xref: /freebsd-src/contrib/llvm-project/llvm/lib/Analysis/LoopAccessAnalysis.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The implementation for the loop memory dependence that was originally
10 // developed for the loop vectorizer.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/LoopAccessAnalysis.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/EquivalenceClasses.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AliasSetTracker.h"
28 #include "llvm/Analysis/LoopAnalysisManager.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/IR/ValueHandle.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <cstdlib>
64 #include <iterator>
65 #include <utility>
66 #include <vector>
67 
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "loop-accesses"
71 
72 static cl::opt<unsigned, true>
73 VectorizationFactor("force-vector-width", cl::Hidden,
74                     cl::desc("Sets the SIMD width. Zero is autoselect."),
75                     cl::location(VectorizerParams::VectorizationFactor));
76 unsigned VectorizerParams::VectorizationFactor;
77 
78 static cl::opt<unsigned, true>
79 VectorizationInterleave("force-vector-interleave", cl::Hidden,
80                         cl::desc("Sets the vectorization interleave count. "
81                                  "Zero is autoselect."),
82                         cl::location(
83                             VectorizerParams::VectorizationInterleave));
84 unsigned VectorizerParams::VectorizationInterleave;
85 
86 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
87     "runtime-memory-check-threshold", cl::Hidden,
88     cl::desc("When performing memory disambiguation checks at runtime do not "
89              "generate more than this number of comparisons (default = 8)."),
90     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
91 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
92 
93 /// The maximum iterations used to merge memory checks
94 static cl::opt<unsigned> MemoryCheckMergeThreshold(
95     "memory-check-merge-threshold", cl::Hidden,
96     cl::desc("Maximum number of comparisons done when trying to merge "
97              "runtime memory checks. (default = 100)"),
98     cl::init(100));
99 
100 /// Maximum SIMD width.
101 const unsigned VectorizerParams::MaxVectorWidth = 64;
102 
103 /// We collect dependences up to this threshold.
104 static cl::opt<unsigned>
105     MaxDependences("max-dependences", cl::Hidden,
106                    cl::desc("Maximum number of dependences collected by "
107                             "loop-access analysis (default = 100)"),
108                    cl::init(100));
109 
110 /// This enables versioning on the strides of symbolically striding memory
111 /// accesses in code like the following.
112 ///   for (i = 0; i < N; ++i)
113 ///     A[i * Stride1] += B[i * Stride2] ...
114 ///
115 /// Will be roughly translated to
116 ///    if (Stride1 == 1 && Stride2 == 1) {
117 ///      for (i = 0; i < N; i+=4)
118 ///       A[i:i+3] += ...
119 ///    } else
120 ///      ...
121 static cl::opt<bool> EnableMemAccessVersioning(
122     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
123     cl::desc("Enable symbolic stride memory access versioning"));
124 
125 /// Enable store-to-load forwarding conflict detection. This option can
126 /// be disabled for correctness testing.
127 static cl::opt<bool> EnableForwardingConflictDetection(
128     "store-to-load-forwarding-conflict-detection", cl::Hidden,
129     cl::desc("Enable conflict detection in loop-access analysis"),
130     cl::init(true));
131 
132 bool VectorizerParams::isInterleaveForced() {
133   return ::VectorizationInterleave.getNumOccurrences() > 0;
134 }
135 
136 Value *llvm::stripIntegerCast(Value *V) {
137   if (auto *CI = dyn_cast<CastInst>(V))
138     if (CI->getOperand(0)->getType()->isIntegerTy())
139       return CI->getOperand(0);
140   return V;
141 }
142 
143 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
144                                             const ValueToValueMap &PtrToStride,
145                                             Value *Ptr) {
146   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
147 
148   // If there is an entry in the map return the SCEV of the pointer with the
149   // symbolic stride replaced by one.
150   ValueToValueMap::const_iterator SI = PtrToStride.find(Ptr);
151   if (SI == PtrToStride.end())
152     // For a non-symbolic stride, just return the original expression.
153     return OrigSCEV;
154 
155   Value *StrideVal = stripIntegerCast(SI->second);
156 
157   ScalarEvolution *SE = PSE.getSE();
158   const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
159   const auto *CT =
160     static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
161 
162   PSE.addPredicate(*SE->getEqualPredicate(U, CT));
163   auto *Expr = PSE.getSCEV(Ptr);
164 
165   LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
166 	     << " by: " << *Expr << "\n");
167   return Expr;
168 }
169 
170 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
171     unsigned Index, RuntimePointerChecking &RtCheck)
172     : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start),
173       AddressSpace(RtCheck.Pointers[Index]
174                        .PointerValue->getType()
175                        ->getPointerAddressSpace()) {
176   Members.push_back(Index);
177 }
178 
179 /// Calculate Start and End points of memory access.
180 /// Let's assume A is the first access and B is a memory access on N-th loop
181 /// iteration. Then B is calculated as:
182 ///   B = A + Step*N .
183 /// Step value may be positive or negative.
184 /// N is a calculated back-edge taken count:
185 ///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
186 /// Start and End points are calculated in the following way:
187 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
188 /// where SizeOfElt is the size of single memory access in bytes.
189 ///
190 /// There is no conflict when the intervals are disjoint:
191 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
192 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
193                                     unsigned DepSetId, unsigned ASId,
194                                     const ValueToValueMap &Strides,
195                                     PredicatedScalarEvolution &PSE) {
196   // Get the stride replaced scev.
197   const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
198   ScalarEvolution *SE = PSE.getSE();
199 
200   const SCEV *ScStart;
201   const SCEV *ScEnd;
202 
203   if (SE->isLoopInvariant(Sc, Lp)) {
204     ScStart = ScEnd = Sc;
205   } else {
206     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
207     assert(AR && "Invalid addrec expression");
208     const SCEV *Ex = PSE.getBackedgeTakenCount();
209 
210     ScStart = AR->getStart();
211     ScEnd = AR->evaluateAtIteration(Ex, *SE);
212     const SCEV *Step = AR->getStepRecurrence(*SE);
213 
214     // For expressions with negative step, the upper bound is ScStart and the
215     // lower bound is ScEnd.
216     if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
217       if (CStep->getValue()->isNegative())
218         std::swap(ScStart, ScEnd);
219     } else {
220       // Fallback case: the step is not constant, but we can still
221       // get the upper and lower bounds of the interval by using min/max
222       // expressions.
223       ScStart = SE->getUMinExpr(ScStart, ScEnd);
224       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
225     }
226   }
227   // Add the size of the pointed element to ScEnd.
228   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
229   Type *IdxTy = DL.getIndexType(Ptr->getType());
230   const SCEV *EltSizeSCEV =
231       SE->getStoreSizeOfExpr(IdxTy, Ptr->getType()->getPointerElementType());
232   ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
233 
234   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
235 }
236 
237 SmallVector<RuntimePointerCheck, 4>
238 RuntimePointerChecking::generateChecks() const {
239   SmallVector<RuntimePointerCheck, 4> Checks;
240 
241   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
242     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
243       const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I];
244       const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J];
245 
246       if (needsChecking(CGI, CGJ))
247         Checks.push_back(std::make_pair(&CGI, &CGJ));
248     }
249   }
250   return Checks;
251 }
252 
253 void RuntimePointerChecking::generateChecks(
254     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
255   assert(Checks.empty() && "Checks is not empty");
256   groupChecks(DepCands, UseDependencies);
257   Checks = generateChecks();
258 }
259 
260 bool RuntimePointerChecking::needsChecking(
261     const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const {
262   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
263     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
264       if (needsChecking(M.Members[I], N.Members[J]))
265         return true;
266   return false;
267 }
268 
269 /// Compare \p I and \p J and return the minimum.
270 /// Return nullptr in case we couldn't find an answer.
271 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
272                                    ScalarEvolution *SE) {
273   const SCEV *Diff = SE->getMinusSCEV(J, I);
274   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
275 
276   if (!C)
277     return nullptr;
278   if (C->getValue()->isNegative())
279     return J;
280   return I;
281 }
282 
283 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index,
284                                          RuntimePointerChecking &RtCheck) {
285   return addPointer(
286       Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End,
287       RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
288       *RtCheck.SE);
289 }
290 
291 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start,
292                                          const SCEV *End, unsigned AS,
293                                          ScalarEvolution &SE) {
294   assert(AddressSpace == AS &&
295          "all pointers in a checking group must be in the same address space");
296 
297   // Compare the starts and ends with the known minimum and maximum
298   // of this set. We need to know how we compare against the min/max
299   // of the set in order to be able to emit memchecks.
300   const SCEV *Min0 = getMinFromExprs(Start, Low, &SE);
301   if (!Min0)
302     return false;
303 
304   const SCEV *Min1 = getMinFromExprs(End, High, &SE);
305   if (!Min1)
306     return false;
307 
308   // Update the low bound  expression if we've found a new min value.
309   if (Min0 == Start)
310     Low = Start;
311 
312   // Update the high bound expression if we've found a new max value.
313   if (Min1 != End)
314     High = End;
315 
316   Members.push_back(Index);
317   return true;
318 }
319 
320 void RuntimePointerChecking::groupChecks(
321     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
322   // We build the groups from dependency candidates equivalence classes
323   // because:
324   //    - We know that pointers in the same equivalence class share
325   //      the same underlying object and therefore there is a chance
326   //      that we can compare pointers
327   //    - We wouldn't be able to merge two pointers for which we need
328   //      to emit a memcheck. The classes in DepCands are already
329   //      conveniently built such that no two pointers in the same
330   //      class need checking against each other.
331 
332   // We use the following (greedy) algorithm to construct the groups
333   // For every pointer in the equivalence class:
334   //   For each existing group:
335   //   - if the difference between this pointer and the min/max bounds
336   //     of the group is a constant, then make the pointer part of the
337   //     group and update the min/max bounds of that group as required.
338 
339   CheckingGroups.clear();
340 
341   // If we need to check two pointers to the same underlying object
342   // with a non-constant difference, we shouldn't perform any pointer
343   // grouping with those pointers. This is because we can easily get
344   // into cases where the resulting check would return false, even when
345   // the accesses are safe.
346   //
347   // The following example shows this:
348   // for (i = 0; i < 1000; ++i)
349   //   a[5000 + i * m] = a[i] + a[i + 9000]
350   //
351   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
352   // (0, 10000) which is always false. However, if m is 1, there is no
353   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
354   // us to perform an accurate check in this case.
355   //
356   // The above case requires that we have an UnknownDependence between
357   // accesses to the same underlying object. This cannot happen unless
358   // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
359   // is also false. In this case we will use the fallback path and create
360   // separate checking groups for all pointers.
361 
362   // If we don't have the dependency partitions, construct a new
363   // checking pointer group for each pointer. This is also required
364   // for correctness, because in this case we can have checking between
365   // pointers to the same underlying object.
366   if (!UseDependencies) {
367     for (unsigned I = 0; I < Pointers.size(); ++I)
368       CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this));
369     return;
370   }
371 
372   unsigned TotalComparisons = 0;
373 
374   DenseMap<Value *, unsigned> PositionMap;
375   for (unsigned Index = 0; Index < Pointers.size(); ++Index)
376     PositionMap[Pointers[Index].PointerValue] = Index;
377 
378   // We need to keep track of what pointers we've already seen so we
379   // don't process them twice.
380   SmallSet<unsigned, 2> Seen;
381 
382   // Go through all equivalence classes, get the "pointer check groups"
383   // and add them to the overall solution. We use the order in which accesses
384   // appear in 'Pointers' to enforce determinism.
385   for (unsigned I = 0; I < Pointers.size(); ++I) {
386     // We've seen this pointer before, and therefore already processed
387     // its equivalence class.
388     if (Seen.count(I))
389       continue;
390 
391     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
392                                            Pointers[I].IsWritePtr);
393 
394     SmallVector<RuntimeCheckingPtrGroup, 2> Groups;
395     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
396 
397     // Because DepCands is constructed by visiting accesses in the order in
398     // which they appear in alias sets (which is deterministic) and the
399     // iteration order within an equivalence class member is only dependent on
400     // the order in which unions and insertions are performed on the
401     // equivalence class, the iteration order is deterministic.
402     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
403          MI != ME; ++MI) {
404       auto PointerI = PositionMap.find(MI->getPointer());
405       assert(PointerI != PositionMap.end() &&
406              "pointer in equivalence class not found in PositionMap");
407       unsigned Pointer = PointerI->second;
408       bool Merged = false;
409       // Mark this pointer as seen.
410       Seen.insert(Pointer);
411 
412       // Go through all the existing sets and see if we can find one
413       // which can include this pointer.
414       for (RuntimeCheckingPtrGroup &Group : Groups) {
415         // Don't perform more than a certain amount of comparisons.
416         // This should limit the cost of grouping the pointers to something
417         // reasonable.  If we do end up hitting this threshold, the algorithm
418         // will create separate groups for all remaining pointers.
419         if (TotalComparisons > MemoryCheckMergeThreshold)
420           break;
421 
422         TotalComparisons++;
423 
424         if (Group.addPointer(Pointer, *this)) {
425           Merged = true;
426           break;
427         }
428       }
429 
430       if (!Merged)
431         // We couldn't add this pointer to any existing set or the threshold
432         // for the number of comparisons has been reached. Create a new group
433         // to hold the current pointer.
434         Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this));
435     }
436 
437     // We've computed the grouped checks for this partition.
438     // Save the results and continue with the next one.
439     llvm::copy(Groups, std::back_inserter(CheckingGroups));
440   }
441 }
442 
443 bool RuntimePointerChecking::arePointersInSamePartition(
444     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
445     unsigned PtrIdx2) {
446   return (PtrToPartition[PtrIdx1] != -1 &&
447           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
448 }
449 
450 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
451   const PointerInfo &PointerI = Pointers[I];
452   const PointerInfo &PointerJ = Pointers[J];
453 
454   // No need to check if two readonly pointers intersect.
455   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
456     return false;
457 
458   // Only need to check pointers between two different dependency sets.
459   if (PointerI.DependencySetId == PointerJ.DependencySetId)
460     return false;
461 
462   // Only need to check pointers in the same alias set.
463   if (PointerI.AliasSetId != PointerJ.AliasSetId)
464     return false;
465 
466   return true;
467 }
468 
469 void RuntimePointerChecking::printChecks(
470     raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks,
471     unsigned Depth) const {
472   unsigned N = 0;
473   for (const auto &Check : Checks) {
474     const auto &First = Check.first->Members, &Second = Check.second->Members;
475 
476     OS.indent(Depth) << "Check " << N++ << ":\n";
477 
478     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
479     for (unsigned K = 0; K < First.size(); ++K)
480       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
481 
482     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
483     for (unsigned K = 0; K < Second.size(); ++K)
484       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
485   }
486 }
487 
488 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
489 
490   OS.indent(Depth) << "Run-time memory checks:\n";
491   printChecks(OS, Checks, Depth);
492 
493   OS.indent(Depth) << "Grouped accesses:\n";
494   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
495     const auto &CG = CheckingGroups[I];
496 
497     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
498     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
499                          << ")\n";
500     for (unsigned J = 0; J < CG.Members.size(); ++J) {
501       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
502                            << "\n";
503     }
504   }
505 }
506 
507 namespace {
508 
509 /// Analyses memory accesses in a loop.
510 ///
511 /// Checks whether run time pointer checks are needed and builds sets for data
512 /// dependence checking.
513 class AccessAnalysis {
514 public:
515   /// Read or write access location.
516   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
517   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
518 
519   AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI,
520                  MemoryDepChecker::DepCandidates &DA,
521                  PredicatedScalarEvolution &PSE)
522       : TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA),
523         IsRTCheckAnalysisNeeded(false), PSE(PSE) {}
524 
525   /// Register a load  and whether it is only read from.
526   void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
527     Value *Ptr = const_cast<Value*>(Loc.Ptr);
528     AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags);
529     Accesses.insert(MemAccessInfo(Ptr, false));
530     if (IsReadOnly)
531       ReadOnlyPtr.insert(Ptr);
532   }
533 
534   /// Register a store.
535   void addStore(MemoryLocation &Loc) {
536     Value *Ptr = const_cast<Value*>(Loc.Ptr);
537     AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags);
538     Accesses.insert(MemAccessInfo(Ptr, true));
539   }
540 
541   /// Check if we can emit a run-time no-alias check for \p Access.
542   ///
543   /// Returns true if we can emit a run-time no alias check for \p Access.
544   /// If we can check this access, this also adds it to a dependence set and
545   /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
546   /// we will attempt to use additional run-time checks in order to get
547   /// the bounds of the pointer.
548   bool createCheckForAccess(RuntimePointerChecking &RtCheck,
549                             MemAccessInfo Access,
550                             const ValueToValueMap &Strides,
551                             DenseMap<Value *, unsigned> &DepSetId,
552                             Loop *TheLoop, unsigned &RunningDepId,
553                             unsigned ASId, bool ShouldCheckStride,
554                             bool Assume);
555 
556   /// Check whether we can check the pointers at runtime for
557   /// non-intersection.
558   ///
559   /// Returns true if we need no check or if we do and we can generate them
560   /// (i.e. the pointers have computable bounds).
561   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
562                        Loop *TheLoop, const ValueToValueMap &Strides,
563                        bool ShouldCheckWrap = false);
564 
565   /// Goes over all memory accesses, checks whether a RT check is needed
566   /// and builds sets of dependent accesses.
567   void buildDependenceSets() {
568     processMemAccesses();
569   }
570 
571   /// Initial processing of memory accesses determined that we need to
572   /// perform dependency checking.
573   ///
574   /// Note that this can later be cleared if we retry memcheck analysis without
575   /// dependency checking (i.e. FoundNonConstantDistanceDependence).
576   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
577 
578   /// We decided that no dependence analysis would be used.  Reset the state.
579   void resetDepChecks(MemoryDepChecker &DepChecker) {
580     CheckDeps.clear();
581     DepChecker.clearDependences();
582   }
583 
584   MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
585 
586 private:
587   typedef SetVector<MemAccessInfo> PtrAccessSet;
588 
589   /// Go over all memory access and check whether runtime pointer checks
590   /// are needed and build sets of dependency check candidates.
591   void processMemAccesses();
592 
593   /// Set of all accesses.
594   PtrAccessSet Accesses;
595 
596   /// The loop being checked.
597   const Loop *TheLoop;
598 
599   /// List of accesses that need a further dependence check.
600   MemAccessInfoList CheckDeps;
601 
602   /// Set of pointers that are read only.
603   SmallPtrSet<Value*, 16> ReadOnlyPtr;
604 
605   /// An alias set tracker to partition the access set by underlying object and
606   //intrinsic property (such as TBAA metadata).
607   AliasSetTracker AST;
608 
609   LoopInfo *LI;
610 
611   /// Sets of potentially dependent accesses - members of one set share an
612   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
613   /// dependence check.
614   MemoryDepChecker::DepCandidates &DepCands;
615 
616   /// Initial processing of memory accesses determined that we may need
617   /// to add memchecks.  Perform the analysis to determine the necessary checks.
618   ///
619   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
620   /// memcheck analysis without dependency checking
621   /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
622   /// cleared while this remains set if we have potentially dependent accesses.
623   bool IsRTCheckAnalysisNeeded;
624 
625   /// The SCEV predicate containing all the SCEV-related assumptions.
626   PredicatedScalarEvolution &PSE;
627 };
628 
629 } // end anonymous namespace
630 
631 /// Check whether a pointer can participate in a runtime bounds check.
632 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
633 /// by adding run-time checks (overflow checks) if necessary.
634 static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
635                                 const ValueToValueMap &Strides, Value *Ptr,
636                                 Loop *L, bool Assume) {
637   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
638 
639   // The bounds for loop-invariant pointer is trivial.
640   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
641     return true;
642 
643   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
644 
645   if (!AR && Assume)
646     AR = PSE.getAsAddRec(Ptr);
647 
648   if (!AR)
649     return false;
650 
651   return AR->isAffine();
652 }
653 
654 /// Check whether a pointer address cannot wrap.
655 static bool isNoWrap(PredicatedScalarEvolution &PSE,
656                      const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
657   const SCEV *PtrScev = PSE.getSCEV(Ptr);
658   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
659     return true;
660 
661   Type *AccessTy = Ptr->getType()->getPointerElementType();
662   int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides);
663   if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
664     return true;
665 
666   return false;
667 }
668 
669 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop,
670                           function_ref<void(Value *)> AddPointer) {
671   SmallPtrSet<Value *, 8> Visited;
672   SmallVector<Value *> WorkList;
673   WorkList.push_back(StartPtr);
674 
675   while (!WorkList.empty()) {
676     Value *Ptr = WorkList.pop_back_val();
677     if (!Visited.insert(Ptr).second)
678       continue;
679     auto *PN = dyn_cast<PHINode>(Ptr);
680     // SCEV does not look through non-header PHIs inside the loop. Such phis
681     // can be analyzed by adding separate accesses for each incoming pointer
682     // value.
683     if (PN && InnermostLoop.contains(PN->getParent()) &&
684         PN->getParent() != InnermostLoop.getHeader()) {
685       for (const Use &Inc : PN->incoming_values())
686         WorkList.push_back(Inc);
687     } else
688       AddPointer(Ptr);
689   }
690 }
691 
692 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
693                                           MemAccessInfo Access,
694                                           const ValueToValueMap &StridesMap,
695                                           DenseMap<Value *, unsigned> &DepSetId,
696                                           Loop *TheLoop, unsigned &RunningDepId,
697                                           unsigned ASId, bool ShouldCheckWrap,
698                                           bool Assume) {
699   Value *Ptr = Access.getPointer();
700 
701   if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume))
702     return false;
703 
704   // When we run after a failing dependency check we have to make sure
705   // we don't have wrapping pointers.
706   if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) {
707     auto *Expr = PSE.getSCEV(Ptr);
708     if (!Assume || !isa<SCEVAddRecExpr>(Expr))
709       return false;
710     PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
711   }
712 
713   // The id of the dependence set.
714   unsigned DepId;
715 
716   if (isDependencyCheckNeeded()) {
717     Value *Leader = DepCands.getLeaderValue(Access).getPointer();
718     unsigned &LeaderId = DepSetId[Leader];
719     if (!LeaderId)
720       LeaderId = RunningDepId++;
721     DepId = LeaderId;
722   } else
723     // Each access has its own dependence set.
724     DepId = RunningDepId++;
725 
726   bool IsWrite = Access.getInt();
727   RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
728   LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
729 
730   return true;
731  }
732 
733 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
734                                      ScalarEvolution *SE, Loop *TheLoop,
735                                      const ValueToValueMap &StridesMap,
736                                      bool ShouldCheckWrap) {
737   // Find pointers with computable bounds. We are going to use this information
738   // to place a runtime bound check.
739   bool CanDoRT = true;
740 
741   bool MayNeedRTCheck = false;
742   if (!IsRTCheckAnalysisNeeded) return true;
743 
744   bool IsDepCheckNeeded = isDependencyCheckNeeded();
745 
746   // We assign a consecutive id to access from different alias sets.
747   // Accesses between different groups doesn't need to be checked.
748   unsigned ASId = 0;
749   for (auto &AS : AST) {
750     int NumReadPtrChecks = 0;
751     int NumWritePtrChecks = 0;
752     bool CanDoAliasSetRT = true;
753     ++ASId;
754 
755     // We assign consecutive id to access from different dependence sets.
756     // Accesses within the same set don't need a runtime check.
757     unsigned RunningDepId = 1;
758     DenseMap<Value *, unsigned> DepSetId;
759 
760     SmallVector<MemAccessInfo, 4> Retries;
761 
762     // First, count how many write and read accesses are in the alias set. Also
763     // collect MemAccessInfos for later.
764     SmallVector<MemAccessInfo, 4> AccessInfos;
765     for (const auto &A : AS) {
766       Value *Ptr = A.getValue();
767       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
768 
769       if (IsWrite)
770         ++NumWritePtrChecks;
771       else
772         ++NumReadPtrChecks;
773       AccessInfos.emplace_back(Ptr, IsWrite);
774     }
775 
776     // We do not need runtime checks for this alias set, if there are no writes
777     // or a single write and no reads.
778     if (NumWritePtrChecks == 0 ||
779         (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
780       assert((AS.size() <= 1 ||
781               all_of(AS,
782                      [this](auto AC) {
783                        MemAccessInfo AccessWrite(AC.getValue(), true);
784                        return DepCands.findValue(AccessWrite) == DepCands.end();
785                      })) &&
786              "Can only skip updating CanDoRT below, if all entries in AS "
787              "are reads or there is at most 1 entry");
788       continue;
789     }
790 
791     for (auto &Access : AccessInfos) {
792       if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop,
793                                 RunningDepId, ASId, ShouldCheckWrap, false)) {
794         LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
795                           << *Access.getPointer() << '\n');
796         Retries.push_back(Access);
797         CanDoAliasSetRT = false;
798       }
799     }
800 
801     // Note that this function computes CanDoRT and MayNeedRTCheck
802     // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
803     // we have a pointer for which we couldn't find the bounds but we don't
804     // actually need to emit any checks so it does not matter.
805     //
806     // We need runtime checks for this alias set, if there are at least 2
807     // dependence sets (in which case RunningDepId > 2) or if we need to re-try
808     // any bound checks (because in that case the number of dependence sets is
809     // incomplete).
810     bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty();
811 
812     // We need to perform run-time alias checks, but some pointers had bounds
813     // that couldn't be checked.
814     if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
815       // Reset the CanDoSetRt flag and retry all accesses that have failed.
816       // We know that we need these checks, so we can now be more aggressive
817       // and add further checks if required (overflow checks).
818       CanDoAliasSetRT = true;
819       for (auto Access : Retries)
820         if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId,
821                                   TheLoop, RunningDepId, ASId,
822                                   ShouldCheckWrap, /*Assume=*/true)) {
823           CanDoAliasSetRT = false;
824           break;
825         }
826     }
827 
828     CanDoRT &= CanDoAliasSetRT;
829     MayNeedRTCheck |= NeedsAliasSetRTCheck;
830     ++ASId;
831   }
832 
833   // If the pointers that we would use for the bounds comparison have different
834   // address spaces, assume the values aren't directly comparable, so we can't
835   // use them for the runtime check. We also have to assume they could
836   // overlap. In the future there should be metadata for whether address spaces
837   // are disjoint.
838   unsigned NumPointers = RtCheck.Pointers.size();
839   for (unsigned i = 0; i < NumPointers; ++i) {
840     for (unsigned j = i + 1; j < NumPointers; ++j) {
841       // Only need to check pointers between two different dependency sets.
842       if (RtCheck.Pointers[i].DependencySetId ==
843           RtCheck.Pointers[j].DependencySetId)
844        continue;
845       // Only need to check pointers in the same alias set.
846       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
847         continue;
848 
849       Value *PtrI = RtCheck.Pointers[i].PointerValue;
850       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
851 
852       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
853       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
854       if (ASi != ASj) {
855         LLVM_DEBUG(
856             dbgs() << "LAA: Runtime check would require comparison between"
857                       " different address spaces\n");
858         return false;
859       }
860     }
861   }
862 
863   if (MayNeedRTCheck && CanDoRT)
864     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
865 
866   LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
867                     << " pointer comparisons.\n");
868 
869   // If we can do run-time checks, but there are no checks, no runtime checks
870   // are needed. This can happen when all pointers point to the same underlying
871   // object for example.
872   RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck;
873 
874   bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT;
875   if (!CanDoRTIfNeeded)
876     RtCheck.reset();
877   return CanDoRTIfNeeded;
878 }
879 
880 void AccessAnalysis::processMemAccesses() {
881   // We process the set twice: first we process read-write pointers, last we
882   // process read-only pointers. This allows us to skip dependence tests for
883   // read-only pointers.
884 
885   LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
886   LLVM_DEBUG(dbgs() << "  AST: "; AST.dump());
887   LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
888   LLVM_DEBUG({
889     for (auto A : Accesses)
890       dbgs() << "\t" << *A.getPointer() << " (" <<
891                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
892                                          "read-only" : "read")) << ")\n";
893   });
894 
895   // The AliasSetTracker has nicely partitioned our pointers by metadata
896   // compatibility and potential for underlying-object overlap. As a result, we
897   // only need to check for potential pointer dependencies within each alias
898   // set.
899   for (const auto &AS : AST) {
900     // Note that both the alias-set tracker and the alias sets themselves used
901     // linked lists internally and so the iteration order here is deterministic
902     // (matching the original instruction order within each set).
903 
904     bool SetHasWrite = false;
905 
906     // Map of pointers to last access encountered.
907     typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
908     UnderlyingObjToAccessMap ObjToLastAccess;
909 
910     // Set of access to check after all writes have been processed.
911     PtrAccessSet DeferredAccesses;
912 
913     // Iterate over each alias set twice, once to process read/write pointers,
914     // and then to process read-only pointers.
915     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
916       bool UseDeferred = SetIteration > 0;
917       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
918 
919       for (const auto &AV : AS) {
920         Value *Ptr = AV.getValue();
921 
922         // For a single memory access in AliasSetTracker, Accesses may contain
923         // both read and write, and they both need to be handled for CheckDeps.
924         for (const auto &AC : S) {
925           if (AC.getPointer() != Ptr)
926             continue;
927 
928           bool IsWrite = AC.getInt();
929 
930           // If we're using the deferred access set, then it contains only
931           // reads.
932           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
933           if (UseDeferred && !IsReadOnlyPtr)
934             continue;
935           // Otherwise, the pointer must be in the PtrAccessSet, either as a
936           // read or a write.
937           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
938                   S.count(MemAccessInfo(Ptr, false))) &&
939                  "Alias-set pointer not in the access set?");
940 
941           MemAccessInfo Access(Ptr, IsWrite);
942           DepCands.insert(Access);
943 
944           // Memorize read-only pointers for later processing and skip them in
945           // the first round (they need to be checked after we have seen all
946           // write pointers). Note: we also mark pointer that are not
947           // consecutive as "read-only" pointers (so that we check
948           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
949           if (!UseDeferred && IsReadOnlyPtr) {
950             DeferredAccesses.insert(Access);
951             continue;
952           }
953 
954           // If this is a write - check other reads and writes for conflicts. If
955           // this is a read only check other writes for conflicts (but only if
956           // there is no other write to the ptr - this is an optimization to
957           // catch "a[i] = a[i] + " without having to do a dependence check).
958           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
959             CheckDeps.push_back(Access);
960             IsRTCheckAnalysisNeeded = true;
961           }
962 
963           if (IsWrite)
964             SetHasWrite = true;
965 
966           // Create sets of pointers connected by a shared alias set and
967           // underlying object.
968           typedef SmallVector<const Value *, 16> ValueVector;
969           ValueVector TempObjects;
970 
971           getUnderlyingObjects(Ptr, TempObjects, LI);
972           LLVM_DEBUG(dbgs()
973                      << "Underlying objects for pointer " << *Ptr << "\n");
974           for (const Value *UnderlyingObj : TempObjects) {
975             // nullptr never alias, don't join sets for pointer that have "null"
976             // in their UnderlyingObjects list.
977             if (isa<ConstantPointerNull>(UnderlyingObj) &&
978                 !NullPointerIsDefined(
979                     TheLoop->getHeader()->getParent(),
980                     UnderlyingObj->getType()->getPointerAddressSpace()))
981               continue;
982 
983             UnderlyingObjToAccessMap::iterator Prev =
984                 ObjToLastAccess.find(UnderlyingObj);
985             if (Prev != ObjToLastAccess.end())
986               DepCands.unionSets(Access, Prev->second);
987 
988             ObjToLastAccess[UnderlyingObj] = Access;
989             LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
990           }
991         }
992       }
993     }
994   }
995 }
996 
997 static bool isInBoundsGep(Value *Ptr) {
998   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
999     return GEP->isInBounds();
1000   return false;
1001 }
1002 
1003 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
1004 /// i.e. monotonically increasing/decreasing.
1005 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
1006                            PredicatedScalarEvolution &PSE, const Loop *L) {
1007   // FIXME: This should probably only return true for NUW.
1008   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
1009     return true;
1010 
1011   // Scalar evolution does not propagate the non-wrapping flags to values that
1012   // are derived from a non-wrapping induction variable because non-wrapping
1013   // could be flow-sensitive.
1014   //
1015   // Look through the potentially overflowing instruction to try to prove
1016   // non-wrapping for the *specific* value of Ptr.
1017 
1018   // The arithmetic implied by an inbounds GEP can't overflow.
1019   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1020   if (!GEP || !GEP->isInBounds())
1021     return false;
1022 
1023   // Make sure there is only one non-const index and analyze that.
1024   Value *NonConstIndex = nullptr;
1025   for (Value *Index : GEP->indices())
1026     if (!isa<ConstantInt>(Index)) {
1027       if (NonConstIndex)
1028         return false;
1029       NonConstIndex = Index;
1030     }
1031   if (!NonConstIndex)
1032     // The recurrence is on the pointer, ignore for now.
1033     return false;
1034 
1035   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
1036   // AddRec using a NSW operation.
1037   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
1038     if (OBO->hasNoSignedWrap() &&
1039         // Assume constant for other the operand so that the AddRec can be
1040         // easily found.
1041         isa<ConstantInt>(OBO->getOperand(1))) {
1042       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
1043 
1044       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
1045         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
1046     }
1047 
1048   return false;
1049 }
1050 
1051 /// Check whether the access through \p Ptr has a constant stride.
1052 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy,
1053                            Value *Ptr, const Loop *Lp,
1054                            const ValueToValueMap &StridesMap, bool Assume,
1055                            bool ShouldCheckWrap) {
1056   Type *Ty = Ptr->getType();
1057   assert(Ty->isPointerTy() && "Unexpected non-ptr");
1058   assert(!AccessTy->isAggregateType() && "Bad stride - Not a pointer to a scalar type");
1059 
1060   if (isa<ScalableVectorType>(AccessTy)) {
1061     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy
1062                       << "\n");
1063     return 0;
1064   }
1065 
1066   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
1067 
1068   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1069   if (Assume && !AR)
1070     AR = PSE.getAsAddRec(Ptr);
1071 
1072   if (!AR) {
1073     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1074                       << " SCEV: " << *PtrScev << "\n");
1075     return 0;
1076   }
1077 
1078   // The access function must stride over the innermost loop.
1079   if (Lp != AR->getLoop()) {
1080     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1081                       << *Ptr << " SCEV: " << *AR << "\n");
1082     return 0;
1083   }
1084 
1085   // The address calculation must not wrap. Otherwise, a dependence could be
1086   // inverted.
1087   // An inbounds getelementptr that is a AddRec with a unit stride
1088   // cannot wrap per definition. The unit stride requirement is checked later.
1089   // An getelementptr without an inbounds attribute and unit stride would have
1090   // to access the pointer value "0" which is undefined behavior in address
1091   // space 0, therefore we can also vectorize this case.
1092   unsigned AddrSpace = Ty->getPointerAddressSpace();
1093   bool IsInBoundsGEP = isInBoundsGep(Ptr);
1094   bool IsNoWrapAddRec = !ShouldCheckWrap ||
1095     PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
1096     isNoWrapAddRec(Ptr, AR, PSE, Lp);
1097   if (!IsNoWrapAddRec && !IsInBoundsGEP &&
1098       NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace)) {
1099     if (Assume) {
1100       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1101       IsNoWrapAddRec = true;
1102       LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
1103                         << "LAA:   Pointer: " << *Ptr << "\n"
1104                         << "LAA:   SCEV: " << *AR << "\n"
1105                         << "LAA:   Added an overflow assumption\n");
1106     } else {
1107       LLVM_DEBUG(
1108           dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1109                  << *Ptr << " SCEV: " << *AR << "\n");
1110       return 0;
1111     }
1112   }
1113 
1114   // Check the step is constant.
1115   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
1116 
1117   // Calculate the pointer stride and check if it is constant.
1118   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1119   if (!C) {
1120     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1121                       << " SCEV: " << *AR << "\n");
1122     return 0;
1123   }
1124 
1125   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1126   TypeSize AllocSize = DL.getTypeAllocSize(AccessTy);
1127   int64_t Size = AllocSize.getFixedSize();
1128   const APInt &APStepVal = C->getAPInt();
1129 
1130   // Huge step value - give up.
1131   if (APStepVal.getBitWidth() > 64)
1132     return 0;
1133 
1134   int64_t StepVal = APStepVal.getSExtValue();
1135 
1136   // Strided access.
1137   int64_t Stride = StepVal / Size;
1138   int64_t Rem = StepVal % Size;
1139   if (Rem)
1140     return 0;
1141 
1142   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
1143   // know we can't "wrap around the address space". In case of address space
1144   // zero we know that this won't happen without triggering undefined behavior.
1145   if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 &&
1146       (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(),
1147                                               AddrSpace))) {
1148     if (Assume) {
1149       // We can avoid this case by adding a run-time check.
1150       LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
1151                         << "inbounds or in address space 0 may wrap:\n"
1152                         << "LAA:   Pointer: " << *Ptr << "\n"
1153                         << "LAA:   SCEV: " << *AR << "\n"
1154                         << "LAA:   Added an overflow assumption\n");
1155       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1156     } else
1157       return 0;
1158   }
1159 
1160   return Stride;
1161 }
1162 
1163 Optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB,
1164                                     Value *PtrB, const DataLayout &DL,
1165                                     ScalarEvolution &SE, bool StrictCheck,
1166                                     bool CheckType) {
1167   assert(PtrA && PtrB && "Expected non-nullptr pointers.");
1168   assert(cast<PointerType>(PtrA->getType())
1169              ->isOpaqueOrPointeeTypeMatches(ElemTyA) && "Wrong PtrA type");
1170   assert(cast<PointerType>(PtrB->getType())
1171              ->isOpaqueOrPointeeTypeMatches(ElemTyB) && "Wrong PtrB type");
1172 
1173   // Make sure that A and B are different pointers.
1174   if (PtrA == PtrB)
1175     return 0;
1176 
1177   // Make sure that the element types are the same if required.
1178   if (CheckType && ElemTyA != ElemTyB)
1179     return None;
1180 
1181   unsigned ASA = PtrA->getType()->getPointerAddressSpace();
1182   unsigned ASB = PtrB->getType()->getPointerAddressSpace();
1183 
1184   // Check that the address spaces match.
1185   if (ASA != ASB)
1186     return None;
1187   unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1188 
1189   APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1190   Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1191   Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1192 
1193   int Val;
1194   if (PtrA1 == PtrB1) {
1195     // Retrieve the address space again as pointer stripping now tracks through
1196     // `addrspacecast`.
1197     ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace();
1198     ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace();
1199     // Check that the address spaces match and that the pointers are valid.
1200     if (ASA != ASB)
1201       return None;
1202 
1203     IdxWidth = DL.getIndexSizeInBits(ASA);
1204     OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1205     OffsetB = OffsetB.sextOrTrunc(IdxWidth);
1206 
1207     OffsetB -= OffsetA;
1208     Val = OffsetB.getSExtValue();
1209   } else {
1210     // Otherwise compute the distance with SCEV between the base pointers.
1211     const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1212     const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1213     const auto *Diff =
1214         dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA));
1215     if (!Diff)
1216       return None;
1217     Val = Diff->getAPInt().getSExtValue();
1218   }
1219   int Size = DL.getTypeStoreSize(ElemTyA);
1220   int Dist = Val / Size;
1221 
1222   // Ensure that the calculated distance matches the type-based one after all
1223   // the bitcasts removal in the provided pointers.
1224   if (!StrictCheck || Dist * Size == Val)
1225     return Dist;
1226   return None;
1227 }
1228 
1229 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
1230                            const DataLayout &DL, ScalarEvolution &SE,
1231                            SmallVectorImpl<unsigned> &SortedIndices) {
1232   assert(llvm::all_of(
1233              VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1234          "Expected list of pointer operands.");
1235   // Walk over the pointers, and map each of them to an offset relative to
1236   // first pointer in the array.
1237   Value *Ptr0 = VL[0];
1238 
1239   using DistOrdPair = std::pair<int64_t, int>;
1240   auto Compare = [](const DistOrdPair &L, const DistOrdPair &R) {
1241     return L.first < R.first;
1242   };
1243   std::set<DistOrdPair, decltype(Compare)> Offsets(Compare);
1244   Offsets.emplace(0, 0);
1245   int Cnt = 1;
1246   bool IsConsecutive = true;
1247   for (auto *Ptr : VL.drop_front()) {
1248     Optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE,
1249                                          /*StrictCheck=*/true);
1250     if (!Diff)
1251       return false;
1252 
1253     // Check if the pointer with the same offset is found.
1254     int64_t Offset = *Diff;
1255     auto Res = Offsets.emplace(Offset, Cnt);
1256     if (!Res.second)
1257       return false;
1258     // Consecutive order if the inserted element is the last one.
1259     IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end();
1260     ++Cnt;
1261   }
1262   SortedIndices.clear();
1263   if (!IsConsecutive) {
1264     // Fill SortedIndices array only if it is non-consecutive.
1265     SortedIndices.resize(VL.size());
1266     Cnt = 0;
1267     for (const std::pair<int64_t, int> &Pair : Offsets) {
1268       SortedIndices[Cnt] = Pair.second;
1269       ++Cnt;
1270     }
1271   }
1272   return true;
1273 }
1274 
1275 /// Returns true if the memory operations \p A and \p B are consecutive.
1276 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1277                                ScalarEvolution &SE, bool CheckType) {
1278   Value *PtrA = getLoadStorePointerOperand(A);
1279   Value *PtrB = getLoadStorePointerOperand(B);
1280   if (!PtrA || !PtrB)
1281     return false;
1282   Type *ElemTyA = getLoadStoreType(A);
1283   Type *ElemTyB = getLoadStoreType(B);
1284   Optional<int> Diff = getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE,
1285                                        /*StrictCheck=*/true, CheckType);
1286   return Diff && *Diff == 1;
1287 }
1288 
1289 void MemoryDepChecker::addAccess(StoreInst *SI) {
1290   visitPointers(SI->getPointerOperand(), *InnermostLoop,
1291                 [this, SI](Value *Ptr) {
1292                   Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
1293                   InstMap.push_back(SI);
1294                   ++AccessIdx;
1295                 });
1296 }
1297 
1298 void MemoryDepChecker::addAccess(LoadInst *LI) {
1299   visitPointers(LI->getPointerOperand(), *InnermostLoop,
1300                 [this, LI](Value *Ptr) {
1301                   Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
1302                   InstMap.push_back(LI);
1303                   ++AccessIdx;
1304                 });
1305 }
1306 
1307 MemoryDepChecker::VectorizationSafetyStatus
1308 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1309   switch (Type) {
1310   case NoDep:
1311   case Forward:
1312   case BackwardVectorizable:
1313     return VectorizationSafetyStatus::Safe;
1314 
1315   case Unknown:
1316     return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
1317   case ForwardButPreventsForwarding:
1318   case Backward:
1319   case BackwardVectorizableButPreventsForwarding:
1320     return VectorizationSafetyStatus::Unsafe;
1321   }
1322   llvm_unreachable("unexpected DepType!");
1323 }
1324 
1325 bool MemoryDepChecker::Dependence::isBackward() const {
1326   switch (Type) {
1327   case NoDep:
1328   case Forward:
1329   case ForwardButPreventsForwarding:
1330   case Unknown:
1331     return false;
1332 
1333   case BackwardVectorizable:
1334   case Backward:
1335   case BackwardVectorizableButPreventsForwarding:
1336     return true;
1337   }
1338   llvm_unreachable("unexpected DepType!");
1339 }
1340 
1341 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1342   return isBackward() || Type == Unknown;
1343 }
1344 
1345 bool MemoryDepChecker::Dependence::isForward() const {
1346   switch (Type) {
1347   case Forward:
1348   case ForwardButPreventsForwarding:
1349     return true;
1350 
1351   case NoDep:
1352   case Unknown:
1353   case BackwardVectorizable:
1354   case Backward:
1355   case BackwardVectorizableButPreventsForwarding:
1356     return false;
1357   }
1358   llvm_unreachable("unexpected DepType!");
1359 }
1360 
1361 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1362                                                     uint64_t TypeByteSize) {
1363   // If loads occur at a distance that is not a multiple of a feasible vector
1364   // factor store-load forwarding does not take place.
1365   // Positive dependences might cause troubles because vectorizing them might
1366   // prevent store-load forwarding making vectorized code run a lot slower.
1367   //   a[i] = a[i-3] ^ a[i-8];
1368   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1369   //   hence on your typical architecture store-load forwarding does not take
1370   //   place. Vectorizing in such cases does not make sense.
1371   // Store-load forwarding distance.
1372 
1373   // After this many iterations store-to-load forwarding conflicts should not
1374   // cause any slowdowns.
1375   const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1376   // Maximum vector factor.
1377   uint64_t MaxVFWithoutSLForwardIssues = std::min(
1378       VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
1379 
1380   // Compute the smallest VF at which the store and load would be misaligned.
1381   for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1382        VF *= 2) {
1383     // If the number of vector iteration between the store and the load are
1384     // small we could incur conflicts.
1385     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1386       MaxVFWithoutSLForwardIssues = (VF >> 1);
1387       break;
1388     }
1389   }
1390 
1391   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1392     LLVM_DEBUG(
1393         dbgs() << "LAA: Distance " << Distance
1394                << " that could cause a store-load forwarding conflict\n");
1395     return true;
1396   }
1397 
1398   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1399       MaxVFWithoutSLForwardIssues !=
1400           VectorizerParams::MaxVectorWidth * TypeByteSize)
1401     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1402   return false;
1403 }
1404 
1405 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1406   if (Status < S)
1407     Status = S;
1408 }
1409 
1410 /// Given a non-constant (unknown) dependence-distance \p Dist between two
1411 /// memory accesses, that have the same stride whose absolute value is given
1412 /// in \p Stride, and that have the same type size \p TypeByteSize,
1413 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
1414 /// possible to prove statically that the dependence distance is larger
1415 /// than the range that the accesses will travel through the execution of
1416 /// the loop. If so, return true; false otherwise. This is useful for
1417 /// example in loops such as the following (PR31098):
1418 ///     for (i = 0; i < D; ++i) {
1419 ///                = out[i];
1420 ///       out[i+D] =
1421 ///     }
1422 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1423                                      const SCEV &BackedgeTakenCount,
1424                                      const SCEV &Dist, uint64_t Stride,
1425                                      uint64_t TypeByteSize) {
1426 
1427   // If we can prove that
1428   //      (**) |Dist| > BackedgeTakenCount * Step
1429   // where Step is the absolute stride of the memory accesses in bytes,
1430   // then there is no dependence.
1431   //
1432   // Rationale:
1433   // We basically want to check if the absolute distance (|Dist/Step|)
1434   // is >= the loop iteration count (or > BackedgeTakenCount).
1435   // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1436   // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1437   // that the dependence distance is >= VF; This is checked elsewhere.
1438   // But in some cases we can prune unknown dependence distances early, and
1439   // even before selecting the VF, and without a runtime test, by comparing
1440   // the distance against the loop iteration count. Since the vectorized code
1441   // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1442   // also guarantees that distance >= VF.
1443   //
1444   const uint64_t ByteStride = Stride * TypeByteSize;
1445   const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
1446   const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);
1447 
1448   const SCEV *CastedDist = &Dist;
1449   const SCEV *CastedProduct = Product;
1450   uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType());
1451   uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType());
1452 
1453   // The dependence distance can be positive/negative, so we sign extend Dist;
1454   // The multiplication of the absolute stride in bytes and the
1455   // backedgeTakenCount is non-negative, so we zero extend Product.
1456   if (DistTypeSize > ProductTypeSize)
1457     CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1458   else
1459     CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1460 
1461   // Is  Dist - (BackedgeTakenCount * Step) > 0 ?
1462   // (If so, then we have proven (**) because |Dist| >= Dist)
1463   const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1464   if (SE.isKnownPositive(Minus))
1465     return true;
1466 
1467   // Second try: Is  -Dist - (BackedgeTakenCount * Step) > 0 ?
1468   // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1469   const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1470   Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1471   if (SE.isKnownPositive(Minus))
1472     return true;
1473 
1474   return false;
1475 }
1476 
1477 /// Check the dependence for two accesses with the same stride \p Stride.
1478 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1479 /// bytes.
1480 ///
1481 /// \returns true if they are independent.
1482 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1483                                           uint64_t TypeByteSize) {
1484   assert(Stride > 1 && "The stride must be greater than 1");
1485   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1486   assert(Distance > 0 && "The distance must be non-zero");
1487 
1488   // Skip if the distance is not multiple of type byte size.
1489   if (Distance % TypeByteSize)
1490     return false;
1491 
1492   uint64_t ScaledDist = Distance / TypeByteSize;
1493 
1494   // No dependence if the scaled distance is not multiple of the stride.
1495   // E.g.
1496   //      for (i = 0; i < 1024 ; i += 4)
1497   //        A[i+2] = A[i] + 1;
1498   //
1499   // Two accesses in memory (scaled distance is 2, stride is 4):
1500   //     | A[0] |      |      |      | A[4] |      |      |      |
1501   //     |      |      | A[2] |      |      |      | A[6] |      |
1502   //
1503   // E.g.
1504   //      for (i = 0; i < 1024 ; i += 3)
1505   //        A[i+4] = A[i] + 1;
1506   //
1507   // Two accesses in memory (scaled distance is 4, stride is 3):
1508   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1509   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1510   return ScaledDist % Stride;
1511 }
1512 
1513 MemoryDepChecker::Dependence::DepType
1514 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1515                               const MemAccessInfo &B, unsigned BIdx,
1516                               const ValueToValueMap &Strides) {
1517   assert (AIdx < BIdx && "Must pass arguments in program order");
1518 
1519   Value *APtr = A.getPointer();
1520   Value *BPtr = B.getPointer();
1521   bool AIsWrite = A.getInt();
1522   bool BIsWrite = B.getInt();
1523   Type *ATy = APtr->getType()->getPointerElementType();
1524   Type *BTy = BPtr->getType()->getPointerElementType();
1525 
1526   // Two reads are independent.
1527   if (!AIsWrite && !BIsWrite)
1528     return Dependence::NoDep;
1529 
1530   // We cannot check pointers in different address spaces.
1531   if (APtr->getType()->getPointerAddressSpace() !=
1532       BPtr->getType()->getPointerAddressSpace())
1533     return Dependence::Unknown;
1534 
1535   int64_t StrideAPtr =
1536       getPtrStride(PSE, ATy, APtr, InnermostLoop, Strides, true);
1537   int64_t StrideBPtr =
1538       getPtrStride(PSE, BTy, BPtr, InnermostLoop, Strides, true);
1539 
1540   const SCEV *Src = PSE.getSCEV(APtr);
1541   const SCEV *Sink = PSE.getSCEV(BPtr);
1542 
1543   // If the induction step is negative we have to invert source and sink of the
1544   // dependence.
1545   if (StrideAPtr < 0) {
1546     std::swap(APtr, BPtr);
1547     std::swap(ATy, BTy);
1548     std::swap(Src, Sink);
1549     std::swap(AIsWrite, BIsWrite);
1550     std::swap(AIdx, BIdx);
1551     std::swap(StrideAPtr, StrideBPtr);
1552   }
1553 
1554   const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
1555 
1556   LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1557                     << "(Induction step: " << StrideAPtr << ")\n");
1558   LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1559                     << *InstMap[BIdx] << ": " << *Dist << "\n");
1560 
1561   // Need accesses with constant stride. We don't want to vectorize
1562   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1563   // the address space.
1564   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1565     LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1566     return Dependence::Unknown;
1567   }
1568 
1569   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1570   uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1571   bool HasSameSize =
1572       DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy);
1573   uint64_t Stride = std::abs(StrideAPtr);
1574   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1575   if (!C) {
1576     if (!isa<SCEVCouldNotCompute>(Dist) && HasSameSize &&
1577         isSafeDependenceDistance(DL, *(PSE.getSE()),
1578                                  *(PSE.getBackedgeTakenCount()), *Dist, Stride,
1579                                  TypeByteSize))
1580       return Dependence::NoDep;
1581 
1582     LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1583     FoundNonConstantDistanceDependence = true;
1584     return Dependence::Unknown;
1585   }
1586 
1587   const APInt &Val = C->getAPInt();
1588   int64_t Distance = Val.getSExtValue();
1589 
1590   // Attempt to prove strided accesses independent.
1591   if (std::abs(Distance) > 0 && Stride > 1 && HasSameSize &&
1592       areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1593     LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1594     return Dependence::NoDep;
1595   }
1596 
1597   // Negative distances are not plausible dependencies.
1598   if (Val.isNegative()) {
1599     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1600     if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1601         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1602          !HasSameSize)) {
1603       LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
1604       return Dependence::ForwardButPreventsForwarding;
1605     }
1606 
1607     LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
1608     return Dependence::Forward;
1609   }
1610 
1611   // Write to the same location with the same size.
1612   if (Val == 0) {
1613     if (HasSameSize)
1614       return Dependence::Forward;
1615     LLVM_DEBUG(
1616         dbgs() << "LAA: Zero dependence difference but different type sizes\n");
1617     return Dependence::Unknown;
1618   }
1619 
1620   assert(Val.isStrictlyPositive() && "Expect a positive value");
1621 
1622   if (!HasSameSize) {
1623     LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with "
1624                          "different type sizes\n");
1625     return Dependence::Unknown;
1626   }
1627 
1628   // Bail out early if passed-in parameters make vectorization not feasible.
1629   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1630                            VectorizerParams::VectorizationFactor : 1);
1631   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1632                            VectorizerParams::VectorizationInterleave : 1);
1633   // The minimum number of iterations for a vectorized/unrolled version.
1634   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1635 
1636   // It's not vectorizable if the distance is smaller than the minimum distance
1637   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1638   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1639   // TypeByteSize (No need to plus the last gap distance).
1640   //
1641   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1642   //      foo(int *A) {
1643   //        int *B = (int *)((char *)A + 14);
1644   //        for (i = 0 ; i < 1024 ; i += 2)
1645   //          B[i] = A[i] + 1;
1646   //      }
1647   //
1648   // Two accesses in memory (stride is 2):
1649   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1650   //                              | B[0] |      | B[2] |      | B[4] |
1651   //
1652   // Distance needs for vectorizing iterations except the last iteration:
1653   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1654   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1655   //
1656   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1657   // 12, which is less than distance.
1658   //
1659   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1660   // the minimum distance needed is 28, which is greater than distance. It is
1661   // not safe to do vectorization.
1662   uint64_t MinDistanceNeeded =
1663       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1664   if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
1665     LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "
1666                       << Distance << '\n');
1667     return Dependence::Backward;
1668   }
1669 
1670   // Unsafe if the minimum distance needed is greater than max safe distance.
1671   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1672     LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
1673                       << MinDistanceNeeded << " size in bytes");
1674     return Dependence::Backward;
1675   }
1676 
1677   // Positive distance bigger than max vectorization factor.
1678   // FIXME: Should use max factor instead of max distance in bytes, which could
1679   // not handle different types.
1680   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1681   //      void foo (int *A, char *B) {
1682   //        for (unsigned i = 0; i < 1024; i++) {
1683   //          A[i+2] = A[i] + 1;
1684   //          B[i+2] = B[i] + 1;
1685   //        }
1686   //      }
1687   //
1688   // This case is currently unsafe according to the max safe distance. If we
1689   // analyze the two accesses on array B, the max safe dependence distance
1690   // is 2. Then we analyze the accesses on array A, the minimum distance needed
1691   // is 8, which is less than 2 and forbidden vectorization, But actually
1692   // both A and B could be vectorized by 2 iterations.
1693   MaxSafeDepDistBytes =
1694       std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
1695 
1696   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1697   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1698       couldPreventStoreLoadForward(Distance, TypeByteSize))
1699     return Dependence::BackwardVectorizableButPreventsForwarding;
1700 
1701   uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride);
1702   LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1703                     << " with max VF = " << MaxVF << '\n');
1704   uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
1705   MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
1706   return Dependence::BackwardVectorizable;
1707 }
1708 
1709 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
1710                                    MemAccessInfoList &CheckDeps,
1711                                    const ValueToValueMap &Strides) {
1712 
1713   MaxSafeDepDistBytes = -1;
1714   SmallPtrSet<MemAccessInfo, 8> Visited;
1715   for (MemAccessInfo CurAccess : CheckDeps) {
1716     if (Visited.count(CurAccess))
1717       continue;
1718 
1719     // Get the relevant memory access set.
1720     EquivalenceClasses<MemAccessInfo>::iterator I =
1721       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1722 
1723     // Check accesses within this set.
1724     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1725         AccessSets.member_begin(I);
1726     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1727         AccessSets.member_end();
1728 
1729     // Check every access pair.
1730     while (AI != AE) {
1731       Visited.insert(*AI);
1732       bool AIIsWrite = AI->getInt();
1733       // Check loads only against next equivalent class, but stores also against
1734       // other stores in the same equivalence class - to the same address.
1735       EquivalenceClasses<MemAccessInfo>::member_iterator OI =
1736           (AIIsWrite ? AI : std::next(AI));
1737       while (OI != AE) {
1738         // Check every accessing instruction pair in program order.
1739         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1740              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1741           // Scan all accesses of another equivalence class, but only the next
1742           // accesses of the same equivalent class.
1743           for (std::vector<unsigned>::iterator
1744                    I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
1745                    I2E = (OI == AI ? I1E : Accesses[*OI].end());
1746                I2 != I2E; ++I2) {
1747             auto A = std::make_pair(&*AI, *I1);
1748             auto B = std::make_pair(&*OI, *I2);
1749 
1750             assert(*I1 != *I2);
1751             if (*I1 > *I2)
1752               std::swap(A, B);
1753 
1754             Dependence::DepType Type =
1755                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1756             mergeInStatus(Dependence::isSafeForVectorization(Type));
1757 
1758             // Gather dependences unless we accumulated MaxDependences
1759             // dependences.  In that case return as soon as we find the first
1760             // unsafe dependence.  This puts a limit on this quadratic
1761             // algorithm.
1762             if (RecordDependences) {
1763               if (Type != Dependence::NoDep)
1764                 Dependences.push_back(Dependence(A.second, B.second, Type));
1765 
1766               if (Dependences.size() >= MaxDependences) {
1767                 RecordDependences = false;
1768                 Dependences.clear();
1769                 LLVM_DEBUG(dbgs()
1770                            << "Too many dependences, stopped recording\n");
1771               }
1772             }
1773             if (!RecordDependences && !isSafeForVectorization())
1774               return false;
1775           }
1776         ++OI;
1777       }
1778       AI++;
1779     }
1780   }
1781 
1782   LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
1783   return isSafeForVectorization();
1784 }
1785 
1786 SmallVector<Instruction *, 4>
1787 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1788   MemAccessInfo Access(Ptr, isWrite);
1789   auto &IndexVector = Accesses.find(Access)->second;
1790 
1791   SmallVector<Instruction *, 4> Insts;
1792   transform(IndexVector,
1793                  std::back_inserter(Insts),
1794                  [&](unsigned Idx) { return this->InstMap[Idx]; });
1795   return Insts;
1796 }
1797 
1798 const char *MemoryDepChecker::Dependence::DepName[] = {
1799     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1800     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1801 
1802 void MemoryDepChecker::Dependence::print(
1803     raw_ostream &OS, unsigned Depth,
1804     const SmallVectorImpl<Instruction *> &Instrs) const {
1805   OS.indent(Depth) << DepName[Type] << ":\n";
1806   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1807   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1808 }
1809 
1810 bool LoopAccessInfo::canAnalyzeLoop() {
1811   // We need to have a loop header.
1812   LLVM_DEBUG(dbgs() << "LAA: Found a loop in "
1813                     << TheLoop->getHeader()->getParent()->getName() << ": "
1814                     << TheLoop->getHeader()->getName() << '\n');
1815 
1816   // We can only analyze innermost loops.
1817   if (!TheLoop->isInnermost()) {
1818     LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1819     recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
1820     return false;
1821   }
1822 
1823   // We must have a single backedge.
1824   if (TheLoop->getNumBackEdges() != 1) {
1825     LLVM_DEBUG(
1826         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1827     recordAnalysis("CFGNotUnderstood")
1828         << "loop control flow is not understood by analyzer";
1829     return false;
1830   }
1831 
1832   // ScalarEvolution needs to be able to find the exit count.
1833   const SCEV *ExitCount = PSE->getBackedgeTakenCount();
1834   if (isa<SCEVCouldNotCompute>(ExitCount)) {
1835     recordAnalysis("CantComputeNumberOfIterations")
1836         << "could not determine number of loop iterations";
1837     LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1838     return false;
1839   }
1840 
1841   return true;
1842 }
1843 
1844 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI,
1845                                  const TargetLibraryInfo *TLI,
1846                                  DominatorTree *DT) {
1847   typedef SmallPtrSet<Value*, 16> ValueSet;
1848 
1849   // Holds the Load and Store instructions.
1850   SmallVector<LoadInst *, 16> Loads;
1851   SmallVector<StoreInst *, 16> Stores;
1852 
1853   // Holds all the different accesses in the loop.
1854   unsigned NumReads = 0;
1855   unsigned NumReadWrites = 0;
1856 
1857   bool HasComplexMemInst = false;
1858 
1859   // A runtime check is only legal to insert if there are no convergent calls.
1860   HasConvergentOp = false;
1861 
1862   PtrRtChecking->Pointers.clear();
1863   PtrRtChecking->Need = false;
1864 
1865   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
1866 
1867   const bool EnableMemAccessVersioningOfLoop =
1868       EnableMemAccessVersioning &&
1869       !TheLoop->getHeader()->getParent()->hasOptSize();
1870 
1871   // For each block.
1872   for (BasicBlock *BB : TheLoop->blocks()) {
1873     // Scan the BB and collect legal loads and stores. Also detect any
1874     // convergent instructions.
1875     for (Instruction &I : *BB) {
1876       if (auto *Call = dyn_cast<CallBase>(&I)) {
1877         if (Call->isConvergent())
1878           HasConvergentOp = true;
1879       }
1880 
1881       // With both a non-vectorizable memory instruction and a convergent
1882       // operation, found in this loop, no reason to continue the search.
1883       if (HasComplexMemInst && HasConvergentOp) {
1884         CanVecMem = false;
1885         return;
1886       }
1887 
1888       // Avoid hitting recordAnalysis multiple times.
1889       if (HasComplexMemInst)
1890         continue;
1891 
1892       // If this is a load, save it. If this instruction can read from memory
1893       // but is not a load, then we quit. Notice that we don't handle function
1894       // calls that read or write.
1895       if (I.mayReadFromMemory()) {
1896         // Many math library functions read the rounding mode. We will only
1897         // vectorize a loop if it contains known function calls that don't set
1898         // the flag. Therefore, it is safe to ignore this read from memory.
1899         auto *Call = dyn_cast<CallInst>(&I);
1900         if (Call && getVectorIntrinsicIDForCall(Call, TLI))
1901           continue;
1902 
1903         // If the function has an explicit vectorized counterpart, we can safely
1904         // assume that it can be vectorized.
1905         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1906             !VFDatabase::getMappings(*Call).empty())
1907           continue;
1908 
1909         auto *Ld = dyn_cast<LoadInst>(&I);
1910         if (!Ld) {
1911           recordAnalysis("CantVectorizeInstruction", Ld)
1912             << "instruction cannot be vectorized";
1913           HasComplexMemInst = true;
1914           continue;
1915         }
1916         if (!Ld->isSimple() && !IsAnnotatedParallel) {
1917           recordAnalysis("NonSimpleLoad", Ld)
1918               << "read with atomic ordering or volatile read";
1919           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1920           HasComplexMemInst = true;
1921           continue;
1922         }
1923         NumLoads++;
1924         Loads.push_back(Ld);
1925         DepChecker->addAccess(Ld);
1926         if (EnableMemAccessVersioningOfLoop)
1927           collectStridedAccess(Ld);
1928         continue;
1929       }
1930 
1931       // Save 'store' instructions. Abort if other instructions write to memory.
1932       if (I.mayWriteToMemory()) {
1933         auto *St = dyn_cast<StoreInst>(&I);
1934         if (!St) {
1935           recordAnalysis("CantVectorizeInstruction", St)
1936               << "instruction cannot be vectorized";
1937           HasComplexMemInst = true;
1938           continue;
1939         }
1940         if (!St->isSimple() && !IsAnnotatedParallel) {
1941           recordAnalysis("NonSimpleStore", St)
1942               << "write with atomic ordering or volatile write";
1943           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1944           HasComplexMemInst = true;
1945           continue;
1946         }
1947         NumStores++;
1948         Stores.push_back(St);
1949         DepChecker->addAccess(St);
1950         if (EnableMemAccessVersioningOfLoop)
1951           collectStridedAccess(St);
1952       }
1953     } // Next instr.
1954   } // Next block.
1955 
1956   if (HasComplexMemInst) {
1957     CanVecMem = false;
1958     return;
1959   }
1960 
1961   // Now we have two lists that hold the loads and the stores.
1962   // Next, we find the pointers that they use.
1963 
1964   // Check if we see any stores. If there are no stores, then we don't
1965   // care if the pointers are *restrict*.
1966   if (!Stores.size()) {
1967     LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1968     CanVecMem = true;
1969     return;
1970   }
1971 
1972   MemoryDepChecker::DepCandidates DependentAccesses;
1973   AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE);
1974 
1975   // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
1976   // multiple times on the same object. If the ptr is accessed twice, once
1977   // for read and once for write, it will only appear once (on the write
1978   // list). This is okay, since we are going to check for conflicts between
1979   // writes and between reads and writes, but not between reads and reads.
1980   ValueSet Seen;
1981 
1982   // Record uniform store addresses to identify if we have multiple stores
1983   // to the same address.
1984   ValueSet UniformStores;
1985 
1986   for (StoreInst *ST : Stores) {
1987     Value *Ptr = ST->getPointerOperand();
1988 
1989     if (isUniform(Ptr))
1990       HasDependenceInvolvingLoopInvariantAddress |=
1991           !UniformStores.insert(Ptr).second;
1992 
1993     // If we did *not* see this pointer before, insert it to  the read-write
1994     // list. At this phase it is only a 'write' list.
1995     if (Seen.insert(Ptr).second) {
1996       ++NumReadWrites;
1997 
1998       MemoryLocation Loc = MemoryLocation::get(ST);
1999       // The TBAA metadata could have a control dependency on the predication
2000       // condition, so we cannot rely on it when determining whether or not we
2001       // need runtime pointer checks.
2002       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
2003         Loc.AATags.TBAA = nullptr;
2004 
2005       visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2006                     [&Accesses, Loc](Value *Ptr) {
2007                       MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2008                       Accesses.addStore(NewLoc);
2009                     });
2010     }
2011   }
2012 
2013   if (IsAnnotatedParallel) {
2014     LLVM_DEBUG(
2015         dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
2016                << "checks.\n");
2017     CanVecMem = true;
2018     return;
2019   }
2020 
2021   for (LoadInst *LD : Loads) {
2022     Value *Ptr = LD->getPointerOperand();
2023     // If we did *not* see this pointer before, insert it to the
2024     // read list. If we *did* see it before, then it is already in
2025     // the read-write list. This allows us to vectorize expressions
2026     // such as A[i] += x;  Because the address of A[i] is a read-write
2027     // pointer. This only works if the index of A[i] is consecutive.
2028     // If the address of i is unknown (for example A[B[i]]) then we may
2029     // read a few words, modify, and write a few words, and some of the
2030     // words may be written to the same address.
2031     bool IsReadOnlyPtr = false;
2032     if (Seen.insert(Ptr).second ||
2033         !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides)) {
2034       ++NumReads;
2035       IsReadOnlyPtr = true;
2036     }
2037 
2038     // See if there is an unsafe dependency between a load to a uniform address and
2039     // store to the same uniform address.
2040     if (UniformStores.count(Ptr)) {
2041       LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
2042                            "load and uniform store to the same address!\n");
2043       HasDependenceInvolvingLoopInvariantAddress = true;
2044     }
2045 
2046     MemoryLocation Loc = MemoryLocation::get(LD);
2047     // The TBAA metadata could have a control dependency on the predication
2048     // condition, so we cannot rely on it when determining whether or not we
2049     // need runtime pointer checks.
2050     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
2051       Loc.AATags.TBAA = nullptr;
2052 
2053     visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2054                   [&Accesses, Loc, IsReadOnlyPtr](Value *Ptr) {
2055                     MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2056                     Accesses.addLoad(NewLoc, IsReadOnlyPtr);
2057                   });
2058   }
2059 
2060   // If we write (or read-write) to a single destination and there are no
2061   // other reads in this loop then is it safe to vectorize.
2062   if (NumReadWrites == 1 && NumReads == 0) {
2063     LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
2064     CanVecMem = true;
2065     return;
2066   }
2067 
2068   // Build dependence sets and check whether we need a runtime pointer bounds
2069   // check.
2070   Accesses.buildDependenceSets();
2071 
2072   // Find pointers with computable bounds. We are going to use this information
2073   // to place a runtime bound check.
2074   bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
2075                                                   TheLoop, SymbolicStrides);
2076   if (!CanDoRTIfNeeded) {
2077     recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
2078     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2079                       << "the array bounds.\n");
2080     CanVecMem = false;
2081     return;
2082   }
2083 
2084   LLVM_DEBUG(
2085     dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
2086 
2087   CanVecMem = true;
2088   if (Accesses.isDependencyCheckNeeded()) {
2089     LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2090     CanVecMem = DepChecker->areDepsSafe(
2091         DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
2092     MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
2093 
2094     if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
2095       LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2096 
2097       // Clear the dependency checks. We assume they are not needed.
2098       Accesses.resetDepChecks(*DepChecker);
2099 
2100       PtrRtChecking->reset();
2101       PtrRtChecking->Need = true;
2102 
2103       auto *SE = PSE->getSE();
2104       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
2105                                                  SymbolicStrides, true);
2106 
2107       // Check that we found the bounds for the pointer.
2108       if (!CanDoRTIfNeeded) {
2109         recordAnalysis("CantCheckMemDepsAtRunTime")
2110             << "cannot check memory dependencies at runtime";
2111         LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2112         CanVecMem = false;
2113         return;
2114       }
2115 
2116       CanVecMem = true;
2117     }
2118   }
2119 
2120   if (HasConvergentOp) {
2121     recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2122       << "cannot add control dependency to convergent operation";
2123     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2124                          "would be needed with a convergent operation\n");
2125     CanVecMem = false;
2126     return;
2127   }
2128 
2129   if (CanVecMem)
2130     LLVM_DEBUG(
2131         dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
2132                << (PtrRtChecking->Need ? "" : " don't")
2133                << " need runtime memory checks.\n");
2134   else {
2135     recordAnalysis("UnsafeMemDep")
2136         << "unsafe dependent memory operations in loop. Use "
2137            "#pragma loop distribute(enable) to allow loop distribution "
2138            "to attempt to isolate the offending operations into a separate "
2139            "loop";
2140     LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2141   }
2142 }
2143 
2144 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
2145                                            DominatorTree *DT)  {
2146   assert(TheLoop->contains(BB) && "Unknown block used");
2147 
2148   // Blocks that do not dominate the latch need predication.
2149   BasicBlock* Latch = TheLoop->getLoopLatch();
2150   return !DT->dominates(BB, Latch);
2151 }
2152 
2153 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
2154                                                            Instruction *I) {
2155   assert(!Report && "Multiple reports generated");
2156 
2157   Value *CodeRegion = TheLoop->getHeader();
2158   DebugLoc DL = TheLoop->getStartLoc();
2159 
2160   if (I) {
2161     CodeRegion = I->getParent();
2162     // If there is no debug location attached to the instruction, revert back to
2163     // using the loop's.
2164     if (I->getDebugLoc())
2165       DL = I->getDebugLoc();
2166   }
2167 
2168   Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
2169                                                    CodeRegion);
2170   return *Report;
2171 }
2172 
2173 bool LoopAccessInfo::isUniform(Value *V) const {
2174   auto *SE = PSE->getSE();
2175   // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
2176   // never considered uniform.
2177   // TODO: Is this really what we want? Even without FP SCEV, we may want some
2178   // trivially loop-invariant FP values to be considered uniform.
2179   if (!SE->isSCEVable(V->getType()))
2180     return false;
2181   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
2182 }
2183 
2184 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2185   Value *Ptr = getLoadStorePointerOperand(MemAccess);
2186   if (!Ptr)
2187     return;
2188 
2189   Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2190   if (!Stride)
2191     return;
2192 
2193   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2194                        "versioning:");
2195   LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
2196 
2197   // Avoid adding the "Stride == 1" predicate when we know that
2198   // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2199   // or zero iteration loop, as Trip-Count <= Stride == 1.
2200   //
2201   // TODO: We are currently not making a very informed decision on when it is
2202   // beneficial to apply stride versioning. It might make more sense that the
2203   // users of this analysis (such as the vectorizer) will trigger it, based on
2204   // their specific cost considerations; For example, in cases where stride
2205   // versioning does  not help resolving memory accesses/dependences, the
2206   // vectorizer should evaluate the cost of the runtime test, and the benefit
2207   // of various possible stride specializations, considering the alternatives
2208   // of using gather/scatters (if available).
2209 
2210   const SCEV *StrideExpr = PSE->getSCEV(Stride);
2211   const SCEV *BETakenCount = PSE->getBackedgeTakenCount();
2212 
2213   // Match the types so we can compare the stride and the BETakenCount.
2214   // The Stride can be positive/negative, so we sign extend Stride;
2215   // The backedgeTakenCount is non-negative, so we zero extend BETakenCount.
2216   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
2217   uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType());
2218   uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType());
2219   const SCEV *CastedStride = StrideExpr;
2220   const SCEV *CastedBECount = BETakenCount;
2221   ScalarEvolution *SE = PSE->getSE();
2222   if (BETypeSize >= StrideTypeSize)
2223     CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
2224   else
2225     CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
2226   const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2227   // Since TripCount == BackEdgeTakenCount + 1, checking:
2228   // "Stride >= TripCount" is equivalent to checking:
2229   // Stride - BETakenCount > 0
2230   if (SE->isKnownPositive(StrideMinusBETaken)) {
2231     LLVM_DEBUG(
2232         dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2233                   "Stride==1 predicate will imply that the loop executes "
2234                   "at most once.\n");
2235     return;
2236   }
2237   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.");
2238 
2239   SymbolicStrides[Ptr] = Stride;
2240   StrideSet.insert(Stride);
2241 }
2242 
2243 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
2244                                const TargetLibraryInfo *TLI, AAResults *AA,
2245                                DominatorTree *DT, LoopInfo *LI)
2246     : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
2247       PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)),
2248       DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
2249       NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
2250       HasConvergentOp(false),
2251       HasDependenceInvolvingLoopInvariantAddress(false) {
2252   if (canAnalyzeLoop())
2253     analyzeLoop(AA, LI, TLI, DT);
2254 }
2255 
2256 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2257   if (CanVecMem) {
2258     OS.indent(Depth) << "Memory dependences are safe";
2259     if (MaxSafeDepDistBytes != -1ULL)
2260       OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2261          << " bytes";
2262     if (PtrRtChecking->Need)
2263       OS << " with run-time checks";
2264     OS << "\n";
2265   }
2266 
2267   if (HasConvergentOp)
2268     OS.indent(Depth) << "Has convergent operation in loop\n";
2269 
2270   if (Report)
2271     OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
2272 
2273   if (auto *Dependences = DepChecker->getDependences()) {
2274     OS.indent(Depth) << "Dependences:\n";
2275     for (auto &Dep : *Dependences) {
2276       Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
2277       OS << "\n";
2278     }
2279   } else
2280     OS.indent(Depth) << "Too many dependences, not recorded\n";
2281 
2282   // List the pair of accesses need run-time checks to prove independence.
2283   PtrRtChecking->print(OS, Depth);
2284   OS << "\n";
2285 
2286   OS.indent(Depth) << "Non vectorizable stores to invariant address were "
2287                    << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ")
2288                    << "found in loop.\n";
2289 
2290   OS.indent(Depth) << "SCEV assumptions:\n";
2291   PSE->getUnionPredicate().print(OS, Depth);
2292 
2293   OS << "\n";
2294 
2295   OS.indent(Depth) << "Expressions re-written:\n";
2296   PSE->print(OS, Depth);
2297 }
2298 
2299 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) {
2300   initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry());
2301 }
2302 
2303 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
2304   auto &LAI = LoopAccessInfoMap[L];
2305 
2306   if (!LAI)
2307     LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
2308 
2309   return *LAI.get();
2310 }
2311 
2312 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
2313   LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
2314 
2315   for (Loop *TopLevelLoop : *LI)
2316     for (Loop *L : depth_first(TopLevelLoop)) {
2317       OS.indent(2) << L->getHeader()->getName() << ":\n";
2318       auto &LAI = LAA.getInfo(L);
2319       LAI.print(OS, 4);
2320     }
2321 }
2322 
2323 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
2324   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2325   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2326   TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2327   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2328   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2329   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2330 
2331   return false;
2332 }
2333 
2334 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
2335   AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
2336   AU.addRequiredTransitive<AAResultsWrapperPass>();
2337   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2338   AU.addRequiredTransitive<LoopInfoWrapperPass>();
2339 
2340   AU.setPreservesAll();
2341 }
2342 
2343 char LoopAccessLegacyAnalysis::ID = 0;
2344 static const char laa_name[] = "Loop Access Analysis";
2345 #define LAA_NAME "loop-accesses"
2346 
2347 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2348 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2349 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
2350 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2351 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2352 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2353 
2354 AnalysisKey LoopAccessAnalysis::Key;
2355 
2356 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM,
2357                                        LoopStandardAnalysisResults &AR) {
2358   return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI);
2359 }
2360 
2361 namespace llvm {
2362 
2363   Pass *createLAAPass() {
2364     return new LoopAccessLegacyAnalysis();
2365   }
2366 
2367 } // end namespace llvm
2368