1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/CmpInstAnalysis.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/LoopAnalysisManager.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/IR/ConstantRange.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalAlias.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/KnownBits.h" 42 #include <algorithm> 43 using namespace llvm; 44 using namespace llvm::PatternMatch; 45 46 #define DEBUG_TYPE "instsimplify" 47 48 enum { RecursionLimit = 3 }; 49 50 STATISTIC(NumExpand, "Number of expansions"); 51 STATISTIC(NumReassoc, "Number of reassociations"); 52 53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 54 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 55 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 56 const SimplifyQuery &, unsigned); 57 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 58 unsigned); 59 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 60 const SimplifyQuery &, unsigned); 61 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 62 unsigned); 63 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 64 const SimplifyQuery &Q, unsigned MaxRecurse); 65 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 66 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 67 static Value *SimplifyCastInst(unsigned, Value *, Type *, 68 const SimplifyQuery &, unsigned); 69 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &, 70 unsigned); 71 72 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 73 Value *FalseVal) { 74 BinaryOperator::BinaryOps BinOpCode; 75 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 76 BinOpCode = BO->getOpcode(); 77 else 78 return nullptr; 79 80 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 81 if (BinOpCode == BinaryOperator::Or) { 82 ExpectedPred = ICmpInst::ICMP_NE; 83 } else if (BinOpCode == BinaryOperator::And) { 84 ExpectedPred = ICmpInst::ICMP_EQ; 85 } else 86 return nullptr; 87 88 // %A = icmp eq %TV, %FV 89 // %B = icmp eq %X, %Y (and one of these is a select operand) 90 // %C = and %A, %B 91 // %D = select %C, %TV, %FV 92 // --> 93 // %FV 94 95 // %A = icmp ne %TV, %FV 96 // %B = icmp ne %X, %Y (and one of these is a select operand) 97 // %C = or %A, %B 98 // %D = select %C, %TV, %FV 99 // --> 100 // %TV 101 Value *X, *Y; 102 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 103 m_Specific(FalseVal)), 104 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 105 Pred1 != Pred2 || Pred1 != ExpectedPred) 106 return nullptr; 107 108 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 109 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 110 111 return nullptr; 112 } 113 114 /// For a boolean type or a vector of boolean type, return false or a vector 115 /// with every element false. 116 static Constant *getFalse(Type *Ty) { 117 return ConstantInt::getFalse(Ty); 118 } 119 120 /// For a boolean type or a vector of boolean type, return true or a vector 121 /// with every element true. 122 static Constant *getTrue(Type *Ty) { 123 return ConstantInt::getTrue(Ty); 124 } 125 126 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 127 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 128 Value *RHS) { 129 CmpInst *Cmp = dyn_cast<CmpInst>(V); 130 if (!Cmp) 131 return false; 132 CmpInst::Predicate CPred = Cmp->getPredicate(); 133 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 134 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 135 return true; 136 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 137 CRHS == LHS; 138 } 139 140 /// Does the given value dominate the specified phi node? 141 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 142 Instruction *I = dyn_cast<Instruction>(V); 143 if (!I) 144 // Arguments and constants dominate all instructions. 145 return true; 146 147 // If we are processing instructions (and/or basic blocks) that have not been 148 // fully added to a function, the parent nodes may still be null. Simply 149 // return the conservative answer in these cases. 150 if (!I->getParent() || !P->getParent() || !I->getFunction()) 151 return false; 152 153 // If we have a DominatorTree then do a precise test. 154 if (DT) 155 return DT->dominates(I, P); 156 157 // Otherwise, if the instruction is in the entry block and is not an invoke, 158 // then it obviously dominates all phi nodes. 159 if (I->getParent() == &I->getFunction()->getEntryBlock() && 160 !isa<InvokeInst>(I)) 161 return true; 162 163 return false; 164 } 165 166 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 167 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 168 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 169 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 170 /// Returns the simplified value, or null if no simplification was performed. 171 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 172 Instruction::BinaryOps OpcodeToExpand, 173 const SimplifyQuery &Q, unsigned MaxRecurse) { 174 // Recursion is always used, so bail out at once if we already hit the limit. 175 if (!MaxRecurse--) 176 return nullptr; 177 178 // Check whether the expression has the form "(A op' B) op C". 179 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 180 if (Op0->getOpcode() == OpcodeToExpand) { 181 // It does! Try turning it into "(A op C) op' (B op C)". 182 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 183 // Do "A op C" and "B op C" both simplify? 184 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 185 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 186 // They do! Return "L op' R" if it simplifies or is already available. 187 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 188 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 189 && L == B && R == A)) { 190 ++NumExpand; 191 return LHS; 192 } 193 // Otherwise return "L op' R" if it simplifies. 194 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 195 ++NumExpand; 196 return V; 197 } 198 } 199 } 200 201 // Check whether the expression has the form "A op (B op' C)". 202 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 203 if (Op1->getOpcode() == OpcodeToExpand) { 204 // It does! Try turning it into "(A op B) op' (A op C)". 205 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 206 // Do "A op B" and "A op C" both simplify? 207 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 208 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 209 // They do! Return "L op' R" if it simplifies or is already available. 210 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 211 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 212 && L == C && R == B)) { 213 ++NumExpand; 214 return RHS; 215 } 216 // Otherwise return "L op' R" if it simplifies. 217 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 218 ++NumExpand; 219 return V; 220 } 221 } 222 } 223 224 return nullptr; 225 } 226 227 /// Generic simplifications for associative binary operations. 228 /// Returns the simpler value, or null if none was found. 229 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 230 Value *LHS, Value *RHS, 231 const SimplifyQuery &Q, 232 unsigned MaxRecurse) { 233 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 234 235 // Recursion is always used, so bail out at once if we already hit the limit. 236 if (!MaxRecurse--) 237 return nullptr; 238 239 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 240 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 241 242 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 243 if (Op0 && Op0->getOpcode() == Opcode) { 244 Value *A = Op0->getOperand(0); 245 Value *B = Op0->getOperand(1); 246 Value *C = RHS; 247 248 // Does "B op C" simplify? 249 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 250 // It does! Return "A op V" if it simplifies or is already available. 251 // If V equals B then "A op V" is just the LHS. 252 if (V == B) return LHS; 253 // Otherwise return "A op V" if it simplifies. 254 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 255 ++NumReassoc; 256 return W; 257 } 258 } 259 } 260 261 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 262 if (Op1 && Op1->getOpcode() == Opcode) { 263 Value *A = LHS; 264 Value *B = Op1->getOperand(0); 265 Value *C = Op1->getOperand(1); 266 267 // Does "A op B" simplify? 268 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 269 // It does! Return "V op C" if it simplifies or is already available. 270 // If V equals B then "V op C" is just the RHS. 271 if (V == B) return RHS; 272 // Otherwise return "V op C" if it simplifies. 273 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 274 ++NumReassoc; 275 return W; 276 } 277 } 278 } 279 280 // The remaining transforms require commutativity as well as associativity. 281 if (!Instruction::isCommutative(Opcode)) 282 return nullptr; 283 284 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 285 if (Op0 && Op0->getOpcode() == Opcode) { 286 Value *A = Op0->getOperand(0); 287 Value *B = Op0->getOperand(1); 288 Value *C = RHS; 289 290 // Does "C op A" simplify? 291 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 292 // It does! Return "V op B" if it simplifies or is already available. 293 // If V equals A then "V op B" is just the LHS. 294 if (V == A) return LHS; 295 // Otherwise return "V op B" if it simplifies. 296 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 297 ++NumReassoc; 298 return W; 299 } 300 } 301 } 302 303 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 304 if (Op1 && Op1->getOpcode() == Opcode) { 305 Value *A = LHS; 306 Value *B = Op1->getOperand(0); 307 Value *C = Op1->getOperand(1); 308 309 // Does "C op A" simplify? 310 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 311 // It does! Return "B op V" if it simplifies or is already available. 312 // If V equals C then "B op V" is just the RHS. 313 if (V == C) return RHS; 314 // Otherwise return "B op V" if it simplifies. 315 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 316 ++NumReassoc; 317 return W; 318 } 319 } 320 } 321 322 return nullptr; 323 } 324 325 /// In the case of a binary operation with a select instruction as an operand, 326 /// try to simplify the binop by seeing whether evaluating it on both branches 327 /// of the select results in the same value. Returns the common value if so, 328 /// otherwise returns null. 329 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 330 Value *RHS, const SimplifyQuery &Q, 331 unsigned MaxRecurse) { 332 // Recursion is always used, so bail out at once if we already hit the limit. 333 if (!MaxRecurse--) 334 return nullptr; 335 336 SelectInst *SI; 337 if (isa<SelectInst>(LHS)) { 338 SI = cast<SelectInst>(LHS); 339 } else { 340 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 341 SI = cast<SelectInst>(RHS); 342 } 343 344 // Evaluate the BinOp on the true and false branches of the select. 345 Value *TV; 346 Value *FV; 347 if (SI == LHS) { 348 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 349 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 350 } else { 351 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 352 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 353 } 354 355 // If they simplified to the same value, then return the common value. 356 // If they both failed to simplify then return null. 357 if (TV == FV) 358 return TV; 359 360 // If one branch simplified to undef, return the other one. 361 if (TV && isa<UndefValue>(TV)) 362 return FV; 363 if (FV && isa<UndefValue>(FV)) 364 return TV; 365 366 // If applying the operation did not change the true and false select values, 367 // then the result of the binop is the select itself. 368 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 369 return SI; 370 371 // If one branch simplified and the other did not, and the simplified 372 // value is equal to the unsimplified one, return the simplified value. 373 // For example, select (cond, X, X & Z) & Z -> X & Z. 374 if ((FV && !TV) || (TV && !FV)) { 375 // Check that the simplified value has the form "X op Y" where "op" is the 376 // same as the original operation. 377 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 378 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 379 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 380 // We already know that "op" is the same as for the simplified value. See 381 // if the operands match too. If so, return the simplified value. 382 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 383 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 384 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 385 if (Simplified->getOperand(0) == UnsimplifiedLHS && 386 Simplified->getOperand(1) == UnsimplifiedRHS) 387 return Simplified; 388 if (Simplified->isCommutative() && 389 Simplified->getOperand(1) == UnsimplifiedLHS && 390 Simplified->getOperand(0) == UnsimplifiedRHS) 391 return Simplified; 392 } 393 } 394 395 return nullptr; 396 } 397 398 /// In the case of a comparison with a select instruction, try to simplify the 399 /// comparison by seeing whether both branches of the select result in the same 400 /// value. Returns the common value if so, otherwise returns null. 401 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 402 Value *RHS, const SimplifyQuery &Q, 403 unsigned MaxRecurse) { 404 // Recursion is always used, so bail out at once if we already hit the limit. 405 if (!MaxRecurse--) 406 return nullptr; 407 408 // Make sure the select is on the LHS. 409 if (!isa<SelectInst>(LHS)) { 410 std::swap(LHS, RHS); 411 Pred = CmpInst::getSwappedPredicate(Pred); 412 } 413 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 414 SelectInst *SI = cast<SelectInst>(LHS); 415 Value *Cond = SI->getCondition(); 416 Value *TV = SI->getTrueValue(); 417 Value *FV = SI->getFalseValue(); 418 419 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 420 // Does "cmp TV, RHS" simplify? 421 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 422 if (TCmp == Cond) { 423 // It not only simplified, it simplified to the select condition. Replace 424 // it with 'true'. 425 TCmp = getTrue(Cond->getType()); 426 } else if (!TCmp) { 427 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 428 // condition then we can replace it with 'true'. Otherwise give up. 429 if (!isSameCompare(Cond, Pred, TV, RHS)) 430 return nullptr; 431 TCmp = getTrue(Cond->getType()); 432 } 433 434 // Does "cmp FV, RHS" simplify? 435 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 436 if (FCmp == Cond) { 437 // It not only simplified, it simplified to the select condition. Replace 438 // it with 'false'. 439 FCmp = getFalse(Cond->getType()); 440 } else if (!FCmp) { 441 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 442 // condition then we can replace it with 'false'. Otherwise give up. 443 if (!isSameCompare(Cond, Pred, FV, RHS)) 444 return nullptr; 445 FCmp = getFalse(Cond->getType()); 446 } 447 448 // If both sides simplified to the same value, then use it as the result of 449 // the original comparison. 450 if (TCmp == FCmp) 451 return TCmp; 452 453 // The remaining cases only make sense if the select condition has the same 454 // type as the result of the comparison, so bail out if this is not so. 455 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 456 return nullptr; 457 // If the false value simplified to false, then the result of the compare 458 // is equal to "Cond && TCmp". This also catches the case when the false 459 // value simplified to false and the true value to true, returning "Cond". 460 if (match(FCmp, m_Zero())) 461 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 462 return V; 463 // If the true value simplified to true, then the result of the compare 464 // is equal to "Cond || FCmp". 465 if (match(TCmp, m_One())) 466 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 467 return V; 468 // Finally, if the false value simplified to true and the true value to 469 // false, then the result of the compare is equal to "!Cond". 470 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 471 if (Value *V = 472 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 473 Q, MaxRecurse)) 474 return V; 475 476 return nullptr; 477 } 478 479 /// In the case of a binary operation with an operand that is a PHI instruction, 480 /// try to simplify the binop by seeing whether evaluating it on the incoming 481 /// phi values yields the same result for every value. If so returns the common 482 /// value, otherwise returns null. 483 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 484 Value *RHS, const SimplifyQuery &Q, 485 unsigned MaxRecurse) { 486 // Recursion is always used, so bail out at once if we already hit the limit. 487 if (!MaxRecurse--) 488 return nullptr; 489 490 PHINode *PI; 491 if (isa<PHINode>(LHS)) { 492 PI = cast<PHINode>(LHS); 493 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 494 if (!valueDominatesPHI(RHS, PI, Q.DT)) 495 return nullptr; 496 } else { 497 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 498 PI = cast<PHINode>(RHS); 499 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 500 if (!valueDominatesPHI(LHS, PI, Q.DT)) 501 return nullptr; 502 } 503 504 // Evaluate the BinOp on the incoming phi values. 505 Value *CommonValue = nullptr; 506 for (Value *Incoming : PI->incoming_values()) { 507 // If the incoming value is the phi node itself, it can safely be skipped. 508 if (Incoming == PI) continue; 509 Value *V = PI == LHS ? 510 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 511 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 512 // If the operation failed to simplify, or simplified to a different value 513 // to previously, then give up. 514 if (!V || (CommonValue && V != CommonValue)) 515 return nullptr; 516 CommonValue = V; 517 } 518 519 return CommonValue; 520 } 521 522 /// In the case of a comparison with a PHI instruction, try to simplify the 523 /// comparison by seeing whether comparing with all of the incoming phi values 524 /// yields the same result every time. If so returns the common result, 525 /// otherwise returns null. 526 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 527 const SimplifyQuery &Q, unsigned MaxRecurse) { 528 // Recursion is always used, so bail out at once if we already hit the limit. 529 if (!MaxRecurse--) 530 return nullptr; 531 532 // Make sure the phi is on the LHS. 533 if (!isa<PHINode>(LHS)) { 534 std::swap(LHS, RHS); 535 Pred = CmpInst::getSwappedPredicate(Pred); 536 } 537 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 538 PHINode *PI = cast<PHINode>(LHS); 539 540 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 541 if (!valueDominatesPHI(RHS, PI, Q.DT)) 542 return nullptr; 543 544 // Evaluate the BinOp on the incoming phi values. 545 Value *CommonValue = nullptr; 546 for (Value *Incoming : PI->incoming_values()) { 547 // If the incoming value is the phi node itself, it can safely be skipped. 548 if (Incoming == PI) continue; 549 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 550 // If the operation failed to simplify, or simplified to a different value 551 // to previously, then give up. 552 if (!V || (CommonValue && V != CommonValue)) 553 return nullptr; 554 CommonValue = V; 555 } 556 557 return CommonValue; 558 } 559 560 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 561 Value *&Op0, Value *&Op1, 562 const SimplifyQuery &Q) { 563 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 564 if (auto *CRHS = dyn_cast<Constant>(Op1)) 565 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 566 567 // Canonicalize the constant to the RHS if this is a commutative operation. 568 if (Instruction::isCommutative(Opcode)) 569 std::swap(Op0, Op1); 570 } 571 return nullptr; 572 } 573 574 /// Given operands for an Add, see if we can fold the result. 575 /// If not, this returns null. 576 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 577 const SimplifyQuery &Q, unsigned MaxRecurse) { 578 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 579 return C; 580 581 // X + undef -> undef 582 if (match(Op1, m_Undef())) 583 return Op1; 584 585 // X + 0 -> X 586 if (match(Op1, m_Zero())) 587 return Op0; 588 589 // If two operands are negative, return 0. 590 if (isKnownNegation(Op0, Op1)) 591 return Constant::getNullValue(Op0->getType()); 592 593 // X + (Y - X) -> Y 594 // (Y - X) + X -> Y 595 // Eg: X + -X -> 0 596 Value *Y = nullptr; 597 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 598 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 599 return Y; 600 601 // X + ~X -> -1 since ~X = -X-1 602 Type *Ty = Op0->getType(); 603 if (match(Op0, m_Not(m_Specific(Op1))) || 604 match(Op1, m_Not(m_Specific(Op0)))) 605 return Constant::getAllOnesValue(Ty); 606 607 // add nsw/nuw (xor Y, signmask), signmask --> Y 608 // The no-wrapping add guarantees that the top bit will be set by the add. 609 // Therefore, the xor must be clearing the already set sign bit of Y. 610 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 611 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 612 return Y; 613 614 // add nuw %x, -1 -> -1, because %x can only be 0. 615 if (IsNUW && match(Op1, m_AllOnes())) 616 return Op1; // Which is -1. 617 618 /// i1 add -> xor. 619 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 620 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 621 return V; 622 623 // Try some generic simplifications for associative operations. 624 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 625 MaxRecurse)) 626 return V; 627 628 // Threading Add over selects and phi nodes is pointless, so don't bother. 629 // Threading over the select in "A + select(cond, B, C)" means evaluating 630 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 631 // only if B and C are equal. If B and C are equal then (since we assume 632 // that operands have already been simplified) "select(cond, B, C)" should 633 // have been simplified to the common value of B and C already. Analysing 634 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 635 // for threading over phi nodes. 636 637 return nullptr; 638 } 639 640 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 641 const SimplifyQuery &Query) { 642 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 643 } 644 645 /// Compute the base pointer and cumulative constant offsets for V. 646 /// 647 /// This strips all constant offsets off of V, leaving it the base pointer, and 648 /// accumulates the total constant offset applied in the returned constant. It 649 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 650 /// no constant offsets applied. 651 /// 652 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 653 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 654 /// folding. 655 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 656 bool AllowNonInbounds = false) { 657 assert(V->getType()->isPtrOrPtrVectorTy()); 658 659 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 660 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 661 662 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 663 // As that strip may trace through `addrspacecast`, need to sext or trunc 664 // the offset calculated. 665 IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 666 Offset = Offset.sextOrTrunc(IntPtrTy->getIntegerBitWidth()); 667 668 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 669 if (V->getType()->isVectorTy()) 670 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 671 OffsetIntPtr); 672 return OffsetIntPtr; 673 } 674 675 /// Compute the constant difference between two pointer values. 676 /// If the difference is not a constant, returns zero. 677 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 678 Value *RHS) { 679 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 680 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 681 682 // If LHS and RHS are not related via constant offsets to the same base 683 // value, there is nothing we can do here. 684 if (LHS != RHS) 685 return nullptr; 686 687 // Otherwise, the difference of LHS - RHS can be computed as: 688 // LHS - RHS 689 // = (LHSOffset + Base) - (RHSOffset + Base) 690 // = LHSOffset - RHSOffset 691 return ConstantExpr::getSub(LHSOffset, RHSOffset); 692 } 693 694 /// Given operands for a Sub, see if we can fold the result. 695 /// If not, this returns null. 696 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 697 const SimplifyQuery &Q, unsigned MaxRecurse) { 698 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 699 return C; 700 701 // X - undef -> undef 702 // undef - X -> undef 703 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 704 return UndefValue::get(Op0->getType()); 705 706 // X - 0 -> X 707 if (match(Op1, m_Zero())) 708 return Op0; 709 710 // X - X -> 0 711 if (Op0 == Op1) 712 return Constant::getNullValue(Op0->getType()); 713 714 // Is this a negation? 715 if (match(Op0, m_Zero())) { 716 // 0 - X -> 0 if the sub is NUW. 717 if (isNUW) 718 return Constant::getNullValue(Op0->getType()); 719 720 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 721 if (Known.Zero.isMaxSignedValue()) { 722 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 723 // Op1 must be 0 because negating the minimum signed value is undefined. 724 if (isNSW) 725 return Constant::getNullValue(Op0->getType()); 726 727 // 0 - X -> X if X is 0 or the minimum signed value. 728 return Op1; 729 } 730 } 731 732 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 733 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 734 Value *X = nullptr, *Y = nullptr, *Z = Op1; 735 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 736 // See if "V === Y - Z" simplifies. 737 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 738 // It does! Now see if "X + V" simplifies. 739 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 740 // It does, we successfully reassociated! 741 ++NumReassoc; 742 return W; 743 } 744 // See if "V === X - Z" simplifies. 745 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 746 // It does! Now see if "Y + V" simplifies. 747 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 748 // It does, we successfully reassociated! 749 ++NumReassoc; 750 return W; 751 } 752 } 753 754 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 755 // For example, X - (X + 1) -> -1 756 X = Op0; 757 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 758 // See if "V === X - Y" simplifies. 759 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 760 // It does! Now see if "V - Z" simplifies. 761 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 762 // It does, we successfully reassociated! 763 ++NumReassoc; 764 return W; 765 } 766 // See if "V === X - Z" simplifies. 767 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 768 // It does! Now see if "V - Y" simplifies. 769 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 770 // It does, we successfully reassociated! 771 ++NumReassoc; 772 return W; 773 } 774 } 775 776 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 777 // For example, X - (X - Y) -> Y. 778 Z = Op0; 779 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 780 // See if "V === Z - X" simplifies. 781 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 782 // It does! Now see if "V + Y" simplifies. 783 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 784 // It does, we successfully reassociated! 785 ++NumReassoc; 786 return W; 787 } 788 789 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 790 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 791 match(Op1, m_Trunc(m_Value(Y)))) 792 if (X->getType() == Y->getType()) 793 // See if "V === X - Y" simplifies. 794 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 795 // It does! Now see if "trunc V" simplifies. 796 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 797 Q, MaxRecurse - 1)) 798 // It does, return the simplified "trunc V". 799 return W; 800 801 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 802 if (match(Op0, m_PtrToInt(m_Value(X))) && 803 match(Op1, m_PtrToInt(m_Value(Y)))) 804 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 805 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 806 807 // i1 sub -> xor. 808 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 809 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 810 return V; 811 812 // Threading Sub over selects and phi nodes is pointless, so don't bother. 813 // Threading over the select in "A - select(cond, B, C)" means evaluating 814 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 815 // only if B and C are equal. If B and C are equal then (since we assume 816 // that operands have already been simplified) "select(cond, B, C)" should 817 // have been simplified to the common value of B and C already. Analysing 818 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 819 // for threading over phi nodes. 820 821 return nullptr; 822 } 823 824 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 825 const SimplifyQuery &Q) { 826 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 827 } 828 829 /// Given operands for a Mul, see if we can fold the result. 830 /// If not, this returns null. 831 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 832 unsigned MaxRecurse) { 833 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 834 return C; 835 836 // X * undef -> 0 837 // X * 0 -> 0 838 if (match(Op1, m_CombineOr(m_Undef(), m_Zero()))) 839 return Constant::getNullValue(Op0->getType()); 840 841 // X * 1 -> X 842 if (match(Op1, m_One())) 843 return Op0; 844 845 // (X / Y) * Y -> X if the division is exact. 846 Value *X = nullptr; 847 if (Q.IIQ.UseInstrInfo && 848 (match(Op0, 849 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 850 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 851 return X; 852 853 // i1 mul -> and. 854 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 855 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 856 return V; 857 858 // Try some generic simplifications for associative operations. 859 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 860 MaxRecurse)) 861 return V; 862 863 // Mul distributes over Add. Try some generic simplifications based on this. 864 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 865 Q, MaxRecurse)) 866 return V; 867 868 // If the operation is with the result of a select instruction, check whether 869 // operating on either branch of the select always yields the same value. 870 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 871 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 872 MaxRecurse)) 873 return V; 874 875 // If the operation is with the result of a phi instruction, check whether 876 // operating on all incoming values of the phi always yields the same value. 877 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 878 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 879 MaxRecurse)) 880 return V; 881 882 return nullptr; 883 } 884 885 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 886 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 887 } 888 889 /// Check for common or similar folds of integer division or integer remainder. 890 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 891 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 892 Type *Ty = Op0->getType(); 893 894 // X / undef -> undef 895 // X % undef -> undef 896 if (match(Op1, m_Undef())) 897 return Op1; 898 899 // X / 0 -> undef 900 // X % 0 -> undef 901 // We don't need to preserve faults! 902 if (match(Op1, m_Zero())) 903 return UndefValue::get(Ty); 904 905 // If any element of a constant divisor vector is zero or undef, the whole op 906 // is undef. 907 auto *Op1C = dyn_cast<Constant>(Op1); 908 if (Op1C && Ty->isVectorTy()) { 909 unsigned NumElts = Ty->getVectorNumElements(); 910 for (unsigned i = 0; i != NumElts; ++i) { 911 Constant *Elt = Op1C->getAggregateElement(i); 912 if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt))) 913 return UndefValue::get(Ty); 914 } 915 } 916 917 // undef / X -> 0 918 // undef % X -> 0 919 if (match(Op0, m_Undef())) 920 return Constant::getNullValue(Ty); 921 922 // 0 / X -> 0 923 // 0 % X -> 0 924 if (match(Op0, m_Zero())) 925 return Constant::getNullValue(Op0->getType()); 926 927 // X / X -> 1 928 // X % X -> 0 929 if (Op0 == Op1) 930 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 931 932 // X / 1 -> X 933 // X % 1 -> 0 934 // If this is a boolean op (single-bit element type), we can't have 935 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 936 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 937 Value *X; 938 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 939 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 940 return IsDiv ? Op0 : Constant::getNullValue(Ty); 941 942 return nullptr; 943 } 944 945 /// Given a predicate and two operands, return true if the comparison is true. 946 /// This is a helper for div/rem simplification where we return some other value 947 /// when we can prove a relationship between the operands. 948 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 949 const SimplifyQuery &Q, unsigned MaxRecurse) { 950 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 951 Constant *C = dyn_cast_or_null<Constant>(V); 952 return (C && C->isAllOnesValue()); 953 } 954 955 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 956 /// to simplify X % Y to X. 957 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 958 unsigned MaxRecurse, bool IsSigned) { 959 // Recursion is always used, so bail out at once if we already hit the limit. 960 if (!MaxRecurse--) 961 return false; 962 963 if (IsSigned) { 964 // |X| / |Y| --> 0 965 // 966 // We require that 1 operand is a simple constant. That could be extended to 967 // 2 variables if we computed the sign bit for each. 968 // 969 // Make sure that a constant is not the minimum signed value because taking 970 // the abs() of that is undefined. 971 Type *Ty = X->getType(); 972 const APInt *C; 973 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 974 // Is the variable divisor magnitude always greater than the constant 975 // dividend magnitude? 976 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 977 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 978 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 979 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 980 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 981 return true; 982 } 983 if (match(Y, m_APInt(C))) { 984 // Special-case: we can't take the abs() of a minimum signed value. If 985 // that's the divisor, then all we have to do is prove that the dividend 986 // is also not the minimum signed value. 987 if (C->isMinSignedValue()) 988 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 989 990 // Is the variable dividend magnitude always less than the constant 991 // divisor magnitude? 992 // |X| < |C| --> X > -abs(C) and X < abs(C) 993 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 994 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 995 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 996 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 997 return true; 998 } 999 return false; 1000 } 1001 1002 // IsSigned == false. 1003 // Is the dividend unsigned less than the divisor? 1004 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1005 } 1006 1007 /// These are simplifications common to SDiv and UDiv. 1008 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1009 const SimplifyQuery &Q, unsigned MaxRecurse) { 1010 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1011 return C; 1012 1013 if (Value *V = simplifyDivRem(Op0, Op1, true)) 1014 return V; 1015 1016 bool IsSigned = Opcode == Instruction::SDiv; 1017 1018 // (X * Y) / Y -> X if the multiplication does not overflow. 1019 Value *X; 1020 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1021 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1022 // If the Mul does not overflow, then we are good to go. 1023 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1024 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul))) 1025 return X; 1026 // If X has the form X = A / Y, then X * Y cannot overflow. 1027 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1028 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) 1029 return X; 1030 } 1031 1032 // (X rem Y) / Y -> 0 1033 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1034 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1035 return Constant::getNullValue(Op0->getType()); 1036 1037 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1038 ConstantInt *C1, *C2; 1039 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1040 match(Op1, m_ConstantInt(C2))) { 1041 bool Overflow; 1042 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1043 if (Overflow) 1044 return Constant::getNullValue(Op0->getType()); 1045 } 1046 1047 // If the operation is with the result of a select instruction, check whether 1048 // operating on either branch of the select always yields the same value. 1049 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1050 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1051 return V; 1052 1053 // If the operation is with the result of a phi instruction, check whether 1054 // operating on all incoming values of the phi always yields the same value. 1055 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1056 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1057 return V; 1058 1059 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1060 return Constant::getNullValue(Op0->getType()); 1061 1062 return nullptr; 1063 } 1064 1065 /// These are simplifications common to SRem and URem. 1066 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1067 const SimplifyQuery &Q, unsigned MaxRecurse) { 1068 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1069 return C; 1070 1071 if (Value *V = simplifyDivRem(Op0, Op1, false)) 1072 return V; 1073 1074 // (X % Y) % Y -> X % Y 1075 if ((Opcode == Instruction::SRem && 1076 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1077 (Opcode == Instruction::URem && 1078 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1079 return Op0; 1080 1081 // (X << Y) % X -> 0 1082 if (Q.IIQ.UseInstrInfo && 1083 ((Opcode == Instruction::SRem && 1084 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1085 (Opcode == Instruction::URem && 1086 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1087 return Constant::getNullValue(Op0->getType()); 1088 1089 // If the operation is with the result of a select instruction, check whether 1090 // operating on either branch of the select always yields the same value. 1091 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1092 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1093 return V; 1094 1095 // If the operation is with the result of a phi instruction, check whether 1096 // operating on all incoming values of the phi always yields the same value. 1097 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1098 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1099 return V; 1100 1101 // If X / Y == 0, then X % Y == X. 1102 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1103 return Op0; 1104 1105 return nullptr; 1106 } 1107 1108 /// Given operands for an SDiv, see if we can fold the result. 1109 /// If not, this returns null. 1110 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1111 unsigned MaxRecurse) { 1112 // If two operands are negated and no signed overflow, return -1. 1113 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1114 return Constant::getAllOnesValue(Op0->getType()); 1115 1116 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1117 } 1118 1119 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1120 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1121 } 1122 1123 /// Given operands for a UDiv, see if we can fold the result. 1124 /// If not, this returns null. 1125 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1126 unsigned MaxRecurse) { 1127 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1128 } 1129 1130 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1131 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1132 } 1133 1134 /// Given operands for an SRem, see if we can fold the result. 1135 /// If not, this returns null. 1136 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1137 unsigned MaxRecurse) { 1138 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1139 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1140 Value *X; 1141 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1142 return ConstantInt::getNullValue(Op0->getType()); 1143 1144 // If the two operands are negated, return 0. 1145 if (isKnownNegation(Op0, Op1)) 1146 return ConstantInt::getNullValue(Op0->getType()); 1147 1148 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1149 } 1150 1151 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1152 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1153 } 1154 1155 /// Given operands for a URem, see if we can fold the result. 1156 /// If not, this returns null. 1157 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1158 unsigned MaxRecurse) { 1159 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1160 } 1161 1162 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1163 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1164 } 1165 1166 /// Returns true if a shift by \c Amount always yields undef. 1167 static bool isUndefShift(Value *Amount) { 1168 Constant *C = dyn_cast<Constant>(Amount); 1169 if (!C) 1170 return false; 1171 1172 // X shift by undef -> undef because it may shift by the bitwidth. 1173 if (isa<UndefValue>(C)) 1174 return true; 1175 1176 // Shifting by the bitwidth or more is undefined. 1177 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1178 if (CI->getValue().getLimitedValue() >= 1179 CI->getType()->getScalarSizeInBits()) 1180 return true; 1181 1182 // If all lanes of a vector shift are undefined the whole shift is. 1183 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1184 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1185 if (!isUndefShift(C->getAggregateElement(I))) 1186 return false; 1187 return true; 1188 } 1189 1190 return false; 1191 } 1192 1193 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1194 /// If not, this returns null. 1195 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1196 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1197 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1198 return C; 1199 1200 // 0 shift by X -> 0 1201 if (match(Op0, m_Zero())) 1202 return Constant::getNullValue(Op0->getType()); 1203 1204 // X shift by 0 -> X 1205 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1206 // would be poison. 1207 Value *X; 1208 if (match(Op1, m_Zero()) || 1209 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1210 return Op0; 1211 1212 // Fold undefined shifts. 1213 if (isUndefShift(Op1)) 1214 return UndefValue::get(Op0->getType()); 1215 1216 // If the operation is with the result of a select instruction, check whether 1217 // operating on either branch of the select always yields the same value. 1218 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1219 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1220 return V; 1221 1222 // If the operation is with the result of a phi instruction, check whether 1223 // operating on all incoming values of the phi always yields the same value. 1224 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1225 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1226 return V; 1227 1228 // If any bits in the shift amount make that value greater than or equal to 1229 // the number of bits in the type, the shift is undefined. 1230 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1231 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1232 return UndefValue::get(Op0->getType()); 1233 1234 // If all valid bits in the shift amount are known zero, the first operand is 1235 // unchanged. 1236 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1237 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1238 return Op0; 1239 1240 return nullptr; 1241 } 1242 1243 /// Given operands for an Shl, LShr or AShr, see if we can 1244 /// fold the result. If not, this returns null. 1245 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1246 Value *Op1, bool isExact, const SimplifyQuery &Q, 1247 unsigned MaxRecurse) { 1248 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1249 return V; 1250 1251 // X >> X -> 0 1252 if (Op0 == Op1) 1253 return Constant::getNullValue(Op0->getType()); 1254 1255 // undef >> X -> 0 1256 // undef >> X -> undef (if it's exact) 1257 if (match(Op0, m_Undef())) 1258 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1259 1260 // The low bit cannot be shifted out of an exact shift if it is set. 1261 if (isExact) { 1262 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1263 if (Op0Known.One[0]) 1264 return Op0; 1265 } 1266 1267 return nullptr; 1268 } 1269 1270 /// Given operands for an Shl, see if we can fold the result. 1271 /// If not, this returns null. 1272 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1273 const SimplifyQuery &Q, unsigned MaxRecurse) { 1274 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1275 return V; 1276 1277 // undef << X -> 0 1278 // undef << X -> undef if (if it's NSW/NUW) 1279 if (match(Op0, m_Undef())) 1280 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1281 1282 // (X >> A) << A -> X 1283 Value *X; 1284 if (Q.IIQ.UseInstrInfo && 1285 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1286 return X; 1287 1288 // shl nuw i8 C, %x -> C iff C has sign bit set. 1289 if (isNUW && match(Op0, m_Negative())) 1290 return Op0; 1291 // NOTE: could use computeKnownBits() / LazyValueInfo, 1292 // but the cost-benefit analysis suggests it isn't worth it. 1293 1294 return nullptr; 1295 } 1296 1297 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1298 const SimplifyQuery &Q) { 1299 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1300 } 1301 1302 /// Given operands for an LShr, see if we can fold the result. 1303 /// If not, this returns null. 1304 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1305 const SimplifyQuery &Q, unsigned MaxRecurse) { 1306 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1307 MaxRecurse)) 1308 return V; 1309 1310 // (X << A) >> A -> X 1311 Value *X; 1312 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1313 return X; 1314 1315 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1316 // We can return X as we do in the above case since OR alters no bits in X. 1317 // SimplifyDemandedBits in InstCombine can do more general optimization for 1318 // bit manipulation. This pattern aims to provide opportunities for other 1319 // optimizers by supporting a simple but common case in InstSimplify. 1320 Value *Y; 1321 const APInt *ShRAmt, *ShLAmt; 1322 if (match(Op1, m_APInt(ShRAmt)) && 1323 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1324 *ShRAmt == *ShLAmt) { 1325 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1326 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1327 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1328 if (ShRAmt->uge(EffWidthY)) 1329 return X; 1330 } 1331 1332 return nullptr; 1333 } 1334 1335 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1336 const SimplifyQuery &Q) { 1337 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1338 } 1339 1340 /// Given operands for an AShr, see if we can fold the result. 1341 /// If not, this returns null. 1342 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1343 const SimplifyQuery &Q, unsigned MaxRecurse) { 1344 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1345 MaxRecurse)) 1346 return V; 1347 1348 // all ones >>a X -> -1 1349 // Do not return Op0 because it may contain undef elements if it's a vector. 1350 if (match(Op0, m_AllOnes())) 1351 return Constant::getAllOnesValue(Op0->getType()); 1352 1353 // (X << A) >> A -> X 1354 Value *X; 1355 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1356 return X; 1357 1358 // Arithmetic shifting an all-sign-bit value is a no-op. 1359 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1360 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1361 return Op0; 1362 1363 return nullptr; 1364 } 1365 1366 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1367 const SimplifyQuery &Q) { 1368 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1369 } 1370 1371 /// Commuted variants are assumed to be handled by calling this function again 1372 /// with the parameters swapped. 1373 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1374 ICmpInst *UnsignedICmp, bool IsAnd) { 1375 Value *X, *Y; 1376 1377 ICmpInst::Predicate EqPred; 1378 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1379 !ICmpInst::isEquality(EqPred)) 1380 return nullptr; 1381 1382 ICmpInst::Predicate UnsignedPred; 1383 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1384 ICmpInst::isUnsigned(UnsignedPred)) 1385 ; 1386 else if (match(UnsignedICmp, 1387 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1388 ICmpInst::isUnsigned(UnsignedPred)) 1389 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1390 else 1391 return nullptr; 1392 1393 // X < Y && Y != 0 --> X < Y 1394 // X < Y || Y != 0 --> Y != 0 1395 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1396 return IsAnd ? UnsignedICmp : ZeroICmp; 1397 1398 // X >= Y || Y != 0 --> true 1399 // X >= Y || Y == 0 --> X >= Y 1400 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1401 if (EqPred == ICmpInst::ICMP_NE) 1402 return getTrue(UnsignedICmp->getType()); 1403 return UnsignedICmp; 1404 } 1405 1406 // X < Y && Y == 0 --> false 1407 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1408 IsAnd) 1409 return getFalse(UnsignedICmp->getType()); 1410 1411 return nullptr; 1412 } 1413 1414 /// Commuted variants are assumed to be handled by calling this function again 1415 /// with the parameters swapped. 1416 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1417 ICmpInst::Predicate Pred0, Pred1; 1418 Value *A ,*B; 1419 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1420 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1421 return nullptr; 1422 1423 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1424 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1425 // can eliminate Op1 from this 'and'. 1426 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1427 return Op0; 1428 1429 // Check for any combination of predicates that are guaranteed to be disjoint. 1430 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1431 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1432 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1433 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1434 return getFalse(Op0->getType()); 1435 1436 return nullptr; 1437 } 1438 1439 /// Commuted variants are assumed to be handled by calling this function again 1440 /// with the parameters swapped. 1441 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1442 ICmpInst::Predicate Pred0, Pred1; 1443 Value *A ,*B; 1444 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1445 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1446 return nullptr; 1447 1448 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1449 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1450 // can eliminate Op0 from this 'or'. 1451 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1452 return Op1; 1453 1454 // Check for any combination of predicates that cover the entire range of 1455 // possibilities. 1456 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1457 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1458 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1459 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1460 return getTrue(Op0->getType()); 1461 1462 return nullptr; 1463 } 1464 1465 /// Test if a pair of compares with a shared operand and 2 constants has an 1466 /// empty set intersection, full set union, or if one compare is a superset of 1467 /// the other. 1468 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1469 bool IsAnd) { 1470 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1471 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1472 return nullptr; 1473 1474 const APInt *C0, *C1; 1475 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1476 !match(Cmp1->getOperand(1), m_APInt(C1))) 1477 return nullptr; 1478 1479 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1480 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1481 1482 // For and-of-compares, check if the intersection is empty: 1483 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1484 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1485 return getFalse(Cmp0->getType()); 1486 1487 // For or-of-compares, check if the union is full: 1488 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1489 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1490 return getTrue(Cmp0->getType()); 1491 1492 // Is one range a superset of the other? 1493 // If this is and-of-compares, take the smaller set: 1494 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1495 // If this is or-of-compares, take the larger set: 1496 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1497 if (Range0.contains(Range1)) 1498 return IsAnd ? Cmp1 : Cmp0; 1499 if (Range1.contains(Range0)) 1500 return IsAnd ? Cmp0 : Cmp1; 1501 1502 return nullptr; 1503 } 1504 1505 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1506 bool IsAnd) { 1507 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1508 if (!match(Cmp0->getOperand(1), m_Zero()) || 1509 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1510 return nullptr; 1511 1512 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1513 return nullptr; 1514 1515 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1516 Value *X = Cmp0->getOperand(0); 1517 Value *Y = Cmp1->getOperand(0); 1518 1519 // If one of the compares is a masked version of a (not) null check, then 1520 // that compare implies the other, so we eliminate the other. Optionally, look 1521 // through a pointer-to-int cast to match a null check of a pointer type. 1522 1523 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1524 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1525 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1526 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1527 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1528 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1529 return Cmp1; 1530 1531 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1532 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1533 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1534 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1535 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1536 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1537 return Cmp0; 1538 1539 return nullptr; 1540 } 1541 1542 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1543 const InstrInfoQuery &IIQ) { 1544 // (icmp (add V, C0), C1) & (icmp V, C0) 1545 ICmpInst::Predicate Pred0, Pred1; 1546 const APInt *C0, *C1; 1547 Value *V; 1548 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1549 return nullptr; 1550 1551 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1552 return nullptr; 1553 1554 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1555 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1556 return nullptr; 1557 1558 Type *ITy = Op0->getType(); 1559 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1560 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1561 1562 const APInt Delta = *C1 - *C0; 1563 if (C0->isStrictlyPositive()) { 1564 if (Delta == 2) { 1565 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1566 return getFalse(ITy); 1567 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1568 return getFalse(ITy); 1569 } 1570 if (Delta == 1) { 1571 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1572 return getFalse(ITy); 1573 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1574 return getFalse(ITy); 1575 } 1576 } 1577 if (C0->getBoolValue() && isNUW) { 1578 if (Delta == 2) 1579 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1580 return getFalse(ITy); 1581 if (Delta == 1) 1582 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1583 return getFalse(ITy); 1584 } 1585 1586 return nullptr; 1587 } 1588 1589 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1590 const InstrInfoQuery &IIQ) { 1591 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1592 return X; 1593 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true)) 1594 return X; 1595 1596 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1597 return X; 1598 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1599 return X; 1600 1601 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1602 return X; 1603 1604 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1605 return X; 1606 1607 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, IIQ)) 1608 return X; 1609 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, IIQ)) 1610 return X; 1611 1612 return nullptr; 1613 } 1614 1615 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1616 const InstrInfoQuery &IIQ) { 1617 // (icmp (add V, C0), C1) | (icmp V, C0) 1618 ICmpInst::Predicate Pred0, Pred1; 1619 const APInt *C0, *C1; 1620 Value *V; 1621 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1622 return nullptr; 1623 1624 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1625 return nullptr; 1626 1627 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1628 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1629 return nullptr; 1630 1631 Type *ITy = Op0->getType(); 1632 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1633 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1634 1635 const APInt Delta = *C1 - *C0; 1636 if (C0->isStrictlyPositive()) { 1637 if (Delta == 2) { 1638 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1639 return getTrue(ITy); 1640 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1641 return getTrue(ITy); 1642 } 1643 if (Delta == 1) { 1644 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1645 return getTrue(ITy); 1646 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1647 return getTrue(ITy); 1648 } 1649 } 1650 if (C0->getBoolValue() && isNUW) { 1651 if (Delta == 2) 1652 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1653 return getTrue(ITy); 1654 if (Delta == 1) 1655 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1656 return getTrue(ITy); 1657 } 1658 1659 return nullptr; 1660 } 1661 1662 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1663 const InstrInfoQuery &IIQ) { 1664 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1665 return X; 1666 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false)) 1667 return X; 1668 1669 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1670 return X; 1671 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1672 return X; 1673 1674 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1675 return X; 1676 1677 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1678 return X; 1679 1680 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, IIQ)) 1681 return X; 1682 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, IIQ)) 1683 return X; 1684 1685 return nullptr; 1686 } 1687 1688 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1689 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1690 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1691 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1692 if (LHS0->getType() != RHS0->getType()) 1693 return nullptr; 1694 1695 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1696 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1697 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1698 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1699 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1700 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1701 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1702 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1703 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1704 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1705 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1706 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1707 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1708 return RHS; 1709 1710 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1711 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1712 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1713 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1714 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1715 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1716 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1717 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1718 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1719 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1720 return LHS; 1721 } 1722 1723 return nullptr; 1724 } 1725 1726 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1727 Value *Op0, Value *Op1, bool IsAnd) { 1728 // Look through casts of the 'and' operands to find compares. 1729 auto *Cast0 = dyn_cast<CastInst>(Op0); 1730 auto *Cast1 = dyn_cast<CastInst>(Op1); 1731 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1732 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1733 Op0 = Cast0->getOperand(0); 1734 Op1 = Cast1->getOperand(0); 1735 } 1736 1737 Value *V = nullptr; 1738 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1739 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1740 if (ICmp0 && ICmp1) 1741 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q.IIQ) 1742 : simplifyOrOfICmps(ICmp0, ICmp1, Q.IIQ); 1743 1744 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1745 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1746 if (FCmp0 && FCmp1) 1747 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1748 1749 if (!V) 1750 return nullptr; 1751 if (!Cast0) 1752 return V; 1753 1754 // If we looked through casts, we can only handle a constant simplification 1755 // because we are not allowed to create a cast instruction here. 1756 if (auto *C = dyn_cast<Constant>(V)) 1757 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1758 1759 return nullptr; 1760 } 1761 1762 /// Given operands for an And, see if we can fold the result. 1763 /// If not, this returns null. 1764 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1765 unsigned MaxRecurse) { 1766 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 1767 return C; 1768 1769 // X & undef -> 0 1770 if (match(Op1, m_Undef())) 1771 return Constant::getNullValue(Op0->getType()); 1772 1773 // X & X = X 1774 if (Op0 == Op1) 1775 return Op0; 1776 1777 // X & 0 = 0 1778 if (match(Op1, m_Zero())) 1779 return Constant::getNullValue(Op0->getType()); 1780 1781 // X & -1 = X 1782 if (match(Op1, m_AllOnes())) 1783 return Op0; 1784 1785 // A & ~A = ~A & A = 0 1786 if (match(Op0, m_Not(m_Specific(Op1))) || 1787 match(Op1, m_Not(m_Specific(Op0)))) 1788 return Constant::getNullValue(Op0->getType()); 1789 1790 // (A | ?) & A = A 1791 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 1792 return Op1; 1793 1794 // A & (A | ?) = A 1795 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 1796 return Op0; 1797 1798 // A mask that only clears known zeros of a shifted value is a no-op. 1799 Value *X; 1800 const APInt *Mask; 1801 const APInt *ShAmt; 1802 if (match(Op1, m_APInt(Mask))) { 1803 // If all bits in the inverted and shifted mask are clear: 1804 // and (shl X, ShAmt), Mask --> shl X, ShAmt 1805 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 1806 (~(*Mask)).lshr(*ShAmt).isNullValue()) 1807 return Op0; 1808 1809 // If all bits in the inverted and shifted mask are clear: 1810 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 1811 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1812 (~(*Mask)).shl(*ShAmt).isNullValue()) 1813 return Op0; 1814 } 1815 1816 // A & (-A) = A if A is a power of two or zero. 1817 if (match(Op0, m_Neg(m_Specific(Op1))) || 1818 match(Op1, m_Neg(m_Specific(Op0)))) { 1819 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1820 Q.DT)) 1821 return Op0; 1822 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1823 Q.DT)) 1824 return Op1; 1825 } 1826 1827 // This is a similar pattern used for checking if a value is a power-of-2: 1828 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 1829 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 1830 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 1831 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 1832 return Constant::getNullValue(Op1->getType()); 1833 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 1834 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 1835 return Constant::getNullValue(Op0->getType()); 1836 1837 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 1838 return V; 1839 1840 // Try some generic simplifications for associative operations. 1841 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1842 MaxRecurse)) 1843 return V; 1844 1845 // And distributes over Or. Try some generic simplifications based on this. 1846 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1847 Q, MaxRecurse)) 1848 return V; 1849 1850 // And distributes over Xor. Try some generic simplifications based on this. 1851 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1852 Q, MaxRecurse)) 1853 return V; 1854 1855 // If the operation is with the result of a select instruction, check whether 1856 // operating on either branch of the select always yields the same value. 1857 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1858 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1859 MaxRecurse)) 1860 return V; 1861 1862 // If the operation is with the result of a phi instruction, check whether 1863 // operating on all incoming values of the phi always yields the same value. 1864 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1865 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1866 MaxRecurse)) 1867 return V; 1868 1869 // Assuming the effective width of Y is not larger than A, i.e. all bits 1870 // from X and Y are disjoint in (X << A) | Y, 1871 // if the mask of this AND op covers all bits of X or Y, while it covers 1872 // no bits from the other, we can bypass this AND op. E.g., 1873 // ((X << A) | Y) & Mask -> Y, 1874 // if Mask = ((1 << effective_width_of(Y)) - 1) 1875 // ((X << A) | Y) & Mask -> X << A, 1876 // if Mask = ((1 << effective_width_of(X)) - 1) << A 1877 // SimplifyDemandedBits in InstCombine can optimize the general case. 1878 // This pattern aims to help other passes for a common case. 1879 Value *Y, *XShifted; 1880 if (match(Op1, m_APInt(Mask)) && 1881 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 1882 m_Value(XShifted)), 1883 m_Value(Y)))) { 1884 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1885 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 1886 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1887 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1888 if (EffWidthY <= ShftCnt) { 1889 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 1890 Q.DT); 1891 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); 1892 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 1893 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 1894 // If the mask is extracting all bits from X or Y as is, we can skip 1895 // this AND op. 1896 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 1897 return Y; 1898 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 1899 return XShifted; 1900 } 1901 } 1902 1903 return nullptr; 1904 } 1905 1906 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1907 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 1908 } 1909 1910 /// Given operands for an Or, see if we can fold the result. 1911 /// If not, this returns null. 1912 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1913 unsigned MaxRecurse) { 1914 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 1915 return C; 1916 1917 // X | undef -> -1 1918 // X | -1 = -1 1919 // Do not return Op1 because it may contain undef elements if it's a vector. 1920 if (match(Op1, m_Undef()) || match(Op1, m_AllOnes())) 1921 return Constant::getAllOnesValue(Op0->getType()); 1922 1923 // X | X = X 1924 // X | 0 = X 1925 if (Op0 == Op1 || match(Op1, m_Zero())) 1926 return Op0; 1927 1928 // A | ~A = ~A | A = -1 1929 if (match(Op0, m_Not(m_Specific(Op1))) || 1930 match(Op1, m_Not(m_Specific(Op0)))) 1931 return Constant::getAllOnesValue(Op0->getType()); 1932 1933 // (A & ?) | A = A 1934 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 1935 return Op1; 1936 1937 // A | (A & ?) = A 1938 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 1939 return Op0; 1940 1941 // ~(A & ?) | A = -1 1942 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1943 return Constant::getAllOnesValue(Op1->getType()); 1944 1945 // A | ~(A & ?) = -1 1946 if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1947 return Constant::getAllOnesValue(Op0->getType()); 1948 1949 Value *A, *B; 1950 // (A & ~B) | (A ^ B) -> (A ^ B) 1951 // (~B & A) | (A ^ B) -> (A ^ B) 1952 // (A & ~B) | (B ^ A) -> (B ^ A) 1953 // (~B & A) | (B ^ A) -> (B ^ A) 1954 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1955 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1956 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1957 return Op1; 1958 1959 // Commute the 'or' operands. 1960 // (A ^ B) | (A & ~B) -> (A ^ B) 1961 // (A ^ B) | (~B & A) -> (A ^ B) 1962 // (B ^ A) | (A & ~B) -> (B ^ A) 1963 // (B ^ A) | (~B & A) -> (B ^ A) 1964 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1965 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1966 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1967 return Op0; 1968 1969 // (A & B) | (~A ^ B) -> (~A ^ B) 1970 // (B & A) | (~A ^ B) -> (~A ^ B) 1971 // (A & B) | (B ^ ~A) -> (B ^ ~A) 1972 // (B & A) | (B ^ ~A) -> (B ^ ~A) 1973 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1974 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1975 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1976 return Op1; 1977 1978 // (~A ^ B) | (A & B) -> (~A ^ B) 1979 // (~A ^ B) | (B & A) -> (~A ^ B) 1980 // (B ^ ~A) | (A & B) -> (B ^ ~A) 1981 // (B ^ ~A) | (B & A) -> (B ^ ~A) 1982 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1983 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1984 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1985 return Op0; 1986 1987 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 1988 return V; 1989 1990 // Try some generic simplifications for associative operations. 1991 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1992 MaxRecurse)) 1993 return V; 1994 1995 // Or distributes over And. Try some generic simplifications based on this. 1996 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1997 MaxRecurse)) 1998 return V; 1999 2000 // If the operation is with the result of a select instruction, check whether 2001 // operating on either branch of the select always yields the same value. 2002 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 2003 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2004 MaxRecurse)) 2005 return V; 2006 2007 // (A & C1)|(B & C2) 2008 const APInt *C1, *C2; 2009 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2010 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2011 if (*C1 == ~*C2) { 2012 // (A & C1)|(B & C2) 2013 // If we have: ((V + N) & C1) | (V & C2) 2014 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2015 // replace with V+N. 2016 Value *N; 2017 if (C2->isMask() && // C2 == 0+1+ 2018 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2019 // Add commutes, try both ways. 2020 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2021 return A; 2022 } 2023 // Or commutes, try both ways. 2024 if (C1->isMask() && 2025 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2026 // Add commutes, try both ways. 2027 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2028 return B; 2029 } 2030 } 2031 } 2032 2033 // If the operation is with the result of a phi instruction, check whether 2034 // operating on all incoming values of the phi always yields the same value. 2035 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2036 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2037 return V; 2038 2039 return nullptr; 2040 } 2041 2042 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2043 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2044 } 2045 2046 /// Given operands for a Xor, see if we can fold the result. 2047 /// If not, this returns null. 2048 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2049 unsigned MaxRecurse) { 2050 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2051 return C; 2052 2053 // A ^ undef -> undef 2054 if (match(Op1, m_Undef())) 2055 return Op1; 2056 2057 // A ^ 0 = A 2058 if (match(Op1, m_Zero())) 2059 return Op0; 2060 2061 // A ^ A = 0 2062 if (Op0 == Op1) 2063 return Constant::getNullValue(Op0->getType()); 2064 2065 // A ^ ~A = ~A ^ A = -1 2066 if (match(Op0, m_Not(m_Specific(Op1))) || 2067 match(Op1, m_Not(m_Specific(Op0)))) 2068 return Constant::getAllOnesValue(Op0->getType()); 2069 2070 // Try some generic simplifications for associative operations. 2071 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2072 MaxRecurse)) 2073 return V; 2074 2075 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2076 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2077 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2078 // only if B and C are equal. If B and C are equal then (since we assume 2079 // that operands have already been simplified) "select(cond, B, C)" should 2080 // have been simplified to the common value of B and C already. Analysing 2081 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2082 // for threading over phi nodes. 2083 2084 return nullptr; 2085 } 2086 2087 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2088 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2089 } 2090 2091 2092 static Type *GetCompareTy(Value *Op) { 2093 return CmpInst::makeCmpResultType(Op->getType()); 2094 } 2095 2096 /// Rummage around inside V looking for something equivalent to the comparison 2097 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2098 /// Helper function for analyzing max/min idioms. 2099 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2100 Value *LHS, Value *RHS) { 2101 SelectInst *SI = dyn_cast<SelectInst>(V); 2102 if (!SI) 2103 return nullptr; 2104 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2105 if (!Cmp) 2106 return nullptr; 2107 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2108 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2109 return Cmp; 2110 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2111 LHS == CmpRHS && RHS == CmpLHS) 2112 return Cmp; 2113 return nullptr; 2114 } 2115 2116 // A significant optimization not implemented here is assuming that alloca 2117 // addresses are not equal to incoming argument values. They don't *alias*, 2118 // as we say, but that doesn't mean they aren't equal, so we take a 2119 // conservative approach. 2120 // 2121 // This is inspired in part by C++11 5.10p1: 2122 // "Two pointers of the same type compare equal if and only if they are both 2123 // null, both point to the same function, or both represent the same 2124 // address." 2125 // 2126 // This is pretty permissive. 2127 // 2128 // It's also partly due to C11 6.5.9p6: 2129 // "Two pointers compare equal if and only if both are null pointers, both are 2130 // pointers to the same object (including a pointer to an object and a 2131 // subobject at its beginning) or function, both are pointers to one past the 2132 // last element of the same array object, or one is a pointer to one past the 2133 // end of one array object and the other is a pointer to the start of a 2134 // different array object that happens to immediately follow the first array 2135 // object in the address space.) 2136 // 2137 // C11's version is more restrictive, however there's no reason why an argument 2138 // couldn't be a one-past-the-end value for a stack object in the caller and be 2139 // equal to the beginning of a stack object in the callee. 2140 // 2141 // If the C and C++ standards are ever made sufficiently restrictive in this 2142 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2143 // this optimization. 2144 static Constant * 2145 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2146 const DominatorTree *DT, CmpInst::Predicate Pred, 2147 AssumptionCache *AC, const Instruction *CxtI, 2148 const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) { 2149 // First, skip past any trivial no-ops. 2150 LHS = LHS->stripPointerCasts(); 2151 RHS = RHS->stripPointerCasts(); 2152 2153 // A non-null pointer is not equal to a null pointer. 2154 if (llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2155 IIQ.UseInstrInfo) && 2156 isa<ConstantPointerNull>(RHS) && 2157 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 2158 return ConstantInt::get(GetCompareTy(LHS), 2159 !CmpInst::isTrueWhenEqual(Pred)); 2160 2161 // We can only fold certain predicates on pointer comparisons. 2162 switch (Pred) { 2163 default: 2164 return nullptr; 2165 2166 // Equality comaprisons are easy to fold. 2167 case CmpInst::ICMP_EQ: 2168 case CmpInst::ICMP_NE: 2169 break; 2170 2171 // We can only handle unsigned relational comparisons because 'inbounds' on 2172 // a GEP only protects against unsigned wrapping. 2173 case CmpInst::ICMP_UGT: 2174 case CmpInst::ICMP_UGE: 2175 case CmpInst::ICMP_ULT: 2176 case CmpInst::ICMP_ULE: 2177 // However, we have to switch them to their signed variants to handle 2178 // negative indices from the base pointer. 2179 Pred = ICmpInst::getSignedPredicate(Pred); 2180 break; 2181 } 2182 2183 // Strip off any constant offsets so that we can reason about them. 2184 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2185 // here and compare base addresses like AliasAnalysis does, however there are 2186 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2187 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2188 // doesn't need to guarantee pointer inequality when it says NoAlias. 2189 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2190 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2191 2192 // If LHS and RHS are related via constant offsets to the same base 2193 // value, we can replace it with an icmp which just compares the offsets. 2194 if (LHS == RHS) 2195 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2196 2197 // Various optimizations for (in)equality comparisons. 2198 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2199 // Different non-empty allocations that exist at the same time have 2200 // different addresses (if the program can tell). Global variables always 2201 // exist, so they always exist during the lifetime of each other and all 2202 // allocas. Two different allocas usually have different addresses... 2203 // 2204 // However, if there's an @llvm.stackrestore dynamically in between two 2205 // allocas, they may have the same address. It's tempting to reduce the 2206 // scope of the problem by only looking at *static* allocas here. That would 2207 // cover the majority of allocas while significantly reducing the likelihood 2208 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2209 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2210 // an entry block. Also, if we have a block that's not attached to a 2211 // function, we can't tell if it's "static" under the current definition. 2212 // Theoretically, this problem could be fixed by creating a new kind of 2213 // instruction kind specifically for static allocas. Such a new instruction 2214 // could be required to be at the top of the entry block, thus preventing it 2215 // from being subject to a @llvm.stackrestore. Instcombine could even 2216 // convert regular allocas into these special allocas. It'd be nifty. 2217 // However, until then, this problem remains open. 2218 // 2219 // So, we'll assume that two non-empty allocas have different addresses 2220 // for now. 2221 // 2222 // With all that, if the offsets are within the bounds of their allocations 2223 // (and not one-past-the-end! so we can't use inbounds!), and their 2224 // allocations aren't the same, the pointers are not equal. 2225 // 2226 // Note that it's not necessary to check for LHS being a global variable 2227 // address, due to canonicalization and constant folding. 2228 if (isa<AllocaInst>(LHS) && 2229 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2230 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2231 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2232 uint64_t LHSSize, RHSSize; 2233 ObjectSizeOpts Opts; 2234 Opts.NullIsUnknownSize = 2235 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2236 if (LHSOffsetCI && RHSOffsetCI && 2237 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2238 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2239 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2240 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2241 if (!LHSOffsetValue.isNegative() && 2242 !RHSOffsetValue.isNegative() && 2243 LHSOffsetValue.ult(LHSSize) && 2244 RHSOffsetValue.ult(RHSSize)) { 2245 return ConstantInt::get(GetCompareTy(LHS), 2246 !CmpInst::isTrueWhenEqual(Pred)); 2247 } 2248 } 2249 2250 // Repeat the above check but this time without depending on DataLayout 2251 // or being able to compute a precise size. 2252 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2253 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2254 LHSOffset->isNullValue() && 2255 RHSOffset->isNullValue()) 2256 return ConstantInt::get(GetCompareTy(LHS), 2257 !CmpInst::isTrueWhenEqual(Pred)); 2258 } 2259 2260 // Even if an non-inbounds GEP occurs along the path we can still optimize 2261 // equality comparisons concerning the result. We avoid walking the whole 2262 // chain again by starting where the last calls to 2263 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2264 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2265 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2266 if (LHS == RHS) 2267 return ConstantExpr::getICmp(Pred, 2268 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2269 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2270 2271 // If one side of the equality comparison must come from a noalias call 2272 // (meaning a system memory allocation function), and the other side must 2273 // come from a pointer that cannot overlap with dynamically-allocated 2274 // memory within the lifetime of the current function (allocas, byval 2275 // arguments, globals), then determine the comparison result here. 2276 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2277 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2278 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2279 2280 // Is the set of underlying objects all noalias calls? 2281 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2282 return all_of(Objects, isNoAliasCall); 2283 }; 2284 2285 // Is the set of underlying objects all things which must be disjoint from 2286 // noalias calls. For allocas, we consider only static ones (dynamic 2287 // allocas might be transformed into calls to malloc not simultaneously 2288 // live with the compared-to allocation). For globals, we exclude symbols 2289 // that might be resolve lazily to symbols in another dynamically-loaded 2290 // library (and, thus, could be malloc'ed by the implementation). 2291 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2292 return all_of(Objects, [](const Value *V) { 2293 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2294 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2295 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2296 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2297 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2298 !GV->isThreadLocal(); 2299 if (const Argument *A = dyn_cast<Argument>(V)) 2300 return A->hasByValAttr(); 2301 return false; 2302 }); 2303 }; 2304 2305 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2306 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2307 return ConstantInt::get(GetCompareTy(LHS), 2308 !CmpInst::isTrueWhenEqual(Pred)); 2309 2310 // Fold comparisons for non-escaping pointer even if the allocation call 2311 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2312 // dynamic allocation call could be either of the operands. 2313 Value *MI = nullptr; 2314 if (isAllocLikeFn(LHS, TLI) && 2315 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2316 MI = LHS; 2317 else if (isAllocLikeFn(RHS, TLI) && 2318 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2319 MI = RHS; 2320 // FIXME: We should also fold the compare when the pointer escapes, but the 2321 // compare dominates the pointer escape 2322 if (MI && !PointerMayBeCaptured(MI, true, true)) 2323 return ConstantInt::get(GetCompareTy(LHS), 2324 CmpInst::isFalseWhenEqual(Pred)); 2325 } 2326 2327 // Otherwise, fail. 2328 return nullptr; 2329 } 2330 2331 /// Fold an icmp when its operands have i1 scalar type. 2332 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2333 Value *RHS, const SimplifyQuery &Q) { 2334 Type *ITy = GetCompareTy(LHS); // The return type. 2335 Type *OpTy = LHS->getType(); // The operand type. 2336 if (!OpTy->isIntOrIntVectorTy(1)) 2337 return nullptr; 2338 2339 // A boolean compared to true/false can be simplified in 14 out of the 20 2340 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2341 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2342 if (match(RHS, m_Zero())) { 2343 switch (Pred) { 2344 case CmpInst::ICMP_NE: // X != 0 -> X 2345 case CmpInst::ICMP_UGT: // X >u 0 -> X 2346 case CmpInst::ICMP_SLT: // X <s 0 -> X 2347 return LHS; 2348 2349 case CmpInst::ICMP_ULT: // X <u 0 -> false 2350 case CmpInst::ICMP_SGT: // X >s 0 -> false 2351 return getFalse(ITy); 2352 2353 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2354 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2355 return getTrue(ITy); 2356 2357 default: break; 2358 } 2359 } else if (match(RHS, m_One())) { 2360 switch (Pred) { 2361 case CmpInst::ICMP_EQ: // X == 1 -> X 2362 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2363 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2364 return LHS; 2365 2366 case CmpInst::ICMP_UGT: // X >u 1 -> false 2367 case CmpInst::ICMP_SLT: // X <s -1 -> false 2368 return getFalse(ITy); 2369 2370 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2371 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2372 return getTrue(ITy); 2373 2374 default: break; 2375 } 2376 } 2377 2378 switch (Pred) { 2379 default: 2380 break; 2381 case ICmpInst::ICMP_UGE: 2382 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2383 return getTrue(ITy); 2384 break; 2385 case ICmpInst::ICMP_SGE: 2386 /// For signed comparison, the values for an i1 are 0 and -1 2387 /// respectively. This maps into a truth table of: 2388 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2389 /// 0 | 0 | 1 (0 >= 0) | 1 2390 /// 0 | 1 | 1 (0 >= -1) | 1 2391 /// 1 | 0 | 0 (-1 >= 0) | 0 2392 /// 1 | 1 | 1 (-1 >= -1) | 1 2393 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2394 return getTrue(ITy); 2395 break; 2396 case ICmpInst::ICMP_ULE: 2397 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2398 return getTrue(ITy); 2399 break; 2400 } 2401 2402 return nullptr; 2403 } 2404 2405 /// Try hard to fold icmp with zero RHS because this is a common case. 2406 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2407 Value *RHS, const SimplifyQuery &Q) { 2408 if (!match(RHS, m_Zero())) 2409 return nullptr; 2410 2411 Type *ITy = GetCompareTy(LHS); // The return type. 2412 switch (Pred) { 2413 default: 2414 llvm_unreachable("Unknown ICmp predicate!"); 2415 case ICmpInst::ICMP_ULT: 2416 return getFalse(ITy); 2417 case ICmpInst::ICMP_UGE: 2418 return getTrue(ITy); 2419 case ICmpInst::ICMP_EQ: 2420 case ICmpInst::ICMP_ULE: 2421 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2422 return getFalse(ITy); 2423 break; 2424 case ICmpInst::ICMP_NE: 2425 case ICmpInst::ICMP_UGT: 2426 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2427 return getTrue(ITy); 2428 break; 2429 case ICmpInst::ICMP_SLT: { 2430 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2431 if (LHSKnown.isNegative()) 2432 return getTrue(ITy); 2433 if (LHSKnown.isNonNegative()) 2434 return getFalse(ITy); 2435 break; 2436 } 2437 case ICmpInst::ICMP_SLE: { 2438 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2439 if (LHSKnown.isNegative()) 2440 return getTrue(ITy); 2441 if (LHSKnown.isNonNegative() && 2442 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2443 return getFalse(ITy); 2444 break; 2445 } 2446 case ICmpInst::ICMP_SGE: { 2447 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2448 if (LHSKnown.isNegative()) 2449 return getFalse(ITy); 2450 if (LHSKnown.isNonNegative()) 2451 return getTrue(ITy); 2452 break; 2453 } 2454 case ICmpInst::ICMP_SGT: { 2455 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2456 if (LHSKnown.isNegative()) 2457 return getFalse(ITy); 2458 if (LHSKnown.isNonNegative() && 2459 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2460 return getTrue(ITy); 2461 break; 2462 } 2463 } 2464 2465 return nullptr; 2466 } 2467 2468 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2469 Value *RHS, const InstrInfoQuery &IIQ) { 2470 Type *ITy = GetCompareTy(RHS); // The return type. 2471 2472 Value *X; 2473 // Sign-bit checks can be optimized to true/false after unsigned 2474 // floating-point casts: 2475 // icmp slt (bitcast (uitofp X)), 0 --> false 2476 // icmp sgt (bitcast (uitofp X)), -1 --> true 2477 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2478 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2479 return ConstantInt::getFalse(ITy); 2480 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2481 return ConstantInt::getTrue(ITy); 2482 } 2483 2484 const APInt *C; 2485 if (!match(RHS, m_APInt(C))) 2486 return nullptr; 2487 2488 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2489 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2490 if (RHS_CR.isEmptySet()) 2491 return ConstantInt::getFalse(ITy); 2492 if (RHS_CR.isFullSet()) 2493 return ConstantInt::getTrue(ITy); 2494 2495 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo); 2496 if (!LHS_CR.isFullSet()) { 2497 if (RHS_CR.contains(LHS_CR)) 2498 return ConstantInt::getTrue(ITy); 2499 if (RHS_CR.inverse().contains(LHS_CR)) 2500 return ConstantInt::getFalse(ITy); 2501 } 2502 2503 return nullptr; 2504 } 2505 2506 /// TODO: A large part of this logic is duplicated in InstCombine's 2507 /// foldICmpBinOp(). We should be able to share that and avoid the code 2508 /// duplication. 2509 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2510 Value *RHS, const SimplifyQuery &Q, 2511 unsigned MaxRecurse) { 2512 Type *ITy = GetCompareTy(LHS); // The return type. 2513 2514 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2515 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2516 if (MaxRecurse && (LBO || RBO)) { 2517 // Analyze the case when either LHS or RHS is an add instruction. 2518 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2519 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2520 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2521 if (LBO && LBO->getOpcode() == Instruction::Add) { 2522 A = LBO->getOperand(0); 2523 B = LBO->getOperand(1); 2524 NoLHSWrapProblem = 2525 ICmpInst::isEquality(Pred) || 2526 (CmpInst::isUnsigned(Pred) && 2527 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 2528 (CmpInst::isSigned(Pred) && 2529 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 2530 } 2531 if (RBO && RBO->getOpcode() == Instruction::Add) { 2532 C = RBO->getOperand(0); 2533 D = RBO->getOperand(1); 2534 NoRHSWrapProblem = 2535 ICmpInst::isEquality(Pred) || 2536 (CmpInst::isUnsigned(Pred) && 2537 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 2538 (CmpInst::isSigned(Pred) && 2539 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 2540 } 2541 2542 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2543 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2544 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2545 Constant::getNullValue(RHS->getType()), Q, 2546 MaxRecurse - 1)) 2547 return V; 2548 2549 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2550 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2551 if (Value *V = 2552 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2553 C == LHS ? D : C, Q, MaxRecurse - 1)) 2554 return V; 2555 2556 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2557 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2558 NoRHSWrapProblem) { 2559 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2560 Value *Y, *Z; 2561 if (A == C) { 2562 // C + B == C + D -> B == D 2563 Y = B; 2564 Z = D; 2565 } else if (A == D) { 2566 // D + B == C + D -> B == C 2567 Y = B; 2568 Z = C; 2569 } else if (B == C) { 2570 // A + C == C + D -> A == D 2571 Y = A; 2572 Z = D; 2573 } else { 2574 assert(B == D); 2575 // A + D == C + D -> A == C 2576 Y = A; 2577 Z = C; 2578 } 2579 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2580 return V; 2581 } 2582 } 2583 2584 { 2585 Value *Y = nullptr; 2586 // icmp pred (or X, Y), X 2587 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2588 if (Pred == ICmpInst::ICMP_ULT) 2589 return getFalse(ITy); 2590 if (Pred == ICmpInst::ICMP_UGE) 2591 return getTrue(ITy); 2592 2593 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2594 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2595 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2596 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2597 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2598 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2599 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2600 } 2601 } 2602 // icmp pred X, (or X, Y) 2603 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2604 if (Pred == ICmpInst::ICMP_ULE) 2605 return getTrue(ITy); 2606 if (Pred == ICmpInst::ICMP_UGT) 2607 return getFalse(ITy); 2608 2609 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2610 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2611 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2612 if (LHSKnown.isNonNegative() && YKnown.isNegative()) 2613 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2614 if (LHSKnown.isNegative() || YKnown.isNonNegative()) 2615 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2616 } 2617 } 2618 } 2619 2620 // icmp pred (and X, Y), X 2621 if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2622 if (Pred == ICmpInst::ICMP_UGT) 2623 return getFalse(ITy); 2624 if (Pred == ICmpInst::ICMP_ULE) 2625 return getTrue(ITy); 2626 } 2627 // icmp pred X, (and X, Y) 2628 if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) { 2629 if (Pred == ICmpInst::ICMP_UGE) 2630 return getTrue(ITy); 2631 if (Pred == ICmpInst::ICMP_ULT) 2632 return getFalse(ITy); 2633 } 2634 2635 // 0 - (zext X) pred C 2636 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2637 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2638 if (RHSC->getValue().isStrictlyPositive()) { 2639 if (Pred == ICmpInst::ICMP_SLT) 2640 return ConstantInt::getTrue(RHSC->getContext()); 2641 if (Pred == ICmpInst::ICMP_SGE) 2642 return ConstantInt::getFalse(RHSC->getContext()); 2643 if (Pred == ICmpInst::ICMP_EQ) 2644 return ConstantInt::getFalse(RHSC->getContext()); 2645 if (Pred == ICmpInst::ICMP_NE) 2646 return ConstantInt::getTrue(RHSC->getContext()); 2647 } 2648 if (RHSC->getValue().isNonNegative()) { 2649 if (Pred == ICmpInst::ICMP_SLE) 2650 return ConstantInt::getTrue(RHSC->getContext()); 2651 if (Pred == ICmpInst::ICMP_SGT) 2652 return ConstantInt::getFalse(RHSC->getContext()); 2653 } 2654 } 2655 } 2656 2657 // icmp pred (urem X, Y), Y 2658 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2659 switch (Pred) { 2660 default: 2661 break; 2662 case ICmpInst::ICMP_SGT: 2663 case ICmpInst::ICMP_SGE: { 2664 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2665 if (!Known.isNonNegative()) 2666 break; 2667 LLVM_FALLTHROUGH; 2668 } 2669 case ICmpInst::ICMP_EQ: 2670 case ICmpInst::ICMP_UGT: 2671 case ICmpInst::ICMP_UGE: 2672 return getFalse(ITy); 2673 case ICmpInst::ICMP_SLT: 2674 case ICmpInst::ICMP_SLE: { 2675 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2676 if (!Known.isNonNegative()) 2677 break; 2678 LLVM_FALLTHROUGH; 2679 } 2680 case ICmpInst::ICMP_NE: 2681 case ICmpInst::ICMP_ULT: 2682 case ICmpInst::ICMP_ULE: 2683 return getTrue(ITy); 2684 } 2685 } 2686 2687 // icmp pred X, (urem Y, X) 2688 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2689 switch (Pred) { 2690 default: 2691 break; 2692 case ICmpInst::ICMP_SGT: 2693 case ICmpInst::ICMP_SGE: { 2694 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2695 if (!Known.isNonNegative()) 2696 break; 2697 LLVM_FALLTHROUGH; 2698 } 2699 case ICmpInst::ICMP_NE: 2700 case ICmpInst::ICMP_UGT: 2701 case ICmpInst::ICMP_UGE: 2702 return getTrue(ITy); 2703 case ICmpInst::ICMP_SLT: 2704 case ICmpInst::ICMP_SLE: { 2705 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2706 if (!Known.isNonNegative()) 2707 break; 2708 LLVM_FALLTHROUGH; 2709 } 2710 case ICmpInst::ICMP_EQ: 2711 case ICmpInst::ICMP_ULT: 2712 case ICmpInst::ICMP_ULE: 2713 return getFalse(ITy); 2714 } 2715 } 2716 2717 // x >> y <=u x 2718 // x udiv y <=u x. 2719 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2720 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2721 // icmp pred (X op Y), X 2722 if (Pred == ICmpInst::ICMP_UGT) 2723 return getFalse(ITy); 2724 if (Pred == ICmpInst::ICMP_ULE) 2725 return getTrue(ITy); 2726 } 2727 2728 // x >=u x >> y 2729 // x >=u x udiv y. 2730 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2731 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2732 // icmp pred X, (X op Y) 2733 if (Pred == ICmpInst::ICMP_ULT) 2734 return getFalse(ITy); 2735 if (Pred == ICmpInst::ICMP_UGE) 2736 return getTrue(ITy); 2737 } 2738 2739 // handle: 2740 // CI2 << X == CI 2741 // CI2 << X != CI 2742 // 2743 // where CI2 is a power of 2 and CI isn't 2744 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2745 const APInt *CI2Val, *CIVal = &CI->getValue(); 2746 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2747 CI2Val->isPowerOf2()) { 2748 if (!CIVal->isPowerOf2()) { 2749 // CI2 << X can equal zero in some circumstances, 2750 // this simplification is unsafe if CI is zero. 2751 // 2752 // We know it is safe if: 2753 // - The shift is nsw, we can't shift out the one bit. 2754 // - The shift is nuw, we can't shift out the one bit. 2755 // - CI2 is one 2756 // - CI isn't zero 2757 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 2758 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 2759 CI2Val->isOneValue() || !CI->isZero()) { 2760 if (Pred == ICmpInst::ICMP_EQ) 2761 return ConstantInt::getFalse(RHS->getContext()); 2762 if (Pred == ICmpInst::ICMP_NE) 2763 return ConstantInt::getTrue(RHS->getContext()); 2764 } 2765 } 2766 if (CIVal->isSignMask() && CI2Val->isOneValue()) { 2767 if (Pred == ICmpInst::ICMP_UGT) 2768 return ConstantInt::getFalse(RHS->getContext()); 2769 if (Pred == ICmpInst::ICMP_ULE) 2770 return ConstantInt::getTrue(RHS->getContext()); 2771 } 2772 } 2773 } 2774 2775 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2776 LBO->getOperand(1) == RBO->getOperand(1)) { 2777 switch (LBO->getOpcode()) { 2778 default: 2779 break; 2780 case Instruction::UDiv: 2781 case Instruction::LShr: 2782 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 2783 !Q.IIQ.isExact(RBO)) 2784 break; 2785 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2786 RBO->getOperand(0), Q, MaxRecurse - 1)) 2787 return V; 2788 break; 2789 case Instruction::SDiv: 2790 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 2791 !Q.IIQ.isExact(RBO)) 2792 break; 2793 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2794 RBO->getOperand(0), Q, MaxRecurse - 1)) 2795 return V; 2796 break; 2797 case Instruction::AShr: 2798 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 2799 break; 2800 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2801 RBO->getOperand(0), Q, MaxRecurse - 1)) 2802 return V; 2803 break; 2804 case Instruction::Shl: { 2805 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 2806 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 2807 if (!NUW && !NSW) 2808 break; 2809 if (!NSW && ICmpInst::isSigned(Pred)) 2810 break; 2811 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2812 RBO->getOperand(0), Q, MaxRecurse - 1)) 2813 return V; 2814 break; 2815 } 2816 } 2817 } 2818 return nullptr; 2819 } 2820 2821 /// Simplify integer comparisons where at least one operand of the compare 2822 /// matches an integer min/max idiom. 2823 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 2824 Value *RHS, const SimplifyQuery &Q, 2825 unsigned MaxRecurse) { 2826 Type *ITy = GetCompareTy(LHS); // The return type. 2827 Value *A, *B; 2828 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2829 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2830 2831 // Signed variants on "max(a,b)>=a -> true". 2832 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2833 if (A != RHS) 2834 std::swap(A, B); // smax(A, B) pred A. 2835 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2836 // We analyze this as smax(A, B) pred A. 2837 P = Pred; 2838 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2839 (A == LHS || B == LHS)) { 2840 if (A != LHS) 2841 std::swap(A, B); // A pred smax(A, B). 2842 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2843 // We analyze this as smax(A, B) swapped-pred A. 2844 P = CmpInst::getSwappedPredicate(Pred); 2845 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2846 (A == RHS || B == RHS)) { 2847 if (A != RHS) 2848 std::swap(A, B); // smin(A, B) pred A. 2849 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2850 // We analyze this as smax(-A, -B) swapped-pred -A. 2851 // Note that we do not need to actually form -A or -B thanks to EqP. 2852 P = CmpInst::getSwappedPredicate(Pred); 2853 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2854 (A == LHS || B == LHS)) { 2855 if (A != LHS) 2856 std::swap(A, B); // A pred smin(A, B). 2857 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2858 // We analyze this as smax(-A, -B) pred -A. 2859 // Note that we do not need to actually form -A or -B thanks to EqP. 2860 P = Pred; 2861 } 2862 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2863 // Cases correspond to "max(A, B) p A". 2864 switch (P) { 2865 default: 2866 break; 2867 case CmpInst::ICMP_EQ: 2868 case CmpInst::ICMP_SLE: 2869 // Equivalent to "A EqP B". This may be the same as the condition tested 2870 // in the max/min; if so, we can just return that. 2871 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2872 return V; 2873 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2874 return V; 2875 // Otherwise, see if "A EqP B" simplifies. 2876 if (MaxRecurse) 2877 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2878 return V; 2879 break; 2880 case CmpInst::ICMP_NE: 2881 case CmpInst::ICMP_SGT: { 2882 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2883 // Equivalent to "A InvEqP B". This may be the same as the condition 2884 // tested in the max/min; if so, we can just return that. 2885 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2886 return V; 2887 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2888 return V; 2889 // Otherwise, see if "A InvEqP B" simplifies. 2890 if (MaxRecurse) 2891 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2892 return V; 2893 break; 2894 } 2895 case CmpInst::ICMP_SGE: 2896 // Always true. 2897 return getTrue(ITy); 2898 case CmpInst::ICMP_SLT: 2899 // Always false. 2900 return getFalse(ITy); 2901 } 2902 } 2903 2904 // Unsigned variants on "max(a,b)>=a -> true". 2905 P = CmpInst::BAD_ICMP_PREDICATE; 2906 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2907 if (A != RHS) 2908 std::swap(A, B); // umax(A, B) pred A. 2909 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2910 // We analyze this as umax(A, B) pred A. 2911 P = Pred; 2912 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2913 (A == LHS || B == LHS)) { 2914 if (A != LHS) 2915 std::swap(A, B); // A pred umax(A, B). 2916 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2917 // We analyze this as umax(A, B) swapped-pred A. 2918 P = CmpInst::getSwappedPredicate(Pred); 2919 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2920 (A == RHS || B == RHS)) { 2921 if (A != RHS) 2922 std::swap(A, B); // umin(A, B) pred A. 2923 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2924 // We analyze this as umax(-A, -B) swapped-pred -A. 2925 // Note that we do not need to actually form -A or -B thanks to EqP. 2926 P = CmpInst::getSwappedPredicate(Pred); 2927 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2928 (A == LHS || B == LHS)) { 2929 if (A != LHS) 2930 std::swap(A, B); // A pred umin(A, B). 2931 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2932 // We analyze this as umax(-A, -B) pred -A. 2933 // Note that we do not need to actually form -A or -B thanks to EqP. 2934 P = Pred; 2935 } 2936 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2937 // Cases correspond to "max(A, B) p A". 2938 switch (P) { 2939 default: 2940 break; 2941 case CmpInst::ICMP_EQ: 2942 case CmpInst::ICMP_ULE: 2943 // Equivalent to "A EqP B". This may be the same as the condition tested 2944 // in the max/min; if so, we can just return that. 2945 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2946 return V; 2947 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2948 return V; 2949 // Otherwise, see if "A EqP B" simplifies. 2950 if (MaxRecurse) 2951 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2952 return V; 2953 break; 2954 case CmpInst::ICMP_NE: 2955 case CmpInst::ICMP_UGT: { 2956 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2957 // Equivalent to "A InvEqP B". This may be the same as the condition 2958 // tested in the max/min; if so, we can just return that. 2959 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2960 return V; 2961 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2962 return V; 2963 // Otherwise, see if "A InvEqP B" simplifies. 2964 if (MaxRecurse) 2965 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2966 return V; 2967 break; 2968 } 2969 case CmpInst::ICMP_UGE: 2970 // Always true. 2971 return getTrue(ITy); 2972 case CmpInst::ICMP_ULT: 2973 // Always false. 2974 return getFalse(ITy); 2975 } 2976 } 2977 2978 // Variants on "max(x,y) >= min(x,z)". 2979 Value *C, *D; 2980 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 2981 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 2982 (A == C || A == D || B == C || B == D)) { 2983 // max(x, ?) pred min(x, ?). 2984 if (Pred == CmpInst::ICMP_SGE) 2985 // Always true. 2986 return getTrue(ITy); 2987 if (Pred == CmpInst::ICMP_SLT) 2988 // Always false. 2989 return getFalse(ITy); 2990 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2991 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 2992 (A == C || A == D || B == C || B == D)) { 2993 // min(x, ?) pred max(x, ?). 2994 if (Pred == CmpInst::ICMP_SLE) 2995 // Always true. 2996 return getTrue(ITy); 2997 if (Pred == CmpInst::ICMP_SGT) 2998 // Always false. 2999 return getFalse(ITy); 3000 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3001 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3002 (A == C || A == D || B == C || B == D)) { 3003 // max(x, ?) pred min(x, ?). 3004 if (Pred == CmpInst::ICMP_UGE) 3005 // Always true. 3006 return getTrue(ITy); 3007 if (Pred == CmpInst::ICMP_ULT) 3008 // Always false. 3009 return getFalse(ITy); 3010 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3011 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3012 (A == C || A == D || B == C || B == D)) { 3013 // min(x, ?) pred max(x, ?). 3014 if (Pred == CmpInst::ICMP_ULE) 3015 // Always true. 3016 return getTrue(ITy); 3017 if (Pred == CmpInst::ICMP_UGT) 3018 // Always false. 3019 return getFalse(ITy); 3020 } 3021 3022 return nullptr; 3023 } 3024 3025 /// Given operands for an ICmpInst, see if we can fold the result. 3026 /// If not, this returns null. 3027 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3028 const SimplifyQuery &Q, unsigned MaxRecurse) { 3029 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3030 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3031 3032 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3033 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3034 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3035 3036 // If we have a constant, make sure it is on the RHS. 3037 std::swap(LHS, RHS); 3038 Pred = CmpInst::getSwappedPredicate(Pred); 3039 } 3040 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3041 3042 Type *ITy = GetCompareTy(LHS); // The return type. 3043 3044 // For EQ and NE, we can always pick a value for the undef to make the 3045 // predicate pass or fail, so we can return undef. 3046 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3047 if (isa<UndefValue>(RHS) && ICmpInst::isEquality(Pred)) 3048 return UndefValue::get(ITy); 3049 3050 // icmp X, X -> true/false 3051 // icmp X, undef -> true/false because undef could be X. 3052 if (LHS == RHS || isa<UndefValue>(RHS)) 3053 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3054 3055 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3056 return V; 3057 3058 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3059 return V; 3060 3061 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3062 return V; 3063 3064 // If both operands have range metadata, use the metadata 3065 // to simplify the comparison. 3066 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3067 auto RHS_Instr = cast<Instruction>(RHS); 3068 auto LHS_Instr = cast<Instruction>(LHS); 3069 3070 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3071 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3072 auto RHS_CR = getConstantRangeFromMetadata( 3073 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3074 auto LHS_CR = getConstantRangeFromMetadata( 3075 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3076 3077 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3078 if (Satisfied_CR.contains(LHS_CR)) 3079 return ConstantInt::getTrue(RHS->getContext()); 3080 3081 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3082 CmpInst::getInversePredicate(Pred), RHS_CR); 3083 if (InversedSatisfied_CR.contains(LHS_CR)) 3084 return ConstantInt::getFalse(RHS->getContext()); 3085 } 3086 } 3087 3088 // Compare of cast, for example (zext X) != 0 -> X != 0 3089 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3090 Instruction *LI = cast<CastInst>(LHS); 3091 Value *SrcOp = LI->getOperand(0); 3092 Type *SrcTy = SrcOp->getType(); 3093 Type *DstTy = LI->getType(); 3094 3095 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3096 // if the integer type is the same size as the pointer type. 3097 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3098 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3099 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3100 // Transfer the cast to the constant. 3101 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3102 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3103 Q, MaxRecurse-1)) 3104 return V; 3105 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3106 if (RI->getOperand(0)->getType() == SrcTy) 3107 // Compare without the cast. 3108 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3109 Q, MaxRecurse-1)) 3110 return V; 3111 } 3112 } 3113 3114 if (isa<ZExtInst>(LHS)) { 3115 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3116 // same type. 3117 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3118 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3119 // Compare X and Y. Note that signed predicates become unsigned. 3120 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3121 SrcOp, RI->getOperand(0), Q, 3122 MaxRecurse-1)) 3123 return V; 3124 } 3125 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3126 // too. If not, then try to deduce the result of the comparison. 3127 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3128 // Compute the constant that would happen if we truncated to SrcTy then 3129 // reextended to DstTy. 3130 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3131 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3132 3133 // If the re-extended constant didn't change then this is effectively 3134 // also a case of comparing two zero-extended values. 3135 if (RExt == CI && MaxRecurse) 3136 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3137 SrcOp, Trunc, Q, MaxRecurse-1)) 3138 return V; 3139 3140 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3141 // there. Use this to work out the result of the comparison. 3142 if (RExt != CI) { 3143 switch (Pred) { 3144 default: llvm_unreachable("Unknown ICmp predicate!"); 3145 // LHS <u RHS. 3146 case ICmpInst::ICMP_EQ: 3147 case ICmpInst::ICMP_UGT: 3148 case ICmpInst::ICMP_UGE: 3149 return ConstantInt::getFalse(CI->getContext()); 3150 3151 case ICmpInst::ICMP_NE: 3152 case ICmpInst::ICMP_ULT: 3153 case ICmpInst::ICMP_ULE: 3154 return ConstantInt::getTrue(CI->getContext()); 3155 3156 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3157 // is non-negative then LHS <s RHS. 3158 case ICmpInst::ICMP_SGT: 3159 case ICmpInst::ICMP_SGE: 3160 return CI->getValue().isNegative() ? 3161 ConstantInt::getTrue(CI->getContext()) : 3162 ConstantInt::getFalse(CI->getContext()); 3163 3164 case ICmpInst::ICMP_SLT: 3165 case ICmpInst::ICMP_SLE: 3166 return CI->getValue().isNegative() ? 3167 ConstantInt::getFalse(CI->getContext()) : 3168 ConstantInt::getTrue(CI->getContext()); 3169 } 3170 } 3171 } 3172 } 3173 3174 if (isa<SExtInst>(LHS)) { 3175 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3176 // same type. 3177 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3178 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3179 // Compare X and Y. Note that the predicate does not change. 3180 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3181 Q, MaxRecurse-1)) 3182 return V; 3183 } 3184 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3185 // too. If not, then try to deduce the result of the comparison. 3186 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3187 // Compute the constant that would happen if we truncated to SrcTy then 3188 // reextended to DstTy. 3189 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3190 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3191 3192 // If the re-extended constant didn't change then this is effectively 3193 // also a case of comparing two sign-extended values. 3194 if (RExt == CI && MaxRecurse) 3195 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3196 return V; 3197 3198 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3199 // bits there. Use this to work out the result of the comparison. 3200 if (RExt != CI) { 3201 switch (Pred) { 3202 default: llvm_unreachable("Unknown ICmp predicate!"); 3203 case ICmpInst::ICMP_EQ: 3204 return ConstantInt::getFalse(CI->getContext()); 3205 case ICmpInst::ICMP_NE: 3206 return ConstantInt::getTrue(CI->getContext()); 3207 3208 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3209 // LHS >s RHS. 3210 case ICmpInst::ICMP_SGT: 3211 case ICmpInst::ICMP_SGE: 3212 return CI->getValue().isNegative() ? 3213 ConstantInt::getTrue(CI->getContext()) : 3214 ConstantInt::getFalse(CI->getContext()); 3215 case ICmpInst::ICMP_SLT: 3216 case ICmpInst::ICMP_SLE: 3217 return CI->getValue().isNegative() ? 3218 ConstantInt::getFalse(CI->getContext()) : 3219 ConstantInt::getTrue(CI->getContext()); 3220 3221 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3222 // LHS >u RHS. 3223 case ICmpInst::ICMP_UGT: 3224 case ICmpInst::ICMP_UGE: 3225 // Comparison is true iff the LHS <s 0. 3226 if (MaxRecurse) 3227 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3228 Constant::getNullValue(SrcTy), 3229 Q, MaxRecurse-1)) 3230 return V; 3231 break; 3232 case ICmpInst::ICMP_ULT: 3233 case ICmpInst::ICMP_ULE: 3234 // Comparison is true iff the LHS >=s 0. 3235 if (MaxRecurse) 3236 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3237 Constant::getNullValue(SrcTy), 3238 Q, MaxRecurse-1)) 3239 return V; 3240 break; 3241 } 3242 } 3243 } 3244 } 3245 } 3246 3247 // icmp eq|ne X, Y -> false|true if X != Y 3248 if (ICmpInst::isEquality(Pred) && 3249 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3250 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3251 } 3252 3253 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3254 return V; 3255 3256 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3257 return V; 3258 3259 // Simplify comparisons of related pointers using a powerful, recursive 3260 // GEP-walk when we have target data available.. 3261 if (LHS->getType()->isPointerTy()) 3262 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3263 Q.IIQ, LHS, RHS)) 3264 return C; 3265 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3266 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3267 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3268 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3269 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3270 Q.DL.getTypeSizeInBits(CRHS->getType())) 3271 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3272 Q.IIQ, CLHS->getPointerOperand(), 3273 CRHS->getPointerOperand())) 3274 return C; 3275 3276 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3277 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3278 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3279 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3280 (ICmpInst::isEquality(Pred) || 3281 (GLHS->isInBounds() && GRHS->isInBounds() && 3282 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3283 // The bases are equal and the indices are constant. Build a constant 3284 // expression GEP with the same indices and a null base pointer to see 3285 // what constant folding can make out of it. 3286 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3287 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3288 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3289 GLHS->getSourceElementType(), Null, IndicesLHS); 3290 3291 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3292 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3293 GLHS->getSourceElementType(), Null, IndicesRHS); 3294 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3295 } 3296 } 3297 } 3298 3299 // If the comparison is with the result of a select instruction, check whether 3300 // comparing with either branch of the select always yields the same value. 3301 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3302 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3303 return V; 3304 3305 // If the comparison is with the result of a phi instruction, check whether 3306 // doing the compare with each incoming phi value yields a common result. 3307 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3308 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3309 return V; 3310 3311 return nullptr; 3312 } 3313 3314 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3315 const SimplifyQuery &Q) { 3316 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3317 } 3318 3319 /// Given operands for an FCmpInst, see if we can fold the result. 3320 /// If not, this returns null. 3321 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3322 FastMathFlags FMF, const SimplifyQuery &Q, 3323 unsigned MaxRecurse) { 3324 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3325 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3326 3327 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3328 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3329 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3330 3331 // If we have a constant, make sure it is on the RHS. 3332 std::swap(LHS, RHS); 3333 Pred = CmpInst::getSwappedPredicate(Pred); 3334 } 3335 3336 // Fold trivial predicates. 3337 Type *RetTy = GetCompareTy(LHS); 3338 if (Pred == FCmpInst::FCMP_FALSE) 3339 return getFalse(RetTy); 3340 if (Pred == FCmpInst::FCMP_TRUE) 3341 return getTrue(RetTy); 3342 3343 // Fold (un)ordered comparison if we can determine there are no NaNs. 3344 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3345 if (FMF.noNaNs() || 3346 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3347 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3348 3349 // NaN is unordered; NaN is not ordered. 3350 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3351 "Comparison must be either ordered or unordered"); 3352 if (match(RHS, m_NaN())) 3353 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3354 3355 // fcmp pred x, undef and fcmp pred undef, x 3356 // fold to true if unordered, false if ordered 3357 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3358 // Choosing NaN for the undef will always make unordered comparison succeed 3359 // and ordered comparison fail. 3360 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3361 } 3362 3363 // fcmp x,x -> true/false. Not all compares are foldable. 3364 if (LHS == RHS) { 3365 if (CmpInst::isTrueWhenEqual(Pred)) 3366 return getTrue(RetTy); 3367 if (CmpInst::isFalseWhenEqual(Pred)) 3368 return getFalse(RetTy); 3369 } 3370 3371 // Handle fcmp with constant RHS. 3372 // TODO: Use match with a specific FP value, so these work with vectors with 3373 // undef lanes. 3374 const APFloat *C; 3375 if (match(RHS, m_APFloat(C))) { 3376 // Check whether the constant is an infinity. 3377 if (C->isInfinity()) { 3378 if (C->isNegative()) { 3379 switch (Pred) { 3380 case FCmpInst::FCMP_OLT: 3381 // No value is ordered and less than negative infinity. 3382 return getFalse(RetTy); 3383 case FCmpInst::FCMP_UGE: 3384 // All values are unordered with or at least negative infinity. 3385 return getTrue(RetTy); 3386 default: 3387 break; 3388 } 3389 } else { 3390 switch (Pred) { 3391 case FCmpInst::FCMP_OGT: 3392 // No value is ordered and greater than infinity. 3393 return getFalse(RetTy); 3394 case FCmpInst::FCMP_ULE: 3395 // All values are unordered with and at most infinity. 3396 return getTrue(RetTy); 3397 default: 3398 break; 3399 } 3400 } 3401 } 3402 if (C->isNegative() && !C->isNegZero()) { 3403 assert(!C->isNaN() && "Unexpected NaN constant!"); 3404 // TODO: We can catch more cases by using a range check rather than 3405 // relying on CannotBeOrderedLessThanZero. 3406 switch (Pred) { 3407 case FCmpInst::FCMP_UGE: 3408 case FCmpInst::FCMP_UGT: 3409 case FCmpInst::FCMP_UNE: 3410 // (X >= 0) implies (X > C) when (C < 0) 3411 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3412 return getTrue(RetTy); 3413 break; 3414 case FCmpInst::FCMP_OEQ: 3415 case FCmpInst::FCMP_OLE: 3416 case FCmpInst::FCMP_OLT: 3417 // (X >= 0) implies !(X < C) when (C < 0) 3418 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3419 return getFalse(RetTy); 3420 break; 3421 default: 3422 break; 3423 } 3424 } 3425 3426 // Check comparison of [minnum/maxnum with constant] with other constant. 3427 const APFloat *C2; 3428 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 3429 C2->compare(*C) == APFloat::cmpLessThan) || 3430 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 3431 C2->compare(*C) == APFloat::cmpGreaterThan)) { 3432 bool IsMaxNum = 3433 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 3434 // The ordered relationship and minnum/maxnum guarantee that we do not 3435 // have NaN constants, so ordered/unordered preds are handled the same. 3436 switch (Pred) { 3437 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 3438 // minnum(X, LesserC) == C --> false 3439 // maxnum(X, GreaterC) == C --> false 3440 return getFalse(RetTy); 3441 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 3442 // minnum(X, LesserC) != C --> true 3443 // maxnum(X, GreaterC) != C --> true 3444 return getTrue(RetTy); 3445 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 3446 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 3447 // minnum(X, LesserC) >= C --> false 3448 // minnum(X, LesserC) > C --> false 3449 // maxnum(X, GreaterC) >= C --> true 3450 // maxnum(X, GreaterC) > C --> true 3451 return ConstantInt::get(RetTy, IsMaxNum); 3452 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 3453 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 3454 // minnum(X, LesserC) <= C --> true 3455 // minnum(X, LesserC) < C --> true 3456 // maxnum(X, GreaterC) <= C --> false 3457 // maxnum(X, GreaterC) < C --> false 3458 return ConstantInt::get(RetTy, !IsMaxNum); 3459 default: 3460 // TRUE/FALSE/ORD/UNO should be handled before this. 3461 llvm_unreachable("Unexpected fcmp predicate"); 3462 } 3463 } 3464 } 3465 3466 if (match(RHS, m_AnyZeroFP())) { 3467 switch (Pred) { 3468 case FCmpInst::FCMP_OGE: 3469 case FCmpInst::FCMP_ULT: 3470 // Positive or zero X >= 0.0 --> true 3471 // Positive or zero X < 0.0 --> false 3472 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 3473 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3474 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 3475 break; 3476 case FCmpInst::FCMP_UGE: 3477 case FCmpInst::FCMP_OLT: 3478 // Positive or zero or nan X >= 0.0 --> true 3479 // Positive or zero or nan X < 0.0 --> false 3480 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3481 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 3482 break; 3483 default: 3484 break; 3485 } 3486 } 3487 3488 // If the comparison is with the result of a select instruction, check whether 3489 // comparing with either branch of the select always yields the same value. 3490 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3491 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3492 return V; 3493 3494 // If the comparison is with the result of a phi instruction, check whether 3495 // doing the compare with each incoming phi value yields a common result. 3496 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3497 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3498 return V; 3499 3500 return nullptr; 3501 } 3502 3503 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3504 FastMathFlags FMF, const SimplifyQuery &Q) { 3505 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3506 } 3507 3508 /// See if V simplifies when its operand Op is replaced with RepOp. 3509 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3510 const SimplifyQuery &Q, 3511 unsigned MaxRecurse) { 3512 // Trivial replacement. 3513 if (V == Op) 3514 return RepOp; 3515 3516 // We cannot replace a constant, and shouldn't even try. 3517 if (isa<Constant>(Op)) 3518 return nullptr; 3519 3520 auto *I = dyn_cast<Instruction>(V); 3521 if (!I) 3522 return nullptr; 3523 3524 // If this is a binary operator, try to simplify it with the replaced op. 3525 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3526 // Consider: 3527 // %cmp = icmp eq i32 %x, 2147483647 3528 // %add = add nsw i32 %x, 1 3529 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3530 // 3531 // We can't replace %sel with %add unless we strip away the flags. 3532 if (isa<OverflowingBinaryOperator>(B)) 3533 if (Q.IIQ.hasNoSignedWrap(B) || Q.IIQ.hasNoUnsignedWrap(B)) 3534 return nullptr; 3535 if (isa<PossiblyExactOperator>(B) && Q.IIQ.isExact(B)) 3536 return nullptr; 3537 3538 if (MaxRecurse) { 3539 if (B->getOperand(0) == Op) 3540 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3541 MaxRecurse - 1); 3542 if (B->getOperand(1) == Op) 3543 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3544 MaxRecurse - 1); 3545 } 3546 } 3547 3548 // Same for CmpInsts. 3549 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3550 if (MaxRecurse) { 3551 if (C->getOperand(0) == Op) 3552 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3553 MaxRecurse - 1); 3554 if (C->getOperand(1) == Op) 3555 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3556 MaxRecurse - 1); 3557 } 3558 } 3559 3560 // Same for GEPs. 3561 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3562 if (MaxRecurse) { 3563 SmallVector<Value *, 8> NewOps(GEP->getNumOperands()); 3564 transform(GEP->operands(), NewOps.begin(), 3565 [&](Value *V) { return V == Op ? RepOp : V; }); 3566 return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q, 3567 MaxRecurse - 1); 3568 } 3569 } 3570 3571 // TODO: We could hand off more cases to instsimplify here. 3572 3573 // If all operands are constant after substituting Op for RepOp then we can 3574 // constant fold the instruction. 3575 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3576 // Build a list of all constant operands. 3577 SmallVector<Constant *, 8> ConstOps; 3578 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3579 if (I->getOperand(i) == Op) 3580 ConstOps.push_back(CRepOp); 3581 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3582 ConstOps.push_back(COp); 3583 else 3584 break; 3585 } 3586 3587 // All operands were constants, fold it. 3588 if (ConstOps.size() == I->getNumOperands()) { 3589 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3590 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3591 ConstOps[1], Q.DL, Q.TLI); 3592 3593 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3594 if (!LI->isVolatile()) 3595 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3596 3597 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3598 } 3599 } 3600 3601 return nullptr; 3602 } 3603 3604 /// Try to simplify a select instruction when its condition operand is an 3605 /// integer comparison where one operand of the compare is a constant. 3606 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3607 const APInt *Y, bool TrueWhenUnset) { 3608 const APInt *C; 3609 3610 // (X & Y) == 0 ? X & ~Y : X --> X 3611 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3612 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3613 *Y == ~*C) 3614 return TrueWhenUnset ? FalseVal : TrueVal; 3615 3616 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3617 // (X & Y) != 0 ? X : X & ~Y --> X 3618 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3619 *Y == ~*C) 3620 return TrueWhenUnset ? FalseVal : TrueVal; 3621 3622 if (Y->isPowerOf2()) { 3623 // (X & Y) == 0 ? X | Y : X --> X | Y 3624 // (X & Y) != 0 ? X | Y : X --> X 3625 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3626 *Y == *C) 3627 return TrueWhenUnset ? TrueVal : FalseVal; 3628 3629 // (X & Y) == 0 ? X : X | Y --> X 3630 // (X & Y) != 0 ? X : X | Y --> X | Y 3631 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3632 *Y == *C) 3633 return TrueWhenUnset ? TrueVal : FalseVal; 3634 } 3635 3636 return nullptr; 3637 } 3638 3639 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3640 /// eq/ne. 3641 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 3642 ICmpInst::Predicate Pred, 3643 Value *TrueVal, Value *FalseVal) { 3644 Value *X; 3645 APInt Mask; 3646 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 3647 return nullptr; 3648 3649 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 3650 Pred == ICmpInst::ICMP_EQ); 3651 } 3652 3653 /// Try to simplify a select instruction when its condition operand is an 3654 /// integer comparison. 3655 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3656 Value *FalseVal, const SimplifyQuery &Q, 3657 unsigned MaxRecurse) { 3658 ICmpInst::Predicate Pred; 3659 Value *CmpLHS, *CmpRHS; 3660 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3661 return nullptr; 3662 3663 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3664 Value *X; 3665 const APInt *Y; 3666 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3667 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3668 Pred == ICmpInst::ICMP_EQ)) 3669 return V; 3670 3671 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 3672 Value *ShAmt; 3673 auto isFsh = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), 3674 m_Value(ShAmt)), 3675 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), 3676 m_Value(ShAmt))); 3677 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 3678 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 3679 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt && 3680 Pred == ICmpInst::ICMP_EQ) 3681 return X; 3682 // (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X 3683 // (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X 3684 if (match(FalseVal, isFsh) && TrueVal == X && CmpLHS == ShAmt && 3685 Pred == ICmpInst::ICMP_NE) 3686 return X; 3687 3688 // Test for a zero-shift-guard-op around rotates. These are used to 3689 // avoid UB from oversized shifts in raw IR rotate patterns, but the 3690 // intrinsics do not have that problem. 3691 // We do not allow this transform for the general funnel shift case because 3692 // that would not preserve the poison safety of the original code. 3693 auto isRotate = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), 3694 m_Deferred(X), 3695 m_Value(ShAmt)), 3696 m_Intrinsic<Intrinsic::fshr>(m_Value(X), 3697 m_Deferred(X), 3698 m_Value(ShAmt))); 3699 // (ShAmt != 0) ? fshl(X, X, ShAmt) : X --> fshl(X, X, ShAmt) 3700 // (ShAmt != 0) ? fshr(X, X, ShAmt) : X --> fshr(X, X, ShAmt) 3701 if (match(TrueVal, isRotate) && FalseVal == X && CmpLHS == ShAmt && 3702 Pred == ICmpInst::ICMP_NE) 3703 return TrueVal; 3704 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 3705 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 3706 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 3707 Pred == ICmpInst::ICMP_EQ) 3708 return FalseVal; 3709 } 3710 3711 // Check for other compares that behave like bit test. 3712 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 3713 TrueVal, FalseVal)) 3714 return V; 3715 3716 // If we have an equality comparison, then we know the value in one of the 3717 // arms of the select. See if substituting this value into the arm and 3718 // simplifying the result yields the same value as the other arm. 3719 if (Pred == ICmpInst::ICMP_EQ) { 3720 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3721 TrueVal || 3722 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3723 TrueVal) 3724 return FalseVal; 3725 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3726 FalseVal || 3727 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3728 FalseVal) 3729 return FalseVal; 3730 } else if (Pred == ICmpInst::ICMP_NE) { 3731 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3732 FalseVal || 3733 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3734 FalseVal) 3735 return TrueVal; 3736 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3737 TrueVal || 3738 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3739 TrueVal) 3740 return TrueVal; 3741 } 3742 3743 return nullptr; 3744 } 3745 3746 /// Try to simplify a select instruction when its condition operand is a 3747 /// floating-point comparison. 3748 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F) { 3749 FCmpInst::Predicate Pred; 3750 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 3751 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 3752 return nullptr; 3753 3754 // TODO: The transform may not be valid with -0.0. An incomplete way of 3755 // testing for that possibility is to check if at least one operand is a 3756 // non-zero constant. 3757 const APFloat *C; 3758 if ((match(T, m_APFloat(C)) && C->isNonZero()) || 3759 (match(F, m_APFloat(C)) && C->isNonZero())) { 3760 // (T == F) ? T : F --> F 3761 // (F == T) ? T : F --> F 3762 if (Pred == FCmpInst::FCMP_OEQ) 3763 return F; 3764 3765 // (T != F) ? T : F --> T 3766 // (F != T) ? T : F --> T 3767 if (Pred == FCmpInst::FCMP_UNE) 3768 return T; 3769 } 3770 3771 return nullptr; 3772 } 3773 3774 /// Given operands for a SelectInst, see if we can fold the result. 3775 /// If not, this returns null. 3776 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3777 const SimplifyQuery &Q, unsigned MaxRecurse) { 3778 if (auto *CondC = dyn_cast<Constant>(Cond)) { 3779 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 3780 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 3781 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 3782 3783 // select undef, X, Y -> X or Y 3784 if (isa<UndefValue>(CondC)) 3785 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 3786 3787 // TODO: Vector constants with undef elements don't simplify. 3788 3789 // select true, X, Y -> X 3790 if (CondC->isAllOnesValue()) 3791 return TrueVal; 3792 // select false, X, Y -> Y 3793 if (CondC->isNullValue()) 3794 return FalseVal; 3795 } 3796 3797 // select ?, X, X -> X 3798 if (TrueVal == FalseVal) 3799 return TrueVal; 3800 3801 if (isa<UndefValue>(TrueVal)) // select ?, undef, X -> X 3802 return FalseVal; 3803 if (isa<UndefValue>(FalseVal)) // select ?, X, undef -> X 3804 return TrueVal; 3805 3806 if (Value *V = 3807 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 3808 return V; 3809 3810 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal)) 3811 return V; 3812 3813 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 3814 return V; 3815 3816 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 3817 if (Imp) 3818 return *Imp ? TrueVal : FalseVal; 3819 3820 return nullptr; 3821 } 3822 3823 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3824 const SimplifyQuery &Q) { 3825 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 3826 } 3827 3828 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3829 /// If not, this returns null. 3830 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3831 const SimplifyQuery &Q, unsigned) { 3832 // The type of the GEP pointer operand. 3833 unsigned AS = 3834 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3835 3836 // getelementptr P -> P. 3837 if (Ops.size() == 1) 3838 return Ops[0]; 3839 3840 // Compute the (pointer) type returned by the GEP instruction. 3841 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3842 Type *GEPTy = PointerType::get(LastType, AS); 3843 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3844 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3845 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 3846 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3847 3848 if (isa<UndefValue>(Ops[0])) 3849 return UndefValue::get(GEPTy); 3850 3851 if (Ops.size() == 2) { 3852 // getelementptr P, 0 -> P. 3853 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 3854 return Ops[0]; 3855 3856 Type *Ty = SrcTy; 3857 if (Ty->isSized()) { 3858 Value *P; 3859 uint64_t C; 3860 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3861 // getelementptr P, N -> P if P points to a type of zero size. 3862 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 3863 return Ops[0]; 3864 3865 // The following transforms are only safe if the ptrtoint cast 3866 // doesn't truncate the pointers. 3867 if (Ops[1]->getType()->getScalarSizeInBits() == 3868 Q.DL.getIndexSizeInBits(AS)) { 3869 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3870 if (match(P, m_Zero())) 3871 return Constant::getNullValue(GEPTy); 3872 Value *Temp; 3873 if (match(P, m_PtrToInt(m_Value(Temp)))) 3874 if (Temp->getType() == GEPTy) 3875 return Temp; 3876 return nullptr; 3877 }; 3878 3879 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3880 if (TyAllocSize == 1 && 3881 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3882 if (Value *R = PtrToIntOrZero(P)) 3883 return R; 3884 3885 // getelementptr V, (ashr (sub P, V), C) -> Q 3886 // if P points to a type of size 1 << C. 3887 if (match(Ops[1], 3888 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3889 m_ConstantInt(C))) && 3890 TyAllocSize == 1ULL << C) 3891 if (Value *R = PtrToIntOrZero(P)) 3892 return R; 3893 3894 // getelementptr V, (sdiv (sub P, V), C) -> Q 3895 // if P points to a type of size C. 3896 if (match(Ops[1], 3897 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3898 m_SpecificInt(TyAllocSize)))) 3899 if (Value *R = PtrToIntOrZero(P)) 3900 return R; 3901 } 3902 } 3903 } 3904 3905 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3906 all_of(Ops.slice(1).drop_back(1), 3907 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3908 unsigned IdxWidth = 3909 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3910 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 3911 APInt BasePtrOffset(IdxWidth, 0); 3912 Value *StrippedBasePtr = 3913 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3914 BasePtrOffset); 3915 3916 // gep (gep V, C), (sub 0, V) -> C 3917 if (match(Ops.back(), 3918 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3919 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3920 return ConstantExpr::getIntToPtr(CI, GEPTy); 3921 } 3922 // gep (gep V, C), (xor V, -1) -> C-1 3923 if (match(Ops.back(), 3924 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3925 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3926 return ConstantExpr::getIntToPtr(CI, GEPTy); 3927 } 3928 } 3929 } 3930 3931 // Check to see if this is constant foldable. 3932 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 3933 return nullptr; 3934 3935 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3936 Ops.slice(1)); 3937 if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL)) 3938 return CEFolded; 3939 return CE; 3940 } 3941 3942 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3943 const SimplifyQuery &Q) { 3944 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 3945 } 3946 3947 /// Given operands for an InsertValueInst, see if we can fold the result. 3948 /// If not, this returns null. 3949 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3950 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 3951 unsigned) { 3952 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3953 if (Constant *CVal = dyn_cast<Constant>(Val)) 3954 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3955 3956 // insertvalue x, undef, n -> x 3957 if (match(Val, m_Undef())) 3958 return Agg; 3959 3960 // insertvalue x, (extractvalue y, n), n 3961 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3962 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3963 EV->getIndices() == Idxs) { 3964 // insertvalue undef, (extractvalue y, n), n -> y 3965 if (match(Agg, m_Undef())) 3966 return EV->getAggregateOperand(); 3967 3968 // insertvalue y, (extractvalue y, n), n -> y 3969 if (Agg == EV->getAggregateOperand()) 3970 return Agg; 3971 } 3972 3973 return nullptr; 3974 } 3975 3976 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 3977 ArrayRef<unsigned> Idxs, 3978 const SimplifyQuery &Q) { 3979 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 3980 } 3981 3982 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 3983 const SimplifyQuery &Q) { 3984 // Try to constant fold. 3985 auto *VecC = dyn_cast<Constant>(Vec); 3986 auto *ValC = dyn_cast<Constant>(Val); 3987 auto *IdxC = dyn_cast<Constant>(Idx); 3988 if (VecC && ValC && IdxC) 3989 return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC); 3990 3991 // Fold into undef if index is out of bounds. 3992 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 3993 uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements(); 3994 if (CI->uge(NumElements)) 3995 return UndefValue::get(Vec->getType()); 3996 } 3997 3998 // If index is undef, it might be out of bounds (see above case) 3999 if (isa<UndefValue>(Idx)) 4000 return UndefValue::get(Vec->getType()); 4001 4002 // Inserting an undef scalar? Assume it is the same value as the existing 4003 // vector element. 4004 if (isa<UndefValue>(Val)) 4005 return Vec; 4006 4007 // If we are extracting a value from a vector, then inserting it into the same 4008 // place, that's the input vector: 4009 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4010 if (match(Val, m_ExtractElement(m_Specific(Vec), m_Specific(Idx)))) 4011 return Vec; 4012 4013 return nullptr; 4014 } 4015 4016 /// Given operands for an ExtractValueInst, see if we can fold the result. 4017 /// If not, this returns null. 4018 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4019 const SimplifyQuery &, unsigned) { 4020 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4021 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4022 4023 // extractvalue x, (insertvalue y, elt, n), n -> elt 4024 unsigned NumIdxs = Idxs.size(); 4025 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4026 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4027 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4028 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4029 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4030 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4031 Idxs.slice(0, NumCommonIdxs)) { 4032 if (NumIdxs == NumInsertValueIdxs) 4033 return IVI->getInsertedValueOperand(); 4034 break; 4035 } 4036 } 4037 4038 return nullptr; 4039 } 4040 4041 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4042 const SimplifyQuery &Q) { 4043 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4044 } 4045 4046 /// Given operands for an ExtractElementInst, see if we can fold the result. 4047 /// If not, this returns null. 4048 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, 4049 unsigned) { 4050 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4051 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4052 return ConstantFoldExtractElementInstruction(CVec, CIdx); 4053 4054 // The index is not relevant if our vector is a splat. 4055 if (auto *Splat = CVec->getSplatValue()) 4056 return Splat; 4057 4058 if (isa<UndefValue>(Vec)) 4059 return UndefValue::get(Vec->getType()->getVectorElementType()); 4060 } 4061 4062 // If extracting a specified index from the vector, see if we can recursively 4063 // find a previously computed scalar that was inserted into the vector. 4064 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4065 if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements())) 4066 // definitely out of bounds, thus undefined result 4067 return UndefValue::get(Vec->getType()->getVectorElementType()); 4068 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4069 return Elt; 4070 } 4071 4072 // An undef extract index can be arbitrarily chosen to be an out-of-range 4073 // index value, which would result in the instruction being undef. 4074 if (isa<UndefValue>(Idx)) 4075 return UndefValue::get(Vec->getType()->getVectorElementType()); 4076 4077 return nullptr; 4078 } 4079 4080 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4081 const SimplifyQuery &Q) { 4082 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4083 } 4084 4085 /// See if we can fold the given phi. If not, returns null. 4086 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 4087 // If all of the PHI's incoming values are the same then replace the PHI node 4088 // with the common value. 4089 Value *CommonValue = nullptr; 4090 bool HasUndefInput = false; 4091 for (Value *Incoming : PN->incoming_values()) { 4092 // If the incoming value is the phi node itself, it can safely be skipped. 4093 if (Incoming == PN) continue; 4094 if (isa<UndefValue>(Incoming)) { 4095 // Remember that we saw an undef value, but otherwise ignore them. 4096 HasUndefInput = true; 4097 continue; 4098 } 4099 if (CommonValue && Incoming != CommonValue) 4100 return nullptr; // Not the same, bail out. 4101 CommonValue = Incoming; 4102 } 4103 4104 // If CommonValue is null then all of the incoming values were either undef or 4105 // equal to the phi node itself. 4106 if (!CommonValue) 4107 return UndefValue::get(PN->getType()); 4108 4109 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4110 // instruction, we cannot return X as the result of the PHI node unless it 4111 // dominates the PHI block. 4112 if (HasUndefInput) 4113 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4114 4115 return CommonValue; 4116 } 4117 4118 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4119 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4120 if (auto *C = dyn_cast<Constant>(Op)) 4121 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4122 4123 if (auto *CI = dyn_cast<CastInst>(Op)) { 4124 auto *Src = CI->getOperand(0); 4125 Type *SrcTy = Src->getType(); 4126 Type *MidTy = CI->getType(); 4127 Type *DstTy = Ty; 4128 if (Src->getType() == Ty) { 4129 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4130 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4131 Type *SrcIntPtrTy = 4132 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4133 Type *MidIntPtrTy = 4134 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4135 Type *DstIntPtrTy = 4136 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4137 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4138 SrcIntPtrTy, MidIntPtrTy, 4139 DstIntPtrTy) == Instruction::BitCast) 4140 return Src; 4141 } 4142 } 4143 4144 // bitcast x -> x 4145 if (CastOpc == Instruction::BitCast) 4146 if (Op->getType() == Ty) 4147 return Op; 4148 4149 return nullptr; 4150 } 4151 4152 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4153 const SimplifyQuery &Q) { 4154 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4155 } 4156 4157 /// For the given destination element of a shuffle, peek through shuffles to 4158 /// match a root vector source operand that contains that element in the same 4159 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4160 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4161 int MaskVal, Value *RootVec, 4162 unsigned MaxRecurse) { 4163 if (!MaxRecurse--) 4164 return nullptr; 4165 4166 // Bail out if any mask value is undefined. That kind of shuffle may be 4167 // simplified further based on demanded bits or other folds. 4168 if (MaskVal == -1) 4169 return nullptr; 4170 4171 // The mask value chooses which source operand we need to look at next. 4172 int InVecNumElts = Op0->getType()->getVectorNumElements(); 4173 int RootElt = MaskVal; 4174 Value *SourceOp = Op0; 4175 if (MaskVal >= InVecNumElts) { 4176 RootElt = MaskVal - InVecNumElts; 4177 SourceOp = Op1; 4178 } 4179 4180 // If the source operand is a shuffle itself, look through it to find the 4181 // matching root vector. 4182 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4183 return foldIdentityShuffles( 4184 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4185 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4186 } 4187 4188 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4189 // size? 4190 4191 // The source operand is not a shuffle. Initialize the root vector value for 4192 // this shuffle if that has not been done yet. 4193 if (!RootVec) 4194 RootVec = SourceOp; 4195 4196 // Give up as soon as a source operand does not match the existing root value. 4197 if (RootVec != SourceOp) 4198 return nullptr; 4199 4200 // The element must be coming from the same lane in the source vector 4201 // (although it may have crossed lanes in intermediate shuffles). 4202 if (RootElt != DestElt) 4203 return nullptr; 4204 4205 return RootVec; 4206 } 4207 4208 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4209 Type *RetTy, const SimplifyQuery &Q, 4210 unsigned MaxRecurse) { 4211 if (isa<UndefValue>(Mask)) 4212 return UndefValue::get(RetTy); 4213 4214 Type *InVecTy = Op0->getType(); 4215 unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); 4216 unsigned InVecNumElts = InVecTy->getVectorNumElements(); 4217 4218 SmallVector<int, 32> Indices; 4219 ShuffleVectorInst::getShuffleMask(Mask, Indices); 4220 assert(MaskNumElts == Indices.size() && 4221 "Size of Indices not same as number of mask elements?"); 4222 4223 // Canonicalization: If mask does not select elements from an input vector, 4224 // replace that input vector with undef. 4225 bool MaskSelects0 = false, MaskSelects1 = false; 4226 for (unsigned i = 0; i != MaskNumElts; ++i) { 4227 if (Indices[i] == -1) 4228 continue; 4229 if ((unsigned)Indices[i] < InVecNumElts) 4230 MaskSelects0 = true; 4231 else 4232 MaskSelects1 = true; 4233 } 4234 if (!MaskSelects0) 4235 Op0 = UndefValue::get(InVecTy); 4236 if (!MaskSelects1) 4237 Op1 = UndefValue::get(InVecTy); 4238 4239 auto *Op0Const = dyn_cast<Constant>(Op0); 4240 auto *Op1Const = dyn_cast<Constant>(Op1); 4241 4242 // If all operands are constant, constant fold the shuffle. 4243 if (Op0Const && Op1Const) 4244 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 4245 4246 // Canonicalization: if only one input vector is constant, it shall be the 4247 // second one. 4248 if (Op0Const && !Op1Const) { 4249 std::swap(Op0, Op1); 4250 ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts); 4251 } 4252 4253 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4254 // value type is same as the input vectors' type. 4255 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4256 if (isa<UndefValue>(Op1) && RetTy == InVecTy && 4257 OpShuf->getMask()->getSplatValue()) 4258 return Op0; 4259 4260 // Don't fold a shuffle with undef mask elements. This may get folded in a 4261 // better way using demanded bits or other analysis. 4262 // TODO: Should we allow this? 4263 if (find(Indices, -1) != Indices.end()) 4264 return nullptr; 4265 4266 // Check if every element of this shuffle can be mapped back to the 4267 // corresponding element of a single root vector. If so, we don't need this 4268 // shuffle. This handles simple identity shuffles as well as chains of 4269 // shuffles that may widen/narrow and/or move elements across lanes and back. 4270 Value *RootVec = nullptr; 4271 for (unsigned i = 0; i != MaskNumElts; ++i) { 4272 // Note that recursion is limited for each vector element, so if any element 4273 // exceeds the limit, this will fail to simplify. 4274 RootVec = 4275 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4276 4277 // We can't replace a widening/narrowing shuffle with one of its operands. 4278 if (!RootVec || RootVec->getType() != RetTy) 4279 return nullptr; 4280 } 4281 return RootVec; 4282 } 4283 4284 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4285 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4286 Type *RetTy, const SimplifyQuery &Q) { 4287 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4288 } 4289 4290 static Constant *foldConstant(Instruction::UnaryOps Opcode, 4291 Value *&Op, const SimplifyQuery &Q) { 4292 if (auto *C = dyn_cast<Constant>(Op)) 4293 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 4294 return nullptr; 4295 } 4296 4297 /// Given the operand for an FNeg, see if we can fold the result. If not, this 4298 /// returns null. 4299 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 4300 const SimplifyQuery &Q, unsigned MaxRecurse) { 4301 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 4302 return C; 4303 4304 Value *X; 4305 // fneg (fneg X) ==> X 4306 if (match(Op, m_FNeg(m_Value(X)))) 4307 return X; 4308 4309 return nullptr; 4310 } 4311 4312 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 4313 const SimplifyQuery &Q) { 4314 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 4315 } 4316 4317 static Constant *propagateNaN(Constant *In) { 4318 // If the input is a vector with undef elements, just return a default NaN. 4319 if (!In->isNaN()) 4320 return ConstantFP::getNaN(In->getType()); 4321 4322 // Propagate the existing NaN constant when possible. 4323 // TODO: Should we quiet a signaling NaN? 4324 return In; 4325 } 4326 4327 static Constant *simplifyFPBinop(Value *Op0, Value *Op1) { 4328 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) 4329 return ConstantFP::getNaN(Op0->getType()); 4330 4331 if (match(Op0, m_NaN())) 4332 return propagateNaN(cast<Constant>(Op0)); 4333 if (match(Op1, m_NaN())) 4334 return propagateNaN(cast<Constant>(Op1)); 4335 4336 return nullptr; 4337 } 4338 4339 /// Given operands for an FAdd, see if we can fold the result. If not, this 4340 /// returns null. 4341 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4342 const SimplifyQuery &Q, unsigned MaxRecurse) { 4343 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4344 return C; 4345 4346 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4347 return C; 4348 4349 // fadd X, -0 ==> X 4350 if (match(Op1, m_NegZeroFP())) 4351 return Op0; 4352 4353 // fadd X, 0 ==> X, when we know X is not -0 4354 if (match(Op1, m_PosZeroFP()) && 4355 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4356 return Op0; 4357 4358 // With nnan: -X + X --> 0.0 (and commuted variant) 4359 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4360 // Negative zeros are allowed because we always end up with positive zero: 4361 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4362 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4363 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4364 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4365 if (FMF.noNaNs()) { 4366 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4367 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 4368 return ConstantFP::getNullValue(Op0->getType()); 4369 4370 if (match(Op0, m_FNeg(m_Specific(Op1))) || 4371 match(Op1, m_FNeg(m_Specific(Op0)))) 4372 return ConstantFP::getNullValue(Op0->getType()); 4373 } 4374 4375 // (X - Y) + Y --> X 4376 // Y + (X - Y) --> X 4377 Value *X; 4378 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4379 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 4380 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 4381 return X; 4382 4383 return nullptr; 4384 } 4385 4386 /// Given operands for an FSub, see if we can fold the result. If not, this 4387 /// returns null. 4388 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4389 const SimplifyQuery &Q, unsigned MaxRecurse) { 4390 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4391 return C; 4392 4393 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4394 return C; 4395 4396 // fsub X, +0 ==> X 4397 if (match(Op1, m_PosZeroFP())) 4398 return Op0; 4399 4400 // fsub X, -0 ==> X, when we know X is not -0 4401 if (match(Op1, m_NegZeroFP()) && 4402 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4403 return Op0; 4404 4405 // fsub -0.0, (fsub -0.0, X) ==> X 4406 // fsub -0.0, (fneg X) ==> X 4407 Value *X; 4408 if (match(Op0, m_NegZeroFP()) && 4409 match(Op1, m_FNeg(m_Value(X)))) 4410 return X; 4411 4412 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4413 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 4414 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 4415 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 4416 match(Op1, m_FNeg(m_Value(X))))) 4417 return X; 4418 4419 // fsub nnan x, x ==> 0.0 4420 if (FMF.noNaNs() && Op0 == Op1) 4421 return Constant::getNullValue(Op0->getType()); 4422 4423 // Y - (Y - X) --> X 4424 // (X + Y) - Y --> X 4425 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4426 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 4427 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 4428 return X; 4429 4430 return nullptr; 4431 } 4432 4433 /// Given the operands for an FMul, see if we can fold the result 4434 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4435 const SimplifyQuery &Q, unsigned MaxRecurse) { 4436 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 4437 return C; 4438 4439 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4440 return C; 4441 4442 // fmul X, 1.0 ==> X 4443 if (match(Op1, m_FPOne())) 4444 return Op0; 4445 4446 // fmul nnan nsz X, 0 ==> 0 4447 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 4448 return ConstantFP::getNullValue(Op0->getType()); 4449 4450 // sqrt(X) * sqrt(X) --> X, if we can: 4451 // 1. Remove the intermediate rounding (reassociate). 4452 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 4453 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 4454 Value *X; 4455 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 4456 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 4457 return X; 4458 4459 return nullptr; 4460 } 4461 4462 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4463 const SimplifyQuery &Q) { 4464 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 4465 } 4466 4467 4468 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4469 const SimplifyQuery &Q) { 4470 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 4471 } 4472 4473 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4474 const SimplifyQuery &Q) { 4475 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 4476 } 4477 4478 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4479 const SimplifyQuery &Q, unsigned) { 4480 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 4481 return C; 4482 4483 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4484 return C; 4485 4486 // X / 1.0 -> X 4487 if (match(Op1, m_FPOne())) 4488 return Op0; 4489 4490 // 0 / X -> 0 4491 // Requires that NaNs are off (X could be zero) and signed zeroes are 4492 // ignored (X could be positive or negative, so the output sign is unknown). 4493 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4494 return ConstantFP::getNullValue(Op0->getType()); 4495 4496 if (FMF.noNaNs()) { 4497 // X / X -> 1.0 is legal when NaNs are ignored. 4498 // We can ignore infinities because INF/INF is NaN. 4499 if (Op0 == Op1) 4500 return ConstantFP::get(Op0->getType(), 1.0); 4501 4502 // (X * Y) / Y --> X if we can reassociate to the above form. 4503 Value *X; 4504 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 4505 return X; 4506 4507 // -X / X -> -1.0 and 4508 // X / -X -> -1.0 are legal when NaNs are ignored. 4509 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 4510 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 4511 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 4512 return ConstantFP::get(Op0->getType(), -1.0); 4513 } 4514 4515 return nullptr; 4516 } 4517 4518 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4519 const SimplifyQuery &Q) { 4520 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 4521 } 4522 4523 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4524 const SimplifyQuery &Q, unsigned) { 4525 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 4526 return C; 4527 4528 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4529 return C; 4530 4531 // Unlike fdiv, the result of frem always matches the sign of the dividend. 4532 // The constant match may include undef elements in a vector, so return a full 4533 // zero constant as the result. 4534 if (FMF.noNaNs()) { 4535 // +0 % X -> 0 4536 if (match(Op0, m_PosZeroFP())) 4537 return ConstantFP::getNullValue(Op0->getType()); 4538 // -0 % X -> -0 4539 if (match(Op0, m_NegZeroFP())) 4540 return ConstantFP::getNegativeZero(Op0->getType()); 4541 } 4542 4543 return nullptr; 4544 } 4545 4546 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4547 const SimplifyQuery &Q) { 4548 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 4549 } 4550 4551 //=== Helper functions for higher up the class hierarchy. 4552 4553 /// Given the operand for a UnaryOperator, see if we can fold the result. 4554 /// If not, this returns null. 4555 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 4556 unsigned MaxRecurse) { 4557 switch (Opcode) { 4558 case Instruction::FNeg: 4559 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 4560 default: 4561 llvm_unreachable("Unexpected opcode"); 4562 } 4563 } 4564 4565 /// Given the operand for a UnaryOperator, see if we can fold the result. 4566 /// If not, this returns null. 4567 /// In contrast to SimplifyUnOp, try to use FastMathFlag when folding the 4568 /// result. In case we don't need FastMathFlags, simply fall to SimplifyUnOp. 4569 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 4570 const FastMathFlags &FMF, 4571 const SimplifyQuery &Q, unsigned MaxRecurse) { 4572 switch (Opcode) { 4573 case Instruction::FNeg: 4574 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 4575 default: 4576 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 4577 } 4578 } 4579 4580 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 4581 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 4582 } 4583 4584 Value *llvm::SimplifyFPUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 4585 const SimplifyQuery &Q) { 4586 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 4587 } 4588 4589 /// Given operands for a BinaryOperator, see if we can fold the result. 4590 /// If not, this returns null. 4591 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4592 const SimplifyQuery &Q, unsigned MaxRecurse) { 4593 switch (Opcode) { 4594 case Instruction::Add: 4595 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 4596 case Instruction::Sub: 4597 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 4598 case Instruction::Mul: 4599 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 4600 case Instruction::SDiv: 4601 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4602 case Instruction::UDiv: 4603 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4604 case Instruction::SRem: 4605 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4606 case Instruction::URem: 4607 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4608 case Instruction::Shl: 4609 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 4610 case Instruction::LShr: 4611 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 4612 case Instruction::AShr: 4613 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 4614 case Instruction::And: 4615 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4616 case Instruction::Or: 4617 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 4618 case Instruction::Xor: 4619 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4620 case Instruction::FAdd: 4621 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4622 case Instruction::FSub: 4623 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4624 case Instruction::FMul: 4625 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4626 case Instruction::FDiv: 4627 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4628 case Instruction::FRem: 4629 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4630 default: 4631 llvm_unreachable("Unexpected opcode"); 4632 } 4633 } 4634 4635 /// Given operands for a BinaryOperator, see if we can fold the result. 4636 /// If not, this returns null. 4637 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 4638 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 4639 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4640 const FastMathFlags &FMF, const SimplifyQuery &Q, 4641 unsigned MaxRecurse) { 4642 switch (Opcode) { 4643 case Instruction::FAdd: 4644 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4645 case Instruction::FSub: 4646 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4647 case Instruction::FMul: 4648 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4649 case Instruction::FDiv: 4650 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4651 default: 4652 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4653 } 4654 } 4655 4656 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4657 const SimplifyQuery &Q) { 4658 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 4659 } 4660 4661 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4662 FastMathFlags FMF, const SimplifyQuery &Q) { 4663 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 4664 } 4665 4666 /// Given operands for a CmpInst, see if we can fold the result. 4667 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4668 const SimplifyQuery &Q, unsigned MaxRecurse) { 4669 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4670 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4671 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4672 } 4673 4674 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4675 const SimplifyQuery &Q) { 4676 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 4677 } 4678 4679 static bool IsIdempotent(Intrinsic::ID ID) { 4680 switch (ID) { 4681 default: return false; 4682 4683 // Unary idempotent: f(f(x)) = f(x) 4684 case Intrinsic::fabs: 4685 case Intrinsic::floor: 4686 case Intrinsic::ceil: 4687 case Intrinsic::trunc: 4688 case Intrinsic::rint: 4689 case Intrinsic::nearbyint: 4690 case Intrinsic::round: 4691 case Intrinsic::canonicalize: 4692 return true; 4693 } 4694 } 4695 4696 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4697 const DataLayout &DL) { 4698 GlobalValue *PtrSym; 4699 APInt PtrOffset; 4700 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4701 return nullptr; 4702 4703 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4704 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4705 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4706 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4707 4708 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4709 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4710 return nullptr; 4711 4712 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4713 if (OffsetInt % 4 != 0) 4714 return nullptr; 4715 4716 Constant *C = ConstantExpr::getGetElementPtr( 4717 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4718 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4719 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4720 if (!Loaded) 4721 return nullptr; 4722 4723 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4724 if (!LoadedCE) 4725 return nullptr; 4726 4727 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4728 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4729 if (!LoadedCE) 4730 return nullptr; 4731 } 4732 4733 if (LoadedCE->getOpcode() != Instruction::Sub) 4734 return nullptr; 4735 4736 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4737 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4738 return nullptr; 4739 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4740 4741 Constant *LoadedRHS = LoadedCE->getOperand(1); 4742 GlobalValue *LoadedRHSSym; 4743 APInt LoadedRHSOffset; 4744 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4745 DL) || 4746 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4747 return nullptr; 4748 4749 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4750 } 4751 4752 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 4753 const SimplifyQuery &Q) { 4754 // Idempotent functions return the same result when called repeatedly. 4755 Intrinsic::ID IID = F->getIntrinsicID(); 4756 if (IsIdempotent(IID)) 4757 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 4758 if (II->getIntrinsicID() == IID) 4759 return II; 4760 4761 Value *X; 4762 switch (IID) { 4763 case Intrinsic::fabs: 4764 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 4765 break; 4766 case Intrinsic::bswap: 4767 // bswap(bswap(x)) -> x 4768 if (match(Op0, m_BSwap(m_Value(X)))) return X; 4769 break; 4770 case Intrinsic::bitreverse: 4771 // bitreverse(bitreverse(x)) -> x 4772 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 4773 break; 4774 case Intrinsic::exp: 4775 // exp(log(x)) -> x 4776 if (Q.CxtI->hasAllowReassoc() && 4777 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 4778 break; 4779 case Intrinsic::exp2: 4780 // exp2(log2(x)) -> x 4781 if (Q.CxtI->hasAllowReassoc() && 4782 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 4783 break; 4784 case Intrinsic::log: 4785 // log(exp(x)) -> x 4786 if (Q.CxtI->hasAllowReassoc() && 4787 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 4788 break; 4789 case Intrinsic::log2: 4790 // log2(exp2(x)) -> x 4791 if (Q.CxtI->hasAllowReassoc() && 4792 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 4793 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 4794 m_Value(X))))) return X; 4795 break; 4796 case Intrinsic::log10: 4797 // log10(pow(10.0, x)) -> x 4798 if (Q.CxtI->hasAllowReassoc() && 4799 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 4800 m_Value(X)))) return X; 4801 break; 4802 case Intrinsic::floor: 4803 case Intrinsic::trunc: 4804 case Intrinsic::ceil: 4805 case Intrinsic::round: 4806 case Intrinsic::nearbyint: 4807 case Intrinsic::rint: { 4808 // floor (sitofp x) -> sitofp x 4809 // floor (uitofp x) -> uitofp x 4810 // 4811 // Converting from int always results in a finite integral number or 4812 // infinity. For either of those inputs, these rounding functions always 4813 // return the same value, so the rounding can be eliminated. 4814 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 4815 return Op0; 4816 break; 4817 } 4818 default: 4819 break; 4820 } 4821 4822 return nullptr; 4823 } 4824 4825 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 4826 const SimplifyQuery &Q) { 4827 Intrinsic::ID IID = F->getIntrinsicID(); 4828 Type *ReturnType = F->getReturnType(); 4829 switch (IID) { 4830 case Intrinsic::usub_with_overflow: 4831 case Intrinsic::ssub_with_overflow: 4832 // X - X -> { 0, false } 4833 if (Op0 == Op1) 4834 return Constant::getNullValue(ReturnType); 4835 LLVM_FALLTHROUGH; 4836 case Intrinsic::uadd_with_overflow: 4837 case Intrinsic::sadd_with_overflow: 4838 // X - undef -> { undef, false } 4839 // undef - X -> { undef, false } 4840 // X + undef -> { undef, false } 4841 // undef + x -> { undef, false } 4842 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) { 4843 return ConstantStruct::get( 4844 cast<StructType>(ReturnType), 4845 {UndefValue::get(ReturnType->getStructElementType(0)), 4846 Constant::getNullValue(ReturnType->getStructElementType(1))}); 4847 } 4848 break; 4849 case Intrinsic::umul_with_overflow: 4850 case Intrinsic::smul_with_overflow: 4851 // 0 * X -> { 0, false } 4852 // X * 0 -> { 0, false } 4853 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 4854 return Constant::getNullValue(ReturnType); 4855 // undef * X -> { 0, false } 4856 // X * undef -> { 0, false } 4857 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 4858 return Constant::getNullValue(ReturnType); 4859 break; 4860 case Intrinsic::uadd_sat: 4861 // sat(MAX + X) -> MAX 4862 // sat(X + MAX) -> MAX 4863 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 4864 return Constant::getAllOnesValue(ReturnType); 4865 LLVM_FALLTHROUGH; 4866 case Intrinsic::sadd_sat: 4867 // sat(X + undef) -> -1 4868 // sat(undef + X) -> -1 4869 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 4870 // For signed: Assume undef is ~X, in which case X + ~X = -1. 4871 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 4872 return Constant::getAllOnesValue(ReturnType); 4873 4874 // X + 0 -> X 4875 if (match(Op1, m_Zero())) 4876 return Op0; 4877 // 0 + X -> X 4878 if (match(Op0, m_Zero())) 4879 return Op1; 4880 break; 4881 case Intrinsic::usub_sat: 4882 // sat(0 - X) -> 0, sat(X - MAX) -> 0 4883 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 4884 return Constant::getNullValue(ReturnType); 4885 LLVM_FALLTHROUGH; 4886 case Intrinsic::ssub_sat: 4887 // X - X -> 0, X - undef -> 0, undef - X -> 0 4888 if (Op0 == Op1 || match(Op0, m_Undef()) || match(Op1, m_Undef())) 4889 return Constant::getNullValue(ReturnType); 4890 // X - 0 -> X 4891 if (match(Op1, m_Zero())) 4892 return Op0; 4893 break; 4894 case Intrinsic::load_relative: 4895 if (auto *C0 = dyn_cast<Constant>(Op0)) 4896 if (auto *C1 = dyn_cast<Constant>(Op1)) 4897 return SimplifyRelativeLoad(C0, C1, Q.DL); 4898 break; 4899 case Intrinsic::powi: 4900 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 4901 // powi(x, 0) -> 1.0 4902 if (Power->isZero()) 4903 return ConstantFP::get(Op0->getType(), 1.0); 4904 // powi(x, 1) -> x 4905 if (Power->isOne()) 4906 return Op0; 4907 } 4908 break; 4909 case Intrinsic::maxnum: 4910 case Intrinsic::minnum: 4911 case Intrinsic::maximum: 4912 case Intrinsic::minimum: { 4913 // If the arguments are the same, this is a no-op. 4914 if (Op0 == Op1) return Op0; 4915 4916 // If one argument is undef, return the other argument. 4917 if (match(Op0, m_Undef())) 4918 return Op1; 4919 if (match(Op1, m_Undef())) 4920 return Op0; 4921 4922 // If one argument is NaN, return other or NaN appropriately. 4923 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 4924 if (match(Op0, m_NaN())) 4925 return PropagateNaN ? Op0 : Op1; 4926 if (match(Op1, m_NaN())) 4927 return PropagateNaN ? Op1 : Op0; 4928 4929 // Min/max of the same operation with common operand: 4930 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 4931 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 4932 if (M0->getIntrinsicID() == IID && 4933 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 4934 return Op0; 4935 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 4936 if (M1->getIntrinsicID() == IID && 4937 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 4938 return Op1; 4939 4940 // min(X, -Inf) --> -Inf (and commuted variant) 4941 // max(X, +Inf) --> +Inf (and commuted variant) 4942 bool UseNegInf = IID == Intrinsic::minnum || IID == Intrinsic::minimum; 4943 const APFloat *C; 4944 if ((match(Op0, m_APFloat(C)) && C->isInfinity() && 4945 C->isNegative() == UseNegInf) || 4946 (match(Op1, m_APFloat(C)) && C->isInfinity() && 4947 C->isNegative() == UseNegInf)) 4948 return ConstantFP::getInfinity(ReturnType, UseNegInf); 4949 4950 // TODO: minnum(nnan x, inf) -> x 4951 // TODO: minnum(nnan ninf x, flt_max) -> x 4952 // TODO: maxnum(nnan x, -inf) -> x 4953 // TODO: maxnum(nnan ninf x, -flt_max) -> x 4954 break; 4955 } 4956 default: 4957 break; 4958 } 4959 4960 return nullptr; 4961 } 4962 4963 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 4964 4965 // Intrinsics with no operands have some kind of side effect. Don't simplify. 4966 unsigned NumOperands = Call->getNumArgOperands(); 4967 if (!NumOperands) 4968 return nullptr; 4969 4970 Function *F = cast<Function>(Call->getCalledFunction()); 4971 Intrinsic::ID IID = F->getIntrinsicID(); 4972 if (NumOperands == 1) 4973 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 4974 4975 if (NumOperands == 2) 4976 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 4977 Call->getArgOperand(1), Q); 4978 4979 // Handle intrinsics with 3 or more arguments. 4980 switch (IID) { 4981 case Intrinsic::masked_load: 4982 case Intrinsic::masked_gather: { 4983 Value *MaskArg = Call->getArgOperand(2); 4984 Value *PassthruArg = Call->getArgOperand(3); 4985 // If the mask is all zeros or undef, the "passthru" argument is the result. 4986 if (maskIsAllZeroOrUndef(MaskArg)) 4987 return PassthruArg; 4988 return nullptr; 4989 } 4990 case Intrinsic::fshl: 4991 case Intrinsic::fshr: { 4992 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 4993 *ShAmtArg = Call->getArgOperand(2); 4994 4995 // If both operands are undef, the result is undef. 4996 if (match(Op0, m_Undef()) && match(Op1, m_Undef())) 4997 return UndefValue::get(F->getReturnType()); 4998 4999 // If shift amount is undef, assume it is zero. 5000 if (match(ShAmtArg, m_Undef())) 5001 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5002 5003 const APInt *ShAmtC; 5004 if (match(ShAmtArg, m_APInt(ShAmtC))) { 5005 // If there's effectively no shift, return the 1st arg or 2nd arg. 5006 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 5007 if (ShAmtC->urem(BitWidth).isNullValue()) 5008 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5009 } 5010 return nullptr; 5011 } 5012 default: 5013 return nullptr; 5014 } 5015 } 5016 5017 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 5018 Value *Callee = Call->getCalledValue(); 5019 5020 // call undef -> undef 5021 // call null -> undef 5022 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 5023 return UndefValue::get(Call->getType()); 5024 5025 Function *F = dyn_cast<Function>(Callee); 5026 if (!F) 5027 return nullptr; 5028 5029 if (F->isIntrinsic()) 5030 if (Value *Ret = simplifyIntrinsic(Call, Q)) 5031 return Ret; 5032 5033 if (!canConstantFoldCallTo(Call, F)) 5034 return nullptr; 5035 5036 SmallVector<Constant *, 4> ConstantArgs; 5037 unsigned NumArgs = Call->getNumArgOperands(); 5038 ConstantArgs.reserve(NumArgs); 5039 for (auto &Arg : Call->args()) { 5040 Constant *C = dyn_cast<Constant>(&Arg); 5041 if (!C) 5042 return nullptr; 5043 ConstantArgs.push_back(C); 5044 } 5045 5046 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 5047 } 5048 5049 /// See if we can compute a simplified version of this instruction. 5050 /// If not, this returns null. 5051 5052 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 5053 OptimizationRemarkEmitter *ORE) { 5054 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 5055 Value *Result; 5056 5057 switch (I->getOpcode()) { 5058 default: 5059 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 5060 break; 5061 case Instruction::FNeg: 5062 Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q); 5063 break; 5064 case Instruction::FAdd: 5065 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 5066 I->getFastMathFlags(), Q); 5067 break; 5068 case Instruction::Add: 5069 Result = 5070 SimplifyAddInst(I->getOperand(0), I->getOperand(1), 5071 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5072 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5073 break; 5074 case Instruction::FSub: 5075 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 5076 I->getFastMathFlags(), Q); 5077 break; 5078 case Instruction::Sub: 5079 Result = 5080 SimplifySubInst(I->getOperand(0), I->getOperand(1), 5081 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5082 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5083 break; 5084 case Instruction::FMul: 5085 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 5086 I->getFastMathFlags(), Q); 5087 break; 5088 case Instruction::Mul: 5089 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 5090 break; 5091 case Instruction::SDiv: 5092 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 5093 break; 5094 case Instruction::UDiv: 5095 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 5096 break; 5097 case Instruction::FDiv: 5098 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 5099 I->getFastMathFlags(), Q); 5100 break; 5101 case Instruction::SRem: 5102 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 5103 break; 5104 case Instruction::URem: 5105 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 5106 break; 5107 case Instruction::FRem: 5108 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 5109 I->getFastMathFlags(), Q); 5110 break; 5111 case Instruction::Shl: 5112 Result = 5113 SimplifyShlInst(I->getOperand(0), I->getOperand(1), 5114 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5115 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5116 break; 5117 case Instruction::LShr: 5118 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 5119 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5120 break; 5121 case Instruction::AShr: 5122 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 5123 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5124 break; 5125 case Instruction::And: 5126 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 5127 break; 5128 case Instruction::Or: 5129 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 5130 break; 5131 case Instruction::Xor: 5132 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 5133 break; 5134 case Instruction::ICmp: 5135 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 5136 I->getOperand(0), I->getOperand(1), Q); 5137 break; 5138 case Instruction::FCmp: 5139 Result = 5140 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 5141 I->getOperand(1), I->getFastMathFlags(), Q); 5142 break; 5143 case Instruction::Select: 5144 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 5145 I->getOperand(2), Q); 5146 break; 5147 case Instruction::GetElementPtr: { 5148 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); 5149 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 5150 Ops, Q); 5151 break; 5152 } 5153 case Instruction::InsertValue: { 5154 InsertValueInst *IV = cast<InsertValueInst>(I); 5155 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 5156 IV->getInsertedValueOperand(), 5157 IV->getIndices(), Q); 5158 break; 5159 } 5160 case Instruction::InsertElement: { 5161 auto *IE = cast<InsertElementInst>(I); 5162 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), 5163 IE->getOperand(2), Q); 5164 break; 5165 } 5166 case Instruction::ExtractValue: { 5167 auto *EVI = cast<ExtractValueInst>(I); 5168 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 5169 EVI->getIndices(), Q); 5170 break; 5171 } 5172 case Instruction::ExtractElement: { 5173 auto *EEI = cast<ExtractElementInst>(I); 5174 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 5175 EEI->getIndexOperand(), Q); 5176 break; 5177 } 5178 case Instruction::ShuffleVector: { 5179 auto *SVI = cast<ShuffleVectorInst>(I); 5180 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5181 SVI->getMask(), SVI->getType(), Q); 5182 break; 5183 } 5184 case Instruction::PHI: 5185 Result = SimplifyPHINode(cast<PHINode>(I), Q); 5186 break; 5187 case Instruction::Call: { 5188 Result = SimplifyCall(cast<CallInst>(I), Q); 5189 break; 5190 } 5191 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 5192 #include "llvm/IR/Instruction.def" 5193 #undef HANDLE_CAST_INST 5194 Result = 5195 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 5196 break; 5197 case Instruction::Alloca: 5198 // No simplifications for Alloca and it can't be constant folded. 5199 Result = nullptr; 5200 break; 5201 } 5202 5203 // In general, it is possible for computeKnownBits to determine all bits in a 5204 // value even when the operands are not all constants. 5205 if (!Result && I->getType()->isIntOrIntVectorTy()) { 5206 KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE); 5207 if (Known.isConstant()) 5208 Result = ConstantInt::get(I->getType(), Known.getConstant()); 5209 } 5210 5211 /// If called on unreachable code, the above logic may report that the 5212 /// instruction simplified to itself. Make life easier for users by 5213 /// detecting that case here, returning a safe value instead. 5214 return Result == I ? UndefValue::get(I->getType()) : Result; 5215 } 5216 5217 /// Implementation of recursive simplification through an instruction's 5218 /// uses. 5219 /// 5220 /// This is the common implementation of the recursive simplification routines. 5221 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 5222 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 5223 /// instructions to process and attempt to simplify it using 5224 /// InstructionSimplify. Recursively visited users which could not be 5225 /// simplified themselves are to the optional UnsimplifiedUsers set for 5226 /// further processing by the caller. 5227 /// 5228 /// This routine returns 'true' only when *it* simplifies something. The passed 5229 /// in simplified value does not count toward this. 5230 static bool replaceAndRecursivelySimplifyImpl( 5231 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 5232 const DominatorTree *DT, AssumptionCache *AC, 5233 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 5234 bool Simplified = false; 5235 SmallSetVector<Instruction *, 8> Worklist; 5236 const DataLayout &DL = I->getModule()->getDataLayout(); 5237 5238 // If we have an explicit value to collapse to, do that round of the 5239 // simplification loop by hand initially. 5240 if (SimpleV) { 5241 for (User *U : I->users()) 5242 if (U != I) 5243 Worklist.insert(cast<Instruction>(U)); 5244 5245 // Replace the instruction with its simplified value. 5246 I->replaceAllUsesWith(SimpleV); 5247 5248 // Gracefully handle edge cases where the instruction is not wired into any 5249 // parent block. 5250 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5251 !I->mayHaveSideEffects()) 5252 I->eraseFromParent(); 5253 } else { 5254 Worklist.insert(I); 5255 } 5256 5257 // Note that we must test the size on each iteration, the worklist can grow. 5258 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 5259 I = Worklist[Idx]; 5260 5261 // See if this instruction simplifies. 5262 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 5263 if (!SimpleV) { 5264 if (UnsimplifiedUsers) 5265 UnsimplifiedUsers->insert(I); 5266 continue; 5267 } 5268 5269 Simplified = true; 5270 5271 // Stash away all the uses of the old instruction so we can check them for 5272 // recursive simplifications after a RAUW. This is cheaper than checking all 5273 // uses of To on the recursive step in most cases. 5274 for (User *U : I->users()) 5275 Worklist.insert(cast<Instruction>(U)); 5276 5277 // Replace the instruction with its simplified value. 5278 I->replaceAllUsesWith(SimpleV); 5279 5280 // Gracefully handle edge cases where the instruction is not wired into any 5281 // parent block. 5282 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5283 !I->mayHaveSideEffects()) 5284 I->eraseFromParent(); 5285 } 5286 return Simplified; 5287 } 5288 5289 bool llvm::recursivelySimplifyInstruction(Instruction *I, 5290 const TargetLibraryInfo *TLI, 5291 const DominatorTree *DT, 5292 AssumptionCache *AC) { 5293 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC, nullptr); 5294 } 5295 5296 bool llvm::replaceAndRecursivelySimplify( 5297 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 5298 const DominatorTree *DT, AssumptionCache *AC, 5299 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 5300 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 5301 assert(SimpleV && "Must provide a simplified value."); 5302 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 5303 UnsimplifiedUsers); 5304 } 5305 5306 namespace llvm { 5307 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 5308 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 5309 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 5310 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5311 auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr; 5312 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 5313 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 5314 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5315 } 5316 5317 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 5318 const DataLayout &DL) { 5319 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 5320 } 5321 5322 template <class T, class... TArgs> 5323 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 5324 Function &F) { 5325 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 5326 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 5327 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 5328 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5329 } 5330 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 5331 Function &); 5332 } 5333