xref: /freebsd-src/contrib/llvm-project/llvm/lib/Analysis/InstructionSimplify.cpp (revision 04eeddc0aa8e0a417a16eaf9d7d095207f4a8623)
1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions.  This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/InstructionSimplify.h"
20 
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/CmpInstAnalysis.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/InstSimplifyFolder.h"
31 #include "llvm/Analysis/LoopAnalysisManager.h"
32 #include "llvm/Analysis/MemoryBuiltins.h"
33 #include "llvm/Analysis/OverflowInstAnalysis.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/Analysis/VectorUtils.h"
36 #include "llvm/IR/ConstantRange.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/Operator.h"
44 #include "llvm/IR/PatternMatch.h"
45 #include "llvm/IR/ValueHandle.h"
46 #include "llvm/Support/KnownBits.h"
47 #include <algorithm>
48 using namespace llvm;
49 using namespace llvm::PatternMatch;
50 
51 #define DEBUG_TYPE "instsimplify"
52 
53 enum { RecursionLimit = 3 };
54 
55 STATISTIC(NumExpand,  "Number of expansions");
56 STATISTIC(NumReassoc, "Number of reassociations");
57 
58 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
59 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
60 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
61                              const SimplifyQuery &, unsigned);
62 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
63                             unsigned);
64 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
65                             const SimplifyQuery &, unsigned);
66 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
67                               unsigned);
68 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
69                                const SimplifyQuery &Q, unsigned MaxRecurse);
70 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
71 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
72 static Value *SimplifyCastInst(unsigned, Value *, Type *,
73                                const SimplifyQuery &, unsigned);
74 static Value *SimplifyGEPInst(Type *, Value *, ArrayRef<Value *>, bool,
75                               const SimplifyQuery &, unsigned);
76 static Value *SimplifySelectInst(Value *, Value *, Value *,
77                                  const SimplifyQuery &, unsigned);
78 
79 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
80                                      Value *FalseVal) {
81   BinaryOperator::BinaryOps BinOpCode;
82   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
83     BinOpCode = BO->getOpcode();
84   else
85     return nullptr;
86 
87   CmpInst::Predicate ExpectedPred, Pred1, Pred2;
88   if (BinOpCode == BinaryOperator::Or) {
89     ExpectedPred = ICmpInst::ICMP_NE;
90   } else if (BinOpCode == BinaryOperator::And) {
91     ExpectedPred = ICmpInst::ICMP_EQ;
92   } else
93     return nullptr;
94 
95   // %A = icmp eq %TV, %FV
96   // %B = icmp eq %X, %Y (and one of these is a select operand)
97   // %C = and %A, %B
98   // %D = select %C, %TV, %FV
99   // -->
100   // %FV
101 
102   // %A = icmp ne %TV, %FV
103   // %B = icmp ne %X, %Y (and one of these is a select operand)
104   // %C = or %A, %B
105   // %D = select %C, %TV, %FV
106   // -->
107   // %TV
108   Value *X, *Y;
109   if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
110                                       m_Specific(FalseVal)),
111                              m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
112       Pred1 != Pred2 || Pred1 != ExpectedPred)
113     return nullptr;
114 
115   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
116     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
117 
118   return nullptr;
119 }
120 
121 /// For a boolean type or a vector of boolean type, return false or a vector
122 /// with every element false.
123 static Constant *getFalse(Type *Ty) {
124   return ConstantInt::getFalse(Ty);
125 }
126 
127 /// For a boolean type or a vector of boolean type, return true or a vector
128 /// with every element true.
129 static Constant *getTrue(Type *Ty) {
130   return ConstantInt::getTrue(Ty);
131 }
132 
133 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
134 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
135                           Value *RHS) {
136   CmpInst *Cmp = dyn_cast<CmpInst>(V);
137   if (!Cmp)
138     return false;
139   CmpInst::Predicate CPred = Cmp->getPredicate();
140   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
141   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
142     return true;
143   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
144     CRHS == LHS;
145 }
146 
147 /// Simplify comparison with true or false branch of select:
148 ///  %sel = select i1 %cond, i32 %tv, i32 %fv
149 ///  %cmp = icmp sle i32 %sel, %rhs
150 /// Compose new comparison by substituting %sel with either %tv or %fv
151 /// and see if it simplifies.
152 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS,
153                                  Value *RHS, Value *Cond,
154                                  const SimplifyQuery &Q, unsigned MaxRecurse,
155                                  Constant *TrueOrFalse) {
156   Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse);
157   if (SimplifiedCmp == Cond) {
158     // %cmp simplified to the select condition (%cond).
159     return TrueOrFalse;
160   } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) {
161     // It didn't simplify. However, if composed comparison is equivalent
162     // to the select condition (%cond) then we can replace it.
163     return TrueOrFalse;
164   }
165   return SimplifiedCmp;
166 }
167 
168 /// Simplify comparison with true branch of select
169 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS,
170                                      Value *RHS, Value *Cond,
171                                      const SimplifyQuery &Q,
172                                      unsigned MaxRecurse) {
173   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
174                             getTrue(Cond->getType()));
175 }
176 
177 /// Simplify comparison with false branch of select
178 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS,
179                                       Value *RHS, Value *Cond,
180                                       const SimplifyQuery &Q,
181                                       unsigned MaxRecurse) {
182   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
183                             getFalse(Cond->getType()));
184 }
185 
186 /// We know comparison with both branches of select can be simplified, but they
187 /// are not equal. This routine handles some logical simplifications.
188 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp,
189                                                Value *Cond,
190                                                const SimplifyQuery &Q,
191                                                unsigned MaxRecurse) {
192   // If the false value simplified to false, then the result of the compare
193   // is equal to "Cond && TCmp".  This also catches the case when the false
194   // value simplified to false and the true value to true, returning "Cond".
195   // Folding select to and/or isn't poison-safe in general; impliesPoison
196   // checks whether folding it does not convert a well-defined value into
197   // poison.
198   if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond))
199     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
200       return V;
201   // If the true value simplified to true, then the result of the compare
202   // is equal to "Cond || FCmp".
203   if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond))
204     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
205       return V;
206   // Finally, if the false value simplified to true and the true value to
207   // false, then the result of the compare is equal to "!Cond".
208   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
209     if (Value *V = SimplifyXorInst(
210             Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse))
211       return V;
212   return nullptr;
213 }
214 
215 /// Does the given value dominate the specified phi node?
216 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
217   Instruction *I = dyn_cast<Instruction>(V);
218   if (!I)
219     // Arguments and constants dominate all instructions.
220     return true;
221 
222   // If we are processing instructions (and/or basic blocks) that have not been
223   // fully added to a function, the parent nodes may still be null. Simply
224   // return the conservative answer in these cases.
225   if (!I->getParent() || !P->getParent() || !I->getFunction())
226     return false;
227 
228   // If we have a DominatorTree then do a precise test.
229   if (DT)
230     return DT->dominates(I, P);
231 
232   // Otherwise, if the instruction is in the entry block and is not an invoke,
233   // then it obviously dominates all phi nodes.
234   if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) &&
235       !isa<CallBrInst>(I))
236     return true;
237 
238   return false;
239 }
240 
241 /// Try to simplify a binary operator of form "V op OtherOp" where V is
242 /// "(B0 opex B1)" by distributing 'op' across 'opex' as
243 /// "(B0 op OtherOp) opex (B1 op OtherOp)".
244 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V,
245                           Value *OtherOp, Instruction::BinaryOps OpcodeToExpand,
246                           const SimplifyQuery &Q, unsigned MaxRecurse) {
247   auto *B = dyn_cast<BinaryOperator>(V);
248   if (!B || B->getOpcode() != OpcodeToExpand)
249     return nullptr;
250   Value *B0 = B->getOperand(0), *B1 = B->getOperand(1);
251   Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(),
252                            MaxRecurse);
253   if (!L)
254     return nullptr;
255   Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(),
256                            MaxRecurse);
257   if (!R)
258     return nullptr;
259 
260   // Does the expanded pair of binops simplify to the existing binop?
261   if ((L == B0 && R == B1) ||
262       (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) {
263     ++NumExpand;
264     return B;
265   }
266 
267   // Otherwise, return "L op' R" if it simplifies.
268   Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse);
269   if (!S)
270     return nullptr;
271 
272   ++NumExpand;
273   return S;
274 }
275 
276 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by
277 /// distributing op over op'.
278 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode,
279                                      Value *L, Value *R,
280                                      Instruction::BinaryOps OpcodeToExpand,
281                                      const SimplifyQuery &Q,
282                                      unsigned MaxRecurse) {
283   // Recursion is always used, so bail out at once if we already hit the limit.
284   if (!MaxRecurse--)
285     return nullptr;
286 
287   if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse))
288     return V;
289   if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse))
290     return V;
291   return nullptr;
292 }
293 
294 /// Generic simplifications for associative binary operations.
295 /// Returns the simpler value, or null if none was found.
296 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
297                                        Value *LHS, Value *RHS,
298                                        const SimplifyQuery &Q,
299                                        unsigned MaxRecurse) {
300   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
301 
302   // Recursion is always used, so bail out at once if we already hit the limit.
303   if (!MaxRecurse--)
304     return nullptr;
305 
306   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
307   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
308 
309   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
310   if (Op0 && Op0->getOpcode() == Opcode) {
311     Value *A = Op0->getOperand(0);
312     Value *B = Op0->getOperand(1);
313     Value *C = RHS;
314 
315     // Does "B op C" simplify?
316     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
317       // It does!  Return "A op V" if it simplifies or is already available.
318       // If V equals B then "A op V" is just the LHS.
319       if (V == B) return LHS;
320       // Otherwise return "A op V" if it simplifies.
321       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
322         ++NumReassoc;
323         return W;
324       }
325     }
326   }
327 
328   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
329   if (Op1 && Op1->getOpcode() == Opcode) {
330     Value *A = LHS;
331     Value *B = Op1->getOperand(0);
332     Value *C = Op1->getOperand(1);
333 
334     // Does "A op B" simplify?
335     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
336       // It does!  Return "V op C" if it simplifies or is already available.
337       // If V equals B then "V op C" is just the RHS.
338       if (V == B) return RHS;
339       // Otherwise return "V op C" if it simplifies.
340       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
341         ++NumReassoc;
342         return W;
343       }
344     }
345   }
346 
347   // The remaining transforms require commutativity as well as associativity.
348   if (!Instruction::isCommutative(Opcode))
349     return nullptr;
350 
351   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
352   if (Op0 && Op0->getOpcode() == Opcode) {
353     Value *A = Op0->getOperand(0);
354     Value *B = Op0->getOperand(1);
355     Value *C = RHS;
356 
357     // Does "C op A" simplify?
358     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
359       // It does!  Return "V op B" if it simplifies or is already available.
360       // If V equals A then "V op B" is just the LHS.
361       if (V == A) return LHS;
362       // Otherwise return "V op B" if it simplifies.
363       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
364         ++NumReassoc;
365         return W;
366       }
367     }
368   }
369 
370   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
371   if (Op1 && Op1->getOpcode() == Opcode) {
372     Value *A = LHS;
373     Value *B = Op1->getOperand(0);
374     Value *C = Op1->getOperand(1);
375 
376     // Does "C op A" simplify?
377     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
378       // It does!  Return "B op V" if it simplifies or is already available.
379       // If V equals C then "B op V" is just the RHS.
380       if (V == C) return RHS;
381       // Otherwise return "B op V" if it simplifies.
382       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
383         ++NumReassoc;
384         return W;
385       }
386     }
387   }
388 
389   return nullptr;
390 }
391 
392 /// In the case of a binary operation with a select instruction as an operand,
393 /// try to simplify the binop by seeing whether evaluating it on both branches
394 /// of the select results in the same value. Returns the common value if so,
395 /// otherwise returns null.
396 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
397                                     Value *RHS, const SimplifyQuery &Q,
398                                     unsigned MaxRecurse) {
399   // Recursion is always used, so bail out at once if we already hit the limit.
400   if (!MaxRecurse--)
401     return nullptr;
402 
403   SelectInst *SI;
404   if (isa<SelectInst>(LHS)) {
405     SI = cast<SelectInst>(LHS);
406   } else {
407     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
408     SI = cast<SelectInst>(RHS);
409   }
410 
411   // Evaluate the BinOp on the true and false branches of the select.
412   Value *TV;
413   Value *FV;
414   if (SI == LHS) {
415     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
416     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
417   } else {
418     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
419     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
420   }
421 
422   // If they simplified to the same value, then return the common value.
423   // If they both failed to simplify then return null.
424   if (TV == FV)
425     return TV;
426 
427   // If one branch simplified to undef, return the other one.
428   if (TV && Q.isUndefValue(TV))
429     return FV;
430   if (FV && Q.isUndefValue(FV))
431     return TV;
432 
433   // If applying the operation did not change the true and false select values,
434   // then the result of the binop is the select itself.
435   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
436     return SI;
437 
438   // If one branch simplified and the other did not, and the simplified
439   // value is equal to the unsimplified one, return the simplified value.
440   // For example, select (cond, X, X & Z) & Z -> X & Z.
441   if ((FV && !TV) || (TV && !FV)) {
442     // Check that the simplified value has the form "X op Y" where "op" is the
443     // same as the original operation.
444     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
445     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
446       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
447       // We already know that "op" is the same as for the simplified value.  See
448       // if the operands match too.  If so, return the simplified value.
449       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
450       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
451       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
452       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
453           Simplified->getOperand(1) == UnsimplifiedRHS)
454         return Simplified;
455       if (Simplified->isCommutative() &&
456           Simplified->getOperand(1) == UnsimplifiedLHS &&
457           Simplified->getOperand(0) == UnsimplifiedRHS)
458         return Simplified;
459     }
460   }
461 
462   return nullptr;
463 }
464 
465 /// In the case of a comparison with a select instruction, try to simplify the
466 /// comparison by seeing whether both branches of the select result in the same
467 /// value. Returns the common value if so, otherwise returns null.
468 /// For example, if we have:
469 ///  %tmp = select i1 %cmp, i32 1, i32 2
470 ///  %cmp1 = icmp sle i32 %tmp, 3
471 /// We can simplify %cmp1 to true, because both branches of select are
472 /// less than 3. We compose new comparison by substituting %tmp with both
473 /// branches of select and see if it can be simplified.
474 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
475                                   Value *RHS, const SimplifyQuery &Q,
476                                   unsigned MaxRecurse) {
477   // Recursion is always used, so bail out at once if we already hit the limit.
478   if (!MaxRecurse--)
479     return nullptr;
480 
481   // Make sure the select is on the LHS.
482   if (!isa<SelectInst>(LHS)) {
483     std::swap(LHS, RHS);
484     Pred = CmpInst::getSwappedPredicate(Pred);
485   }
486   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
487   SelectInst *SI = cast<SelectInst>(LHS);
488   Value *Cond = SI->getCondition();
489   Value *TV = SI->getTrueValue();
490   Value *FV = SI->getFalseValue();
491 
492   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
493   // Does "cmp TV, RHS" simplify?
494   Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse);
495   if (!TCmp)
496     return nullptr;
497 
498   // Does "cmp FV, RHS" simplify?
499   Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse);
500   if (!FCmp)
501     return nullptr;
502 
503   // If both sides simplified to the same value, then use it as the result of
504   // the original comparison.
505   if (TCmp == FCmp)
506     return TCmp;
507 
508   // The remaining cases only make sense if the select condition has the same
509   // type as the result of the comparison, so bail out if this is not so.
510   if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy())
511     return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse);
512 
513   return nullptr;
514 }
515 
516 /// In the case of a binary operation with an operand that is a PHI instruction,
517 /// try to simplify the binop by seeing whether evaluating it on the incoming
518 /// phi values yields the same result for every value. If so returns the common
519 /// value, otherwise returns null.
520 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
521                                  Value *RHS, const SimplifyQuery &Q,
522                                  unsigned MaxRecurse) {
523   // Recursion is always used, so bail out at once if we already hit the limit.
524   if (!MaxRecurse--)
525     return nullptr;
526 
527   PHINode *PI;
528   if (isa<PHINode>(LHS)) {
529     PI = cast<PHINode>(LHS);
530     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
531     if (!valueDominatesPHI(RHS, PI, Q.DT))
532       return nullptr;
533   } else {
534     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
535     PI = cast<PHINode>(RHS);
536     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
537     if (!valueDominatesPHI(LHS, PI, Q.DT))
538       return nullptr;
539   }
540 
541   // Evaluate the BinOp on the incoming phi values.
542   Value *CommonValue = nullptr;
543   for (Value *Incoming : PI->incoming_values()) {
544     // If the incoming value is the phi node itself, it can safely be skipped.
545     if (Incoming == PI) continue;
546     Value *V = PI == LHS ?
547       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
548       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
549     // If the operation failed to simplify, or simplified to a different value
550     // to previously, then give up.
551     if (!V || (CommonValue && V != CommonValue))
552       return nullptr;
553     CommonValue = V;
554   }
555 
556   return CommonValue;
557 }
558 
559 /// In the case of a comparison with a PHI instruction, try to simplify the
560 /// comparison by seeing whether comparing with all of the incoming phi values
561 /// yields the same result every time. If so returns the common result,
562 /// otherwise returns null.
563 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
564                                const SimplifyQuery &Q, unsigned MaxRecurse) {
565   // Recursion is always used, so bail out at once if we already hit the limit.
566   if (!MaxRecurse--)
567     return nullptr;
568 
569   // Make sure the phi is on the LHS.
570   if (!isa<PHINode>(LHS)) {
571     std::swap(LHS, RHS);
572     Pred = CmpInst::getSwappedPredicate(Pred);
573   }
574   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
575   PHINode *PI = cast<PHINode>(LHS);
576 
577   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
578   if (!valueDominatesPHI(RHS, PI, Q.DT))
579     return nullptr;
580 
581   // Evaluate the BinOp on the incoming phi values.
582   Value *CommonValue = nullptr;
583   for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) {
584     Value *Incoming = PI->getIncomingValue(u);
585     Instruction *InTI = PI->getIncomingBlock(u)->getTerminator();
586     // If the incoming value is the phi node itself, it can safely be skipped.
587     if (Incoming == PI) continue;
588     // Change the context instruction to the "edge" that flows into the phi.
589     // This is important because that is where incoming is actually "evaluated"
590     // even though it is used later somewhere else.
591     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI),
592                                MaxRecurse);
593     // If the operation failed to simplify, or simplified to a different value
594     // to previously, then give up.
595     if (!V || (CommonValue && V != CommonValue))
596       return nullptr;
597     CommonValue = V;
598   }
599 
600   return CommonValue;
601 }
602 
603 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
604                                        Value *&Op0, Value *&Op1,
605                                        const SimplifyQuery &Q) {
606   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
607     if (auto *CRHS = dyn_cast<Constant>(Op1))
608       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
609 
610     // Canonicalize the constant to the RHS if this is a commutative operation.
611     if (Instruction::isCommutative(Opcode))
612       std::swap(Op0, Op1);
613   }
614   return nullptr;
615 }
616 
617 /// Given operands for an Add, see if we can fold the result.
618 /// If not, this returns null.
619 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
620                               const SimplifyQuery &Q, unsigned MaxRecurse) {
621   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
622     return C;
623 
624   // X + poison -> poison
625   if (isa<PoisonValue>(Op1))
626     return Op1;
627 
628   // X + undef -> undef
629   if (Q.isUndefValue(Op1))
630     return Op1;
631 
632   // X + 0 -> X
633   if (match(Op1, m_Zero()))
634     return Op0;
635 
636   // If two operands are negative, return 0.
637   if (isKnownNegation(Op0, Op1))
638     return Constant::getNullValue(Op0->getType());
639 
640   // X + (Y - X) -> Y
641   // (Y - X) + X -> Y
642   // Eg: X + -X -> 0
643   Value *Y = nullptr;
644   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
645       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
646     return Y;
647 
648   // X + ~X -> -1   since   ~X = -X-1
649   Type *Ty = Op0->getType();
650   if (match(Op0, m_Not(m_Specific(Op1))) ||
651       match(Op1, m_Not(m_Specific(Op0))))
652     return Constant::getAllOnesValue(Ty);
653 
654   // add nsw/nuw (xor Y, signmask), signmask --> Y
655   // The no-wrapping add guarantees that the top bit will be set by the add.
656   // Therefore, the xor must be clearing the already set sign bit of Y.
657   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
658       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
659     return Y;
660 
661   // add nuw %x, -1  ->  -1, because %x can only be 0.
662   if (IsNUW && match(Op1, m_AllOnes()))
663     return Op1; // Which is -1.
664 
665   /// i1 add -> xor.
666   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
667     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
668       return V;
669 
670   // Try some generic simplifications for associative operations.
671   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
672                                           MaxRecurse))
673     return V;
674 
675   // Threading Add over selects and phi nodes is pointless, so don't bother.
676   // Threading over the select in "A + select(cond, B, C)" means evaluating
677   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
678   // only if B and C are equal.  If B and C are equal then (since we assume
679   // that operands have already been simplified) "select(cond, B, C)" should
680   // have been simplified to the common value of B and C already.  Analysing
681   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
682   // for threading over phi nodes.
683 
684   return nullptr;
685 }
686 
687 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
688                              const SimplifyQuery &Query) {
689   return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
690 }
691 
692 /// Compute the base pointer and cumulative constant offsets for V.
693 ///
694 /// This strips all constant offsets off of V, leaving it the base pointer, and
695 /// accumulates the total constant offset applied in the returned constant. It
696 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
697 /// no constant offsets applied.
698 ///
699 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
700 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
701 /// folding.
702 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
703                                                 bool AllowNonInbounds = false) {
704   assert(V->getType()->isPtrOrPtrVectorTy());
705 
706   APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType()));
707 
708   V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
709   // As that strip may trace through `addrspacecast`, need to sext or trunc
710   // the offset calculated.
711   Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
712   Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth());
713 
714   Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset);
715   if (VectorType *VecTy = dyn_cast<VectorType>(V->getType()))
716     return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr);
717   return OffsetIntPtr;
718 }
719 
720 /// Compute the constant difference between two pointer values.
721 /// If the difference is not a constant, returns zero.
722 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
723                                           Value *RHS) {
724   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
725   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
726 
727   // If LHS and RHS are not related via constant offsets to the same base
728   // value, there is nothing we can do here.
729   if (LHS != RHS)
730     return nullptr;
731 
732   // Otherwise, the difference of LHS - RHS can be computed as:
733   //    LHS - RHS
734   //  = (LHSOffset + Base) - (RHSOffset + Base)
735   //  = LHSOffset - RHSOffset
736   return ConstantExpr::getSub(LHSOffset, RHSOffset);
737 }
738 
739 /// Given operands for a Sub, see if we can fold the result.
740 /// If not, this returns null.
741 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
742                               const SimplifyQuery &Q, unsigned MaxRecurse) {
743   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
744     return C;
745 
746   // X - poison -> poison
747   // poison - X -> poison
748   if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1))
749     return PoisonValue::get(Op0->getType());
750 
751   // X - undef -> undef
752   // undef - X -> undef
753   if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
754     return UndefValue::get(Op0->getType());
755 
756   // X - 0 -> X
757   if (match(Op1, m_Zero()))
758     return Op0;
759 
760   // X - X -> 0
761   if (Op0 == Op1)
762     return Constant::getNullValue(Op0->getType());
763 
764   // Is this a negation?
765   if (match(Op0, m_Zero())) {
766     // 0 - X -> 0 if the sub is NUW.
767     if (isNUW)
768       return Constant::getNullValue(Op0->getType());
769 
770     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
771     if (Known.Zero.isMaxSignedValue()) {
772       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
773       // Op1 must be 0 because negating the minimum signed value is undefined.
774       if (isNSW)
775         return Constant::getNullValue(Op0->getType());
776 
777       // 0 - X -> X if X is 0 or the minimum signed value.
778       return Op1;
779     }
780   }
781 
782   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
783   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
784   Value *X = nullptr, *Y = nullptr, *Z = Op1;
785   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
786     // See if "V === Y - Z" simplifies.
787     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
788       // It does!  Now see if "X + V" simplifies.
789       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
790         // It does, we successfully reassociated!
791         ++NumReassoc;
792         return W;
793       }
794     // See if "V === X - Z" simplifies.
795     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
796       // It does!  Now see if "Y + V" simplifies.
797       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
798         // It does, we successfully reassociated!
799         ++NumReassoc;
800         return W;
801       }
802   }
803 
804   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
805   // For example, X - (X + 1) -> -1
806   X = Op0;
807   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
808     // See if "V === X - Y" simplifies.
809     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
810       // It does!  Now see if "V - Z" simplifies.
811       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
812         // It does, we successfully reassociated!
813         ++NumReassoc;
814         return W;
815       }
816     // See if "V === X - Z" simplifies.
817     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
818       // It does!  Now see if "V - Y" simplifies.
819       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
820         // It does, we successfully reassociated!
821         ++NumReassoc;
822         return W;
823       }
824   }
825 
826   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
827   // For example, X - (X - Y) -> Y.
828   Z = Op0;
829   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
830     // See if "V === Z - X" simplifies.
831     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
832       // It does!  Now see if "V + Y" simplifies.
833       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
834         // It does, we successfully reassociated!
835         ++NumReassoc;
836         return W;
837       }
838 
839   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
840   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
841       match(Op1, m_Trunc(m_Value(Y))))
842     if (X->getType() == Y->getType())
843       // See if "V === X - Y" simplifies.
844       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
845         // It does!  Now see if "trunc V" simplifies.
846         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
847                                         Q, MaxRecurse - 1))
848           // It does, return the simplified "trunc V".
849           return W;
850 
851   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
852   if (match(Op0, m_PtrToInt(m_Value(X))) &&
853       match(Op1, m_PtrToInt(m_Value(Y))))
854     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
855       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
856 
857   // i1 sub -> xor.
858   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
859     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
860       return V;
861 
862   // Threading Sub over selects and phi nodes is pointless, so don't bother.
863   // Threading over the select in "A - select(cond, B, C)" means evaluating
864   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
865   // only if B and C are equal.  If B and C are equal then (since we assume
866   // that operands have already been simplified) "select(cond, B, C)" should
867   // have been simplified to the common value of B and C already.  Analysing
868   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
869   // for threading over phi nodes.
870 
871   return nullptr;
872 }
873 
874 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
875                              const SimplifyQuery &Q) {
876   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
877 }
878 
879 /// Given operands for a Mul, see if we can fold the result.
880 /// If not, this returns null.
881 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
882                               unsigned MaxRecurse) {
883   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
884     return C;
885 
886   // X * poison -> poison
887   if (isa<PoisonValue>(Op1))
888     return Op1;
889 
890   // X * undef -> 0
891   // X * 0 -> 0
892   if (Q.isUndefValue(Op1) || match(Op1, m_Zero()))
893     return Constant::getNullValue(Op0->getType());
894 
895   // X * 1 -> X
896   if (match(Op1, m_One()))
897     return Op0;
898 
899   // (X / Y) * Y -> X if the division is exact.
900   Value *X = nullptr;
901   if (Q.IIQ.UseInstrInfo &&
902       (match(Op0,
903              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
904        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
905     return X;
906 
907   // i1 mul -> and.
908   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
909     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
910       return V;
911 
912   // Try some generic simplifications for associative operations.
913   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
914                                           MaxRecurse))
915     return V;
916 
917   // Mul distributes over Add. Try some generic simplifications based on this.
918   if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1,
919                                         Instruction::Add, Q, MaxRecurse))
920     return V;
921 
922   // If the operation is with the result of a select instruction, check whether
923   // operating on either branch of the select always yields the same value.
924   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
925     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
926                                          MaxRecurse))
927       return V;
928 
929   // If the operation is with the result of a phi instruction, check whether
930   // operating on all incoming values of the phi always yields the same value.
931   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
932     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
933                                       MaxRecurse))
934       return V;
935 
936   return nullptr;
937 }
938 
939 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
940   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
941 }
942 
943 /// Check for common or similar folds of integer division or integer remainder.
944 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
945 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0,
946                              Value *Op1, const SimplifyQuery &Q) {
947   bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv);
948   bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem);
949 
950   Type *Ty = Op0->getType();
951 
952   // X / undef -> poison
953   // X % undef -> poison
954   if (Q.isUndefValue(Op1))
955     return PoisonValue::get(Ty);
956 
957   // X / 0 -> poison
958   // X % 0 -> poison
959   // We don't need to preserve faults!
960   if (match(Op1, m_Zero()))
961     return PoisonValue::get(Ty);
962 
963   // If any element of a constant divisor fixed width vector is zero or undef
964   // the behavior is undefined and we can fold the whole op to poison.
965   auto *Op1C = dyn_cast<Constant>(Op1);
966   auto *VTy = dyn_cast<FixedVectorType>(Ty);
967   if (Op1C && VTy) {
968     unsigned NumElts = VTy->getNumElements();
969     for (unsigned i = 0; i != NumElts; ++i) {
970       Constant *Elt = Op1C->getAggregateElement(i);
971       if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt)))
972         return PoisonValue::get(Ty);
973     }
974   }
975 
976   // poison / X -> poison
977   // poison % X -> poison
978   if (isa<PoisonValue>(Op0))
979     return Op0;
980 
981   // undef / X -> 0
982   // undef % X -> 0
983   if (Q.isUndefValue(Op0))
984     return Constant::getNullValue(Ty);
985 
986   // 0 / X -> 0
987   // 0 % X -> 0
988   if (match(Op0, m_Zero()))
989     return Constant::getNullValue(Op0->getType());
990 
991   // X / X -> 1
992   // X % X -> 0
993   if (Op0 == Op1)
994     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
995 
996   // X / 1 -> X
997   // X % 1 -> 0
998   // If this is a boolean op (single-bit element type), we can't have
999   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
1000   // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
1001   Value *X;
1002   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
1003       (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1004     return IsDiv ? Op0 : Constant::getNullValue(Ty);
1005 
1006   // If X * Y does not overflow, then:
1007   //   X * Y / Y -> X
1008   //   X * Y % Y -> 0
1009   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1010     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1011     // The multiplication can't overflow if it is defined not to, or if
1012     // X == A / Y for some A.
1013     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1014         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) ||
1015         (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1016         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) {
1017       return IsDiv ? X : Constant::getNullValue(Op0->getType());
1018     }
1019   }
1020 
1021   return nullptr;
1022 }
1023 
1024 /// Given a predicate and two operands, return true if the comparison is true.
1025 /// This is a helper for div/rem simplification where we return some other value
1026 /// when we can prove a relationship between the operands.
1027 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
1028                        const SimplifyQuery &Q, unsigned MaxRecurse) {
1029   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
1030   Constant *C = dyn_cast_or_null<Constant>(V);
1031   return (C && C->isAllOnesValue());
1032 }
1033 
1034 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
1035 /// to simplify X % Y to X.
1036 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
1037                       unsigned MaxRecurse, bool IsSigned) {
1038   // Recursion is always used, so bail out at once if we already hit the limit.
1039   if (!MaxRecurse--)
1040     return false;
1041 
1042   if (IsSigned) {
1043     // |X| / |Y| --> 0
1044     //
1045     // We require that 1 operand is a simple constant. That could be extended to
1046     // 2 variables if we computed the sign bit for each.
1047     //
1048     // Make sure that a constant is not the minimum signed value because taking
1049     // the abs() of that is undefined.
1050     Type *Ty = X->getType();
1051     const APInt *C;
1052     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
1053       // Is the variable divisor magnitude always greater than the constant
1054       // dividend magnitude?
1055       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
1056       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
1057       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
1058       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
1059           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
1060         return true;
1061     }
1062     if (match(Y, m_APInt(C))) {
1063       // Special-case: we can't take the abs() of a minimum signed value. If
1064       // that's the divisor, then all we have to do is prove that the dividend
1065       // is also not the minimum signed value.
1066       if (C->isMinSignedValue())
1067         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
1068 
1069       // Is the variable dividend magnitude always less than the constant
1070       // divisor magnitude?
1071       // |X| < |C| --> X > -abs(C) and X < abs(C)
1072       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
1073       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
1074       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
1075           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
1076         return true;
1077     }
1078     return false;
1079   }
1080 
1081   // IsSigned == false.
1082 
1083   // Is the unsigned dividend known to be less than a constant divisor?
1084   // TODO: Convert this (and above) to range analysis
1085   //      ("computeConstantRangeIncludingKnownBits")?
1086   const APInt *C;
1087   if (match(Y, m_APInt(C)) &&
1088       computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, Q.DT).getMaxValue().ult(*C))
1089     return true;
1090 
1091   // Try again for any divisor:
1092   // Is the dividend unsigned less than the divisor?
1093   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1094 }
1095 
1096 /// These are simplifications common to SDiv and UDiv.
1097 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1098                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1099   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1100     return C;
1101 
1102   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1103     return V;
1104 
1105   bool IsSigned = Opcode == Instruction::SDiv;
1106 
1107   // (X rem Y) / Y -> 0
1108   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1109       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1110     return Constant::getNullValue(Op0->getType());
1111 
1112   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1113   ConstantInt *C1, *C2;
1114   if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) &&
1115       match(Op1, m_ConstantInt(C2))) {
1116     bool Overflow;
1117     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1118     if (Overflow)
1119       return Constant::getNullValue(Op0->getType());
1120   }
1121 
1122   // If the operation is with the result of a select instruction, check whether
1123   // operating on either branch of the select always yields the same value.
1124   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1125     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1126       return V;
1127 
1128   // If the operation is with the result of a phi instruction, check whether
1129   // operating on all incoming values of the phi always yields the same value.
1130   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1131     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1132       return V;
1133 
1134   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1135     return Constant::getNullValue(Op0->getType());
1136 
1137   return nullptr;
1138 }
1139 
1140 /// These are simplifications common to SRem and URem.
1141 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1142                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1143   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1144     return C;
1145 
1146   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q))
1147     return V;
1148 
1149   // (X % Y) % Y -> X % Y
1150   if ((Opcode == Instruction::SRem &&
1151        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1152       (Opcode == Instruction::URem &&
1153        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1154     return Op0;
1155 
1156   // (X << Y) % X -> 0
1157   if (Q.IIQ.UseInstrInfo &&
1158       ((Opcode == Instruction::SRem &&
1159         match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1160        (Opcode == Instruction::URem &&
1161         match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1162     return Constant::getNullValue(Op0->getType());
1163 
1164   // If the operation is with the result of a select instruction, check whether
1165   // operating on either branch of the select always yields the same value.
1166   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1167     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1168       return V;
1169 
1170   // If the operation is with the result of a phi instruction, check whether
1171   // operating on all incoming values of the phi always yields the same value.
1172   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1173     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1174       return V;
1175 
1176   // If X / Y == 0, then X % Y == X.
1177   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1178     return Op0;
1179 
1180   return nullptr;
1181 }
1182 
1183 /// Given operands for an SDiv, see if we can fold the result.
1184 /// If not, this returns null.
1185 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1186                                unsigned MaxRecurse) {
1187   // If two operands are negated and no signed overflow, return -1.
1188   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1189     return Constant::getAllOnesValue(Op0->getType());
1190 
1191   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1192 }
1193 
1194 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1195   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1196 }
1197 
1198 /// Given operands for a UDiv, see if we can fold the result.
1199 /// If not, this returns null.
1200 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1201                                unsigned MaxRecurse) {
1202   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1203 }
1204 
1205 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1206   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1207 }
1208 
1209 /// Given operands for an SRem, see if we can fold the result.
1210 /// If not, this returns null.
1211 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1212                                unsigned MaxRecurse) {
1213   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1214   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1215   Value *X;
1216   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1217     return ConstantInt::getNullValue(Op0->getType());
1218 
1219   // If the two operands are negated, return 0.
1220   if (isKnownNegation(Op0, Op1))
1221     return ConstantInt::getNullValue(Op0->getType());
1222 
1223   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1224 }
1225 
1226 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1227   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1228 }
1229 
1230 /// Given operands for a URem, see if we can fold the result.
1231 /// If not, this returns null.
1232 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1233                                unsigned MaxRecurse) {
1234   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1235 }
1236 
1237 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1238   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1239 }
1240 
1241 /// Returns true if a shift by \c Amount always yields poison.
1242 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) {
1243   Constant *C = dyn_cast<Constant>(Amount);
1244   if (!C)
1245     return false;
1246 
1247   // X shift by undef -> poison because it may shift by the bitwidth.
1248   if (Q.isUndefValue(C))
1249     return true;
1250 
1251   // Shifting by the bitwidth or more is undefined.
1252   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1253     if (CI->getValue().uge(CI->getType()->getScalarSizeInBits()))
1254       return true;
1255 
1256   // If all lanes of a vector shift are undefined the whole shift is.
1257   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1258     for (unsigned I = 0,
1259                   E = cast<FixedVectorType>(C->getType())->getNumElements();
1260          I != E; ++I)
1261       if (!isPoisonShift(C->getAggregateElement(I), Q))
1262         return false;
1263     return true;
1264   }
1265 
1266   return false;
1267 }
1268 
1269 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1270 /// If not, this returns null.
1271 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1272                             Value *Op1, bool IsNSW, const SimplifyQuery &Q,
1273                             unsigned MaxRecurse) {
1274   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1275     return C;
1276 
1277   // poison shift by X -> poison
1278   if (isa<PoisonValue>(Op0))
1279     return Op0;
1280 
1281   // 0 shift by X -> 0
1282   if (match(Op0, m_Zero()))
1283     return Constant::getNullValue(Op0->getType());
1284 
1285   // X shift by 0 -> X
1286   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1287   // would be poison.
1288   Value *X;
1289   if (match(Op1, m_Zero()) ||
1290       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1291     return Op0;
1292 
1293   // Fold undefined shifts.
1294   if (isPoisonShift(Op1, Q))
1295     return PoisonValue::get(Op0->getType());
1296 
1297   // If the operation is with the result of a select instruction, check whether
1298   // operating on either branch of the select always yields the same value.
1299   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1300     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1301       return V;
1302 
1303   // If the operation is with the result of a phi instruction, check whether
1304   // operating on all incoming values of the phi always yields the same value.
1305   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1306     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1307       return V;
1308 
1309   // If any bits in the shift amount make that value greater than or equal to
1310   // the number of bits in the type, the shift is undefined.
1311   KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1312   if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth()))
1313     return PoisonValue::get(Op0->getType());
1314 
1315   // If all valid bits in the shift amount are known zero, the first operand is
1316   // unchanged.
1317   unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth());
1318   if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits)
1319     return Op0;
1320 
1321   // Check for nsw shl leading to a poison value.
1322   if (IsNSW) {
1323     assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction");
1324     KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1325     KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt);
1326 
1327     if (KnownVal.Zero.isSignBitSet())
1328       KnownShl.Zero.setSignBit();
1329     if (KnownVal.One.isSignBitSet())
1330       KnownShl.One.setSignBit();
1331 
1332     if (KnownShl.hasConflict())
1333       return PoisonValue::get(Op0->getType());
1334   }
1335 
1336   return nullptr;
1337 }
1338 
1339 /// Given operands for an Shl, LShr or AShr, see if we can
1340 /// fold the result.  If not, this returns null.
1341 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1342                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
1343                                  unsigned MaxRecurse) {
1344   if (Value *V =
1345           SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse))
1346     return V;
1347 
1348   // X >> X -> 0
1349   if (Op0 == Op1)
1350     return Constant::getNullValue(Op0->getType());
1351 
1352   // undef >> X -> 0
1353   // undef >> X -> undef (if it's exact)
1354   if (Q.isUndefValue(Op0))
1355     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1356 
1357   // The low bit cannot be shifted out of an exact shift if it is set.
1358   if (isExact) {
1359     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1360     if (Op0Known.One[0])
1361       return Op0;
1362   }
1363 
1364   return nullptr;
1365 }
1366 
1367 /// Given operands for an Shl, see if we can fold the result.
1368 /// If not, this returns null.
1369 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1370                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1371   if (Value *V =
1372           SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse))
1373     return V;
1374 
1375   // undef << X -> 0
1376   // undef << X -> undef if (if it's NSW/NUW)
1377   if (Q.isUndefValue(Op0))
1378     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1379 
1380   // (X >> A) << A -> X
1381   Value *X;
1382   if (Q.IIQ.UseInstrInfo &&
1383       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1384     return X;
1385 
1386   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
1387   if (isNUW && match(Op0, m_Negative()))
1388     return Op0;
1389   // NOTE: could use computeKnownBits() / LazyValueInfo,
1390   // but the cost-benefit analysis suggests it isn't worth it.
1391 
1392   return nullptr;
1393 }
1394 
1395 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1396                              const SimplifyQuery &Q) {
1397   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1398 }
1399 
1400 /// Given operands for an LShr, see if we can fold the result.
1401 /// If not, this returns null.
1402 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1403                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1404   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1405                                     MaxRecurse))
1406       return V;
1407 
1408   // (X << A) >> A -> X
1409   Value *X;
1410   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1411     return X;
1412 
1413   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
1414   // We can return X as we do in the above case since OR alters no bits in X.
1415   // SimplifyDemandedBits in InstCombine can do more general optimization for
1416   // bit manipulation. This pattern aims to provide opportunities for other
1417   // optimizers by supporting a simple but common case in InstSimplify.
1418   Value *Y;
1419   const APInt *ShRAmt, *ShLAmt;
1420   if (match(Op1, m_APInt(ShRAmt)) &&
1421       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1422       *ShRAmt == *ShLAmt) {
1423     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1424     const unsigned EffWidthY = YKnown.countMaxActiveBits();
1425     if (ShRAmt->uge(EffWidthY))
1426       return X;
1427   }
1428 
1429   return nullptr;
1430 }
1431 
1432 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1433                               const SimplifyQuery &Q) {
1434   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1435 }
1436 
1437 /// Given operands for an AShr, see if we can fold the result.
1438 /// If not, this returns null.
1439 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1440                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1441   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1442                                     MaxRecurse))
1443     return V;
1444 
1445   // -1 >>a X --> -1
1446   // (-1 << X) a>> X --> -1
1447   // Do not return Op0 because it may contain undef elements if it's a vector.
1448   if (match(Op0, m_AllOnes()) ||
1449       match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1))))
1450     return Constant::getAllOnesValue(Op0->getType());
1451 
1452   // (X << A) >> A -> X
1453   Value *X;
1454   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1455     return X;
1456 
1457   // Arithmetic shifting an all-sign-bit value is a no-op.
1458   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1459   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1460     return Op0;
1461 
1462   return nullptr;
1463 }
1464 
1465 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1466                               const SimplifyQuery &Q) {
1467   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1468 }
1469 
1470 /// Commuted variants are assumed to be handled by calling this function again
1471 /// with the parameters swapped.
1472 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1473                                          ICmpInst *UnsignedICmp, bool IsAnd,
1474                                          const SimplifyQuery &Q) {
1475   Value *X, *Y;
1476 
1477   ICmpInst::Predicate EqPred;
1478   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1479       !ICmpInst::isEquality(EqPred))
1480     return nullptr;
1481 
1482   ICmpInst::Predicate UnsignedPred;
1483 
1484   Value *A, *B;
1485   // Y = (A - B);
1486   if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
1487     if (match(UnsignedICmp,
1488               m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
1489         ICmpInst::isUnsigned(UnsignedPred)) {
1490       // A >=/<= B || (A - B) != 0  <-->  true
1491       if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1492            UnsignedPred == ICmpInst::ICMP_ULE) &&
1493           EqPred == ICmpInst::ICMP_NE && !IsAnd)
1494         return ConstantInt::getTrue(UnsignedICmp->getType());
1495       // A </> B && (A - B) == 0  <-->  false
1496       if ((UnsignedPred == ICmpInst::ICMP_ULT ||
1497            UnsignedPred == ICmpInst::ICMP_UGT) &&
1498           EqPred == ICmpInst::ICMP_EQ && IsAnd)
1499         return ConstantInt::getFalse(UnsignedICmp->getType());
1500 
1501       // A </> B && (A - B) != 0  <-->  A </> B
1502       // A </> B || (A - B) != 0  <-->  (A - B) != 0
1503       if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
1504                                           UnsignedPred == ICmpInst::ICMP_UGT))
1505         return IsAnd ? UnsignedICmp : ZeroICmp;
1506 
1507       // A <=/>= B && (A - B) == 0  <-->  (A - B) == 0
1508       // A <=/>= B || (A - B) == 0  <-->  A <=/>= B
1509       if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
1510                                           UnsignedPred == ICmpInst::ICMP_UGE))
1511         return IsAnd ? ZeroICmp : UnsignedICmp;
1512     }
1513 
1514     // Given  Y = (A - B)
1515     //   Y >= A && Y != 0  --> Y >= A  iff B != 0
1516     //   Y <  A || Y == 0  --> Y <  A  iff B != 0
1517     if (match(UnsignedICmp,
1518               m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
1519       if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
1520           EqPred == ICmpInst::ICMP_NE &&
1521           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1522         return UnsignedICmp;
1523       if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
1524           EqPred == ICmpInst::ICMP_EQ &&
1525           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1526         return UnsignedICmp;
1527     }
1528   }
1529 
1530   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1531       ICmpInst::isUnsigned(UnsignedPred))
1532     ;
1533   else if (match(UnsignedICmp,
1534                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1535            ICmpInst::isUnsigned(UnsignedPred))
1536     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1537   else
1538     return nullptr;
1539 
1540   // X > Y && Y == 0  -->  Y == 0  iff X != 0
1541   // X > Y || Y == 0  -->  X > Y   iff X != 0
1542   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1543       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1544     return IsAnd ? ZeroICmp : UnsignedICmp;
1545 
1546   // X <= Y && Y != 0  -->  X <= Y  iff X != 0
1547   // X <= Y || Y != 0  -->  Y != 0  iff X != 0
1548   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1549       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1550     return IsAnd ? UnsignedICmp : ZeroICmp;
1551 
1552   // The transforms below here are expected to be handled more generally with
1553   // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's
1554   // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap,
1555   // these are candidates for removal.
1556 
1557   // X < Y && Y != 0  -->  X < Y
1558   // X < Y || Y != 0  -->  Y != 0
1559   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1560     return IsAnd ? UnsignedICmp : ZeroICmp;
1561 
1562   // X >= Y && Y == 0  -->  Y == 0
1563   // X >= Y || Y == 0  -->  X >= Y
1564   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
1565     return IsAnd ? ZeroICmp : UnsignedICmp;
1566 
1567   // X < Y && Y == 0  -->  false
1568   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1569       IsAnd)
1570     return getFalse(UnsignedICmp->getType());
1571 
1572   // X >= Y || Y != 0  -->  true
1573   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
1574       !IsAnd)
1575     return getTrue(UnsignedICmp->getType());
1576 
1577   return nullptr;
1578 }
1579 
1580 /// Commuted variants are assumed to be handled by calling this function again
1581 /// with the parameters swapped.
1582 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1583   ICmpInst::Predicate Pred0, Pred1;
1584   Value *A ,*B;
1585   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1586       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1587     return nullptr;
1588 
1589   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1590   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1591   // can eliminate Op1 from this 'and'.
1592   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1593     return Op0;
1594 
1595   // Check for any combination of predicates that are guaranteed to be disjoint.
1596   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1597       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1598       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1599       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1600     return getFalse(Op0->getType());
1601 
1602   return nullptr;
1603 }
1604 
1605 /// Commuted variants are assumed to be handled by calling this function again
1606 /// with the parameters swapped.
1607 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1608   ICmpInst::Predicate Pred0, Pred1;
1609   Value *A ,*B;
1610   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1611       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1612     return nullptr;
1613 
1614   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1615   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1616   // can eliminate Op0 from this 'or'.
1617   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1618     return Op1;
1619 
1620   // Check for any combination of predicates that cover the entire range of
1621   // possibilities.
1622   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1623       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1624       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1625       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1626     return getTrue(Op0->getType());
1627 
1628   return nullptr;
1629 }
1630 
1631 /// Test if a pair of compares with a shared operand and 2 constants has an
1632 /// empty set intersection, full set union, or if one compare is a superset of
1633 /// the other.
1634 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1635                                                 bool IsAnd) {
1636   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1637   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1638     return nullptr;
1639 
1640   const APInt *C0, *C1;
1641   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1642       !match(Cmp1->getOperand(1), m_APInt(C1)))
1643     return nullptr;
1644 
1645   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1646   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1647 
1648   // For and-of-compares, check if the intersection is empty:
1649   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1650   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1651     return getFalse(Cmp0->getType());
1652 
1653   // For or-of-compares, check if the union is full:
1654   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1655   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1656     return getTrue(Cmp0->getType());
1657 
1658   // Is one range a superset of the other?
1659   // If this is and-of-compares, take the smaller set:
1660   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1661   // If this is or-of-compares, take the larger set:
1662   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1663   if (Range0.contains(Range1))
1664     return IsAnd ? Cmp1 : Cmp0;
1665   if (Range1.contains(Range0))
1666     return IsAnd ? Cmp0 : Cmp1;
1667 
1668   return nullptr;
1669 }
1670 
1671 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1672                                            bool IsAnd) {
1673   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1674   if (!match(Cmp0->getOperand(1), m_Zero()) ||
1675       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1676     return nullptr;
1677 
1678   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1679     return nullptr;
1680 
1681   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1682   Value *X = Cmp0->getOperand(0);
1683   Value *Y = Cmp1->getOperand(0);
1684 
1685   // If one of the compares is a masked version of a (not) null check, then
1686   // that compare implies the other, so we eliminate the other. Optionally, look
1687   // through a pointer-to-int cast to match a null check of a pointer type.
1688 
1689   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1690   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1691   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1692   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1693   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1694       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1695     return Cmp1;
1696 
1697   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1698   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1699   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1700   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1701   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1702       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1703     return Cmp0;
1704 
1705   return nullptr;
1706 }
1707 
1708 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1709                                         const InstrInfoQuery &IIQ) {
1710   // (icmp (add V, C0), C1) & (icmp V, C0)
1711   ICmpInst::Predicate Pred0, Pred1;
1712   const APInt *C0, *C1;
1713   Value *V;
1714   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1715     return nullptr;
1716 
1717   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1718     return nullptr;
1719 
1720   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1721   if (AddInst->getOperand(1) != Op1->getOperand(1))
1722     return nullptr;
1723 
1724   Type *ITy = Op0->getType();
1725   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1726   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1727 
1728   const APInt Delta = *C1 - *C0;
1729   if (C0->isStrictlyPositive()) {
1730     if (Delta == 2) {
1731       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1732         return getFalse(ITy);
1733       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1734         return getFalse(ITy);
1735     }
1736     if (Delta == 1) {
1737       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1738         return getFalse(ITy);
1739       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1740         return getFalse(ITy);
1741     }
1742   }
1743   if (C0->getBoolValue() && isNUW) {
1744     if (Delta == 2)
1745       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1746         return getFalse(ITy);
1747     if (Delta == 1)
1748       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1749         return getFalse(ITy);
1750   }
1751 
1752   return nullptr;
1753 }
1754 
1755 /// Try to eliminate compares with signed or unsigned min/max constants.
1756 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1,
1757                                                  bool IsAnd) {
1758   // Canonicalize an equality compare as Cmp0.
1759   if (Cmp1->isEquality())
1760     std::swap(Cmp0, Cmp1);
1761   if (!Cmp0->isEquality())
1762     return nullptr;
1763 
1764   // The non-equality compare must include a common operand (X). Canonicalize
1765   // the common operand as operand 0 (the predicate is swapped if the common
1766   // operand was operand 1).
1767   ICmpInst::Predicate Pred0 = Cmp0->getPredicate();
1768   Value *X = Cmp0->getOperand(0);
1769   ICmpInst::Predicate Pred1;
1770   bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value()));
1771   if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value())))
1772     return nullptr;
1773   if (ICmpInst::isEquality(Pred1))
1774     return nullptr;
1775 
1776   // The equality compare must be against a constant. Flip bits if we matched
1777   // a bitwise not. Convert a null pointer constant to an integer zero value.
1778   APInt MinMaxC;
1779   const APInt *C;
1780   if (match(Cmp0->getOperand(1), m_APInt(C)))
1781     MinMaxC = HasNotOp ? ~*C : *C;
1782   else if (isa<ConstantPointerNull>(Cmp0->getOperand(1)))
1783     MinMaxC = APInt::getZero(8);
1784   else
1785     return nullptr;
1786 
1787   // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1.
1788   if (!IsAnd) {
1789     Pred0 = ICmpInst::getInversePredicate(Pred0);
1790     Pred1 = ICmpInst::getInversePredicate(Pred1);
1791   }
1792 
1793   // Normalize to unsigned compare and unsigned min/max value.
1794   // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255
1795   if (ICmpInst::isSigned(Pred1)) {
1796     Pred1 = ICmpInst::getUnsignedPredicate(Pred1);
1797     MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth());
1798   }
1799 
1800   // (X != MAX) && (X < Y) --> X < Y
1801   // (X == MAX) || (X >= Y) --> X >= Y
1802   if (MinMaxC.isMaxValue())
1803     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT)
1804       return Cmp1;
1805 
1806   // (X != MIN) && (X > Y) -->  X > Y
1807   // (X == MIN) || (X <= Y) --> X <= Y
1808   if (MinMaxC.isMinValue())
1809     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT)
1810       return Cmp1;
1811 
1812   return nullptr;
1813 }
1814 
1815 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1816                                  const SimplifyQuery &Q) {
1817   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
1818     return X;
1819   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
1820     return X;
1821 
1822   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1823     return X;
1824   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1825     return X;
1826 
1827   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1828     return X;
1829 
1830   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true))
1831     return X;
1832 
1833   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1834     return X;
1835 
1836   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1837     return X;
1838   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1839     return X;
1840 
1841   return nullptr;
1842 }
1843 
1844 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1845                                        const InstrInfoQuery &IIQ) {
1846   // (icmp (add V, C0), C1) | (icmp V, C0)
1847   ICmpInst::Predicate Pred0, Pred1;
1848   const APInt *C0, *C1;
1849   Value *V;
1850   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1851     return nullptr;
1852 
1853   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1854     return nullptr;
1855 
1856   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1857   if (AddInst->getOperand(1) != Op1->getOperand(1))
1858     return nullptr;
1859 
1860   Type *ITy = Op0->getType();
1861   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1862   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1863 
1864   const APInt Delta = *C1 - *C0;
1865   if (C0->isStrictlyPositive()) {
1866     if (Delta == 2) {
1867       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1868         return getTrue(ITy);
1869       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1870         return getTrue(ITy);
1871     }
1872     if (Delta == 1) {
1873       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1874         return getTrue(ITy);
1875       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1876         return getTrue(ITy);
1877     }
1878   }
1879   if (C0->getBoolValue() && isNUW) {
1880     if (Delta == 2)
1881       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1882         return getTrue(ITy);
1883     if (Delta == 1)
1884       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1885         return getTrue(ITy);
1886   }
1887 
1888   return nullptr;
1889 }
1890 
1891 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1892                                 const SimplifyQuery &Q) {
1893   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
1894     return X;
1895   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
1896     return X;
1897 
1898   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1899     return X;
1900   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1901     return X;
1902 
1903   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1904     return X;
1905 
1906   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false))
1907     return X;
1908 
1909   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1910     return X;
1911 
1912   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1913     return X;
1914   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1915     return X;
1916 
1917   return nullptr;
1918 }
1919 
1920 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
1921                                    FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1922   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1923   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1924   if (LHS0->getType() != RHS0->getType())
1925     return nullptr;
1926 
1927   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1928   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1929       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1930     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1931     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1932     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1933     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1934     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1935     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1936     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1937     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1938     if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1939         (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1940       return RHS;
1941 
1942     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1943     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1944     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1945     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1946     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1947     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1948     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1949     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1950     if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1951         (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1952       return LHS;
1953   }
1954 
1955   return nullptr;
1956 }
1957 
1958 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
1959                                   Value *Op0, Value *Op1, bool IsAnd) {
1960   // Look through casts of the 'and' operands to find compares.
1961   auto *Cast0 = dyn_cast<CastInst>(Op0);
1962   auto *Cast1 = dyn_cast<CastInst>(Op1);
1963   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1964       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1965     Op0 = Cast0->getOperand(0);
1966     Op1 = Cast1->getOperand(0);
1967   }
1968 
1969   Value *V = nullptr;
1970   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1971   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1972   if (ICmp0 && ICmp1)
1973     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
1974               : simplifyOrOfICmps(ICmp0, ICmp1, Q);
1975 
1976   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1977   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1978   if (FCmp0 && FCmp1)
1979     V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
1980 
1981   if (!V)
1982     return nullptr;
1983   if (!Cast0)
1984     return V;
1985 
1986   // If we looked through casts, we can only handle a constant simplification
1987   // because we are not allowed to create a cast instruction here.
1988   if (auto *C = dyn_cast<Constant>(V))
1989     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1990 
1991   return nullptr;
1992 }
1993 
1994 /// Given a bitwise logic op, check if the operands are add/sub with a common
1995 /// source value and inverted constant (identity: C - X -> ~(X + ~C)).
1996 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1,
1997                                     Instruction::BinaryOps Opcode) {
1998   assert(Op0->getType() == Op1->getType() && "Mismatched binop types");
1999   assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op");
2000   Value *X;
2001   Constant *C1, *C2;
2002   if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) &&
2003        match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) ||
2004       (match(Op1, m_Add(m_Value(X), m_Constant(C1))) &&
2005        match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) {
2006     if (ConstantExpr::getNot(C1) == C2) {
2007       // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0
2008       // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1
2009       // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1
2010       Type *Ty = Op0->getType();
2011       return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty)
2012                                         : ConstantInt::getAllOnesValue(Ty);
2013     }
2014   }
2015   return nullptr;
2016 }
2017 
2018 /// Given operands for an And, see if we can fold the result.
2019 /// If not, this returns null.
2020 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2021                               unsigned MaxRecurse) {
2022   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
2023     return C;
2024 
2025   // X & poison -> poison
2026   if (isa<PoisonValue>(Op1))
2027     return Op1;
2028 
2029   // X & undef -> 0
2030   if (Q.isUndefValue(Op1))
2031     return Constant::getNullValue(Op0->getType());
2032 
2033   // X & X = X
2034   if (Op0 == Op1)
2035     return Op0;
2036 
2037   // X & 0 = 0
2038   if (match(Op1, m_Zero()))
2039     return Constant::getNullValue(Op0->getType());
2040 
2041   // X & -1 = X
2042   if (match(Op1, m_AllOnes()))
2043     return Op0;
2044 
2045   // A & ~A  =  ~A & A  =  0
2046   if (match(Op0, m_Not(m_Specific(Op1))) ||
2047       match(Op1, m_Not(m_Specific(Op0))))
2048     return Constant::getNullValue(Op0->getType());
2049 
2050   // (A | ?) & A = A
2051   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
2052     return Op1;
2053 
2054   // A & (A | ?) = A
2055   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
2056     return Op0;
2057 
2058   // (X | Y) & (X | ~Y) --> X (commuted 8 ways)
2059   Value *X, *Y;
2060   if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2061       match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2062     return X;
2063   if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2064       match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y))))
2065     return X;
2066 
2067   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And))
2068     return V;
2069 
2070   // A mask that only clears known zeros of a shifted value is a no-op.
2071   const APInt *Mask;
2072   const APInt *ShAmt;
2073   if (match(Op1, m_APInt(Mask))) {
2074     // If all bits in the inverted and shifted mask are clear:
2075     // and (shl X, ShAmt), Mask --> shl X, ShAmt
2076     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
2077         (~(*Mask)).lshr(*ShAmt).isZero())
2078       return Op0;
2079 
2080     // If all bits in the inverted and shifted mask are clear:
2081     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
2082     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
2083         (~(*Mask)).shl(*ShAmt).isZero())
2084       return Op0;
2085   }
2086 
2087   // If we have a multiplication overflow check that is being 'and'ed with a
2088   // check that one of the multipliers is not zero, we can omit the 'and', and
2089   // only keep the overflow check.
2090   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true))
2091     return Op1;
2092   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true))
2093     return Op0;
2094 
2095   // A & (-A) = A if A is a power of two or zero.
2096   if (match(Op0, m_Neg(m_Specific(Op1))) ||
2097       match(Op1, m_Neg(m_Specific(Op0)))) {
2098     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2099                                Q.DT))
2100       return Op0;
2101     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2102                                Q.DT))
2103       return Op1;
2104   }
2105 
2106   // This is a similar pattern used for checking if a value is a power-of-2:
2107   // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
2108   // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
2109   if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
2110       isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2111     return Constant::getNullValue(Op1->getType());
2112   if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
2113       isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2114     return Constant::getNullValue(Op0->getType());
2115 
2116   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
2117     return V;
2118 
2119   // Try some generic simplifications for associative operations.
2120   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
2121                                           MaxRecurse))
2122     return V;
2123 
2124   // And distributes over Or.  Try some generic simplifications based on this.
2125   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2126                                         Instruction::Or, Q, MaxRecurse))
2127     return V;
2128 
2129   // And distributes over Xor.  Try some generic simplifications based on this.
2130   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2131                                         Instruction::Xor, Q, MaxRecurse))
2132     return V;
2133 
2134   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2135     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2136       // A & (A && B) -> A && B
2137       if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero())))
2138         return Op1;
2139       else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero())))
2140         return Op0;
2141     }
2142     // If the operation is with the result of a select instruction, check
2143     // whether operating on either branch of the select always yields the same
2144     // value.
2145     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
2146                                          MaxRecurse))
2147       return V;
2148   }
2149 
2150   // If the operation is with the result of a phi instruction, check whether
2151   // operating on all incoming values of the phi always yields the same value.
2152   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2153     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
2154                                       MaxRecurse))
2155       return V;
2156 
2157   // Assuming the effective width of Y is not larger than A, i.e. all bits
2158   // from X and Y are disjoint in (X << A) | Y,
2159   // if the mask of this AND op covers all bits of X or Y, while it covers
2160   // no bits from the other, we can bypass this AND op. E.g.,
2161   // ((X << A) | Y) & Mask -> Y,
2162   //     if Mask = ((1 << effective_width_of(Y)) - 1)
2163   // ((X << A) | Y) & Mask -> X << A,
2164   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
2165   // SimplifyDemandedBits in InstCombine can optimize the general case.
2166   // This pattern aims to help other passes for a common case.
2167   Value *XShifted;
2168   if (match(Op1, m_APInt(Mask)) &&
2169       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
2170                                      m_Value(XShifted)),
2171                         m_Value(Y)))) {
2172     const unsigned Width = Op0->getType()->getScalarSizeInBits();
2173     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
2174     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2175     const unsigned EffWidthY = YKnown.countMaxActiveBits();
2176     if (EffWidthY <= ShftCnt) {
2177       const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
2178                                                 Q.DT);
2179       const unsigned EffWidthX = XKnown.countMaxActiveBits();
2180       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
2181       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
2182       // If the mask is extracting all bits from X or Y as is, we can skip
2183       // this AND op.
2184       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
2185         return Y;
2186       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
2187         return XShifted;
2188     }
2189   }
2190 
2191   // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0
2192   // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0
2193   BinaryOperator *Or;
2194   if (match(Op0, m_c_Xor(m_Value(X),
2195                          m_CombineAnd(m_BinOp(Or),
2196                                       m_c_Or(m_Deferred(X), m_Value(Y))))) &&
2197       match(Op1, m_c_Xor(m_Specific(Or), m_Specific(Y))))
2198     return Constant::getNullValue(Op0->getType());
2199 
2200   return nullptr;
2201 }
2202 
2203 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2204   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
2205 }
2206 
2207 static Value *simplifyOrLogic(Value *X, Value *Y) {
2208   assert(X->getType() == Y->getType() && "Expected same type for 'or' ops");
2209   Type *Ty = X->getType();
2210 
2211   // X | ~X --> -1
2212   if (match(Y, m_Not(m_Specific(X))))
2213     return ConstantInt::getAllOnesValue(Ty);
2214 
2215   // X | ~(X & ?) = -1
2216   if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value()))))
2217     return ConstantInt::getAllOnesValue(Ty);
2218 
2219   // X | (X & ?) --> X
2220   if (match(Y, m_c_And(m_Specific(X), m_Value())))
2221     return X;
2222 
2223   Value *A, *B;
2224 
2225   // (A ^ B) | (A | B) --> A | B
2226   // (A ^ B) | (B | A) --> B | A
2227   if (match(X, m_Xor(m_Value(A), m_Value(B))) &&
2228       match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2229     return Y;
2230 
2231   // ~(A ^ B) | (A | B) --> -1
2232   // ~(A ^ B) | (B | A) --> -1
2233   if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) &&
2234       match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2235     return ConstantInt::getAllOnesValue(Ty);
2236 
2237   // (A & ~B) | (A ^ B) --> A ^ B
2238   // (~B & A) | (A ^ B) --> A ^ B
2239   // (A & ~B) | (B ^ A) --> B ^ A
2240   // (~B & A) | (B ^ A) --> B ^ A
2241   if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
2242       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2243     return Y;
2244 
2245   // (~A ^ B) | (A & B) --> ~A ^ B
2246   // (B ^ ~A) | (A & B) --> B ^ ~A
2247   // (~A ^ B) | (B & A) --> ~A ^ B
2248   // (B ^ ~A) | (B & A) --> B ^ ~A
2249   if (match(X, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2250       match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2251     return X;
2252 
2253   // (~A | B) | (A ^ B) --> -1
2254   // (~A | B) | (B ^ A) --> -1
2255   // (B | ~A) | (A ^ B) --> -1
2256   // (B | ~A) | (B ^ A) --> -1
2257   if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2258       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2259     return ConstantInt::getAllOnesValue(Ty);
2260 
2261   // (~A & B) | ~(A | B) --> ~A
2262   // (~A & B) | ~(B | A) --> ~A
2263   // (B & ~A) | ~(A | B) --> ~A
2264   // (B & ~A) | ~(B | A) --> ~A
2265   Value *NotA;
2266   if (match(X,
2267             m_c_And(m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))),
2268                     m_Value(B))) &&
2269       match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2270     return NotA;
2271 
2272   // ~(A ^ B) | (A & B) --> ~(A ^ B)
2273   // ~(A ^ B) | (B & A) --> ~(A ^ B)
2274   Value *NotAB;
2275   if (match(X, m_CombineAnd(m_NotForbidUndef(m_Xor(m_Value(A), m_Value(B))),
2276                             m_Value(NotAB))) &&
2277       match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2278     return NotAB;
2279 
2280   // ~(A & B) | (A ^ B) --> ~(A & B)
2281   // ~(A & B) | (B ^ A) --> ~(A & B)
2282   if (match(X, m_CombineAnd(m_NotForbidUndef(m_And(m_Value(A), m_Value(B))),
2283                             m_Value(NotAB))) &&
2284       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2285     return NotAB;
2286 
2287   return nullptr;
2288 }
2289 
2290 /// Given operands for an Or, see if we can fold the result.
2291 /// If not, this returns null.
2292 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2293                              unsigned MaxRecurse) {
2294   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
2295     return C;
2296 
2297   // X | poison -> poison
2298   if (isa<PoisonValue>(Op1))
2299     return Op1;
2300 
2301   // X | undef -> -1
2302   // X | -1 = -1
2303   // Do not return Op1 because it may contain undef elements if it's a vector.
2304   if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes()))
2305     return Constant::getAllOnesValue(Op0->getType());
2306 
2307   // X | X = X
2308   // X | 0 = X
2309   if (Op0 == Op1 || match(Op1, m_Zero()))
2310     return Op0;
2311 
2312   if (Value *R = simplifyOrLogic(Op0, Op1))
2313     return R;
2314   if (Value *R = simplifyOrLogic(Op1, Op0))
2315     return R;
2316 
2317   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or))
2318     return V;
2319 
2320   // Rotated -1 is still -1:
2321   // (-1 << X) | (-1 >> (C - X)) --> -1
2322   // (-1 >> X) | (-1 << (C - X)) --> -1
2323   // ...with C <= bitwidth (and commuted variants).
2324   Value *X, *Y;
2325   if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) &&
2326        match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) ||
2327       (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) &&
2328        match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) {
2329     const APInt *C;
2330     if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) ||
2331          match(Y, m_Sub(m_APInt(C), m_Specific(X)))) &&
2332         C->ule(X->getType()->getScalarSizeInBits())) {
2333       return ConstantInt::getAllOnesValue(X->getType());
2334     }
2335   }
2336 
2337   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
2338     return V;
2339 
2340   // If we have a multiplication overflow check that is being 'and'ed with a
2341   // check that one of the multipliers is not zero, we can omit the 'and', and
2342   // only keep the overflow check.
2343   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false))
2344     return Op1;
2345   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false))
2346     return Op0;
2347 
2348   // Try some generic simplifications for associative operations.
2349   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
2350                                           MaxRecurse))
2351     return V;
2352 
2353   // Or distributes over And.  Try some generic simplifications based on this.
2354   if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1,
2355                                         Instruction::And, Q, MaxRecurse))
2356     return V;
2357 
2358   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2359     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2360       // A | (A || B) -> A || B
2361       if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value())))
2362         return Op1;
2363       else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value())))
2364         return Op0;
2365     }
2366     // If the operation is with the result of a select instruction, check
2367     // whether operating on either branch of the select always yields the same
2368     // value.
2369     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2370                                          MaxRecurse))
2371       return V;
2372   }
2373 
2374   // (A & C1)|(B & C2)
2375   Value *A, *B;
2376   const APInt *C1, *C2;
2377   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2378       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2379     if (*C1 == ~*C2) {
2380       // (A & C1)|(B & C2)
2381       // If we have: ((V + N) & C1) | (V & C2)
2382       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2383       // replace with V+N.
2384       Value *N;
2385       if (C2->isMask() && // C2 == 0+1+
2386           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2387         // Add commutes, try both ways.
2388         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2389           return A;
2390       }
2391       // Or commutes, try both ways.
2392       if (C1->isMask() &&
2393           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2394         // Add commutes, try both ways.
2395         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2396           return B;
2397       }
2398     }
2399   }
2400 
2401   // If the operation is with the result of a phi instruction, check whether
2402   // operating on all incoming values of the phi always yields the same value.
2403   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2404     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2405       return V;
2406 
2407   return nullptr;
2408 }
2409 
2410 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2411   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2412 }
2413 
2414 /// Given operands for a Xor, see if we can fold the result.
2415 /// If not, this returns null.
2416 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2417                               unsigned MaxRecurse) {
2418   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2419     return C;
2420 
2421   // A ^ undef -> undef
2422   if (Q.isUndefValue(Op1))
2423     return Op1;
2424 
2425   // A ^ 0 = A
2426   if (match(Op1, m_Zero()))
2427     return Op0;
2428 
2429   // A ^ A = 0
2430   if (Op0 == Op1)
2431     return Constant::getNullValue(Op0->getType());
2432 
2433   // A ^ ~A  =  ~A ^ A  =  -1
2434   if (match(Op0, m_Not(m_Specific(Op1))) ||
2435       match(Op1, m_Not(m_Specific(Op0))))
2436     return Constant::getAllOnesValue(Op0->getType());
2437 
2438   auto foldAndOrNot = [](Value *X, Value *Y) -> Value * {
2439     Value *A, *B;
2440     // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants.
2441     if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) &&
2442         match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2443       return A;
2444 
2445     // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants.
2446     // The 'not' op must contain a complete -1 operand (no undef elements for
2447     // vector) for the transform to be safe.
2448     Value *NotA;
2449     if (match(X,
2450               m_c_Or(m_CombineAnd(m_NotForbidUndef(m_Value(A)), m_Value(NotA)),
2451                      m_Value(B))) &&
2452         match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2453       return NotA;
2454 
2455     return nullptr;
2456   };
2457   if (Value *R = foldAndOrNot(Op0, Op1))
2458     return R;
2459   if (Value *R = foldAndOrNot(Op1, Op0))
2460     return R;
2461 
2462   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor))
2463     return V;
2464 
2465   // Try some generic simplifications for associative operations.
2466   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2467                                           MaxRecurse))
2468     return V;
2469 
2470   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2471   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2472   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2473   // only if B and C are equal.  If B and C are equal then (since we assume
2474   // that operands have already been simplified) "select(cond, B, C)" should
2475   // have been simplified to the common value of B and C already.  Analysing
2476   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2477   // for threading over phi nodes.
2478 
2479   return nullptr;
2480 }
2481 
2482 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2483   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2484 }
2485 
2486 
2487 static Type *GetCompareTy(Value *Op) {
2488   return CmpInst::makeCmpResultType(Op->getType());
2489 }
2490 
2491 /// Rummage around inside V looking for something equivalent to the comparison
2492 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2493 /// Helper function for analyzing max/min idioms.
2494 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2495                                          Value *LHS, Value *RHS) {
2496   SelectInst *SI = dyn_cast<SelectInst>(V);
2497   if (!SI)
2498     return nullptr;
2499   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2500   if (!Cmp)
2501     return nullptr;
2502   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2503   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2504     return Cmp;
2505   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2506       LHS == CmpRHS && RHS == CmpLHS)
2507     return Cmp;
2508   return nullptr;
2509 }
2510 
2511 // A significant optimization not implemented here is assuming that alloca
2512 // addresses are not equal to incoming argument values. They don't *alias*,
2513 // as we say, but that doesn't mean they aren't equal, so we take a
2514 // conservative approach.
2515 //
2516 // This is inspired in part by C++11 5.10p1:
2517 //   "Two pointers of the same type compare equal if and only if they are both
2518 //    null, both point to the same function, or both represent the same
2519 //    address."
2520 //
2521 // This is pretty permissive.
2522 //
2523 // It's also partly due to C11 6.5.9p6:
2524 //   "Two pointers compare equal if and only if both are null pointers, both are
2525 //    pointers to the same object (including a pointer to an object and a
2526 //    subobject at its beginning) or function, both are pointers to one past the
2527 //    last element of the same array object, or one is a pointer to one past the
2528 //    end of one array object and the other is a pointer to the start of a
2529 //    different array object that happens to immediately follow the first array
2530 //    object in the address space.)
2531 //
2532 // C11's version is more restrictive, however there's no reason why an argument
2533 // couldn't be a one-past-the-end value for a stack object in the caller and be
2534 // equal to the beginning of a stack object in the callee.
2535 //
2536 // If the C and C++ standards are ever made sufficiently restrictive in this
2537 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2538 // this optimization.
2539 static Constant *
2540 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
2541                    const SimplifyQuery &Q) {
2542   const DataLayout &DL = Q.DL;
2543   const TargetLibraryInfo *TLI = Q.TLI;
2544   const DominatorTree *DT = Q.DT;
2545   const Instruction *CxtI = Q.CxtI;
2546   const InstrInfoQuery &IIQ = Q.IIQ;
2547 
2548   // First, skip past any trivial no-ops.
2549   LHS = LHS->stripPointerCasts();
2550   RHS = RHS->stripPointerCasts();
2551 
2552   // A non-null pointer is not equal to a null pointer.
2553   if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) &&
2554       llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2555                            IIQ.UseInstrInfo))
2556     return ConstantInt::get(GetCompareTy(LHS),
2557                             !CmpInst::isTrueWhenEqual(Pred));
2558 
2559   // We can only fold certain predicates on pointer comparisons.
2560   switch (Pred) {
2561   default:
2562     return nullptr;
2563 
2564     // Equality comaprisons are easy to fold.
2565   case CmpInst::ICMP_EQ:
2566   case CmpInst::ICMP_NE:
2567     break;
2568 
2569     // We can only handle unsigned relational comparisons because 'inbounds' on
2570     // a GEP only protects against unsigned wrapping.
2571   case CmpInst::ICMP_UGT:
2572   case CmpInst::ICMP_UGE:
2573   case CmpInst::ICMP_ULT:
2574   case CmpInst::ICMP_ULE:
2575     // However, we have to switch them to their signed variants to handle
2576     // negative indices from the base pointer.
2577     Pred = ICmpInst::getSignedPredicate(Pred);
2578     break;
2579   }
2580 
2581   // Strip off any constant offsets so that we can reason about them.
2582   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2583   // here and compare base addresses like AliasAnalysis does, however there are
2584   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2585   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2586   // doesn't need to guarantee pointer inequality when it says NoAlias.
2587   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2588   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2589 
2590   // If LHS and RHS are related via constant offsets to the same base
2591   // value, we can replace it with an icmp which just compares the offsets.
2592   if (LHS == RHS)
2593     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2594 
2595   // Various optimizations for (in)equality comparisons.
2596   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2597     // Different non-empty allocations that exist at the same time have
2598     // different addresses (if the program can tell). Global variables always
2599     // exist, so they always exist during the lifetime of each other and all
2600     // allocas. Two different allocas usually have different addresses...
2601     //
2602     // However, if there's an @llvm.stackrestore dynamically in between two
2603     // allocas, they may have the same address. It's tempting to reduce the
2604     // scope of the problem by only looking at *static* allocas here. That would
2605     // cover the majority of allocas while significantly reducing the likelihood
2606     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2607     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2608     // an entry block. Also, if we have a block that's not attached to a
2609     // function, we can't tell if it's "static" under the current definition.
2610     // Theoretically, this problem could be fixed by creating a new kind of
2611     // instruction kind specifically for static allocas. Such a new instruction
2612     // could be required to be at the top of the entry block, thus preventing it
2613     // from being subject to a @llvm.stackrestore. Instcombine could even
2614     // convert regular allocas into these special allocas. It'd be nifty.
2615     // However, until then, this problem remains open.
2616     //
2617     // So, we'll assume that two non-empty allocas have different addresses
2618     // for now.
2619     //
2620     // With all that, if the offsets are within the bounds of their allocations
2621     // (and not one-past-the-end! so we can't use inbounds!), and their
2622     // allocations aren't the same, the pointers are not equal.
2623     //
2624     // Note that it's not necessary to check for LHS being a global variable
2625     // address, due to canonicalization and constant folding.
2626     if (isa<AllocaInst>(LHS) &&
2627         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2628       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2629       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2630       uint64_t LHSSize, RHSSize;
2631       ObjectSizeOpts Opts;
2632       Opts.NullIsUnknownSize =
2633           NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2634       if (LHSOffsetCI && RHSOffsetCI &&
2635           getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2636           getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2637         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2638         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2639         if (!LHSOffsetValue.isNegative() &&
2640             !RHSOffsetValue.isNegative() &&
2641             LHSOffsetValue.ult(LHSSize) &&
2642             RHSOffsetValue.ult(RHSSize)) {
2643           return ConstantInt::get(GetCompareTy(LHS),
2644                                   !CmpInst::isTrueWhenEqual(Pred));
2645         }
2646       }
2647 
2648       // Repeat the above check but this time without depending on DataLayout
2649       // or being able to compute a precise size.
2650       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2651           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2652           LHSOffset->isNullValue() &&
2653           RHSOffset->isNullValue())
2654         return ConstantInt::get(GetCompareTy(LHS),
2655                                 !CmpInst::isTrueWhenEqual(Pred));
2656     }
2657 
2658     // Even if an non-inbounds GEP occurs along the path we can still optimize
2659     // equality comparisons concerning the result. We avoid walking the whole
2660     // chain again by starting where the last calls to
2661     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2662     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2663     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2664     if (LHS == RHS)
2665       return ConstantExpr::getICmp(Pred,
2666                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2667                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2668 
2669     // If one side of the equality comparison must come from a noalias call
2670     // (meaning a system memory allocation function), and the other side must
2671     // come from a pointer that cannot overlap with dynamically-allocated
2672     // memory within the lifetime of the current function (allocas, byval
2673     // arguments, globals), then determine the comparison result here.
2674     SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2675     getUnderlyingObjects(LHS, LHSUObjs);
2676     getUnderlyingObjects(RHS, RHSUObjs);
2677 
2678     // Is the set of underlying objects all noalias calls?
2679     auto IsNAC = [](ArrayRef<const Value *> Objects) {
2680       return all_of(Objects, isNoAliasCall);
2681     };
2682 
2683     // Is the set of underlying objects all things which must be disjoint from
2684     // noalias calls. For allocas, we consider only static ones (dynamic
2685     // allocas might be transformed into calls to malloc not simultaneously
2686     // live with the compared-to allocation). For globals, we exclude symbols
2687     // that might be resolve lazily to symbols in another dynamically-loaded
2688     // library (and, thus, could be malloc'ed by the implementation).
2689     auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2690       return all_of(Objects, [](const Value *V) {
2691         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2692           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2693         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2694           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2695                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2696                  !GV->isThreadLocal();
2697         if (const Argument *A = dyn_cast<Argument>(V))
2698           return A->hasByValAttr();
2699         return false;
2700       });
2701     };
2702 
2703     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2704         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2705         return ConstantInt::get(GetCompareTy(LHS),
2706                                 !CmpInst::isTrueWhenEqual(Pred));
2707 
2708     // Fold comparisons for non-escaping pointer even if the allocation call
2709     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2710     // dynamic allocation call could be either of the operands.  Note that
2711     // the other operand can not be based on the alloc - if it were, then
2712     // the cmp itself would be a capture.
2713     Value *MI = nullptr;
2714     if (isAllocLikeFn(LHS, TLI) &&
2715         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2716       MI = LHS;
2717     else if (isAllocLikeFn(RHS, TLI) &&
2718              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2719       MI = RHS;
2720     // FIXME: We should also fold the compare when the pointer escapes, but the
2721     // compare dominates the pointer escape
2722     if (MI && !PointerMayBeCaptured(MI, true, true))
2723       return ConstantInt::get(GetCompareTy(LHS),
2724                               CmpInst::isFalseWhenEqual(Pred));
2725   }
2726 
2727   // Otherwise, fail.
2728   return nullptr;
2729 }
2730 
2731 /// Fold an icmp when its operands have i1 scalar type.
2732 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2733                                   Value *RHS, const SimplifyQuery &Q) {
2734   Type *ITy = GetCompareTy(LHS); // The return type.
2735   Type *OpTy = LHS->getType();   // The operand type.
2736   if (!OpTy->isIntOrIntVectorTy(1))
2737     return nullptr;
2738 
2739   // A boolean compared to true/false can be reduced in 14 out of the 20
2740   // (10 predicates * 2 constants) possible combinations. The other
2741   // 6 cases require a 'not' of the LHS.
2742 
2743   auto ExtractNotLHS = [](Value *V) -> Value * {
2744     Value *X;
2745     if (match(V, m_Not(m_Value(X))))
2746       return X;
2747     return nullptr;
2748   };
2749 
2750   if (match(RHS, m_Zero())) {
2751     switch (Pred) {
2752     case CmpInst::ICMP_NE:  // X !=  0 -> X
2753     case CmpInst::ICMP_UGT: // X >u  0 -> X
2754     case CmpInst::ICMP_SLT: // X <s  0 -> X
2755       return LHS;
2756 
2757     case CmpInst::ICMP_EQ:  // not(X) ==  0 -> X != 0 -> X
2758     case CmpInst::ICMP_ULE: // not(X) <=u 0 -> X >u 0 -> X
2759     case CmpInst::ICMP_SGE: // not(X) >=s 0 -> X <s 0 -> X
2760       if (Value *X = ExtractNotLHS(LHS))
2761         return X;
2762       break;
2763 
2764     case CmpInst::ICMP_ULT: // X <u  0 -> false
2765     case CmpInst::ICMP_SGT: // X >s  0 -> false
2766       return getFalse(ITy);
2767 
2768     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2769     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2770       return getTrue(ITy);
2771 
2772     default: break;
2773     }
2774   } else if (match(RHS, m_One())) {
2775     switch (Pred) {
2776     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2777     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2778     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2779       return LHS;
2780 
2781     case CmpInst::ICMP_NE:  // not(X) !=  1 -> X ==   1 -> X
2782     case CmpInst::ICMP_ULT: // not(X) <=u 1 -> X >=u  1 -> X
2783     case CmpInst::ICMP_SGT: // not(X) >s  1 -> X <=s -1 -> X
2784       if (Value *X = ExtractNotLHS(LHS))
2785         return X;
2786       break;
2787 
2788     case CmpInst::ICMP_UGT: // X >u   1 -> false
2789     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2790       return getFalse(ITy);
2791 
2792     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2793     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2794       return getTrue(ITy);
2795 
2796     default: break;
2797     }
2798   }
2799 
2800   switch (Pred) {
2801   default:
2802     break;
2803   case ICmpInst::ICMP_UGE:
2804     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2805       return getTrue(ITy);
2806     break;
2807   case ICmpInst::ICMP_SGE:
2808     /// For signed comparison, the values for an i1 are 0 and -1
2809     /// respectively. This maps into a truth table of:
2810     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2811     ///  0  |  0  |  1 (0 >= 0)   |  1
2812     ///  0  |  1  |  1 (0 >= -1)  |  1
2813     ///  1  |  0  |  0 (-1 >= 0)  |  0
2814     ///  1  |  1  |  1 (-1 >= -1) |  1
2815     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2816       return getTrue(ITy);
2817     break;
2818   case ICmpInst::ICMP_ULE:
2819     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2820       return getTrue(ITy);
2821     break;
2822   }
2823 
2824   return nullptr;
2825 }
2826 
2827 /// Try hard to fold icmp with zero RHS because this is a common case.
2828 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2829                                    Value *RHS, const SimplifyQuery &Q) {
2830   if (!match(RHS, m_Zero()))
2831     return nullptr;
2832 
2833   Type *ITy = GetCompareTy(LHS); // The return type.
2834   switch (Pred) {
2835   default:
2836     llvm_unreachable("Unknown ICmp predicate!");
2837   case ICmpInst::ICMP_ULT:
2838     return getFalse(ITy);
2839   case ICmpInst::ICMP_UGE:
2840     return getTrue(ITy);
2841   case ICmpInst::ICMP_EQ:
2842   case ICmpInst::ICMP_ULE:
2843     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2844       return getFalse(ITy);
2845     break;
2846   case ICmpInst::ICMP_NE:
2847   case ICmpInst::ICMP_UGT:
2848     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2849       return getTrue(ITy);
2850     break;
2851   case ICmpInst::ICMP_SLT: {
2852     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2853     if (LHSKnown.isNegative())
2854       return getTrue(ITy);
2855     if (LHSKnown.isNonNegative())
2856       return getFalse(ITy);
2857     break;
2858   }
2859   case ICmpInst::ICMP_SLE: {
2860     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2861     if (LHSKnown.isNegative())
2862       return getTrue(ITy);
2863     if (LHSKnown.isNonNegative() &&
2864         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2865       return getFalse(ITy);
2866     break;
2867   }
2868   case ICmpInst::ICMP_SGE: {
2869     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2870     if (LHSKnown.isNegative())
2871       return getFalse(ITy);
2872     if (LHSKnown.isNonNegative())
2873       return getTrue(ITy);
2874     break;
2875   }
2876   case ICmpInst::ICMP_SGT: {
2877     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2878     if (LHSKnown.isNegative())
2879       return getFalse(ITy);
2880     if (LHSKnown.isNonNegative() &&
2881         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2882       return getTrue(ITy);
2883     break;
2884   }
2885   }
2886 
2887   return nullptr;
2888 }
2889 
2890 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2891                                        Value *RHS, const InstrInfoQuery &IIQ) {
2892   Type *ITy = GetCompareTy(RHS); // The return type.
2893 
2894   Value *X;
2895   // Sign-bit checks can be optimized to true/false after unsigned
2896   // floating-point casts:
2897   // icmp slt (bitcast (uitofp X)),  0 --> false
2898   // icmp sgt (bitcast (uitofp X)), -1 --> true
2899   if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2900     if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2901       return ConstantInt::getFalse(ITy);
2902     if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2903       return ConstantInt::getTrue(ITy);
2904   }
2905 
2906   const APInt *C;
2907   if (!match(RHS, m_APIntAllowUndef(C)))
2908     return nullptr;
2909 
2910   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2911   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2912   if (RHS_CR.isEmptySet())
2913     return ConstantInt::getFalse(ITy);
2914   if (RHS_CR.isFullSet())
2915     return ConstantInt::getTrue(ITy);
2916 
2917   ConstantRange LHS_CR =
2918       computeConstantRange(LHS, CmpInst::isSigned(Pred), IIQ.UseInstrInfo);
2919   if (!LHS_CR.isFullSet()) {
2920     if (RHS_CR.contains(LHS_CR))
2921       return ConstantInt::getTrue(ITy);
2922     if (RHS_CR.inverse().contains(LHS_CR))
2923       return ConstantInt::getFalse(ITy);
2924   }
2925 
2926   // (mul nuw/nsw X, MulC) != C --> true  (if C is not a multiple of MulC)
2927   // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC)
2928   const APInt *MulC;
2929   if (ICmpInst::isEquality(Pred) &&
2930       ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2931         *MulC != 0 && C->urem(*MulC) != 0) ||
2932        (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2933         *MulC != 0 && C->srem(*MulC) != 0)))
2934     return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE);
2935 
2936   return nullptr;
2937 }
2938 
2939 static Value *simplifyICmpWithBinOpOnLHS(
2940     CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS,
2941     const SimplifyQuery &Q, unsigned MaxRecurse) {
2942   Type *ITy = GetCompareTy(RHS); // The return type.
2943 
2944   Value *Y = nullptr;
2945   // icmp pred (or X, Y), X
2946   if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2947     if (Pred == ICmpInst::ICMP_ULT)
2948       return getFalse(ITy);
2949     if (Pred == ICmpInst::ICMP_UGE)
2950       return getTrue(ITy);
2951 
2952     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2953       KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2954       KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2955       if (RHSKnown.isNonNegative() && YKnown.isNegative())
2956         return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2957       if (RHSKnown.isNegative() || YKnown.isNonNegative())
2958         return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2959     }
2960   }
2961 
2962   // icmp pred (and X, Y), X
2963   if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2964     if (Pred == ICmpInst::ICMP_UGT)
2965       return getFalse(ITy);
2966     if (Pred == ICmpInst::ICMP_ULE)
2967       return getTrue(ITy);
2968   }
2969 
2970   // icmp pred (urem X, Y), Y
2971   if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2972     switch (Pred) {
2973     default:
2974       break;
2975     case ICmpInst::ICMP_SGT:
2976     case ICmpInst::ICMP_SGE: {
2977       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2978       if (!Known.isNonNegative())
2979         break;
2980       LLVM_FALLTHROUGH;
2981     }
2982     case ICmpInst::ICMP_EQ:
2983     case ICmpInst::ICMP_UGT:
2984     case ICmpInst::ICMP_UGE:
2985       return getFalse(ITy);
2986     case ICmpInst::ICMP_SLT:
2987     case ICmpInst::ICMP_SLE: {
2988       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2989       if (!Known.isNonNegative())
2990         break;
2991       LLVM_FALLTHROUGH;
2992     }
2993     case ICmpInst::ICMP_NE:
2994     case ICmpInst::ICMP_ULT:
2995     case ICmpInst::ICMP_ULE:
2996       return getTrue(ITy);
2997     }
2998   }
2999 
3000   // icmp pred (urem X, Y), X
3001   if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) {
3002     if (Pred == ICmpInst::ICMP_ULE)
3003       return getTrue(ITy);
3004     if (Pred == ICmpInst::ICMP_UGT)
3005       return getFalse(ITy);
3006   }
3007 
3008   // x >>u y <=u x --> true.
3009   // x >>u y >u  x --> false.
3010   // x udiv y <=u x --> true.
3011   // x udiv y >u  x --> false.
3012   if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
3013       match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
3014     // icmp pred (X op Y), X
3015     if (Pred == ICmpInst::ICMP_UGT)
3016       return getFalse(ITy);
3017     if (Pred == ICmpInst::ICMP_ULE)
3018       return getTrue(ITy);
3019   }
3020 
3021   // If x is nonzero:
3022   // x >>u C <u  x --> true  for C != 0.
3023   // x >>u C !=  x --> true  for C != 0.
3024   // x >>u C >=u x --> false for C != 0.
3025   // x >>u C ==  x --> false for C != 0.
3026   // x udiv C <u  x --> true  for C != 1.
3027   // x udiv C !=  x --> true  for C != 1.
3028   // x udiv C >=u x --> false for C != 1.
3029   // x udiv C ==  x --> false for C != 1.
3030   // TODO: allow non-constant shift amount/divisor
3031   const APInt *C;
3032   if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) ||
3033       (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) {
3034     if (isKnownNonZero(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) {
3035       switch (Pred) {
3036       default:
3037         break;
3038       case ICmpInst::ICMP_EQ:
3039       case ICmpInst::ICMP_UGE:
3040         return getFalse(ITy);
3041       case ICmpInst::ICMP_NE:
3042       case ICmpInst::ICMP_ULT:
3043         return getTrue(ITy);
3044       case ICmpInst::ICMP_UGT:
3045       case ICmpInst::ICMP_ULE:
3046         // UGT/ULE are handled by the more general case just above
3047         llvm_unreachable("Unexpected UGT/ULE, should have been handled");
3048       }
3049     }
3050   }
3051 
3052   // (x*C1)/C2 <= x for C1 <= C2.
3053   // This holds even if the multiplication overflows: Assume that x != 0 and
3054   // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and
3055   // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x.
3056   //
3057   // Additionally, either the multiplication and division might be represented
3058   // as shifts:
3059   // (x*C1)>>C2 <= x for C1 < 2**C2.
3060   // (x<<C1)/C2 <= x for 2**C1 < C2.
3061   const APInt *C1, *C2;
3062   if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3063        C1->ule(*C2)) ||
3064       (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3065        C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) ||
3066       (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3067        (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) {
3068     if (Pred == ICmpInst::ICMP_UGT)
3069       return getFalse(ITy);
3070     if (Pred == ICmpInst::ICMP_ULE)
3071       return getTrue(ITy);
3072   }
3073 
3074   return nullptr;
3075 }
3076 
3077 
3078 // If only one of the icmp's operands has NSW flags, try to prove that:
3079 //
3080 //   icmp slt (x + C1), (x +nsw C2)
3081 //
3082 // is equivalent to:
3083 //
3084 //   icmp slt C1, C2
3085 //
3086 // which is true if x + C2 has the NSW flags set and:
3087 // *) C1 < C2 && C1 >= 0, or
3088 // *) C2 < C1 && C1 <= 0.
3089 //
3090 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS,
3091                                     Value *RHS) {
3092   // TODO: only support icmp slt for now.
3093   if (Pred != CmpInst::ICMP_SLT)
3094     return false;
3095 
3096   // Canonicalize nsw add as RHS.
3097   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
3098     std::swap(LHS, RHS);
3099   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
3100     return false;
3101 
3102   Value *X;
3103   const APInt *C1, *C2;
3104   if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) ||
3105       !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2))))
3106     return false;
3107 
3108   return (C1->slt(*C2) && C1->isNonNegative()) ||
3109          (C2->slt(*C1) && C1->isNonPositive());
3110 }
3111 
3112 
3113 /// TODO: A large part of this logic is duplicated in InstCombine's
3114 /// foldICmpBinOp(). We should be able to share that and avoid the code
3115 /// duplication.
3116 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
3117                                     Value *RHS, const SimplifyQuery &Q,
3118                                     unsigned MaxRecurse) {
3119   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
3120   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
3121   if (MaxRecurse && (LBO || RBO)) {
3122     // Analyze the case when either LHS or RHS is an add instruction.
3123     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3124     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
3125     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
3126     if (LBO && LBO->getOpcode() == Instruction::Add) {
3127       A = LBO->getOperand(0);
3128       B = LBO->getOperand(1);
3129       NoLHSWrapProblem =
3130           ICmpInst::isEquality(Pred) ||
3131           (CmpInst::isUnsigned(Pred) &&
3132            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
3133           (CmpInst::isSigned(Pred) &&
3134            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
3135     }
3136     if (RBO && RBO->getOpcode() == Instruction::Add) {
3137       C = RBO->getOperand(0);
3138       D = RBO->getOperand(1);
3139       NoRHSWrapProblem =
3140           ICmpInst::isEquality(Pred) ||
3141           (CmpInst::isUnsigned(Pred) &&
3142            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
3143           (CmpInst::isSigned(Pred) &&
3144            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
3145     }
3146 
3147     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3148     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
3149       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
3150                                       Constant::getNullValue(RHS->getType()), Q,
3151                                       MaxRecurse - 1))
3152         return V;
3153 
3154     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3155     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
3156       if (Value *V =
3157               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
3158                                C == LHS ? D : C, Q, MaxRecurse - 1))
3159         return V;
3160 
3161     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
3162     bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
3163                        trySimplifyICmpWithAdds(Pred, LHS, RHS);
3164     if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) {
3165       // Determine Y and Z in the form icmp (X+Y), (X+Z).
3166       Value *Y, *Z;
3167       if (A == C) {
3168         // C + B == C + D  ->  B == D
3169         Y = B;
3170         Z = D;
3171       } else if (A == D) {
3172         // D + B == C + D  ->  B == C
3173         Y = B;
3174         Z = C;
3175       } else if (B == C) {
3176         // A + C == C + D  ->  A == D
3177         Y = A;
3178         Z = D;
3179       } else {
3180         assert(B == D);
3181         // A + D == C + D  ->  A == C
3182         Y = A;
3183         Z = C;
3184       }
3185       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
3186         return V;
3187     }
3188   }
3189 
3190   if (LBO)
3191     if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse))
3192       return V;
3193 
3194   if (RBO)
3195     if (Value *V = simplifyICmpWithBinOpOnLHS(
3196             ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse))
3197       return V;
3198 
3199   // 0 - (zext X) pred C
3200   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
3201     const APInt *C;
3202     if (match(RHS, m_APInt(C))) {
3203       if (C->isStrictlyPositive()) {
3204         if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE)
3205           return ConstantInt::getTrue(GetCompareTy(RHS));
3206         if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ)
3207           return ConstantInt::getFalse(GetCompareTy(RHS));
3208       }
3209       if (C->isNonNegative()) {
3210         if (Pred == ICmpInst::ICMP_SLE)
3211           return ConstantInt::getTrue(GetCompareTy(RHS));
3212         if (Pred == ICmpInst::ICMP_SGT)
3213           return ConstantInt::getFalse(GetCompareTy(RHS));
3214       }
3215     }
3216   }
3217 
3218   //   If C2 is a power-of-2 and C is not:
3219   //   (C2 << X) == C --> false
3220   //   (C2 << X) != C --> true
3221   const APInt *C;
3222   if (match(LHS, m_Shl(m_Power2(), m_Value())) &&
3223       match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) {
3224     // C2 << X can equal zero in some circumstances.
3225     // This simplification might be unsafe if C is zero.
3226     //
3227     // We know it is safe if:
3228     // - The shift is nsw. We can't shift out the one bit.
3229     // - The shift is nuw. We can't shift out the one bit.
3230     // - C2 is one.
3231     // - C isn't zero.
3232     if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3233         Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3234         match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) {
3235       if (Pred == ICmpInst::ICMP_EQ)
3236         return ConstantInt::getFalse(GetCompareTy(RHS));
3237       if (Pred == ICmpInst::ICMP_NE)
3238         return ConstantInt::getTrue(GetCompareTy(RHS));
3239     }
3240   }
3241 
3242   // TODO: This is overly constrained. LHS can be any power-of-2.
3243   // (1 << X)  >u 0x8000 --> false
3244   // (1 << X) <=u 0x8000 --> true
3245   if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) {
3246     if (Pred == ICmpInst::ICMP_UGT)
3247       return ConstantInt::getFalse(GetCompareTy(RHS));
3248     if (Pred == ICmpInst::ICMP_ULE)
3249       return ConstantInt::getTrue(GetCompareTy(RHS));
3250   }
3251 
3252   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
3253       LBO->getOperand(1) == RBO->getOperand(1)) {
3254     switch (LBO->getOpcode()) {
3255     default:
3256       break;
3257     case Instruction::UDiv:
3258     case Instruction::LShr:
3259       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
3260           !Q.IIQ.isExact(RBO))
3261         break;
3262       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3263                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3264           return V;
3265       break;
3266     case Instruction::SDiv:
3267       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
3268           !Q.IIQ.isExact(RBO))
3269         break;
3270       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3271                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3272         return V;
3273       break;
3274     case Instruction::AShr:
3275       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
3276         break;
3277       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3278                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3279         return V;
3280       break;
3281     case Instruction::Shl: {
3282       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
3283       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
3284       if (!NUW && !NSW)
3285         break;
3286       if (!NSW && ICmpInst::isSigned(Pred))
3287         break;
3288       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3289                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3290         return V;
3291       break;
3292     }
3293     }
3294   }
3295   return nullptr;
3296 }
3297 
3298 /// Simplify integer comparisons where at least one operand of the compare
3299 /// matches an integer min/max idiom.
3300 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
3301                                      Value *RHS, const SimplifyQuery &Q,
3302                                      unsigned MaxRecurse) {
3303   Type *ITy = GetCompareTy(LHS); // The return type.
3304   Value *A, *B;
3305   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
3306   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
3307 
3308   // Signed variants on "max(a,b)>=a -> true".
3309   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3310     if (A != RHS)
3311       std::swap(A, B);       // smax(A, B) pred A.
3312     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3313     // We analyze this as smax(A, B) pred A.
3314     P = Pred;
3315   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
3316              (A == LHS || B == LHS)) {
3317     if (A != LHS)
3318       std::swap(A, B);       // A pred smax(A, B).
3319     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3320     // We analyze this as smax(A, B) swapped-pred A.
3321     P = CmpInst::getSwappedPredicate(Pred);
3322   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3323              (A == RHS || B == RHS)) {
3324     if (A != RHS)
3325       std::swap(A, B);       // smin(A, B) pred A.
3326     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3327     // We analyze this as smax(-A, -B) swapped-pred -A.
3328     // Note that we do not need to actually form -A or -B thanks to EqP.
3329     P = CmpInst::getSwappedPredicate(Pred);
3330   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
3331              (A == LHS || B == LHS)) {
3332     if (A != LHS)
3333       std::swap(A, B);       // A pred smin(A, B).
3334     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3335     // We analyze this as smax(-A, -B) pred -A.
3336     // Note that we do not need to actually form -A or -B thanks to EqP.
3337     P = Pred;
3338   }
3339   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3340     // Cases correspond to "max(A, B) p A".
3341     switch (P) {
3342     default:
3343       break;
3344     case CmpInst::ICMP_EQ:
3345     case CmpInst::ICMP_SLE:
3346       // Equivalent to "A EqP B".  This may be the same as the condition tested
3347       // in the max/min; if so, we can just return that.
3348       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3349         return V;
3350       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3351         return V;
3352       // Otherwise, see if "A EqP B" simplifies.
3353       if (MaxRecurse)
3354         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3355           return V;
3356       break;
3357     case CmpInst::ICMP_NE:
3358     case CmpInst::ICMP_SGT: {
3359       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3360       // Equivalent to "A InvEqP B".  This may be the same as the condition
3361       // tested in the max/min; if so, we can just return that.
3362       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3363         return V;
3364       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3365         return V;
3366       // Otherwise, see if "A InvEqP B" simplifies.
3367       if (MaxRecurse)
3368         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3369           return V;
3370       break;
3371     }
3372     case CmpInst::ICMP_SGE:
3373       // Always true.
3374       return getTrue(ITy);
3375     case CmpInst::ICMP_SLT:
3376       // Always false.
3377       return getFalse(ITy);
3378     }
3379   }
3380 
3381   // Unsigned variants on "max(a,b)>=a -> true".
3382   P = CmpInst::BAD_ICMP_PREDICATE;
3383   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3384     if (A != RHS)
3385       std::swap(A, B);       // umax(A, B) pred A.
3386     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3387     // We analyze this as umax(A, B) pred A.
3388     P = Pred;
3389   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3390              (A == LHS || B == LHS)) {
3391     if (A != LHS)
3392       std::swap(A, B);       // A pred umax(A, B).
3393     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3394     // We analyze this as umax(A, B) swapped-pred A.
3395     P = CmpInst::getSwappedPredicate(Pred);
3396   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3397              (A == RHS || B == RHS)) {
3398     if (A != RHS)
3399       std::swap(A, B);       // umin(A, B) pred A.
3400     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3401     // We analyze this as umax(-A, -B) swapped-pred -A.
3402     // Note that we do not need to actually form -A or -B thanks to EqP.
3403     P = CmpInst::getSwappedPredicate(Pred);
3404   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3405              (A == LHS || B == LHS)) {
3406     if (A != LHS)
3407       std::swap(A, B);       // A pred umin(A, B).
3408     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3409     // We analyze this as umax(-A, -B) pred -A.
3410     // Note that we do not need to actually form -A or -B thanks to EqP.
3411     P = Pred;
3412   }
3413   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3414     // Cases correspond to "max(A, B) p A".
3415     switch (P) {
3416     default:
3417       break;
3418     case CmpInst::ICMP_EQ:
3419     case CmpInst::ICMP_ULE:
3420       // Equivalent to "A EqP B".  This may be the same as the condition tested
3421       // in the max/min; if so, we can just return that.
3422       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3423         return V;
3424       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3425         return V;
3426       // Otherwise, see if "A EqP B" simplifies.
3427       if (MaxRecurse)
3428         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3429           return V;
3430       break;
3431     case CmpInst::ICMP_NE:
3432     case CmpInst::ICMP_UGT: {
3433       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3434       // Equivalent to "A InvEqP B".  This may be the same as the condition
3435       // tested in the max/min; if so, we can just return that.
3436       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3437         return V;
3438       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3439         return V;
3440       // Otherwise, see if "A InvEqP B" simplifies.
3441       if (MaxRecurse)
3442         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3443           return V;
3444       break;
3445     }
3446     case CmpInst::ICMP_UGE:
3447       return getTrue(ITy);
3448     case CmpInst::ICMP_ULT:
3449       return getFalse(ITy);
3450     }
3451   }
3452 
3453   // Comparing 1 each of min/max with a common operand?
3454   // Canonicalize min operand to RHS.
3455   if (match(LHS, m_UMin(m_Value(), m_Value())) ||
3456       match(LHS, m_SMin(m_Value(), m_Value()))) {
3457     std::swap(LHS, RHS);
3458     Pred = ICmpInst::getSwappedPredicate(Pred);
3459   }
3460 
3461   Value *C, *D;
3462   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3463       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3464       (A == C || A == D || B == C || B == D)) {
3465     // smax(A, B) >=s smin(A, D) --> true
3466     if (Pred == CmpInst::ICMP_SGE)
3467       return getTrue(ITy);
3468     // smax(A, B) <s smin(A, D) --> false
3469     if (Pred == CmpInst::ICMP_SLT)
3470       return getFalse(ITy);
3471   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3472              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3473              (A == C || A == D || B == C || B == D)) {
3474     // umax(A, B) >=u umin(A, D) --> true
3475     if (Pred == CmpInst::ICMP_UGE)
3476       return getTrue(ITy);
3477     // umax(A, B) <u umin(A, D) --> false
3478     if (Pred == CmpInst::ICMP_ULT)
3479       return getFalse(ITy);
3480   }
3481 
3482   return nullptr;
3483 }
3484 
3485 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate,
3486                                                Value *LHS, Value *RHS,
3487                                                const SimplifyQuery &Q) {
3488   // Gracefully handle instructions that have not been inserted yet.
3489   if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent())
3490     return nullptr;
3491 
3492   for (Value *AssumeBaseOp : {LHS, RHS}) {
3493     for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) {
3494       if (!AssumeVH)
3495         continue;
3496 
3497       CallInst *Assume = cast<CallInst>(AssumeVH);
3498       if (Optional<bool> Imp =
3499               isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS,
3500                                  Q.DL))
3501         if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT))
3502           return ConstantInt::get(GetCompareTy(LHS), *Imp);
3503     }
3504   }
3505 
3506   return nullptr;
3507 }
3508 
3509 /// Given operands for an ICmpInst, see if we can fold the result.
3510 /// If not, this returns null.
3511 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3512                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3513   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3514   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3515 
3516   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3517     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3518       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3519 
3520     // If we have a constant, make sure it is on the RHS.
3521     std::swap(LHS, RHS);
3522     Pred = CmpInst::getSwappedPredicate(Pred);
3523   }
3524   assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3525 
3526   Type *ITy = GetCompareTy(LHS); // The return type.
3527 
3528   // icmp poison, X -> poison
3529   if (isa<PoisonValue>(RHS))
3530     return PoisonValue::get(ITy);
3531 
3532   // For EQ and NE, we can always pick a value for the undef to make the
3533   // predicate pass or fail, so we can return undef.
3534   // Matches behavior in llvm::ConstantFoldCompareInstruction.
3535   if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred))
3536     return UndefValue::get(ITy);
3537 
3538   // icmp X, X -> true/false
3539   // icmp X, undef -> true/false because undef could be X.
3540   if (LHS == RHS || Q.isUndefValue(RHS))
3541     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3542 
3543   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3544     return V;
3545 
3546   // TODO: Sink/common this with other potentially expensive calls that use
3547   //       ValueTracking? See comment below for isKnownNonEqual().
3548   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3549     return V;
3550 
3551   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3552     return V;
3553 
3554   // If both operands have range metadata, use the metadata
3555   // to simplify the comparison.
3556   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3557     auto RHS_Instr = cast<Instruction>(RHS);
3558     auto LHS_Instr = cast<Instruction>(LHS);
3559 
3560     if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3561         Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3562       auto RHS_CR = getConstantRangeFromMetadata(
3563           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3564       auto LHS_CR = getConstantRangeFromMetadata(
3565           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3566 
3567       if (LHS_CR.icmp(Pred, RHS_CR))
3568         return ConstantInt::getTrue(RHS->getContext());
3569 
3570       if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR))
3571         return ConstantInt::getFalse(RHS->getContext());
3572     }
3573   }
3574 
3575   // Compare of cast, for example (zext X) != 0 -> X != 0
3576   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3577     Instruction *LI = cast<CastInst>(LHS);
3578     Value *SrcOp = LI->getOperand(0);
3579     Type *SrcTy = SrcOp->getType();
3580     Type *DstTy = LI->getType();
3581 
3582     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3583     // if the integer type is the same size as the pointer type.
3584     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3585         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3586       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3587         // Transfer the cast to the constant.
3588         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3589                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3590                                         Q, MaxRecurse-1))
3591           return V;
3592       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3593         if (RI->getOperand(0)->getType() == SrcTy)
3594           // Compare without the cast.
3595           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3596                                           Q, MaxRecurse-1))
3597             return V;
3598       }
3599     }
3600 
3601     if (isa<ZExtInst>(LHS)) {
3602       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3603       // same type.
3604       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3605         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3606           // Compare X and Y.  Note that signed predicates become unsigned.
3607           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3608                                           SrcOp, RI->getOperand(0), Q,
3609                                           MaxRecurse-1))
3610             return V;
3611       }
3612       // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true.
3613       else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3614         if (SrcOp == RI->getOperand(0)) {
3615           if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE)
3616             return ConstantInt::getTrue(ITy);
3617           if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT)
3618             return ConstantInt::getFalse(ITy);
3619         }
3620       }
3621       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3622       // too.  If not, then try to deduce the result of the comparison.
3623       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3624         // Compute the constant that would happen if we truncated to SrcTy then
3625         // reextended to DstTy.
3626         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3627         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3628 
3629         // If the re-extended constant didn't change then this is effectively
3630         // also a case of comparing two zero-extended values.
3631         if (RExt == CI && MaxRecurse)
3632           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3633                                         SrcOp, Trunc, Q, MaxRecurse-1))
3634             return V;
3635 
3636         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3637         // there.  Use this to work out the result of the comparison.
3638         if (RExt != CI) {
3639           switch (Pred) {
3640           default: llvm_unreachable("Unknown ICmp predicate!");
3641           // LHS <u RHS.
3642           case ICmpInst::ICMP_EQ:
3643           case ICmpInst::ICMP_UGT:
3644           case ICmpInst::ICMP_UGE:
3645             return ConstantInt::getFalse(CI->getContext());
3646 
3647           case ICmpInst::ICMP_NE:
3648           case ICmpInst::ICMP_ULT:
3649           case ICmpInst::ICMP_ULE:
3650             return ConstantInt::getTrue(CI->getContext());
3651 
3652           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3653           // is non-negative then LHS <s RHS.
3654           case ICmpInst::ICMP_SGT:
3655           case ICmpInst::ICMP_SGE:
3656             return CI->getValue().isNegative() ?
3657               ConstantInt::getTrue(CI->getContext()) :
3658               ConstantInt::getFalse(CI->getContext());
3659 
3660           case ICmpInst::ICMP_SLT:
3661           case ICmpInst::ICMP_SLE:
3662             return CI->getValue().isNegative() ?
3663               ConstantInt::getFalse(CI->getContext()) :
3664               ConstantInt::getTrue(CI->getContext());
3665           }
3666         }
3667       }
3668     }
3669 
3670     if (isa<SExtInst>(LHS)) {
3671       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3672       // same type.
3673       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3674         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3675           // Compare X and Y.  Note that the predicate does not change.
3676           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3677                                           Q, MaxRecurse-1))
3678             return V;
3679       }
3680       // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true.
3681       else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3682         if (SrcOp == RI->getOperand(0)) {
3683           if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE)
3684             return ConstantInt::getTrue(ITy);
3685           if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT)
3686             return ConstantInt::getFalse(ITy);
3687         }
3688       }
3689       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3690       // too.  If not, then try to deduce the result of the comparison.
3691       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3692         // Compute the constant that would happen if we truncated to SrcTy then
3693         // reextended to DstTy.
3694         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3695         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3696 
3697         // If the re-extended constant didn't change then this is effectively
3698         // also a case of comparing two sign-extended values.
3699         if (RExt == CI && MaxRecurse)
3700           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3701             return V;
3702 
3703         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3704         // bits there.  Use this to work out the result of the comparison.
3705         if (RExt != CI) {
3706           switch (Pred) {
3707           default: llvm_unreachable("Unknown ICmp predicate!");
3708           case ICmpInst::ICMP_EQ:
3709             return ConstantInt::getFalse(CI->getContext());
3710           case ICmpInst::ICMP_NE:
3711             return ConstantInt::getTrue(CI->getContext());
3712 
3713           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3714           // LHS >s RHS.
3715           case ICmpInst::ICMP_SGT:
3716           case ICmpInst::ICMP_SGE:
3717             return CI->getValue().isNegative() ?
3718               ConstantInt::getTrue(CI->getContext()) :
3719               ConstantInt::getFalse(CI->getContext());
3720           case ICmpInst::ICMP_SLT:
3721           case ICmpInst::ICMP_SLE:
3722             return CI->getValue().isNegative() ?
3723               ConstantInt::getFalse(CI->getContext()) :
3724               ConstantInt::getTrue(CI->getContext());
3725 
3726           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3727           // LHS >u RHS.
3728           case ICmpInst::ICMP_UGT:
3729           case ICmpInst::ICMP_UGE:
3730             // Comparison is true iff the LHS <s 0.
3731             if (MaxRecurse)
3732               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3733                                               Constant::getNullValue(SrcTy),
3734                                               Q, MaxRecurse-1))
3735                 return V;
3736             break;
3737           case ICmpInst::ICMP_ULT:
3738           case ICmpInst::ICMP_ULE:
3739             // Comparison is true iff the LHS >=s 0.
3740             if (MaxRecurse)
3741               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3742                                               Constant::getNullValue(SrcTy),
3743                                               Q, MaxRecurse-1))
3744                 return V;
3745             break;
3746           }
3747         }
3748       }
3749     }
3750   }
3751 
3752   // icmp eq|ne X, Y -> false|true if X != Y
3753   // This is potentially expensive, and we have already computedKnownBits for
3754   // compares with 0 above here, so only try this for a non-zero compare.
3755   if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) &&
3756       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3757     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3758   }
3759 
3760   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3761     return V;
3762 
3763   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3764     return V;
3765 
3766   if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q))
3767     return V;
3768 
3769   // Simplify comparisons of related pointers using a powerful, recursive
3770   // GEP-walk when we have target data available..
3771   if (LHS->getType()->isPointerTy())
3772     if (auto *C = computePointerICmp(Pred, LHS, RHS, Q))
3773       return C;
3774   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3775     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3776       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3777               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3778           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3779               Q.DL.getTypeSizeInBits(CRHS->getType()))
3780         if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(),
3781                                          CRHS->getPointerOperand(), Q))
3782           return C;
3783 
3784   // If the comparison is with the result of a select instruction, check whether
3785   // comparing with either branch of the select always yields the same value.
3786   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3787     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3788       return V;
3789 
3790   // If the comparison is with the result of a phi instruction, check whether
3791   // doing the compare with each incoming phi value yields a common result.
3792   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3793     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3794       return V;
3795 
3796   return nullptr;
3797 }
3798 
3799 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3800                               const SimplifyQuery &Q) {
3801   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3802 }
3803 
3804 /// Given operands for an FCmpInst, see if we can fold the result.
3805 /// If not, this returns null.
3806 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3807                                FastMathFlags FMF, const SimplifyQuery &Q,
3808                                unsigned MaxRecurse) {
3809   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3810   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3811 
3812   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3813     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3814       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3815 
3816     // If we have a constant, make sure it is on the RHS.
3817     std::swap(LHS, RHS);
3818     Pred = CmpInst::getSwappedPredicate(Pred);
3819   }
3820 
3821   // Fold trivial predicates.
3822   Type *RetTy = GetCompareTy(LHS);
3823   if (Pred == FCmpInst::FCMP_FALSE)
3824     return getFalse(RetTy);
3825   if (Pred == FCmpInst::FCMP_TRUE)
3826     return getTrue(RetTy);
3827 
3828   // Fold (un)ordered comparison if we can determine there are no NaNs.
3829   if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3830     if (FMF.noNaNs() ||
3831         (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3832       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3833 
3834   // NaN is unordered; NaN is not ordered.
3835   assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3836          "Comparison must be either ordered or unordered");
3837   if (match(RHS, m_NaN()))
3838     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3839 
3840   // fcmp pred x, poison and  fcmp pred poison, x
3841   // fold to poison
3842   if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS))
3843     return PoisonValue::get(RetTy);
3844 
3845   // fcmp pred x, undef  and  fcmp pred undef, x
3846   // fold to true if unordered, false if ordered
3847   if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) {
3848     // Choosing NaN for the undef will always make unordered comparison succeed
3849     // and ordered comparison fail.
3850     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3851   }
3852 
3853   // fcmp x,x -> true/false.  Not all compares are foldable.
3854   if (LHS == RHS) {
3855     if (CmpInst::isTrueWhenEqual(Pred))
3856       return getTrue(RetTy);
3857     if (CmpInst::isFalseWhenEqual(Pred))
3858       return getFalse(RetTy);
3859   }
3860 
3861   // Handle fcmp with constant RHS.
3862   // TODO: Use match with a specific FP value, so these work with vectors with
3863   // undef lanes.
3864   const APFloat *C;
3865   if (match(RHS, m_APFloat(C))) {
3866     // Check whether the constant is an infinity.
3867     if (C->isInfinity()) {
3868       if (C->isNegative()) {
3869         switch (Pred) {
3870         case FCmpInst::FCMP_OLT:
3871           // No value is ordered and less than negative infinity.
3872           return getFalse(RetTy);
3873         case FCmpInst::FCMP_UGE:
3874           // All values are unordered with or at least negative infinity.
3875           return getTrue(RetTy);
3876         default:
3877           break;
3878         }
3879       } else {
3880         switch (Pred) {
3881         case FCmpInst::FCMP_OGT:
3882           // No value is ordered and greater than infinity.
3883           return getFalse(RetTy);
3884         case FCmpInst::FCMP_ULE:
3885           // All values are unordered with and at most infinity.
3886           return getTrue(RetTy);
3887         default:
3888           break;
3889         }
3890       }
3891 
3892       // LHS == Inf
3893       if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI))
3894         return getFalse(RetTy);
3895       // LHS != Inf
3896       if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI))
3897         return getTrue(RetTy);
3898       // LHS == Inf || LHS == NaN
3899       if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) &&
3900           isKnownNeverNaN(LHS, Q.TLI))
3901         return getFalse(RetTy);
3902       // LHS != Inf && LHS != NaN
3903       if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) &&
3904           isKnownNeverNaN(LHS, Q.TLI))
3905         return getTrue(RetTy);
3906     }
3907     if (C->isNegative() && !C->isNegZero()) {
3908       assert(!C->isNaN() && "Unexpected NaN constant!");
3909       // TODO: We can catch more cases by using a range check rather than
3910       //       relying on CannotBeOrderedLessThanZero.
3911       switch (Pred) {
3912       case FCmpInst::FCMP_UGE:
3913       case FCmpInst::FCMP_UGT:
3914       case FCmpInst::FCMP_UNE:
3915         // (X >= 0) implies (X > C) when (C < 0)
3916         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3917           return getTrue(RetTy);
3918         break;
3919       case FCmpInst::FCMP_OEQ:
3920       case FCmpInst::FCMP_OLE:
3921       case FCmpInst::FCMP_OLT:
3922         // (X >= 0) implies !(X < C) when (C < 0)
3923         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3924           return getFalse(RetTy);
3925         break;
3926       default:
3927         break;
3928       }
3929     }
3930 
3931     // Check comparison of [minnum/maxnum with constant] with other constant.
3932     const APFloat *C2;
3933     if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
3934          *C2 < *C) ||
3935         (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
3936          *C2 > *C)) {
3937       bool IsMaxNum =
3938           cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
3939       // The ordered relationship and minnum/maxnum guarantee that we do not
3940       // have NaN constants, so ordered/unordered preds are handled the same.
3941       switch (Pred) {
3942       case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ:
3943         // minnum(X, LesserC)  == C --> false
3944         // maxnum(X, GreaterC) == C --> false
3945         return getFalse(RetTy);
3946       case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE:
3947         // minnum(X, LesserC)  != C --> true
3948         // maxnum(X, GreaterC) != C --> true
3949         return getTrue(RetTy);
3950       case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE:
3951       case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT:
3952         // minnum(X, LesserC)  >= C --> false
3953         // minnum(X, LesserC)  >  C --> false
3954         // maxnum(X, GreaterC) >= C --> true
3955         // maxnum(X, GreaterC) >  C --> true
3956         return ConstantInt::get(RetTy, IsMaxNum);
3957       case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE:
3958       case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT:
3959         // minnum(X, LesserC)  <= C --> true
3960         // minnum(X, LesserC)  <  C --> true
3961         // maxnum(X, GreaterC) <= C --> false
3962         // maxnum(X, GreaterC) <  C --> false
3963         return ConstantInt::get(RetTy, !IsMaxNum);
3964       default:
3965         // TRUE/FALSE/ORD/UNO should be handled before this.
3966         llvm_unreachable("Unexpected fcmp predicate");
3967       }
3968     }
3969   }
3970 
3971   if (match(RHS, m_AnyZeroFP())) {
3972     switch (Pred) {
3973     case FCmpInst::FCMP_OGE:
3974     case FCmpInst::FCMP_ULT:
3975       // Positive or zero X >= 0.0 --> true
3976       // Positive or zero X <  0.0 --> false
3977       if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
3978           CannotBeOrderedLessThanZero(LHS, Q.TLI))
3979         return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
3980       break;
3981     case FCmpInst::FCMP_UGE:
3982     case FCmpInst::FCMP_OLT:
3983       // Positive or zero or nan X >= 0.0 --> true
3984       // Positive or zero or nan X <  0.0 --> false
3985       if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3986         return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
3987       break;
3988     default:
3989       break;
3990     }
3991   }
3992 
3993   // If the comparison is with the result of a select instruction, check whether
3994   // comparing with either branch of the select always yields the same value.
3995   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3996     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3997       return V;
3998 
3999   // If the comparison is with the result of a phi instruction, check whether
4000   // doing the compare with each incoming phi value yields a common result.
4001   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
4002     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
4003       return V;
4004 
4005   return nullptr;
4006 }
4007 
4008 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4009                               FastMathFlags FMF, const SimplifyQuery &Q) {
4010   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
4011 }
4012 
4013 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
4014                                      const SimplifyQuery &Q,
4015                                      bool AllowRefinement,
4016                                      unsigned MaxRecurse) {
4017   assert(!Op->getType()->isVectorTy() && "This is not safe for vectors");
4018 
4019   // Trivial replacement.
4020   if (V == Op)
4021     return RepOp;
4022 
4023   // We cannot replace a constant, and shouldn't even try.
4024   if (isa<Constant>(Op))
4025     return nullptr;
4026 
4027   auto *I = dyn_cast<Instruction>(V);
4028   if (!I || !is_contained(I->operands(), Op))
4029     return nullptr;
4030 
4031   // Replace Op with RepOp in instruction operands.
4032   SmallVector<Value *, 8> NewOps(I->getNumOperands());
4033   transform(I->operands(), NewOps.begin(),
4034             [&](Value *V) { return V == Op ? RepOp : V; });
4035 
4036   if (!AllowRefinement) {
4037     // General InstSimplify functions may refine the result, e.g. by returning
4038     // a constant for a potentially poison value. To avoid this, implement only
4039     // a few non-refining but profitable transforms here.
4040 
4041     if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4042       unsigned Opcode = BO->getOpcode();
4043       // id op x -> x, x op id -> x
4044       if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType()))
4045         return NewOps[1];
4046       if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(),
4047                                                       /* RHS */ true))
4048         return NewOps[0];
4049 
4050       // x & x -> x, x | x -> x
4051       if ((Opcode == Instruction::And || Opcode == Instruction::Or) &&
4052           NewOps[0] == NewOps[1])
4053         return NewOps[0];
4054     }
4055 
4056     if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
4057       // getelementptr x, 0 -> x
4058       if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) &&
4059           !GEP->isInBounds())
4060         return NewOps[0];
4061     }
4062   } else if (MaxRecurse) {
4063     // The simplification queries below may return the original value. Consider:
4064     //   %div = udiv i32 %arg, %arg2
4065     //   %mul = mul nsw i32 %div, %arg2
4066     //   %cmp = icmp eq i32 %mul, %arg
4067     //   %sel = select i1 %cmp, i32 %div, i32 undef
4068     // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which
4069     // simplifies back to %arg. This can only happen because %mul does not
4070     // dominate %div. To ensure a consistent return value contract, we make sure
4071     // that this case returns nullptr as well.
4072     auto PreventSelfSimplify = [V](Value *Simplified) {
4073       return Simplified != V ? Simplified : nullptr;
4074     };
4075 
4076     if (auto *B = dyn_cast<BinaryOperator>(I))
4077       return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0],
4078                                                NewOps[1], Q, MaxRecurse - 1));
4079 
4080     if (CmpInst *C = dyn_cast<CmpInst>(I))
4081       return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0],
4082                                                  NewOps[1], Q, MaxRecurse - 1));
4083 
4084     if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
4085       return PreventSelfSimplify(SimplifyGEPInst(
4086           GEP->getSourceElementType(), NewOps[0], makeArrayRef(NewOps).slice(1),
4087           GEP->isInBounds(), Q, MaxRecurse - 1));
4088 
4089     if (isa<SelectInst>(I))
4090       return PreventSelfSimplify(
4091           SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q,
4092                              MaxRecurse - 1));
4093     // TODO: We could hand off more cases to instsimplify here.
4094   }
4095 
4096   // If all operands are constant after substituting Op for RepOp then we can
4097   // constant fold the instruction.
4098   SmallVector<Constant *, 8> ConstOps;
4099   for (Value *NewOp : NewOps) {
4100     if (Constant *ConstOp = dyn_cast<Constant>(NewOp))
4101       ConstOps.push_back(ConstOp);
4102     else
4103       return nullptr;
4104   }
4105 
4106   // Consider:
4107   //   %cmp = icmp eq i32 %x, 2147483647
4108   //   %add = add nsw i32 %x, 1
4109   //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
4110   //
4111   // We can't replace %sel with %add unless we strip away the flags (which
4112   // will be done in InstCombine).
4113   // TODO: This may be unsound, because it only catches some forms of
4114   // refinement.
4115   if (!AllowRefinement && canCreatePoison(cast<Operator>(I)))
4116     return nullptr;
4117 
4118   if (CmpInst *C = dyn_cast<CmpInst>(I))
4119     return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
4120                                            ConstOps[1], Q.DL, Q.TLI);
4121 
4122   if (LoadInst *LI = dyn_cast<LoadInst>(I))
4123     if (!LI->isVolatile())
4124       return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
4125 
4126   return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
4127 }
4128 
4129 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
4130                                     const SimplifyQuery &Q,
4131                                     bool AllowRefinement) {
4132   return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement,
4133                                   RecursionLimit);
4134 }
4135 
4136 /// Try to simplify a select instruction when its condition operand is an
4137 /// integer comparison where one operand of the compare is a constant.
4138 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
4139                                     const APInt *Y, bool TrueWhenUnset) {
4140   const APInt *C;
4141 
4142   // (X & Y) == 0 ? X & ~Y : X  --> X
4143   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
4144   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
4145       *Y == ~*C)
4146     return TrueWhenUnset ? FalseVal : TrueVal;
4147 
4148   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
4149   // (X & Y) != 0 ? X : X & ~Y  --> X
4150   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
4151       *Y == ~*C)
4152     return TrueWhenUnset ? FalseVal : TrueVal;
4153 
4154   if (Y->isPowerOf2()) {
4155     // (X & Y) == 0 ? X | Y : X  --> X | Y
4156     // (X & Y) != 0 ? X | Y : X  --> X
4157     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
4158         *Y == *C)
4159       return TrueWhenUnset ? TrueVal : FalseVal;
4160 
4161     // (X & Y) == 0 ? X : X | Y  --> X
4162     // (X & Y) != 0 ? X : X | Y  --> X | Y
4163     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
4164         *Y == *C)
4165       return TrueWhenUnset ? TrueVal : FalseVal;
4166   }
4167 
4168   return nullptr;
4169 }
4170 
4171 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
4172 /// eq/ne.
4173 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
4174                                            ICmpInst::Predicate Pred,
4175                                            Value *TrueVal, Value *FalseVal) {
4176   Value *X;
4177   APInt Mask;
4178   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
4179     return nullptr;
4180 
4181   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
4182                                Pred == ICmpInst::ICMP_EQ);
4183 }
4184 
4185 /// Try to simplify a select instruction when its condition operand is an
4186 /// integer comparison.
4187 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
4188                                          Value *FalseVal, const SimplifyQuery &Q,
4189                                          unsigned MaxRecurse) {
4190   ICmpInst::Predicate Pred;
4191   Value *CmpLHS, *CmpRHS;
4192   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
4193     return nullptr;
4194 
4195   // Canonicalize ne to eq predicate.
4196   if (Pred == ICmpInst::ICMP_NE) {
4197     Pred = ICmpInst::ICMP_EQ;
4198     std::swap(TrueVal, FalseVal);
4199   }
4200 
4201   // Check for integer min/max with a limit constant:
4202   // X > MIN_INT ? X : MIN_INT --> X
4203   // X < MAX_INT ? X : MAX_INT --> X
4204   if (TrueVal->getType()->isIntOrIntVectorTy()) {
4205     Value *X, *Y;
4206     SelectPatternFlavor SPF =
4207         matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal,
4208                                      X, Y).Flavor;
4209     if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) {
4210       APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF),
4211                                     X->getType()->getScalarSizeInBits());
4212       if (match(Y, m_SpecificInt(LimitC)))
4213         return X;
4214     }
4215   }
4216 
4217   if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) {
4218     Value *X;
4219     const APInt *Y;
4220     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
4221       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
4222                                            /*TrueWhenUnset=*/true))
4223         return V;
4224 
4225     // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
4226     Value *ShAmt;
4227     auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)),
4228                              m_FShr(m_Value(), m_Value(X), m_Value(ShAmt)));
4229     // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
4230     // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
4231     if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt)
4232       return X;
4233 
4234     // Test for a zero-shift-guard-op around rotates. These are used to
4235     // avoid UB from oversized shifts in raw IR rotate patterns, but the
4236     // intrinsics do not have that problem.
4237     // We do not allow this transform for the general funnel shift case because
4238     // that would not preserve the poison safety of the original code.
4239     auto isRotate =
4240         m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)),
4241                     m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt)));
4242     // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
4243     // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
4244     if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
4245         Pred == ICmpInst::ICMP_EQ)
4246       return FalseVal;
4247 
4248     // X == 0 ? abs(X) : -abs(X) --> -abs(X)
4249     // X == 0 ? -abs(X) : abs(X) --> abs(X)
4250     if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) &&
4251         match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))))
4252       return FalseVal;
4253     if (match(TrueVal,
4254               m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) &&
4255         match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))
4256       return FalseVal;
4257   }
4258 
4259   // Check for other compares that behave like bit test.
4260   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
4261                                               TrueVal, FalseVal))
4262     return V;
4263 
4264   // If we have a scalar equality comparison, then we know the value in one of
4265   // the arms of the select. See if substituting this value into the arm and
4266   // simplifying the result yields the same value as the other arm.
4267   // Note that the equivalence/replacement opportunity does not hold for vectors
4268   // because each element of a vector select is chosen independently.
4269   if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) {
4270     if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q,
4271                                /* AllowRefinement */ false, MaxRecurse) ==
4272             TrueVal ||
4273         simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q,
4274                                /* AllowRefinement */ false, MaxRecurse) ==
4275             TrueVal)
4276       return FalseVal;
4277     if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q,
4278                                /* AllowRefinement */ true, MaxRecurse) ==
4279             FalseVal ||
4280         simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q,
4281                                /* AllowRefinement */ true, MaxRecurse) ==
4282             FalseVal)
4283       return FalseVal;
4284   }
4285 
4286   return nullptr;
4287 }
4288 
4289 /// Try to simplify a select instruction when its condition operand is a
4290 /// floating-point comparison.
4291 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F,
4292                                      const SimplifyQuery &Q) {
4293   FCmpInst::Predicate Pred;
4294   if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
4295       !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
4296     return nullptr;
4297 
4298   // This transform is safe if we do not have (do not care about) -0.0 or if
4299   // at least one operand is known to not be -0.0. Otherwise, the select can
4300   // change the sign of a zero operand.
4301   bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) &&
4302                           Q.CxtI->hasNoSignedZeros();
4303   const APFloat *C;
4304   if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) ||
4305                           (match(F, m_APFloat(C)) && C->isNonZero())) {
4306     // (T == F) ? T : F --> F
4307     // (F == T) ? T : F --> F
4308     if (Pred == FCmpInst::FCMP_OEQ)
4309       return F;
4310 
4311     // (T != F) ? T : F --> T
4312     // (F != T) ? T : F --> T
4313     if (Pred == FCmpInst::FCMP_UNE)
4314       return T;
4315   }
4316 
4317   return nullptr;
4318 }
4319 
4320 /// Given operands for a SelectInst, see if we can fold the result.
4321 /// If not, this returns null.
4322 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4323                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
4324   if (auto *CondC = dyn_cast<Constant>(Cond)) {
4325     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
4326       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
4327         return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
4328 
4329     // select poison, X, Y -> poison
4330     if (isa<PoisonValue>(CondC))
4331       return PoisonValue::get(TrueVal->getType());
4332 
4333     // select undef, X, Y -> X or Y
4334     if (Q.isUndefValue(CondC))
4335       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
4336 
4337     // select true,  X, Y --> X
4338     // select false, X, Y --> Y
4339     // For vectors, allow undef/poison elements in the condition to match the
4340     // defined elements, so we can eliminate the select.
4341     if (match(CondC, m_One()))
4342       return TrueVal;
4343     if (match(CondC, m_Zero()))
4344       return FalseVal;
4345   }
4346 
4347   assert(Cond->getType()->isIntOrIntVectorTy(1) &&
4348          "Select must have bool or bool vector condition");
4349   assert(TrueVal->getType() == FalseVal->getType() &&
4350          "Select must have same types for true/false ops");
4351 
4352   if (Cond->getType() == TrueVal->getType()) {
4353     // select i1 Cond, i1 true, i1 false --> i1 Cond
4354     if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt()))
4355       return Cond;
4356 
4357     // (X || Y) && (X || !Y) --> X (commuted 8 ways)
4358     Value *X, *Y;
4359     if (match(FalseVal, m_ZeroInt())) {
4360       if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4361           match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4362         return X;
4363       if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4364           match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4365         return X;
4366     }
4367   }
4368 
4369   // select ?, X, X -> X
4370   if (TrueVal == FalseVal)
4371     return TrueVal;
4372 
4373   // If the true or false value is poison, we can fold to the other value.
4374   // If the true or false value is undef, we can fold to the other value as
4375   // long as the other value isn't poison.
4376   // select ?, poison, X -> X
4377   // select ?, undef,  X -> X
4378   if (isa<PoisonValue>(TrueVal) ||
4379       (Q.isUndefValue(TrueVal) &&
4380        isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT)))
4381     return FalseVal;
4382   // select ?, X, poison -> X
4383   // select ?, X, undef  -> X
4384   if (isa<PoisonValue>(FalseVal) ||
4385       (Q.isUndefValue(FalseVal) &&
4386        isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT)))
4387     return TrueVal;
4388 
4389   // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC''
4390   Constant *TrueC, *FalseC;
4391   if (isa<FixedVectorType>(TrueVal->getType()) &&
4392       match(TrueVal, m_Constant(TrueC)) &&
4393       match(FalseVal, m_Constant(FalseC))) {
4394     unsigned NumElts =
4395         cast<FixedVectorType>(TrueC->getType())->getNumElements();
4396     SmallVector<Constant *, 16> NewC;
4397     for (unsigned i = 0; i != NumElts; ++i) {
4398       // Bail out on incomplete vector constants.
4399       Constant *TEltC = TrueC->getAggregateElement(i);
4400       Constant *FEltC = FalseC->getAggregateElement(i);
4401       if (!TEltC || !FEltC)
4402         break;
4403 
4404       // If the elements match (undef or not), that value is the result. If only
4405       // one element is undef, choose the defined element as the safe result.
4406       if (TEltC == FEltC)
4407         NewC.push_back(TEltC);
4408       else if (isa<PoisonValue>(TEltC) ||
4409                (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC)))
4410         NewC.push_back(FEltC);
4411       else if (isa<PoisonValue>(FEltC) ||
4412                (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC)))
4413         NewC.push_back(TEltC);
4414       else
4415         break;
4416     }
4417     if (NewC.size() == NumElts)
4418       return ConstantVector::get(NewC);
4419   }
4420 
4421   if (Value *V =
4422           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
4423     return V;
4424 
4425   if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q))
4426     return V;
4427 
4428   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
4429     return V;
4430 
4431   Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
4432   if (Imp)
4433     return *Imp ? TrueVal : FalseVal;
4434 
4435   return nullptr;
4436 }
4437 
4438 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4439                                 const SimplifyQuery &Q) {
4440   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
4441 }
4442 
4443 /// Given operands for an GetElementPtrInst, see if we can fold the result.
4444 /// If not, this returns null.
4445 static Value *SimplifyGEPInst(Type *SrcTy, Value *Ptr,
4446                               ArrayRef<Value *> Indices, bool InBounds,
4447                               const SimplifyQuery &Q, unsigned) {
4448   // The type of the GEP pointer operand.
4449   unsigned AS =
4450       cast<PointerType>(Ptr->getType()->getScalarType())->getAddressSpace();
4451 
4452   // getelementptr P -> P.
4453   if (Indices.empty())
4454     return Ptr;
4455 
4456   // Compute the (pointer) type returned by the GEP instruction.
4457   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Indices);
4458   Type *GEPTy = PointerType::get(LastType, AS);
4459   if (VectorType *VT = dyn_cast<VectorType>(Ptr->getType()))
4460     GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4461   else {
4462     for (Value *Op : Indices) {
4463       // If one of the operands is a vector, the result type is a vector of
4464       // pointers. All vector operands must have the same number of elements.
4465       if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) {
4466         GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4467         break;
4468       }
4469     }
4470   }
4471 
4472   // getelementptr poison, idx -> poison
4473   // getelementptr baseptr, poison -> poison
4474   if (isa<PoisonValue>(Ptr) ||
4475       any_of(Indices, [](const auto *V) { return isa<PoisonValue>(V); }))
4476     return PoisonValue::get(GEPTy);
4477 
4478   if (Q.isUndefValue(Ptr))
4479     // If inbounds, we can choose an out-of-bounds pointer as a base pointer.
4480     return InBounds ? PoisonValue::get(GEPTy) : UndefValue::get(GEPTy);
4481 
4482   bool IsScalableVec =
4483       isa<ScalableVectorType>(SrcTy) || any_of(Indices, [](const Value *V) {
4484         return isa<ScalableVectorType>(V->getType());
4485       });
4486 
4487   if (Indices.size() == 1) {
4488     // getelementptr P, 0 -> P.
4489     if (match(Indices[0], m_Zero()) && Ptr->getType() == GEPTy)
4490       return Ptr;
4491 
4492     Type *Ty = SrcTy;
4493     if (!IsScalableVec && Ty->isSized()) {
4494       Value *P;
4495       uint64_t C;
4496       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
4497       // getelementptr P, N -> P if P points to a type of zero size.
4498       if (TyAllocSize == 0 && Ptr->getType() == GEPTy)
4499         return Ptr;
4500 
4501       // The following transforms are only safe if the ptrtoint cast
4502       // doesn't truncate the pointers.
4503       if (Indices[0]->getType()->getScalarSizeInBits() ==
4504           Q.DL.getPointerSizeInBits(AS)) {
4505         auto CanSimplify = [GEPTy, &P, Ptr]() -> bool {
4506           return P->getType() == GEPTy &&
4507                  getUnderlyingObject(P) == getUnderlyingObject(Ptr);
4508         };
4509         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
4510         if (TyAllocSize == 1 &&
4511             match(Indices[0],
4512                   m_Sub(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Specific(Ptr)))) &&
4513             CanSimplify())
4514           return P;
4515 
4516         // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of
4517         // size 1 << C.
4518         if (match(Indices[0], m_AShr(m_Sub(m_PtrToInt(m_Value(P)),
4519                                            m_PtrToInt(m_Specific(Ptr))),
4520                                      m_ConstantInt(C))) &&
4521             TyAllocSize == 1ULL << C && CanSimplify())
4522           return P;
4523 
4524         // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of
4525         // size C.
4526         if (match(Indices[0], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)),
4527                                            m_PtrToInt(m_Specific(Ptr))),
4528                                      m_SpecificInt(TyAllocSize))) &&
4529             CanSimplify())
4530           return P;
4531       }
4532     }
4533   }
4534 
4535   if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 &&
4536       all_of(Indices.drop_back(1),
4537              [](Value *Idx) { return match(Idx, m_Zero()); })) {
4538     unsigned IdxWidth =
4539         Q.DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace());
4540     if (Q.DL.getTypeSizeInBits(Indices.back()->getType()) == IdxWidth) {
4541       APInt BasePtrOffset(IdxWidth, 0);
4542       Value *StrippedBasePtr =
4543           Ptr->stripAndAccumulateInBoundsConstantOffsets(Q.DL, BasePtrOffset);
4544 
4545       // Avoid creating inttoptr of zero here: While LLVMs treatment of
4546       // inttoptr is generally conservative, this particular case is folded to
4547       // a null pointer, which will have incorrect provenance.
4548 
4549       // gep (gep V, C), (sub 0, V) -> C
4550       if (match(Indices.back(),
4551                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) &&
4552           !BasePtrOffset.isZero()) {
4553         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
4554         return ConstantExpr::getIntToPtr(CI, GEPTy);
4555       }
4556       // gep (gep V, C), (xor V, -1) -> C-1
4557       if (match(Indices.back(),
4558                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) &&
4559           !BasePtrOffset.isOne()) {
4560         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
4561         return ConstantExpr::getIntToPtr(CI, GEPTy);
4562       }
4563     }
4564   }
4565 
4566   // Check to see if this is constant foldable.
4567   if (!isa<Constant>(Ptr) ||
4568       !all_of(Indices, [](Value *V) { return isa<Constant>(V); }))
4569     return nullptr;
4570 
4571   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ptr), Indices,
4572                                             InBounds);
4573   return ConstantFoldConstant(CE, Q.DL);
4574 }
4575 
4576 Value *llvm::SimplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef<Value *> Indices,
4577                              bool InBounds, const SimplifyQuery &Q) {
4578   return ::SimplifyGEPInst(SrcTy, Ptr, Indices, InBounds, Q, RecursionLimit);
4579 }
4580 
4581 /// Given operands for an InsertValueInst, see if we can fold the result.
4582 /// If not, this returns null.
4583 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
4584                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
4585                                       unsigned) {
4586   if (Constant *CAgg = dyn_cast<Constant>(Agg))
4587     if (Constant *CVal = dyn_cast<Constant>(Val))
4588       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
4589 
4590   // insertvalue x, undef, n -> x
4591   if (Q.isUndefValue(Val))
4592     return Agg;
4593 
4594   // insertvalue x, (extractvalue y, n), n
4595   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
4596     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
4597         EV->getIndices() == Idxs) {
4598       // insertvalue undef, (extractvalue y, n), n -> y
4599       if (Q.isUndefValue(Agg))
4600         return EV->getAggregateOperand();
4601 
4602       // insertvalue y, (extractvalue y, n), n -> y
4603       if (Agg == EV->getAggregateOperand())
4604         return Agg;
4605     }
4606 
4607   return nullptr;
4608 }
4609 
4610 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
4611                                      ArrayRef<unsigned> Idxs,
4612                                      const SimplifyQuery &Q) {
4613   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
4614 }
4615 
4616 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
4617                                        const SimplifyQuery &Q) {
4618   // Try to constant fold.
4619   auto *VecC = dyn_cast<Constant>(Vec);
4620   auto *ValC = dyn_cast<Constant>(Val);
4621   auto *IdxC = dyn_cast<Constant>(Idx);
4622   if (VecC && ValC && IdxC)
4623     return ConstantExpr::getInsertElement(VecC, ValC, IdxC);
4624 
4625   // For fixed-length vector, fold into poison if index is out of bounds.
4626   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
4627     if (isa<FixedVectorType>(Vec->getType()) &&
4628         CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements()))
4629       return PoisonValue::get(Vec->getType());
4630   }
4631 
4632   // If index is undef, it might be out of bounds (see above case)
4633   if (Q.isUndefValue(Idx))
4634     return PoisonValue::get(Vec->getType());
4635 
4636   // If the scalar is poison, or it is undef and there is no risk of
4637   // propagating poison from the vector value, simplify to the vector value.
4638   if (isa<PoisonValue>(Val) ||
4639       (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec)))
4640     return Vec;
4641 
4642   // If we are extracting a value from a vector, then inserting it into the same
4643   // place, that's the input vector:
4644   // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
4645   if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx))))
4646     return Vec;
4647 
4648   return nullptr;
4649 }
4650 
4651 /// Given operands for an ExtractValueInst, see if we can fold the result.
4652 /// If not, this returns null.
4653 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4654                                        const SimplifyQuery &, unsigned) {
4655   if (auto *CAgg = dyn_cast<Constant>(Agg))
4656     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4657 
4658   // extractvalue x, (insertvalue y, elt, n), n -> elt
4659   unsigned NumIdxs = Idxs.size();
4660   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4661        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4662     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4663     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4664     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4665     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4666         Idxs.slice(0, NumCommonIdxs)) {
4667       if (NumIdxs == NumInsertValueIdxs)
4668         return IVI->getInsertedValueOperand();
4669       break;
4670     }
4671   }
4672 
4673   return nullptr;
4674 }
4675 
4676 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4677                                       const SimplifyQuery &Q) {
4678   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4679 }
4680 
4681 /// Given operands for an ExtractElementInst, see if we can fold the result.
4682 /// If not, this returns null.
4683 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx,
4684                                          const SimplifyQuery &Q, unsigned) {
4685   auto *VecVTy = cast<VectorType>(Vec->getType());
4686   if (auto *CVec = dyn_cast<Constant>(Vec)) {
4687     if (auto *CIdx = dyn_cast<Constant>(Idx))
4688       return ConstantExpr::getExtractElement(CVec, CIdx);
4689 
4690     if (Q.isUndefValue(Vec))
4691       return UndefValue::get(VecVTy->getElementType());
4692   }
4693 
4694   // An undef extract index can be arbitrarily chosen to be an out-of-range
4695   // index value, which would result in the instruction being poison.
4696   if (Q.isUndefValue(Idx))
4697     return PoisonValue::get(VecVTy->getElementType());
4698 
4699   // If extracting a specified index from the vector, see if we can recursively
4700   // find a previously computed scalar that was inserted into the vector.
4701   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4702     // For fixed-length vector, fold into undef if index is out of bounds.
4703     unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue();
4704     if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts))
4705       return PoisonValue::get(VecVTy->getElementType());
4706     // Handle case where an element is extracted from a splat.
4707     if (IdxC->getValue().ult(MinNumElts))
4708       if (auto *Splat = getSplatValue(Vec))
4709         return Splat;
4710     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4711       return Elt;
4712   } else {
4713     // The index is not relevant if our vector is a splat.
4714     if (Value *Splat = getSplatValue(Vec))
4715       return Splat;
4716   }
4717   return nullptr;
4718 }
4719 
4720 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4721                                         const SimplifyQuery &Q) {
4722   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4723 }
4724 
4725 /// See if we can fold the given phi. If not, returns null.
4726 static Value *SimplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues,
4727                               const SimplifyQuery &Q) {
4728   // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE
4729   //          here, because the PHI we may succeed simplifying to was not
4730   //          def-reachable from the original PHI!
4731 
4732   // If all of the PHI's incoming values are the same then replace the PHI node
4733   // with the common value.
4734   Value *CommonValue = nullptr;
4735   bool HasUndefInput = false;
4736   for (Value *Incoming : IncomingValues) {
4737     // If the incoming value is the phi node itself, it can safely be skipped.
4738     if (Incoming == PN) continue;
4739     if (Q.isUndefValue(Incoming)) {
4740       // Remember that we saw an undef value, but otherwise ignore them.
4741       HasUndefInput = true;
4742       continue;
4743     }
4744     if (CommonValue && Incoming != CommonValue)
4745       return nullptr;  // Not the same, bail out.
4746     CommonValue = Incoming;
4747   }
4748 
4749   // If CommonValue is null then all of the incoming values were either undef or
4750   // equal to the phi node itself.
4751   if (!CommonValue)
4752     return UndefValue::get(PN->getType());
4753 
4754   // If we have a PHI node like phi(X, undef, X), where X is defined by some
4755   // instruction, we cannot return X as the result of the PHI node unless it
4756   // dominates the PHI block.
4757   if (HasUndefInput)
4758     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4759 
4760   return CommonValue;
4761 }
4762 
4763 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4764                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4765   if (auto *C = dyn_cast<Constant>(Op))
4766     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4767 
4768   if (auto *CI = dyn_cast<CastInst>(Op)) {
4769     auto *Src = CI->getOperand(0);
4770     Type *SrcTy = Src->getType();
4771     Type *MidTy = CI->getType();
4772     Type *DstTy = Ty;
4773     if (Src->getType() == Ty) {
4774       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4775       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4776       Type *SrcIntPtrTy =
4777           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4778       Type *MidIntPtrTy =
4779           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4780       Type *DstIntPtrTy =
4781           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4782       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4783                                          SrcIntPtrTy, MidIntPtrTy,
4784                                          DstIntPtrTy) == Instruction::BitCast)
4785         return Src;
4786     }
4787   }
4788 
4789   // bitcast x -> x
4790   if (CastOpc == Instruction::BitCast)
4791     if (Op->getType() == Ty)
4792       return Op;
4793 
4794   return nullptr;
4795 }
4796 
4797 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4798                               const SimplifyQuery &Q) {
4799   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4800 }
4801 
4802 /// For the given destination element of a shuffle, peek through shuffles to
4803 /// match a root vector source operand that contains that element in the same
4804 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4805 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4806                                    int MaskVal, Value *RootVec,
4807                                    unsigned MaxRecurse) {
4808   if (!MaxRecurse--)
4809     return nullptr;
4810 
4811   // Bail out if any mask value is undefined. That kind of shuffle may be
4812   // simplified further based on demanded bits or other folds.
4813   if (MaskVal == -1)
4814     return nullptr;
4815 
4816   // The mask value chooses which source operand we need to look at next.
4817   int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements();
4818   int RootElt = MaskVal;
4819   Value *SourceOp = Op0;
4820   if (MaskVal >= InVecNumElts) {
4821     RootElt = MaskVal - InVecNumElts;
4822     SourceOp = Op1;
4823   }
4824 
4825   // If the source operand is a shuffle itself, look through it to find the
4826   // matching root vector.
4827   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4828     return foldIdentityShuffles(
4829         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4830         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4831   }
4832 
4833   // TODO: Look through bitcasts? What if the bitcast changes the vector element
4834   // size?
4835 
4836   // The source operand is not a shuffle. Initialize the root vector value for
4837   // this shuffle if that has not been done yet.
4838   if (!RootVec)
4839     RootVec = SourceOp;
4840 
4841   // Give up as soon as a source operand does not match the existing root value.
4842   if (RootVec != SourceOp)
4843     return nullptr;
4844 
4845   // The element must be coming from the same lane in the source vector
4846   // (although it may have crossed lanes in intermediate shuffles).
4847   if (RootElt != DestElt)
4848     return nullptr;
4849 
4850   return RootVec;
4851 }
4852 
4853 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4854                                         ArrayRef<int> Mask, Type *RetTy,
4855                                         const SimplifyQuery &Q,
4856                                         unsigned MaxRecurse) {
4857   if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; }))
4858     return UndefValue::get(RetTy);
4859 
4860   auto *InVecTy = cast<VectorType>(Op0->getType());
4861   unsigned MaskNumElts = Mask.size();
4862   ElementCount InVecEltCount = InVecTy->getElementCount();
4863 
4864   bool Scalable = InVecEltCount.isScalable();
4865 
4866   SmallVector<int, 32> Indices;
4867   Indices.assign(Mask.begin(), Mask.end());
4868 
4869   // Canonicalization: If mask does not select elements from an input vector,
4870   // replace that input vector with poison.
4871   if (!Scalable) {
4872     bool MaskSelects0 = false, MaskSelects1 = false;
4873     unsigned InVecNumElts = InVecEltCount.getKnownMinValue();
4874     for (unsigned i = 0; i != MaskNumElts; ++i) {
4875       if (Indices[i] == -1)
4876         continue;
4877       if ((unsigned)Indices[i] < InVecNumElts)
4878         MaskSelects0 = true;
4879       else
4880         MaskSelects1 = true;
4881     }
4882     if (!MaskSelects0)
4883       Op0 = PoisonValue::get(InVecTy);
4884     if (!MaskSelects1)
4885       Op1 = PoisonValue::get(InVecTy);
4886   }
4887 
4888   auto *Op0Const = dyn_cast<Constant>(Op0);
4889   auto *Op1Const = dyn_cast<Constant>(Op1);
4890 
4891   // If all operands are constant, constant fold the shuffle. This
4892   // transformation depends on the value of the mask which is not known at
4893   // compile time for scalable vectors
4894   if (Op0Const && Op1Const)
4895     return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask);
4896 
4897   // Canonicalization: if only one input vector is constant, it shall be the
4898   // second one. This transformation depends on the value of the mask which
4899   // is not known at compile time for scalable vectors
4900   if (!Scalable && Op0Const && !Op1Const) {
4901     std::swap(Op0, Op1);
4902     ShuffleVectorInst::commuteShuffleMask(Indices,
4903                                           InVecEltCount.getKnownMinValue());
4904   }
4905 
4906   // A splat of an inserted scalar constant becomes a vector constant:
4907   // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
4908   // NOTE: We may have commuted above, so analyze the updated Indices, not the
4909   //       original mask constant.
4910   // NOTE: This transformation depends on the value of the mask which is not
4911   // known at compile time for scalable vectors
4912   Constant *C;
4913   ConstantInt *IndexC;
4914   if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C),
4915                                           m_ConstantInt(IndexC)))) {
4916     // Match a splat shuffle mask of the insert index allowing undef elements.
4917     int InsertIndex = IndexC->getZExtValue();
4918     if (all_of(Indices, [InsertIndex](int MaskElt) {
4919           return MaskElt == InsertIndex || MaskElt == -1;
4920         })) {
4921       assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat");
4922 
4923       // Shuffle mask undefs become undefined constant result elements.
4924       SmallVector<Constant *, 16> VecC(MaskNumElts, C);
4925       for (unsigned i = 0; i != MaskNumElts; ++i)
4926         if (Indices[i] == -1)
4927           VecC[i] = UndefValue::get(C->getType());
4928       return ConstantVector::get(VecC);
4929     }
4930   }
4931 
4932   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4933   // value type is same as the input vectors' type.
4934   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4935     if (Q.isUndefValue(Op1) && RetTy == InVecTy &&
4936         is_splat(OpShuf->getShuffleMask()))
4937       return Op0;
4938 
4939   // All remaining transformation depend on the value of the mask, which is
4940   // not known at compile time for scalable vectors.
4941   if (Scalable)
4942     return nullptr;
4943 
4944   // Don't fold a shuffle with undef mask elements. This may get folded in a
4945   // better way using demanded bits or other analysis.
4946   // TODO: Should we allow this?
4947   if (is_contained(Indices, -1))
4948     return nullptr;
4949 
4950   // Check if every element of this shuffle can be mapped back to the
4951   // corresponding element of a single root vector. If so, we don't need this
4952   // shuffle. This handles simple identity shuffles as well as chains of
4953   // shuffles that may widen/narrow and/or move elements across lanes and back.
4954   Value *RootVec = nullptr;
4955   for (unsigned i = 0; i != MaskNumElts; ++i) {
4956     // Note that recursion is limited for each vector element, so if any element
4957     // exceeds the limit, this will fail to simplify.
4958     RootVec =
4959         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4960 
4961     // We can't replace a widening/narrowing shuffle with one of its operands.
4962     if (!RootVec || RootVec->getType() != RetTy)
4963       return nullptr;
4964   }
4965   return RootVec;
4966 }
4967 
4968 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4969 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4970                                        ArrayRef<int> Mask, Type *RetTy,
4971                                        const SimplifyQuery &Q) {
4972   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4973 }
4974 
4975 static Constant *foldConstant(Instruction::UnaryOps Opcode,
4976                               Value *&Op, const SimplifyQuery &Q) {
4977   if (auto *C = dyn_cast<Constant>(Op))
4978     return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
4979   return nullptr;
4980 }
4981 
4982 /// Given the operand for an FNeg, see if we can fold the result.  If not, this
4983 /// returns null.
4984 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
4985                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4986   if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
4987     return C;
4988 
4989   Value *X;
4990   // fneg (fneg X) ==> X
4991   if (match(Op, m_FNeg(m_Value(X))))
4992     return X;
4993 
4994   return nullptr;
4995 }
4996 
4997 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
4998                               const SimplifyQuery &Q) {
4999   return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
5000 }
5001 
5002 static Constant *propagateNaN(Constant *In) {
5003   // If the input is a vector with undef elements, just return a default NaN.
5004   if (!In->isNaN())
5005     return ConstantFP::getNaN(In->getType());
5006 
5007   // Propagate the existing NaN constant when possible.
5008   // TODO: Should we quiet a signaling NaN?
5009   return In;
5010 }
5011 
5012 /// Perform folds that are common to any floating-point operation. This implies
5013 /// transforms based on poison/undef/NaN because the operation itself makes no
5014 /// difference to the result.
5015 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF,
5016                               const SimplifyQuery &Q,
5017                               fp::ExceptionBehavior ExBehavior,
5018                               RoundingMode Rounding) {
5019   // Poison is independent of anything else. It always propagates from an
5020   // operand to a math result.
5021   if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); }))
5022     return PoisonValue::get(Ops[0]->getType());
5023 
5024   for (Value *V : Ops) {
5025     bool IsNan = match(V, m_NaN());
5026     bool IsInf = match(V, m_Inf());
5027     bool IsUndef = Q.isUndefValue(V);
5028 
5029     // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
5030     // (an undef operand can be chosen to be Nan/Inf), then the result of
5031     // this operation is poison.
5032     if (FMF.noNaNs() && (IsNan || IsUndef))
5033       return PoisonValue::get(V->getType());
5034     if (FMF.noInfs() && (IsInf || IsUndef))
5035       return PoisonValue::get(V->getType());
5036 
5037     if (isDefaultFPEnvironment(ExBehavior, Rounding)) {
5038       if (IsUndef || IsNan)
5039         return propagateNaN(cast<Constant>(V));
5040     } else if (ExBehavior != fp::ebStrict) {
5041       if (IsNan)
5042         return propagateNaN(cast<Constant>(V));
5043     }
5044   }
5045   return nullptr;
5046 }
5047 
5048 // TODO: Move this out to a header file:
5049 static inline bool canIgnoreSNaN(fp::ExceptionBehavior EB, FastMathFlags FMF) {
5050   return (EB == fp::ebIgnore || FMF.noNaNs());
5051 }
5052 
5053 /// Given operands for an FAdd, see if we can fold the result.  If not, this
5054 /// returns null.
5055 static Value *
5056 SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5057                  const SimplifyQuery &Q, unsigned MaxRecurse,
5058                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5059                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5060   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5061     if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
5062       return C;
5063 
5064   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5065     return C;
5066 
5067   // fadd X, -0 ==> X
5068   // With strict/constrained FP, we have these possible edge cases that do
5069   // not simplify to Op0:
5070   // fadd SNaN, -0.0 --> QNaN
5071   // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative)
5072   if (canIgnoreSNaN(ExBehavior, FMF) &&
5073       (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) ||
5074        FMF.noSignedZeros()))
5075     if (match(Op1, m_NegZeroFP()))
5076       return Op0;
5077 
5078   // fadd X, 0 ==> X, when we know X is not -0
5079   if (canIgnoreSNaN(ExBehavior, FMF))
5080     if (match(Op1, m_PosZeroFP()) &&
5081         (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
5082       return Op0;
5083 
5084   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5085     return nullptr;
5086 
5087   // With nnan: -X + X --> 0.0 (and commuted variant)
5088   // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
5089   // Negative zeros are allowed because we always end up with positive zero:
5090   // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
5091   // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
5092   // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
5093   // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
5094   if (FMF.noNaNs()) {
5095     if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
5096         match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
5097       return ConstantFP::getNullValue(Op0->getType());
5098 
5099     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5100         match(Op1, m_FNeg(m_Specific(Op0))))
5101       return ConstantFP::getNullValue(Op0->getType());
5102   }
5103 
5104   // (X - Y) + Y --> X
5105   // Y + (X - Y) --> X
5106   Value *X;
5107   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5108       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
5109        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
5110     return X;
5111 
5112   return nullptr;
5113 }
5114 
5115 /// Given operands for an FSub, see if we can fold the result.  If not, this
5116 /// returns null.
5117 static Value *
5118 SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5119                  const SimplifyQuery &Q, unsigned MaxRecurse,
5120                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5121                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5122   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5123     if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
5124       return C;
5125 
5126   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5127     return C;
5128 
5129   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5130     return nullptr;
5131 
5132   // fsub X, +0 ==> X
5133   if (match(Op1, m_PosZeroFP()))
5134     return Op0;
5135 
5136   // fsub X, -0 ==> X, when we know X is not -0
5137   if (match(Op1, m_NegZeroFP()) &&
5138       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
5139     return Op0;
5140 
5141   // fsub -0.0, (fsub -0.0, X) ==> X
5142   // fsub -0.0, (fneg X) ==> X
5143   Value *X;
5144   if (match(Op0, m_NegZeroFP()) &&
5145       match(Op1, m_FNeg(m_Value(X))))
5146     return X;
5147 
5148   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
5149   // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
5150   if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
5151       (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
5152        match(Op1, m_FNeg(m_Value(X)))))
5153     return X;
5154 
5155   // fsub nnan x, x ==> 0.0
5156   if (FMF.noNaNs() && Op0 == Op1)
5157     return Constant::getNullValue(Op0->getType());
5158 
5159   // Y - (Y - X) --> X
5160   // (X + Y) - Y --> X
5161   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5162       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
5163        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
5164     return X;
5165 
5166   return nullptr;
5167 }
5168 
5169 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5170                               const SimplifyQuery &Q, unsigned MaxRecurse,
5171                               fp::ExceptionBehavior ExBehavior,
5172                               RoundingMode Rounding) {
5173   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5174     return C;
5175 
5176   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5177     return nullptr;
5178 
5179   // fmul X, 1.0 ==> X
5180   if (match(Op1, m_FPOne()))
5181     return Op0;
5182 
5183   // fmul 1.0, X ==> X
5184   if (match(Op0, m_FPOne()))
5185     return Op1;
5186 
5187   // fmul nnan nsz X, 0 ==> 0
5188   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
5189     return ConstantFP::getNullValue(Op0->getType());
5190 
5191   // fmul nnan nsz 0, X ==> 0
5192   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5193     return ConstantFP::getNullValue(Op1->getType());
5194 
5195   // sqrt(X) * sqrt(X) --> X, if we can:
5196   // 1. Remove the intermediate rounding (reassociate).
5197   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
5198   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
5199   Value *X;
5200   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
5201       FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
5202     return X;
5203 
5204   return nullptr;
5205 }
5206 
5207 /// Given the operands for an FMul, see if we can fold the result
5208 static Value *
5209 SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5210                  const SimplifyQuery &Q, unsigned MaxRecurse,
5211                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5212                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5213   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5214     if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
5215       return C;
5216 
5217   // Now apply simplifications that do not require rounding.
5218   return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding);
5219 }
5220 
5221 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5222                               const SimplifyQuery &Q,
5223                               fp::ExceptionBehavior ExBehavior,
5224                               RoundingMode Rounding) {
5225   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5226                             Rounding);
5227 }
5228 
5229 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5230                               const SimplifyQuery &Q,
5231                               fp::ExceptionBehavior ExBehavior,
5232                               RoundingMode Rounding) {
5233   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5234                             Rounding);
5235 }
5236 
5237 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5238                               const SimplifyQuery &Q,
5239                               fp::ExceptionBehavior ExBehavior,
5240                               RoundingMode Rounding) {
5241   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5242                             Rounding);
5243 }
5244 
5245 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5246                              const SimplifyQuery &Q,
5247                              fp::ExceptionBehavior ExBehavior,
5248                              RoundingMode Rounding) {
5249   return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5250                            Rounding);
5251 }
5252 
5253 static Value *
5254 SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5255                  const SimplifyQuery &Q, unsigned,
5256                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5257                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5258   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5259     if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
5260       return C;
5261 
5262   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5263     return C;
5264 
5265   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5266     return nullptr;
5267 
5268   // X / 1.0 -> X
5269   if (match(Op1, m_FPOne()))
5270     return Op0;
5271 
5272   // 0 / X -> 0
5273   // Requires that NaNs are off (X could be zero) and signed zeroes are
5274   // ignored (X could be positive or negative, so the output sign is unknown).
5275   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5276     return ConstantFP::getNullValue(Op0->getType());
5277 
5278   if (FMF.noNaNs()) {
5279     // X / X -> 1.0 is legal when NaNs are ignored.
5280     // We can ignore infinities because INF/INF is NaN.
5281     if (Op0 == Op1)
5282       return ConstantFP::get(Op0->getType(), 1.0);
5283 
5284     // (X * Y) / Y --> X if we can reassociate to the above form.
5285     Value *X;
5286     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
5287       return X;
5288 
5289     // -X /  X -> -1.0 and
5290     //  X / -X -> -1.0 are legal when NaNs are ignored.
5291     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
5292     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
5293         match(Op1, m_FNegNSZ(m_Specific(Op0))))
5294       return ConstantFP::get(Op0->getType(), -1.0);
5295   }
5296 
5297   return nullptr;
5298 }
5299 
5300 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5301                               const SimplifyQuery &Q,
5302                               fp::ExceptionBehavior ExBehavior,
5303                               RoundingMode Rounding) {
5304   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5305                             Rounding);
5306 }
5307 
5308 static Value *
5309 SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5310                  const SimplifyQuery &Q, unsigned,
5311                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5312                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5313   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5314     if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
5315       return C;
5316 
5317   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5318     return C;
5319 
5320   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5321     return nullptr;
5322 
5323   // Unlike fdiv, the result of frem always matches the sign of the dividend.
5324   // The constant match may include undef elements in a vector, so return a full
5325   // zero constant as the result.
5326   if (FMF.noNaNs()) {
5327     // +0 % X -> 0
5328     if (match(Op0, m_PosZeroFP()))
5329       return ConstantFP::getNullValue(Op0->getType());
5330     // -0 % X -> -0
5331     if (match(Op0, m_NegZeroFP()))
5332       return ConstantFP::getNegativeZero(Op0->getType());
5333   }
5334 
5335   return nullptr;
5336 }
5337 
5338 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5339                               const SimplifyQuery &Q,
5340                               fp::ExceptionBehavior ExBehavior,
5341                               RoundingMode Rounding) {
5342   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5343                             Rounding);
5344 }
5345 
5346 //=== Helper functions for higher up the class hierarchy.
5347 
5348 /// Given the operand for a UnaryOperator, see if we can fold the result.
5349 /// If not, this returns null.
5350 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
5351                            unsigned MaxRecurse) {
5352   switch (Opcode) {
5353   case Instruction::FNeg:
5354     return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
5355   default:
5356     llvm_unreachable("Unexpected opcode");
5357   }
5358 }
5359 
5360 /// Given the operand for a UnaryOperator, see if we can fold the result.
5361 /// If not, this returns null.
5362 /// Try to use FastMathFlags when folding the result.
5363 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
5364                              const FastMathFlags &FMF,
5365                              const SimplifyQuery &Q, unsigned MaxRecurse) {
5366   switch (Opcode) {
5367   case Instruction::FNeg:
5368     return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
5369   default:
5370     return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
5371   }
5372 }
5373 
5374 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
5375   return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
5376 }
5377 
5378 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
5379                           const SimplifyQuery &Q) {
5380   return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
5381 }
5382 
5383 /// Given operands for a BinaryOperator, see if we can fold the result.
5384 /// If not, this returns null.
5385 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5386                             const SimplifyQuery &Q, unsigned MaxRecurse) {
5387   switch (Opcode) {
5388   case Instruction::Add:
5389     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
5390   case Instruction::Sub:
5391     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
5392   case Instruction::Mul:
5393     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
5394   case Instruction::SDiv:
5395     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
5396   case Instruction::UDiv:
5397     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
5398   case Instruction::SRem:
5399     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
5400   case Instruction::URem:
5401     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
5402   case Instruction::Shl:
5403     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
5404   case Instruction::LShr:
5405     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
5406   case Instruction::AShr:
5407     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
5408   case Instruction::And:
5409     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
5410   case Instruction::Or:
5411     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
5412   case Instruction::Xor:
5413     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
5414   case Instruction::FAdd:
5415     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5416   case Instruction::FSub:
5417     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5418   case Instruction::FMul:
5419     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5420   case Instruction::FDiv:
5421     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5422   case Instruction::FRem:
5423     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5424   default:
5425     llvm_unreachable("Unexpected opcode");
5426   }
5427 }
5428 
5429 /// Given operands for a BinaryOperator, see if we can fold the result.
5430 /// If not, this returns null.
5431 /// Try to use FastMathFlags when folding the result.
5432 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5433                             const FastMathFlags &FMF, const SimplifyQuery &Q,
5434                             unsigned MaxRecurse) {
5435   switch (Opcode) {
5436   case Instruction::FAdd:
5437     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
5438   case Instruction::FSub:
5439     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
5440   case Instruction::FMul:
5441     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
5442   case Instruction::FDiv:
5443     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
5444   default:
5445     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
5446   }
5447 }
5448 
5449 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5450                            const SimplifyQuery &Q) {
5451   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
5452 }
5453 
5454 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5455                            FastMathFlags FMF, const SimplifyQuery &Q) {
5456   return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
5457 }
5458 
5459 /// Given operands for a CmpInst, see if we can fold the result.
5460 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5461                               const SimplifyQuery &Q, unsigned MaxRecurse) {
5462   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
5463     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
5464   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5465 }
5466 
5467 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5468                              const SimplifyQuery &Q) {
5469   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
5470 }
5471 
5472 static bool IsIdempotent(Intrinsic::ID ID) {
5473   switch (ID) {
5474   default: return false;
5475 
5476   // Unary idempotent: f(f(x)) = f(x)
5477   case Intrinsic::fabs:
5478   case Intrinsic::floor:
5479   case Intrinsic::ceil:
5480   case Intrinsic::trunc:
5481   case Intrinsic::rint:
5482   case Intrinsic::nearbyint:
5483   case Intrinsic::round:
5484   case Intrinsic::roundeven:
5485   case Intrinsic::canonicalize:
5486     return true;
5487   }
5488 }
5489 
5490 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
5491                                    const DataLayout &DL) {
5492   GlobalValue *PtrSym;
5493   APInt PtrOffset;
5494   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
5495     return nullptr;
5496 
5497   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
5498   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
5499   Type *Int32PtrTy = Int32Ty->getPointerTo();
5500   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
5501 
5502   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
5503   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
5504     return nullptr;
5505 
5506   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
5507   if (OffsetInt % 4 != 0)
5508     return nullptr;
5509 
5510   Constant *C = ConstantExpr::getGetElementPtr(
5511       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
5512       ConstantInt::get(Int64Ty, OffsetInt / 4));
5513   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
5514   if (!Loaded)
5515     return nullptr;
5516 
5517   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
5518   if (!LoadedCE)
5519     return nullptr;
5520 
5521   if (LoadedCE->getOpcode() == Instruction::Trunc) {
5522     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5523     if (!LoadedCE)
5524       return nullptr;
5525   }
5526 
5527   if (LoadedCE->getOpcode() != Instruction::Sub)
5528     return nullptr;
5529 
5530   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5531   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
5532     return nullptr;
5533   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
5534 
5535   Constant *LoadedRHS = LoadedCE->getOperand(1);
5536   GlobalValue *LoadedRHSSym;
5537   APInt LoadedRHSOffset;
5538   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
5539                                   DL) ||
5540       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
5541     return nullptr;
5542 
5543   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
5544 }
5545 
5546 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
5547                                      const SimplifyQuery &Q) {
5548   // Idempotent functions return the same result when called repeatedly.
5549   Intrinsic::ID IID = F->getIntrinsicID();
5550   if (IsIdempotent(IID))
5551     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
5552       if (II->getIntrinsicID() == IID)
5553         return II;
5554 
5555   Value *X;
5556   switch (IID) {
5557   case Intrinsic::fabs:
5558     if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
5559     break;
5560   case Intrinsic::bswap:
5561     // bswap(bswap(x)) -> x
5562     if (match(Op0, m_BSwap(m_Value(X)))) return X;
5563     break;
5564   case Intrinsic::bitreverse:
5565     // bitreverse(bitreverse(x)) -> x
5566     if (match(Op0, m_BitReverse(m_Value(X)))) return X;
5567     break;
5568   case Intrinsic::ctpop: {
5569     // If everything but the lowest bit is zero, that bit is the pop-count. Ex:
5570     // ctpop(and X, 1) --> and X, 1
5571     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
5572     if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1),
5573                           Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
5574       return Op0;
5575     break;
5576   }
5577   case Intrinsic::exp:
5578     // exp(log(x)) -> x
5579     if (Q.CxtI->hasAllowReassoc() &&
5580         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
5581     break;
5582   case Intrinsic::exp2:
5583     // exp2(log2(x)) -> x
5584     if (Q.CxtI->hasAllowReassoc() &&
5585         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
5586     break;
5587   case Intrinsic::log:
5588     // log(exp(x)) -> x
5589     if (Q.CxtI->hasAllowReassoc() &&
5590         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
5591     break;
5592   case Intrinsic::log2:
5593     // log2(exp2(x)) -> x
5594     if (Q.CxtI->hasAllowReassoc() &&
5595         (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
5596          match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
5597                                                 m_Value(X))))) return X;
5598     break;
5599   case Intrinsic::log10:
5600     // log10(pow(10.0, x)) -> x
5601     if (Q.CxtI->hasAllowReassoc() &&
5602         match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
5603                                                m_Value(X)))) return X;
5604     break;
5605   case Intrinsic::floor:
5606   case Intrinsic::trunc:
5607   case Intrinsic::ceil:
5608   case Intrinsic::round:
5609   case Intrinsic::roundeven:
5610   case Intrinsic::nearbyint:
5611   case Intrinsic::rint: {
5612     // floor (sitofp x) -> sitofp x
5613     // floor (uitofp x) -> uitofp x
5614     //
5615     // Converting from int always results in a finite integral number or
5616     // infinity. For either of those inputs, these rounding functions always
5617     // return the same value, so the rounding can be eliminated.
5618     if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
5619       return Op0;
5620     break;
5621   }
5622   case Intrinsic::experimental_vector_reverse:
5623     // experimental.vector.reverse(experimental.vector.reverse(x)) -> x
5624     if (match(Op0,
5625               m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X))))
5626       return X;
5627     // experimental.vector.reverse(splat(X)) -> splat(X)
5628     if (isSplatValue(Op0))
5629       return Op0;
5630     break;
5631   default:
5632     break;
5633   }
5634 
5635   return nullptr;
5636 }
5637 
5638 /// Given a min/max intrinsic, see if it can be removed based on having an
5639 /// operand that is another min/max intrinsic with shared operand(s). The caller
5640 /// is expected to swap the operand arguments to handle commutation.
5641 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) {
5642   Value *X, *Y;
5643   if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y))))
5644     return nullptr;
5645 
5646   auto *MM0 = dyn_cast<IntrinsicInst>(Op0);
5647   if (!MM0)
5648     return nullptr;
5649   Intrinsic::ID IID0 = MM0->getIntrinsicID();
5650 
5651   if (Op1 == X || Op1 == Y ||
5652       match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) {
5653     // max (max X, Y), X --> max X, Y
5654     if (IID0 == IID)
5655       return MM0;
5656     // max (min X, Y), X --> X
5657     if (IID0 == getInverseMinMaxIntrinsic(IID))
5658       return Op1;
5659   }
5660   return nullptr;
5661 }
5662 
5663 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
5664                                       const SimplifyQuery &Q) {
5665   Intrinsic::ID IID = F->getIntrinsicID();
5666   Type *ReturnType = F->getReturnType();
5667   unsigned BitWidth = ReturnType->getScalarSizeInBits();
5668   switch (IID) {
5669   case Intrinsic::abs:
5670     // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here.
5671     // It is always ok to pick the earlier abs. We'll just lose nsw if its only
5672     // on the outer abs.
5673     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value())))
5674       return Op0;
5675     break;
5676 
5677   case Intrinsic::cttz: {
5678     Value *X;
5679     if (match(Op0, m_Shl(m_One(), m_Value(X))))
5680       return X;
5681     break;
5682   }
5683   case Intrinsic::ctlz: {
5684     Value *X;
5685     if (match(Op0, m_LShr(m_Negative(), m_Value(X))))
5686       return X;
5687     if (match(Op0, m_AShr(m_Negative(), m_Value())))
5688       return Constant::getNullValue(ReturnType);
5689     break;
5690   }
5691   case Intrinsic::smax:
5692   case Intrinsic::smin:
5693   case Intrinsic::umax:
5694   case Intrinsic::umin: {
5695     // If the arguments are the same, this is a no-op.
5696     if (Op0 == Op1)
5697       return Op0;
5698 
5699     // Canonicalize constant operand as Op1.
5700     if (isa<Constant>(Op0))
5701       std::swap(Op0, Op1);
5702 
5703     // Assume undef is the limit value.
5704     if (Q.isUndefValue(Op1))
5705       return ConstantInt::get(
5706           ReturnType, MinMaxIntrinsic::getSaturationPoint(IID, BitWidth));
5707 
5708     const APInt *C;
5709     if (match(Op1, m_APIntAllowUndef(C))) {
5710       // Clamp to limit value. For example:
5711       // umax(i8 %x, i8 255) --> 255
5712       if (*C == MinMaxIntrinsic::getSaturationPoint(IID, BitWidth))
5713         return ConstantInt::get(ReturnType, *C);
5714 
5715       // If the constant op is the opposite of the limit value, the other must
5716       // be larger/smaller or equal. For example:
5717       // umin(i8 %x, i8 255) --> %x
5718       if (*C == MinMaxIntrinsic::getSaturationPoint(
5719                     getInverseMinMaxIntrinsic(IID), BitWidth))
5720         return Op0;
5721 
5722       // Remove nested call if constant operands allow it. Example:
5723       // max (max X, 7), 5 -> max X, 7
5724       auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0);
5725       if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
5726         // TODO: loosen undef/splat restrictions for vector constants.
5727         Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
5728         const APInt *InnerC;
5729         if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) &&
5730             ICmpInst::compare(*InnerC, *C,
5731                               ICmpInst::getNonStrictPredicate(
5732                                   MinMaxIntrinsic::getPredicate(IID))))
5733           return Op0;
5734       }
5735     }
5736 
5737     if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1))
5738       return V;
5739     if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0))
5740       return V;
5741 
5742     ICmpInst::Predicate Pred =
5743         ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID));
5744     if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit))
5745       return Op0;
5746     if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit))
5747       return Op1;
5748 
5749     if (Optional<bool> Imp =
5750             isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL))
5751       return *Imp ? Op0 : Op1;
5752     if (Optional<bool> Imp =
5753             isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL))
5754       return *Imp ? Op1 : Op0;
5755 
5756     break;
5757   }
5758   case Intrinsic::usub_with_overflow:
5759   case Intrinsic::ssub_with_overflow:
5760     // X - X -> { 0, false }
5761     // X - undef -> { 0, false }
5762     // undef - X -> { 0, false }
5763     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5764       return Constant::getNullValue(ReturnType);
5765     break;
5766   case Intrinsic::uadd_with_overflow:
5767   case Intrinsic::sadd_with_overflow:
5768     // X + undef -> { -1, false }
5769     // undef + x -> { -1, false }
5770     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) {
5771       return ConstantStruct::get(
5772           cast<StructType>(ReturnType),
5773           {Constant::getAllOnesValue(ReturnType->getStructElementType(0)),
5774            Constant::getNullValue(ReturnType->getStructElementType(1))});
5775     }
5776     break;
5777   case Intrinsic::umul_with_overflow:
5778   case Intrinsic::smul_with_overflow:
5779     // 0 * X -> { 0, false }
5780     // X * 0 -> { 0, false }
5781     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
5782       return Constant::getNullValue(ReturnType);
5783     // undef * X -> { 0, false }
5784     // X * undef -> { 0, false }
5785     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5786       return Constant::getNullValue(ReturnType);
5787     break;
5788   case Intrinsic::uadd_sat:
5789     // sat(MAX + X) -> MAX
5790     // sat(X + MAX) -> MAX
5791     if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
5792       return Constant::getAllOnesValue(ReturnType);
5793     LLVM_FALLTHROUGH;
5794   case Intrinsic::sadd_sat:
5795     // sat(X + undef) -> -1
5796     // sat(undef + X) -> -1
5797     // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
5798     // For signed: Assume undef is ~X, in which case X + ~X = -1.
5799     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5800       return Constant::getAllOnesValue(ReturnType);
5801 
5802     // X + 0 -> X
5803     if (match(Op1, m_Zero()))
5804       return Op0;
5805     // 0 + X -> X
5806     if (match(Op0, m_Zero()))
5807       return Op1;
5808     break;
5809   case Intrinsic::usub_sat:
5810     // sat(0 - X) -> 0, sat(X - MAX) -> 0
5811     if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
5812       return Constant::getNullValue(ReturnType);
5813     LLVM_FALLTHROUGH;
5814   case Intrinsic::ssub_sat:
5815     // X - X -> 0, X - undef -> 0, undef - X -> 0
5816     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5817       return Constant::getNullValue(ReturnType);
5818     // X - 0 -> X
5819     if (match(Op1, m_Zero()))
5820       return Op0;
5821     break;
5822   case Intrinsic::load_relative:
5823     if (auto *C0 = dyn_cast<Constant>(Op0))
5824       if (auto *C1 = dyn_cast<Constant>(Op1))
5825         return SimplifyRelativeLoad(C0, C1, Q.DL);
5826     break;
5827   case Intrinsic::powi:
5828     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
5829       // powi(x, 0) -> 1.0
5830       if (Power->isZero())
5831         return ConstantFP::get(Op0->getType(), 1.0);
5832       // powi(x, 1) -> x
5833       if (Power->isOne())
5834         return Op0;
5835     }
5836     break;
5837   case Intrinsic::copysign:
5838     // copysign X, X --> X
5839     if (Op0 == Op1)
5840       return Op0;
5841     // copysign -X, X --> X
5842     // copysign X, -X --> -X
5843     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5844         match(Op1, m_FNeg(m_Specific(Op0))))
5845       return Op1;
5846     break;
5847   case Intrinsic::maxnum:
5848   case Intrinsic::minnum:
5849   case Intrinsic::maximum:
5850   case Intrinsic::minimum: {
5851     // If the arguments are the same, this is a no-op.
5852     if (Op0 == Op1) return Op0;
5853 
5854     // Canonicalize constant operand as Op1.
5855     if (isa<Constant>(Op0))
5856       std::swap(Op0, Op1);
5857 
5858     // If an argument is undef, return the other argument.
5859     if (Q.isUndefValue(Op1))
5860       return Op0;
5861 
5862     bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
5863     bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum;
5864 
5865     // minnum(X, nan) -> X
5866     // maxnum(X, nan) -> X
5867     // minimum(X, nan) -> nan
5868     // maximum(X, nan) -> nan
5869     if (match(Op1, m_NaN()))
5870       return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0;
5871 
5872     // In the following folds, inf can be replaced with the largest finite
5873     // float, if the ninf flag is set.
5874     const APFloat *C;
5875     if (match(Op1, m_APFloat(C)) &&
5876         (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) {
5877       // minnum(X, -inf) -> -inf
5878       // maxnum(X, +inf) -> +inf
5879       // minimum(X, -inf) -> -inf if nnan
5880       // maximum(X, +inf) -> +inf if nnan
5881       if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs()))
5882         return ConstantFP::get(ReturnType, *C);
5883 
5884       // minnum(X, +inf) -> X if nnan
5885       // maxnum(X, -inf) -> X if nnan
5886       // minimum(X, +inf) -> X
5887       // maximum(X, -inf) -> X
5888       if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs()))
5889         return Op0;
5890     }
5891 
5892     // Min/max of the same operation with common operand:
5893     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
5894     if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
5895       if (M0->getIntrinsicID() == IID &&
5896           (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
5897         return Op0;
5898     if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
5899       if (M1->getIntrinsicID() == IID &&
5900           (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
5901         return Op1;
5902 
5903     break;
5904   }
5905   case Intrinsic::experimental_vector_extract: {
5906     Type *ReturnType = F->getReturnType();
5907 
5908     // (extract_vector (insert_vector _, X, 0), 0) -> X
5909     unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue();
5910     Value *X = nullptr;
5911     if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>(
5912                        m_Value(), m_Value(X), m_Zero())) &&
5913         IdxN == 0 && X->getType() == ReturnType)
5914       return X;
5915 
5916     break;
5917   }
5918   default:
5919     break;
5920   }
5921 
5922   return nullptr;
5923 }
5924 
5925 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
5926 
5927   unsigned NumOperands = Call->arg_size();
5928   Function *F = cast<Function>(Call->getCalledFunction());
5929   Intrinsic::ID IID = F->getIntrinsicID();
5930 
5931   // Most of the intrinsics with no operands have some kind of side effect.
5932   // Don't simplify.
5933   if (!NumOperands) {
5934     switch (IID) {
5935     case Intrinsic::vscale: {
5936       // Call may not be inserted into the IR yet at point of calling simplify.
5937       if (!Call->getParent() || !Call->getParent()->getParent())
5938         return nullptr;
5939       auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange);
5940       if (!Attr.isValid())
5941         return nullptr;
5942       unsigned VScaleMin = Attr.getVScaleRangeMin();
5943       Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax();
5944       if (VScaleMax && VScaleMin == VScaleMax)
5945         return ConstantInt::get(F->getReturnType(), VScaleMin);
5946       return nullptr;
5947     }
5948     default:
5949       return nullptr;
5950     }
5951   }
5952 
5953   if (NumOperands == 1)
5954     return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
5955 
5956   if (NumOperands == 2)
5957     return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
5958                                    Call->getArgOperand(1), Q);
5959 
5960   // Handle intrinsics with 3 or more arguments.
5961   switch (IID) {
5962   case Intrinsic::masked_load:
5963   case Intrinsic::masked_gather: {
5964     Value *MaskArg = Call->getArgOperand(2);
5965     Value *PassthruArg = Call->getArgOperand(3);
5966     // If the mask is all zeros or undef, the "passthru" argument is the result.
5967     if (maskIsAllZeroOrUndef(MaskArg))
5968       return PassthruArg;
5969     return nullptr;
5970   }
5971   case Intrinsic::fshl:
5972   case Intrinsic::fshr: {
5973     Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
5974           *ShAmtArg = Call->getArgOperand(2);
5975 
5976     // If both operands are undef, the result is undef.
5977     if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1))
5978       return UndefValue::get(F->getReturnType());
5979 
5980     // If shift amount is undef, assume it is zero.
5981     if (Q.isUndefValue(ShAmtArg))
5982       return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5983 
5984     const APInt *ShAmtC;
5985     if (match(ShAmtArg, m_APInt(ShAmtC))) {
5986       // If there's effectively no shift, return the 1st arg or 2nd arg.
5987       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
5988       if (ShAmtC->urem(BitWidth).isZero())
5989         return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5990     }
5991 
5992     // Rotating zero by anything is zero.
5993     if (match(Op0, m_Zero()) && match(Op1, m_Zero()))
5994       return ConstantInt::getNullValue(F->getReturnType());
5995 
5996     // Rotating -1 by anything is -1.
5997     if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes()))
5998       return ConstantInt::getAllOnesValue(F->getReturnType());
5999 
6000     return nullptr;
6001   }
6002   case Intrinsic::experimental_constrained_fma: {
6003     Value *Op0 = Call->getArgOperand(0);
6004     Value *Op1 = Call->getArgOperand(1);
6005     Value *Op2 = Call->getArgOperand(2);
6006     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6007     if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q,
6008                                 FPI->getExceptionBehavior().getValue(),
6009                                 FPI->getRoundingMode().getValue()))
6010       return V;
6011     return nullptr;
6012   }
6013   case Intrinsic::fma:
6014   case Intrinsic::fmuladd: {
6015     Value *Op0 = Call->getArgOperand(0);
6016     Value *Op1 = Call->getArgOperand(1);
6017     Value *Op2 = Call->getArgOperand(2);
6018     if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore,
6019                                 RoundingMode::NearestTiesToEven))
6020       return V;
6021     return nullptr;
6022   }
6023   case Intrinsic::smul_fix:
6024   case Intrinsic::smul_fix_sat: {
6025     Value *Op0 = Call->getArgOperand(0);
6026     Value *Op1 = Call->getArgOperand(1);
6027     Value *Op2 = Call->getArgOperand(2);
6028     Type *ReturnType = F->getReturnType();
6029 
6030     // Canonicalize constant operand as Op1 (ConstantFolding handles the case
6031     // when both Op0 and Op1 are constant so we do not care about that special
6032     // case here).
6033     if (isa<Constant>(Op0))
6034       std::swap(Op0, Op1);
6035 
6036     // X * 0 -> 0
6037     if (match(Op1, m_Zero()))
6038       return Constant::getNullValue(ReturnType);
6039 
6040     // X * undef -> 0
6041     if (Q.isUndefValue(Op1))
6042       return Constant::getNullValue(ReturnType);
6043 
6044     // X * (1 << Scale) -> X
6045     APInt ScaledOne =
6046         APInt::getOneBitSet(ReturnType->getScalarSizeInBits(),
6047                             cast<ConstantInt>(Op2)->getZExtValue());
6048     if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne)))
6049       return Op0;
6050 
6051     return nullptr;
6052   }
6053   case Intrinsic::experimental_vector_insert: {
6054     Value *Vec = Call->getArgOperand(0);
6055     Value *SubVec = Call->getArgOperand(1);
6056     Value *Idx = Call->getArgOperand(2);
6057     Type *ReturnType = F->getReturnType();
6058 
6059     // (insert_vector Y, (extract_vector X, 0), 0) -> X
6060     // where: Y is X, or Y is undef
6061     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
6062     Value *X = nullptr;
6063     if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>(
6064                           m_Value(X), m_Zero())) &&
6065         (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 &&
6066         X->getType() == ReturnType)
6067       return X;
6068 
6069     return nullptr;
6070   }
6071   case Intrinsic::experimental_constrained_fadd: {
6072     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6073     return SimplifyFAddInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6074                             FPI->getFastMathFlags(), Q,
6075                             FPI->getExceptionBehavior().getValue(),
6076                             FPI->getRoundingMode().getValue());
6077     break;
6078   }
6079   case Intrinsic::experimental_constrained_fsub: {
6080     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6081     return SimplifyFSubInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6082                             FPI->getFastMathFlags(), Q,
6083                             FPI->getExceptionBehavior().getValue(),
6084                             FPI->getRoundingMode().getValue());
6085     break;
6086   }
6087   case Intrinsic::experimental_constrained_fmul: {
6088     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6089     return SimplifyFMulInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6090                             FPI->getFastMathFlags(), Q,
6091                             FPI->getExceptionBehavior().getValue(),
6092                             FPI->getRoundingMode().getValue());
6093     break;
6094   }
6095   case Intrinsic::experimental_constrained_fdiv: {
6096     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6097     return SimplifyFDivInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6098                             FPI->getFastMathFlags(), Q,
6099                             FPI->getExceptionBehavior().getValue(),
6100                             FPI->getRoundingMode().getValue());
6101     break;
6102   }
6103   case Intrinsic::experimental_constrained_frem: {
6104     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6105     return SimplifyFRemInst(FPI->getArgOperand(0), FPI->getArgOperand(1),
6106                             FPI->getFastMathFlags(), Q,
6107                             FPI->getExceptionBehavior().getValue(),
6108                             FPI->getRoundingMode().getValue());
6109     break;
6110   }
6111   default:
6112     return nullptr;
6113   }
6114 }
6115 
6116 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) {
6117   auto *F = dyn_cast<Function>(Call->getCalledOperand());
6118   if (!F || !canConstantFoldCallTo(Call, F))
6119     return nullptr;
6120 
6121   SmallVector<Constant *, 4> ConstantArgs;
6122   unsigned NumArgs = Call->arg_size();
6123   ConstantArgs.reserve(NumArgs);
6124   for (auto &Arg : Call->args()) {
6125     Constant *C = dyn_cast<Constant>(&Arg);
6126     if (!C) {
6127       if (isa<MetadataAsValue>(Arg.get()))
6128         continue;
6129       return nullptr;
6130     }
6131     ConstantArgs.push_back(C);
6132   }
6133 
6134   return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
6135 }
6136 
6137 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
6138   // musttail calls can only be simplified if they are also DCEd.
6139   // As we can't guarantee this here, don't simplify them.
6140   if (Call->isMustTailCall())
6141     return nullptr;
6142 
6143   // call undef -> poison
6144   // call null -> poison
6145   Value *Callee = Call->getCalledOperand();
6146   if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
6147     return PoisonValue::get(Call->getType());
6148 
6149   if (Value *V = tryConstantFoldCall(Call, Q))
6150     return V;
6151 
6152   auto *F = dyn_cast<Function>(Callee);
6153   if (F && F->isIntrinsic())
6154     if (Value *Ret = simplifyIntrinsic(Call, Q))
6155       return Ret;
6156 
6157   return nullptr;
6158 }
6159 
6160 /// Given operands for a Freeze, see if we can fold the result.
6161 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6162   // Use a utility function defined in ValueTracking.
6163   if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT))
6164     return Op0;
6165   // We have room for improvement.
6166   return nullptr;
6167 }
6168 
6169 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
6170   return ::SimplifyFreezeInst(Op0, Q);
6171 }
6172 
6173 static Value *SimplifyLoadInst(LoadInst *LI, Value *PtrOp,
6174                                const SimplifyQuery &Q) {
6175   if (LI->isVolatile())
6176     return nullptr;
6177 
6178   APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
6179   auto *PtrOpC = dyn_cast<Constant>(PtrOp);
6180   // Try to convert operand into a constant by stripping offsets while looking
6181   // through invariant.group intrinsics. Don't bother if the underlying object
6182   // is not constant, as calculating GEP offsets is expensive.
6183   if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) {
6184     PtrOp = PtrOp->stripAndAccumulateConstantOffsets(
6185         Q.DL, Offset, /* AllowNonInbounts */ true,
6186         /* AllowInvariantGroup */ true);
6187     // Index size may have changed due to address space casts.
6188     Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()));
6189     PtrOpC = dyn_cast<Constant>(PtrOp);
6190   }
6191 
6192   if (PtrOpC)
6193     return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL);
6194   return nullptr;
6195 }
6196 
6197 /// See if we can compute a simplified version of this instruction.
6198 /// If not, this returns null.
6199 
6200 static Value *simplifyInstructionWithOperands(Instruction *I,
6201                                               ArrayRef<Value *> NewOps,
6202                                               const SimplifyQuery &SQ,
6203                                               OptimizationRemarkEmitter *ORE) {
6204   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
6205   Value *Result = nullptr;
6206 
6207   switch (I->getOpcode()) {
6208   default:
6209     if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) {
6210       SmallVector<Constant *, 8> NewConstOps(NewOps.size());
6211       transform(NewOps, NewConstOps.begin(),
6212                 [](Value *V) { return cast<Constant>(V); });
6213       Result = ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI);
6214     }
6215     break;
6216   case Instruction::FNeg:
6217     Result = SimplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q);
6218     break;
6219   case Instruction::FAdd:
6220     Result = SimplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6221     break;
6222   case Instruction::Add:
6223     Result = SimplifyAddInst(
6224         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6225         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6226     break;
6227   case Instruction::FSub:
6228     Result = SimplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6229     break;
6230   case Instruction::Sub:
6231     Result = SimplifySubInst(
6232         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6233         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6234     break;
6235   case Instruction::FMul:
6236     Result = SimplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6237     break;
6238   case Instruction::Mul:
6239     Result = SimplifyMulInst(NewOps[0], NewOps[1], Q);
6240     break;
6241   case Instruction::SDiv:
6242     Result = SimplifySDivInst(NewOps[0], NewOps[1], Q);
6243     break;
6244   case Instruction::UDiv:
6245     Result = SimplifyUDivInst(NewOps[0], NewOps[1], Q);
6246     break;
6247   case Instruction::FDiv:
6248     Result = SimplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6249     break;
6250   case Instruction::SRem:
6251     Result = SimplifySRemInst(NewOps[0], NewOps[1], Q);
6252     break;
6253   case Instruction::URem:
6254     Result = SimplifyURemInst(NewOps[0], NewOps[1], Q);
6255     break;
6256   case Instruction::FRem:
6257     Result = SimplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
6258     break;
6259   case Instruction::Shl:
6260     Result = SimplifyShlInst(
6261         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
6262         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
6263     break;
6264   case Instruction::LShr:
6265     Result = SimplifyLShrInst(NewOps[0], NewOps[1],
6266                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6267     break;
6268   case Instruction::AShr:
6269     Result = SimplifyAShrInst(NewOps[0], NewOps[1],
6270                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
6271     break;
6272   case Instruction::And:
6273     Result = SimplifyAndInst(NewOps[0], NewOps[1], Q);
6274     break;
6275   case Instruction::Or:
6276     Result = SimplifyOrInst(NewOps[0], NewOps[1], Q);
6277     break;
6278   case Instruction::Xor:
6279     Result = SimplifyXorInst(NewOps[0], NewOps[1], Q);
6280     break;
6281   case Instruction::ICmp:
6282     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0],
6283                               NewOps[1], Q);
6284     break;
6285   case Instruction::FCmp:
6286     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0],
6287                               NewOps[1], I->getFastMathFlags(), Q);
6288     break;
6289   case Instruction::Select:
6290     Result = SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q);
6291     break;
6292   case Instruction::GetElementPtr: {
6293     auto *GEPI = cast<GetElementPtrInst>(I);
6294     Result =
6295         SimplifyGEPInst(GEPI->getSourceElementType(), NewOps[0],
6296                         makeArrayRef(NewOps).slice(1), GEPI->isInBounds(), Q);
6297     break;
6298   }
6299   case Instruction::InsertValue: {
6300     InsertValueInst *IV = cast<InsertValueInst>(I);
6301     Result = SimplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q);
6302     break;
6303   }
6304   case Instruction::InsertElement: {
6305     Result = SimplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q);
6306     break;
6307   }
6308   case Instruction::ExtractValue: {
6309     auto *EVI = cast<ExtractValueInst>(I);
6310     Result = SimplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q);
6311     break;
6312   }
6313   case Instruction::ExtractElement: {
6314     Result = SimplifyExtractElementInst(NewOps[0], NewOps[1], Q);
6315     break;
6316   }
6317   case Instruction::ShuffleVector: {
6318     auto *SVI = cast<ShuffleVectorInst>(I);
6319     Result = SimplifyShuffleVectorInst(
6320         NewOps[0], NewOps[1], SVI->getShuffleMask(), SVI->getType(), Q);
6321     break;
6322   }
6323   case Instruction::PHI:
6324     Result = SimplifyPHINode(cast<PHINode>(I), NewOps, Q);
6325     break;
6326   case Instruction::Call: {
6327     // TODO: Use NewOps
6328     Result = SimplifyCall(cast<CallInst>(I), Q);
6329     break;
6330   }
6331   case Instruction::Freeze:
6332     Result = llvm::SimplifyFreezeInst(NewOps[0], Q);
6333     break;
6334 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
6335 #include "llvm/IR/Instruction.def"
6336 #undef HANDLE_CAST_INST
6337     Result = SimplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q);
6338     break;
6339   case Instruction::Alloca:
6340     // No simplifications for Alloca and it can't be constant folded.
6341     Result = nullptr;
6342     break;
6343   case Instruction::Load:
6344     Result = SimplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q);
6345     break;
6346   }
6347 
6348   /// If called on unreachable code, the above logic may report that the
6349   /// instruction simplified to itself.  Make life easier for users by
6350   /// detecting that case here, returning a safe value instead.
6351   return Result == I ? UndefValue::get(I->getType()) : Result;
6352 }
6353 
6354 Value *llvm::SimplifyInstructionWithOperands(Instruction *I,
6355                                              ArrayRef<Value *> NewOps,
6356                                              const SimplifyQuery &SQ,
6357                                              OptimizationRemarkEmitter *ORE) {
6358   assert(NewOps.size() == I->getNumOperands() &&
6359          "Number of operands should match the instruction!");
6360   return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE);
6361 }
6362 
6363 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
6364                                  OptimizationRemarkEmitter *ORE) {
6365   SmallVector<Value *, 8> Ops(I->operands());
6366   return ::simplifyInstructionWithOperands(I, Ops, SQ, ORE);
6367 }
6368 
6369 /// Implementation of recursive simplification through an instruction's
6370 /// uses.
6371 ///
6372 /// This is the common implementation of the recursive simplification routines.
6373 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
6374 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
6375 /// instructions to process and attempt to simplify it using
6376 /// InstructionSimplify. Recursively visited users which could not be
6377 /// simplified themselves are to the optional UnsimplifiedUsers set for
6378 /// further processing by the caller.
6379 ///
6380 /// This routine returns 'true' only when *it* simplifies something. The passed
6381 /// in simplified value does not count toward this.
6382 static bool replaceAndRecursivelySimplifyImpl(
6383     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6384     const DominatorTree *DT, AssumptionCache *AC,
6385     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
6386   bool Simplified = false;
6387   SmallSetVector<Instruction *, 8> Worklist;
6388   const DataLayout &DL = I->getModule()->getDataLayout();
6389 
6390   // If we have an explicit value to collapse to, do that round of the
6391   // simplification loop by hand initially.
6392   if (SimpleV) {
6393     for (User *U : I->users())
6394       if (U != I)
6395         Worklist.insert(cast<Instruction>(U));
6396 
6397     // Replace the instruction with its simplified value.
6398     I->replaceAllUsesWith(SimpleV);
6399 
6400     // Gracefully handle edge cases where the instruction is not wired into any
6401     // parent block.
6402     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6403         !I->mayHaveSideEffects())
6404       I->eraseFromParent();
6405   } else {
6406     Worklist.insert(I);
6407   }
6408 
6409   // Note that we must test the size on each iteration, the worklist can grow.
6410   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
6411     I = Worklist[Idx];
6412 
6413     // See if this instruction simplifies.
6414     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
6415     if (!SimpleV) {
6416       if (UnsimplifiedUsers)
6417         UnsimplifiedUsers->insert(I);
6418       continue;
6419     }
6420 
6421     Simplified = true;
6422 
6423     // Stash away all the uses of the old instruction so we can check them for
6424     // recursive simplifications after a RAUW. This is cheaper than checking all
6425     // uses of To on the recursive step in most cases.
6426     for (User *U : I->users())
6427       Worklist.insert(cast<Instruction>(U));
6428 
6429     // Replace the instruction with its simplified value.
6430     I->replaceAllUsesWith(SimpleV);
6431 
6432     // Gracefully handle edge cases where the instruction is not wired into any
6433     // parent block.
6434     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6435         !I->mayHaveSideEffects())
6436       I->eraseFromParent();
6437   }
6438   return Simplified;
6439 }
6440 
6441 bool llvm::replaceAndRecursivelySimplify(
6442     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6443     const DominatorTree *DT, AssumptionCache *AC,
6444     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
6445   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
6446   assert(SimpleV && "Must provide a simplified value.");
6447   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
6448                                            UnsimplifiedUsers);
6449 }
6450 
6451 namespace llvm {
6452 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
6453   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
6454   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
6455   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
6456   auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
6457   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
6458   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
6459   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6460 }
6461 
6462 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
6463                                          const DataLayout &DL) {
6464   return {DL, &AR.TLI, &AR.DT, &AR.AC};
6465 }
6466 
6467 template <class T, class... TArgs>
6468 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
6469                                          Function &F) {
6470   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
6471   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
6472   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
6473   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6474 }
6475 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
6476                                                   Function &);
6477 }
6478 
6479 void InstSimplifyFolder::anchor() {}
6480