFreeze); 998 ScevList.emplace_back( 999 GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])), 1000 NeedsFreeze); 1001 break; 1002 } 1003 default: 1004 // Just return the current SCEV if we haven't handled the instruction yet. 1005 LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n"); 1006 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 1007 break; 1008 } 1009 } 1010 1011 static SmallVector<PointerIntPair<const SCEV *, 1, bool>> 1012 findForkedPointer(PredicatedScalarEvolution &PSE, 1013 const DenseMap<Value *, const SCEV *> &StridesMap, Value *Ptr, 1014 const Loop *L) { 1015 ScalarEvolution *SE = PSE.getSE(); 1016 assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!"); 1017 SmallVector<PointerIntPair<const SCEV *, 1, bool>> Scevs; 1018 findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth); 1019 1020 // For now, we will only accept a forked pointer with two possible SCEVs 1021 // that are either SCEVAddRecExprs or loop invariant. 1022 if (Scevs.size() == 2 && 1023 (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) || 1024 SE->isLoopInvariant(get<0>(Scevs[0]), L)) && 1025 (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) || 1026 SE->isLoopInvariant(get<0>(Scevs[1]), L))) { 1027 LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n"); 1028 LLVM_DEBUG(dbgs() << "\t(1) " << *get<0>(Scevs[0]) << "\n"); 1029 LLVM_DEBUG(dbgs() << "\t(2) " << *get<0>(Scevs[1]) << "\n"); 1030 return Scevs; 1031 } 1032 1033 return {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}}; 1034 } 1035 1036 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 1037 MemAccessInfo Access, Type *AccessTy, 1038 const DenseMap<Value *, const SCEV *> &StridesMap, 1039 DenseMap<Value *, unsigned> &DepSetId, 1040 Loop *TheLoop, unsigned &RunningDepId, 1041 unsigned ASId, bool ShouldCheckWrap, 1042 bool Assume) { 1043 Value *Ptr = Access.getPointer(); 1044 1045 SmallVector<PointerIntPair<const SCEV *, 1, bool>> TranslatedPtrs = 1046 findForkedPointer(PSE, StridesMap, Ptr, TheLoop); 1047 1048 for (auto &P : TranslatedPtrs) { 1049 const SCEV *PtrExpr = get<0>(P); 1050 if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume)) 1051 return false; 1052 1053 // When we run after a failing dependency check we have to make sure 1054 // we don't have wrapping pointers. 1055 if (ShouldCheckWrap) { 1056 // Skip wrap checking when translating pointers. 1057 if (TranslatedPtrs.size() > 1) 1058 return false; 1059 1060 if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) { 1061 auto *Expr = PSE.getSCEV(Ptr); 1062 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 1063 return false; 1064 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1065 } 1066 } 1067 // If there's only one option for Ptr, look it up after bounds and wrap 1068 // checking, because assumptions might have been added to PSE. 1069 if (TranslatedPtrs.size() == 1) 1070 TranslatedPtrs[0] = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), 1071 false}; 1072 } 1073 1074 for (auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) { 1075 // The id of the dependence set. 1076 unsigned DepId; 1077 1078 if (isDependencyCheckNeeded()) { 1079 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 1080 unsigned &LeaderId = DepSetId[Leader]; 1081 if (!LeaderId) 1082 LeaderId = RunningDepId++; 1083 DepId = LeaderId; 1084 } else 1085 // Each access has its own dependence set. 1086 DepId = RunningDepId++; 1087 1088 bool IsWrite = Access.getInt(); 1089 RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE, 1090 NeedsFreeze); 1091 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 1092 } 1093 1094 return true; 1095 } 1096 1097 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 1098 ScalarEvolution *SE, Loop *TheLoop, 1099 const DenseMap<Value *, const SCEV *> &StridesMap, 1100 Value *&UncomputablePtr, bool ShouldCheckWrap) { 1101 // Find pointers with computable bounds. We are going to use this information 1102 // to place a runtime bound check. 1103 bool CanDoRT = true; 1104 1105 bool MayNeedRTCheck = false; 1106 if (!IsRTCheckAnalysisNeeded) return true; 1107 1108 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 1109 1110 // We assign a consecutive id to access from different alias sets. 1111 // Accesses between different groups doesn't need to be checked. 1112 unsigned ASId = 0; 1113 for (auto &AS : AST) { 1114 int NumReadPtrChecks = 0; 1115 int NumWritePtrChecks = 0; 1116 bool CanDoAliasSetRT = true; 1117 ++ASId; 1118 auto ASPointers = AS.getPointers(); 1119 1120 // We assign consecutive id to access from different dependence sets. 1121 // Accesses within the same set don't need a runtime check. 1122 unsigned RunningDepId = 1; 1123 DenseMap<Value *, unsigned> DepSetId; 1124 1125 SmallVector<std::pair<MemAccessInfo, Type *>, 4> Retries; 1126 1127 // First, count how many write and read accesses are in the alias set. Also 1128 // collect MemAccessInfos for later. 1129 SmallVector<MemAccessInfo, 4> AccessInfos; 1130 for (const Value *Ptr_ : ASPointers) { 1131 Value *Ptr = const_cast<Value *>(Ptr_); 1132 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 1133 if (IsWrite) 1134 ++NumWritePtrChecks; 1135 else 1136 ++NumReadPtrChecks; 1137 AccessInfos.emplace_back(Ptr, IsWrite); 1138 } 1139 1140 // We do not need runtime checks for this alias set, if there are no writes 1141 // or a single write and no reads. 1142 if (NumWritePtrChecks == 0 || 1143 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) { 1144 assert((ASPointers.size() <= 1 || 1145 all_of(ASPointers, 1146 [this](const Value *Ptr) { 1147 MemAccessInfo AccessWrite(const_cast<Value *>(Ptr), 1148 true); 1149 return DepCands.findValue(AccessWrite) == DepCands.end(); 1150 })) && 1151 "Can only skip updating CanDoRT below, if all entries in AS " 1152 "are reads or there is at most 1 entry"); 1153 continue; 1154 } 1155 1156 for (auto &Access : AccessInfos) { 1157 for (const auto &AccessTy : Accesses[Access]) { 1158 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 1159 DepSetId, TheLoop, RunningDepId, ASId, 1160 ShouldCheckWrap, false)) { 1161 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" 1162 << *Access.getPointer() << '\n'); 1163 Retries.push_back({Access, AccessTy}); 1164 CanDoAliasSetRT = false; 1165 } 1166 } 1167 } 1168 1169 // Note that this function computes CanDoRT and MayNeedRTCheck 1170 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that 1171 // we have a pointer for which we couldn't find the bounds but we don't 1172 // actually need to emit any checks so it does not matter. 1173 // 1174 // We need runtime checks for this alias set, if there are at least 2 1175 // dependence sets (in which case RunningDepId > 2) or if we need to re-try 1176 // any bound checks (because in that case the number of dependence sets is 1177 // incomplete). 1178 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty(); 1179 1180 // We need to perform run-time alias checks, but some pointers had bounds 1181 // that couldn't be checked. 1182 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 1183 // Reset the CanDoSetRt flag and retry all accesses that have failed. 1184 // We know that we need these checks, so we can now be more aggressive 1185 // and add further checks if required (overflow checks). 1186 CanDoAliasSetRT = true; 1187 for (auto Retry : Retries) { 1188 MemAccessInfo Access = Retry.first; 1189 Type *AccessTy = Retry.second; 1190 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 1191 DepSetId, TheLoop, RunningDepId, ASId, 1192 ShouldCheckWrap, /*Assume=*/true)) { 1193 CanDoAliasSetRT = false; 1194 UncomputablePtr = Access.getPointer(); 1195 break; 1196 } 1197 } 1198 } 1199 1200 CanDoRT &= CanDoAliasSetRT; 1201 MayNeedRTCheck |= NeedsAliasSetRTCheck; 1202 ++ASId; 1203 } 1204 1205 // If the pointers that we would use for the bounds comparison have different 1206 // address spaces, assume the values aren't directly comparable, so we can't 1207 // use them for the runtime check. We also have to assume they could 1208 // overlap. In the future there should be metadata for whether address spaces 1209 // are disjoint. 1210 unsigned NumPointers = RtCheck.Pointers.size(); 1211 for (unsigned i = 0; i < NumPointers; ++i) { 1212 for (unsigned j = i + 1; j < NumPointers; ++j) { 1213 // Only need to check pointers between two different dependency sets. 1214 if (RtCheck.Pointers[i].DependencySetId == 1215 RtCheck.Pointers[j].DependencySetId) 1216 continue; 1217 // Only need to check pointers in the same alias set. 1218 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 1219 continue; 1220 1221 Value *PtrI = RtCheck.Pointers[i].PointerValue; 1222 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 1223 1224 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 1225 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 1226 if (ASi != ASj) { 1227 LLVM_DEBUG( 1228 dbgs() << "LAA: Runtime check would require comparison between" 1229 " different address spaces\n"); 1230 return false; 1231 } 1232 } 1233 } 1234 1235 if (MayNeedRTCheck && CanDoRT) 1236 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 1237 1238 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 1239 << " pointer comparisons.\n"); 1240 1241 // If we can do run-time checks, but there are no checks, no runtime checks 1242 // are needed. This can happen when all pointers point to the same underlying 1243 // object for example. 1244 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck; 1245 1246 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT; 1247 if (!CanDoRTIfNeeded) 1248 RtCheck.reset(); 1249 return CanDoRTIfNeeded; 1250 } 1251 1252 void AccessAnalysis::processMemAccesses() { 1253 // We process the set twice: first we process read-write pointers, last we 1254 // process read-only pointers. This allows us to skip dependence tests for 1255 // read-only pointers. 1256 1257 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 1258 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 1259 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 1260 LLVM_DEBUG({ 1261 for (auto A : Accesses) 1262 dbgs() << "\t" << *A.first.getPointer() << " (" 1263 << (A.first.getInt() 1264 ? "write" 1265 : (ReadOnlyPtr.count(A.first.getPointer()) ? "read-only" 1266 : "read")) 1267 << ")\n"; 1268 }); 1269 1270 // The AliasSetTracker has nicely partitioned our pointers by metadata 1271 // compatibility and potential for underlying-object overlap. As a result, we 1272 // only need to check for potential pointer dependencies within each alias 1273 // set. 1274 for (const auto &AS : AST) { 1275 // Note that both the alias-set tracker and the alias sets themselves used 1276 // ordered collections internally and so the iteration order here is 1277 // deterministic. 1278 auto ASPointers = AS.getPointers(); 1279 1280 bool SetHasWrite = false; 1281 1282 // Map of pointers to last access encountered. 1283 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 1284 UnderlyingObjToAccessMap ObjToLastAccess; 1285 1286 // Set of access to check after all writes have been processed. 1287 PtrAccessMap DeferredAccesses; 1288 1289 // Iterate over each alias set twice, once to process read/write pointers, 1290 // and then to process read-only pointers. 1291 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 1292 bool UseDeferred = SetIteration > 0; 1293 PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses; 1294 1295 for (const Value *Ptr_ : ASPointers) { 1296 Value *Ptr = const_cast<Value *>(Ptr_); 1297 1298 // For a single memory access in AliasSetTracker, Accesses may contain 1299 // both read and write, and they both need to be handled for CheckDeps. 1300 for (const auto &AC : S) { 1301 if (AC.first.getPointer() != Ptr) 1302 continue; 1303 1304 bool IsWrite = AC.first.getInt(); 1305 1306 // If we're using the deferred access set, then it contains only 1307 // reads. 1308 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 1309 if (UseDeferred && !IsReadOnlyPtr) 1310 continue; 1311 // Otherwise, the pointer must be in the PtrAccessSet, either as a 1312 // read or a write. 1313 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 1314 S.count(MemAccessInfo(Ptr, false))) && 1315 "Alias-set pointer not in the access set?"); 1316 1317 MemAccessInfo Access(Ptr, IsWrite); 1318 DepCands.insert(Access); 1319 1320 // Memorize read-only pointers for later processing and skip them in 1321 // the first round (they need to be checked after we have seen all 1322 // write pointers). Note: we also mark pointer that are not 1323 // consecutive as "read-only" pointers (so that we check 1324 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 1325 if (!UseDeferred && IsReadOnlyPtr) { 1326 // We only use the pointer keys, the types vector values don't 1327 // matter. 1328 DeferredAccesses.insert({Access, {}}); 1329 continue; 1330 } 1331 1332 // If this is a write - check other reads and writes for conflicts. If 1333 // this is a read only check other writes for conflicts (but only if 1334 // there is no other write to the ptr - this is an optimization to 1335 // catch "a[i] = a[i] + " without having to do a dependence check). 1336 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 1337 CheckDeps.push_back(Access); 1338 IsRTCheckAnalysisNeeded = true; 1339 } 1340 1341 if (IsWrite) 1342 SetHasWrite = true; 1343 1344 // Create sets of pointers connected by a shared alias set and 1345 // underlying object. 1346 typedef SmallVector<const Value *, 16> ValueVector; 1347 ValueVector TempObjects; 1348 1349 UnderlyingObjects[Ptr] = {}; 1350 SmallVector<const Value *, 16> &UOs = UnderlyingObjects[Ptr]; 1351 ::getUnderlyingObjects(Ptr, UOs, LI); 1352 LLVM_DEBUG(dbgs() 1353 << "Underlying objects for pointer " << *Ptr << "\n"); 1354 for (const Value *UnderlyingObj : UOs) { 1355 // nullptr never alias, don't join sets for pointer that have "null" 1356 // in their UnderlyingObjects list. 1357 if (isa<ConstantPointerNull>(UnderlyingObj) && 1358 !NullPointerIsDefined( 1359 TheLoop->getHeader()->getParent(), 1360 UnderlyingObj->getType()->getPointerAddressSpace())) 1361 continue; 1362 1363 UnderlyingObjToAccessMap::iterator Prev = 1364 ObjToLastAccess.find(UnderlyingObj); 1365 if (Prev != ObjToLastAccess.end()) 1366 DepCands.unionSets(Access, Prev->second); 1367 1368 ObjToLastAccess[UnderlyingObj] = Access; 1369 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 1370 } 1371 } 1372 } 1373 } 1374 } 1375 } 1376 1377 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 1378 /// i.e. monotonically increasing/decreasing. 1379 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 1380 PredicatedScalarEvolution &PSE, const Loop *L) { 1381 1382 // FIXME: This should probably only return true for NUW. 1383 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 1384 return true; 1385 1386 if (PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 1387 return true; 1388 1389 // Scalar evolution does not propagate the non-wrapping flags to values that 1390 // are derived from a non-wrapping induction variable because non-wrapping 1391 // could be flow-sensitive. 1392 // 1393 // Look through the potentially overflowing instruction to try to prove 1394 // non-wrapping for the *specific* value of Ptr. 1395 1396 // The arithmetic implied by an inbounds GEP can't overflow. 1397 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 1398 if (!GEP || !GEP->isInBounds()) 1399 return false; 1400 1401 // Make sure there is only one non-const index and analyze that. 1402 Value *NonConstIndex = nullptr; 1403 for (Value *Index : GEP->indices()) 1404 if (!isa<ConstantInt>(Index)) { 1405 if (NonConstIndex) 1406 return false; 1407 NonConstIndex = Index; 1408 } 1409 if (!NonConstIndex) 1410 // The recurrence is on the pointer, ignore for now. 1411 return false; 1412 1413 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 1414 // AddRec using a NSW operation. 1415 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 1416 if (OBO->hasNoSignedWrap() && 1417 // Assume constant for other the operand so that the AddRec can be 1418 // easily found. 1419 isa<ConstantInt>(OBO->getOperand(1))) { 1420 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 1421 1422 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 1423 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 1424 } 1425 1426 return false; 1427 } 1428 1429 /// Check whether the access through \p Ptr has a constant stride. 1430 std::optional<int64_t> llvm::getPtrStride(PredicatedScalarEvolution &PSE, 1431 Type *AccessTy, Value *Ptr, 1432 const Loop *Lp, 1433 const DenseMap<Value *, const SCEV *> &StridesMap, 1434 bool Assume, bool ShouldCheckWrap) { 1435 Type *Ty = Ptr->getType(); 1436 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1437 1438 if (isa<ScalableVectorType>(AccessTy)) { 1439 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy 1440 << "\n"); 1441 return std::nullopt; 1442 } 1443 1444 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1445 1446 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1447 if (Assume && !AR) 1448 AR = PSE.getAsAddRec(Ptr); 1449 1450 if (!AR) { 1451 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1452 << " SCEV: " << *PtrScev << "\n"); 1453 return std::nullopt; 1454 } 1455 1456 // The access function must stride over the innermost loop. 1457 if (Lp != AR->getLoop()) { 1458 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1459 << *Ptr << " SCEV: " << *AR << "\n"); 1460 return std::nullopt; 1461 } 1462 1463 // Check the step is constant. 1464 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1465 1466 // Calculate the pointer stride and check if it is constant. 1467 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1468 if (!C) { 1469 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1470 << " SCEV: " << *AR << "\n"); 1471 return std::nullopt; 1472 } 1473 1474 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1475 TypeSize AllocSize = DL.getTypeAllocSize(AccessTy); 1476 int64_t Size = AllocSize.getFixedValue(); 1477 const APInt &APStepVal = C->getAPInt(); 1478 1479 // Huge step value - give up. 1480 if (APStepVal.getBitWidth() > 64) 1481 return std::nullopt; 1482 1483 int64_t StepVal = APStepVal.getSExtValue(); 1484 1485 // Strided access. 1486 int64_t Stride = StepVal / Size; 1487 int64_t Rem = StepVal % Size; 1488 if (Rem) 1489 return std::nullopt; 1490 1491 if (!ShouldCheckWrap) 1492 return Stride; 1493 1494 // The address calculation must not wrap. Otherwise, a dependence could be 1495 // inverted. 1496 if (isNoWrapAddRec(Ptr, AR, PSE, Lp)) 1497 return Stride; 1498 1499 // An inbounds getelementptr that is a AddRec with a unit stride 1500 // cannot wrap per definition. If it did, the result would be poison 1501 // and any memory access dependent on it would be immediate UB 1502 // when executed. 1503 if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 1504 GEP && GEP->isInBounds() && (Stride == 1 || Stride == -1)) 1505 return Stride; 1506 1507 // If the null pointer is undefined, then a access sequence which would 1508 // otherwise access it can be assumed not to unsigned wrap. Note that this 1509 // assumes the object in memory is aligned to the natural alignment. 1510 unsigned AddrSpace = Ty->getPointerAddressSpace(); 1511 if (!NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace) && 1512 (Stride == 1 || Stride == -1)) 1513 return Stride; 1514 1515 if (Assume) { 1516 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1517 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap:\n" 1518 << "LAA: Pointer: " << *Ptr << "\n" 1519 << "LAA: SCEV: " << *AR << "\n" 1520 << "LAA: Added an overflow assumption\n"); 1521 return Stride; 1522 } 1523 LLVM_DEBUG( 1524 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1525 << *Ptr << " SCEV: " << *AR << "\n"); 1526 return std::nullopt; 1527 } 1528 1529 std::optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA, 1530 Type *ElemTyB, Value *PtrB, 1531 const DataLayout &DL, 1532 ScalarEvolution &SE, bool StrictCheck, 1533 bool CheckType) { 1534 assert(PtrA && PtrB && "Expected non-nullptr pointers."); 1535 1536 // Make sure that A and B are different pointers. 1537 if (PtrA == PtrB) 1538 return 0; 1539 1540 // Make sure that the element types are the same if required. 1541 if (CheckType && ElemTyA != ElemTyB) 1542 return std::nullopt; 1543 1544 unsigned ASA = PtrA->getType()->getPointerAddressSpace(); 1545 unsigned ASB = PtrB->getType()->getPointerAddressSpace(); 1546 1547 // Check that the address spaces match. 1548 if (ASA != ASB) 1549 return std::nullopt; 1550 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1551 1552 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1553 Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1554 Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1555 1556 int Val; 1557 if (PtrA1 == PtrB1) { 1558 // Retrieve the address space again as pointer stripping now tracks through 1559 // `addrspacecast`. 1560 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace(); 1561 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace(); 1562 // Check that the address spaces match and that the pointers are valid. 1563 if (ASA != ASB) 1564 return std::nullopt; 1565 1566 IdxWidth = DL.getIndexSizeInBits(ASA); 1567 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1568 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1569 1570 OffsetB -= OffsetA; 1571 Val = OffsetB.getSExtValue(); 1572 } else { 1573 // Otherwise compute the distance with SCEV between the base pointers. 1574 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1575 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1576 const auto *Diff = 1577 dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA)); 1578 if (!Diff) 1579 return std::nullopt; 1580 Val = Diff->getAPInt().getSExtValue(); 1581 } 1582 int Size = DL.getTypeStoreSize(ElemTyA); 1583 int Dist = Val / Size; 1584 1585 // Ensure that the calculated distance matches the type-based one after all 1586 // the bitcasts removal in the provided pointers. 1587 if (!StrictCheck || Dist * Size == Val) 1588 return Dist; 1589 return std::nullopt; 1590 } 1591 1592 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 1593 const DataLayout &DL, ScalarEvolution &SE, 1594 SmallVectorImpl<unsigned> &SortedIndices) { 1595 assert(llvm::all_of( 1596 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1597 "Expected list of pointer operands."); 1598 // Walk over the pointers, and map each of them to an offset relative to 1599 // first pointer in the array. 1600 Value *Ptr0 = VL[0]; 1601 1602 using DistOrdPair = std::pair<int64_t, int>; 1603 auto Compare = llvm::less_first(); 1604 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare); 1605 Offsets.emplace(0, 0); 1606 int Cnt = 1; 1607 bool IsConsecutive = true; 1608 for (auto *Ptr : VL.drop_front()) { 1609 std::optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE, 1610 /*StrictCheck=*/true); 1611 if (!Diff) 1612 return false; 1613 1614 // Check if the pointer with the same offset is found. 1615 int64_t Offset = *Diff; 1616 auto Res = Offsets.emplace(Offset, Cnt); 1617 if (!Res.second) 1618 return false; 1619 // Consecutive order if the inserted element is the last one. 1620 IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end(); 1621 ++Cnt; 1622 } 1623 SortedIndices.clear(); 1624 if (!IsConsecutive) { 1625 // Fill SortedIndices array only if it is non-consecutive. 1626 SortedIndices.resize(VL.size()); 1627 Cnt = 0; 1628 for (const std::pair<int64_t, int> &Pair : Offsets) { 1629 SortedIndices[Cnt] = Pair.second; 1630 ++Cnt; 1631 } 1632 } 1633 return true; 1634 } 1635 1636 /// Returns true if the memory operations \p A and \p B are consecutive. 1637 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1638 ScalarEvolution &SE, bool CheckType) { 1639 Value *PtrA = getLoadStorePointerOperand(A); 1640 Value *PtrB = getLoadStorePointerOperand(B); 1641 if (!PtrA || !PtrB) 1642 return false; 1643 Type *ElemTyA = getLoadStoreType(A); 1644 Type *ElemTyB = getLoadStoreType(B); 1645 std::optional<int> Diff = 1646 getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE, 1647 /*StrictCheck=*/true, CheckType); 1648 return Diff && *Diff == 1; 1649 } 1650 1651 void MemoryDepChecker::addAccess(StoreInst *SI) { 1652 visitPointers(SI->getPointerOperand(), *InnermostLoop, 1653 [this, SI](Value *Ptr) { 1654 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 1655 InstMap.push_back(SI); 1656 ++AccessIdx; 1657 }); 1658 } 1659 1660 void MemoryDepChecker::addAccess(LoadInst *LI) { 1661 visitPointers(LI->getPointerOperand(), *InnermostLoop, 1662 [this, LI](Value *Ptr) { 1663 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 1664 InstMap.push_back(LI); 1665 ++AccessIdx; 1666 }); 1667 } 1668 1669 MemoryDepChecker::VectorizationSafetyStatus 1670 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1671 switch (Type) { 1672 case NoDep: 1673 case Forward: 1674 case BackwardVectorizable: 1675 return VectorizationSafetyStatus::Safe; 1676 1677 case Unknown: 1678 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1679 case ForwardButPreventsForwarding: 1680 case Backward: 1681 case BackwardVectorizableButPreventsForwarding: 1682 case IndirectUnsafe: 1683 return VectorizationSafetyStatus::Unsafe; 1684 } 1685 llvm_unreachable("unexpected DepType!"); 1686 } 1687 1688 bool MemoryDepChecker::Dependence::isBackward() const { 1689 switch (Type) { 1690 case NoDep: 1691 case Forward: 1692 case ForwardButPreventsForwarding: 1693 case Unknown: 1694 case IndirectUnsafe: 1695 return false; 1696 1697 case BackwardVectorizable: 1698 case Backward: 1699 case BackwardVectorizableButPreventsForwarding: 1700 return true; 1701 } 1702 llvm_unreachable("unexpected DepType!"); 1703 } 1704 1705 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1706 return isBackward() || Type == Unknown; 1707 } 1708 1709 bool MemoryDepChecker::Dependence::isForward() const { 1710 switch (Type) { 1711 case Forward: 1712 case ForwardButPreventsForwarding: 1713 return true; 1714 1715 case NoDep: 1716 case Unknown: 1717 case BackwardVectorizable: 1718 case Backward: 1719 case BackwardVectorizableButPreventsForwarding: 1720 case IndirectUnsafe: 1721 return false; 1722 } 1723 llvm_unreachable("unexpected DepType!"); 1724 } 1725 1726 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1727 uint64_t TypeByteSize) { 1728 // If loads occur at a distance that is not a multiple of a feasible vector 1729 // factor store-load forwarding does not take place. 1730 // Positive dependences might cause troubles because vectorizing them might 1731 // prevent store-load forwarding making vectorized code run a lot slower. 1732 // a[i] = a[i-3] ^ a[i-8]; 1733 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1734 // hence on your typical architecture store-load forwarding does not take 1735 // place. Vectorizing in such cases does not make sense. 1736 // Store-load forwarding distance. 1737 1738 // After this many iterations store-to-load forwarding conflicts should not 1739 // cause any slowdowns. 1740 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1741 // Maximum vector factor. 1742 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1743 VectorizerParams::MaxVectorWidth * TypeByteSize, MinDepDistBytes); 1744 1745 // Compute the smallest VF at which the store and load would be misaligned. 1746 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1747 VF *= 2) { 1748 // If the number of vector iteration between the store and the load are 1749 // small we could incur conflicts. 1750 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1751 MaxVFWithoutSLForwardIssues = (VF >> 1); 1752 break; 1753 } 1754 } 1755 1756 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1757 LLVM_DEBUG( 1758 dbgs() << "LAA: Distance " << Distance 1759 << " that could cause a store-load forwarding conflict\n"); 1760 return true; 1761 } 1762 1763 if (MaxVFWithoutSLForwardIssues < MinDepDistBytes && 1764 MaxVFWithoutSLForwardIssues != 1765 VectorizerParams::MaxVectorWidth * TypeByteSize) 1766 MinDepDistBytes = MaxVFWithoutSLForwardIssues; 1767 return false; 1768 } 1769 1770 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1771 if (Status < S) 1772 Status = S; 1773 } 1774 1775 /// Given a dependence-distance \p Dist between two 1776 /// memory accesses, that have the same stride whose absolute value is given 1777 /// in \p Stride, and that have the same type size \p TypeByteSize, 1778 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1779 /// possible to prove statically that the dependence distance is larger 1780 /// than the range that the accesses will travel through the execution of 1781 /// the loop. If so, return true; false otherwise. This is useful for 1782 /// example in loops such as the following (PR31098): 1783 /// for (i = 0; i < D; ++i) { 1784 /// = out[i]; 1785 /// out[i+D] = 1786 /// } 1787 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1788 const SCEV &BackedgeTakenCount, 1789 const SCEV &Dist, uint64_t Stride, 1790 uint64_t TypeByteSize) { 1791 1792 // If we can prove that 1793 // (**) |Dist| > BackedgeTakenCount * Step 1794 // where Step is the absolute stride of the memory accesses in bytes, 1795 // then there is no dependence. 1796 // 1797 // Rationale: 1798 // We basically want to check if the absolute distance (|Dist/Step|) 1799 // is >= the loop iteration count (or > BackedgeTakenCount). 1800 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1801 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1802 // that the dependence distance is >= VF; This is checked elsewhere. 1803 // But in some cases we can prune dependence distances early, and 1804 // even before selecting the VF, and without a runtime test, by comparing 1805 // the distance against the loop iteration count. Since the vectorized code 1806 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1807 // also guarantees that distance >= VF. 1808 // 1809 const uint64_t ByteStride = Stride * TypeByteSize; 1810 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1811 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1812 1813 const SCEV *CastedDist = &Dist; 1814 const SCEV *CastedProduct = Product; 1815 uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType()); 1816 uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType()); 1817 1818 // The dependence distance can be positive/negative, so we sign extend Dist; 1819 // The multiplication of the absolute stride in bytes and the 1820 // backedgeTakenCount is non-negative, so we zero extend Product. 1821 if (DistTypeSizeBits > ProductTypeSizeBits) 1822 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1823 else 1824 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1825 1826 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1827 // (If so, then we have proven (**) because |Dist| >= Dist) 1828 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1829 if (SE.isKnownPositive(Minus)) 1830 return true; 1831 1832 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1833 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1834 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1835 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1836 if (SE.isKnownPositive(Minus)) 1837 return true; 1838 1839 return false; 1840 } 1841 1842 /// Check the dependence for two accesses with the same stride \p Stride. 1843 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1844 /// bytes. 1845 /// 1846 /// \returns true if they are independent. 1847 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1848 uint64_t TypeByteSize) { 1849 assert(Stride > 1 && "The stride must be greater than 1"); 1850 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1851 assert(Distance > 0 && "The distance must be non-zero"); 1852 1853 // Skip if the distance is not multiple of type byte size. 1854 if (Distance % TypeByteSize) 1855 return false; 1856 1857 uint64_t ScaledDist = Distance / TypeByteSize; 1858 1859 // No dependence if the scaled distance is not multiple of the stride. 1860 // E.g. 1861 // for (i = 0; i < 1024 ; i += 4) 1862 // A[i+2] = A[i] + 1; 1863 // 1864 // Two accesses in memory (scaled distance is 2, stride is 4): 1865 // | A[0] | | | | A[4] | | | | 1866 // | | | A[2] | | | | A[6] | | 1867 // 1868 // E.g. 1869 // for (i = 0; i < 1024 ; i += 3) 1870 // A[i+4] = A[i] + 1; 1871 // 1872 // Two accesses in memory (scaled distance is 4, stride is 3): 1873 // | A[0] | | | A[3] | | | A[6] | | | 1874 // | | | | | A[4] | | | A[7] | | 1875 return ScaledDist % Stride; 1876 } 1877 1878 /// Returns true if any of the underlying objects has a loop varying address, 1879 /// i.e. may change in \p L. 1880 static bool 1881 isLoopVariantIndirectAddress(ArrayRef<const Value *> UnderlyingObjects, 1882 ScalarEvolution &SE, const Loop *L) { 1883 return any_of(UnderlyingObjects, [&SE, L](const Value *UO) { 1884 return !SE.isLoopInvariant(SE.getSCEV(const_cast<Value *>(UO)), L); 1885 }); 1886 } 1887 1888 // Get the dependence distance, stride, type size in whether i is a write for 1889 // the dependence between A and B. Returns a DepType, if we can prove there's 1890 // no dependence or the analysis fails. Outlined to lambda to limit he scope 1891 // of various temporary variables, like A/BPtr, StrideA/BPtr and others. 1892 // Returns either the dependence result, if it could already be determined, or a 1893 // tuple with (Distance, Stride, TypeSize, AIsWrite, BIsWrite). 1894 static std::variant<MemoryDepChecker::Dependence::DepType, 1895 std::tuple<const SCEV *, uint64_t, uint64_t, bool, bool>> 1896 getDependenceDistanceStrideAndSize( 1897 const AccessAnalysis::MemAccessInfo &A, Instruction *AInst, 1898 const AccessAnalysis::MemAccessInfo &B, Instruction *BInst, 1899 const DenseMap<Value *, const SCEV *> &Strides, 1900 const DenseMap<Value *, SmallVector<const Value *, 16>> &UnderlyingObjects, 1901 PredicatedScalarEvolution &PSE, const Loop *InnermostLoop) { 1902 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1903 auto &SE = *PSE.getSE(); 1904 auto [APtr, AIsWrite] = A; 1905 auto [BPtr, BIsWrite] = B; 1906 1907 // Two reads are independent. 1908 if (!AIsWrite && !BIsWrite) 1909 return MemoryDepChecker::Dependence::NoDep; 1910 1911 Type *ATy = getLoadStoreType(AInst); 1912 Type *BTy = getLoadStoreType(BInst); 1913 1914 // We cannot check pointers in different address spaces. 1915 if (APtr->getType()->getPointerAddressSpace() != 1916 BPtr->getType()->getPointerAddressSpace()) 1917 return MemoryDepChecker::Dependence::Unknown; 1918 1919 int64_t StrideAPtr = 1920 getPtrStride(PSE, ATy, APtr, InnermostLoop, Strides, true).value_or(0); 1921 int64_t StrideBPtr = 1922 getPtrStride(PSE, BTy, BPtr, InnermostLoop, Strides, true).value_or(0); 1923 1924 const SCEV *Src = PSE.getSCEV(APtr); 1925 const SCEV *Sink = PSE.getSCEV(BPtr); 1926 1927 // If the induction step is negative we have to invert source and sink of the 1928 // dependence when measuring the distance between them. We should not swap 1929 // AIsWrite with BIsWrite, as their uses expect them in program order. 1930 if (StrideAPtr < 0) { 1931 std::swap(Src, Sink); 1932 std::swap(AInst, BInst); 1933 } 1934 1935 const SCEV *Dist = SE.getMinusSCEV(Sink, Src); 1936 1937 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1938 << "(Induction step: " << StrideAPtr << ")\n"); 1939 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *AInst << " to " << *BInst 1940 << ": " << *Dist << "\n"); 1941 1942 // Needs accesses where the addresses of the accessed underlying objects do 1943 // not change within the loop. 1944 if (isLoopVariantIndirectAddress(UnderlyingObjects.find(APtr)->second, SE, 1945 InnermostLoop) || 1946 isLoopVariantIndirectAddress(UnderlyingObjects.find(BPtr)->second, SE, 1947 InnermostLoop)) 1948 return MemoryDepChecker::Dependence::IndirectUnsafe; 1949 1950 // Need accesses with constant stride. We don't want to vectorize 1951 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap 1952 // in the address space. 1953 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr) { 1954 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1955 return MemoryDepChecker::Dependence::Unknown; 1956 } 1957 1958 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1959 bool HasSameSize = 1960 DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy); 1961 if (!HasSameSize) 1962 TypeByteSize = 0; 1963 uint64_t Stride = std::abs(StrideAPtr); 1964 return std::make_tuple(Dist, Stride, TypeByteSize, AIsWrite, BIsWrite); 1965 } 1966 1967 MemoryDepChecker::Dependence::DepType MemoryDepChecker::isDependent( 1968 const MemAccessInfo &A, unsigned AIdx, const MemAccessInfo &B, 1969 unsigned BIdx, const DenseMap<Value *, const SCEV *> &Strides, 1970 const DenseMap<Value *, SmallVector<const Value *, 16>> 1971 &UnderlyingObjects) { 1972 assert(AIdx < BIdx && "Must pass arguments in program order"); 1973 1974 // Get the dependence distance, stride, type size and what access writes for 1975 // the dependence between A and B. 1976 auto Res = getDependenceDistanceStrideAndSize( 1977 A, InstMap[AIdx], B, InstMap[BIdx], Strides, UnderlyingObjects, PSE, 1978 InnermostLoop); 1979 if (std::holds_alternative<Dependence::DepType>(Res)) 1980 return std::get<Dependence::DepType>(Res); 1981 1982 const auto &[Dist, Stride, TypeByteSize, AIsWrite, BIsWrite] = 1983 std::get<std::tuple<const SCEV *, uint64_t, uint64_t, bool, bool>>(Res); 1984 bool HasSameSize = TypeByteSize > 0; 1985 1986 ScalarEvolution &SE = *PSE.getSE(); 1987 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1988 if (!isa<SCEVCouldNotCompute>(Dist) && HasSameSize && 1989 isSafeDependenceDistance(DL, SE, *(PSE.getBackedgeTakenCount()), *Dist, 1990 Stride, TypeByteSize)) 1991 return Dependence::NoDep; 1992 1993 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1994 if (!C) { 1995 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1996 FoundNonConstantDistanceDependence = true; 1997 return Dependence::Unknown; 1998 } 1999 2000 const APInt &Val = C->getAPInt(); 2001 int64_t Distance = Val.getSExtValue(); 2002 2003 // Attempt to prove strided accesses independent. 2004 if (std::abs(Distance) > 0 && Stride > 1 && HasSameSize && 2005 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 2006 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 2007 return Dependence::NoDep; 2008 } 2009 2010 // Negative distances are not plausible dependencies. 2011 if (Val.isNegative()) { 2012 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 2013 // There is no need to update MaxSafeVectorWidthInBits after call to 2014 // couldPreventStoreLoadForward, even if it changed MinDepDistBytes, 2015 // since a forward dependency will allow vectorization using any width. 2016 if (IsTrueDataDependence && EnableForwardingConflictDetection && 2017 (!HasSameSize || couldPreventStoreLoadForward(Val.abs().getZExtValue(), 2018 TypeByteSize))) { 2019 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 2020 return Dependence::ForwardButPreventsForwarding; 2021 } 2022 2023 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 2024 return Dependence::Forward; 2025 } 2026 2027 // Write to the same location with the same size. 2028 if (Val == 0) { 2029 if (HasSameSize) 2030 return Dependence::Forward; 2031 LLVM_DEBUG( 2032 dbgs() << "LAA: Zero dependence difference but different type sizes\n"); 2033 return Dependence::Unknown; 2034 } 2035 2036 assert(Val.isStrictlyPositive() && "Expect a positive value"); 2037 2038 if (!HasSameSize) { 2039 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with " 2040 "different type sizes\n"); 2041 return Dependence::Unknown; 2042 } 2043 2044 // Bail out early if passed-in parameters make vectorization not feasible. 2045 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 2046 VectorizerParams::VectorizationFactor : 1); 2047 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 2048 VectorizerParams::VectorizationInterleave : 1); 2049 // The minimum number of iterations for a vectorized/unrolled version. 2050 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 2051 2052 // It's not vectorizable if the distance is smaller than the minimum distance 2053 // needed for a vectroized/unrolled version. Vectorizing one iteration in 2054 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 2055 // TypeByteSize (No need to plus the last gap distance). 2056 // 2057 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 2058 // foo(int *A) { 2059 // int *B = (int *)((char *)A + 14); 2060 // for (i = 0 ; i < 1024 ; i += 2) 2061 // B[i] = A[i] + 1; 2062 // } 2063 // 2064 // Two accesses in memory (stride is 2): 2065 // | A[0] | | A[2] | | A[4] | | A[6] | | 2066 // | B[0] | | B[2] | | B[4] | 2067 // 2068 // Distance needs for vectorizing iterations except the last iteration: 2069 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 2070 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 2071 // 2072 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 2073 // 12, which is less than distance. 2074 // 2075 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 2076 // the minimum distance needed is 28, which is greater than distance. It is 2077 // not safe to do vectorization. 2078 uint64_t MinDistanceNeeded = 2079 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 2080 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 2081 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " 2082 << Distance << '\n'); 2083 return Dependence::Backward; 2084 } 2085 2086 // Unsafe if the minimum distance needed is greater than smallest dependence 2087 // distance distance. 2088 if (MinDistanceNeeded > MinDepDistBytes) { 2089 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 2090 << MinDistanceNeeded << " size in bytes\n"); 2091 return Dependence::Backward; 2092 } 2093 2094 // Positive distance bigger than max vectorization factor. 2095 // FIXME: Should use max factor instead of max distance in bytes, which could 2096 // not handle different types. 2097 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 2098 // void foo (int *A, char *B) { 2099 // for (unsigned i = 0; i < 1024; i++) { 2100 // A[i+2] = A[i] + 1; 2101 // B[i+2] = B[i] + 1; 2102 // } 2103 // } 2104 // 2105 // This case is currently unsafe according to the max safe distance. If we 2106 // analyze the two accesses on array B, the max safe dependence distance 2107 // is 2. Then we analyze the accesses on array A, the minimum distance needed 2108 // is 8, which is less than 2 and forbidden vectorization, But actually 2109 // both A and B could be vectorized by 2 iterations. 2110 MinDepDistBytes = 2111 std::min(static_cast<uint64_t>(Distance), MinDepDistBytes); 2112 2113 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 2114 uint64_t MinDepDistBytesOld = MinDepDistBytes; 2115 if (IsTrueDataDependence && EnableForwardingConflictDetection && 2116 couldPreventStoreLoadForward(Distance, TypeByteSize)) { 2117 // Sanity check that we didn't update MinDepDistBytes when calling 2118 // couldPreventStoreLoadForward 2119 assert(MinDepDistBytes == MinDepDistBytesOld && 2120 "An update to MinDepDistBytes requires an update to " 2121 "MaxSafeVectorWidthInBits"); 2122 (void)MinDepDistBytesOld; 2123 return Dependence::BackwardVectorizableButPreventsForwarding; 2124 } 2125 2126 // An update to MinDepDistBytes requires an update to MaxSafeVectorWidthInBits 2127 // since there is a backwards dependency. 2128 uint64_t MaxVF = MinDepDistBytes / (TypeByteSize * Stride); 2129 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 2130 << " with max VF = " << MaxVF << '\n'); 2131 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 2132 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits); 2133 return Dependence::BackwardVectorizable; 2134 } 2135 2136 bool MemoryDepChecker::areDepsSafe( 2137 DepCandidates &AccessSets, MemAccessInfoList &CheckDeps, 2138 const DenseMap<Value *, const SCEV *> &Strides, 2139 const DenseMap<Value *, SmallVector<const Value *, 16>> 2140 &UnderlyingObjects) { 2141 2142 MinDepDistBytes = -1; 2143 SmallPtrSet<MemAccessInfo, 8> Visited; 2144 for (MemAccessInfo CurAccess : CheckDeps) { 2145 if (Visited.count(CurAccess)) 2146 continue; 2147 2148 // Get the relevant memory access set. 2149 EquivalenceClasses<MemAccessInfo>::iterator I = 2150 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 2151 2152 // Check accesses within this set. 2153 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 2154 AccessSets.member_begin(I); 2155 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 2156 AccessSets.member_end(); 2157 2158 // Check every access pair. 2159 while (AI != AE) { 2160 Visited.insert(*AI); 2161 bool AIIsWrite = AI->getInt(); 2162 // Check loads only against next equivalent class, but stores also against 2163 // other stores in the same equivalence class - to the same address. 2164 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 2165 (AIIsWrite ? AI : std::next(AI)); 2166 while (OI != AE) { 2167 // Check every accessing instruction pair in program order. 2168 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 2169 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 2170 // Scan all accesses of another equivalence class, but only the next 2171 // accesses of the same equivalent class. 2172 for (std::vector<unsigned>::iterator 2173 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 2174 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 2175 I2 != I2E; ++I2) { 2176 auto A = std::make_pair(&*AI, *I1); 2177 auto B = std::make_pair(&*OI, *I2); 2178 2179 assert(*I1 != *I2); 2180 if (*I1 > *I2) 2181 std::swap(A, B); 2182 2183 Dependence::DepType Type = 2184 isDependent(*A.first, A.second, *B.first, B.second, Strides, 2185 UnderlyingObjects); 2186 mergeInStatus(Dependence::isSafeForVectorization(Type)); 2187 2188 // Gather dependences unless we accumulated MaxDependences 2189 // dependences. In that case return as soon as we find the first 2190 // unsafe dependence. This puts a limit on this quadratic 2191 // algorithm. 2192 if (RecordDependences) { 2193 if (Type != Dependence::NoDep) 2194 Dependences.push_back(Dependence(A.second, B.second, Type)); 2195 2196 if (Dependences.size() >= MaxDependences) { 2197 RecordDependences = false; 2198 Dependences.clear(); 2199 LLVM_DEBUG(dbgs() 2200 << "Too many dependences, stopped recording\n"); 2201 } 2202 } 2203 if (!RecordDependences && !isSafeForVectorization()) 2204 return false; 2205 } 2206 ++OI; 2207 } 2208 AI++; 2209 } 2210 } 2211 2212 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 2213 return isSafeForVectorization(); 2214 } 2215 2216 SmallVector<Instruction *, 4> 2217 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 2218 MemAccessInfo Access(Ptr, isWrite); 2219 auto &IndexVector = Accesses.find(Access)->second; 2220 2221 SmallVector<Instruction *, 4> Insts; 2222 transform(IndexVector, 2223 std::back_inserter(Insts), 2224 [&](unsigned Idx) { return this->InstMap[Idx]; }); 2225 return Insts; 2226 } 2227 2228 const char *MemoryDepChecker::Dependence::DepName[] = { 2229 "NoDep", 2230 "Unknown", 2231 "IndidrectUnsafe", 2232 "Forward", 2233 "ForwardButPreventsForwarding", 2234 "Backward", 2235 "BackwardVectorizable", 2236 "BackwardVectorizableButPreventsForwarding"}; 2237 2238 void MemoryDepChecker::Dependence::print( 2239 raw_ostream &OS, unsigned Depth, 2240 const SmallVectorImpl<Instruction *> &Instrs) const { 2241 OS.indent(Depth) << DepName[Type] << ":\n"; 2242 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 2243 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 2244 } 2245 2246 bool LoopAccessInfo::canAnalyzeLoop() { 2247 // We need to have a loop header. 2248 LLVM_DEBUG(dbgs() << "LAA: Found a loop in " 2249 << TheLoop->getHeader()->getParent()->getName() << ": " 2250 << TheLoop->getHeader()->getName() << '\n'); 2251 2252 // We can only analyze innermost loops. 2253 if (!TheLoop->isInnermost()) { 2254 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 2255 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 2256 return false; 2257 } 2258 2259 // We must have a single backedge. 2260 if (TheLoop->getNumBackEdges() != 1) { 2261 LLVM_DEBUG( 2262 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 2263 recordAnalysis("CFGNotUnderstood") 2264 << "loop control flow is not understood by analyzer"; 2265 return false; 2266 } 2267 2268 // ScalarEvolution needs to be able to find the exit count. 2269 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 2270 if (isa<SCEVCouldNotCompute>(ExitCount)) { 2271 recordAnalysis("CantComputeNumberOfIterations") 2272 << "could not determine number of loop iterations"; 2273 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 2274 return false; 2275 } 2276 2277 return true; 2278 } 2279 2280 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI, 2281 const TargetLibraryInfo *TLI, 2282 DominatorTree *DT) { 2283 // Holds the Load and Store instructions. 2284 SmallVector<LoadInst *, 16> Loads; 2285 SmallVector<StoreInst *, 16> Stores; 2286 2287 // Holds all the different accesses in the loop. 2288 unsigned NumReads = 0; 2289 unsigned NumReadWrites = 0; 2290 2291 bool HasComplexMemInst = false; 2292 2293 // A runtime check is only legal to insert if there are no convergent calls. 2294 HasConvergentOp = false; 2295 2296 PtrRtChecking->Pointers.clear(); 2297 PtrRtChecking->Need = false; 2298 2299 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 2300 2301 const bool EnableMemAccessVersioningOfLoop = 2302 EnableMemAccessVersioning && 2303 !TheLoop->getHeader()->getParent()->hasOptSize(); 2304 2305 // Traverse blocks in fixed RPOT order, regardless of their storage in the 2306 // loop info, as it may be arbitrary. 2307 LoopBlocksRPO RPOT(TheLoop); 2308 RPOT.perform(LI); 2309 for (BasicBlock *BB : RPOT) { 2310 // Scan the BB and collect legal loads and stores. Also detect any 2311 // convergent instructions. 2312 for (Instruction &I : *BB) { 2313 if (auto *Call = dyn_cast<CallBase>(&I)) { 2314 if (Call->isConvergent()) 2315 HasConvergentOp = true; 2316 } 2317 2318 // With both a non-vectorizable memory instruction and a convergent 2319 // operation, found in this loop, no reason to continue the search. 2320 if (HasComplexMemInst && HasConvergentOp) { 2321 CanVecMem = false; 2322 return; 2323 } 2324 2325 // Avoid hitting recordAnalysis multiple times. 2326 if (HasComplexMemInst) 2327 continue; 2328 2329 // Many math library functions read the rounding mode. We will only 2330 // vectorize a loop if it contains known function calls that don't set 2331 // the flag. Therefore, it is safe to ignore this read from memory. 2332 auto *Call = dyn_cast<CallInst>(&I); 2333 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 2334 continue; 2335 2336 // If this is a load, save it. If this instruction can read from memory 2337 // but is not a load, then we quit. Notice that we don't handle function 2338 // calls that read or write. 2339 if (I.mayReadFromMemory()) { 2340 // If the function has an explicit vectorized counterpart, we can safely 2341 // assume that it can be vectorized. 2342 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 2343 !VFDatabase::getMappings(*Call).empty()) 2344 continue; 2345 2346 auto *Ld = dyn_cast<LoadInst>(&I); 2347 if (!Ld) { 2348 recordAnalysis("CantVectorizeInstruction", Ld) 2349 << "instruction cannot be vectorized"; 2350 HasComplexMemInst = true; 2351 continue; 2352 } 2353 if (!Ld->isSimple() && !IsAnnotatedParallel) { 2354 recordAnalysis("NonSimpleLoad", Ld) 2355 << "read with atomic ordering or volatile read"; 2356 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 2357 HasComplexMemInst = true; 2358 continue; 2359 } 2360 NumLoads++; 2361 Loads.push_back(Ld); 2362 DepChecker->addAccess(Ld); 2363 if (EnableMemAccessVersioningOfLoop) 2364 collectStridedAccess(Ld); 2365 continue; 2366 } 2367 2368 // Save 'store' instructions. Abort if other instructions write to memory. 2369 if (I.mayWriteToMemory()) { 2370 auto *St = dyn_cast<StoreInst>(&I); 2371 if (!St) { 2372 recordAnalysis("CantVectorizeInstruction", St) 2373 << "instruction cannot be vectorized"; 2374 HasComplexMemInst = true; 2375 continue; 2376 } 2377 if (!St->isSimple() && !IsAnnotatedParallel) { 2378 recordAnalysis("NonSimpleStore", St) 2379 << "write with atomic ordering or volatile write"; 2380 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 2381 HasComplexMemInst = true; 2382 continue; 2383 } 2384 NumStores++; 2385 Stores.push_back(St); 2386 DepChecker->addAccess(St); 2387 if (EnableMemAccessVersioningOfLoop) 2388 collectStridedAccess(St); 2389 } 2390 } // Next instr. 2391 } // Next block. 2392 2393 if (HasComplexMemInst) { 2394 CanVecMem = false; 2395 return; 2396 } 2397 2398 // Now we have two lists that hold the loads and the stores. 2399 // Next, we find the pointers that they use. 2400 2401 // Check if we see any stores. If there are no stores, then we don't 2402 // care if the pointers are *restrict*. 2403 if (!Stores.size()) { 2404 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 2405 CanVecMem = true; 2406 return; 2407 } 2408 2409 MemoryDepChecker::DepCandidates DependentAccesses; 2410 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE); 2411 2412 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects 2413 // multiple times on the same object. If the ptr is accessed twice, once 2414 // for read and once for write, it will only appear once (on the write 2415 // list). This is okay, since we are going to check for conflicts between 2416 // writes and between reads and writes, but not between reads and reads. 2417 SmallSet<std::pair<Value *, Type *>, 16> Seen; 2418 2419 // Record uniform store addresses to identify if we have multiple stores 2420 // to the same address. 2421 SmallPtrSet<Value *, 16> UniformStores; 2422 2423 for (StoreInst *ST : Stores) { 2424 Value *Ptr = ST->getPointerOperand(); 2425 2426 if (isInvariant(Ptr)) { 2427 // Record store instructions to loop invariant addresses 2428 StoresToInvariantAddresses.push_back(ST); 2429 HasDependenceInvolvingLoopInvariantAddress |= 2430 !UniformStores.insert(Ptr).second; 2431 } 2432 2433 // If we did *not* see this pointer before, insert it to the read-write 2434 // list. At this phase it is only a 'write' list. 2435 Type *AccessTy = getLoadStoreType(ST); 2436 if (Seen.insert({Ptr, AccessTy}).second) { 2437 ++NumReadWrites; 2438 2439 MemoryLocation Loc = MemoryLocation::get(ST); 2440 // The TBAA metadata could have a control dependency on the predication 2441 // condition, so we cannot rely on it when determining whether or not we 2442 // need runtime pointer checks. 2443 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 2444 Loc.AATags.TBAA = nullptr; 2445 2446 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2447 [&Accesses, AccessTy, Loc](Value *Ptr) { 2448 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2449 Accesses.addStore(NewLoc, AccessTy); 2450 }); 2451 } 2452 } 2453 2454 if (IsAnnotatedParallel) { 2455 LLVM_DEBUG( 2456 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 2457 << "checks.\n"); 2458 CanVecMem = true; 2459 return; 2460 } 2461 2462 for (LoadInst *LD : Loads) { 2463 Value *Ptr = LD->getPointerOperand(); 2464 // If we did *not* see this pointer before, insert it to the 2465 // read list. If we *did* see it before, then it is already in 2466 // the read-write list. This allows us to vectorize expressions 2467 // such as A[i] += x; Because the address of A[i] is a read-write 2468 // pointer. This only works if the index of A[i] is consecutive. 2469 // If the address of i is unknown (for example A[B[i]]) then we may 2470 // read a few words, modify, and write a few words, and some of the 2471 // words may be written to the same address. 2472 bool IsReadOnlyPtr = false; 2473 Type *AccessTy = getLoadStoreType(LD); 2474 if (Seen.insert({Ptr, AccessTy}).second || 2475 !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides).value_or(0)) { 2476 ++NumReads; 2477 IsReadOnlyPtr = true; 2478 } 2479 2480 // See if there is an unsafe dependency between a load to a uniform address and 2481 // store to the same uniform address. 2482 if (UniformStores.count(Ptr)) { 2483 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 2484 "load and uniform store to the same address!\n"); 2485 HasDependenceInvolvingLoopInvariantAddress = true; 2486 } 2487 2488 MemoryLocation Loc = MemoryLocation::get(LD); 2489 // The TBAA metadata could have a control dependency on the predication 2490 // condition, so we cannot rely on it when determining whether or not we 2491 // need runtime pointer checks. 2492 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 2493 Loc.AATags.TBAA = nullptr; 2494 2495 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2496 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) { 2497 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2498 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr); 2499 }); 2500 } 2501 2502 // If we write (or read-write) to a single destination and there are no 2503 // other reads in this loop then is it safe to vectorize. 2504 if (NumReadWrites == 1 && NumReads == 0) { 2505 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2506 CanVecMem = true; 2507 return; 2508 } 2509 2510 // Build dependence sets and check whether we need a runtime pointer bounds 2511 // check. 2512 Accesses.buildDependenceSets(); 2513 2514 // Find pointers with computable bounds. We are going to use this information 2515 // to place a runtime bound check. 2516 Value *UncomputablePtr = nullptr; 2517 bool CanDoRTIfNeeded = 2518 Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop, 2519 SymbolicStrides, UncomputablePtr, false); 2520 if (!CanDoRTIfNeeded) { 2521 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2522 recordAnalysis("CantIdentifyArrayBounds", I) 2523 << "cannot identify array bounds"; 2524 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2525 << "the array bounds.\n"); 2526 CanVecMem = false; 2527 return; 2528 } 2529 2530 LLVM_DEBUG( 2531 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2532 2533 CanVecMem = true; 2534 if (Accesses.isDependencyCheckNeeded()) { 2535 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2536 CanVecMem = DepChecker->areDepsSafe( 2537 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides, 2538 Accesses.getUnderlyingObjects()); 2539 2540 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 2541 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2542 2543 // Clear the dependency checks. We assume they are not needed. 2544 Accesses.resetDepChecks(*DepChecker); 2545 2546 PtrRtChecking->reset(); 2547 PtrRtChecking->Need = true; 2548 2549 auto *SE = PSE->getSE(); 2550 UncomputablePtr = nullptr; 2551 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT( 2552 *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true); 2553 2554 // Check that we found the bounds for the pointer. 2555 if (!CanDoRTIfNeeded) { 2556 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2557 recordAnalysis("CantCheckMemDepsAtRunTime", I) 2558 << "cannot check memory dependencies at runtime"; 2559 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2560 CanVecMem = false; 2561 return; 2562 } 2563 2564 CanVecMem = true; 2565 } 2566 } 2567 2568 if (HasConvergentOp) { 2569 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2570 << "cannot add control dependency to convergent operation"; 2571 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2572 "would be needed with a convergent operation\n"); 2573 CanVecMem = false; 2574 return; 2575 } 2576 2577 if (CanVecMem) 2578 LLVM_DEBUG( 2579 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2580 << (PtrRtChecking->Need ? "" : " don't") 2581 << " need runtime memory checks.\n"); 2582 else 2583 emitUnsafeDependenceRemark(); 2584 } 2585 2586 void LoopAccessInfo::emitUnsafeDependenceRemark() { 2587 auto Deps = getDepChecker().getDependences(); 2588 if (!Deps) 2589 return; 2590 auto Found = llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) { 2591 return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) != 2592 MemoryDepChecker::VectorizationSafetyStatus::Safe; 2593 }); 2594 if (Found == Deps->end()) 2595 return; 2596 MemoryDepChecker::Dependence Dep = *Found; 2597 2598 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2599 2600 // Emit remark for first unsafe dependence 2601 bool HasForcedDistribution = false; 2602 std::optional<const MDOperand *> Value = 2603 findStringMetadataForLoop(TheLoop, "llvm.loop.distribute.enable"); 2604 if (Value) { 2605 const MDOperand *Op = *Value; 2606 assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata"); 2607 HasForcedDistribution = mdconst::extract<ConstantInt>(*Op)->getZExtValue(); 2608 } 2609 2610 const std::string Info = 2611 HasForcedDistribution 2612 ? "unsafe dependent memory operations in loop." 2613 : "unsafe dependent memory operations in loop. Use " 2614 "#pragma clang loop distribute(enable) to allow loop distribution " 2615 "to attempt to isolate the offending operations into a separate " 2616 "loop"; 2617 OptimizationRemarkAnalysis &R = 2618 recordAnalysis("UnsafeDep", Dep.getDestination(*this)) << Info; 2619 2620 switch (Dep.Type) { 2621 case MemoryDepChecker::Dependence::NoDep: 2622 case MemoryDepChecker::Dependence::Forward: 2623 case MemoryDepChecker::Dependence::BackwardVectorizable: 2624 llvm_unreachable("Unexpected dependence"); 2625 case MemoryDepChecker::Dependence::Backward: 2626 R << "\nBackward loop carried data dependence."; 2627 break; 2628 case MemoryDepChecker::Dependence::ForwardButPreventsForwarding: 2629 R << "\nForward loop carried data dependence that prevents " 2630 "store-to-load forwarding."; 2631 break; 2632 case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding: 2633 R << "\nBackward loop carried data dependence that prevents " 2634 "store-to-load forwarding."; 2635 break; 2636 case MemoryDepChecker::Dependence::IndirectUnsafe: 2637 R << "\nUnsafe indirect dependence."; 2638 break; 2639 case MemoryDepChecker::Dependence::Unknown: 2640 R << "\nUnknown data dependence."; 2641 break; 2642 } 2643 2644 if (Instruction *I = Dep.getSource(*this)) { 2645 DebugLoc SourceLoc = I->getDebugLoc(); 2646 if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I))) 2647 SourceLoc = DD->getDebugLoc(); 2648 if (SourceLoc) 2649 R << " Memory location is the same as accessed at " 2650 << ore::NV("Location", SourceLoc); 2651 } 2652 } 2653 2654 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2655 DominatorTree *DT) { 2656 assert(TheLoop->contains(BB) && "Unknown block used"); 2657 2658 // Blocks that do not dominate the latch need predication. 2659 BasicBlock* Latch = TheLoop->getLoopLatch(); 2660 return !DT->dominates(BB, Latch); 2661 } 2662 2663 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2664 Instruction *I) { 2665 assert(!Report && "Multiple reports generated"); 2666 2667 Value *CodeRegion = TheLoop->getHeader(); 2668 DebugLoc DL = TheLoop->getStartLoc(); 2669 2670 if (I) { 2671 CodeRegion = I->getParent(); 2672 // If there is no debug location attached to the instruction, revert back to 2673 // using the loop's. 2674 if (I->getDebugLoc()) 2675 DL = I->getDebugLoc(); 2676 } 2677 2678 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2679 CodeRegion); 2680 return *Report; 2681 } 2682 2683 bool LoopAccessInfo::isInvariant(Value *V) const { 2684 auto *SE = PSE->getSE(); 2685 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2686 // trivially loop-invariant FP values to be considered invariant. 2687 if (!SE->isSCEVable(V->getType())) 2688 return false; 2689 const SCEV *S = SE->getSCEV(V); 2690 return SE->isLoopInvariant(S, TheLoop); 2691 } 2692 2693 /// Find the operand of the GEP that should be checked for consecutive 2694 /// stores. This ignores trailing indices that have no effect on the final 2695 /// pointer. 2696 static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) { 2697 const DataLayout &DL = Gep->getModule()->getDataLayout(); 2698 unsigned LastOperand = Gep->getNumOperands() - 1; 2699 TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); 2700 2701 // Walk backwards and try to peel off zeros. 2702 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 2703 // Find the type we're currently indexing into. 2704 gep_type_iterator GEPTI = gep_type_begin(Gep); 2705 std::advance(GEPTI, LastOperand - 2); 2706 2707 // If it's a type with the same allocation size as the result of the GEP we 2708 // can peel off the zero index. 2709 TypeSize ElemSize = GEPTI.isStruct() 2710 ? DL.getTypeAllocSize(GEPTI.getIndexedType()) 2711 : GEPTI.getSequentialElementStride(DL); 2712 if (ElemSize != GEPAllocSize) 2713 break; 2714 --LastOperand; 2715 } 2716 2717 return LastOperand; 2718 } 2719 2720 /// If the argument is a GEP, then returns the operand identified by 2721 /// getGEPInductionOperand. However, if there is some other non-loop-invariant 2722 /// operand, it returns that instead. 2723 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 2724 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 2725 if (!GEP) 2726 return Ptr; 2727 2728 unsigned InductionOperand = getGEPInductionOperand(GEP); 2729 2730 // Check that all of the gep indices are uniform except for our induction 2731 // operand. 2732 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 2733 if (i != InductionOperand && 2734 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 2735 return Ptr; 2736 return GEP->getOperand(InductionOperand); 2737 } 2738 2739 /// If a value has only one user that is a CastInst, return it. 2740 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 2741 Value *UniqueCast = nullptr; 2742 for (User *U : Ptr->users()) { 2743 CastInst *CI = dyn_cast<CastInst>(U); 2744 if (CI && CI->getType() == Ty) { 2745 if (!UniqueCast) 2746 UniqueCast = CI; 2747 else 2748 return nullptr; 2749 } 2750 } 2751 return UniqueCast; 2752 } 2753 2754 /// Get the stride of a pointer access in a loop. Looks for symbolic 2755 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. 2756 static const SCEV *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 2757 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 2758 if (!PtrTy || PtrTy->isAggregateType()) 2759 return nullptr; 2760 2761 // Try to remove a gep instruction to make the pointer (actually index at this 2762 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the 2763 // pointer, otherwise, we are analyzing the index. 2764 Value *OrigPtr = Ptr; 2765 2766 // The size of the pointer access. 2767 int64_t PtrAccessSize = 1; 2768 2769 Ptr = stripGetElementPtr(Ptr, SE, Lp); 2770 const SCEV *V = SE->getSCEV(Ptr); 2771 2772 if (Ptr != OrigPtr) 2773 // Strip off casts. 2774 while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) 2775 V = C->getOperand(); 2776 2777 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 2778 if (!S) 2779 return nullptr; 2780 2781 // If the pointer is invariant then there is no stride and it makes no 2782 // sense to add it here. 2783 if (Lp != S->getLoop()) 2784 return nullptr; 2785 2786 V = S->getStepRecurrence(*SE); 2787 if (!V) 2788 return nullptr; 2789 2790 // Strip off the size of access multiplication if we are still analyzing the 2791 // pointer. 2792 if (OrigPtr == Ptr) { 2793 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 2794 if (M->getOperand(0)->getSCEVType() != scConstant) 2795 return nullptr; 2796 2797 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); 2798 2799 // Huge step value - give up. 2800 if (APStepVal.getBitWidth() > 64) 2801 return nullptr; 2802 2803 int64_t StepVal = APStepVal.getSExtValue(); 2804 if (PtrAccessSize != StepVal) 2805 return nullptr; 2806 V = M->getOperand(1); 2807 } 2808 } 2809 2810 // Note that the restriction after this loop invariant check are only 2811 // profitability restrictions. 2812 if (!SE->isLoopInvariant(V, Lp)) 2813 return nullptr; 2814 2815 // Look for the loop invariant symbolic value. 2816 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 2817 if (!U) { 2818 const auto *C = dyn_cast<SCEVIntegralCastExpr>(V); 2819 if (!C) 2820 return nullptr; 2821 U = dyn_cast<SCEVUnknown>(C->getOperand()); 2822 if (!U) 2823 return nullptr; 2824 2825 // Match legacy behavior - this is not needed for correctness 2826 if (!getUniqueCastUse(U->getValue(), Lp, V->getType())) 2827 return nullptr; 2828 } 2829 2830 return V; 2831 } 2832 2833 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2834 Value *Ptr = getLoadStorePointerOperand(MemAccess); 2835 if (!Ptr) 2836 return; 2837 2838 // Note: getStrideFromPointer is a *profitability* heuristic. We 2839 // could broaden the scope of values returned here - to anything 2840 // which happens to be loop invariant and contributes to the 2841 // computation of an interesting IV - but we chose not to as we 2842 // don't have a cost model here, and broadening the scope exposes 2843 // far too many unprofitable cases. 2844 const SCEV *StrideExpr = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2845 if (!StrideExpr) 2846 return; 2847 2848 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2849 "versioning:"); 2850 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *StrideExpr << "\n"); 2851 2852 if (!SpeculateUnitStride) { 2853 LLVM_DEBUG(dbgs() << " Chose not to due to -laa-speculate-unit-stride\n"); 2854 return; 2855 } 2856 2857 // Avoid adding the "Stride == 1" predicate when we know that 2858 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2859 // or zero iteration loop, as Trip-Count <= Stride == 1. 2860 // 2861 // TODO: We are currently not making a very informed decision on when it is 2862 // beneficial to apply stride versioning. It might make more sense that the 2863 // users of this analysis (such as the vectorizer) will trigger it, based on 2864 // their specific cost considerations; For example, in cases where stride 2865 // versioning does not help resolving memory accesses/dependences, the 2866 // vectorizer should evaluate the cost of the runtime test, and the benefit 2867 // of various possible stride specializations, considering the alternatives 2868 // of using gather/scatters (if available). 2869 2870 const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2871 2872 // Match the types so we can compare the stride and the BETakenCount. 2873 // The Stride can be positive/negative, so we sign extend Stride; 2874 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount. 2875 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2876 uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType()); 2877 uint64_t BETypeSizeBits = DL.getTypeSizeInBits(BETakenCount->getType()); 2878 const SCEV *CastedStride = StrideExpr; 2879 const SCEV *CastedBECount = BETakenCount; 2880 ScalarEvolution *SE = PSE->getSE(); 2881 if (BETypeSizeBits >= StrideTypeSizeBits) 2882 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2883 else 2884 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2885 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2886 // Since TripCount == BackEdgeTakenCount + 1, checking: 2887 // "Stride >= TripCount" is equivalent to checking: 2888 // Stride - BETakenCount > 0 2889 if (SE->isKnownPositive(StrideMinusBETaken)) { 2890 LLVM_DEBUG( 2891 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2892 "Stride==1 predicate will imply that the loop executes " 2893 "at most once.\n"); 2894 return; 2895 } 2896 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n"); 2897 2898 // Strip back off the integer cast, and check that our result is a 2899 // SCEVUnknown as we expect. 2900 const SCEV *StrideBase = StrideExpr; 2901 if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(StrideBase)) 2902 StrideBase = C->getOperand(); 2903 SymbolicStrides[Ptr] = cast<SCEVUnknown>(StrideBase); 2904 } 2905 2906 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2907 const TargetLibraryInfo *TLI, AAResults *AA, 2908 DominatorTree *DT, LoopInfo *LI) 2909 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2910 PtrRtChecking(nullptr), 2911 DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L) { 2912 PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE); 2913 if (canAnalyzeLoop()) { 2914 analyzeLoop(AA, LI, TLI, DT); 2915 } 2916 } 2917 2918 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2919 if (CanVecMem) { 2920 OS.indent(Depth) << "Memory dependences are safe"; 2921 const MemoryDepChecker &DC = getDepChecker(); 2922 if (!DC.isSafeForAnyVectorWidth()) 2923 OS << " with a maximum safe vector width of " 2924 << DC.getMaxSafeVectorWidthInBits() << " bits"; 2925 if (PtrRtChecking->Need) 2926 OS << " with run-time checks"; 2927 OS << "\n"; 2928 } 2929 2930 if (HasConvergentOp) 2931 OS.indent(Depth) << "Has convergent operation in loop\n"; 2932 2933 if (Report) 2934 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2935 2936 if (auto *Dependences = DepChecker->getDependences()) { 2937 OS.indent(Depth) << "Dependences:\n"; 2938 for (const auto &Dep : *Dependences) { 2939 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2940 OS << "\n"; 2941 } 2942 } else 2943 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2944 2945 // List the pair of accesses need run-time checks to prove independence. 2946 PtrRtChecking->print(OS, Depth); 2947 OS << "\n"; 2948 2949 OS.indent(Depth) << "Non vectorizable stores to invariant address were " 2950 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") 2951 << "found in loop.\n"; 2952 2953 OS.indent(Depth) << "SCEV assumptions:\n"; 2954 PSE->getPredicate().print(OS, Depth); 2955 2956 OS << "\n"; 2957 2958 OS.indent(Depth) << "Expressions re-written:\n"; 2959 PSE->print(OS, Depth); 2960 } 2961 2962 const LoopAccessInfo &LoopAccessInfoManager::getInfo(Loop &L) { 2963 auto I = LoopAccessInfoMap.insert({&L, nullptr}); 2964 2965 if (I.second) 2966 I.first->second = 2967 std::make_unique<LoopAccessInfo>(&L, &SE, TLI, &AA, &DT, &LI); 2968 2969 return *I.first->second; 2970 } 2971 2972 bool LoopAccessInfoManager::invalidate( 2973 Function &F, const PreservedAnalyses &PA, 2974 FunctionAnalysisManager::Invalidator &Inv) { 2975 // Check whether our analysis is preserved. 2976 auto PAC = PA.getChecker<LoopAccessAnalysis>(); 2977 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) 2978 // If not, give up now. 2979 return true; 2980 2981 // Check whether the analyses we depend on became invalid for any reason. 2982 // Skip checking TargetLibraryAnalysis as it is immutable and can't become 2983 // invalid. 2984 return Inv.invalidate<AAManager>(F, PA) || 2985 Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) || 2986 Inv.invalidate<LoopAnalysis>(F, PA) || 2987 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 2988 } 2989 2990 LoopAccessInfoManager LoopAccessAnalysis::run(Function &F, 2991 FunctionAnalysisManager &FAM) { 2992 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F); 2993 auto &AA = FAM.getResult<AAManager>(F); 2994 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 2995 auto &LI = FAM.getResult<LoopAnalysis>(F); 2996 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 2997 return LoopAccessInfoManager(SE, AA, DT, LI, &TLI); 2998 } 2999 3000 AnalysisKey LoopAccessAnalysis::Key; 3001