1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/EquivalenceClasses.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AliasSetTracker.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/PassManager.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/IR/ValueHandle.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <cstdlib> 64 #include <iterator> 65 #include <utility> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "loop-accesses" 71 72 static cl::opt<unsigned, true> 73 VectorizationFactor("force-vector-width", cl::Hidden, 74 cl::desc("Sets the SIMD width. Zero is autoselect."), 75 cl::location(VectorizerParams::VectorizationFactor)); 76 unsigned VectorizerParams::VectorizationFactor; 77 78 static cl::opt<unsigned, true> 79 VectorizationInterleave("force-vector-interleave", cl::Hidden, 80 cl::desc("Sets the vectorization interleave count. " 81 "Zero is autoselect."), 82 cl::location( 83 VectorizerParams::VectorizationInterleave)); 84 unsigned VectorizerParams::VectorizationInterleave; 85 86 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 87 "runtime-memory-check-threshold", cl::Hidden, 88 cl::desc("When performing memory disambiguation checks at runtime do not " 89 "generate more than this number of comparisons (default = 8)."), 90 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 91 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 92 93 /// The maximum iterations used to merge memory checks 94 static cl::opt<unsigned> MemoryCheckMergeThreshold( 95 "memory-check-merge-threshold", cl::Hidden, 96 cl::desc("Maximum number of comparisons done when trying to merge " 97 "runtime memory checks. (default = 100)"), 98 cl::init(100)); 99 100 /// Maximum SIMD width. 101 const unsigned VectorizerParams::MaxVectorWidth = 64; 102 103 /// We collect dependences up to this threshold. 104 static cl::opt<unsigned> 105 MaxDependences("max-dependences", cl::Hidden, 106 cl::desc("Maximum number of dependences collected by " 107 "loop-access analysis (default = 100)"), 108 cl::init(100)); 109 110 /// This enables versioning on the strides of symbolically striding memory 111 /// accesses in code like the following. 112 /// for (i = 0; i < N; ++i) 113 /// A[i * Stride1] += B[i * Stride2] ... 114 /// 115 /// Will be roughly translated to 116 /// if (Stride1 == 1 && Stride2 == 1) { 117 /// for (i = 0; i < N; i+=4) 118 /// A[i:i+3] += ... 119 /// } else 120 /// ... 121 static cl::opt<bool> EnableMemAccessVersioning( 122 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 123 cl::desc("Enable symbolic stride memory access versioning")); 124 125 /// Enable store-to-load forwarding conflict detection. This option can 126 /// be disabled for correctness testing. 127 static cl::opt<bool> EnableForwardingConflictDetection( 128 "store-to-load-forwarding-conflict-detection", cl::Hidden, 129 cl::desc("Enable conflict detection in loop-access analysis"), 130 cl::init(true)); 131 132 bool VectorizerParams::isInterleaveForced() { 133 return ::VectorizationInterleave.getNumOccurrences() > 0; 134 } 135 136 Value *llvm::stripIntegerCast(Value *V) { 137 if (auto *CI = dyn_cast<CastInst>(V)) 138 if (CI->getOperand(0)->getType()->isIntegerTy()) 139 return CI->getOperand(0); 140 return V; 141 } 142 143 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 144 const ValueToValueMap &PtrToStride, 145 Value *Ptr, Value *OrigPtr) { 146 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 147 148 // If there is an entry in the map return the SCEV of the pointer with the 149 // symbolic stride replaced by one. 150 ValueToValueMap::const_iterator SI = 151 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 152 if (SI != PtrToStride.end()) { 153 Value *StrideVal = SI->second; 154 155 // Strip casts. 156 StrideVal = stripIntegerCast(StrideVal); 157 158 ScalarEvolution *SE = PSE.getSE(); 159 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 160 const auto *CT = 161 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 162 163 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 164 auto *Expr = PSE.getSCEV(Ptr); 165 166 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 167 << " by: " << *Expr << "\n"); 168 return Expr; 169 } 170 171 // Otherwise, just return the SCEV of the original pointer. 172 return OrigSCEV; 173 } 174 175 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 176 unsigned Index, RuntimePointerChecking &RtCheck) 177 : RtCheck(RtCheck), High(RtCheck.Pointers[Index].End), 178 Low(RtCheck.Pointers[Index].Start) { 179 Members.push_back(Index); 180 } 181 182 /// Calculate Start and End points of memory access. 183 /// Let's assume A is the first access and B is a memory access on N-th loop 184 /// iteration. Then B is calculated as: 185 /// B = A + Step*N . 186 /// Step value may be positive or negative. 187 /// N is a calculated back-edge taken count: 188 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 189 /// Start and End points are calculated in the following way: 190 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 191 /// where SizeOfElt is the size of single memory access in bytes. 192 /// 193 /// There is no conflict when the intervals are disjoint: 194 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 195 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 196 unsigned DepSetId, unsigned ASId, 197 const ValueToValueMap &Strides, 198 PredicatedScalarEvolution &PSE) { 199 // Get the stride replaced scev. 200 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 201 ScalarEvolution *SE = PSE.getSE(); 202 203 const SCEV *ScStart; 204 const SCEV *ScEnd; 205 206 if (SE->isLoopInvariant(Sc, Lp)) 207 ScStart = ScEnd = Sc; 208 else { 209 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 210 assert(AR && "Invalid addrec expression"); 211 const SCEV *Ex = PSE.getBackedgeTakenCount(); 212 213 ScStart = AR->getStart(); 214 ScEnd = AR->evaluateAtIteration(Ex, *SE); 215 const SCEV *Step = AR->getStepRecurrence(*SE); 216 217 // For expressions with negative step, the upper bound is ScStart and the 218 // lower bound is ScEnd. 219 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 220 if (CStep->getValue()->isNegative()) 221 std::swap(ScStart, ScEnd); 222 } else { 223 // Fallback case: the step is not constant, but we can still 224 // get the upper and lower bounds of the interval by using min/max 225 // expressions. 226 ScStart = SE->getUMinExpr(ScStart, ScEnd); 227 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 228 } 229 // Add the size of the pointed element to ScEnd. 230 unsigned EltSize = 231 Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8; 232 const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize); 233 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 234 } 235 236 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 237 } 238 239 SmallVector<RuntimePointerCheck, 4> 240 RuntimePointerChecking::generateChecks() const { 241 SmallVector<RuntimePointerCheck, 4> Checks; 242 243 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 244 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 245 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 246 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 247 248 if (needsChecking(CGI, CGJ)) 249 Checks.push_back(std::make_pair(&CGI, &CGJ)); 250 } 251 } 252 return Checks; 253 } 254 255 void RuntimePointerChecking::generateChecks( 256 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 257 assert(Checks.empty() && "Checks is not empty"); 258 groupChecks(DepCands, UseDependencies); 259 Checks = generateChecks(); 260 } 261 262 bool RuntimePointerChecking::needsChecking( 263 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 264 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 265 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 266 if (needsChecking(M.Members[I], N.Members[J])) 267 return true; 268 return false; 269 } 270 271 /// Compare \p I and \p J and return the minimum. 272 /// Return nullptr in case we couldn't find an answer. 273 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 274 ScalarEvolution *SE) { 275 const SCEV *Diff = SE->getMinusSCEV(J, I); 276 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 277 278 if (!C) 279 return nullptr; 280 if (C->getValue()->isNegative()) 281 return J; 282 return I; 283 } 284 285 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index) { 286 const SCEV *Start = RtCheck.Pointers[Index].Start; 287 const SCEV *End = RtCheck.Pointers[Index].End; 288 289 // Compare the starts and ends with the known minimum and maximum 290 // of this set. We need to know how we compare against the min/max 291 // of the set in order to be able to emit memchecks. 292 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 293 if (!Min0) 294 return false; 295 296 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 297 if (!Min1) 298 return false; 299 300 // Update the low bound expression if we've found a new min value. 301 if (Min0 == Start) 302 Low = Start; 303 304 // Update the high bound expression if we've found a new max value. 305 if (Min1 != End) 306 High = End; 307 308 Members.push_back(Index); 309 return true; 310 } 311 312 void RuntimePointerChecking::groupChecks( 313 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 314 // We build the groups from dependency candidates equivalence classes 315 // because: 316 // - We know that pointers in the same equivalence class share 317 // the same underlying object and therefore there is a chance 318 // that we can compare pointers 319 // - We wouldn't be able to merge two pointers for which we need 320 // to emit a memcheck. The classes in DepCands are already 321 // conveniently built such that no two pointers in the same 322 // class need checking against each other. 323 324 // We use the following (greedy) algorithm to construct the groups 325 // For every pointer in the equivalence class: 326 // For each existing group: 327 // - if the difference between this pointer and the min/max bounds 328 // of the group is a constant, then make the pointer part of the 329 // group and update the min/max bounds of that group as required. 330 331 CheckingGroups.clear(); 332 333 // If we need to check two pointers to the same underlying object 334 // with a non-constant difference, we shouldn't perform any pointer 335 // grouping with those pointers. This is because we can easily get 336 // into cases where the resulting check would return false, even when 337 // the accesses are safe. 338 // 339 // The following example shows this: 340 // for (i = 0; i < 1000; ++i) 341 // a[5000 + i * m] = a[i] + a[i + 9000] 342 // 343 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 344 // (0, 10000) which is always false. However, if m is 1, there is no 345 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 346 // us to perform an accurate check in this case. 347 // 348 // The above case requires that we have an UnknownDependence between 349 // accesses to the same underlying object. This cannot happen unless 350 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 351 // is also false. In this case we will use the fallback path and create 352 // separate checking groups for all pointers. 353 354 // If we don't have the dependency partitions, construct a new 355 // checking pointer group for each pointer. This is also required 356 // for correctness, because in this case we can have checking between 357 // pointers to the same underlying object. 358 if (!UseDependencies) { 359 for (unsigned I = 0; I < Pointers.size(); ++I) 360 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this)); 361 return; 362 } 363 364 unsigned TotalComparisons = 0; 365 366 DenseMap<Value *, unsigned> PositionMap; 367 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 368 PositionMap[Pointers[Index].PointerValue] = Index; 369 370 // We need to keep track of what pointers we've already seen so we 371 // don't process them twice. 372 SmallSet<unsigned, 2> Seen; 373 374 // Go through all equivalence classes, get the "pointer check groups" 375 // and add them to the overall solution. We use the order in which accesses 376 // appear in 'Pointers' to enforce determinism. 377 for (unsigned I = 0; I < Pointers.size(); ++I) { 378 // We've seen this pointer before, and therefore already processed 379 // its equivalence class. 380 if (Seen.count(I)) 381 continue; 382 383 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 384 Pointers[I].IsWritePtr); 385 386 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 387 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 388 389 // Because DepCands is constructed by visiting accesses in the order in 390 // which they appear in alias sets (which is deterministic) and the 391 // iteration order within an equivalence class member is only dependent on 392 // the order in which unions and insertions are performed on the 393 // equivalence class, the iteration order is deterministic. 394 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 395 MI != ME; ++MI) { 396 unsigned Pointer = PositionMap[MI->getPointer()]; 397 bool Merged = false; 398 // Mark this pointer as seen. 399 Seen.insert(Pointer); 400 401 // Go through all the existing sets and see if we can find one 402 // which can include this pointer. 403 for (RuntimeCheckingPtrGroup &Group : Groups) { 404 // Don't perform more than a certain amount of comparisons. 405 // This should limit the cost of grouping the pointers to something 406 // reasonable. If we do end up hitting this threshold, the algorithm 407 // will create separate groups for all remaining pointers. 408 if (TotalComparisons > MemoryCheckMergeThreshold) 409 break; 410 411 TotalComparisons++; 412 413 if (Group.addPointer(Pointer)) { 414 Merged = true; 415 break; 416 } 417 } 418 419 if (!Merged) 420 // We couldn't add this pointer to any existing set or the threshold 421 // for the number of comparisons has been reached. Create a new group 422 // to hold the current pointer. 423 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this)); 424 } 425 426 // We've computed the grouped checks for this partition. 427 // Save the results and continue with the next one. 428 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 429 } 430 } 431 432 bool RuntimePointerChecking::arePointersInSamePartition( 433 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 434 unsigned PtrIdx2) { 435 return (PtrToPartition[PtrIdx1] != -1 && 436 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 437 } 438 439 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 440 const PointerInfo &PointerI = Pointers[I]; 441 const PointerInfo &PointerJ = Pointers[J]; 442 443 // No need to check if two readonly pointers intersect. 444 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 445 return false; 446 447 // Only need to check pointers between two different dependency sets. 448 if (PointerI.DependencySetId == PointerJ.DependencySetId) 449 return false; 450 451 // Only need to check pointers in the same alias set. 452 if (PointerI.AliasSetId != PointerJ.AliasSetId) 453 return false; 454 455 return true; 456 } 457 458 void RuntimePointerChecking::printChecks( 459 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 460 unsigned Depth) const { 461 unsigned N = 0; 462 for (const auto &Check : Checks) { 463 const auto &First = Check.first->Members, &Second = Check.second->Members; 464 465 OS.indent(Depth) << "Check " << N++ << ":\n"; 466 467 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 468 for (unsigned K = 0; K < First.size(); ++K) 469 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 470 471 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 472 for (unsigned K = 0; K < Second.size(); ++K) 473 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 474 } 475 } 476 477 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 478 479 OS.indent(Depth) << "Run-time memory checks:\n"; 480 printChecks(OS, Checks, Depth); 481 482 OS.indent(Depth) << "Grouped accesses:\n"; 483 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 484 const auto &CG = CheckingGroups[I]; 485 486 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 487 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 488 << ")\n"; 489 for (unsigned J = 0; J < CG.Members.size(); ++J) { 490 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 491 << "\n"; 492 } 493 } 494 } 495 496 namespace { 497 498 /// Analyses memory accesses in a loop. 499 /// 500 /// Checks whether run time pointer checks are needed and builds sets for data 501 /// dependence checking. 502 class AccessAnalysis { 503 public: 504 /// Read or write access location. 505 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 506 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 507 508 AccessAnalysis(const DataLayout &Dl, Loop *TheLoop, AAResults *AA, 509 LoopInfo *LI, MemoryDepChecker::DepCandidates &DA, 510 PredicatedScalarEvolution &PSE) 511 : DL(Dl), TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), 512 IsRTCheckAnalysisNeeded(false), PSE(PSE) {} 513 514 /// Register a load and whether it is only read from. 515 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 516 Value *Ptr = const_cast<Value*>(Loc.Ptr); 517 AST.add(Ptr, LocationSize::unknown(), Loc.AATags); 518 Accesses.insert(MemAccessInfo(Ptr, false)); 519 if (IsReadOnly) 520 ReadOnlyPtr.insert(Ptr); 521 } 522 523 /// Register a store. 524 void addStore(MemoryLocation &Loc) { 525 Value *Ptr = const_cast<Value*>(Loc.Ptr); 526 AST.add(Ptr, LocationSize::unknown(), Loc.AATags); 527 Accesses.insert(MemAccessInfo(Ptr, true)); 528 } 529 530 /// Check if we can emit a run-time no-alias check for \p Access. 531 /// 532 /// Returns true if we can emit a run-time no alias check for \p Access. 533 /// If we can check this access, this also adds it to a dependence set and 534 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 535 /// we will attempt to use additional run-time checks in order to get 536 /// the bounds of the pointer. 537 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 538 MemAccessInfo Access, 539 const ValueToValueMap &Strides, 540 DenseMap<Value *, unsigned> &DepSetId, 541 Loop *TheLoop, unsigned &RunningDepId, 542 unsigned ASId, bool ShouldCheckStride, 543 bool Assume); 544 545 /// Check whether we can check the pointers at runtime for 546 /// non-intersection. 547 /// 548 /// Returns true if we need no check or if we do and we can generate them 549 /// (i.e. the pointers have computable bounds). 550 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 551 Loop *TheLoop, const ValueToValueMap &Strides, 552 bool ShouldCheckWrap = false); 553 554 /// Goes over all memory accesses, checks whether a RT check is needed 555 /// and builds sets of dependent accesses. 556 void buildDependenceSets() { 557 processMemAccesses(); 558 } 559 560 /// Initial processing of memory accesses determined that we need to 561 /// perform dependency checking. 562 /// 563 /// Note that this can later be cleared if we retry memcheck analysis without 564 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 565 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 566 567 /// We decided that no dependence analysis would be used. Reset the state. 568 void resetDepChecks(MemoryDepChecker &DepChecker) { 569 CheckDeps.clear(); 570 DepChecker.clearDependences(); 571 } 572 573 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 574 575 private: 576 typedef SetVector<MemAccessInfo> PtrAccessSet; 577 578 /// Go over all memory access and check whether runtime pointer checks 579 /// are needed and build sets of dependency check candidates. 580 void processMemAccesses(); 581 582 /// Set of all accesses. 583 PtrAccessSet Accesses; 584 585 const DataLayout &DL; 586 587 /// The loop being checked. 588 const Loop *TheLoop; 589 590 /// List of accesses that need a further dependence check. 591 MemAccessInfoList CheckDeps; 592 593 /// Set of pointers that are read only. 594 SmallPtrSet<Value*, 16> ReadOnlyPtr; 595 596 /// An alias set tracker to partition the access set by underlying object and 597 //intrinsic property (such as TBAA metadata). 598 AliasSetTracker AST; 599 600 LoopInfo *LI; 601 602 /// Sets of potentially dependent accesses - members of one set share an 603 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 604 /// dependence check. 605 MemoryDepChecker::DepCandidates &DepCands; 606 607 /// Initial processing of memory accesses determined that we may need 608 /// to add memchecks. Perform the analysis to determine the necessary checks. 609 /// 610 /// Note that, this is different from isDependencyCheckNeeded. When we retry 611 /// memcheck analysis without dependency checking 612 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 613 /// cleared while this remains set if we have potentially dependent accesses. 614 bool IsRTCheckAnalysisNeeded; 615 616 /// The SCEV predicate containing all the SCEV-related assumptions. 617 PredicatedScalarEvolution &PSE; 618 }; 619 620 } // end anonymous namespace 621 622 /// Check whether a pointer can participate in a runtime bounds check. 623 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 624 /// by adding run-time checks (overflow checks) if necessary. 625 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 626 const ValueToValueMap &Strides, Value *Ptr, 627 Loop *L, bool Assume) { 628 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 629 630 // The bounds for loop-invariant pointer is trivial. 631 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 632 return true; 633 634 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 635 636 if (!AR && Assume) 637 AR = PSE.getAsAddRec(Ptr); 638 639 if (!AR) 640 return false; 641 642 return AR->isAffine(); 643 } 644 645 /// Check whether a pointer address cannot wrap. 646 static bool isNoWrap(PredicatedScalarEvolution &PSE, 647 const ValueToValueMap &Strides, Value *Ptr, Loop *L) { 648 const SCEV *PtrScev = PSE.getSCEV(Ptr); 649 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 650 return true; 651 652 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); 653 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 654 return true; 655 656 return false; 657 } 658 659 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 660 MemAccessInfo Access, 661 const ValueToValueMap &StridesMap, 662 DenseMap<Value *, unsigned> &DepSetId, 663 Loop *TheLoop, unsigned &RunningDepId, 664 unsigned ASId, bool ShouldCheckWrap, 665 bool Assume) { 666 Value *Ptr = Access.getPointer(); 667 668 if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume)) 669 return false; 670 671 // When we run after a failing dependency check we have to make sure 672 // we don't have wrapping pointers. 673 if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) { 674 auto *Expr = PSE.getSCEV(Ptr); 675 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 676 return false; 677 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 678 } 679 680 // The id of the dependence set. 681 unsigned DepId; 682 683 if (isDependencyCheckNeeded()) { 684 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 685 unsigned &LeaderId = DepSetId[Leader]; 686 if (!LeaderId) 687 LeaderId = RunningDepId++; 688 DepId = LeaderId; 689 } else 690 // Each access has its own dependence set. 691 DepId = RunningDepId++; 692 693 bool IsWrite = Access.getInt(); 694 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 695 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 696 697 return true; 698 } 699 700 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 701 ScalarEvolution *SE, Loop *TheLoop, 702 const ValueToValueMap &StridesMap, 703 bool ShouldCheckWrap) { 704 // Find pointers with computable bounds. We are going to use this information 705 // to place a runtime bound check. 706 bool CanDoRT = true; 707 708 bool MayNeedRTCheck = false; 709 if (!IsRTCheckAnalysisNeeded) return true; 710 711 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 712 713 // We assign a consecutive id to access from different alias sets. 714 // Accesses between different groups doesn't need to be checked. 715 unsigned ASId = 0; 716 for (auto &AS : AST) { 717 int NumReadPtrChecks = 0; 718 int NumWritePtrChecks = 0; 719 bool CanDoAliasSetRT = true; 720 ++ASId; 721 722 // We assign consecutive id to access from different dependence sets. 723 // Accesses within the same set don't need a runtime check. 724 unsigned RunningDepId = 1; 725 DenseMap<Value *, unsigned> DepSetId; 726 727 SmallVector<MemAccessInfo, 4> Retries; 728 729 for (auto A : AS) { 730 Value *Ptr = A.getValue(); 731 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 732 MemAccessInfo Access(Ptr, IsWrite); 733 734 if (IsWrite) 735 ++NumWritePtrChecks; 736 else 737 ++NumReadPtrChecks; 738 739 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop, 740 RunningDepId, ASId, ShouldCheckWrap, false)) { 741 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 742 Retries.push_back(Access); 743 CanDoAliasSetRT = false; 744 } 745 } 746 747 // If we have at least two writes or one write and a read then we need to 748 // check them. But there is no need to checks if there is only one 749 // dependence set for this alias set. 750 // 751 // Note that this function computes CanDoRT and MayNeedRTCheck 752 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that 753 // we have a pointer for which we couldn't find the bounds but we don't 754 // actually need to emit any checks so it does not matter. 755 bool NeedsAliasSetRTCheck = false; 756 if (!(IsDepCheckNeeded && CanDoAliasSetRT && RunningDepId == 2)) { 757 NeedsAliasSetRTCheck = (NumWritePtrChecks >= 2 || 758 (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1)); 759 // For alias sets without at least 2 writes or 1 write and 1 read, there 760 // is no need to generate RT checks and CanDoAliasSetRT for this alias set 761 // does not impact whether runtime checks can be generated. 762 if (!NeedsAliasSetRTCheck) { 763 assert((AS.size() <= 1 || 764 all_of(AS, 765 [this](auto AC) { 766 MemAccessInfo AccessWrite(AC.getValue(), true); 767 return DepCands.findValue(AccessWrite) == 768 DepCands.end(); 769 })) && 770 "Can only skip updating CanDoRT below, if all entries in AS " 771 "are reads or there is at most 1 entry"); 772 continue; 773 } 774 } 775 776 // We need to perform run-time alias checks, but some pointers had bounds 777 // that couldn't be checked. 778 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 779 // Reset the CanDoSetRt flag and retry all accesses that have failed. 780 // We know that we need these checks, so we can now be more aggressive 781 // and add further checks if required (overflow checks). 782 CanDoAliasSetRT = true; 783 for (auto Access : Retries) 784 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, 785 TheLoop, RunningDepId, ASId, 786 ShouldCheckWrap, /*Assume=*/true)) { 787 CanDoAliasSetRT = false; 788 break; 789 } 790 } 791 792 CanDoRT &= CanDoAliasSetRT; 793 MayNeedRTCheck |= NeedsAliasSetRTCheck; 794 ++ASId; 795 } 796 797 // If the pointers that we would use for the bounds comparison have different 798 // address spaces, assume the values aren't directly comparable, so we can't 799 // use them for the runtime check. We also have to assume they could 800 // overlap. In the future there should be metadata for whether address spaces 801 // are disjoint. 802 unsigned NumPointers = RtCheck.Pointers.size(); 803 for (unsigned i = 0; i < NumPointers; ++i) { 804 for (unsigned j = i + 1; j < NumPointers; ++j) { 805 // Only need to check pointers between two different dependency sets. 806 if (RtCheck.Pointers[i].DependencySetId == 807 RtCheck.Pointers[j].DependencySetId) 808 continue; 809 // Only need to check pointers in the same alias set. 810 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 811 continue; 812 813 Value *PtrI = RtCheck.Pointers[i].PointerValue; 814 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 815 816 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 817 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 818 if (ASi != ASj) { 819 LLVM_DEBUG( 820 dbgs() << "LAA: Runtime check would require comparison between" 821 " different address spaces\n"); 822 return false; 823 } 824 } 825 } 826 827 if (MayNeedRTCheck && CanDoRT) 828 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 829 830 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 831 << " pointer comparisons.\n"); 832 833 // If we can do run-time checks, but there are no checks, no runtime checks 834 // are needed. This can happen when all pointers point to the same underlying 835 // object for example. 836 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck; 837 838 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT; 839 if (!CanDoRTIfNeeded) 840 RtCheck.reset(); 841 return CanDoRTIfNeeded; 842 } 843 844 void AccessAnalysis::processMemAccesses() { 845 // We process the set twice: first we process read-write pointers, last we 846 // process read-only pointers. This allows us to skip dependence tests for 847 // read-only pointers. 848 849 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 850 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 851 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 852 LLVM_DEBUG({ 853 for (auto A : Accesses) 854 dbgs() << "\t" << *A.getPointer() << " (" << 855 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 856 "read-only" : "read")) << ")\n"; 857 }); 858 859 // The AliasSetTracker has nicely partitioned our pointers by metadata 860 // compatibility and potential for underlying-object overlap. As a result, we 861 // only need to check for potential pointer dependencies within each alias 862 // set. 863 for (auto &AS : AST) { 864 // Note that both the alias-set tracker and the alias sets themselves used 865 // linked lists internally and so the iteration order here is deterministic 866 // (matching the original instruction order within each set). 867 868 bool SetHasWrite = false; 869 870 // Map of pointers to last access encountered. 871 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 872 UnderlyingObjToAccessMap ObjToLastAccess; 873 874 // Set of access to check after all writes have been processed. 875 PtrAccessSet DeferredAccesses; 876 877 // Iterate over each alias set twice, once to process read/write pointers, 878 // and then to process read-only pointers. 879 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 880 bool UseDeferred = SetIteration > 0; 881 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 882 883 for (auto AV : AS) { 884 Value *Ptr = AV.getValue(); 885 886 // For a single memory access in AliasSetTracker, Accesses may contain 887 // both read and write, and they both need to be handled for CheckDeps. 888 for (auto AC : S) { 889 if (AC.getPointer() != Ptr) 890 continue; 891 892 bool IsWrite = AC.getInt(); 893 894 // If we're using the deferred access set, then it contains only 895 // reads. 896 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 897 if (UseDeferred && !IsReadOnlyPtr) 898 continue; 899 // Otherwise, the pointer must be in the PtrAccessSet, either as a 900 // read or a write. 901 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 902 S.count(MemAccessInfo(Ptr, false))) && 903 "Alias-set pointer not in the access set?"); 904 905 MemAccessInfo Access(Ptr, IsWrite); 906 DepCands.insert(Access); 907 908 // Memorize read-only pointers for later processing and skip them in 909 // the first round (they need to be checked after we have seen all 910 // write pointers). Note: we also mark pointer that are not 911 // consecutive as "read-only" pointers (so that we check 912 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 913 if (!UseDeferred && IsReadOnlyPtr) { 914 DeferredAccesses.insert(Access); 915 continue; 916 } 917 918 // If this is a write - check other reads and writes for conflicts. If 919 // this is a read only check other writes for conflicts (but only if 920 // there is no other write to the ptr - this is an optimization to 921 // catch "a[i] = a[i] + " without having to do a dependence check). 922 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 923 CheckDeps.push_back(Access); 924 IsRTCheckAnalysisNeeded = true; 925 } 926 927 if (IsWrite) 928 SetHasWrite = true; 929 930 // Create sets of pointers connected by a shared alias set and 931 // underlying object. 932 typedef SmallVector<const Value *, 16> ValueVector; 933 ValueVector TempObjects; 934 935 GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 936 LLVM_DEBUG(dbgs() 937 << "Underlying objects for pointer " << *Ptr << "\n"); 938 for (const Value *UnderlyingObj : TempObjects) { 939 // nullptr never alias, don't join sets for pointer that have "null" 940 // in their UnderlyingObjects list. 941 if (isa<ConstantPointerNull>(UnderlyingObj) && 942 !NullPointerIsDefined( 943 TheLoop->getHeader()->getParent(), 944 UnderlyingObj->getType()->getPointerAddressSpace())) 945 continue; 946 947 UnderlyingObjToAccessMap::iterator Prev = 948 ObjToLastAccess.find(UnderlyingObj); 949 if (Prev != ObjToLastAccess.end()) 950 DepCands.unionSets(Access, Prev->second); 951 952 ObjToLastAccess[UnderlyingObj] = Access; 953 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 954 } 955 } 956 } 957 } 958 } 959 } 960 961 static bool isInBoundsGep(Value *Ptr) { 962 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 963 return GEP->isInBounds(); 964 return false; 965 } 966 967 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 968 /// i.e. monotonically increasing/decreasing. 969 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 970 PredicatedScalarEvolution &PSE, const Loop *L) { 971 // FIXME: This should probably only return true for NUW. 972 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 973 return true; 974 975 // Scalar evolution does not propagate the non-wrapping flags to values that 976 // are derived from a non-wrapping induction variable because non-wrapping 977 // could be flow-sensitive. 978 // 979 // Look through the potentially overflowing instruction to try to prove 980 // non-wrapping for the *specific* value of Ptr. 981 982 // The arithmetic implied by an inbounds GEP can't overflow. 983 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 984 if (!GEP || !GEP->isInBounds()) 985 return false; 986 987 // Make sure there is only one non-const index and analyze that. 988 Value *NonConstIndex = nullptr; 989 for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end())) 990 if (!isa<ConstantInt>(Index)) { 991 if (NonConstIndex) 992 return false; 993 NonConstIndex = Index; 994 } 995 if (!NonConstIndex) 996 // The recurrence is on the pointer, ignore for now. 997 return false; 998 999 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 1000 // AddRec using a NSW operation. 1001 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 1002 if (OBO->hasNoSignedWrap() && 1003 // Assume constant for other the operand so that the AddRec can be 1004 // easily found. 1005 isa<ConstantInt>(OBO->getOperand(1))) { 1006 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 1007 1008 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 1009 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 1010 } 1011 1012 return false; 1013 } 1014 1015 /// Check whether the access through \p Ptr has a constant stride. 1016 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, 1017 const Loop *Lp, const ValueToValueMap &StridesMap, 1018 bool Assume, bool ShouldCheckWrap) { 1019 Type *Ty = Ptr->getType(); 1020 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1021 1022 // Make sure that the pointer does not point to aggregate types. 1023 auto *PtrTy = cast<PointerType>(Ty); 1024 if (PtrTy->getElementType()->isAggregateType()) { 1025 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" 1026 << *Ptr << "\n"); 1027 return 0; 1028 } 1029 1030 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1031 1032 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1033 if (Assume && !AR) 1034 AR = PSE.getAsAddRec(Ptr); 1035 1036 if (!AR) { 1037 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1038 << " SCEV: " << *PtrScev << "\n"); 1039 return 0; 1040 } 1041 1042 // The access function must stride over the innermost loop. 1043 if (Lp != AR->getLoop()) { 1044 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1045 << *Ptr << " SCEV: " << *AR << "\n"); 1046 return 0; 1047 } 1048 1049 // The address calculation must not wrap. Otherwise, a dependence could be 1050 // inverted. 1051 // An inbounds getelementptr that is a AddRec with a unit stride 1052 // cannot wrap per definition. The unit stride requirement is checked later. 1053 // An getelementptr without an inbounds attribute and unit stride would have 1054 // to access the pointer value "0" which is undefined behavior in address 1055 // space 0, therefore we can also vectorize this case. 1056 bool IsInBoundsGEP = isInBoundsGep(Ptr); 1057 bool IsNoWrapAddRec = !ShouldCheckWrap || 1058 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 1059 isNoWrapAddRec(Ptr, AR, PSE, Lp); 1060 if (!IsNoWrapAddRec && !IsInBoundsGEP && 1061 NullPointerIsDefined(Lp->getHeader()->getParent(), 1062 PtrTy->getAddressSpace())) { 1063 if (Assume) { 1064 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1065 IsNoWrapAddRec = true; 1066 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 1067 << "LAA: Pointer: " << *Ptr << "\n" 1068 << "LAA: SCEV: " << *AR << "\n" 1069 << "LAA: Added an overflow assumption\n"); 1070 } else { 1071 LLVM_DEBUG( 1072 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1073 << *Ptr << " SCEV: " << *AR << "\n"); 1074 return 0; 1075 } 1076 } 1077 1078 // Check the step is constant. 1079 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1080 1081 // Calculate the pointer stride and check if it is constant. 1082 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1083 if (!C) { 1084 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1085 << " SCEV: " << *AR << "\n"); 1086 return 0; 1087 } 1088 1089 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1090 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 1091 const APInt &APStepVal = C->getAPInt(); 1092 1093 // Huge step value - give up. 1094 if (APStepVal.getBitWidth() > 64) 1095 return 0; 1096 1097 int64_t StepVal = APStepVal.getSExtValue(); 1098 1099 // Strided access. 1100 int64_t Stride = StepVal / Size; 1101 int64_t Rem = StepVal % Size; 1102 if (Rem) 1103 return 0; 1104 1105 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 1106 // know we can't "wrap around the address space". In case of address space 1107 // zero we know that this won't happen without triggering undefined behavior. 1108 if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && 1109 (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), 1110 PtrTy->getAddressSpace()))) { 1111 if (Assume) { 1112 // We can avoid this case by adding a run-time check. 1113 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1114 << "inbounds or in address space 0 may wrap:\n" 1115 << "LAA: Pointer: " << *Ptr << "\n" 1116 << "LAA: SCEV: " << *AR << "\n" 1117 << "LAA: Added an overflow assumption\n"); 1118 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1119 } else 1120 return 0; 1121 } 1122 1123 return Stride; 1124 } 1125 1126 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL, 1127 ScalarEvolution &SE, 1128 SmallVectorImpl<unsigned> &SortedIndices) { 1129 assert(llvm::all_of( 1130 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1131 "Expected list of pointer operands."); 1132 SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs; 1133 OffValPairs.reserve(VL.size()); 1134 1135 // Walk over the pointers, and map each of them to an offset relative to 1136 // first pointer in the array. 1137 Value *Ptr0 = VL[0]; 1138 const SCEV *Scev0 = SE.getSCEV(Ptr0); 1139 Value *Obj0 = GetUnderlyingObject(Ptr0, DL); 1140 1141 llvm::SmallSet<int64_t, 4> Offsets; 1142 for (auto *Ptr : VL) { 1143 // TODO: Outline this code as a special, more time consuming, version of 1144 // computeConstantDifference() function. 1145 if (Ptr->getType()->getPointerAddressSpace() != 1146 Ptr0->getType()->getPointerAddressSpace()) 1147 return false; 1148 // If a pointer refers to a different underlying object, bail - the 1149 // pointers are by definition incomparable. 1150 Value *CurrObj = GetUnderlyingObject(Ptr, DL); 1151 if (CurrObj != Obj0) 1152 return false; 1153 1154 const SCEV *Scev = SE.getSCEV(Ptr); 1155 const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0)); 1156 // The pointers may not have a constant offset from each other, or SCEV 1157 // may just not be smart enough to figure out they do. Regardless, 1158 // there's nothing we can do. 1159 if (!Diff) 1160 return false; 1161 1162 // Check if the pointer with the same offset is found. 1163 int64_t Offset = Diff->getAPInt().getSExtValue(); 1164 if (!Offsets.insert(Offset).second) 1165 return false; 1166 OffValPairs.emplace_back(Offset, Ptr); 1167 } 1168 SortedIndices.clear(); 1169 SortedIndices.resize(VL.size()); 1170 std::iota(SortedIndices.begin(), SortedIndices.end(), 0); 1171 1172 // Sort the memory accesses and keep the order of their uses in UseOrder. 1173 llvm::stable_sort(SortedIndices, [&](unsigned Left, unsigned Right) { 1174 return OffValPairs[Left].first < OffValPairs[Right].first; 1175 }); 1176 1177 // Check if the order is consecutive already. 1178 if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) { 1179 return I == SortedIndices[I]; 1180 })) 1181 SortedIndices.clear(); 1182 1183 return true; 1184 } 1185 1186 /// Take the address space operand from the Load/Store instruction. 1187 /// Returns -1 if this is not a valid Load/Store instruction. 1188 static unsigned getAddressSpaceOperand(Value *I) { 1189 if (LoadInst *L = dyn_cast<LoadInst>(I)) 1190 return L->getPointerAddressSpace(); 1191 if (StoreInst *S = dyn_cast<StoreInst>(I)) 1192 return S->getPointerAddressSpace(); 1193 return -1; 1194 } 1195 1196 /// Returns true if the memory operations \p A and \p B are consecutive. 1197 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1198 ScalarEvolution &SE, bool CheckType) { 1199 Value *PtrA = getLoadStorePointerOperand(A); 1200 Value *PtrB = getLoadStorePointerOperand(B); 1201 unsigned ASA = getAddressSpaceOperand(A); 1202 unsigned ASB = getAddressSpaceOperand(B); 1203 1204 // Check that the address spaces match and that the pointers are valid. 1205 if (!PtrA || !PtrB || (ASA != ASB)) 1206 return false; 1207 1208 // Make sure that A and B are different pointers. 1209 if (PtrA == PtrB) 1210 return false; 1211 1212 // Make sure that A and B have the same type if required. 1213 if (CheckType && PtrA->getType() != PtrB->getType()) 1214 return false; 1215 1216 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1217 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1218 1219 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1220 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1221 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1222 1223 // Retrieve the address space again as pointer stripping now tracks through 1224 // `addrspacecast`. 1225 ASA = cast<PointerType>(PtrA->getType())->getAddressSpace(); 1226 ASB = cast<PointerType>(PtrB->getType())->getAddressSpace(); 1227 // Check that the address spaces match and that the pointers are valid. 1228 if (ASA != ASB) 1229 return false; 1230 1231 IdxWidth = DL.getIndexSizeInBits(ASA); 1232 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1233 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1234 1235 APInt Size(IdxWidth, DL.getTypeStoreSize(Ty)); 1236 1237 // OffsetDelta = OffsetB - OffsetA; 1238 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); 1239 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); 1240 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 1241 const APInt &OffsetDelta = cast<SCEVConstant>(OffsetDeltaSCEV)->getAPInt(); 1242 1243 // Check if they are based on the same pointer. That makes the offsets 1244 // sufficient. 1245 if (PtrA == PtrB) 1246 return OffsetDelta == Size; 1247 1248 // Compute the necessary base pointer delta to have the necessary final delta 1249 // equal to the size. 1250 // BaseDelta = Size - OffsetDelta; 1251 const SCEV *SizeSCEV = SE.getConstant(Size); 1252 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); 1253 1254 // Otherwise compute the distance with SCEV between the base pointers. 1255 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1256 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1257 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); 1258 return X == PtrSCEVB; 1259 } 1260 1261 MemoryDepChecker::VectorizationSafetyStatus 1262 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1263 switch (Type) { 1264 case NoDep: 1265 case Forward: 1266 case BackwardVectorizable: 1267 return VectorizationSafetyStatus::Safe; 1268 1269 case Unknown: 1270 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1271 case ForwardButPreventsForwarding: 1272 case Backward: 1273 case BackwardVectorizableButPreventsForwarding: 1274 return VectorizationSafetyStatus::Unsafe; 1275 } 1276 llvm_unreachable("unexpected DepType!"); 1277 } 1278 1279 bool MemoryDepChecker::Dependence::isBackward() const { 1280 switch (Type) { 1281 case NoDep: 1282 case Forward: 1283 case ForwardButPreventsForwarding: 1284 case Unknown: 1285 return false; 1286 1287 case BackwardVectorizable: 1288 case Backward: 1289 case BackwardVectorizableButPreventsForwarding: 1290 return true; 1291 } 1292 llvm_unreachable("unexpected DepType!"); 1293 } 1294 1295 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1296 return isBackward() || Type == Unknown; 1297 } 1298 1299 bool MemoryDepChecker::Dependence::isForward() const { 1300 switch (Type) { 1301 case Forward: 1302 case ForwardButPreventsForwarding: 1303 return true; 1304 1305 case NoDep: 1306 case Unknown: 1307 case BackwardVectorizable: 1308 case Backward: 1309 case BackwardVectorizableButPreventsForwarding: 1310 return false; 1311 } 1312 llvm_unreachable("unexpected DepType!"); 1313 } 1314 1315 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1316 uint64_t TypeByteSize) { 1317 // If loads occur at a distance that is not a multiple of a feasible vector 1318 // factor store-load forwarding does not take place. 1319 // Positive dependences might cause troubles because vectorizing them might 1320 // prevent store-load forwarding making vectorized code run a lot slower. 1321 // a[i] = a[i-3] ^ a[i-8]; 1322 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1323 // hence on your typical architecture store-load forwarding does not take 1324 // place. Vectorizing in such cases does not make sense. 1325 // Store-load forwarding distance. 1326 1327 // After this many iterations store-to-load forwarding conflicts should not 1328 // cause any slowdowns. 1329 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1330 // Maximum vector factor. 1331 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1332 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1333 1334 // Compute the smallest VF at which the store and load would be misaligned. 1335 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1336 VF *= 2) { 1337 // If the number of vector iteration between the store and the load are 1338 // small we could incur conflicts. 1339 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1340 MaxVFWithoutSLForwardIssues = (VF >>= 1); 1341 break; 1342 } 1343 } 1344 1345 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1346 LLVM_DEBUG( 1347 dbgs() << "LAA: Distance " << Distance 1348 << " that could cause a store-load forwarding conflict\n"); 1349 return true; 1350 } 1351 1352 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1353 MaxVFWithoutSLForwardIssues != 1354 VectorizerParams::MaxVectorWidth * TypeByteSize) 1355 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1356 return false; 1357 } 1358 1359 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1360 if (Status < S) 1361 Status = S; 1362 } 1363 1364 /// Given a non-constant (unknown) dependence-distance \p Dist between two 1365 /// memory accesses, that have the same stride whose absolute value is given 1366 /// in \p Stride, and that have the same type size \p TypeByteSize, 1367 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1368 /// possible to prove statically that the dependence distance is larger 1369 /// than the range that the accesses will travel through the execution of 1370 /// the loop. If so, return true; false otherwise. This is useful for 1371 /// example in loops such as the following (PR31098): 1372 /// for (i = 0; i < D; ++i) { 1373 /// = out[i]; 1374 /// out[i+D] = 1375 /// } 1376 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1377 const SCEV &BackedgeTakenCount, 1378 const SCEV &Dist, uint64_t Stride, 1379 uint64_t TypeByteSize) { 1380 1381 // If we can prove that 1382 // (**) |Dist| > BackedgeTakenCount * Step 1383 // where Step is the absolute stride of the memory accesses in bytes, 1384 // then there is no dependence. 1385 // 1386 // Rationale: 1387 // We basically want to check if the absolute distance (|Dist/Step|) 1388 // is >= the loop iteration count (or > BackedgeTakenCount). 1389 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1390 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1391 // that the dependence distance is >= VF; This is checked elsewhere. 1392 // But in some cases we can prune unknown dependence distances early, and 1393 // even before selecting the VF, and without a runtime test, by comparing 1394 // the distance against the loop iteration count. Since the vectorized code 1395 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1396 // also guarantees that distance >= VF. 1397 // 1398 const uint64_t ByteStride = Stride * TypeByteSize; 1399 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1400 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1401 1402 const SCEV *CastedDist = &Dist; 1403 const SCEV *CastedProduct = Product; 1404 uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType()); 1405 uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType()); 1406 1407 // The dependence distance can be positive/negative, so we sign extend Dist; 1408 // The multiplication of the absolute stride in bytes and the 1409 // backedgeTakenCount is non-negative, so we zero extend Product. 1410 if (DistTypeSize > ProductTypeSize) 1411 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1412 else 1413 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1414 1415 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1416 // (If so, then we have proven (**) because |Dist| >= Dist) 1417 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1418 if (SE.isKnownPositive(Minus)) 1419 return true; 1420 1421 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1422 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1423 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1424 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1425 if (SE.isKnownPositive(Minus)) 1426 return true; 1427 1428 return false; 1429 } 1430 1431 /// Check the dependence for two accesses with the same stride \p Stride. 1432 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1433 /// bytes. 1434 /// 1435 /// \returns true if they are independent. 1436 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1437 uint64_t TypeByteSize) { 1438 assert(Stride > 1 && "The stride must be greater than 1"); 1439 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1440 assert(Distance > 0 && "The distance must be non-zero"); 1441 1442 // Skip if the distance is not multiple of type byte size. 1443 if (Distance % TypeByteSize) 1444 return false; 1445 1446 uint64_t ScaledDist = Distance / TypeByteSize; 1447 1448 // No dependence if the scaled distance is not multiple of the stride. 1449 // E.g. 1450 // for (i = 0; i < 1024 ; i += 4) 1451 // A[i+2] = A[i] + 1; 1452 // 1453 // Two accesses in memory (scaled distance is 2, stride is 4): 1454 // | A[0] | | | | A[4] | | | | 1455 // | | | A[2] | | | | A[6] | | 1456 // 1457 // E.g. 1458 // for (i = 0; i < 1024 ; i += 3) 1459 // A[i+4] = A[i] + 1; 1460 // 1461 // Two accesses in memory (scaled distance is 4, stride is 3): 1462 // | A[0] | | | A[3] | | | A[6] | | | 1463 // | | | | | A[4] | | | A[7] | | 1464 return ScaledDist % Stride; 1465 } 1466 1467 MemoryDepChecker::Dependence::DepType 1468 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1469 const MemAccessInfo &B, unsigned BIdx, 1470 const ValueToValueMap &Strides) { 1471 assert (AIdx < BIdx && "Must pass arguments in program order"); 1472 1473 Value *APtr = A.getPointer(); 1474 Value *BPtr = B.getPointer(); 1475 bool AIsWrite = A.getInt(); 1476 bool BIsWrite = B.getInt(); 1477 1478 // Two reads are independent. 1479 if (!AIsWrite && !BIsWrite) 1480 return Dependence::NoDep; 1481 1482 // We cannot check pointers in different address spaces. 1483 if (APtr->getType()->getPointerAddressSpace() != 1484 BPtr->getType()->getPointerAddressSpace()) 1485 return Dependence::Unknown; 1486 1487 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); 1488 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); 1489 1490 const SCEV *Src = PSE.getSCEV(APtr); 1491 const SCEV *Sink = PSE.getSCEV(BPtr); 1492 1493 // If the induction step is negative we have to invert source and sink of the 1494 // dependence. 1495 if (StrideAPtr < 0) { 1496 std::swap(APtr, BPtr); 1497 std::swap(Src, Sink); 1498 std::swap(AIsWrite, BIsWrite); 1499 std::swap(AIdx, BIdx); 1500 std::swap(StrideAPtr, StrideBPtr); 1501 } 1502 1503 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1504 1505 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1506 << "(Induction step: " << StrideAPtr << ")\n"); 1507 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1508 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1509 1510 // Need accesses with constant stride. We don't want to vectorize 1511 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1512 // the address space. 1513 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1514 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1515 return Dependence::Unknown; 1516 } 1517 1518 Type *ATy = APtr->getType()->getPointerElementType(); 1519 Type *BTy = BPtr->getType()->getPointerElementType(); 1520 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1521 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1522 uint64_t Stride = std::abs(StrideAPtr); 1523 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1524 if (!C) { 1525 if (TypeByteSize == DL.getTypeAllocSize(BTy) && 1526 isSafeDependenceDistance(DL, *(PSE.getSE()), 1527 *(PSE.getBackedgeTakenCount()), *Dist, Stride, 1528 TypeByteSize)) 1529 return Dependence::NoDep; 1530 1531 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1532 FoundNonConstantDistanceDependence = true; 1533 return Dependence::Unknown; 1534 } 1535 1536 const APInt &Val = C->getAPInt(); 1537 int64_t Distance = Val.getSExtValue(); 1538 1539 // Attempt to prove strided accesses independent. 1540 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && 1541 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1542 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1543 return Dependence::NoDep; 1544 } 1545 1546 // Negative distances are not plausible dependencies. 1547 if (Val.isNegative()) { 1548 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1549 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1550 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1551 ATy != BTy)) { 1552 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1553 return Dependence::ForwardButPreventsForwarding; 1554 } 1555 1556 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1557 return Dependence::Forward; 1558 } 1559 1560 // Write to the same location with the same size. 1561 // Could be improved to assert type sizes are the same (i32 == float, etc). 1562 if (Val == 0) { 1563 if (ATy == BTy) 1564 return Dependence::Forward; 1565 LLVM_DEBUG( 1566 dbgs() << "LAA: Zero dependence difference but different types\n"); 1567 return Dependence::Unknown; 1568 } 1569 1570 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1571 1572 if (ATy != BTy) { 1573 LLVM_DEBUG( 1574 dbgs() 1575 << "LAA: ReadWrite-Write positive dependency with different types\n"); 1576 return Dependence::Unknown; 1577 } 1578 1579 // Bail out early if passed-in parameters make vectorization not feasible. 1580 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1581 VectorizerParams::VectorizationFactor : 1); 1582 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1583 VectorizerParams::VectorizationInterleave : 1); 1584 // The minimum number of iterations for a vectorized/unrolled version. 1585 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1586 1587 // It's not vectorizable if the distance is smaller than the minimum distance 1588 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1589 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1590 // TypeByteSize (No need to plus the last gap distance). 1591 // 1592 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1593 // foo(int *A) { 1594 // int *B = (int *)((char *)A + 14); 1595 // for (i = 0 ; i < 1024 ; i += 2) 1596 // B[i] = A[i] + 1; 1597 // } 1598 // 1599 // Two accesses in memory (stride is 2): 1600 // | A[0] | | A[2] | | A[4] | | A[6] | | 1601 // | B[0] | | B[2] | | B[4] | 1602 // 1603 // Distance needs for vectorizing iterations except the last iteration: 1604 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1605 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1606 // 1607 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1608 // 12, which is less than distance. 1609 // 1610 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1611 // the minimum distance needed is 28, which is greater than distance. It is 1612 // not safe to do vectorization. 1613 uint64_t MinDistanceNeeded = 1614 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1615 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1616 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " 1617 << Distance << '\n'); 1618 return Dependence::Backward; 1619 } 1620 1621 // Unsafe if the minimum distance needed is greater than max safe distance. 1622 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1623 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 1624 << MinDistanceNeeded << " size in bytes"); 1625 return Dependence::Backward; 1626 } 1627 1628 // Positive distance bigger than max vectorization factor. 1629 // FIXME: Should use max factor instead of max distance in bytes, which could 1630 // not handle different types. 1631 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1632 // void foo (int *A, char *B) { 1633 // for (unsigned i = 0; i < 1024; i++) { 1634 // A[i+2] = A[i] + 1; 1635 // B[i+2] = B[i] + 1; 1636 // } 1637 // } 1638 // 1639 // This case is currently unsafe according to the max safe distance. If we 1640 // analyze the two accesses on array B, the max safe dependence distance 1641 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1642 // is 8, which is less than 2 and forbidden vectorization, But actually 1643 // both A and B could be vectorized by 2 iterations. 1644 MaxSafeDepDistBytes = 1645 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1646 1647 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1648 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1649 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1650 return Dependence::BackwardVectorizableButPreventsForwarding; 1651 1652 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 1653 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1654 << " with max VF = " << MaxVF << '\n'); 1655 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 1656 MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits); 1657 return Dependence::BackwardVectorizable; 1658 } 1659 1660 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1661 MemAccessInfoList &CheckDeps, 1662 const ValueToValueMap &Strides) { 1663 1664 MaxSafeDepDistBytes = -1; 1665 SmallPtrSet<MemAccessInfo, 8> Visited; 1666 for (MemAccessInfo CurAccess : CheckDeps) { 1667 if (Visited.count(CurAccess)) 1668 continue; 1669 1670 // Get the relevant memory access set. 1671 EquivalenceClasses<MemAccessInfo>::iterator I = 1672 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1673 1674 // Check accesses within this set. 1675 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1676 AccessSets.member_begin(I); 1677 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1678 AccessSets.member_end(); 1679 1680 // Check every access pair. 1681 while (AI != AE) { 1682 Visited.insert(*AI); 1683 bool AIIsWrite = AI->getInt(); 1684 // Check loads only against next equivalent class, but stores also against 1685 // other stores in the same equivalence class - to the same address. 1686 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 1687 (AIIsWrite ? AI : std::next(AI)); 1688 while (OI != AE) { 1689 // Check every accessing instruction pair in program order. 1690 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1691 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1692 // Scan all accesses of another equivalence class, but only the next 1693 // accesses of the same equivalent class. 1694 for (std::vector<unsigned>::iterator 1695 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 1696 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 1697 I2 != I2E; ++I2) { 1698 auto A = std::make_pair(&*AI, *I1); 1699 auto B = std::make_pair(&*OI, *I2); 1700 1701 assert(*I1 != *I2); 1702 if (*I1 > *I2) 1703 std::swap(A, B); 1704 1705 Dependence::DepType Type = 1706 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1707 mergeInStatus(Dependence::isSafeForVectorization(Type)); 1708 1709 // Gather dependences unless we accumulated MaxDependences 1710 // dependences. In that case return as soon as we find the first 1711 // unsafe dependence. This puts a limit on this quadratic 1712 // algorithm. 1713 if (RecordDependences) { 1714 if (Type != Dependence::NoDep) 1715 Dependences.push_back(Dependence(A.second, B.second, Type)); 1716 1717 if (Dependences.size() >= MaxDependences) { 1718 RecordDependences = false; 1719 Dependences.clear(); 1720 LLVM_DEBUG(dbgs() 1721 << "Too many dependences, stopped recording\n"); 1722 } 1723 } 1724 if (!RecordDependences && !isSafeForVectorization()) 1725 return false; 1726 } 1727 ++OI; 1728 } 1729 AI++; 1730 } 1731 } 1732 1733 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1734 return isSafeForVectorization(); 1735 } 1736 1737 SmallVector<Instruction *, 4> 1738 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1739 MemAccessInfo Access(Ptr, isWrite); 1740 auto &IndexVector = Accesses.find(Access)->second; 1741 1742 SmallVector<Instruction *, 4> Insts; 1743 transform(IndexVector, 1744 std::back_inserter(Insts), 1745 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1746 return Insts; 1747 } 1748 1749 const char *MemoryDepChecker::Dependence::DepName[] = { 1750 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1751 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1752 1753 void MemoryDepChecker::Dependence::print( 1754 raw_ostream &OS, unsigned Depth, 1755 const SmallVectorImpl<Instruction *> &Instrs) const { 1756 OS.indent(Depth) << DepName[Type] << ":\n"; 1757 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1758 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1759 } 1760 1761 bool LoopAccessInfo::canAnalyzeLoop() { 1762 // We need to have a loop header. 1763 LLVM_DEBUG(dbgs() << "LAA: Found a loop in " 1764 << TheLoop->getHeader()->getParent()->getName() << ": " 1765 << TheLoop->getHeader()->getName() << '\n'); 1766 1767 // We can only analyze innermost loops. 1768 if (!TheLoop->empty()) { 1769 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1770 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1771 return false; 1772 } 1773 1774 // We must have a single backedge. 1775 if (TheLoop->getNumBackEdges() != 1) { 1776 LLVM_DEBUG( 1777 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1778 recordAnalysis("CFGNotUnderstood") 1779 << "loop control flow is not understood by analyzer"; 1780 return false; 1781 } 1782 1783 // We must have a single exiting block. 1784 if (!TheLoop->getExitingBlock()) { 1785 LLVM_DEBUG( 1786 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1787 recordAnalysis("CFGNotUnderstood") 1788 << "loop control flow is not understood by analyzer"; 1789 return false; 1790 } 1791 1792 // We only handle bottom-tested loops, i.e. loop in which the condition is 1793 // checked at the end of each iteration. With that we can assume that all 1794 // instructions in the loop are executed the same number of times. 1795 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 1796 LLVM_DEBUG( 1797 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1798 recordAnalysis("CFGNotUnderstood") 1799 << "loop control flow is not understood by analyzer"; 1800 return false; 1801 } 1802 1803 // ScalarEvolution needs to be able to find the exit count. 1804 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 1805 if (ExitCount == PSE->getSE()->getCouldNotCompute()) { 1806 recordAnalysis("CantComputeNumberOfIterations") 1807 << "could not determine number of loop iterations"; 1808 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1809 return false; 1810 } 1811 1812 return true; 1813 } 1814 1815 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI, 1816 const TargetLibraryInfo *TLI, 1817 DominatorTree *DT) { 1818 typedef SmallPtrSet<Value*, 16> ValueSet; 1819 1820 // Holds the Load and Store instructions. 1821 SmallVector<LoadInst *, 16> Loads; 1822 SmallVector<StoreInst *, 16> Stores; 1823 1824 // Holds all the different accesses in the loop. 1825 unsigned NumReads = 0; 1826 unsigned NumReadWrites = 0; 1827 1828 bool HasComplexMemInst = false; 1829 1830 // A runtime check is only legal to insert if there are no convergent calls. 1831 HasConvergentOp = false; 1832 1833 PtrRtChecking->Pointers.clear(); 1834 PtrRtChecking->Need = false; 1835 1836 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1837 1838 const bool EnableMemAccessVersioningOfLoop = 1839 EnableMemAccessVersioning && 1840 !TheLoop->getHeader()->getParent()->hasOptSize(); 1841 1842 // For each block. 1843 for (BasicBlock *BB : TheLoop->blocks()) { 1844 // Scan the BB and collect legal loads and stores. Also detect any 1845 // convergent instructions. 1846 for (Instruction &I : *BB) { 1847 if (auto *Call = dyn_cast<CallBase>(&I)) { 1848 if (Call->isConvergent()) 1849 HasConvergentOp = true; 1850 } 1851 1852 // With both a non-vectorizable memory instruction and a convergent 1853 // operation, found in this loop, no reason to continue the search. 1854 if (HasComplexMemInst && HasConvergentOp) { 1855 CanVecMem = false; 1856 return; 1857 } 1858 1859 // Avoid hitting recordAnalysis multiple times. 1860 if (HasComplexMemInst) 1861 continue; 1862 1863 // If this is a load, save it. If this instruction can read from memory 1864 // but is not a load, then we quit. Notice that we don't handle function 1865 // calls that read or write. 1866 if (I.mayReadFromMemory()) { 1867 // Many math library functions read the rounding mode. We will only 1868 // vectorize a loop if it contains known function calls that don't set 1869 // the flag. Therefore, it is safe to ignore this read from memory. 1870 auto *Call = dyn_cast<CallInst>(&I); 1871 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 1872 continue; 1873 1874 // If the function has an explicit vectorized counterpart, we can safely 1875 // assume that it can be vectorized. 1876 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1877 !VFDatabase::getMappings(*Call).empty()) 1878 continue; 1879 1880 auto *Ld = dyn_cast<LoadInst>(&I); 1881 if (!Ld) { 1882 recordAnalysis("CantVectorizeInstruction", Ld) 1883 << "instruction cannot be vectorized"; 1884 HasComplexMemInst = true; 1885 continue; 1886 } 1887 if (!Ld->isSimple() && !IsAnnotatedParallel) { 1888 recordAnalysis("NonSimpleLoad", Ld) 1889 << "read with atomic ordering or volatile read"; 1890 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1891 HasComplexMemInst = true; 1892 continue; 1893 } 1894 NumLoads++; 1895 Loads.push_back(Ld); 1896 DepChecker->addAccess(Ld); 1897 if (EnableMemAccessVersioningOfLoop) 1898 collectStridedAccess(Ld); 1899 continue; 1900 } 1901 1902 // Save 'store' instructions. Abort if other instructions write to memory. 1903 if (I.mayWriteToMemory()) { 1904 auto *St = dyn_cast<StoreInst>(&I); 1905 if (!St) { 1906 recordAnalysis("CantVectorizeInstruction", St) 1907 << "instruction cannot be vectorized"; 1908 HasComplexMemInst = true; 1909 continue; 1910 } 1911 if (!St->isSimple() && !IsAnnotatedParallel) { 1912 recordAnalysis("NonSimpleStore", St) 1913 << "write with atomic ordering or volatile write"; 1914 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1915 HasComplexMemInst = true; 1916 continue; 1917 } 1918 NumStores++; 1919 Stores.push_back(St); 1920 DepChecker->addAccess(St); 1921 if (EnableMemAccessVersioningOfLoop) 1922 collectStridedAccess(St); 1923 } 1924 } // Next instr. 1925 } // Next block. 1926 1927 if (HasComplexMemInst) { 1928 CanVecMem = false; 1929 return; 1930 } 1931 1932 // Now we have two lists that hold the loads and the stores. 1933 // Next, we find the pointers that they use. 1934 1935 // Check if we see any stores. If there are no stores, then we don't 1936 // care if the pointers are *restrict*. 1937 if (!Stores.size()) { 1938 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1939 CanVecMem = true; 1940 return; 1941 } 1942 1943 MemoryDepChecker::DepCandidates DependentAccesses; 1944 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 1945 TheLoop, AA, LI, DependentAccesses, *PSE); 1946 1947 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 1948 // multiple times on the same object. If the ptr is accessed twice, once 1949 // for read and once for write, it will only appear once (on the write 1950 // list). This is okay, since we are going to check for conflicts between 1951 // writes and between reads and writes, but not between reads and reads. 1952 ValueSet Seen; 1953 1954 // Record uniform store addresses to identify if we have multiple stores 1955 // to the same address. 1956 ValueSet UniformStores; 1957 1958 for (StoreInst *ST : Stores) { 1959 Value *Ptr = ST->getPointerOperand(); 1960 1961 if (isUniform(Ptr)) 1962 HasDependenceInvolvingLoopInvariantAddress |= 1963 !UniformStores.insert(Ptr).second; 1964 1965 // If we did *not* see this pointer before, insert it to the read-write 1966 // list. At this phase it is only a 'write' list. 1967 if (Seen.insert(Ptr).second) { 1968 ++NumReadWrites; 1969 1970 MemoryLocation Loc = MemoryLocation::get(ST); 1971 // The TBAA metadata could have a control dependency on the predication 1972 // condition, so we cannot rely on it when determining whether or not we 1973 // need runtime pointer checks. 1974 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1975 Loc.AATags.TBAA = nullptr; 1976 1977 Accesses.addStore(Loc); 1978 } 1979 } 1980 1981 if (IsAnnotatedParallel) { 1982 LLVM_DEBUG( 1983 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 1984 << "checks.\n"); 1985 CanVecMem = true; 1986 return; 1987 } 1988 1989 for (LoadInst *LD : Loads) { 1990 Value *Ptr = LD->getPointerOperand(); 1991 // If we did *not* see this pointer before, insert it to the 1992 // read list. If we *did* see it before, then it is already in 1993 // the read-write list. This allows us to vectorize expressions 1994 // such as A[i] += x; Because the address of A[i] is a read-write 1995 // pointer. This only works if the index of A[i] is consecutive. 1996 // If the address of i is unknown (for example A[B[i]]) then we may 1997 // read a few words, modify, and write a few words, and some of the 1998 // words may be written to the same address. 1999 bool IsReadOnlyPtr = false; 2000 if (Seen.insert(Ptr).second || 2001 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { 2002 ++NumReads; 2003 IsReadOnlyPtr = true; 2004 } 2005 2006 // See if there is an unsafe dependency between a load to a uniform address and 2007 // store to the same uniform address. 2008 if (UniformStores.count(Ptr)) { 2009 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 2010 "load and uniform store to the same address!\n"); 2011 HasDependenceInvolvingLoopInvariantAddress = true; 2012 } 2013 2014 MemoryLocation Loc = MemoryLocation::get(LD); 2015 // The TBAA metadata could have a control dependency on the predication 2016 // condition, so we cannot rely on it when determining whether or not we 2017 // need runtime pointer checks. 2018 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 2019 Loc.AATags.TBAA = nullptr; 2020 2021 Accesses.addLoad(Loc, IsReadOnlyPtr); 2022 } 2023 2024 // If we write (or read-write) to a single destination and there are no 2025 // other reads in this loop then is it safe to vectorize. 2026 if (NumReadWrites == 1 && NumReads == 0) { 2027 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2028 CanVecMem = true; 2029 return; 2030 } 2031 2032 // Build dependence sets and check whether we need a runtime pointer bounds 2033 // check. 2034 Accesses.buildDependenceSets(); 2035 2036 // Find pointers with computable bounds. We are going to use this information 2037 // to place a runtime bound check. 2038 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), 2039 TheLoop, SymbolicStrides); 2040 if (!CanDoRTIfNeeded) { 2041 recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; 2042 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2043 << "the array bounds.\n"); 2044 CanVecMem = false; 2045 return; 2046 } 2047 2048 LLVM_DEBUG( 2049 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2050 2051 CanVecMem = true; 2052 if (Accesses.isDependencyCheckNeeded()) { 2053 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2054 CanVecMem = DepChecker->areDepsSafe( 2055 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 2056 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 2057 2058 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 2059 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2060 2061 // Clear the dependency checks. We assume they are not needed. 2062 Accesses.resetDepChecks(*DepChecker); 2063 2064 PtrRtChecking->reset(); 2065 PtrRtChecking->Need = true; 2066 2067 auto *SE = PSE->getSE(); 2068 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, 2069 SymbolicStrides, true); 2070 2071 // Check that we found the bounds for the pointer. 2072 if (!CanDoRTIfNeeded) { 2073 recordAnalysis("CantCheckMemDepsAtRunTime") 2074 << "cannot check memory dependencies at runtime"; 2075 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2076 CanVecMem = false; 2077 return; 2078 } 2079 2080 CanVecMem = true; 2081 } 2082 } 2083 2084 if (HasConvergentOp) { 2085 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2086 << "cannot add control dependency to convergent operation"; 2087 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2088 "would be needed with a convergent operation\n"); 2089 CanVecMem = false; 2090 return; 2091 } 2092 2093 if (CanVecMem) 2094 LLVM_DEBUG( 2095 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2096 << (PtrRtChecking->Need ? "" : " don't") 2097 << " need runtime memory checks.\n"); 2098 else { 2099 recordAnalysis("UnsafeMemDep") 2100 << "unsafe dependent memory operations in loop. Use " 2101 "#pragma loop distribute(enable) to allow loop distribution " 2102 "to attempt to isolate the offending operations into a separate " 2103 "loop"; 2104 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2105 } 2106 } 2107 2108 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2109 DominatorTree *DT) { 2110 assert(TheLoop->contains(BB) && "Unknown block used"); 2111 2112 // Blocks that do not dominate the latch need predication. 2113 BasicBlock* Latch = TheLoop->getLoopLatch(); 2114 return !DT->dominates(BB, Latch); 2115 } 2116 2117 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2118 Instruction *I) { 2119 assert(!Report && "Multiple reports generated"); 2120 2121 Value *CodeRegion = TheLoop->getHeader(); 2122 DebugLoc DL = TheLoop->getStartLoc(); 2123 2124 if (I) { 2125 CodeRegion = I->getParent(); 2126 // If there is no debug location attached to the instruction, revert back to 2127 // using the loop's. 2128 if (I->getDebugLoc()) 2129 DL = I->getDebugLoc(); 2130 } 2131 2132 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2133 CodeRegion); 2134 return *Report; 2135 } 2136 2137 bool LoopAccessInfo::isUniform(Value *V) const { 2138 auto *SE = PSE->getSE(); 2139 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 2140 // never considered uniform. 2141 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2142 // trivially loop-invariant FP values to be considered uniform. 2143 if (!SE->isSCEVable(V->getType())) 2144 return false; 2145 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 2146 } 2147 2148 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2149 Value *Ptr = nullptr; 2150 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 2151 Ptr = LI->getPointerOperand(); 2152 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 2153 Ptr = SI->getPointerOperand(); 2154 else 2155 return; 2156 2157 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2158 if (!Stride) 2159 return; 2160 2161 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2162 "versioning:"); 2163 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2164 2165 // Avoid adding the "Stride == 1" predicate when we know that 2166 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2167 // or zero iteration loop, as Trip-Count <= Stride == 1. 2168 // 2169 // TODO: We are currently not making a very informed decision on when it is 2170 // beneficial to apply stride versioning. It might make more sense that the 2171 // users of this analysis (such as the vectorizer) will trigger it, based on 2172 // their specific cost considerations; For example, in cases where stride 2173 // versioning does not help resolving memory accesses/dependences, the 2174 // vectorizer should evaluate the cost of the runtime test, and the benefit 2175 // of various possible stride specializations, considering the alternatives 2176 // of using gather/scatters (if available). 2177 2178 const SCEV *StrideExpr = PSE->getSCEV(Stride); 2179 const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2180 2181 // Match the types so we can compare the stride and the BETakenCount. 2182 // The Stride can be positive/negative, so we sign extend Stride; 2183 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount. 2184 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2185 uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType()); 2186 uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType()); 2187 const SCEV *CastedStride = StrideExpr; 2188 const SCEV *CastedBECount = BETakenCount; 2189 ScalarEvolution *SE = PSE->getSE(); 2190 if (BETypeSize >= StrideTypeSize) 2191 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2192 else 2193 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2194 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2195 // Since TripCount == BackEdgeTakenCount + 1, checking: 2196 // "Stride >= TripCount" is equivalent to checking: 2197 // Stride - BETakenCount > 0 2198 if (SE->isKnownPositive(StrideMinusBETaken)) { 2199 LLVM_DEBUG( 2200 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2201 "Stride==1 predicate will imply that the loop executes " 2202 "at most once.\n"); 2203 return; 2204 } 2205 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version."); 2206 2207 SymbolicStrides[Ptr] = Stride; 2208 StrideSet.insert(Stride); 2209 } 2210 2211 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2212 const TargetLibraryInfo *TLI, AAResults *AA, 2213 DominatorTree *DT, LoopInfo *LI) 2214 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2215 PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)), 2216 DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), 2217 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), 2218 HasConvergentOp(false), 2219 HasDependenceInvolvingLoopInvariantAddress(false) { 2220 if (canAnalyzeLoop()) 2221 analyzeLoop(AA, LI, TLI, DT); 2222 } 2223 2224 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2225 if (CanVecMem) { 2226 OS.indent(Depth) << "Memory dependences are safe"; 2227 if (MaxSafeDepDistBytes != -1ULL) 2228 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2229 << " bytes"; 2230 if (PtrRtChecking->Need) 2231 OS << " with run-time checks"; 2232 OS << "\n"; 2233 } 2234 2235 if (HasConvergentOp) 2236 OS.indent(Depth) << "Has convergent operation in loop\n"; 2237 2238 if (Report) 2239 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2240 2241 if (auto *Dependences = DepChecker->getDependences()) { 2242 OS.indent(Depth) << "Dependences:\n"; 2243 for (auto &Dep : *Dependences) { 2244 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2245 OS << "\n"; 2246 } 2247 } else 2248 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2249 2250 // List the pair of accesses need run-time checks to prove independence. 2251 PtrRtChecking->print(OS, Depth); 2252 OS << "\n"; 2253 2254 OS.indent(Depth) << "Non vectorizable stores to invariant address were " 2255 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") 2256 << "found in loop.\n"; 2257 2258 OS.indent(Depth) << "SCEV assumptions:\n"; 2259 PSE->getUnionPredicate().print(OS, Depth); 2260 2261 OS << "\n"; 2262 2263 OS.indent(Depth) << "Expressions re-written:\n"; 2264 PSE->print(OS, Depth); 2265 } 2266 2267 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) { 2268 initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry()); 2269 } 2270 2271 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 2272 auto &LAI = LoopAccessInfoMap[L]; 2273 2274 if (!LAI) 2275 LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2276 2277 return *LAI.get(); 2278 } 2279 2280 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2281 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2282 2283 for (Loop *TopLevelLoop : *LI) 2284 for (Loop *L : depth_first(TopLevelLoop)) { 2285 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2286 auto &LAI = LAA.getInfo(L); 2287 LAI.print(OS, 4); 2288 } 2289 } 2290 2291 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2292 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2293 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2294 TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2295 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2296 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2297 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2298 2299 return false; 2300 } 2301 2302 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2303 AU.addRequired<ScalarEvolutionWrapperPass>(); 2304 AU.addRequired<AAResultsWrapperPass>(); 2305 AU.addRequired<DominatorTreeWrapperPass>(); 2306 AU.addRequired<LoopInfoWrapperPass>(); 2307 2308 AU.setPreservesAll(); 2309 } 2310 2311 char LoopAccessLegacyAnalysis::ID = 0; 2312 static const char laa_name[] = "Loop Access Analysis"; 2313 #define LAA_NAME "loop-accesses" 2314 2315 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2316 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2317 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2318 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2319 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2320 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2321 2322 AnalysisKey LoopAccessAnalysis::Key; 2323 2324 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, 2325 LoopStandardAnalysisResults &AR) { 2326 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); 2327 } 2328 2329 namespace llvm { 2330 2331 Pass *createLAAPass() { 2332 return new LoopAccessLegacyAnalysis(); 2333 } 2334 2335 } // end namespace llvm 2336