1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/CmpInstAnalysis.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/LoopAnalysisManager.h" 31 #include "llvm/Analysis/MemoryBuiltins.h" 32 #include "llvm/Analysis/OverflowInstAnalysis.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/ConstantRange.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/GetElementPtrTypeIterator.h" 39 #include "llvm/IR/GlobalAlias.h" 40 #include "llvm/IR/InstrTypes.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/Operator.h" 43 #include "llvm/IR/PatternMatch.h" 44 #include "llvm/IR/ValueHandle.h" 45 #include "llvm/Support/KnownBits.h" 46 #include <algorithm> 47 using namespace llvm; 48 using namespace llvm::PatternMatch; 49 50 #define DEBUG_TYPE "instsimplify" 51 52 enum { RecursionLimit = 3 }; 53 54 STATISTIC(NumExpand, "Number of expansions"); 55 STATISTIC(NumReassoc, "Number of reassociations"); 56 57 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 58 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 59 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 60 const SimplifyQuery &, unsigned); 61 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 62 unsigned); 63 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 64 const SimplifyQuery &, unsigned); 65 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 66 unsigned); 67 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 68 const SimplifyQuery &Q, unsigned MaxRecurse); 69 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 70 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 71 static Value *SimplifyCastInst(unsigned, Value *, Type *, 72 const SimplifyQuery &, unsigned); 73 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, bool, 74 const SimplifyQuery &, unsigned); 75 static Value *SimplifySelectInst(Value *, Value *, Value *, 76 const SimplifyQuery &, unsigned); 77 78 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 79 Value *FalseVal) { 80 BinaryOperator::BinaryOps BinOpCode; 81 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 82 BinOpCode = BO->getOpcode(); 83 else 84 return nullptr; 85 86 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 87 if (BinOpCode == BinaryOperator::Or) { 88 ExpectedPred = ICmpInst::ICMP_NE; 89 } else if (BinOpCode == BinaryOperator::And) { 90 ExpectedPred = ICmpInst::ICMP_EQ; 91 } else 92 return nullptr; 93 94 // %A = icmp eq %TV, %FV 95 // %B = icmp eq %X, %Y (and one of these is a select operand) 96 // %C = and %A, %B 97 // %D = select %C, %TV, %FV 98 // --> 99 // %FV 100 101 // %A = icmp ne %TV, %FV 102 // %B = icmp ne %X, %Y (and one of these is a select operand) 103 // %C = or %A, %B 104 // %D = select %C, %TV, %FV 105 // --> 106 // %TV 107 Value *X, *Y; 108 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 109 m_Specific(FalseVal)), 110 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 111 Pred1 != Pred2 || Pred1 != ExpectedPred) 112 return nullptr; 113 114 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 115 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 116 117 return nullptr; 118 } 119 120 /// For a boolean type or a vector of boolean type, return false or a vector 121 /// with every element false. 122 static Constant *getFalse(Type *Ty) { 123 return ConstantInt::getFalse(Ty); 124 } 125 126 /// For a boolean type or a vector of boolean type, return true or a vector 127 /// with every element true. 128 static Constant *getTrue(Type *Ty) { 129 return ConstantInt::getTrue(Ty); 130 } 131 132 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 133 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 134 Value *RHS) { 135 CmpInst *Cmp = dyn_cast<CmpInst>(V); 136 if (!Cmp) 137 return false; 138 CmpInst::Predicate CPred = Cmp->getPredicate(); 139 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 140 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 141 return true; 142 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 143 CRHS == LHS; 144 } 145 146 /// Simplify comparison with true or false branch of select: 147 /// %sel = select i1 %cond, i32 %tv, i32 %fv 148 /// %cmp = icmp sle i32 %sel, %rhs 149 /// Compose new comparison by substituting %sel with either %tv or %fv 150 /// and see if it simplifies. 151 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 152 Value *RHS, Value *Cond, 153 const SimplifyQuery &Q, unsigned MaxRecurse, 154 Constant *TrueOrFalse) { 155 Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 156 if (SimplifiedCmp == Cond) { 157 // %cmp simplified to the select condition (%cond). 158 return TrueOrFalse; 159 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 160 // It didn't simplify. However, if composed comparison is equivalent 161 // to the select condition (%cond) then we can replace it. 162 return TrueOrFalse; 163 } 164 return SimplifiedCmp; 165 } 166 167 /// Simplify comparison with true branch of select 168 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 169 Value *RHS, Value *Cond, 170 const SimplifyQuery &Q, 171 unsigned MaxRecurse) { 172 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 173 getTrue(Cond->getType())); 174 } 175 176 /// Simplify comparison with false branch of select 177 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 178 Value *RHS, Value *Cond, 179 const SimplifyQuery &Q, 180 unsigned MaxRecurse) { 181 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 182 getFalse(Cond->getType())); 183 } 184 185 /// We know comparison with both branches of select can be simplified, but they 186 /// are not equal. This routine handles some logical simplifications. 187 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 188 Value *Cond, 189 const SimplifyQuery &Q, 190 unsigned MaxRecurse) { 191 // If the false value simplified to false, then the result of the compare 192 // is equal to "Cond && TCmp". This also catches the case when the false 193 // value simplified to false and the true value to true, returning "Cond". 194 // Folding select to and/or isn't poison-safe in general; impliesPoison 195 // checks whether folding it does not convert a well-defined value into 196 // poison. 197 if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond)) 198 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 199 return V; 200 // If the true value simplified to true, then the result of the compare 201 // is equal to "Cond || FCmp". 202 if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond)) 203 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 204 return V; 205 // Finally, if the false value simplified to true and the true value to 206 // false, then the result of the compare is equal to "!Cond". 207 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 208 if (Value *V = SimplifyXorInst( 209 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 210 return V; 211 return nullptr; 212 } 213 214 /// Does the given value dominate the specified phi node? 215 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 216 Instruction *I = dyn_cast<Instruction>(V); 217 if (!I) 218 // Arguments and constants dominate all instructions. 219 return true; 220 221 // If we are processing instructions (and/or basic blocks) that have not been 222 // fully added to a function, the parent nodes may still be null. Simply 223 // return the conservative answer in these cases. 224 if (!I->getParent() || !P->getParent() || !I->getFunction()) 225 return false; 226 227 // If we have a DominatorTree then do a precise test. 228 if (DT) 229 return DT->dominates(I, P); 230 231 // Otherwise, if the instruction is in the entry block and is not an invoke, 232 // then it obviously dominates all phi nodes. 233 if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) && 234 !isa<CallBrInst>(I)) 235 return true; 236 237 return false; 238 } 239 240 /// Try to simplify a binary operator of form "V op OtherOp" where V is 241 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 242 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 243 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 244 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 245 const SimplifyQuery &Q, unsigned MaxRecurse) { 246 auto *B = dyn_cast<BinaryOperator>(V); 247 if (!B || B->getOpcode() != OpcodeToExpand) 248 return nullptr; 249 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 250 Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), 251 MaxRecurse); 252 if (!L) 253 return nullptr; 254 Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), 255 MaxRecurse); 256 if (!R) 257 return nullptr; 258 259 // Does the expanded pair of binops simplify to the existing binop? 260 if ((L == B0 && R == B1) || 261 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 262 ++NumExpand; 263 return B; 264 } 265 266 // Otherwise, return "L op' R" if it simplifies. 267 Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 268 if (!S) 269 return nullptr; 270 271 ++NumExpand; 272 return S; 273 } 274 275 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 276 /// distributing op over op'. 277 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, 278 Value *L, Value *R, 279 Instruction::BinaryOps OpcodeToExpand, 280 const SimplifyQuery &Q, 281 unsigned MaxRecurse) { 282 // Recursion is always used, so bail out at once if we already hit the limit. 283 if (!MaxRecurse--) 284 return nullptr; 285 286 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 287 return V; 288 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 289 return V; 290 return nullptr; 291 } 292 293 /// Generic simplifications for associative binary operations. 294 /// Returns the simpler value, or null if none was found. 295 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 296 Value *LHS, Value *RHS, 297 const SimplifyQuery &Q, 298 unsigned MaxRecurse) { 299 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 300 301 // Recursion is always used, so bail out at once if we already hit the limit. 302 if (!MaxRecurse--) 303 return nullptr; 304 305 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 306 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 307 308 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 309 if (Op0 && Op0->getOpcode() == Opcode) { 310 Value *A = Op0->getOperand(0); 311 Value *B = Op0->getOperand(1); 312 Value *C = RHS; 313 314 // Does "B op C" simplify? 315 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 316 // It does! Return "A op V" if it simplifies or is already available. 317 // If V equals B then "A op V" is just the LHS. 318 if (V == B) return LHS; 319 // Otherwise return "A op V" if it simplifies. 320 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 321 ++NumReassoc; 322 return W; 323 } 324 } 325 } 326 327 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 328 if (Op1 && Op1->getOpcode() == Opcode) { 329 Value *A = LHS; 330 Value *B = Op1->getOperand(0); 331 Value *C = Op1->getOperand(1); 332 333 // Does "A op B" simplify? 334 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 335 // It does! Return "V op C" if it simplifies or is already available. 336 // If V equals B then "V op C" is just the RHS. 337 if (V == B) return RHS; 338 // Otherwise return "V op C" if it simplifies. 339 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 340 ++NumReassoc; 341 return W; 342 } 343 } 344 } 345 346 // The remaining transforms require commutativity as well as associativity. 347 if (!Instruction::isCommutative(Opcode)) 348 return nullptr; 349 350 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 351 if (Op0 && Op0->getOpcode() == Opcode) { 352 Value *A = Op0->getOperand(0); 353 Value *B = Op0->getOperand(1); 354 Value *C = RHS; 355 356 // Does "C op A" simplify? 357 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 358 // It does! Return "V op B" if it simplifies or is already available. 359 // If V equals A then "V op B" is just the LHS. 360 if (V == A) return LHS; 361 // Otherwise return "V op B" if it simplifies. 362 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 363 ++NumReassoc; 364 return W; 365 } 366 } 367 } 368 369 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 370 if (Op1 && Op1->getOpcode() == Opcode) { 371 Value *A = LHS; 372 Value *B = Op1->getOperand(0); 373 Value *C = Op1->getOperand(1); 374 375 // Does "C op A" simplify? 376 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 377 // It does! Return "B op V" if it simplifies or is already available. 378 // If V equals C then "B op V" is just the RHS. 379 if (V == C) return RHS; 380 // Otherwise return "B op V" if it simplifies. 381 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 382 ++NumReassoc; 383 return W; 384 } 385 } 386 } 387 388 return nullptr; 389 } 390 391 /// In the case of a binary operation with a select instruction as an operand, 392 /// try to simplify the binop by seeing whether evaluating it on both branches 393 /// of the select results in the same value. Returns the common value if so, 394 /// otherwise returns null. 395 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 396 Value *RHS, const SimplifyQuery &Q, 397 unsigned MaxRecurse) { 398 // Recursion is always used, so bail out at once if we already hit the limit. 399 if (!MaxRecurse--) 400 return nullptr; 401 402 SelectInst *SI; 403 if (isa<SelectInst>(LHS)) { 404 SI = cast<SelectInst>(LHS); 405 } else { 406 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 407 SI = cast<SelectInst>(RHS); 408 } 409 410 // Evaluate the BinOp on the true and false branches of the select. 411 Value *TV; 412 Value *FV; 413 if (SI == LHS) { 414 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 415 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 416 } else { 417 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 418 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 419 } 420 421 // If they simplified to the same value, then return the common value. 422 // If they both failed to simplify then return null. 423 if (TV == FV) 424 return TV; 425 426 // If one branch simplified to undef, return the other one. 427 if (TV && Q.isUndefValue(TV)) 428 return FV; 429 if (FV && Q.isUndefValue(FV)) 430 return TV; 431 432 // If applying the operation did not change the true and false select values, 433 // then the result of the binop is the select itself. 434 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 435 return SI; 436 437 // If one branch simplified and the other did not, and the simplified 438 // value is equal to the unsimplified one, return the simplified value. 439 // For example, select (cond, X, X & Z) & Z -> X & Z. 440 if ((FV && !TV) || (TV && !FV)) { 441 // Check that the simplified value has the form "X op Y" where "op" is the 442 // same as the original operation. 443 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 444 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 445 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 446 // We already know that "op" is the same as for the simplified value. See 447 // if the operands match too. If so, return the simplified value. 448 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 449 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 450 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 451 if (Simplified->getOperand(0) == UnsimplifiedLHS && 452 Simplified->getOperand(1) == UnsimplifiedRHS) 453 return Simplified; 454 if (Simplified->isCommutative() && 455 Simplified->getOperand(1) == UnsimplifiedLHS && 456 Simplified->getOperand(0) == UnsimplifiedRHS) 457 return Simplified; 458 } 459 } 460 461 return nullptr; 462 } 463 464 /// In the case of a comparison with a select instruction, try to simplify the 465 /// comparison by seeing whether both branches of the select result in the same 466 /// value. Returns the common value if so, otherwise returns null. 467 /// For example, if we have: 468 /// %tmp = select i1 %cmp, i32 1, i32 2 469 /// %cmp1 = icmp sle i32 %tmp, 3 470 /// We can simplify %cmp1 to true, because both branches of select are 471 /// less than 3. We compose new comparison by substituting %tmp with both 472 /// branches of select and see if it can be simplified. 473 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 474 Value *RHS, const SimplifyQuery &Q, 475 unsigned MaxRecurse) { 476 // Recursion is always used, so bail out at once if we already hit the limit. 477 if (!MaxRecurse--) 478 return nullptr; 479 480 // Make sure the select is on the LHS. 481 if (!isa<SelectInst>(LHS)) { 482 std::swap(LHS, RHS); 483 Pred = CmpInst::getSwappedPredicate(Pred); 484 } 485 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 486 SelectInst *SI = cast<SelectInst>(LHS); 487 Value *Cond = SI->getCondition(); 488 Value *TV = SI->getTrueValue(); 489 Value *FV = SI->getFalseValue(); 490 491 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 492 // Does "cmp TV, RHS" simplify? 493 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 494 if (!TCmp) 495 return nullptr; 496 497 // Does "cmp FV, RHS" simplify? 498 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 499 if (!FCmp) 500 return nullptr; 501 502 // If both sides simplified to the same value, then use it as the result of 503 // the original comparison. 504 if (TCmp == FCmp) 505 return TCmp; 506 507 // The remaining cases only make sense if the select condition has the same 508 // type as the result of the comparison, so bail out if this is not so. 509 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 510 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 511 512 return nullptr; 513 } 514 515 /// In the case of a binary operation with an operand that is a PHI instruction, 516 /// try to simplify the binop by seeing whether evaluating it on the incoming 517 /// phi values yields the same result for every value. If so returns the common 518 /// value, otherwise returns null. 519 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 520 Value *RHS, const SimplifyQuery &Q, 521 unsigned MaxRecurse) { 522 // Recursion is always used, so bail out at once if we already hit the limit. 523 if (!MaxRecurse--) 524 return nullptr; 525 526 PHINode *PI; 527 if (isa<PHINode>(LHS)) { 528 PI = cast<PHINode>(LHS); 529 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 530 if (!valueDominatesPHI(RHS, PI, Q.DT)) 531 return nullptr; 532 } else { 533 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 534 PI = cast<PHINode>(RHS); 535 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 536 if (!valueDominatesPHI(LHS, PI, Q.DT)) 537 return nullptr; 538 } 539 540 // Evaluate the BinOp on the incoming phi values. 541 Value *CommonValue = nullptr; 542 for (Value *Incoming : PI->incoming_values()) { 543 // If the incoming value is the phi node itself, it can safely be skipped. 544 if (Incoming == PI) continue; 545 Value *V = PI == LHS ? 546 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 547 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 548 // If the operation failed to simplify, or simplified to a different value 549 // to previously, then give up. 550 if (!V || (CommonValue && V != CommonValue)) 551 return nullptr; 552 CommonValue = V; 553 } 554 555 return CommonValue; 556 } 557 558 /// In the case of a comparison with a PHI instruction, try to simplify the 559 /// comparison by seeing whether comparing with all of the incoming phi values 560 /// yields the same result every time. If so returns the common result, 561 /// otherwise returns null. 562 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 563 const SimplifyQuery &Q, unsigned MaxRecurse) { 564 // Recursion is always used, so bail out at once if we already hit the limit. 565 if (!MaxRecurse--) 566 return nullptr; 567 568 // Make sure the phi is on the LHS. 569 if (!isa<PHINode>(LHS)) { 570 std::swap(LHS, RHS); 571 Pred = CmpInst::getSwappedPredicate(Pred); 572 } 573 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 574 PHINode *PI = cast<PHINode>(LHS); 575 576 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 577 if (!valueDominatesPHI(RHS, PI, Q.DT)) 578 return nullptr; 579 580 // Evaluate the BinOp on the incoming phi values. 581 Value *CommonValue = nullptr; 582 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 583 Value *Incoming = PI->getIncomingValue(u); 584 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 585 // If the incoming value is the phi node itself, it can safely be skipped. 586 if (Incoming == PI) continue; 587 // Change the context instruction to the "edge" that flows into the phi. 588 // This is important because that is where incoming is actually "evaluated" 589 // even though it is used later somewhere else. 590 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 591 MaxRecurse); 592 // If the operation failed to simplify, or simplified to a different value 593 // to previously, then give up. 594 if (!V || (CommonValue && V != CommonValue)) 595 return nullptr; 596 CommonValue = V; 597 } 598 599 return CommonValue; 600 } 601 602 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 603 Value *&Op0, Value *&Op1, 604 const SimplifyQuery &Q) { 605 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 606 if (auto *CRHS = dyn_cast<Constant>(Op1)) 607 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 608 609 // Canonicalize the constant to the RHS if this is a commutative operation. 610 if (Instruction::isCommutative(Opcode)) 611 std::swap(Op0, Op1); 612 } 613 return nullptr; 614 } 615 616 /// Given operands for an Add, see if we can fold the result. 617 /// If not, this returns null. 618 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 619 const SimplifyQuery &Q, unsigned MaxRecurse) { 620 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 621 return C; 622 623 // X + undef -> undef 624 if (Q.isUndefValue(Op1)) 625 return Op1; 626 627 // X + 0 -> X 628 if (match(Op1, m_Zero())) 629 return Op0; 630 631 // If two operands are negative, return 0. 632 if (isKnownNegation(Op0, Op1)) 633 return Constant::getNullValue(Op0->getType()); 634 635 // X + (Y - X) -> Y 636 // (Y - X) + X -> Y 637 // Eg: X + -X -> 0 638 Value *Y = nullptr; 639 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 640 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 641 return Y; 642 643 // X + ~X -> -1 since ~X = -X-1 644 Type *Ty = Op0->getType(); 645 if (match(Op0, m_Not(m_Specific(Op1))) || 646 match(Op1, m_Not(m_Specific(Op0)))) 647 return Constant::getAllOnesValue(Ty); 648 649 // add nsw/nuw (xor Y, signmask), signmask --> Y 650 // The no-wrapping add guarantees that the top bit will be set by the add. 651 // Therefore, the xor must be clearing the already set sign bit of Y. 652 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 653 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 654 return Y; 655 656 // add nuw %x, -1 -> -1, because %x can only be 0. 657 if (IsNUW && match(Op1, m_AllOnes())) 658 return Op1; // Which is -1. 659 660 /// i1 add -> xor. 661 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 662 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 663 return V; 664 665 // Try some generic simplifications for associative operations. 666 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 667 MaxRecurse)) 668 return V; 669 670 // Threading Add over selects and phi nodes is pointless, so don't bother. 671 // Threading over the select in "A + select(cond, B, C)" means evaluating 672 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 673 // only if B and C are equal. If B and C are equal then (since we assume 674 // that operands have already been simplified) "select(cond, B, C)" should 675 // have been simplified to the common value of B and C already. Analysing 676 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 677 // for threading over phi nodes. 678 679 return nullptr; 680 } 681 682 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 683 const SimplifyQuery &Query) { 684 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 685 } 686 687 /// Compute the base pointer and cumulative constant offsets for V. 688 /// 689 /// This strips all constant offsets off of V, leaving it the base pointer, and 690 /// accumulates the total constant offset applied in the returned constant. It 691 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 692 /// no constant offsets applied. 693 /// 694 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 695 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 696 /// folding. 697 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 698 bool AllowNonInbounds = false) { 699 assert(V->getType()->isPtrOrPtrVectorTy()); 700 701 APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType())); 702 703 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 704 // As that strip may trace through `addrspacecast`, need to sext or trunc 705 // the offset calculated. 706 Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 707 Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth()); 708 709 Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset); 710 if (VectorType *VecTy = dyn_cast<VectorType>(V->getType())) 711 return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr); 712 return OffsetIntPtr; 713 } 714 715 /// Compute the constant difference between two pointer values. 716 /// If the difference is not a constant, returns zero. 717 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 718 Value *RHS) { 719 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 720 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 721 722 // If LHS and RHS are not related via constant offsets to the same base 723 // value, there is nothing we can do here. 724 if (LHS != RHS) 725 return nullptr; 726 727 // Otherwise, the difference of LHS - RHS can be computed as: 728 // LHS - RHS 729 // = (LHSOffset + Base) - (RHSOffset + Base) 730 // = LHSOffset - RHSOffset 731 return ConstantExpr::getSub(LHSOffset, RHSOffset); 732 } 733 734 /// Given operands for a Sub, see if we can fold the result. 735 /// If not, this returns null. 736 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 737 const SimplifyQuery &Q, unsigned MaxRecurse) { 738 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 739 return C; 740 741 // X - poison -> poison 742 // poison - X -> poison 743 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 744 return PoisonValue::get(Op0->getType()); 745 746 // X - undef -> undef 747 // undef - X -> undef 748 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 749 return UndefValue::get(Op0->getType()); 750 751 // X - 0 -> X 752 if (match(Op1, m_Zero())) 753 return Op0; 754 755 // X - X -> 0 756 if (Op0 == Op1) 757 return Constant::getNullValue(Op0->getType()); 758 759 // Is this a negation? 760 if (match(Op0, m_Zero())) { 761 // 0 - X -> 0 if the sub is NUW. 762 if (isNUW) 763 return Constant::getNullValue(Op0->getType()); 764 765 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 766 if (Known.Zero.isMaxSignedValue()) { 767 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 768 // Op1 must be 0 because negating the minimum signed value is undefined. 769 if (isNSW) 770 return Constant::getNullValue(Op0->getType()); 771 772 // 0 - X -> X if X is 0 or the minimum signed value. 773 return Op1; 774 } 775 } 776 777 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 778 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 779 Value *X = nullptr, *Y = nullptr, *Z = Op1; 780 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 781 // See if "V === Y - Z" simplifies. 782 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 783 // It does! Now see if "X + V" simplifies. 784 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 785 // It does, we successfully reassociated! 786 ++NumReassoc; 787 return W; 788 } 789 // See if "V === X - Z" simplifies. 790 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 791 // It does! Now see if "Y + V" simplifies. 792 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 793 // It does, we successfully reassociated! 794 ++NumReassoc; 795 return W; 796 } 797 } 798 799 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 800 // For example, X - (X + 1) -> -1 801 X = Op0; 802 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 803 // See if "V === X - Y" simplifies. 804 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 805 // It does! Now see if "V - Z" simplifies. 806 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 807 // It does, we successfully reassociated! 808 ++NumReassoc; 809 return W; 810 } 811 // See if "V === X - Z" simplifies. 812 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 813 // It does! Now see if "V - Y" simplifies. 814 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 815 // It does, we successfully reassociated! 816 ++NumReassoc; 817 return W; 818 } 819 } 820 821 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 822 // For example, X - (X - Y) -> Y. 823 Z = Op0; 824 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 825 // See if "V === Z - X" simplifies. 826 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 827 // It does! Now see if "V + Y" simplifies. 828 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 829 // It does, we successfully reassociated! 830 ++NumReassoc; 831 return W; 832 } 833 834 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 835 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 836 match(Op1, m_Trunc(m_Value(Y)))) 837 if (X->getType() == Y->getType()) 838 // See if "V === X - Y" simplifies. 839 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 840 // It does! Now see if "trunc V" simplifies. 841 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 842 Q, MaxRecurse - 1)) 843 // It does, return the simplified "trunc V". 844 return W; 845 846 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 847 if (match(Op0, m_PtrToInt(m_Value(X))) && 848 match(Op1, m_PtrToInt(m_Value(Y)))) 849 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 850 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 851 852 // i1 sub -> xor. 853 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 854 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 855 return V; 856 857 // Threading Sub over selects and phi nodes is pointless, so don't bother. 858 // Threading over the select in "A - select(cond, B, C)" means evaluating 859 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 860 // only if B and C are equal. If B and C are equal then (since we assume 861 // that operands have already been simplified) "select(cond, B, C)" should 862 // have been simplified to the common value of B and C already. Analysing 863 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 864 // for threading over phi nodes. 865 866 return nullptr; 867 } 868 869 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 870 const SimplifyQuery &Q) { 871 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 872 } 873 874 /// Given operands for a Mul, see if we can fold the result. 875 /// If not, this returns null. 876 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 877 unsigned MaxRecurse) { 878 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 879 return C; 880 881 // X * poison -> poison 882 if (isa<PoisonValue>(Op1)) 883 return Op1; 884 885 // X * undef -> 0 886 // X * 0 -> 0 887 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 888 return Constant::getNullValue(Op0->getType()); 889 890 // X * 1 -> X 891 if (match(Op1, m_One())) 892 return Op0; 893 894 // (X / Y) * Y -> X if the division is exact. 895 Value *X = nullptr; 896 if (Q.IIQ.UseInstrInfo && 897 (match(Op0, 898 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 899 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 900 return X; 901 902 // i1 mul -> and. 903 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 904 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 905 return V; 906 907 // Try some generic simplifications for associative operations. 908 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 909 MaxRecurse)) 910 return V; 911 912 // Mul distributes over Add. Try some generic simplifications based on this. 913 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 914 Instruction::Add, Q, MaxRecurse)) 915 return V; 916 917 // If the operation is with the result of a select instruction, check whether 918 // operating on either branch of the select always yields the same value. 919 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 920 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 921 MaxRecurse)) 922 return V; 923 924 // If the operation is with the result of a phi instruction, check whether 925 // operating on all incoming values of the phi always yields the same value. 926 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 927 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 928 MaxRecurse)) 929 return V; 930 931 return nullptr; 932 } 933 934 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 935 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 936 } 937 938 /// Check for common or similar folds of integer division or integer remainder. 939 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 940 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, 941 Value *Op1, const SimplifyQuery &Q) { 942 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv); 943 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem); 944 945 Type *Ty = Op0->getType(); 946 947 // X / undef -> poison 948 // X % undef -> poison 949 if (Q.isUndefValue(Op1)) 950 return PoisonValue::get(Ty); 951 952 // X / 0 -> poison 953 // X % 0 -> poison 954 // We don't need to preserve faults! 955 if (match(Op1, m_Zero())) 956 return PoisonValue::get(Ty); 957 958 // If any element of a constant divisor fixed width vector is zero or undef 959 // the behavior is undefined and we can fold the whole op to poison. 960 auto *Op1C = dyn_cast<Constant>(Op1); 961 auto *VTy = dyn_cast<FixedVectorType>(Ty); 962 if (Op1C && VTy) { 963 unsigned NumElts = VTy->getNumElements(); 964 for (unsigned i = 0; i != NumElts; ++i) { 965 Constant *Elt = Op1C->getAggregateElement(i); 966 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 967 return PoisonValue::get(Ty); 968 } 969 } 970 971 // poison / X -> poison 972 // poison % X -> poison 973 if (isa<PoisonValue>(Op0)) 974 return Op0; 975 976 // undef / X -> 0 977 // undef % X -> 0 978 if (Q.isUndefValue(Op0)) 979 return Constant::getNullValue(Ty); 980 981 // 0 / X -> 0 982 // 0 % X -> 0 983 if (match(Op0, m_Zero())) 984 return Constant::getNullValue(Op0->getType()); 985 986 // X / X -> 1 987 // X % X -> 0 988 if (Op0 == Op1) 989 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 990 991 // X / 1 -> X 992 // X % 1 -> 0 993 // If this is a boolean op (single-bit element type), we can't have 994 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 995 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 996 Value *X; 997 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 998 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 999 return IsDiv ? Op0 : Constant::getNullValue(Ty); 1000 1001 // If X * Y does not overflow, then: 1002 // X * Y / Y -> X 1003 // X * Y % Y -> 0 1004 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1005 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1006 // The multiplication can't overflow if it is defined not to, or if 1007 // X == A / Y for some A. 1008 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1009 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) || 1010 (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1011 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) { 1012 return IsDiv ? X : Constant::getNullValue(Op0->getType()); 1013 } 1014 } 1015 1016 return nullptr; 1017 } 1018 1019 /// Given a predicate and two operands, return true if the comparison is true. 1020 /// This is a helper for div/rem simplification where we return some other value 1021 /// when we can prove a relationship between the operands. 1022 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 1023 const SimplifyQuery &Q, unsigned MaxRecurse) { 1024 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 1025 Constant *C = dyn_cast_or_null<Constant>(V); 1026 return (C && C->isAllOnesValue()); 1027 } 1028 1029 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 1030 /// to simplify X % Y to X. 1031 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 1032 unsigned MaxRecurse, bool IsSigned) { 1033 // Recursion is always used, so bail out at once if we already hit the limit. 1034 if (!MaxRecurse--) 1035 return false; 1036 1037 if (IsSigned) { 1038 // |X| / |Y| --> 0 1039 // 1040 // We require that 1 operand is a simple constant. That could be extended to 1041 // 2 variables if we computed the sign bit for each. 1042 // 1043 // Make sure that a constant is not the minimum signed value because taking 1044 // the abs() of that is undefined. 1045 Type *Ty = X->getType(); 1046 const APInt *C; 1047 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1048 // Is the variable divisor magnitude always greater than the constant 1049 // dividend magnitude? 1050 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1051 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1052 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1053 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1054 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1055 return true; 1056 } 1057 if (match(Y, m_APInt(C))) { 1058 // Special-case: we can't take the abs() of a minimum signed value. If 1059 // that's the divisor, then all we have to do is prove that the dividend 1060 // is also not the minimum signed value. 1061 if (C->isMinSignedValue()) 1062 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1063 1064 // Is the variable dividend magnitude always less than the constant 1065 // divisor magnitude? 1066 // |X| < |C| --> X > -abs(C) and X < abs(C) 1067 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1068 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1069 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1070 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1071 return true; 1072 } 1073 return false; 1074 } 1075 1076 // IsSigned == false. 1077 // Is the dividend unsigned less than the divisor? 1078 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1079 } 1080 1081 /// These are simplifications common to SDiv and UDiv. 1082 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1083 const SimplifyQuery &Q, unsigned MaxRecurse) { 1084 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1085 return C; 1086 1087 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1088 return V; 1089 1090 bool IsSigned = Opcode == Instruction::SDiv; 1091 1092 // (X rem Y) / Y -> 0 1093 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1094 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1095 return Constant::getNullValue(Op0->getType()); 1096 1097 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1098 ConstantInt *C1, *C2; 1099 if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) && 1100 match(Op1, m_ConstantInt(C2))) { 1101 bool Overflow; 1102 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1103 if (Overflow) 1104 return Constant::getNullValue(Op0->getType()); 1105 } 1106 1107 // If the operation is with the result of a select instruction, check whether 1108 // operating on either branch of the select always yields the same value. 1109 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1110 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1111 return V; 1112 1113 // If the operation is with the result of a phi instruction, check whether 1114 // operating on all incoming values of the phi always yields the same value. 1115 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1116 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1117 return V; 1118 1119 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1120 return Constant::getNullValue(Op0->getType()); 1121 1122 return nullptr; 1123 } 1124 1125 /// These are simplifications common to SRem and URem. 1126 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1127 const SimplifyQuery &Q, unsigned MaxRecurse) { 1128 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1129 return C; 1130 1131 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q)) 1132 return V; 1133 1134 // (X % Y) % Y -> X % Y 1135 if ((Opcode == Instruction::SRem && 1136 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1137 (Opcode == Instruction::URem && 1138 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1139 return Op0; 1140 1141 // (X << Y) % X -> 0 1142 if (Q.IIQ.UseInstrInfo && 1143 ((Opcode == Instruction::SRem && 1144 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1145 (Opcode == Instruction::URem && 1146 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1147 return Constant::getNullValue(Op0->getType()); 1148 1149 // If the operation is with the result of a select instruction, check whether 1150 // operating on either branch of the select always yields the same value. 1151 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1152 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1153 return V; 1154 1155 // If the operation is with the result of a phi instruction, check whether 1156 // operating on all incoming values of the phi always yields the same value. 1157 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1158 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1159 return V; 1160 1161 // If X / Y == 0, then X % Y == X. 1162 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1163 return Op0; 1164 1165 return nullptr; 1166 } 1167 1168 /// Given operands for an SDiv, see if we can fold the result. 1169 /// If not, this returns null. 1170 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1171 unsigned MaxRecurse) { 1172 // If two operands are negated and no signed overflow, return -1. 1173 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1174 return Constant::getAllOnesValue(Op0->getType()); 1175 1176 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1177 } 1178 1179 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1180 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1181 } 1182 1183 /// Given operands for a UDiv, see if we can fold the result. 1184 /// If not, this returns null. 1185 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1186 unsigned MaxRecurse) { 1187 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1188 } 1189 1190 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1191 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1192 } 1193 1194 /// Given operands for an SRem, see if we can fold the result. 1195 /// If not, this returns null. 1196 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1197 unsigned MaxRecurse) { 1198 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1199 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1200 Value *X; 1201 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1202 return ConstantInt::getNullValue(Op0->getType()); 1203 1204 // If the two operands are negated, return 0. 1205 if (isKnownNegation(Op0, Op1)) 1206 return ConstantInt::getNullValue(Op0->getType()); 1207 1208 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1209 } 1210 1211 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1212 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1213 } 1214 1215 /// Given operands for a URem, see if we can fold the result. 1216 /// If not, this returns null. 1217 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1218 unsigned MaxRecurse) { 1219 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1220 } 1221 1222 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1223 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1224 } 1225 1226 /// Returns true if a shift by \c Amount always yields poison. 1227 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { 1228 Constant *C = dyn_cast<Constant>(Amount); 1229 if (!C) 1230 return false; 1231 1232 // X shift by undef -> poison because it may shift by the bitwidth. 1233 if (Q.isUndefValue(C)) 1234 return true; 1235 1236 // Shifting by the bitwidth or more is undefined. 1237 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1238 if (CI->getValue().uge(CI->getType()->getScalarSizeInBits())) 1239 return true; 1240 1241 // If all lanes of a vector shift are undefined the whole shift is. 1242 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1243 for (unsigned I = 0, 1244 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1245 I != E; ++I) 1246 if (!isPoisonShift(C->getAggregateElement(I), Q)) 1247 return false; 1248 return true; 1249 } 1250 1251 return false; 1252 } 1253 1254 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1255 /// If not, this returns null. 1256 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1257 Value *Op1, bool IsNSW, const SimplifyQuery &Q, 1258 unsigned MaxRecurse) { 1259 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1260 return C; 1261 1262 // poison shift by X -> poison 1263 if (isa<PoisonValue>(Op0)) 1264 return Op0; 1265 1266 // 0 shift by X -> 0 1267 if (match(Op0, m_Zero())) 1268 return Constant::getNullValue(Op0->getType()); 1269 1270 // X shift by 0 -> X 1271 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1272 // would be poison. 1273 Value *X; 1274 if (match(Op1, m_Zero()) || 1275 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1276 return Op0; 1277 1278 // Fold undefined shifts. 1279 if (isPoisonShift(Op1, Q)) 1280 return PoisonValue::get(Op0->getType()); 1281 1282 // If the operation is with the result of a select instruction, check whether 1283 // operating on either branch of the select always yields the same value. 1284 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1285 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1286 return V; 1287 1288 // If the operation is with the result of a phi instruction, check whether 1289 // operating on all incoming values of the phi always yields the same value. 1290 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1291 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1292 return V; 1293 1294 // If any bits in the shift amount make that value greater than or equal to 1295 // the number of bits in the type, the shift is undefined. 1296 KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1297 if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth())) 1298 return PoisonValue::get(Op0->getType()); 1299 1300 // If all valid bits in the shift amount are known zero, the first operand is 1301 // unchanged. 1302 unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth()); 1303 if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits) 1304 return Op0; 1305 1306 // Check for nsw shl leading to a poison value. 1307 if (IsNSW) { 1308 assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction"); 1309 KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1310 KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt); 1311 1312 if (KnownVal.Zero.isSignBitSet()) 1313 KnownShl.Zero.setSignBit(); 1314 if (KnownVal.One.isSignBitSet()) 1315 KnownShl.One.setSignBit(); 1316 1317 if (KnownShl.hasConflict()) 1318 return PoisonValue::get(Op0->getType()); 1319 } 1320 1321 return nullptr; 1322 } 1323 1324 /// Given operands for an Shl, LShr or AShr, see if we can 1325 /// fold the result. If not, this returns null. 1326 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1327 Value *Op1, bool isExact, const SimplifyQuery &Q, 1328 unsigned MaxRecurse) { 1329 if (Value *V = 1330 SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse)) 1331 return V; 1332 1333 // X >> X -> 0 1334 if (Op0 == Op1) 1335 return Constant::getNullValue(Op0->getType()); 1336 1337 // undef >> X -> 0 1338 // undef >> X -> undef (if it's exact) 1339 if (Q.isUndefValue(Op0)) 1340 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1341 1342 // The low bit cannot be shifted out of an exact shift if it is set. 1343 if (isExact) { 1344 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1345 if (Op0Known.One[0]) 1346 return Op0; 1347 } 1348 1349 return nullptr; 1350 } 1351 1352 /// Given operands for an Shl, see if we can fold the result. 1353 /// If not, this returns null. 1354 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1355 const SimplifyQuery &Q, unsigned MaxRecurse) { 1356 if (Value *V = 1357 SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse)) 1358 return V; 1359 1360 // undef << X -> 0 1361 // undef << X -> undef if (if it's NSW/NUW) 1362 if (Q.isUndefValue(Op0)) 1363 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1364 1365 // (X >> A) << A -> X 1366 Value *X; 1367 if (Q.IIQ.UseInstrInfo && 1368 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1369 return X; 1370 1371 // shl nuw i8 C, %x -> C iff C has sign bit set. 1372 if (isNUW && match(Op0, m_Negative())) 1373 return Op0; 1374 // NOTE: could use computeKnownBits() / LazyValueInfo, 1375 // but the cost-benefit analysis suggests it isn't worth it. 1376 1377 return nullptr; 1378 } 1379 1380 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1381 const SimplifyQuery &Q) { 1382 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1383 } 1384 1385 /// Given operands for an LShr, see if we can fold the result. 1386 /// If not, this returns null. 1387 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1388 const SimplifyQuery &Q, unsigned MaxRecurse) { 1389 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1390 MaxRecurse)) 1391 return V; 1392 1393 // (X << A) >> A -> X 1394 Value *X; 1395 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1396 return X; 1397 1398 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1399 // We can return X as we do in the above case since OR alters no bits in X. 1400 // SimplifyDemandedBits in InstCombine can do more general optimization for 1401 // bit manipulation. This pattern aims to provide opportunities for other 1402 // optimizers by supporting a simple but common case in InstSimplify. 1403 Value *Y; 1404 const APInt *ShRAmt, *ShLAmt; 1405 if (match(Op1, m_APInt(ShRAmt)) && 1406 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1407 *ShRAmt == *ShLAmt) { 1408 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1409 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 1410 if (ShRAmt->uge(EffWidthY)) 1411 return X; 1412 } 1413 1414 return nullptr; 1415 } 1416 1417 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1418 const SimplifyQuery &Q) { 1419 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1420 } 1421 1422 /// Given operands for an AShr, see if we can fold the result. 1423 /// If not, this returns null. 1424 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1425 const SimplifyQuery &Q, unsigned MaxRecurse) { 1426 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1427 MaxRecurse)) 1428 return V; 1429 1430 // -1 >>a X --> -1 1431 // (-1 << X) a>> X --> -1 1432 // Do not return Op0 because it may contain undef elements if it's a vector. 1433 if (match(Op0, m_AllOnes()) || 1434 match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1)))) 1435 return Constant::getAllOnesValue(Op0->getType()); 1436 1437 // (X << A) >> A -> X 1438 Value *X; 1439 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1440 return X; 1441 1442 // Arithmetic shifting an all-sign-bit value is a no-op. 1443 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1444 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1445 return Op0; 1446 1447 return nullptr; 1448 } 1449 1450 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1451 const SimplifyQuery &Q) { 1452 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1453 } 1454 1455 /// Commuted variants are assumed to be handled by calling this function again 1456 /// with the parameters swapped. 1457 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1458 ICmpInst *UnsignedICmp, bool IsAnd, 1459 const SimplifyQuery &Q) { 1460 Value *X, *Y; 1461 1462 ICmpInst::Predicate EqPred; 1463 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1464 !ICmpInst::isEquality(EqPred)) 1465 return nullptr; 1466 1467 ICmpInst::Predicate UnsignedPred; 1468 1469 Value *A, *B; 1470 // Y = (A - B); 1471 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1472 if (match(UnsignedICmp, 1473 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1474 ICmpInst::isUnsigned(UnsignedPred)) { 1475 // A >=/<= B || (A - B) != 0 <--> true 1476 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1477 UnsignedPred == ICmpInst::ICMP_ULE) && 1478 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1479 return ConstantInt::getTrue(UnsignedICmp->getType()); 1480 // A </> B && (A - B) == 0 <--> false 1481 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1482 UnsignedPred == ICmpInst::ICMP_UGT) && 1483 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1484 return ConstantInt::getFalse(UnsignedICmp->getType()); 1485 1486 // A </> B && (A - B) != 0 <--> A </> B 1487 // A </> B || (A - B) != 0 <--> (A - B) != 0 1488 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1489 UnsignedPred == ICmpInst::ICMP_UGT)) 1490 return IsAnd ? UnsignedICmp : ZeroICmp; 1491 1492 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1493 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1494 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1495 UnsignedPred == ICmpInst::ICMP_UGE)) 1496 return IsAnd ? ZeroICmp : UnsignedICmp; 1497 } 1498 1499 // Given Y = (A - B) 1500 // Y >= A && Y != 0 --> Y >= A iff B != 0 1501 // Y < A || Y == 0 --> Y < A iff B != 0 1502 if (match(UnsignedICmp, 1503 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1504 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1505 EqPred == ICmpInst::ICMP_NE && 1506 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1507 return UnsignedICmp; 1508 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1509 EqPred == ICmpInst::ICMP_EQ && 1510 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1511 return UnsignedICmp; 1512 } 1513 } 1514 1515 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1516 ICmpInst::isUnsigned(UnsignedPred)) 1517 ; 1518 else if (match(UnsignedICmp, 1519 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1520 ICmpInst::isUnsigned(UnsignedPred)) 1521 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1522 else 1523 return nullptr; 1524 1525 // X > Y && Y == 0 --> Y == 0 iff X != 0 1526 // X > Y || Y == 0 --> X > Y iff X != 0 1527 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1528 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1529 return IsAnd ? ZeroICmp : UnsignedICmp; 1530 1531 // X <= Y && Y != 0 --> X <= Y iff X != 0 1532 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1533 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1534 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1535 return IsAnd ? UnsignedICmp : ZeroICmp; 1536 1537 // The transforms below here are expected to be handled more generally with 1538 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1539 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1540 // these are candidates for removal. 1541 1542 // X < Y && Y != 0 --> X < Y 1543 // X < Y || Y != 0 --> Y != 0 1544 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1545 return IsAnd ? UnsignedICmp : ZeroICmp; 1546 1547 // X >= Y && Y == 0 --> Y == 0 1548 // X >= Y || Y == 0 --> X >= Y 1549 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1550 return IsAnd ? ZeroICmp : UnsignedICmp; 1551 1552 // X < Y && Y == 0 --> false 1553 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1554 IsAnd) 1555 return getFalse(UnsignedICmp->getType()); 1556 1557 // X >= Y || Y != 0 --> true 1558 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1559 !IsAnd) 1560 return getTrue(UnsignedICmp->getType()); 1561 1562 return nullptr; 1563 } 1564 1565 /// Commuted variants are assumed to be handled by calling this function again 1566 /// with the parameters swapped. 1567 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1568 ICmpInst::Predicate Pred0, Pred1; 1569 Value *A ,*B; 1570 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1571 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1572 return nullptr; 1573 1574 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1575 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1576 // can eliminate Op1 from this 'and'. 1577 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1578 return Op0; 1579 1580 // Check for any combination of predicates that are guaranteed to be disjoint. 1581 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1582 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1583 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1584 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1585 return getFalse(Op0->getType()); 1586 1587 return nullptr; 1588 } 1589 1590 /// Commuted variants are assumed to be handled by calling this function again 1591 /// with the parameters swapped. 1592 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1593 ICmpInst::Predicate Pred0, Pred1; 1594 Value *A ,*B; 1595 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1596 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1597 return nullptr; 1598 1599 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1600 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1601 // can eliminate Op0 from this 'or'. 1602 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1603 return Op1; 1604 1605 // Check for any combination of predicates that cover the entire range of 1606 // possibilities. 1607 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1608 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1609 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1610 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1611 return getTrue(Op0->getType()); 1612 1613 return nullptr; 1614 } 1615 1616 /// Test if a pair of compares with a shared operand and 2 constants has an 1617 /// empty set intersection, full set union, or if one compare is a superset of 1618 /// the other. 1619 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1620 bool IsAnd) { 1621 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1622 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1623 return nullptr; 1624 1625 const APInt *C0, *C1; 1626 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1627 !match(Cmp1->getOperand(1), m_APInt(C1))) 1628 return nullptr; 1629 1630 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1631 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1632 1633 // For and-of-compares, check if the intersection is empty: 1634 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1635 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1636 return getFalse(Cmp0->getType()); 1637 1638 // For or-of-compares, check if the union is full: 1639 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1640 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1641 return getTrue(Cmp0->getType()); 1642 1643 // Is one range a superset of the other? 1644 // If this is and-of-compares, take the smaller set: 1645 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1646 // If this is or-of-compares, take the larger set: 1647 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1648 if (Range0.contains(Range1)) 1649 return IsAnd ? Cmp1 : Cmp0; 1650 if (Range1.contains(Range0)) 1651 return IsAnd ? Cmp0 : Cmp1; 1652 1653 return nullptr; 1654 } 1655 1656 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1657 bool IsAnd) { 1658 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1659 if (!match(Cmp0->getOperand(1), m_Zero()) || 1660 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1661 return nullptr; 1662 1663 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1664 return nullptr; 1665 1666 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1667 Value *X = Cmp0->getOperand(0); 1668 Value *Y = Cmp1->getOperand(0); 1669 1670 // If one of the compares is a masked version of a (not) null check, then 1671 // that compare implies the other, so we eliminate the other. Optionally, look 1672 // through a pointer-to-int cast to match a null check of a pointer type. 1673 1674 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1675 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1676 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1677 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1678 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1679 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1680 return Cmp1; 1681 1682 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1683 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1684 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1685 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1686 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1687 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1688 return Cmp0; 1689 1690 return nullptr; 1691 } 1692 1693 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1694 const InstrInfoQuery &IIQ) { 1695 // (icmp (add V, C0), C1) & (icmp V, C0) 1696 ICmpInst::Predicate Pred0, Pred1; 1697 const APInt *C0, *C1; 1698 Value *V; 1699 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1700 return nullptr; 1701 1702 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1703 return nullptr; 1704 1705 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1706 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1707 return nullptr; 1708 1709 Type *ITy = Op0->getType(); 1710 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1711 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1712 1713 const APInt Delta = *C1 - *C0; 1714 if (C0->isStrictlyPositive()) { 1715 if (Delta == 2) { 1716 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1717 return getFalse(ITy); 1718 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1719 return getFalse(ITy); 1720 } 1721 if (Delta == 1) { 1722 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1723 return getFalse(ITy); 1724 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1725 return getFalse(ITy); 1726 } 1727 } 1728 if (C0->getBoolValue() && isNUW) { 1729 if (Delta == 2) 1730 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1731 return getFalse(ITy); 1732 if (Delta == 1) 1733 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1734 return getFalse(ITy); 1735 } 1736 1737 return nullptr; 1738 } 1739 1740 /// Try to eliminate compares with signed or unsigned min/max constants. 1741 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1742 bool IsAnd) { 1743 // Canonicalize an equality compare as Cmp0. 1744 if (Cmp1->isEquality()) 1745 std::swap(Cmp0, Cmp1); 1746 if (!Cmp0->isEquality()) 1747 return nullptr; 1748 1749 // The non-equality compare must include a common operand (X). Canonicalize 1750 // the common operand as operand 0 (the predicate is swapped if the common 1751 // operand was operand 1). 1752 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1753 Value *X = Cmp0->getOperand(0); 1754 ICmpInst::Predicate Pred1; 1755 bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value())); 1756 if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value()))) 1757 return nullptr; 1758 if (ICmpInst::isEquality(Pred1)) 1759 return nullptr; 1760 1761 // The equality compare must be against a constant. Flip bits if we matched 1762 // a bitwise not. Convert a null pointer constant to an integer zero value. 1763 APInt MinMaxC; 1764 const APInt *C; 1765 if (match(Cmp0->getOperand(1), m_APInt(C))) 1766 MinMaxC = HasNotOp ? ~*C : *C; 1767 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1768 MinMaxC = APInt::getZero(8); 1769 else 1770 return nullptr; 1771 1772 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1773 if (!IsAnd) { 1774 Pred0 = ICmpInst::getInversePredicate(Pred0); 1775 Pred1 = ICmpInst::getInversePredicate(Pred1); 1776 } 1777 1778 // Normalize to unsigned compare and unsigned min/max value. 1779 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1780 if (ICmpInst::isSigned(Pred1)) { 1781 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1782 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1783 } 1784 1785 // (X != MAX) && (X < Y) --> X < Y 1786 // (X == MAX) || (X >= Y) --> X >= Y 1787 if (MinMaxC.isMaxValue()) 1788 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1789 return Cmp1; 1790 1791 // (X != MIN) && (X > Y) --> X > Y 1792 // (X == MIN) || (X <= Y) --> X <= Y 1793 if (MinMaxC.isMinValue()) 1794 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1795 return Cmp1; 1796 1797 return nullptr; 1798 } 1799 1800 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1801 const SimplifyQuery &Q) { 1802 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1803 return X; 1804 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1805 return X; 1806 1807 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1808 return X; 1809 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1810 return X; 1811 1812 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1813 return X; 1814 1815 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1816 return X; 1817 1818 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1819 return X; 1820 1821 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1822 return X; 1823 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1824 return X; 1825 1826 return nullptr; 1827 } 1828 1829 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1830 const InstrInfoQuery &IIQ) { 1831 // (icmp (add V, C0), C1) | (icmp V, C0) 1832 ICmpInst::Predicate Pred0, Pred1; 1833 const APInt *C0, *C1; 1834 Value *V; 1835 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1836 return nullptr; 1837 1838 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1839 return nullptr; 1840 1841 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1842 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1843 return nullptr; 1844 1845 Type *ITy = Op0->getType(); 1846 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1847 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1848 1849 const APInt Delta = *C1 - *C0; 1850 if (C0->isStrictlyPositive()) { 1851 if (Delta == 2) { 1852 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1853 return getTrue(ITy); 1854 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1855 return getTrue(ITy); 1856 } 1857 if (Delta == 1) { 1858 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1859 return getTrue(ITy); 1860 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1861 return getTrue(ITy); 1862 } 1863 } 1864 if (C0->getBoolValue() && isNUW) { 1865 if (Delta == 2) 1866 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1867 return getTrue(ITy); 1868 if (Delta == 1) 1869 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1870 return getTrue(ITy); 1871 } 1872 1873 return nullptr; 1874 } 1875 1876 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1877 const SimplifyQuery &Q) { 1878 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1879 return X; 1880 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1881 return X; 1882 1883 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1884 return X; 1885 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1886 return X; 1887 1888 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1889 return X; 1890 1891 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1892 return X; 1893 1894 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1895 return X; 1896 1897 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1898 return X; 1899 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1900 return X; 1901 1902 return nullptr; 1903 } 1904 1905 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1906 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1907 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1908 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1909 if (LHS0->getType() != RHS0->getType()) 1910 return nullptr; 1911 1912 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1913 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1914 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1915 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1916 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1917 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1918 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1919 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1920 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1921 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1922 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1923 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1924 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1925 return RHS; 1926 1927 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1928 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1929 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1930 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1931 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1932 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1933 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1934 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1935 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1936 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1937 return LHS; 1938 } 1939 1940 return nullptr; 1941 } 1942 1943 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1944 Value *Op0, Value *Op1, bool IsAnd) { 1945 // Look through casts of the 'and' operands to find compares. 1946 auto *Cast0 = dyn_cast<CastInst>(Op0); 1947 auto *Cast1 = dyn_cast<CastInst>(Op1); 1948 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1949 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1950 Op0 = Cast0->getOperand(0); 1951 Op1 = Cast1->getOperand(0); 1952 } 1953 1954 Value *V = nullptr; 1955 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1956 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1957 if (ICmp0 && ICmp1) 1958 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1959 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1960 1961 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1962 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1963 if (FCmp0 && FCmp1) 1964 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1965 1966 if (!V) 1967 return nullptr; 1968 if (!Cast0) 1969 return V; 1970 1971 // If we looked through casts, we can only handle a constant simplification 1972 // because we are not allowed to create a cast instruction here. 1973 if (auto *C = dyn_cast<Constant>(V)) 1974 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1975 1976 return nullptr; 1977 } 1978 1979 /// Given a bitwise logic op, check if the operands are add/sub with a common 1980 /// source value and inverted constant (identity: C - X -> ~(X + ~C)). 1981 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, 1982 Instruction::BinaryOps Opcode) { 1983 assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); 1984 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); 1985 Value *X; 1986 Constant *C1, *C2; 1987 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && 1988 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || 1989 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && 1990 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { 1991 if (ConstantExpr::getNot(C1) == C2) { 1992 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 1993 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 1994 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 1995 Type *Ty = Op0->getType(); 1996 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) 1997 : ConstantInt::getAllOnesValue(Ty); 1998 } 1999 } 2000 return nullptr; 2001 } 2002 2003 /// Given operands for an And, see if we can fold the result. 2004 /// If not, this returns null. 2005 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2006 unsigned MaxRecurse) { 2007 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2008 return C; 2009 2010 // X & poison -> poison 2011 if (isa<PoisonValue>(Op1)) 2012 return Op1; 2013 2014 // X & undef -> 0 2015 if (Q.isUndefValue(Op1)) 2016 return Constant::getNullValue(Op0->getType()); 2017 2018 // X & X = X 2019 if (Op0 == Op1) 2020 return Op0; 2021 2022 // X & 0 = 0 2023 if (match(Op1, m_Zero())) 2024 return Constant::getNullValue(Op0->getType()); 2025 2026 // X & -1 = X 2027 if (match(Op1, m_AllOnes())) 2028 return Op0; 2029 2030 // A & ~A = ~A & A = 0 2031 if (match(Op0, m_Not(m_Specific(Op1))) || 2032 match(Op1, m_Not(m_Specific(Op0)))) 2033 return Constant::getNullValue(Op0->getType()); 2034 2035 // (A | ?) & A = A 2036 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2037 return Op1; 2038 2039 // A & (A | ?) = A 2040 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2041 return Op0; 2042 2043 // (X | Y) & (X | ~Y) --> X (commuted 8 ways) 2044 Value *X, *Y; 2045 if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2046 match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2047 return X; 2048 if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2049 match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y)))) 2050 return X; 2051 2052 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) 2053 return V; 2054 2055 // A mask that only clears known zeros of a shifted value is a no-op. 2056 const APInt *Mask; 2057 const APInt *ShAmt; 2058 if (match(Op1, m_APInt(Mask))) { 2059 // If all bits in the inverted and shifted mask are clear: 2060 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2061 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2062 (~(*Mask)).lshr(*ShAmt).isZero()) 2063 return Op0; 2064 2065 // If all bits in the inverted and shifted mask are clear: 2066 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2067 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2068 (~(*Mask)).shl(*ShAmt).isZero()) 2069 return Op0; 2070 } 2071 2072 // If we have a multiplication overflow check that is being 'and'ed with a 2073 // check that one of the multipliers is not zero, we can omit the 'and', and 2074 // only keep the overflow check. 2075 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true)) 2076 return Op1; 2077 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true)) 2078 return Op0; 2079 2080 // A & (-A) = A if A is a power of two or zero. 2081 if (match(Op0, m_Neg(m_Specific(Op1))) || 2082 match(Op1, m_Neg(m_Specific(Op0)))) { 2083 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2084 Q.DT)) 2085 return Op0; 2086 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2087 Q.DT)) 2088 return Op1; 2089 } 2090 2091 // This is a similar pattern used for checking if a value is a power-of-2: 2092 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2093 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2094 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2095 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2096 return Constant::getNullValue(Op1->getType()); 2097 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2098 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2099 return Constant::getNullValue(Op0->getType()); 2100 2101 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2102 return V; 2103 2104 // Try some generic simplifications for associative operations. 2105 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 2106 MaxRecurse)) 2107 return V; 2108 2109 // And distributes over Or. Try some generic simplifications based on this. 2110 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2111 Instruction::Or, Q, MaxRecurse)) 2112 return V; 2113 2114 // And distributes over Xor. Try some generic simplifications based on this. 2115 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2116 Instruction::Xor, Q, MaxRecurse)) 2117 return V; 2118 2119 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2120 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2121 // A & (A && B) -> A && B 2122 if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) 2123 return Op1; 2124 else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) 2125 return Op0; 2126 } 2127 // If the operation is with the result of a select instruction, check 2128 // whether operating on either branch of the select always yields the same 2129 // value. 2130 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 2131 MaxRecurse)) 2132 return V; 2133 } 2134 2135 // If the operation is with the result of a phi instruction, check whether 2136 // operating on all incoming values of the phi always yields the same value. 2137 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2138 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 2139 MaxRecurse)) 2140 return V; 2141 2142 // Assuming the effective width of Y is not larger than A, i.e. all bits 2143 // from X and Y are disjoint in (X << A) | Y, 2144 // if the mask of this AND op covers all bits of X or Y, while it covers 2145 // no bits from the other, we can bypass this AND op. E.g., 2146 // ((X << A) | Y) & Mask -> Y, 2147 // if Mask = ((1 << effective_width_of(Y)) - 1) 2148 // ((X << A) | Y) & Mask -> X << A, 2149 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2150 // SimplifyDemandedBits in InstCombine can optimize the general case. 2151 // This pattern aims to help other passes for a common case. 2152 Value *XShifted; 2153 if (match(Op1, m_APInt(Mask)) && 2154 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2155 m_Value(XShifted)), 2156 m_Value(Y)))) { 2157 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2158 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2159 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2160 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 2161 if (EffWidthY <= ShftCnt) { 2162 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 2163 Q.DT); 2164 const unsigned EffWidthX = XKnown.countMaxActiveBits(); 2165 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2166 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2167 // If the mask is extracting all bits from X or Y as is, we can skip 2168 // this AND op. 2169 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2170 return Y; 2171 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2172 return XShifted; 2173 } 2174 } 2175 2176 // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0 2177 // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0 2178 BinaryOperator *Or; 2179 if (match(Op0, m_c_Xor(m_Value(X), 2180 m_CombineAnd(m_BinOp(Or), 2181 m_c_Or(m_Deferred(X), m_Value(Y))))) && 2182 match(Op1, m_c_Xor(m_Specific(Or), m_Specific(Y)))) 2183 return Constant::getNullValue(Op0->getType()); 2184 2185 return nullptr; 2186 } 2187 2188 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2189 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 2190 } 2191 2192 static Value *simplifyOrLogic(Value *X, Value *Y) { 2193 assert(X->getType() == Y->getType() && "Expected same type for 'or' ops"); 2194 Type *Ty = X->getType(); 2195 2196 // X | ~X --> -1 2197 if (match(Y, m_Not(m_Specific(X)))) 2198 return ConstantInt::getAllOnesValue(Ty); 2199 2200 // X | ~(X & ?) = -1 2201 if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value())))) 2202 return ConstantInt::getAllOnesValue(Ty); 2203 2204 // X | (X & ?) --> X 2205 if (match(Y, m_c_And(m_Specific(X), m_Value()))) 2206 return X; 2207 2208 Value *A, *B; 2209 2210 // (A ^ B) | (A | B) --> A | B 2211 // (A ^ B) | (B | A) --> B | A 2212 if (match(X, m_Xor(m_Value(A), m_Value(B))) && 2213 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2214 return Y; 2215 2216 // ~(A ^ B) | (A | B) --> -1 2217 // ~(A ^ B) | (B | A) --> -1 2218 if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) && 2219 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2220 return ConstantInt::getAllOnesValue(Ty); 2221 2222 // (A & ~B) | (A ^ B) --> A ^ B 2223 // (~B & A) | (A ^ B) --> A ^ B 2224 // (A & ~B) | (B ^ A) --> B ^ A 2225 // (~B & A) | (B ^ A) --> B ^ A 2226 if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 2227 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2228 return Y; 2229 2230 // (~A ^ B) | (A & B) --> ~A ^ B 2231 // (B ^ ~A) | (A & B) --> B ^ ~A 2232 // (~A ^ B) | (B & A) --> ~A ^ B 2233 // (B ^ ~A) | (B & A) --> B ^ ~A 2234 if (match(X, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && 2235 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2236 return X; 2237 2238 // (~A | B) | (A ^ B) --> -1 2239 // (~A | B) | (B ^ A) --> -1 2240 // (B | ~A) | (A ^ B) --> -1 2241 // (B | ~A) | (B ^ A) --> -1 2242 if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) && 2243 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2244 return ConstantInt::getAllOnesValue(Ty); 2245 2246 // (~A & B) | ~(A | B) --> ~A 2247 // (~A & B) | ~(B | A) --> ~A 2248 // (B & ~A) | ~(A | B) --> ~A 2249 // (B & ~A) | ~(B | A) --> ~A 2250 Value *NotA; 2251 if (match(X, 2252 m_c_And(m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))), 2253 m_Value(B))) && 2254 match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2255 return NotA; 2256 2257 // ~(A ^ B) | (A & B) --> ~(A & B) 2258 // ~(A ^ B) | (B & A) --> ~(A & B) 2259 Value *NotAB; 2260 if (match(X, m_CombineAnd(m_NotForbidUndef(m_Xor(m_Value(A), m_Value(B))), 2261 m_Value(NotAB))) && 2262 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2263 return NotAB; 2264 2265 return nullptr; 2266 } 2267 2268 /// Given operands for an Or, see if we can fold the result. 2269 /// If not, this returns null. 2270 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2271 unsigned MaxRecurse) { 2272 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2273 return C; 2274 2275 // X | poison -> poison 2276 if (isa<PoisonValue>(Op1)) 2277 return Op1; 2278 2279 // X | undef -> -1 2280 // X | -1 = -1 2281 // Do not return Op1 because it may contain undef elements if it's a vector. 2282 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2283 return Constant::getAllOnesValue(Op0->getType()); 2284 2285 // X | X = X 2286 // X | 0 = X 2287 if (Op0 == Op1 || match(Op1, m_Zero())) 2288 return Op0; 2289 2290 if (Value *R = simplifyOrLogic(Op0, Op1)) 2291 return R; 2292 if (Value *R = simplifyOrLogic(Op1, Op0)) 2293 return R; 2294 2295 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) 2296 return V; 2297 2298 // Rotated -1 is still -1: 2299 // (-1 << X) | (-1 >> (C - X)) --> -1 2300 // (-1 >> X) | (-1 << (C - X)) --> -1 2301 // ...with C <= bitwidth (and commuted variants). 2302 Value *X, *Y; 2303 if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) && 2304 match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) || 2305 (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) && 2306 match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) { 2307 const APInt *C; 2308 if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) || 2309 match(Y, m_Sub(m_APInt(C), m_Specific(X)))) && 2310 C->ule(X->getType()->getScalarSizeInBits())) { 2311 return ConstantInt::getAllOnesValue(X->getType()); 2312 } 2313 } 2314 2315 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2316 return V; 2317 2318 // If we have a multiplication overflow check that is being 'and'ed with a 2319 // check that one of the multipliers is not zero, we can omit the 'and', and 2320 // only keep the overflow check. 2321 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false)) 2322 return Op1; 2323 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false)) 2324 return Op0; 2325 2326 // Try some generic simplifications for associative operations. 2327 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2328 MaxRecurse)) 2329 return V; 2330 2331 // Or distributes over And. Try some generic simplifications based on this. 2332 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2333 Instruction::And, Q, MaxRecurse)) 2334 return V; 2335 2336 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2337 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2338 // A | (A || B) -> A || B 2339 if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) 2340 return Op1; 2341 else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) 2342 return Op0; 2343 } 2344 // If the operation is with the result of a select instruction, check 2345 // whether operating on either branch of the select always yields the same 2346 // value. 2347 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2348 MaxRecurse)) 2349 return V; 2350 } 2351 2352 // (A & C1)|(B & C2) 2353 Value *A, *B; 2354 const APInt *C1, *C2; 2355 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2356 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2357 if (*C1 == ~*C2) { 2358 // (A & C1)|(B & C2) 2359 // If we have: ((V + N) & C1) | (V & C2) 2360 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2361 // replace with V+N. 2362 Value *N; 2363 if (C2->isMask() && // C2 == 0+1+ 2364 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2365 // Add commutes, try both ways. 2366 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2367 return A; 2368 } 2369 // Or commutes, try both ways. 2370 if (C1->isMask() && 2371 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2372 // Add commutes, try both ways. 2373 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2374 return B; 2375 } 2376 } 2377 } 2378 2379 // If the operation is with the result of a phi instruction, check whether 2380 // operating on all incoming values of the phi always yields the same value. 2381 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2382 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2383 return V; 2384 2385 return nullptr; 2386 } 2387 2388 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2389 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2390 } 2391 2392 /// Given operands for a Xor, see if we can fold the result. 2393 /// If not, this returns null. 2394 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2395 unsigned MaxRecurse) { 2396 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2397 return C; 2398 2399 // A ^ undef -> undef 2400 if (Q.isUndefValue(Op1)) 2401 return Op1; 2402 2403 // A ^ 0 = A 2404 if (match(Op1, m_Zero())) 2405 return Op0; 2406 2407 // A ^ A = 0 2408 if (Op0 == Op1) 2409 return Constant::getNullValue(Op0->getType()); 2410 2411 // A ^ ~A = ~A ^ A = -1 2412 if (match(Op0, m_Not(m_Specific(Op1))) || 2413 match(Op1, m_Not(m_Specific(Op0)))) 2414 return Constant::getAllOnesValue(Op0->getType()); 2415 2416 auto foldAndOrNot = [](Value *X, Value *Y) -> Value * { 2417 Value *A, *B; 2418 // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants. 2419 if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) && 2420 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2421 return A; 2422 2423 // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants. 2424 // The 'not' op must contain a complete -1 operand (no undef elements for 2425 // vector) for the transform to be safe. 2426 Value *NotA; 2427 if (match(X, 2428 m_c_Or(m_CombineAnd(m_NotForbidUndef(m_Value(A)), m_Value(NotA)), 2429 m_Value(B))) && 2430 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2431 return NotA; 2432 2433 return nullptr; 2434 }; 2435 if (Value *R = foldAndOrNot(Op0, Op1)) 2436 return R; 2437 if (Value *R = foldAndOrNot(Op1, Op0)) 2438 return R; 2439 2440 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) 2441 return V; 2442 2443 // Try some generic simplifications for associative operations. 2444 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2445 MaxRecurse)) 2446 return V; 2447 2448 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2449 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2450 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2451 // only if B and C are equal. If B and C are equal then (since we assume 2452 // that operands have already been simplified) "select(cond, B, C)" should 2453 // have been simplified to the common value of B and C already. Analysing 2454 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2455 // for threading over phi nodes. 2456 2457 return nullptr; 2458 } 2459 2460 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2461 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2462 } 2463 2464 2465 static Type *GetCompareTy(Value *Op) { 2466 return CmpInst::makeCmpResultType(Op->getType()); 2467 } 2468 2469 /// Rummage around inside V looking for something equivalent to the comparison 2470 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2471 /// Helper function for analyzing max/min idioms. 2472 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2473 Value *LHS, Value *RHS) { 2474 SelectInst *SI = dyn_cast<SelectInst>(V); 2475 if (!SI) 2476 return nullptr; 2477 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2478 if (!Cmp) 2479 return nullptr; 2480 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2481 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2482 return Cmp; 2483 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2484 LHS == CmpRHS && RHS == CmpLHS) 2485 return Cmp; 2486 return nullptr; 2487 } 2488 2489 // A significant optimization not implemented here is assuming that alloca 2490 // addresses are not equal to incoming argument values. They don't *alias*, 2491 // as we say, but that doesn't mean they aren't equal, so we take a 2492 // conservative approach. 2493 // 2494 // This is inspired in part by C++11 5.10p1: 2495 // "Two pointers of the same type compare equal if and only if they are both 2496 // null, both point to the same function, or both represent the same 2497 // address." 2498 // 2499 // This is pretty permissive. 2500 // 2501 // It's also partly due to C11 6.5.9p6: 2502 // "Two pointers compare equal if and only if both are null pointers, both are 2503 // pointers to the same object (including a pointer to an object and a 2504 // subobject at its beginning) or function, both are pointers to one past the 2505 // last element of the same array object, or one is a pointer to one past the 2506 // end of one array object and the other is a pointer to the start of a 2507 // different array object that happens to immediately follow the first array 2508 // object in the address space.) 2509 // 2510 // C11's version is more restrictive, however there's no reason why an argument 2511 // couldn't be a one-past-the-end value for a stack object in the caller and be 2512 // equal to the beginning of a stack object in the callee. 2513 // 2514 // If the C and C++ standards are ever made sufficiently restrictive in this 2515 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2516 // this optimization. 2517 static Constant * 2518 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 2519 const SimplifyQuery &Q) { 2520 const DataLayout &DL = Q.DL; 2521 const TargetLibraryInfo *TLI = Q.TLI; 2522 const DominatorTree *DT = Q.DT; 2523 const Instruction *CxtI = Q.CxtI; 2524 const InstrInfoQuery &IIQ = Q.IIQ; 2525 2526 // First, skip past any trivial no-ops. 2527 LHS = LHS->stripPointerCasts(); 2528 RHS = RHS->stripPointerCasts(); 2529 2530 // A non-null pointer is not equal to a null pointer. 2531 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2532 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2533 IIQ.UseInstrInfo)) 2534 return ConstantInt::get(GetCompareTy(LHS), 2535 !CmpInst::isTrueWhenEqual(Pred)); 2536 2537 // We can only fold certain predicates on pointer comparisons. 2538 switch (Pred) { 2539 default: 2540 return nullptr; 2541 2542 // Equality comaprisons are easy to fold. 2543 case CmpInst::ICMP_EQ: 2544 case CmpInst::ICMP_NE: 2545 break; 2546 2547 // We can only handle unsigned relational comparisons because 'inbounds' on 2548 // a GEP only protects against unsigned wrapping. 2549 case CmpInst::ICMP_UGT: 2550 case CmpInst::ICMP_UGE: 2551 case CmpInst::ICMP_ULT: 2552 case CmpInst::ICMP_ULE: 2553 // However, we have to switch them to their signed variants to handle 2554 // negative indices from the base pointer. 2555 Pred = ICmpInst::getSignedPredicate(Pred); 2556 break; 2557 } 2558 2559 // Strip off any constant offsets so that we can reason about them. 2560 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2561 // here and compare base addresses like AliasAnalysis does, however there are 2562 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2563 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2564 // doesn't need to guarantee pointer inequality when it says NoAlias. 2565 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2566 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2567 2568 // If LHS and RHS are related via constant offsets to the same base 2569 // value, we can replace it with an icmp which just compares the offsets. 2570 if (LHS == RHS) 2571 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2572 2573 // Various optimizations for (in)equality comparisons. 2574 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2575 // Different non-empty allocations that exist at the same time have 2576 // different addresses (if the program can tell). Global variables always 2577 // exist, so they always exist during the lifetime of each other and all 2578 // allocas. Two different allocas usually have different addresses... 2579 // 2580 // However, if there's an @llvm.stackrestore dynamically in between two 2581 // allocas, they may have the same address. It's tempting to reduce the 2582 // scope of the problem by only looking at *static* allocas here. That would 2583 // cover the majority of allocas while significantly reducing the likelihood 2584 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2585 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2586 // an entry block. Also, if we have a block that's not attached to a 2587 // function, we can't tell if it's "static" under the current definition. 2588 // Theoretically, this problem could be fixed by creating a new kind of 2589 // instruction kind specifically for static allocas. Such a new instruction 2590 // could be required to be at the top of the entry block, thus preventing it 2591 // from being subject to a @llvm.stackrestore. Instcombine could even 2592 // convert regular allocas into these special allocas. It'd be nifty. 2593 // However, until then, this problem remains open. 2594 // 2595 // So, we'll assume that two non-empty allocas have different addresses 2596 // for now. 2597 // 2598 // With all that, if the offsets are within the bounds of their allocations 2599 // (and not one-past-the-end! so we can't use inbounds!), and their 2600 // allocations aren't the same, the pointers are not equal. 2601 // 2602 // Note that it's not necessary to check for LHS being a global variable 2603 // address, due to canonicalization and constant folding. 2604 if (isa<AllocaInst>(LHS) && 2605 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2606 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2607 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2608 uint64_t LHSSize, RHSSize; 2609 ObjectSizeOpts Opts; 2610 Opts.NullIsUnknownSize = 2611 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2612 if (LHSOffsetCI && RHSOffsetCI && 2613 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2614 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2615 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2616 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2617 if (!LHSOffsetValue.isNegative() && 2618 !RHSOffsetValue.isNegative() && 2619 LHSOffsetValue.ult(LHSSize) && 2620 RHSOffsetValue.ult(RHSSize)) { 2621 return ConstantInt::get(GetCompareTy(LHS), 2622 !CmpInst::isTrueWhenEqual(Pred)); 2623 } 2624 } 2625 2626 // Repeat the above check but this time without depending on DataLayout 2627 // or being able to compute a precise size. 2628 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2629 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2630 LHSOffset->isNullValue() && 2631 RHSOffset->isNullValue()) 2632 return ConstantInt::get(GetCompareTy(LHS), 2633 !CmpInst::isTrueWhenEqual(Pred)); 2634 } 2635 2636 // Even if an non-inbounds GEP occurs along the path we can still optimize 2637 // equality comparisons concerning the result. We avoid walking the whole 2638 // chain again by starting where the last calls to 2639 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2640 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2641 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2642 if (LHS == RHS) 2643 return ConstantExpr::getICmp(Pred, 2644 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2645 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2646 2647 // If one side of the equality comparison must come from a noalias call 2648 // (meaning a system memory allocation function), and the other side must 2649 // come from a pointer that cannot overlap with dynamically-allocated 2650 // memory within the lifetime of the current function (allocas, byval 2651 // arguments, globals), then determine the comparison result here. 2652 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2653 getUnderlyingObjects(LHS, LHSUObjs); 2654 getUnderlyingObjects(RHS, RHSUObjs); 2655 2656 // Is the set of underlying objects all noalias calls? 2657 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2658 return all_of(Objects, isNoAliasCall); 2659 }; 2660 2661 // Is the set of underlying objects all things which must be disjoint from 2662 // noalias calls. For allocas, we consider only static ones (dynamic 2663 // allocas might be transformed into calls to malloc not simultaneously 2664 // live with the compared-to allocation). For globals, we exclude symbols 2665 // that might be resolve lazily to symbols in another dynamically-loaded 2666 // library (and, thus, could be malloc'ed by the implementation). 2667 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2668 return all_of(Objects, [](const Value *V) { 2669 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2670 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2671 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2672 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2673 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2674 !GV->isThreadLocal(); 2675 if (const Argument *A = dyn_cast<Argument>(V)) 2676 return A->hasByValAttr(); 2677 return false; 2678 }); 2679 }; 2680 2681 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2682 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2683 return ConstantInt::get(GetCompareTy(LHS), 2684 !CmpInst::isTrueWhenEqual(Pred)); 2685 2686 // Fold comparisons for non-escaping pointer even if the allocation call 2687 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2688 // dynamic allocation call could be either of the operands. 2689 Value *MI = nullptr; 2690 if (isAllocLikeFn(LHS, TLI) && 2691 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2692 MI = LHS; 2693 else if (isAllocLikeFn(RHS, TLI) && 2694 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2695 MI = RHS; 2696 // FIXME: We should also fold the compare when the pointer escapes, but the 2697 // compare dominates the pointer escape 2698 if (MI && !PointerMayBeCaptured(MI, true, true)) 2699 return ConstantInt::get(GetCompareTy(LHS), 2700 CmpInst::isFalseWhenEqual(Pred)); 2701 } 2702 2703 // Otherwise, fail. 2704 return nullptr; 2705 } 2706 2707 /// Fold an icmp when its operands have i1 scalar type. 2708 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2709 Value *RHS, const SimplifyQuery &Q) { 2710 Type *ITy = GetCompareTy(LHS); // The return type. 2711 Type *OpTy = LHS->getType(); // The operand type. 2712 if (!OpTy->isIntOrIntVectorTy(1)) 2713 return nullptr; 2714 2715 // A boolean compared to true/false can be reduced in 14 out of the 20 2716 // (10 predicates * 2 constants) possible combinations. The other 2717 // 6 cases require a 'not' of the LHS. 2718 2719 auto ExtractNotLHS = [](Value *V) -> Value * { 2720 Value *X; 2721 if (match(V, m_Not(m_Value(X)))) 2722 return X; 2723 return nullptr; 2724 }; 2725 2726 if (match(RHS, m_Zero())) { 2727 switch (Pred) { 2728 case CmpInst::ICMP_NE: // X != 0 -> X 2729 case CmpInst::ICMP_UGT: // X >u 0 -> X 2730 case CmpInst::ICMP_SLT: // X <s 0 -> X 2731 return LHS; 2732 2733 case CmpInst::ICMP_EQ: // not(X) == 0 -> X != 0 -> X 2734 case CmpInst::ICMP_ULE: // not(X) <=u 0 -> X >u 0 -> X 2735 case CmpInst::ICMP_SGE: // not(X) >=s 0 -> X <s 0 -> X 2736 if (Value *X = ExtractNotLHS(LHS)) 2737 return X; 2738 break; 2739 2740 case CmpInst::ICMP_ULT: // X <u 0 -> false 2741 case CmpInst::ICMP_SGT: // X >s 0 -> false 2742 return getFalse(ITy); 2743 2744 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2745 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2746 return getTrue(ITy); 2747 2748 default: break; 2749 } 2750 } else if (match(RHS, m_One())) { 2751 switch (Pred) { 2752 case CmpInst::ICMP_EQ: // X == 1 -> X 2753 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2754 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2755 return LHS; 2756 2757 case CmpInst::ICMP_NE: // not(X) != 1 -> X == 1 -> X 2758 case CmpInst::ICMP_ULT: // not(X) <=u 1 -> X >=u 1 -> X 2759 case CmpInst::ICMP_SGT: // not(X) >s 1 -> X <=s -1 -> X 2760 if (Value *X = ExtractNotLHS(LHS)) 2761 return X; 2762 break; 2763 2764 case CmpInst::ICMP_UGT: // X >u 1 -> false 2765 case CmpInst::ICMP_SLT: // X <s -1 -> false 2766 return getFalse(ITy); 2767 2768 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2769 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2770 return getTrue(ITy); 2771 2772 default: break; 2773 } 2774 } 2775 2776 switch (Pred) { 2777 default: 2778 break; 2779 case ICmpInst::ICMP_UGE: 2780 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2781 return getTrue(ITy); 2782 break; 2783 case ICmpInst::ICMP_SGE: 2784 /// For signed comparison, the values for an i1 are 0 and -1 2785 /// respectively. This maps into a truth table of: 2786 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2787 /// 0 | 0 | 1 (0 >= 0) | 1 2788 /// 0 | 1 | 1 (0 >= -1) | 1 2789 /// 1 | 0 | 0 (-1 >= 0) | 0 2790 /// 1 | 1 | 1 (-1 >= -1) | 1 2791 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2792 return getTrue(ITy); 2793 break; 2794 case ICmpInst::ICMP_ULE: 2795 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2796 return getTrue(ITy); 2797 break; 2798 } 2799 2800 return nullptr; 2801 } 2802 2803 /// Try hard to fold icmp with zero RHS because this is a common case. 2804 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2805 Value *RHS, const SimplifyQuery &Q) { 2806 if (!match(RHS, m_Zero())) 2807 return nullptr; 2808 2809 Type *ITy = GetCompareTy(LHS); // The return type. 2810 switch (Pred) { 2811 default: 2812 llvm_unreachable("Unknown ICmp predicate!"); 2813 case ICmpInst::ICMP_ULT: 2814 return getFalse(ITy); 2815 case ICmpInst::ICMP_UGE: 2816 return getTrue(ITy); 2817 case ICmpInst::ICMP_EQ: 2818 case ICmpInst::ICMP_ULE: 2819 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2820 return getFalse(ITy); 2821 break; 2822 case ICmpInst::ICMP_NE: 2823 case ICmpInst::ICMP_UGT: 2824 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2825 return getTrue(ITy); 2826 break; 2827 case ICmpInst::ICMP_SLT: { 2828 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2829 if (LHSKnown.isNegative()) 2830 return getTrue(ITy); 2831 if (LHSKnown.isNonNegative()) 2832 return getFalse(ITy); 2833 break; 2834 } 2835 case ICmpInst::ICMP_SLE: { 2836 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2837 if (LHSKnown.isNegative()) 2838 return getTrue(ITy); 2839 if (LHSKnown.isNonNegative() && 2840 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2841 return getFalse(ITy); 2842 break; 2843 } 2844 case ICmpInst::ICMP_SGE: { 2845 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2846 if (LHSKnown.isNegative()) 2847 return getFalse(ITy); 2848 if (LHSKnown.isNonNegative()) 2849 return getTrue(ITy); 2850 break; 2851 } 2852 case ICmpInst::ICMP_SGT: { 2853 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2854 if (LHSKnown.isNegative()) 2855 return getFalse(ITy); 2856 if (LHSKnown.isNonNegative() && 2857 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2858 return getTrue(ITy); 2859 break; 2860 } 2861 } 2862 2863 return nullptr; 2864 } 2865 2866 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2867 Value *RHS, const InstrInfoQuery &IIQ) { 2868 Type *ITy = GetCompareTy(RHS); // The return type. 2869 2870 Value *X; 2871 // Sign-bit checks can be optimized to true/false after unsigned 2872 // floating-point casts: 2873 // icmp slt (bitcast (uitofp X)), 0 --> false 2874 // icmp sgt (bitcast (uitofp X)), -1 --> true 2875 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2876 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2877 return ConstantInt::getFalse(ITy); 2878 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2879 return ConstantInt::getTrue(ITy); 2880 } 2881 2882 const APInt *C; 2883 if (!match(RHS, m_APIntAllowUndef(C))) 2884 return nullptr; 2885 2886 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2887 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2888 if (RHS_CR.isEmptySet()) 2889 return ConstantInt::getFalse(ITy); 2890 if (RHS_CR.isFullSet()) 2891 return ConstantInt::getTrue(ITy); 2892 2893 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo); 2894 if (!LHS_CR.isFullSet()) { 2895 if (RHS_CR.contains(LHS_CR)) 2896 return ConstantInt::getTrue(ITy); 2897 if (RHS_CR.inverse().contains(LHS_CR)) 2898 return ConstantInt::getFalse(ITy); 2899 } 2900 2901 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 2902 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 2903 const APInt *MulC; 2904 if (ICmpInst::isEquality(Pred) && 2905 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2906 *MulC != 0 && C->urem(*MulC) != 0) || 2907 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2908 *MulC != 0 && C->srem(*MulC) != 0))) 2909 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 2910 2911 return nullptr; 2912 } 2913 2914 static Value *simplifyICmpWithBinOpOnLHS( 2915 CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS, 2916 const SimplifyQuery &Q, unsigned MaxRecurse) { 2917 Type *ITy = GetCompareTy(RHS); // The return type. 2918 2919 Value *Y = nullptr; 2920 // icmp pred (or X, Y), X 2921 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2922 if (Pred == ICmpInst::ICMP_ULT) 2923 return getFalse(ITy); 2924 if (Pred == ICmpInst::ICMP_UGE) 2925 return getTrue(ITy); 2926 2927 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2928 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2929 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2930 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2931 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2932 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2933 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2934 } 2935 } 2936 2937 // icmp pred (and X, Y), X 2938 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2939 if (Pred == ICmpInst::ICMP_UGT) 2940 return getFalse(ITy); 2941 if (Pred == ICmpInst::ICMP_ULE) 2942 return getTrue(ITy); 2943 } 2944 2945 // icmp pred (urem X, Y), Y 2946 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2947 switch (Pred) { 2948 default: 2949 break; 2950 case ICmpInst::ICMP_SGT: 2951 case ICmpInst::ICMP_SGE: { 2952 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2953 if (!Known.isNonNegative()) 2954 break; 2955 LLVM_FALLTHROUGH; 2956 } 2957 case ICmpInst::ICMP_EQ: 2958 case ICmpInst::ICMP_UGT: 2959 case ICmpInst::ICMP_UGE: 2960 return getFalse(ITy); 2961 case ICmpInst::ICMP_SLT: 2962 case ICmpInst::ICMP_SLE: { 2963 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2964 if (!Known.isNonNegative()) 2965 break; 2966 LLVM_FALLTHROUGH; 2967 } 2968 case ICmpInst::ICMP_NE: 2969 case ICmpInst::ICMP_ULT: 2970 case ICmpInst::ICMP_ULE: 2971 return getTrue(ITy); 2972 } 2973 } 2974 2975 // icmp pred (urem X, Y), X 2976 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 2977 if (Pred == ICmpInst::ICMP_ULE) 2978 return getTrue(ITy); 2979 if (Pred == ICmpInst::ICMP_UGT) 2980 return getFalse(ITy); 2981 } 2982 2983 // x >>u y <=u x --> true. 2984 // x >>u y >u x --> false. 2985 // x udiv y <=u x --> true. 2986 // x udiv y >u x --> false. 2987 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2988 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 2989 // icmp pred (X op Y), X 2990 if (Pred == ICmpInst::ICMP_UGT) 2991 return getFalse(ITy); 2992 if (Pred == ICmpInst::ICMP_ULE) 2993 return getTrue(ITy); 2994 } 2995 2996 // If x is nonzero: 2997 // x >>u C <u x --> true for C != 0. 2998 // x >>u C != x --> true for C != 0. 2999 // x >>u C >=u x --> false for C != 0. 3000 // x >>u C == x --> false for C != 0. 3001 // x udiv C <u x --> true for C != 1. 3002 // x udiv C != x --> true for C != 1. 3003 // x udiv C >=u x --> false for C != 1. 3004 // x udiv C == x --> false for C != 1. 3005 // TODO: allow non-constant shift amount/divisor 3006 const APInt *C; 3007 if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) || 3008 (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) { 3009 if (isKnownNonZero(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) { 3010 switch (Pred) { 3011 default: 3012 break; 3013 case ICmpInst::ICMP_EQ: 3014 case ICmpInst::ICMP_UGE: 3015 return getFalse(ITy); 3016 case ICmpInst::ICMP_NE: 3017 case ICmpInst::ICMP_ULT: 3018 return getTrue(ITy); 3019 case ICmpInst::ICMP_UGT: 3020 case ICmpInst::ICMP_ULE: 3021 // UGT/ULE are handled by the more general case just above 3022 llvm_unreachable("Unexpected UGT/ULE, should have been handled"); 3023 } 3024 } 3025 } 3026 3027 // (x*C1)/C2 <= x for C1 <= C2. 3028 // This holds even if the multiplication overflows: Assume that x != 0 and 3029 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and 3030 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. 3031 // 3032 // Additionally, either the multiplication and division might be represented 3033 // as shifts: 3034 // (x*C1)>>C2 <= x for C1 < 2**C2. 3035 // (x<<C1)/C2 <= x for 2**C1 < C2. 3036 const APInt *C1, *C2; 3037 if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3038 C1->ule(*C2)) || 3039 (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3040 C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || 3041 (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3042 (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { 3043 if (Pred == ICmpInst::ICMP_UGT) 3044 return getFalse(ITy); 3045 if (Pred == ICmpInst::ICMP_ULE) 3046 return getTrue(ITy); 3047 } 3048 3049 return nullptr; 3050 } 3051 3052 3053 // If only one of the icmp's operands has NSW flags, try to prove that: 3054 // 3055 // icmp slt (x + C1), (x +nsw C2) 3056 // 3057 // is equivalent to: 3058 // 3059 // icmp slt C1, C2 3060 // 3061 // which is true if x + C2 has the NSW flags set and: 3062 // *) C1 < C2 && C1 >= 0, or 3063 // *) C2 < C1 && C1 <= 0. 3064 // 3065 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, 3066 Value *RHS) { 3067 // TODO: only support icmp slt for now. 3068 if (Pred != CmpInst::ICMP_SLT) 3069 return false; 3070 3071 // Canonicalize nsw add as RHS. 3072 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3073 std::swap(LHS, RHS); 3074 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3075 return false; 3076 3077 Value *X; 3078 const APInt *C1, *C2; 3079 if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) || 3080 !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2)))) 3081 return false; 3082 3083 return (C1->slt(*C2) && C1->isNonNegative()) || 3084 (C2->slt(*C1) && C1->isNonPositive()); 3085 } 3086 3087 3088 /// TODO: A large part of this logic is duplicated in InstCombine's 3089 /// foldICmpBinOp(). We should be able to share that and avoid the code 3090 /// duplication. 3091 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 3092 Value *RHS, const SimplifyQuery &Q, 3093 unsigned MaxRecurse) { 3094 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 3095 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 3096 if (MaxRecurse && (LBO || RBO)) { 3097 // Analyze the case when either LHS or RHS is an add instruction. 3098 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3099 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 3100 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 3101 if (LBO && LBO->getOpcode() == Instruction::Add) { 3102 A = LBO->getOperand(0); 3103 B = LBO->getOperand(1); 3104 NoLHSWrapProblem = 3105 ICmpInst::isEquality(Pred) || 3106 (CmpInst::isUnsigned(Pred) && 3107 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 3108 (CmpInst::isSigned(Pred) && 3109 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 3110 } 3111 if (RBO && RBO->getOpcode() == Instruction::Add) { 3112 C = RBO->getOperand(0); 3113 D = RBO->getOperand(1); 3114 NoRHSWrapProblem = 3115 ICmpInst::isEquality(Pred) || 3116 (CmpInst::isUnsigned(Pred) && 3117 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 3118 (CmpInst::isSigned(Pred) && 3119 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 3120 } 3121 3122 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3123 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 3124 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 3125 Constant::getNullValue(RHS->getType()), Q, 3126 MaxRecurse - 1)) 3127 return V; 3128 3129 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3130 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 3131 if (Value *V = 3132 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 3133 C == LHS ? D : C, Q, MaxRecurse - 1)) 3134 return V; 3135 3136 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 3137 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 3138 trySimplifyICmpWithAdds(Pred, LHS, RHS); 3139 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 3140 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3141 Value *Y, *Z; 3142 if (A == C) { 3143 // C + B == C + D -> B == D 3144 Y = B; 3145 Z = D; 3146 } else if (A == D) { 3147 // D + B == C + D -> B == C 3148 Y = B; 3149 Z = C; 3150 } else if (B == C) { 3151 // A + C == C + D -> A == D 3152 Y = A; 3153 Z = D; 3154 } else { 3155 assert(B == D); 3156 // A + D == C + D -> A == C 3157 Y = A; 3158 Z = C; 3159 } 3160 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 3161 return V; 3162 } 3163 } 3164 3165 if (LBO) 3166 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 3167 return V; 3168 3169 if (RBO) 3170 if (Value *V = simplifyICmpWithBinOpOnLHS( 3171 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 3172 return V; 3173 3174 // 0 - (zext X) pred C 3175 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 3176 const APInt *C; 3177 if (match(RHS, m_APInt(C))) { 3178 if (C->isStrictlyPositive()) { 3179 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 3180 return ConstantInt::getTrue(GetCompareTy(RHS)); 3181 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 3182 return ConstantInt::getFalse(GetCompareTy(RHS)); 3183 } 3184 if (C->isNonNegative()) { 3185 if (Pred == ICmpInst::ICMP_SLE) 3186 return ConstantInt::getTrue(GetCompareTy(RHS)); 3187 if (Pred == ICmpInst::ICMP_SGT) 3188 return ConstantInt::getFalse(GetCompareTy(RHS)); 3189 } 3190 } 3191 } 3192 3193 // If C2 is a power-of-2 and C is not: 3194 // (C2 << X) == C --> false 3195 // (C2 << X) != C --> true 3196 const APInt *C; 3197 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3198 match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) { 3199 // C2 << X can equal zero in some circumstances. 3200 // This simplification might be unsafe if C is zero. 3201 // 3202 // We know it is safe if: 3203 // - The shift is nsw. We can't shift out the one bit. 3204 // - The shift is nuw. We can't shift out the one bit. 3205 // - C2 is one. 3206 // - C isn't zero. 3207 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3208 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3209 match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) { 3210 if (Pred == ICmpInst::ICMP_EQ) 3211 return ConstantInt::getFalse(GetCompareTy(RHS)); 3212 if (Pred == ICmpInst::ICMP_NE) 3213 return ConstantInt::getTrue(GetCompareTy(RHS)); 3214 } 3215 } 3216 3217 // TODO: This is overly constrained. LHS can be any power-of-2. 3218 // (1 << X) >u 0x8000 --> false 3219 // (1 << X) <=u 0x8000 --> true 3220 if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) { 3221 if (Pred == ICmpInst::ICMP_UGT) 3222 return ConstantInt::getFalse(GetCompareTy(RHS)); 3223 if (Pred == ICmpInst::ICMP_ULE) 3224 return ConstantInt::getTrue(GetCompareTy(RHS)); 3225 } 3226 3227 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 3228 LBO->getOperand(1) == RBO->getOperand(1)) { 3229 switch (LBO->getOpcode()) { 3230 default: 3231 break; 3232 case Instruction::UDiv: 3233 case Instruction::LShr: 3234 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3235 !Q.IIQ.isExact(RBO)) 3236 break; 3237 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3238 RBO->getOperand(0), Q, MaxRecurse - 1)) 3239 return V; 3240 break; 3241 case Instruction::SDiv: 3242 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3243 !Q.IIQ.isExact(RBO)) 3244 break; 3245 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3246 RBO->getOperand(0), Q, MaxRecurse - 1)) 3247 return V; 3248 break; 3249 case Instruction::AShr: 3250 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3251 break; 3252 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3253 RBO->getOperand(0), Q, MaxRecurse - 1)) 3254 return V; 3255 break; 3256 case Instruction::Shl: { 3257 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3258 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3259 if (!NUW && !NSW) 3260 break; 3261 if (!NSW && ICmpInst::isSigned(Pred)) 3262 break; 3263 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3264 RBO->getOperand(0), Q, MaxRecurse - 1)) 3265 return V; 3266 break; 3267 } 3268 } 3269 } 3270 return nullptr; 3271 } 3272 3273 /// Simplify integer comparisons where at least one operand of the compare 3274 /// matches an integer min/max idiom. 3275 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3276 Value *RHS, const SimplifyQuery &Q, 3277 unsigned MaxRecurse) { 3278 Type *ITy = GetCompareTy(LHS); // The return type. 3279 Value *A, *B; 3280 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3281 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3282 3283 // Signed variants on "max(a,b)>=a -> true". 3284 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3285 if (A != RHS) 3286 std::swap(A, B); // smax(A, B) pred A. 3287 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3288 // We analyze this as smax(A, B) pred A. 3289 P = Pred; 3290 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3291 (A == LHS || B == LHS)) { 3292 if (A != LHS) 3293 std::swap(A, B); // A pred smax(A, B). 3294 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3295 // We analyze this as smax(A, B) swapped-pred A. 3296 P = CmpInst::getSwappedPredicate(Pred); 3297 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3298 (A == RHS || B == RHS)) { 3299 if (A != RHS) 3300 std::swap(A, B); // smin(A, B) pred A. 3301 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3302 // We analyze this as smax(-A, -B) swapped-pred -A. 3303 // Note that we do not need to actually form -A or -B thanks to EqP. 3304 P = CmpInst::getSwappedPredicate(Pred); 3305 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3306 (A == LHS || B == LHS)) { 3307 if (A != LHS) 3308 std::swap(A, B); // A pred smin(A, B). 3309 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3310 // We analyze this as smax(-A, -B) pred -A. 3311 // Note that we do not need to actually form -A or -B thanks to EqP. 3312 P = Pred; 3313 } 3314 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3315 // Cases correspond to "max(A, B) p A". 3316 switch (P) { 3317 default: 3318 break; 3319 case CmpInst::ICMP_EQ: 3320 case CmpInst::ICMP_SLE: 3321 // Equivalent to "A EqP B". This may be the same as the condition tested 3322 // in the max/min; if so, we can just return that. 3323 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3324 return V; 3325 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3326 return V; 3327 // Otherwise, see if "A EqP B" simplifies. 3328 if (MaxRecurse) 3329 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3330 return V; 3331 break; 3332 case CmpInst::ICMP_NE: 3333 case CmpInst::ICMP_SGT: { 3334 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3335 // Equivalent to "A InvEqP B". This may be the same as the condition 3336 // tested in the max/min; if so, we can just return that. 3337 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3338 return V; 3339 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3340 return V; 3341 // Otherwise, see if "A InvEqP B" simplifies. 3342 if (MaxRecurse) 3343 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3344 return V; 3345 break; 3346 } 3347 case CmpInst::ICMP_SGE: 3348 // Always true. 3349 return getTrue(ITy); 3350 case CmpInst::ICMP_SLT: 3351 // Always false. 3352 return getFalse(ITy); 3353 } 3354 } 3355 3356 // Unsigned variants on "max(a,b)>=a -> true". 3357 P = CmpInst::BAD_ICMP_PREDICATE; 3358 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3359 if (A != RHS) 3360 std::swap(A, B); // umax(A, B) pred A. 3361 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3362 // We analyze this as umax(A, B) pred A. 3363 P = Pred; 3364 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3365 (A == LHS || B == LHS)) { 3366 if (A != LHS) 3367 std::swap(A, B); // A pred umax(A, B). 3368 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3369 // We analyze this as umax(A, B) swapped-pred A. 3370 P = CmpInst::getSwappedPredicate(Pred); 3371 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3372 (A == RHS || B == RHS)) { 3373 if (A != RHS) 3374 std::swap(A, B); // umin(A, B) pred A. 3375 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3376 // We analyze this as umax(-A, -B) swapped-pred -A. 3377 // Note that we do not need to actually form -A or -B thanks to EqP. 3378 P = CmpInst::getSwappedPredicate(Pred); 3379 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3380 (A == LHS || B == LHS)) { 3381 if (A != LHS) 3382 std::swap(A, B); // A pred umin(A, B). 3383 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3384 // We analyze this as umax(-A, -B) pred -A. 3385 // Note that we do not need to actually form -A or -B thanks to EqP. 3386 P = Pred; 3387 } 3388 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3389 // Cases correspond to "max(A, B) p A". 3390 switch (P) { 3391 default: 3392 break; 3393 case CmpInst::ICMP_EQ: 3394 case CmpInst::ICMP_ULE: 3395 // Equivalent to "A EqP B". This may be the same as the condition tested 3396 // in the max/min; if so, we can just return that. 3397 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3398 return V; 3399 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3400 return V; 3401 // Otherwise, see if "A EqP B" simplifies. 3402 if (MaxRecurse) 3403 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3404 return V; 3405 break; 3406 case CmpInst::ICMP_NE: 3407 case CmpInst::ICMP_UGT: { 3408 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3409 // Equivalent to "A InvEqP B". This may be the same as the condition 3410 // tested in the max/min; if so, we can just return that. 3411 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3412 return V; 3413 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3414 return V; 3415 // Otherwise, see if "A InvEqP B" simplifies. 3416 if (MaxRecurse) 3417 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3418 return V; 3419 break; 3420 } 3421 case CmpInst::ICMP_UGE: 3422 return getTrue(ITy); 3423 case CmpInst::ICMP_ULT: 3424 return getFalse(ITy); 3425 } 3426 } 3427 3428 // Comparing 1 each of min/max with a common operand? 3429 // Canonicalize min operand to RHS. 3430 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3431 match(LHS, m_SMin(m_Value(), m_Value()))) { 3432 std::swap(LHS, RHS); 3433 Pred = ICmpInst::getSwappedPredicate(Pred); 3434 } 3435 3436 Value *C, *D; 3437 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3438 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3439 (A == C || A == D || B == C || B == D)) { 3440 // smax(A, B) >=s smin(A, D) --> true 3441 if (Pred == CmpInst::ICMP_SGE) 3442 return getTrue(ITy); 3443 // smax(A, B) <s smin(A, D) --> false 3444 if (Pred == CmpInst::ICMP_SLT) 3445 return getFalse(ITy); 3446 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3447 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3448 (A == C || A == D || B == C || B == D)) { 3449 // umax(A, B) >=u umin(A, D) --> true 3450 if (Pred == CmpInst::ICMP_UGE) 3451 return getTrue(ITy); 3452 // umax(A, B) <u umin(A, D) --> false 3453 if (Pred == CmpInst::ICMP_ULT) 3454 return getFalse(ITy); 3455 } 3456 3457 return nullptr; 3458 } 3459 3460 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3461 Value *LHS, Value *RHS, 3462 const SimplifyQuery &Q) { 3463 // Gracefully handle instructions that have not been inserted yet. 3464 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) 3465 return nullptr; 3466 3467 for (Value *AssumeBaseOp : {LHS, RHS}) { 3468 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3469 if (!AssumeVH) 3470 continue; 3471 3472 CallInst *Assume = cast<CallInst>(AssumeVH); 3473 if (Optional<bool> Imp = 3474 isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS, 3475 Q.DL)) 3476 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3477 return ConstantInt::get(GetCompareTy(LHS), *Imp); 3478 } 3479 } 3480 3481 return nullptr; 3482 } 3483 3484 /// Given operands for an ICmpInst, see if we can fold the result. 3485 /// If not, this returns null. 3486 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3487 const SimplifyQuery &Q, unsigned MaxRecurse) { 3488 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3489 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3490 3491 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3492 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3493 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3494 3495 // If we have a constant, make sure it is on the RHS. 3496 std::swap(LHS, RHS); 3497 Pred = CmpInst::getSwappedPredicate(Pred); 3498 } 3499 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3500 3501 Type *ITy = GetCompareTy(LHS); // The return type. 3502 3503 // icmp poison, X -> poison 3504 if (isa<PoisonValue>(RHS)) 3505 return PoisonValue::get(ITy); 3506 3507 // For EQ and NE, we can always pick a value for the undef to make the 3508 // predicate pass or fail, so we can return undef. 3509 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3510 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3511 return UndefValue::get(ITy); 3512 3513 // icmp X, X -> true/false 3514 // icmp X, undef -> true/false because undef could be X. 3515 if (LHS == RHS || Q.isUndefValue(RHS)) 3516 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3517 3518 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3519 return V; 3520 3521 // TODO: Sink/common this with other potentially expensive calls that use 3522 // ValueTracking? See comment below for isKnownNonEqual(). 3523 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3524 return V; 3525 3526 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3527 return V; 3528 3529 // If both operands have range metadata, use the metadata 3530 // to simplify the comparison. 3531 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3532 auto RHS_Instr = cast<Instruction>(RHS); 3533 auto LHS_Instr = cast<Instruction>(LHS); 3534 3535 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3536 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3537 auto RHS_CR = getConstantRangeFromMetadata( 3538 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3539 auto LHS_CR = getConstantRangeFromMetadata( 3540 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3541 3542 if (LHS_CR.icmp(Pred, RHS_CR)) 3543 return ConstantInt::getTrue(RHS->getContext()); 3544 3545 if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR)) 3546 return ConstantInt::getFalse(RHS->getContext()); 3547 } 3548 } 3549 3550 // Compare of cast, for example (zext X) != 0 -> X != 0 3551 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3552 Instruction *LI = cast<CastInst>(LHS); 3553 Value *SrcOp = LI->getOperand(0); 3554 Type *SrcTy = SrcOp->getType(); 3555 Type *DstTy = LI->getType(); 3556 3557 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3558 // if the integer type is the same size as the pointer type. 3559 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3560 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3561 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3562 // Transfer the cast to the constant. 3563 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3564 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3565 Q, MaxRecurse-1)) 3566 return V; 3567 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3568 if (RI->getOperand(0)->getType() == SrcTy) 3569 // Compare without the cast. 3570 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3571 Q, MaxRecurse-1)) 3572 return V; 3573 } 3574 } 3575 3576 if (isa<ZExtInst>(LHS)) { 3577 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3578 // same type. 3579 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3580 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3581 // Compare X and Y. Note that signed predicates become unsigned. 3582 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3583 SrcOp, RI->getOperand(0), Q, 3584 MaxRecurse-1)) 3585 return V; 3586 } 3587 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3588 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3589 if (SrcOp == RI->getOperand(0)) { 3590 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3591 return ConstantInt::getTrue(ITy); 3592 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3593 return ConstantInt::getFalse(ITy); 3594 } 3595 } 3596 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3597 // too. If not, then try to deduce the result of the comparison. 3598 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3599 // Compute the constant that would happen if we truncated to SrcTy then 3600 // reextended to DstTy. 3601 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3602 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3603 3604 // If the re-extended constant didn't change then this is effectively 3605 // also a case of comparing two zero-extended values. 3606 if (RExt == CI && MaxRecurse) 3607 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3608 SrcOp, Trunc, Q, MaxRecurse-1)) 3609 return V; 3610 3611 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3612 // there. Use this to work out the result of the comparison. 3613 if (RExt != CI) { 3614 switch (Pred) { 3615 default: llvm_unreachable("Unknown ICmp predicate!"); 3616 // LHS <u RHS. 3617 case ICmpInst::ICMP_EQ: 3618 case ICmpInst::ICMP_UGT: 3619 case ICmpInst::ICMP_UGE: 3620 return ConstantInt::getFalse(CI->getContext()); 3621 3622 case ICmpInst::ICMP_NE: 3623 case ICmpInst::ICMP_ULT: 3624 case ICmpInst::ICMP_ULE: 3625 return ConstantInt::getTrue(CI->getContext()); 3626 3627 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3628 // is non-negative then LHS <s RHS. 3629 case ICmpInst::ICMP_SGT: 3630 case ICmpInst::ICMP_SGE: 3631 return CI->getValue().isNegative() ? 3632 ConstantInt::getTrue(CI->getContext()) : 3633 ConstantInt::getFalse(CI->getContext()); 3634 3635 case ICmpInst::ICMP_SLT: 3636 case ICmpInst::ICMP_SLE: 3637 return CI->getValue().isNegative() ? 3638 ConstantInt::getFalse(CI->getContext()) : 3639 ConstantInt::getTrue(CI->getContext()); 3640 } 3641 } 3642 } 3643 } 3644 3645 if (isa<SExtInst>(LHS)) { 3646 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3647 // same type. 3648 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3649 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3650 // Compare X and Y. Note that the predicate does not change. 3651 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3652 Q, MaxRecurse-1)) 3653 return V; 3654 } 3655 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3656 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3657 if (SrcOp == RI->getOperand(0)) { 3658 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3659 return ConstantInt::getTrue(ITy); 3660 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3661 return ConstantInt::getFalse(ITy); 3662 } 3663 } 3664 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3665 // too. If not, then try to deduce the result of the comparison. 3666 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3667 // Compute the constant that would happen if we truncated to SrcTy then 3668 // reextended to DstTy. 3669 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3670 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3671 3672 // If the re-extended constant didn't change then this is effectively 3673 // also a case of comparing two sign-extended values. 3674 if (RExt == CI && MaxRecurse) 3675 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3676 return V; 3677 3678 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3679 // bits there. Use this to work out the result of the comparison. 3680 if (RExt != CI) { 3681 switch (Pred) { 3682 default: llvm_unreachable("Unknown ICmp predicate!"); 3683 case ICmpInst::ICMP_EQ: 3684 return ConstantInt::getFalse(CI->getContext()); 3685 case ICmpInst::ICMP_NE: 3686 return ConstantInt::getTrue(CI->getContext()); 3687 3688 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3689 // LHS >s RHS. 3690 case ICmpInst::ICMP_SGT: 3691 case ICmpInst::ICMP_SGE: 3692 return CI->getValue().isNegative() ? 3693 ConstantInt::getTrue(CI->getContext()) : 3694 ConstantInt::getFalse(CI->getContext()); 3695 case ICmpInst::ICMP_SLT: 3696 case ICmpInst::ICMP_SLE: 3697 return CI->getValue().isNegative() ? 3698 ConstantInt::getFalse(CI->getContext()) : 3699 ConstantInt::getTrue(CI->getContext()); 3700 3701 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3702 // LHS >u RHS. 3703 case ICmpInst::ICMP_UGT: 3704 case ICmpInst::ICMP_UGE: 3705 // Comparison is true iff the LHS <s 0. 3706 if (MaxRecurse) 3707 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3708 Constant::getNullValue(SrcTy), 3709 Q, MaxRecurse-1)) 3710 return V; 3711 break; 3712 case ICmpInst::ICMP_ULT: 3713 case ICmpInst::ICMP_ULE: 3714 // Comparison is true iff the LHS >=s 0. 3715 if (MaxRecurse) 3716 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3717 Constant::getNullValue(SrcTy), 3718 Q, MaxRecurse-1)) 3719 return V; 3720 break; 3721 } 3722 } 3723 } 3724 } 3725 } 3726 3727 // icmp eq|ne X, Y -> false|true if X != Y 3728 // This is potentially expensive, and we have already computedKnownBits for 3729 // compares with 0 above here, so only try this for a non-zero compare. 3730 if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) && 3731 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3732 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3733 } 3734 3735 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3736 return V; 3737 3738 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3739 return V; 3740 3741 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3742 return V; 3743 3744 // Simplify comparisons of related pointers using a powerful, recursive 3745 // GEP-walk when we have target data available.. 3746 if (LHS->getType()->isPointerTy()) 3747 if (auto *C = computePointerICmp(Pred, LHS, RHS, Q)) 3748 return C; 3749 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3750 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3751 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3752 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3753 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3754 Q.DL.getTypeSizeInBits(CRHS->getType())) 3755 if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(), 3756 CRHS->getPointerOperand(), Q)) 3757 return C; 3758 3759 // If the comparison is with the result of a select instruction, check whether 3760 // comparing with either branch of the select always yields the same value. 3761 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3762 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3763 return V; 3764 3765 // If the comparison is with the result of a phi instruction, check whether 3766 // doing the compare with each incoming phi value yields a common result. 3767 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3768 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3769 return V; 3770 3771 return nullptr; 3772 } 3773 3774 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3775 const SimplifyQuery &Q) { 3776 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3777 } 3778 3779 /// Given operands for an FCmpInst, see if we can fold the result. 3780 /// If not, this returns null. 3781 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3782 FastMathFlags FMF, const SimplifyQuery &Q, 3783 unsigned MaxRecurse) { 3784 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3785 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3786 3787 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3788 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3789 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3790 3791 // If we have a constant, make sure it is on the RHS. 3792 std::swap(LHS, RHS); 3793 Pred = CmpInst::getSwappedPredicate(Pred); 3794 } 3795 3796 // Fold trivial predicates. 3797 Type *RetTy = GetCompareTy(LHS); 3798 if (Pred == FCmpInst::FCMP_FALSE) 3799 return getFalse(RetTy); 3800 if (Pred == FCmpInst::FCMP_TRUE) 3801 return getTrue(RetTy); 3802 3803 // Fold (un)ordered comparison if we can determine there are no NaNs. 3804 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3805 if (FMF.noNaNs() || 3806 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3807 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3808 3809 // NaN is unordered; NaN is not ordered. 3810 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3811 "Comparison must be either ordered or unordered"); 3812 if (match(RHS, m_NaN())) 3813 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3814 3815 // fcmp pred x, poison and fcmp pred poison, x 3816 // fold to poison 3817 if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS)) 3818 return PoisonValue::get(RetTy); 3819 3820 // fcmp pred x, undef and fcmp pred undef, x 3821 // fold to true if unordered, false if ordered 3822 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 3823 // Choosing NaN for the undef will always make unordered comparison succeed 3824 // and ordered comparison fail. 3825 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3826 } 3827 3828 // fcmp x,x -> true/false. Not all compares are foldable. 3829 if (LHS == RHS) { 3830 if (CmpInst::isTrueWhenEqual(Pred)) 3831 return getTrue(RetTy); 3832 if (CmpInst::isFalseWhenEqual(Pred)) 3833 return getFalse(RetTy); 3834 } 3835 3836 // Handle fcmp with constant RHS. 3837 // TODO: Use match with a specific FP value, so these work with vectors with 3838 // undef lanes. 3839 const APFloat *C; 3840 if (match(RHS, m_APFloat(C))) { 3841 // Check whether the constant is an infinity. 3842 if (C->isInfinity()) { 3843 if (C->isNegative()) { 3844 switch (Pred) { 3845 case FCmpInst::FCMP_OLT: 3846 // No value is ordered and less than negative infinity. 3847 return getFalse(RetTy); 3848 case FCmpInst::FCMP_UGE: 3849 // All values are unordered with or at least negative infinity. 3850 return getTrue(RetTy); 3851 default: 3852 break; 3853 } 3854 } else { 3855 switch (Pred) { 3856 case FCmpInst::FCMP_OGT: 3857 // No value is ordered and greater than infinity. 3858 return getFalse(RetTy); 3859 case FCmpInst::FCMP_ULE: 3860 // All values are unordered with and at most infinity. 3861 return getTrue(RetTy); 3862 default: 3863 break; 3864 } 3865 } 3866 3867 // LHS == Inf 3868 if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) 3869 return getFalse(RetTy); 3870 // LHS != Inf 3871 if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) 3872 return getTrue(RetTy); 3873 // LHS == Inf || LHS == NaN 3874 if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && 3875 isKnownNeverNaN(LHS, Q.TLI)) 3876 return getFalse(RetTy); 3877 // LHS != Inf && LHS != NaN 3878 if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && 3879 isKnownNeverNaN(LHS, Q.TLI)) 3880 return getTrue(RetTy); 3881 } 3882 if (C->isNegative() && !C->isNegZero()) { 3883 assert(!C->isNaN() && "Unexpected NaN constant!"); 3884 // TODO: We can catch more cases by using a range check rather than 3885 // relying on CannotBeOrderedLessThanZero. 3886 switch (Pred) { 3887 case FCmpInst::FCMP_UGE: 3888 case FCmpInst::FCMP_UGT: 3889 case FCmpInst::FCMP_UNE: 3890 // (X >= 0) implies (X > C) when (C < 0) 3891 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3892 return getTrue(RetTy); 3893 break; 3894 case FCmpInst::FCMP_OEQ: 3895 case FCmpInst::FCMP_OLE: 3896 case FCmpInst::FCMP_OLT: 3897 // (X >= 0) implies !(X < C) when (C < 0) 3898 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3899 return getFalse(RetTy); 3900 break; 3901 default: 3902 break; 3903 } 3904 } 3905 3906 // Check comparison of [minnum/maxnum with constant] with other constant. 3907 const APFloat *C2; 3908 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 3909 *C2 < *C) || 3910 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 3911 *C2 > *C)) { 3912 bool IsMaxNum = 3913 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 3914 // The ordered relationship and minnum/maxnum guarantee that we do not 3915 // have NaN constants, so ordered/unordered preds are handled the same. 3916 switch (Pred) { 3917 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 3918 // minnum(X, LesserC) == C --> false 3919 // maxnum(X, GreaterC) == C --> false 3920 return getFalse(RetTy); 3921 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 3922 // minnum(X, LesserC) != C --> true 3923 // maxnum(X, GreaterC) != C --> true 3924 return getTrue(RetTy); 3925 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 3926 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 3927 // minnum(X, LesserC) >= C --> false 3928 // minnum(X, LesserC) > C --> false 3929 // maxnum(X, GreaterC) >= C --> true 3930 // maxnum(X, GreaterC) > C --> true 3931 return ConstantInt::get(RetTy, IsMaxNum); 3932 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 3933 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 3934 // minnum(X, LesserC) <= C --> true 3935 // minnum(X, LesserC) < C --> true 3936 // maxnum(X, GreaterC) <= C --> false 3937 // maxnum(X, GreaterC) < C --> false 3938 return ConstantInt::get(RetTy, !IsMaxNum); 3939 default: 3940 // TRUE/FALSE/ORD/UNO should be handled before this. 3941 llvm_unreachable("Unexpected fcmp predicate"); 3942 } 3943 } 3944 } 3945 3946 if (match(RHS, m_AnyZeroFP())) { 3947 switch (Pred) { 3948 case FCmpInst::FCMP_OGE: 3949 case FCmpInst::FCMP_ULT: 3950 // Positive or zero X >= 0.0 --> true 3951 // Positive or zero X < 0.0 --> false 3952 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 3953 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3954 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 3955 break; 3956 case FCmpInst::FCMP_UGE: 3957 case FCmpInst::FCMP_OLT: 3958 // Positive or zero or nan X >= 0.0 --> true 3959 // Positive or zero or nan X < 0.0 --> false 3960 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3961 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 3962 break; 3963 default: 3964 break; 3965 } 3966 } 3967 3968 // If the comparison is with the result of a select instruction, check whether 3969 // comparing with either branch of the select always yields the same value. 3970 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3971 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3972 return V; 3973 3974 // If the comparison is with the result of a phi instruction, check whether 3975 // doing the compare with each incoming phi value yields a common result. 3976 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3977 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3978 return V; 3979 3980 return nullptr; 3981 } 3982 3983 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3984 FastMathFlags FMF, const SimplifyQuery &Q) { 3985 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3986 } 3987 3988 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3989 const SimplifyQuery &Q, 3990 bool AllowRefinement, 3991 unsigned MaxRecurse) { 3992 assert(!Op->getType()->isVectorTy() && "This is not safe for vectors"); 3993 3994 // Trivial replacement. 3995 if (V == Op) 3996 return RepOp; 3997 3998 // We cannot replace a constant, and shouldn't even try. 3999 if (isa<Constant>(Op)) 4000 return nullptr; 4001 4002 auto *I = dyn_cast<Instruction>(V); 4003 if (!I || !is_contained(I->operands(), Op)) 4004 return nullptr; 4005 4006 // Replace Op with RepOp in instruction operands. 4007 SmallVector<Value *, 8> NewOps(I->getNumOperands()); 4008 transform(I->operands(), NewOps.begin(), 4009 [&](Value *V) { return V == Op ? RepOp : V; }); 4010 4011 if (!AllowRefinement) { 4012 // General InstSimplify functions may refine the result, e.g. by returning 4013 // a constant for a potentially poison value. To avoid this, implement only 4014 // a few non-refining but profitable transforms here. 4015 4016 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4017 unsigned Opcode = BO->getOpcode(); 4018 // id op x -> x, x op id -> x 4019 if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType())) 4020 return NewOps[1]; 4021 if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(), 4022 /* RHS */ true)) 4023 return NewOps[0]; 4024 4025 // x & x -> x, x | x -> x 4026 if ((Opcode == Instruction::And || Opcode == Instruction::Or) && 4027 NewOps[0] == NewOps[1]) 4028 return NewOps[0]; 4029 } 4030 4031 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 4032 // getelementptr x, 0 -> x 4033 if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) && 4034 !GEP->isInBounds()) 4035 return NewOps[0]; 4036 } 4037 } else if (MaxRecurse) { 4038 // The simplification queries below may return the original value. Consider: 4039 // %div = udiv i32 %arg, %arg2 4040 // %mul = mul nsw i32 %div, %arg2 4041 // %cmp = icmp eq i32 %mul, %arg 4042 // %sel = select i1 %cmp, i32 %div, i32 undef 4043 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 4044 // simplifies back to %arg. This can only happen because %mul does not 4045 // dominate %div. To ensure a consistent return value contract, we make sure 4046 // that this case returns nullptr as well. 4047 auto PreventSelfSimplify = [V](Value *Simplified) { 4048 return Simplified != V ? Simplified : nullptr; 4049 }; 4050 4051 if (auto *B = dyn_cast<BinaryOperator>(I)) 4052 return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0], 4053 NewOps[1], Q, MaxRecurse - 1)); 4054 4055 if (CmpInst *C = dyn_cast<CmpInst>(I)) 4056 return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0], 4057 NewOps[1], Q, MaxRecurse - 1)); 4058 4059 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 4060 return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(), 4061 NewOps, GEP->isInBounds(), Q, 4062 MaxRecurse - 1)); 4063 4064 if (isa<SelectInst>(I)) 4065 return PreventSelfSimplify( 4066 SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q, 4067 MaxRecurse - 1)); 4068 // TODO: We could hand off more cases to instsimplify here. 4069 } 4070 4071 // If all operands are constant after substituting Op for RepOp then we can 4072 // constant fold the instruction. 4073 SmallVector<Constant *, 8> ConstOps; 4074 for (Value *NewOp : NewOps) { 4075 if (Constant *ConstOp = dyn_cast<Constant>(NewOp)) 4076 ConstOps.push_back(ConstOp); 4077 else 4078 return nullptr; 4079 } 4080 4081 // Consider: 4082 // %cmp = icmp eq i32 %x, 2147483647 4083 // %add = add nsw i32 %x, 1 4084 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 4085 // 4086 // We can't replace %sel with %add unless we strip away the flags (which 4087 // will be done in InstCombine). 4088 // TODO: This may be unsound, because it only catches some forms of 4089 // refinement. 4090 if (!AllowRefinement && canCreatePoison(cast<Operator>(I))) 4091 return nullptr; 4092 4093 if (CmpInst *C = dyn_cast<CmpInst>(I)) 4094 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 4095 ConstOps[1], Q.DL, Q.TLI); 4096 4097 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4098 if (!LI->isVolatile()) 4099 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 4100 4101 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 4102 } 4103 4104 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4105 const SimplifyQuery &Q, 4106 bool AllowRefinement) { 4107 return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, 4108 RecursionLimit); 4109 } 4110 4111 /// Try to simplify a select instruction when its condition operand is an 4112 /// integer comparison where one operand of the compare is a constant. 4113 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 4114 const APInt *Y, bool TrueWhenUnset) { 4115 const APInt *C; 4116 4117 // (X & Y) == 0 ? X & ~Y : X --> X 4118 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 4119 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 4120 *Y == ~*C) 4121 return TrueWhenUnset ? FalseVal : TrueVal; 4122 4123 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 4124 // (X & Y) != 0 ? X : X & ~Y --> X 4125 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 4126 *Y == ~*C) 4127 return TrueWhenUnset ? FalseVal : TrueVal; 4128 4129 if (Y->isPowerOf2()) { 4130 // (X & Y) == 0 ? X | Y : X --> X | Y 4131 // (X & Y) != 0 ? X | Y : X --> X 4132 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 4133 *Y == *C) 4134 return TrueWhenUnset ? TrueVal : FalseVal; 4135 4136 // (X & Y) == 0 ? X : X | Y --> X 4137 // (X & Y) != 0 ? X : X | Y --> X | Y 4138 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 4139 *Y == *C) 4140 return TrueWhenUnset ? TrueVal : FalseVal; 4141 } 4142 4143 return nullptr; 4144 } 4145 4146 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 4147 /// eq/ne. 4148 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 4149 ICmpInst::Predicate Pred, 4150 Value *TrueVal, Value *FalseVal) { 4151 Value *X; 4152 APInt Mask; 4153 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 4154 return nullptr; 4155 4156 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 4157 Pred == ICmpInst::ICMP_EQ); 4158 } 4159 4160 /// Try to simplify a select instruction when its condition operand is an 4161 /// integer comparison. 4162 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 4163 Value *FalseVal, const SimplifyQuery &Q, 4164 unsigned MaxRecurse) { 4165 ICmpInst::Predicate Pred; 4166 Value *CmpLHS, *CmpRHS; 4167 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4168 return nullptr; 4169 4170 // Canonicalize ne to eq predicate. 4171 if (Pred == ICmpInst::ICMP_NE) { 4172 Pred = ICmpInst::ICMP_EQ; 4173 std::swap(TrueVal, FalseVal); 4174 } 4175 4176 // Check for integer min/max with a limit constant: 4177 // X > MIN_INT ? X : MIN_INT --> X 4178 // X < MAX_INT ? X : MAX_INT --> X 4179 if (TrueVal->getType()->isIntOrIntVectorTy()) { 4180 Value *X, *Y; 4181 SelectPatternFlavor SPF = 4182 matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal, 4183 X, Y).Flavor; 4184 if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) { 4185 APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF), 4186 X->getType()->getScalarSizeInBits()); 4187 if (match(Y, m_SpecificInt(LimitC))) 4188 return X; 4189 } 4190 } 4191 4192 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 4193 Value *X; 4194 const APInt *Y; 4195 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 4196 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 4197 /*TrueWhenUnset=*/true)) 4198 return V; 4199 4200 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 4201 Value *ShAmt; 4202 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4203 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4204 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4205 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4206 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4207 return X; 4208 4209 // Test for a zero-shift-guard-op around rotates. These are used to 4210 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4211 // intrinsics do not have that problem. 4212 // We do not allow this transform for the general funnel shift case because 4213 // that would not preserve the poison safety of the original code. 4214 auto isRotate = 4215 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4216 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4217 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4218 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4219 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4220 Pred == ICmpInst::ICMP_EQ) 4221 return FalseVal; 4222 4223 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4224 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4225 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && 4226 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) 4227 return FalseVal; 4228 if (match(TrueVal, 4229 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && 4230 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) 4231 return FalseVal; 4232 } 4233 4234 // Check for other compares that behave like bit test. 4235 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 4236 TrueVal, FalseVal)) 4237 return V; 4238 4239 // If we have a scalar equality comparison, then we know the value in one of 4240 // the arms of the select. See if substituting this value into the arm and 4241 // simplifying the result yields the same value as the other arm. 4242 // Note that the equivalence/replacement opportunity does not hold for vectors 4243 // because each element of a vector select is chosen independently. 4244 if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) { 4245 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 4246 /* AllowRefinement */ false, MaxRecurse) == 4247 TrueVal || 4248 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, 4249 /* AllowRefinement */ false, MaxRecurse) == 4250 TrueVal) 4251 return FalseVal; 4252 if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4253 /* AllowRefinement */ true, MaxRecurse) == 4254 FalseVal || 4255 simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, 4256 /* AllowRefinement */ true, MaxRecurse) == 4257 FalseVal) 4258 return FalseVal; 4259 } 4260 4261 return nullptr; 4262 } 4263 4264 /// Try to simplify a select instruction when its condition operand is a 4265 /// floating-point comparison. 4266 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4267 const SimplifyQuery &Q) { 4268 FCmpInst::Predicate Pred; 4269 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4270 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4271 return nullptr; 4272 4273 // This transform is safe if we do not have (do not care about) -0.0 or if 4274 // at least one operand is known to not be -0.0. Otherwise, the select can 4275 // change the sign of a zero operand. 4276 bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) && 4277 Q.CxtI->hasNoSignedZeros(); 4278 const APFloat *C; 4279 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4280 (match(F, m_APFloat(C)) && C->isNonZero())) { 4281 // (T == F) ? T : F --> F 4282 // (F == T) ? T : F --> F 4283 if (Pred == FCmpInst::FCMP_OEQ) 4284 return F; 4285 4286 // (T != F) ? T : F --> T 4287 // (F != T) ? T : F --> T 4288 if (Pred == FCmpInst::FCMP_UNE) 4289 return T; 4290 } 4291 4292 return nullptr; 4293 } 4294 4295 /// Given operands for a SelectInst, see if we can fold the result. 4296 /// If not, this returns null. 4297 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4298 const SimplifyQuery &Q, unsigned MaxRecurse) { 4299 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4300 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4301 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4302 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4303 4304 // select poison, X, Y -> poison 4305 if (isa<PoisonValue>(CondC)) 4306 return PoisonValue::get(TrueVal->getType()); 4307 4308 // select undef, X, Y -> X or Y 4309 if (Q.isUndefValue(CondC)) 4310 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4311 4312 // select true, X, Y --> X 4313 // select false, X, Y --> Y 4314 // For vectors, allow undef/poison elements in the condition to match the 4315 // defined elements, so we can eliminate the select. 4316 if (match(CondC, m_One())) 4317 return TrueVal; 4318 if (match(CondC, m_Zero())) 4319 return FalseVal; 4320 } 4321 4322 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4323 "Select must have bool or bool vector condition"); 4324 assert(TrueVal->getType() == FalseVal->getType() && 4325 "Select must have same types for true/false ops"); 4326 4327 if (Cond->getType() == TrueVal->getType()) { 4328 // select i1 Cond, i1 true, i1 false --> i1 Cond 4329 if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4330 return Cond; 4331 4332 // (X || Y) && (X || !Y) --> X (commuted 8 ways) 4333 Value *X, *Y; 4334 if (match(FalseVal, m_ZeroInt())) { 4335 if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4336 match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4337 return X; 4338 if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4339 match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4340 return X; 4341 } 4342 } 4343 4344 // select ?, X, X -> X 4345 if (TrueVal == FalseVal) 4346 return TrueVal; 4347 4348 // If the true or false value is poison, we can fold to the other value. 4349 // If the true or false value is undef, we can fold to the other value as 4350 // long as the other value isn't poison. 4351 // select ?, poison, X -> X 4352 // select ?, undef, X -> X 4353 if (isa<PoisonValue>(TrueVal) || 4354 (Q.isUndefValue(TrueVal) && 4355 isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT))) 4356 return FalseVal; 4357 // select ?, X, poison -> X 4358 // select ?, X, undef -> X 4359 if (isa<PoisonValue>(FalseVal) || 4360 (Q.isUndefValue(FalseVal) && 4361 isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT))) 4362 return TrueVal; 4363 4364 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4365 Constant *TrueC, *FalseC; 4366 if (isa<FixedVectorType>(TrueVal->getType()) && 4367 match(TrueVal, m_Constant(TrueC)) && 4368 match(FalseVal, m_Constant(FalseC))) { 4369 unsigned NumElts = 4370 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4371 SmallVector<Constant *, 16> NewC; 4372 for (unsigned i = 0; i != NumElts; ++i) { 4373 // Bail out on incomplete vector constants. 4374 Constant *TEltC = TrueC->getAggregateElement(i); 4375 Constant *FEltC = FalseC->getAggregateElement(i); 4376 if (!TEltC || !FEltC) 4377 break; 4378 4379 // If the elements match (undef or not), that value is the result. If only 4380 // one element is undef, choose the defined element as the safe result. 4381 if (TEltC == FEltC) 4382 NewC.push_back(TEltC); 4383 else if (isa<PoisonValue>(TEltC) || 4384 (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC))) 4385 NewC.push_back(FEltC); 4386 else if (isa<PoisonValue>(FEltC) || 4387 (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC))) 4388 NewC.push_back(TEltC); 4389 else 4390 break; 4391 } 4392 if (NewC.size() == NumElts) 4393 return ConstantVector::get(NewC); 4394 } 4395 4396 if (Value *V = 4397 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4398 return V; 4399 4400 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4401 return V; 4402 4403 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4404 return V; 4405 4406 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4407 if (Imp) 4408 return *Imp ? TrueVal : FalseVal; 4409 4410 return nullptr; 4411 } 4412 4413 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4414 const SimplifyQuery &Q) { 4415 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4416 } 4417 4418 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4419 /// If not, this returns null. 4420 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds, 4421 const SimplifyQuery &Q, unsigned) { 4422 // The type of the GEP pointer operand. 4423 unsigned AS = 4424 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 4425 4426 // getelementptr P -> P. 4427 if (Ops.size() == 1) 4428 return Ops[0]; 4429 4430 // Compute the (pointer) type returned by the GEP instruction. 4431 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 4432 Type *GEPTy = PointerType::get(LastType, AS); 4433 for (Value *Op : Ops) { 4434 // If one of the operands is a vector, the result type is a vector of 4435 // pointers. All vector operands must have the same number of elements. 4436 if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) { 4437 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4438 break; 4439 } 4440 } 4441 4442 // getelementptr poison, idx -> poison 4443 // getelementptr baseptr, poison -> poison 4444 if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); })) 4445 return PoisonValue::get(GEPTy); 4446 4447 if (Q.isUndefValue(Ops[0])) 4448 return UndefValue::get(GEPTy); 4449 4450 bool IsScalableVec = 4451 isa<ScalableVectorType>(SrcTy) || any_of(Ops, [](const Value *V) { 4452 return isa<ScalableVectorType>(V->getType()); 4453 }); 4454 4455 if (Ops.size() == 2) { 4456 // getelementptr P, 0 -> P. 4457 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 4458 return Ops[0]; 4459 4460 Type *Ty = SrcTy; 4461 if (!IsScalableVec && Ty->isSized()) { 4462 Value *P; 4463 uint64_t C; 4464 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4465 // getelementptr P, N -> P if P points to a type of zero size. 4466 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 4467 return Ops[0]; 4468 4469 // The following transforms are only safe if the ptrtoint cast 4470 // doesn't truncate the pointers. 4471 if (Ops[1]->getType()->getScalarSizeInBits() == 4472 Q.DL.getPointerSizeInBits(AS)) { 4473 auto CanSimplify = [GEPTy, &P, V = Ops[0]]() -> bool { 4474 return P->getType() == GEPTy && 4475 getUnderlyingObject(P) == getUnderlyingObject(V); 4476 }; 4477 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4478 if (TyAllocSize == 1 && 4479 match(Ops[1], m_Sub(m_PtrToInt(m_Value(P)), 4480 m_PtrToInt(m_Specific(Ops[0])))) && 4481 CanSimplify()) 4482 return P; 4483 4484 // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of 4485 // size 1 << C. 4486 if (match(Ops[1], m_AShr(m_Sub(m_PtrToInt(m_Value(P)), 4487 m_PtrToInt(m_Specific(Ops[0]))), 4488 m_ConstantInt(C))) && 4489 TyAllocSize == 1ULL << C && CanSimplify()) 4490 return P; 4491 4492 // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of 4493 // size C. 4494 if (match(Ops[1], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)), 4495 m_PtrToInt(m_Specific(Ops[0]))), 4496 m_SpecificInt(TyAllocSize))) && 4497 CanSimplify()) 4498 return P; 4499 } 4500 } 4501 } 4502 4503 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4504 all_of(Ops.slice(1).drop_back(1), 4505 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4506 unsigned IdxWidth = 4507 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 4508 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 4509 APInt BasePtrOffset(IdxWidth, 0); 4510 Value *StrippedBasePtr = 4511 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 4512 BasePtrOffset); 4513 4514 // Avoid creating inttoptr of zero here: While LLVMs treatment of 4515 // inttoptr is generally conservative, this particular case is folded to 4516 // a null pointer, which will have incorrect provenance. 4517 4518 // gep (gep V, C), (sub 0, V) -> C 4519 if (match(Ops.back(), 4520 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) && 4521 !BasePtrOffset.isZero()) { 4522 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4523 return ConstantExpr::getIntToPtr(CI, GEPTy); 4524 } 4525 // gep (gep V, C), (xor V, -1) -> C-1 4526 if (match(Ops.back(), 4527 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && 4528 !BasePtrOffset.isOne()) { 4529 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4530 return ConstantExpr::getIntToPtr(CI, GEPTy); 4531 } 4532 } 4533 } 4534 4535 // Check to see if this is constant foldable. 4536 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 4537 return nullptr; 4538 4539 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 4540 Ops.slice(1), InBounds); 4541 return ConstantFoldConstant(CE, Q.DL); 4542 } 4543 4544 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, bool InBounds, 4545 const SimplifyQuery &Q) { 4546 return ::SimplifyGEPInst(SrcTy, Ops, InBounds, Q, RecursionLimit); 4547 } 4548 4549 /// Given operands for an InsertValueInst, see if we can fold the result. 4550 /// If not, this returns null. 4551 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4552 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4553 unsigned) { 4554 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4555 if (Constant *CVal = dyn_cast<Constant>(Val)) 4556 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4557 4558 // insertvalue x, undef, n -> x 4559 if (Q.isUndefValue(Val)) 4560 return Agg; 4561 4562 // insertvalue x, (extractvalue y, n), n 4563 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4564 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4565 EV->getIndices() == Idxs) { 4566 // insertvalue undef, (extractvalue y, n), n -> y 4567 if (Q.isUndefValue(Agg)) 4568 return EV->getAggregateOperand(); 4569 4570 // insertvalue y, (extractvalue y, n), n -> y 4571 if (Agg == EV->getAggregateOperand()) 4572 return Agg; 4573 } 4574 4575 return nullptr; 4576 } 4577 4578 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4579 ArrayRef<unsigned> Idxs, 4580 const SimplifyQuery &Q) { 4581 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4582 } 4583 4584 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4585 const SimplifyQuery &Q) { 4586 // Try to constant fold. 4587 auto *VecC = dyn_cast<Constant>(Vec); 4588 auto *ValC = dyn_cast<Constant>(Val); 4589 auto *IdxC = dyn_cast<Constant>(Idx); 4590 if (VecC && ValC && IdxC) 4591 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 4592 4593 // For fixed-length vector, fold into poison if index is out of bounds. 4594 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4595 if (isa<FixedVectorType>(Vec->getType()) && 4596 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 4597 return PoisonValue::get(Vec->getType()); 4598 } 4599 4600 // If index is undef, it might be out of bounds (see above case) 4601 if (Q.isUndefValue(Idx)) 4602 return PoisonValue::get(Vec->getType()); 4603 4604 // If the scalar is poison, or it is undef and there is no risk of 4605 // propagating poison from the vector value, simplify to the vector value. 4606 if (isa<PoisonValue>(Val) || 4607 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) 4608 return Vec; 4609 4610 // If we are extracting a value from a vector, then inserting it into the same 4611 // place, that's the input vector: 4612 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4613 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 4614 return Vec; 4615 4616 return nullptr; 4617 } 4618 4619 /// Given operands for an ExtractValueInst, see if we can fold the result. 4620 /// If not, this returns null. 4621 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4622 const SimplifyQuery &, unsigned) { 4623 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4624 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4625 4626 // extractvalue x, (insertvalue y, elt, n), n -> elt 4627 unsigned NumIdxs = Idxs.size(); 4628 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4629 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4630 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4631 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4632 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4633 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4634 Idxs.slice(0, NumCommonIdxs)) { 4635 if (NumIdxs == NumInsertValueIdxs) 4636 return IVI->getInsertedValueOperand(); 4637 break; 4638 } 4639 } 4640 4641 return nullptr; 4642 } 4643 4644 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4645 const SimplifyQuery &Q) { 4646 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4647 } 4648 4649 /// Given operands for an ExtractElementInst, see if we can fold the result. 4650 /// If not, this returns null. 4651 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, 4652 const SimplifyQuery &Q, unsigned) { 4653 auto *VecVTy = cast<VectorType>(Vec->getType()); 4654 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4655 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4656 return ConstantExpr::getExtractElement(CVec, CIdx); 4657 4658 if (Q.isUndefValue(Vec)) 4659 return UndefValue::get(VecVTy->getElementType()); 4660 } 4661 4662 // An undef extract index can be arbitrarily chosen to be an out-of-range 4663 // index value, which would result in the instruction being poison. 4664 if (Q.isUndefValue(Idx)) 4665 return PoisonValue::get(VecVTy->getElementType()); 4666 4667 // If extracting a specified index from the vector, see if we can recursively 4668 // find a previously computed scalar that was inserted into the vector. 4669 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4670 // For fixed-length vector, fold into undef if index is out of bounds. 4671 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue(); 4672 if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts)) 4673 return PoisonValue::get(VecVTy->getElementType()); 4674 // Handle case where an element is extracted from a splat. 4675 if (IdxC->getValue().ult(MinNumElts)) 4676 if (auto *Splat = getSplatValue(Vec)) 4677 return Splat; 4678 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4679 return Elt; 4680 } else { 4681 // The index is not relevant if our vector is a splat. 4682 if (Value *Splat = getSplatValue(Vec)) 4683 return Splat; 4684 } 4685 return nullptr; 4686 } 4687 4688 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4689 const SimplifyQuery &Q) { 4690 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4691 } 4692 4693 /// See if we can fold the given phi. If not, returns null. 4694 static Value *SimplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues, 4695 const SimplifyQuery &Q) { 4696 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 4697 // here, because the PHI we may succeed simplifying to was not 4698 // def-reachable from the original PHI! 4699 4700 // If all of the PHI's incoming values are the same then replace the PHI node 4701 // with the common value. 4702 Value *CommonValue = nullptr; 4703 bool HasUndefInput = false; 4704 for (Value *Incoming : IncomingValues) { 4705 // If the incoming value is the phi node itself, it can safely be skipped. 4706 if (Incoming == PN) continue; 4707 if (Q.isUndefValue(Incoming)) { 4708 // Remember that we saw an undef value, but otherwise ignore them. 4709 HasUndefInput = true; 4710 continue; 4711 } 4712 if (CommonValue && Incoming != CommonValue) 4713 return nullptr; // Not the same, bail out. 4714 CommonValue = Incoming; 4715 } 4716 4717 // If CommonValue is null then all of the incoming values were either undef or 4718 // equal to the phi node itself. 4719 if (!CommonValue) 4720 return UndefValue::get(PN->getType()); 4721 4722 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4723 // instruction, we cannot return X as the result of the PHI node unless it 4724 // dominates the PHI block. 4725 if (HasUndefInput) 4726 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4727 4728 return CommonValue; 4729 } 4730 4731 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4732 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4733 if (auto *C = dyn_cast<Constant>(Op)) 4734 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4735 4736 if (auto *CI = dyn_cast<CastInst>(Op)) { 4737 auto *Src = CI->getOperand(0); 4738 Type *SrcTy = Src->getType(); 4739 Type *MidTy = CI->getType(); 4740 Type *DstTy = Ty; 4741 if (Src->getType() == Ty) { 4742 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4743 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4744 Type *SrcIntPtrTy = 4745 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4746 Type *MidIntPtrTy = 4747 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4748 Type *DstIntPtrTy = 4749 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4750 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4751 SrcIntPtrTy, MidIntPtrTy, 4752 DstIntPtrTy) == Instruction::BitCast) 4753 return Src; 4754 } 4755 } 4756 4757 // bitcast x -> x 4758 if (CastOpc == Instruction::BitCast) 4759 if (Op->getType() == Ty) 4760 return Op; 4761 4762 return nullptr; 4763 } 4764 4765 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4766 const SimplifyQuery &Q) { 4767 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4768 } 4769 4770 /// For the given destination element of a shuffle, peek through shuffles to 4771 /// match a root vector source operand that contains that element in the same 4772 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4773 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4774 int MaskVal, Value *RootVec, 4775 unsigned MaxRecurse) { 4776 if (!MaxRecurse--) 4777 return nullptr; 4778 4779 // Bail out if any mask value is undefined. That kind of shuffle may be 4780 // simplified further based on demanded bits or other folds. 4781 if (MaskVal == -1) 4782 return nullptr; 4783 4784 // The mask value chooses which source operand we need to look at next. 4785 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 4786 int RootElt = MaskVal; 4787 Value *SourceOp = Op0; 4788 if (MaskVal >= InVecNumElts) { 4789 RootElt = MaskVal - InVecNumElts; 4790 SourceOp = Op1; 4791 } 4792 4793 // If the source operand is a shuffle itself, look through it to find the 4794 // matching root vector. 4795 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4796 return foldIdentityShuffles( 4797 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4798 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4799 } 4800 4801 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4802 // size? 4803 4804 // The source operand is not a shuffle. Initialize the root vector value for 4805 // this shuffle if that has not been done yet. 4806 if (!RootVec) 4807 RootVec = SourceOp; 4808 4809 // Give up as soon as a source operand does not match the existing root value. 4810 if (RootVec != SourceOp) 4811 return nullptr; 4812 4813 // The element must be coming from the same lane in the source vector 4814 // (although it may have crossed lanes in intermediate shuffles). 4815 if (RootElt != DestElt) 4816 return nullptr; 4817 4818 return RootVec; 4819 } 4820 4821 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4822 ArrayRef<int> Mask, Type *RetTy, 4823 const SimplifyQuery &Q, 4824 unsigned MaxRecurse) { 4825 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) 4826 return UndefValue::get(RetTy); 4827 4828 auto *InVecTy = cast<VectorType>(Op0->getType()); 4829 unsigned MaskNumElts = Mask.size(); 4830 ElementCount InVecEltCount = InVecTy->getElementCount(); 4831 4832 bool Scalable = InVecEltCount.isScalable(); 4833 4834 SmallVector<int, 32> Indices; 4835 Indices.assign(Mask.begin(), Mask.end()); 4836 4837 // Canonicalization: If mask does not select elements from an input vector, 4838 // replace that input vector with poison. 4839 if (!Scalable) { 4840 bool MaskSelects0 = false, MaskSelects1 = false; 4841 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 4842 for (unsigned i = 0; i != MaskNumElts; ++i) { 4843 if (Indices[i] == -1) 4844 continue; 4845 if ((unsigned)Indices[i] < InVecNumElts) 4846 MaskSelects0 = true; 4847 else 4848 MaskSelects1 = true; 4849 } 4850 if (!MaskSelects0) 4851 Op0 = PoisonValue::get(InVecTy); 4852 if (!MaskSelects1) 4853 Op1 = PoisonValue::get(InVecTy); 4854 } 4855 4856 auto *Op0Const = dyn_cast<Constant>(Op0); 4857 auto *Op1Const = dyn_cast<Constant>(Op1); 4858 4859 // If all operands are constant, constant fold the shuffle. This 4860 // transformation depends on the value of the mask which is not known at 4861 // compile time for scalable vectors 4862 if (Op0Const && Op1Const) 4863 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 4864 4865 // Canonicalization: if only one input vector is constant, it shall be the 4866 // second one. This transformation depends on the value of the mask which 4867 // is not known at compile time for scalable vectors 4868 if (!Scalable && Op0Const && !Op1Const) { 4869 std::swap(Op0, Op1); 4870 ShuffleVectorInst::commuteShuffleMask(Indices, 4871 InVecEltCount.getKnownMinValue()); 4872 } 4873 4874 // A splat of an inserted scalar constant becomes a vector constant: 4875 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 4876 // NOTE: We may have commuted above, so analyze the updated Indices, not the 4877 // original mask constant. 4878 // NOTE: This transformation depends on the value of the mask which is not 4879 // known at compile time for scalable vectors 4880 Constant *C; 4881 ConstantInt *IndexC; 4882 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 4883 m_ConstantInt(IndexC)))) { 4884 // Match a splat shuffle mask of the insert index allowing undef elements. 4885 int InsertIndex = IndexC->getZExtValue(); 4886 if (all_of(Indices, [InsertIndex](int MaskElt) { 4887 return MaskElt == InsertIndex || MaskElt == -1; 4888 })) { 4889 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 4890 4891 // Shuffle mask undefs become undefined constant result elements. 4892 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 4893 for (unsigned i = 0; i != MaskNumElts; ++i) 4894 if (Indices[i] == -1) 4895 VecC[i] = UndefValue::get(C->getType()); 4896 return ConstantVector::get(VecC); 4897 } 4898 } 4899 4900 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4901 // value type is same as the input vectors' type. 4902 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4903 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 4904 is_splat(OpShuf->getShuffleMask())) 4905 return Op0; 4906 4907 // All remaining transformation depend on the value of the mask, which is 4908 // not known at compile time for scalable vectors. 4909 if (Scalable) 4910 return nullptr; 4911 4912 // Don't fold a shuffle with undef mask elements. This may get folded in a 4913 // better way using demanded bits or other analysis. 4914 // TODO: Should we allow this? 4915 if (is_contained(Indices, -1)) 4916 return nullptr; 4917 4918 // Check if every element of this shuffle can be mapped back to the 4919 // corresponding element of a single root vector. If so, we don't need this 4920 // shuffle. This handles simple identity shuffles as well as chains of 4921 // shuffles that may widen/narrow and/or move elements across lanes and back. 4922 Value *RootVec = nullptr; 4923 for (unsigned i = 0; i != MaskNumElts; ++i) { 4924 // Note that recursion is limited for each vector element, so if any element 4925 // exceeds the limit, this will fail to simplify. 4926 RootVec = 4927 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4928 4929 // We can't replace a widening/narrowing shuffle with one of its operands. 4930 if (!RootVec || RootVec->getType() != RetTy) 4931 return nullptr; 4932 } 4933 return RootVec; 4934 } 4935 4936 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4937 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4938 ArrayRef<int> Mask, Type *RetTy, 4939 const SimplifyQuery &Q) { 4940 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4941 } 4942 4943 static Constant *foldConstant(Instruction::UnaryOps Opcode, 4944 Value *&Op, const SimplifyQuery &Q) { 4945 if (auto *C = dyn_cast<Constant>(Op)) 4946 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 4947 return nullptr; 4948 } 4949 4950 /// Given the operand for an FNeg, see if we can fold the result. If not, this 4951 /// returns null. 4952 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 4953 const SimplifyQuery &Q, unsigned MaxRecurse) { 4954 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 4955 return C; 4956 4957 Value *X; 4958 // fneg (fneg X) ==> X 4959 if (match(Op, m_FNeg(m_Value(X)))) 4960 return X; 4961 4962 return nullptr; 4963 } 4964 4965 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 4966 const SimplifyQuery &Q) { 4967 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 4968 } 4969 4970 static Constant *propagateNaN(Constant *In) { 4971 // If the input is a vector with undef elements, just return a default NaN. 4972 if (!In->isNaN()) 4973 return ConstantFP::getNaN(In->getType()); 4974 4975 // Propagate the existing NaN constant when possible. 4976 // TODO: Should we quiet a signaling NaN? 4977 return In; 4978 } 4979 4980 /// Perform folds that are common to any floating-point operation. This implies 4981 /// transforms based on poison/undef/NaN because the operation itself makes no 4982 /// difference to the result. 4983 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF, 4984 const SimplifyQuery &Q, 4985 fp::ExceptionBehavior ExBehavior, 4986 RoundingMode Rounding) { 4987 // Poison is independent of anything else. It always propagates from an 4988 // operand to a math result. 4989 if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); })) 4990 return PoisonValue::get(Ops[0]->getType()); 4991 4992 for (Value *V : Ops) { 4993 bool IsNan = match(V, m_NaN()); 4994 bool IsInf = match(V, m_Inf()); 4995 bool IsUndef = Q.isUndefValue(V); 4996 4997 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 4998 // (an undef operand can be chosen to be Nan/Inf), then the result of 4999 // this operation is poison. 5000 if (FMF.noNaNs() && (IsNan || IsUndef)) 5001 return PoisonValue::get(V->getType()); 5002 if (FMF.noInfs() && (IsInf || IsUndef)) 5003 return PoisonValue::get(V->getType()); 5004 5005 if (isDefaultFPEnvironment(ExBehavior, Rounding)) { 5006 if (IsUndef || IsNan) 5007 return propagateNaN(cast<Constant>(V)); 5008 } else if (ExBehavior != fp::ebStrict) { 5009 if (IsNan) 5010 return propagateNaN(cast<Constant>(V)); 5011 } 5012 } 5013 return nullptr; 5014 } 5015 5016 // TODO: Move this out to a header file: 5017 static inline bool canIgnoreSNaN(fp::ExceptionBehavior EB, FastMathFlags FMF) { 5018 return (EB == fp::ebIgnore || FMF.noNaNs()); 5019 } 5020 5021 /// Given operands for an FAdd, see if we can fold the result. If not, this 5022 /// returns null. 5023 static Value * 5024 SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5025 const SimplifyQuery &Q, unsigned MaxRecurse, 5026 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5027 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5028 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5029 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 5030 return C; 5031 5032 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5033 return C; 5034 5035 // fadd X, -0 ==> X 5036 // With strict/constrained FP, we have these possible edge cases that do 5037 // not simplify to Op0: 5038 // fadd SNaN, -0.0 --> QNaN 5039 // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative) 5040 if (canIgnoreSNaN(ExBehavior, FMF) && 5041 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5042 FMF.noSignedZeros())) 5043 if (match(Op1, m_NegZeroFP())) 5044 return Op0; 5045 5046 // fadd X, 0 ==> X, when we know X is not -0 5047 if (canIgnoreSNaN(ExBehavior, FMF)) 5048 if (match(Op1, m_PosZeroFP()) && 5049 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 5050 return Op0; 5051 5052 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5053 return nullptr; 5054 5055 // With nnan: -X + X --> 0.0 (and commuted variant) 5056 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 5057 // Negative zeros are allowed because we always end up with positive zero: 5058 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5059 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5060 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 5061 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 5062 if (FMF.noNaNs()) { 5063 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 5064 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 5065 return ConstantFP::getNullValue(Op0->getType()); 5066 5067 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5068 match(Op1, m_FNeg(m_Specific(Op0)))) 5069 return ConstantFP::getNullValue(Op0->getType()); 5070 } 5071 5072 // (X - Y) + Y --> X 5073 // Y + (X - Y) --> X 5074 Value *X; 5075 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5076 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 5077 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 5078 return X; 5079 5080 return nullptr; 5081 } 5082 5083 /// Given operands for an FSub, see if we can fold the result. If not, this 5084 /// returns null. 5085 static Value * 5086 SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5087 const SimplifyQuery &Q, unsigned MaxRecurse, 5088 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5089 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5090 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5091 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 5092 return C; 5093 5094 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5095 return C; 5096 5097 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5098 return nullptr; 5099 5100 // fsub X, +0 ==> X 5101 if (match(Op1, m_PosZeroFP())) 5102 return Op0; 5103 5104 // fsub X, -0 ==> X, when we know X is not -0 5105 if (match(Op1, m_NegZeroFP()) && 5106 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 5107 return Op0; 5108 5109 // fsub -0.0, (fsub -0.0, X) ==> X 5110 // fsub -0.0, (fneg X) ==> X 5111 Value *X; 5112 if (match(Op0, m_NegZeroFP()) && 5113 match(Op1, m_FNeg(m_Value(X)))) 5114 return X; 5115 5116 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 5117 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 5118 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 5119 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 5120 match(Op1, m_FNeg(m_Value(X))))) 5121 return X; 5122 5123 // fsub nnan x, x ==> 0.0 5124 if (FMF.noNaNs() && Op0 == Op1) 5125 return Constant::getNullValue(Op0->getType()); 5126 5127 // Y - (Y - X) --> X 5128 // (X + Y) - Y --> X 5129 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5130 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 5131 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 5132 return X; 5133 5134 return nullptr; 5135 } 5136 5137 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5138 const SimplifyQuery &Q, unsigned MaxRecurse, 5139 fp::ExceptionBehavior ExBehavior, 5140 RoundingMode Rounding) { 5141 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5142 return C; 5143 5144 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5145 return nullptr; 5146 5147 // fmul X, 1.0 ==> X 5148 if (match(Op1, m_FPOne())) 5149 return Op0; 5150 5151 // fmul 1.0, X ==> X 5152 if (match(Op0, m_FPOne())) 5153 return Op1; 5154 5155 // fmul nnan nsz X, 0 ==> 0 5156 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 5157 return ConstantFP::getNullValue(Op0->getType()); 5158 5159 // fmul nnan nsz 0, X ==> 0 5160 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5161 return ConstantFP::getNullValue(Op1->getType()); 5162 5163 // sqrt(X) * sqrt(X) --> X, if we can: 5164 // 1. Remove the intermediate rounding (reassociate). 5165 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 5166 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 5167 Value *X; 5168 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 5169 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 5170 return X; 5171 5172 return nullptr; 5173 } 5174 5175 /// Given the operands for an FMul, see if we can fold the result 5176 static Value * 5177 SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5178 const SimplifyQuery &Q, unsigned MaxRecurse, 5179 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5180 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5181 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5182 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 5183 return C; 5184 5185 // Now apply simplifications that do not require rounding. 5186 return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding); 5187 } 5188 5189 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5190 const SimplifyQuery &Q, 5191 fp::ExceptionBehavior ExBehavior, 5192 RoundingMode Rounding) { 5193 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5194 Rounding); 5195 } 5196 5197 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5198 const SimplifyQuery &Q, 5199 fp::ExceptionBehavior ExBehavior, 5200 RoundingMode Rounding) { 5201 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5202 Rounding); 5203 } 5204 5205 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5206 const SimplifyQuery &Q, 5207 fp::ExceptionBehavior ExBehavior, 5208 RoundingMode Rounding) { 5209 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5210 Rounding); 5211 } 5212 5213 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5214 const SimplifyQuery &Q, 5215 fp::ExceptionBehavior ExBehavior, 5216 RoundingMode Rounding) { 5217 return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5218 Rounding); 5219 } 5220 5221 static Value * 5222 SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5223 const SimplifyQuery &Q, unsigned, 5224 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5225 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5226 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5227 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 5228 return C; 5229 5230 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5231 return C; 5232 5233 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5234 return nullptr; 5235 5236 // X / 1.0 -> X 5237 if (match(Op1, m_FPOne())) 5238 return Op0; 5239 5240 // 0 / X -> 0 5241 // Requires that NaNs are off (X could be zero) and signed zeroes are 5242 // ignored (X could be positive or negative, so the output sign is unknown). 5243 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5244 return ConstantFP::getNullValue(Op0->getType()); 5245 5246 if (FMF.noNaNs()) { 5247 // X / X -> 1.0 is legal when NaNs are ignored. 5248 // We can ignore infinities because INF/INF is NaN. 5249 if (Op0 == Op1) 5250 return ConstantFP::get(Op0->getType(), 1.0); 5251 5252 // (X * Y) / Y --> X if we can reassociate to the above form. 5253 Value *X; 5254 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 5255 return X; 5256 5257 // -X / X -> -1.0 and 5258 // X / -X -> -1.0 are legal when NaNs are ignored. 5259 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 5260 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 5261 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 5262 return ConstantFP::get(Op0->getType(), -1.0); 5263 } 5264 5265 return nullptr; 5266 } 5267 5268 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5269 const SimplifyQuery &Q, 5270 fp::ExceptionBehavior ExBehavior, 5271 RoundingMode Rounding) { 5272 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5273 Rounding); 5274 } 5275 5276 static Value * 5277 SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5278 const SimplifyQuery &Q, unsigned, 5279 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5280 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5281 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5282 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 5283 return C; 5284 5285 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5286 return C; 5287 5288 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5289 return nullptr; 5290 5291 // Unlike fdiv, the result of frem always matches the sign of the dividend. 5292 // The constant match may include undef elements in a vector, so return a full 5293 // zero constant as the result. 5294 if (FMF.noNaNs()) { 5295 // +0 % X -> 0 5296 if (match(Op0, m_PosZeroFP())) 5297 return ConstantFP::getNullValue(Op0->getType()); 5298 // -0 % X -> -0 5299 if (match(Op0, m_NegZeroFP())) 5300 return ConstantFP::getNegativeZero(Op0->getType()); 5301 } 5302 5303 return nullptr; 5304 } 5305 5306 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5307 const SimplifyQuery &Q, 5308 fp::ExceptionBehavior ExBehavior, 5309 RoundingMode Rounding) { 5310 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5311 Rounding); 5312 } 5313 5314 //=== Helper functions for higher up the class hierarchy. 5315 5316 /// Given the operand for a UnaryOperator, see if we can fold the result. 5317 /// If not, this returns null. 5318 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 5319 unsigned MaxRecurse) { 5320 switch (Opcode) { 5321 case Instruction::FNeg: 5322 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5323 default: 5324 llvm_unreachable("Unexpected opcode"); 5325 } 5326 } 5327 5328 /// Given the operand for a UnaryOperator, see if we can fold the result. 5329 /// If not, this returns null. 5330 /// Try to use FastMathFlags when folding the result. 5331 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5332 const FastMathFlags &FMF, 5333 const SimplifyQuery &Q, unsigned MaxRecurse) { 5334 switch (Opcode) { 5335 case Instruction::FNeg: 5336 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5337 default: 5338 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5339 } 5340 } 5341 5342 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 5343 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 5344 } 5345 5346 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 5347 const SimplifyQuery &Q) { 5348 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 5349 } 5350 5351 /// Given operands for a BinaryOperator, see if we can fold the result. 5352 /// If not, this returns null. 5353 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5354 const SimplifyQuery &Q, unsigned MaxRecurse) { 5355 switch (Opcode) { 5356 case Instruction::Add: 5357 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 5358 case Instruction::Sub: 5359 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 5360 case Instruction::Mul: 5361 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 5362 case Instruction::SDiv: 5363 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 5364 case Instruction::UDiv: 5365 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 5366 case Instruction::SRem: 5367 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 5368 case Instruction::URem: 5369 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 5370 case Instruction::Shl: 5371 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 5372 case Instruction::LShr: 5373 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 5374 case Instruction::AShr: 5375 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 5376 case Instruction::And: 5377 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 5378 case Instruction::Or: 5379 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 5380 case Instruction::Xor: 5381 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 5382 case Instruction::FAdd: 5383 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5384 case Instruction::FSub: 5385 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5386 case Instruction::FMul: 5387 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5388 case Instruction::FDiv: 5389 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5390 case Instruction::FRem: 5391 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5392 default: 5393 llvm_unreachable("Unexpected opcode"); 5394 } 5395 } 5396 5397 /// Given operands for a BinaryOperator, see if we can fold the result. 5398 /// If not, this returns null. 5399 /// Try to use FastMathFlags when folding the result. 5400 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5401 const FastMathFlags &FMF, const SimplifyQuery &Q, 5402 unsigned MaxRecurse) { 5403 switch (Opcode) { 5404 case Instruction::FAdd: 5405 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5406 case Instruction::FSub: 5407 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5408 case Instruction::FMul: 5409 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5410 case Instruction::FDiv: 5411 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5412 default: 5413 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5414 } 5415 } 5416 5417 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5418 const SimplifyQuery &Q) { 5419 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5420 } 5421 5422 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5423 FastMathFlags FMF, const SimplifyQuery &Q) { 5424 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5425 } 5426 5427 /// Given operands for a CmpInst, see if we can fold the result. 5428 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5429 const SimplifyQuery &Q, unsigned MaxRecurse) { 5430 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5431 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5432 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5433 } 5434 5435 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5436 const SimplifyQuery &Q) { 5437 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5438 } 5439 5440 static bool IsIdempotent(Intrinsic::ID ID) { 5441 switch (ID) { 5442 default: return false; 5443 5444 // Unary idempotent: f(f(x)) = f(x) 5445 case Intrinsic::fabs: 5446 case Intrinsic::floor: 5447 case Intrinsic::ceil: 5448 case Intrinsic::trunc: 5449 case Intrinsic::rint: 5450 case Intrinsic::nearbyint: 5451 case Intrinsic::round: 5452 case Intrinsic::roundeven: 5453 case Intrinsic::canonicalize: 5454 return true; 5455 } 5456 } 5457 5458 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 5459 const DataLayout &DL) { 5460 GlobalValue *PtrSym; 5461 APInt PtrOffset; 5462 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 5463 return nullptr; 5464 5465 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 5466 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 5467 Type *Int32PtrTy = Int32Ty->getPointerTo(); 5468 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 5469 5470 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 5471 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 5472 return nullptr; 5473 5474 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 5475 if (OffsetInt % 4 != 0) 5476 return nullptr; 5477 5478 Constant *C = ConstantExpr::getGetElementPtr( 5479 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 5480 ConstantInt::get(Int64Ty, OffsetInt / 4)); 5481 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 5482 if (!Loaded) 5483 return nullptr; 5484 5485 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 5486 if (!LoadedCE) 5487 return nullptr; 5488 5489 if (LoadedCE->getOpcode() == Instruction::Trunc) { 5490 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5491 if (!LoadedCE) 5492 return nullptr; 5493 } 5494 5495 if (LoadedCE->getOpcode() != Instruction::Sub) 5496 return nullptr; 5497 5498 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5499 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 5500 return nullptr; 5501 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 5502 5503 Constant *LoadedRHS = LoadedCE->getOperand(1); 5504 GlobalValue *LoadedRHSSym; 5505 APInt LoadedRHSOffset; 5506 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 5507 DL) || 5508 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 5509 return nullptr; 5510 5511 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 5512 } 5513 5514 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 5515 const SimplifyQuery &Q) { 5516 // Idempotent functions return the same result when called repeatedly. 5517 Intrinsic::ID IID = F->getIntrinsicID(); 5518 if (IsIdempotent(IID)) 5519 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 5520 if (II->getIntrinsicID() == IID) 5521 return II; 5522 5523 Value *X; 5524 switch (IID) { 5525 case Intrinsic::fabs: 5526 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 5527 break; 5528 case Intrinsic::bswap: 5529 // bswap(bswap(x)) -> x 5530 if (match(Op0, m_BSwap(m_Value(X)))) return X; 5531 break; 5532 case Intrinsic::bitreverse: 5533 // bitreverse(bitreverse(x)) -> x 5534 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 5535 break; 5536 case Intrinsic::ctpop: { 5537 // If everything but the lowest bit is zero, that bit is the pop-count. Ex: 5538 // ctpop(and X, 1) --> and X, 1 5539 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 5540 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), 5541 Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 5542 return Op0; 5543 break; 5544 } 5545 case Intrinsic::exp: 5546 // exp(log(x)) -> x 5547 if (Q.CxtI->hasAllowReassoc() && 5548 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 5549 break; 5550 case Intrinsic::exp2: 5551 // exp2(log2(x)) -> x 5552 if (Q.CxtI->hasAllowReassoc() && 5553 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 5554 break; 5555 case Intrinsic::log: 5556 // log(exp(x)) -> x 5557 if (Q.CxtI->hasAllowReassoc() && 5558 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 5559 break; 5560 case Intrinsic::log2: 5561 // log2(exp2(x)) -> x 5562 if (Q.CxtI->hasAllowReassoc() && 5563 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 5564 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 5565 m_Value(X))))) return X; 5566 break; 5567 case Intrinsic::log10: 5568 // log10(pow(10.0, x)) -> x 5569 if (Q.CxtI->hasAllowReassoc() && 5570 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 5571 m_Value(X)))) return X; 5572 break; 5573 case Intrinsic::floor: 5574 case Intrinsic::trunc: 5575 case Intrinsic::ceil: 5576 case Intrinsic::round: 5577 case Intrinsic::roundeven: 5578 case Intrinsic::nearbyint: 5579 case Intrinsic::rint: { 5580 // floor (sitofp x) -> sitofp x 5581 // floor (uitofp x) -> uitofp x 5582 // 5583 // Converting from int always results in a finite integral number or 5584 // infinity. For either of those inputs, these rounding functions always 5585 // return the same value, so the rounding can be eliminated. 5586 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 5587 return Op0; 5588 break; 5589 } 5590 case Intrinsic::experimental_vector_reverse: 5591 // experimental.vector.reverse(experimental.vector.reverse(x)) -> x 5592 if (match(Op0, 5593 m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X)))) 5594 return X; 5595 // experimental.vector.reverse(splat(X)) -> splat(X) 5596 if (isSplatValue(Op0)) 5597 return Op0; 5598 break; 5599 default: 5600 break; 5601 } 5602 5603 return nullptr; 5604 } 5605 5606 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) { 5607 switch (IID) { 5608 case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth); 5609 case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth); 5610 case Intrinsic::umax: return APInt::getMaxValue(BitWidth); 5611 case Intrinsic::umin: return APInt::getMinValue(BitWidth); 5612 default: llvm_unreachable("Unexpected intrinsic"); 5613 } 5614 } 5615 5616 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) { 5617 switch (IID) { 5618 case Intrinsic::smax: return ICmpInst::ICMP_SGE; 5619 case Intrinsic::smin: return ICmpInst::ICMP_SLE; 5620 case Intrinsic::umax: return ICmpInst::ICMP_UGE; 5621 case Intrinsic::umin: return ICmpInst::ICMP_ULE; 5622 default: llvm_unreachable("Unexpected intrinsic"); 5623 } 5624 } 5625 5626 /// Given a min/max intrinsic, see if it can be removed based on having an 5627 /// operand that is another min/max intrinsic with shared operand(s). The caller 5628 /// is expected to swap the operand arguments to handle commutation. 5629 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 5630 Value *X, *Y; 5631 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 5632 return nullptr; 5633 5634 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 5635 if (!MM0) 5636 return nullptr; 5637 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 5638 5639 if (Op1 == X || Op1 == Y || 5640 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 5641 // max (max X, Y), X --> max X, Y 5642 if (IID0 == IID) 5643 return MM0; 5644 // max (min X, Y), X --> X 5645 if (IID0 == getInverseMinMaxIntrinsic(IID)) 5646 return Op1; 5647 } 5648 return nullptr; 5649 } 5650 5651 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 5652 const SimplifyQuery &Q) { 5653 Intrinsic::ID IID = F->getIntrinsicID(); 5654 Type *ReturnType = F->getReturnType(); 5655 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 5656 switch (IID) { 5657 case Intrinsic::abs: 5658 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 5659 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 5660 // on the outer abs. 5661 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 5662 return Op0; 5663 break; 5664 5665 case Intrinsic::cttz: { 5666 Value *X; 5667 if (match(Op0, m_Shl(m_One(), m_Value(X)))) 5668 return X; 5669 break; 5670 } 5671 case Intrinsic::ctlz: { 5672 Value *X; 5673 if (match(Op0, m_LShr(m_Negative(), m_Value(X)))) 5674 return X; 5675 if (match(Op0, m_AShr(m_Negative(), m_Value()))) 5676 return Constant::getNullValue(ReturnType); 5677 break; 5678 } 5679 case Intrinsic::smax: 5680 case Intrinsic::smin: 5681 case Intrinsic::umax: 5682 case Intrinsic::umin: { 5683 // If the arguments are the same, this is a no-op. 5684 if (Op0 == Op1) 5685 return Op0; 5686 5687 // Canonicalize constant operand as Op1. 5688 if (isa<Constant>(Op0)) 5689 std::swap(Op0, Op1); 5690 5691 // Assume undef is the limit value. 5692 if (Q.isUndefValue(Op1)) 5693 return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth)); 5694 5695 const APInt *C; 5696 if (match(Op1, m_APIntAllowUndef(C))) { 5697 // Clamp to limit value. For example: 5698 // umax(i8 %x, i8 255) --> 255 5699 if (*C == getMaxMinLimit(IID, BitWidth)) 5700 return ConstantInt::get(ReturnType, *C); 5701 5702 // If the constant op is the opposite of the limit value, the other must 5703 // be larger/smaller or equal. For example: 5704 // umin(i8 %x, i8 255) --> %x 5705 if (*C == getMaxMinLimit(getInverseMinMaxIntrinsic(IID), BitWidth)) 5706 return Op0; 5707 5708 // Remove nested call if constant operands allow it. Example: 5709 // max (max X, 7), 5 -> max X, 7 5710 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 5711 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 5712 // TODO: loosen undef/splat restrictions for vector constants. 5713 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 5714 const APInt *InnerC; 5715 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 5716 ((IID == Intrinsic::smax && InnerC->sge(*C)) || 5717 (IID == Intrinsic::smin && InnerC->sle(*C)) || 5718 (IID == Intrinsic::umax && InnerC->uge(*C)) || 5719 (IID == Intrinsic::umin && InnerC->ule(*C)))) 5720 return Op0; 5721 } 5722 } 5723 5724 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 5725 return V; 5726 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 5727 return V; 5728 5729 ICmpInst::Predicate Pred = getMaxMinPredicate(IID); 5730 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 5731 return Op0; 5732 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 5733 return Op1; 5734 5735 if (Optional<bool> Imp = 5736 isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL)) 5737 return *Imp ? Op0 : Op1; 5738 if (Optional<bool> Imp = 5739 isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL)) 5740 return *Imp ? Op1 : Op0; 5741 5742 break; 5743 } 5744 case Intrinsic::usub_with_overflow: 5745 case Intrinsic::ssub_with_overflow: 5746 // X - X -> { 0, false } 5747 // X - undef -> { 0, false } 5748 // undef - X -> { 0, false } 5749 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5750 return Constant::getNullValue(ReturnType); 5751 break; 5752 case Intrinsic::uadd_with_overflow: 5753 case Intrinsic::sadd_with_overflow: 5754 // X + undef -> { -1, false } 5755 // undef + x -> { -1, false } 5756 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 5757 return ConstantStruct::get( 5758 cast<StructType>(ReturnType), 5759 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), 5760 Constant::getNullValue(ReturnType->getStructElementType(1))}); 5761 } 5762 break; 5763 case Intrinsic::umul_with_overflow: 5764 case Intrinsic::smul_with_overflow: 5765 // 0 * X -> { 0, false } 5766 // X * 0 -> { 0, false } 5767 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 5768 return Constant::getNullValue(ReturnType); 5769 // undef * X -> { 0, false } 5770 // X * undef -> { 0, false } 5771 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5772 return Constant::getNullValue(ReturnType); 5773 break; 5774 case Intrinsic::uadd_sat: 5775 // sat(MAX + X) -> MAX 5776 // sat(X + MAX) -> MAX 5777 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5778 return Constant::getAllOnesValue(ReturnType); 5779 LLVM_FALLTHROUGH; 5780 case Intrinsic::sadd_sat: 5781 // sat(X + undef) -> -1 5782 // sat(undef + X) -> -1 5783 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5784 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5785 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5786 return Constant::getAllOnesValue(ReturnType); 5787 5788 // X + 0 -> X 5789 if (match(Op1, m_Zero())) 5790 return Op0; 5791 // 0 + X -> X 5792 if (match(Op0, m_Zero())) 5793 return Op1; 5794 break; 5795 case Intrinsic::usub_sat: 5796 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5797 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5798 return Constant::getNullValue(ReturnType); 5799 LLVM_FALLTHROUGH; 5800 case Intrinsic::ssub_sat: 5801 // X - X -> 0, X - undef -> 0, undef - X -> 0 5802 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5803 return Constant::getNullValue(ReturnType); 5804 // X - 0 -> X 5805 if (match(Op1, m_Zero())) 5806 return Op0; 5807 break; 5808 case Intrinsic::load_relative: 5809 if (auto *C0 = dyn_cast<Constant>(Op0)) 5810 if (auto *C1 = dyn_cast<Constant>(Op1)) 5811 return SimplifyRelativeLoad(C0, C1, Q.DL); 5812 break; 5813 case Intrinsic::powi: 5814 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5815 // powi(x, 0) -> 1.0 5816 if (Power->isZero()) 5817 return ConstantFP::get(Op0->getType(), 1.0); 5818 // powi(x, 1) -> x 5819 if (Power->isOne()) 5820 return Op0; 5821 } 5822 break; 5823 case Intrinsic::copysign: 5824 // copysign X, X --> X 5825 if (Op0 == Op1) 5826 return Op0; 5827 // copysign -X, X --> X 5828 // copysign X, -X --> -X 5829 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5830 match(Op1, m_FNeg(m_Specific(Op0)))) 5831 return Op1; 5832 break; 5833 case Intrinsic::maxnum: 5834 case Intrinsic::minnum: 5835 case Intrinsic::maximum: 5836 case Intrinsic::minimum: { 5837 // If the arguments are the same, this is a no-op. 5838 if (Op0 == Op1) return Op0; 5839 5840 // Canonicalize constant operand as Op1. 5841 if (isa<Constant>(Op0)) 5842 std::swap(Op0, Op1); 5843 5844 // If an argument is undef, return the other argument. 5845 if (Q.isUndefValue(Op1)) 5846 return Op0; 5847 5848 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5849 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 5850 5851 // minnum(X, nan) -> X 5852 // maxnum(X, nan) -> X 5853 // minimum(X, nan) -> nan 5854 // maximum(X, nan) -> nan 5855 if (match(Op1, m_NaN())) 5856 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 5857 5858 // In the following folds, inf can be replaced with the largest finite 5859 // float, if the ninf flag is set. 5860 const APFloat *C; 5861 if (match(Op1, m_APFloat(C)) && 5862 (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) { 5863 // minnum(X, -inf) -> -inf 5864 // maxnum(X, +inf) -> +inf 5865 // minimum(X, -inf) -> -inf if nnan 5866 // maximum(X, +inf) -> +inf if nnan 5867 if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs())) 5868 return ConstantFP::get(ReturnType, *C); 5869 5870 // minnum(X, +inf) -> X if nnan 5871 // maxnum(X, -inf) -> X if nnan 5872 // minimum(X, +inf) -> X 5873 // maximum(X, -inf) -> X 5874 if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs())) 5875 return Op0; 5876 } 5877 5878 // Min/max of the same operation with common operand: 5879 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5880 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5881 if (M0->getIntrinsicID() == IID && 5882 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5883 return Op0; 5884 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5885 if (M1->getIntrinsicID() == IID && 5886 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5887 return Op1; 5888 5889 break; 5890 } 5891 case Intrinsic::experimental_vector_extract: { 5892 Type *ReturnType = F->getReturnType(); 5893 5894 // (extract_vector (insert_vector _, X, 0), 0) -> X 5895 unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue(); 5896 Value *X = nullptr; 5897 if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>( 5898 m_Value(), m_Value(X), m_Zero())) && 5899 IdxN == 0 && X->getType() == ReturnType) 5900 return X; 5901 5902 break; 5903 } 5904 default: 5905 break; 5906 } 5907 5908 return nullptr; 5909 } 5910 5911 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 5912 5913 unsigned NumOperands = Call->arg_size(); 5914 Function *F = cast<Function>(Call->getCalledFunction()); 5915 Intrinsic::ID IID = F->getIntrinsicID(); 5916 5917 // Most of the intrinsics with no operands have some kind of side effect. 5918 // Don't simplify. 5919 if (!NumOperands) { 5920 switch (IID) { 5921 case Intrinsic::vscale: { 5922 // Call may not be inserted into the IR yet at point of calling simplify. 5923 if (!Call->getParent() || !Call->getParent()->getParent()) 5924 return nullptr; 5925 auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange); 5926 if (!Attr.isValid()) 5927 return nullptr; 5928 unsigned VScaleMin = Attr.getVScaleRangeMin(); 5929 Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax(); 5930 if (VScaleMax && VScaleMin == VScaleMax) 5931 return ConstantInt::get(F->getReturnType(), VScaleMin); 5932 return nullptr; 5933 } 5934 default: 5935 return nullptr; 5936 } 5937 } 5938 5939 if (NumOperands == 1) 5940 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 5941 5942 if (NumOperands == 2) 5943 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 5944 Call->getArgOperand(1), Q); 5945 5946 // Handle intrinsics with 3 or more arguments. 5947 switch (IID) { 5948 case Intrinsic::masked_load: 5949 case Intrinsic::masked_gather: { 5950 Value *MaskArg = Call->getArgOperand(2); 5951 Value *PassthruArg = Call->getArgOperand(3); 5952 // If the mask is all zeros or undef, the "passthru" argument is the result. 5953 if (maskIsAllZeroOrUndef(MaskArg)) 5954 return PassthruArg; 5955 return nullptr; 5956 } 5957 case Intrinsic::fshl: 5958 case Intrinsic::fshr: { 5959 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 5960 *ShAmtArg = Call->getArgOperand(2); 5961 5962 // If both operands are undef, the result is undef. 5963 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 5964 return UndefValue::get(F->getReturnType()); 5965 5966 // If shift amount is undef, assume it is zero. 5967 if (Q.isUndefValue(ShAmtArg)) 5968 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5969 5970 const APInt *ShAmtC; 5971 if (match(ShAmtArg, m_APInt(ShAmtC))) { 5972 // If there's effectively no shift, return the 1st arg or 2nd arg. 5973 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 5974 if (ShAmtC->urem(BitWidth).isZero()) 5975 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5976 } 5977 5978 // Rotating zero by anything is zero. 5979 if (match(Op0, m_Zero()) && match(Op1, m_Zero())) 5980 return ConstantInt::getNullValue(F->getReturnType()); 5981 5982 // Rotating -1 by anything is -1. 5983 if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes())) 5984 return ConstantInt::getAllOnesValue(F->getReturnType()); 5985 5986 return nullptr; 5987 } 5988 case Intrinsic::experimental_constrained_fma: { 5989 Value *Op0 = Call->getArgOperand(0); 5990 Value *Op1 = Call->getArgOperand(1); 5991 Value *Op2 = Call->getArgOperand(2); 5992 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 5993 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, 5994 FPI->getExceptionBehavior().getValue(), 5995 FPI->getRoundingMode().getValue())) 5996 return V; 5997 return nullptr; 5998 } 5999 case Intrinsic::fma: 6000 case Intrinsic::fmuladd: { 6001 Value *Op0 = Call->getArgOperand(0); 6002 Value *Op1 = Call->getArgOperand(1); 6003 Value *Op2 = Call->getArgOperand(2); 6004 if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore, 6005 RoundingMode::NearestTiesToEven)) 6006 return V; 6007 return nullptr; 6008 } 6009 case Intrinsic::smul_fix: 6010 case Intrinsic::smul_fix_sat: { 6011 Value *Op0 = Call->getArgOperand(0); 6012 Value *Op1 = Call->getArgOperand(1); 6013 Value *Op2 = Call->getArgOperand(2); 6014 Type *ReturnType = F->getReturnType(); 6015 6016 // Canonicalize constant operand as Op1 (ConstantFolding handles the case 6017 // when both Op0 and Op1 are constant so we do not care about that special 6018 // case here). 6019 if (isa<Constant>(Op0)) 6020 std::swap(Op0, Op1); 6021 6022 // X * 0 -> 0 6023 if (match(Op1, m_Zero())) 6024 return Constant::getNullValue(ReturnType); 6025 6026 // X * undef -> 0 6027 if (Q.isUndefValue(Op1)) 6028 return Constant::getNullValue(ReturnType); 6029 6030 // X * (1 << Scale) -> X 6031 APInt ScaledOne = 6032 APInt::getOneBitSet(ReturnType->getScalarSizeInBits(), 6033 cast<ConstantInt>(Op2)->getZExtValue()); 6034 if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne))) 6035 return Op0; 6036 6037 return nullptr; 6038 } 6039 case Intrinsic::experimental_vector_insert: { 6040 Value *Vec = Call->getArgOperand(0); 6041 Value *SubVec = Call->getArgOperand(1); 6042 Value *Idx = Call->getArgOperand(2); 6043 Type *ReturnType = F->getReturnType(); 6044 6045 // (insert_vector Y, (extract_vector X, 0), 0) -> X 6046 // where: Y is X, or Y is undef 6047 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 6048 Value *X = nullptr; 6049 if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>( 6050 m_Value(X), m_Zero())) && 6051 (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 && 6052 X->getType() == ReturnType) 6053 return X; 6054 6055 return nullptr; 6056 } 6057 case Intrinsic::experimental_constrained_fadd: { 6058 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6059 return SimplifyFAddInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6060 FPI->getFastMathFlags(), Q, 6061 FPI->getExceptionBehavior().getValue(), 6062 FPI->getRoundingMode().getValue()); 6063 break; 6064 } 6065 case Intrinsic::experimental_constrained_fsub: { 6066 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6067 return SimplifyFSubInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6068 FPI->getFastMathFlags(), Q, 6069 FPI->getExceptionBehavior().getValue(), 6070 FPI->getRoundingMode().getValue()); 6071 break; 6072 } 6073 case Intrinsic::experimental_constrained_fmul: { 6074 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6075 return SimplifyFMulInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6076 FPI->getFastMathFlags(), Q, 6077 FPI->getExceptionBehavior().getValue(), 6078 FPI->getRoundingMode().getValue()); 6079 break; 6080 } 6081 case Intrinsic::experimental_constrained_fdiv: { 6082 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6083 return SimplifyFDivInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6084 FPI->getFastMathFlags(), Q, 6085 FPI->getExceptionBehavior().getValue(), 6086 FPI->getRoundingMode().getValue()); 6087 break; 6088 } 6089 case Intrinsic::experimental_constrained_frem: { 6090 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6091 return SimplifyFRemInst(FPI->getArgOperand(0), FPI->getArgOperand(1), 6092 FPI->getFastMathFlags(), Q, 6093 FPI->getExceptionBehavior().getValue(), 6094 FPI->getRoundingMode().getValue()); 6095 break; 6096 } 6097 default: 6098 return nullptr; 6099 } 6100 } 6101 6102 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { 6103 auto *F = dyn_cast<Function>(Call->getCalledOperand()); 6104 if (!F || !canConstantFoldCallTo(Call, F)) 6105 return nullptr; 6106 6107 SmallVector<Constant *, 4> ConstantArgs; 6108 unsigned NumArgs = Call->arg_size(); 6109 ConstantArgs.reserve(NumArgs); 6110 for (auto &Arg : Call->args()) { 6111 Constant *C = dyn_cast<Constant>(&Arg); 6112 if (!C) { 6113 if (isa<MetadataAsValue>(Arg.get())) 6114 continue; 6115 return nullptr; 6116 } 6117 ConstantArgs.push_back(C); 6118 } 6119 6120 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 6121 } 6122 6123 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 6124 // musttail calls can only be simplified if they are also DCEd. 6125 // As we can't guarantee this here, don't simplify them. 6126 if (Call->isMustTailCall()) 6127 return nullptr; 6128 6129 // call undef -> poison 6130 // call null -> poison 6131 Value *Callee = Call->getCalledOperand(); 6132 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 6133 return PoisonValue::get(Call->getType()); 6134 6135 if (Value *V = tryConstantFoldCall(Call, Q)) 6136 return V; 6137 6138 auto *F = dyn_cast<Function>(Callee); 6139 if (F && F->isIntrinsic()) 6140 if (Value *Ret = simplifyIntrinsic(Call, Q)) 6141 return Ret; 6142 6143 return nullptr; 6144 } 6145 6146 /// Given operands for a Freeze, see if we can fold the result. 6147 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6148 // Use a utility function defined in ValueTracking. 6149 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 6150 return Op0; 6151 // We have room for improvement. 6152 return nullptr; 6153 } 6154 6155 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6156 return ::SimplifyFreezeInst(Op0, Q); 6157 } 6158 6159 static Value *SimplifyLoadInst(LoadInst *LI, Value *PtrOp, 6160 const SimplifyQuery &Q) { 6161 if (LI->isVolatile()) 6162 return nullptr; 6163 6164 APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0); 6165 auto *PtrOpC = dyn_cast<Constant>(PtrOp); 6166 // Try to convert operand into a constant by stripping offsets while looking 6167 // through invariant.group intrinsics. Don't bother if the underlying object 6168 // is not constant, as calculating GEP offsets is expensive. 6169 if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) { 6170 PtrOp = PtrOp->stripAndAccumulateConstantOffsets( 6171 Q.DL, Offset, /* AllowNonInbounts */ true, 6172 /* AllowInvariantGroup */ true); 6173 // Index size may have changed due to address space casts. 6174 Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType())); 6175 PtrOpC = dyn_cast<Constant>(PtrOp); 6176 } 6177 6178 if (PtrOpC) 6179 return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL); 6180 return nullptr; 6181 } 6182 6183 /// See if we can compute a simplified version of this instruction. 6184 /// If not, this returns null. 6185 6186 static Value *simplifyInstructionWithOperands(Instruction *I, 6187 ArrayRef<Value *> NewOps, 6188 const SimplifyQuery &SQ, 6189 OptimizationRemarkEmitter *ORE) { 6190 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 6191 Value *Result = nullptr; 6192 6193 switch (I->getOpcode()) { 6194 default: 6195 if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) { 6196 SmallVector<Constant *, 8> NewConstOps(NewOps.size()); 6197 transform(NewOps, NewConstOps.begin(), 6198 [](Value *V) { return cast<Constant>(V); }); 6199 Result = ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI); 6200 } 6201 break; 6202 case Instruction::FNeg: 6203 Result = SimplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q); 6204 break; 6205 case Instruction::FAdd: 6206 Result = SimplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6207 break; 6208 case Instruction::Add: 6209 Result = SimplifyAddInst( 6210 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6211 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6212 break; 6213 case Instruction::FSub: 6214 Result = SimplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6215 break; 6216 case Instruction::Sub: 6217 Result = SimplifySubInst( 6218 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6219 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6220 break; 6221 case Instruction::FMul: 6222 Result = SimplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6223 break; 6224 case Instruction::Mul: 6225 Result = SimplifyMulInst(NewOps[0], NewOps[1], Q); 6226 break; 6227 case Instruction::SDiv: 6228 Result = SimplifySDivInst(NewOps[0], NewOps[1], Q); 6229 break; 6230 case Instruction::UDiv: 6231 Result = SimplifyUDivInst(NewOps[0], NewOps[1], Q); 6232 break; 6233 case Instruction::FDiv: 6234 Result = SimplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6235 break; 6236 case Instruction::SRem: 6237 Result = SimplifySRemInst(NewOps[0], NewOps[1], Q); 6238 break; 6239 case Instruction::URem: 6240 Result = SimplifyURemInst(NewOps[0], NewOps[1], Q); 6241 break; 6242 case Instruction::FRem: 6243 Result = SimplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q); 6244 break; 6245 case Instruction::Shl: 6246 Result = SimplifyShlInst( 6247 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 6248 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 6249 break; 6250 case Instruction::LShr: 6251 Result = SimplifyLShrInst(NewOps[0], NewOps[1], 6252 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6253 break; 6254 case Instruction::AShr: 6255 Result = SimplifyAShrInst(NewOps[0], NewOps[1], 6256 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 6257 break; 6258 case Instruction::And: 6259 Result = SimplifyAndInst(NewOps[0], NewOps[1], Q); 6260 break; 6261 case Instruction::Or: 6262 Result = SimplifyOrInst(NewOps[0], NewOps[1], Q); 6263 break; 6264 case Instruction::Xor: 6265 Result = SimplifyXorInst(NewOps[0], NewOps[1], Q); 6266 break; 6267 case Instruction::ICmp: 6268 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0], 6269 NewOps[1], Q); 6270 break; 6271 case Instruction::FCmp: 6272 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0], 6273 NewOps[1], I->getFastMathFlags(), Q); 6274 break; 6275 case Instruction::Select: 6276 Result = SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q); 6277 break; 6278 case Instruction::GetElementPtr: { 6279 auto *GEPI = cast<GetElementPtrInst>(I); 6280 Result = SimplifyGEPInst(GEPI->getSourceElementType(), NewOps, 6281 GEPI->isInBounds(), Q); 6282 break; 6283 } 6284 case Instruction::InsertValue: { 6285 InsertValueInst *IV = cast<InsertValueInst>(I); 6286 Result = SimplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q); 6287 break; 6288 } 6289 case Instruction::InsertElement: { 6290 Result = SimplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q); 6291 break; 6292 } 6293 case Instruction::ExtractValue: { 6294 auto *EVI = cast<ExtractValueInst>(I); 6295 Result = SimplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q); 6296 break; 6297 } 6298 case Instruction::ExtractElement: { 6299 Result = SimplifyExtractElementInst(NewOps[0], NewOps[1], Q); 6300 break; 6301 } 6302 case Instruction::ShuffleVector: { 6303 auto *SVI = cast<ShuffleVectorInst>(I); 6304 Result = SimplifyShuffleVectorInst( 6305 NewOps[0], NewOps[1], SVI->getShuffleMask(), SVI->getType(), Q); 6306 break; 6307 } 6308 case Instruction::PHI: 6309 Result = SimplifyPHINode(cast<PHINode>(I), NewOps, Q); 6310 break; 6311 case Instruction::Call: { 6312 // TODO: Use NewOps 6313 Result = SimplifyCall(cast<CallInst>(I), Q); 6314 break; 6315 } 6316 case Instruction::Freeze: 6317 Result = llvm::SimplifyFreezeInst(NewOps[0], Q); 6318 break; 6319 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 6320 #include "llvm/IR/Instruction.def" 6321 #undef HANDLE_CAST_INST 6322 Result = SimplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q); 6323 break; 6324 case Instruction::Alloca: 6325 // No simplifications for Alloca and it can't be constant folded. 6326 Result = nullptr; 6327 break; 6328 case Instruction::Load: 6329 Result = SimplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q); 6330 break; 6331 } 6332 6333 /// If called on unreachable code, the above logic may report that the 6334 /// instruction simplified to itself. Make life easier for users by 6335 /// detecting that case here, returning a safe value instead. 6336 return Result == I ? UndefValue::get(I->getType()) : Result; 6337 } 6338 6339 Value *llvm::SimplifyInstructionWithOperands(Instruction *I, 6340 ArrayRef<Value *> NewOps, 6341 const SimplifyQuery &SQ, 6342 OptimizationRemarkEmitter *ORE) { 6343 assert(NewOps.size() == I->getNumOperands() && 6344 "Number of operands should match the instruction!"); 6345 return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE); 6346 } 6347 6348 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 6349 OptimizationRemarkEmitter *ORE) { 6350 SmallVector<Value *, 8> Ops(I->operands()); 6351 return ::simplifyInstructionWithOperands(I, Ops, SQ, ORE); 6352 } 6353 6354 /// Implementation of recursive simplification through an instruction's 6355 /// uses. 6356 /// 6357 /// This is the common implementation of the recursive simplification routines. 6358 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 6359 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 6360 /// instructions to process and attempt to simplify it using 6361 /// InstructionSimplify. Recursively visited users which could not be 6362 /// simplified themselves are to the optional UnsimplifiedUsers set for 6363 /// further processing by the caller. 6364 /// 6365 /// This routine returns 'true' only when *it* simplifies something. The passed 6366 /// in simplified value does not count toward this. 6367 static bool replaceAndRecursivelySimplifyImpl( 6368 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6369 const DominatorTree *DT, AssumptionCache *AC, 6370 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 6371 bool Simplified = false; 6372 SmallSetVector<Instruction *, 8> Worklist; 6373 const DataLayout &DL = I->getModule()->getDataLayout(); 6374 6375 // If we have an explicit value to collapse to, do that round of the 6376 // simplification loop by hand initially. 6377 if (SimpleV) { 6378 for (User *U : I->users()) 6379 if (U != I) 6380 Worklist.insert(cast<Instruction>(U)); 6381 6382 // Replace the instruction with its simplified value. 6383 I->replaceAllUsesWith(SimpleV); 6384 6385 // Gracefully handle edge cases where the instruction is not wired into any 6386 // parent block. 6387 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6388 !I->mayHaveSideEffects()) 6389 I->eraseFromParent(); 6390 } else { 6391 Worklist.insert(I); 6392 } 6393 6394 // Note that we must test the size on each iteration, the worklist can grow. 6395 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 6396 I = Worklist[Idx]; 6397 6398 // See if this instruction simplifies. 6399 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 6400 if (!SimpleV) { 6401 if (UnsimplifiedUsers) 6402 UnsimplifiedUsers->insert(I); 6403 continue; 6404 } 6405 6406 Simplified = true; 6407 6408 // Stash away all the uses of the old instruction so we can check them for 6409 // recursive simplifications after a RAUW. This is cheaper than checking all 6410 // uses of To on the recursive step in most cases. 6411 for (User *U : I->users()) 6412 Worklist.insert(cast<Instruction>(U)); 6413 6414 // Replace the instruction with its simplified value. 6415 I->replaceAllUsesWith(SimpleV); 6416 6417 // Gracefully handle edge cases where the instruction is not wired into any 6418 // parent block. 6419 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6420 !I->mayHaveSideEffects()) 6421 I->eraseFromParent(); 6422 } 6423 return Simplified; 6424 } 6425 6426 bool llvm::replaceAndRecursivelySimplify( 6427 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6428 const DominatorTree *DT, AssumptionCache *AC, 6429 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 6430 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 6431 assert(SimpleV && "Must provide a simplified value."); 6432 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 6433 UnsimplifiedUsers); 6434 } 6435 6436 namespace llvm { 6437 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 6438 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 6439 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 6440 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6441 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 6442 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 6443 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 6444 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6445 } 6446 6447 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 6448 const DataLayout &DL) { 6449 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 6450 } 6451 6452 template <class T, class... TArgs> 6453 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 6454 Function &F) { 6455 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 6456 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 6457 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 6458 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6459 } 6460 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 6461 Function &); 6462 } 6463