1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inline cost analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/InlineCost.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/CodeMetrics.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/AssemblyAnnotationWriter.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/InstVisitor.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/FormattedStream.h" 44 #include "llvm/Support/raw_ostream.h" 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "inline-cost" 49 50 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); 51 52 static cl::opt<int> 53 DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225), 54 cl::ZeroOrMore, 55 cl::desc("Default amount of inlining to perform")); 56 57 static cl::opt<bool> PrintInstructionComments( 58 "print-instruction-comments", cl::Hidden, cl::init(false), 59 cl::desc("Prints comments for instruction based on inline cost analysis")); 60 61 static cl::opt<int> InlineThreshold( 62 "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, 63 cl::desc("Control the amount of inlining to perform (default = 225)")); 64 65 static cl::opt<int> HintThreshold( 66 "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore, 67 cl::desc("Threshold for inlining functions with inline hint")); 68 69 static cl::opt<int> 70 ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden, 71 cl::init(45), cl::ZeroOrMore, 72 cl::desc("Threshold for inlining cold callsites")); 73 74 static cl::opt<bool> InlineEnableCostBenefitAnalysis( 75 "inline-enable-cost-benefit-analysis", cl::Hidden, cl::init(false), 76 cl::desc("Enable the cost-benefit analysis for the inliner")); 77 78 static cl::opt<int> InlineSavingsMultiplier( 79 "inline-savings-multiplier", cl::Hidden, cl::init(8), cl::ZeroOrMore, 80 cl::desc("Multiplier to multiply cycle savings by during inlining")); 81 82 static cl::opt<int> 83 InlineSizeAllowance("inline-size-allowance", cl::Hidden, cl::init(100), 84 cl::ZeroOrMore, 85 cl::desc("The maximum size of a callee that get's " 86 "inlined without sufficient cycle savings")); 87 88 // We introduce this threshold to help performance of instrumentation based 89 // PGO before we actually hook up inliner with analysis passes such as BPI and 90 // BFI. 91 static cl::opt<int> ColdThreshold( 92 "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore, 93 cl::desc("Threshold for inlining functions with cold attribute")); 94 95 static cl::opt<int> 96 HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000), 97 cl::ZeroOrMore, 98 cl::desc("Threshold for hot callsites ")); 99 100 static cl::opt<int> LocallyHotCallSiteThreshold( 101 "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore, 102 cl::desc("Threshold for locally hot callsites ")); 103 104 static cl::opt<int> ColdCallSiteRelFreq( 105 "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 106 cl::desc("Maximum block frequency, expressed as a percentage of caller's " 107 "entry frequency, for a callsite to be cold in the absence of " 108 "profile information.")); 109 110 static cl::opt<int> HotCallSiteRelFreq( 111 "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore, 112 cl::desc("Minimum block frequency, expressed as a multiple of caller's " 113 "entry frequency, for a callsite to be hot in the absence of " 114 "profile information.")); 115 116 static cl::opt<int> CallPenalty( 117 "inline-call-penalty", cl::Hidden, cl::init(25), 118 cl::desc("Call penalty that is applied per callsite when inlining")); 119 120 static cl::opt<bool> OptComputeFullInlineCost( 121 "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore, 122 cl::desc("Compute the full inline cost of a call site even when the cost " 123 "exceeds the threshold.")); 124 125 static cl::opt<bool> InlineCallerSupersetNoBuiltin( 126 "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true), 127 cl::ZeroOrMore, 128 cl::desc("Allow inlining when caller has a superset of callee's nobuiltin " 129 "attributes.")); 130 131 static cl::opt<bool> DisableGEPConstOperand( 132 "disable-gep-const-evaluation", cl::Hidden, cl::init(false), 133 cl::desc("Disables evaluation of GetElementPtr with constant operands")); 134 135 namespace { 136 class InlineCostCallAnalyzer; 137 138 /// This function behaves more like CallBase::hasFnAttr: when it looks for the 139 /// requested attribute, it check both the call instruction and the called 140 /// function (if it's available and operand bundles don't prohibit that). 141 Attribute getFnAttr(CallBase &CB, StringRef AttrKind) { 142 Attribute CallAttr = CB.getFnAttr(AttrKind); 143 if (CallAttr.isValid()) 144 return CallAttr; 145 146 // Operand bundles override attributes on the called function, but don't 147 // override attributes directly present on the call instruction. 148 if (!CB.isFnAttrDisallowedByOpBundle(AttrKind)) 149 if (const Function *F = CB.getCalledFunction()) 150 return F->getFnAttribute(AttrKind); 151 152 return {}; 153 } 154 155 Optional<int> getStringFnAttrAsInt(CallBase &CB, StringRef AttrKind) { 156 Attribute Attr = getFnAttr(CB, AttrKind); 157 int AttrValue; 158 if (Attr.getValueAsString().getAsInteger(10, AttrValue)) 159 return None; 160 return AttrValue; 161 } 162 163 // This struct is used to store information about inline cost of a 164 // particular instruction 165 struct InstructionCostDetail { 166 int CostBefore = 0; 167 int CostAfter = 0; 168 int ThresholdBefore = 0; 169 int ThresholdAfter = 0; 170 171 int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; } 172 173 int getCostDelta() const { return CostAfter - CostBefore; } 174 175 bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; } 176 }; 177 178 class InlineCostAnnotationWriter : public AssemblyAnnotationWriter { 179 private: 180 InlineCostCallAnalyzer *const ICCA; 181 182 public: 183 InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {} 184 virtual void emitInstructionAnnot(const Instruction *I, 185 formatted_raw_ostream &OS) override; 186 }; 187 188 /// Carry out call site analysis, in order to evaluate inlinability. 189 /// NOTE: the type is currently used as implementation detail of functions such 190 /// as llvm::getInlineCost. Note the function_ref constructor parameters - the 191 /// expectation is that they come from the outer scope, from the wrapper 192 /// functions. If we want to support constructing CallAnalyzer objects where 193 /// lambdas are provided inline at construction, or where the object needs to 194 /// otherwise survive past the scope of the provided functions, we need to 195 /// revisit the argument types. 196 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { 197 typedef InstVisitor<CallAnalyzer, bool> Base; 198 friend class InstVisitor<CallAnalyzer, bool>; 199 200 protected: 201 virtual ~CallAnalyzer() {} 202 /// The TargetTransformInfo available for this compilation. 203 const TargetTransformInfo &TTI; 204 205 /// Getter for the cache of @llvm.assume intrinsics. 206 function_ref<AssumptionCache &(Function &)> GetAssumptionCache; 207 208 /// Getter for BlockFrequencyInfo 209 function_ref<BlockFrequencyInfo &(Function &)> GetBFI; 210 211 /// Profile summary information. 212 ProfileSummaryInfo *PSI; 213 214 /// The called function. 215 Function &F; 216 217 // Cache the DataLayout since we use it a lot. 218 const DataLayout &DL; 219 220 /// The OptimizationRemarkEmitter available for this compilation. 221 OptimizationRemarkEmitter *ORE; 222 223 /// The candidate callsite being analyzed. Please do not use this to do 224 /// analysis in the caller function; we want the inline cost query to be 225 /// easily cacheable. Instead, use the cover function paramHasAttr. 226 CallBase &CandidateCall; 227 228 /// Extension points for handling callsite features. 229 // Called before a basic block was analyzed. 230 virtual void onBlockStart(const BasicBlock *BB) {} 231 232 /// Called after a basic block was analyzed. 233 virtual void onBlockAnalyzed(const BasicBlock *BB) {} 234 235 /// Called before an instruction was analyzed 236 virtual void onInstructionAnalysisStart(const Instruction *I) {} 237 238 /// Called after an instruction was analyzed 239 virtual void onInstructionAnalysisFinish(const Instruction *I) {} 240 241 /// Called at the end of the analysis of the callsite. Return the outcome of 242 /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or 243 /// the reason it can't. 244 virtual InlineResult finalizeAnalysis() { return InlineResult::success(); } 245 /// Called when we're about to start processing a basic block, and every time 246 /// we are done processing an instruction. Return true if there is no point in 247 /// continuing the analysis (e.g. we've determined already the call site is 248 /// too expensive to inline) 249 virtual bool shouldStop() { return false; } 250 251 /// Called before the analysis of the callee body starts (with callsite 252 /// contexts propagated). It checks callsite-specific information. Return a 253 /// reason analysis can't continue if that's the case, or 'true' if it may 254 /// continue. 255 virtual InlineResult onAnalysisStart() { return InlineResult::success(); } 256 /// Called if the analysis engine decides SROA cannot be done for the given 257 /// alloca. 258 virtual void onDisableSROA(AllocaInst *Arg) {} 259 260 /// Called the analysis engine determines load elimination won't happen. 261 virtual void onDisableLoadElimination() {} 262 263 /// Called when we visit a CallBase, before the analysis starts. Return false 264 /// to stop further processing of the instruction. 265 virtual bool onCallBaseVisitStart(CallBase &Call) { return true; } 266 267 /// Called to account for a call. 268 virtual void onCallPenalty() {} 269 270 /// Called to account for the expectation the inlining would result in a load 271 /// elimination. 272 virtual void onLoadEliminationOpportunity() {} 273 274 /// Called to account for the cost of argument setup for the Call in the 275 /// callee's body (not the callsite currently under analysis). 276 virtual void onCallArgumentSetup(const CallBase &Call) {} 277 278 /// Called to account for a load relative intrinsic. 279 virtual void onLoadRelativeIntrinsic() {} 280 281 /// Called to account for a lowered call. 282 virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) { 283 } 284 285 /// Account for a jump table of given size. Return false to stop further 286 /// processing the switch instruction 287 virtual bool onJumpTable(unsigned JumpTableSize) { return true; } 288 289 /// Account for a case cluster of given size. Return false to stop further 290 /// processing of the instruction. 291 virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; } 292 293 /// Called at the end of processing a switch instruction, with the given 294 /// number of case clusters. 295 virtual void onFinalizeSwitch(unsigned JumpTableSize, 296 unsigned NumCaseCluster) {} 297 298 /// Called to account for any other instruction not specifically accounted 299 /// for. 300 virtual void onMissedSimplification() {} 301 302 /// Start accounting potential benefits due to SROA for the given alloca. 303 virtual void onInitializeSROAArg(AllocaInst *Arg) {} 304 305 /// Account SROA savings for the AllocaInst value. 306 virtual void onAggregateSROAUse(AllocaInst *V) {} 307 308 bool handleSROA(Value *V, bool DoNotDisable) { 309 // Check for SROA candidates in comparisons. 310 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 311 if (DoNotDisable) { 312 onAggregateSROAUse(SROAArg); 313 return true; 314 } 315 disableSROAForArg(SROAArg); 316 } 317 return false; 318 } 319 320 bool IsCallerRecursive = false; 321 bool IsRecursiveCall = false; 322 bool ExposesReturnsTwice = false; 323 bool HasDynamicAlloca = false; 324 bool ContainsNoDuplicateCall = false; 325 bool HasReturn = false; 326 bool HasIndirectBr = false; 327 bool HasUninlineableIntrinsic = false; 328 bool InitsVargArgs = false; 329 330 /// Number of bytes allocated statically by the callee. 331 uint64_t AllocatedSize = 0; 332 unsigned NumInstructions = 0; 333 unsigned NumVectorInstructions = 0; 334 335 /// While we walk the potentially-inlined instructions, we build up and 336 /// maintain a mapping of simplified values specific to this callsite. The 337 /// idea is to propagate any special information we have about arguments to 338 /// this call through the inlinable section of the function, and account for 339 /// likely simplifications post-inlining. The most important aspect we track 340 /// is CFG altering simplifications -- when we prove a basic block dead, that 341 /// can cause dramatic shifts in the cost of inlining a function. 342 DenseMap<Value *, Constant *> SimplifiedValues; 343 344 /// Keep track of the values which map back (through function arguments) to 345 /// allocas on the caller stack which could be simplified through SROA. 346 DenseMap<Value *, AllocaInst *> SROAArgValues; 347 348 /// Keep track of Allocas for which we believe we may get SROA optimization. 349 DenseSet<AllocaInst *> EnabledSROAAllocas; 350 351 /// Keep track of values which map to a pointer base and constant offset. 352 DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs; 353 354 /// Keep track of dead blocks due to the constant arguments. 355 SetVector<BasicBlock *> DeadBlocks; 356 357 /// The mapping of the blocks to their known unique successors due to the 358 /// constant arguments. 359 DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors; 360 361 /// Model the elimination of repeated loads that is expected to happen 362 /// whenever we simplify away the stores that would otherwise cause them to be 363 /// loads. 364 bool EnableLoadElimination = true; 365 366 /// Whether we allow inlining for recursive call. 367 bool AllowRecursiveCall = false; 368 369 SmallPtrSet<Value *, 16> LoadAddrSet; 370 371 AllocaInst *getSROAArgForValueOrNull(Value *V) const { 372 auto It = SROAArgValues.find(V); 373 if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0) 374 return nullptr; 375 return It->second; 376 } 377 378 // Custom simplification helper routines. 379 bool isAllocaDerivedArg(Value *V); 380 void disableSROAForArg(AllocaInst *SROAArg); 381 void disableSROA(Value *V); 382 void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB); 383 void disableLoadElimination(); 384 bool isGEPFree(GetElementPtrInst &GEP); 385 bool canFoldInboundsGEP(GetElementPtrInst &I); 386 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); 387 bool simplifyCallSite(Function *F, CallBase &Call); 388 template <typename Callable> 389 bool simplifyInstruction(Instruction &I, Callable Evaluate); 390 bool simplifyIntrinsicCallIsConstant(CallBase &CB); 391 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); 392 393 /// Return true if the given argument to the function being considered for 394 /// inlining has the given attribute set either at the call site or the 395 /// function declaration. Primarily used to inspect call site specific 396 /// attributes since these can be more precise than the ones on the callee 397 /// itself. 398 bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); 399 400 /// Return true if the given value is known non null within the callee if 401 /// inlined through this particular callsite. 402 bool isKnownNonNullInCallee(Value *V); 403 404 /// Return true if size growth is allowed when inlining the callee at \p Call. 405 bool allowSizeGrowth(CallBase &Call); 406 407 // Custom analysis routines. 408 InlineResult analyzeBlock(BasicBlock *BB, 409 SmallPtrSetImpl<const Value *> &EphValues); 410 411 // Disable several entry points to the visitor so we don't accidentally use 412 // them by declaring but not defining them here. 413 void visit(Module *); 414 void visit(Module &); 415 void visit(Function *); 416 void visit(Function &); 417 void visit(BasicBlock *); 418 void visit(BasicBlock &); 419 420 // Provide base case for our instruction visit. 421 bool visitInstruction(Instruction &I); 422 423 // Our visit overrides. 424 bool visitAlloca(AllocaInst &I); 425 bool visitPHI(PHINode &I); 426 bool visitGetElementPtr(GetElementPtrInst &I); 427 bool visitBitCast(BitCastInst &I); 428 bool visitPtrToInt(PtrToIntInst &I); 429 bool visitIntToPtr(IntToPtrInst &I); 430 bool visitCastInst(CastInst &I); 431 bool visitCmpInst(CmpInst &I); 432 bool visitSub(BinaryOperator &I); 433 bool visitBinaryOperator(BinaryOperator &I); 434 bool visitFNeg(UnaryOperator &I); 435 bool visitLoad(LoadInst &I); 436 bool visitStore(StoreInst &I); 437 bool visitExtractValue(ExtractValueInst &I); 438 bool visitInsertValue(InsertValueInst &I); 439 bool visitCallBase(CallBase &Call); 440 bool visitReturnInst(ReturnInst &RI); 441 bool visitBranchInst(BranchInst &BI); 442 bool visitSelectInst(SelectInst &SI); 443 bool visitSwitchInst(SwitchInst &SI); 444 bool visitIndirectBrInst(IndirectBrInst &IBI); 445 bool visitResumeInst(ResumeInst &RI); 446 bool visitCleanupReturnInst(CleanupReturnInst &RI); 447 bool visitCatchReturnInst(CatchReturnInst &RI); 448 bool visitUnreachableInst(UnreachableInst &I); 449 450 public: 451 CallAnalyzer(Function &Callee, CallBase &Call, const TargetTransformInfo &TTI, 452 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 453 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 454 ProfileSummaryInfo *PSI = nullptr, 455 OptimizationRemarkEmitter *ORE = nullptr) 456 : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI), 457 PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE), 458 CandidateCall(Call) {} 459 460 InlineResult analyze(); 461 462 Optional<Constant *> getSimplifiedValue(Instruction *I) { 463 if (SimplifiedValues.find(I) != SimplifiedValues.end()) 464 return SimplifiedValues[I]; 465 return None; 466 } 467 468 // Keep a bunch of stats about the cost savings found so we can print them 469 // out when debugging. 470 unsigned NumConstantArgs = 0; 471 unsigned NumConstantOffsetPtrArgs = 0; 472 unsigned NumAllocaArgs = 0; 473 unsigned NumConstantPtrCmps = 0; 474 unsigned NumConstantPtrDiffs = 0; 475 unsigned NumInstructionsSimplified = 0; 476 477 void dump(); 478 }; 479 480 // Considering forming a binary search, we should find the number of nodes 481 // which is same as the number of comparisons when lowered. For a given 482 // number of clusters, n, we can define a recursive function, f(n), to find 483 // the number of nodes in the tree. The recursion is : 484 // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3, 485 // and f(n) = n, when n <= 3. 486 // This will lead a binary tree where the leaf should be either f(2) or f(3) 487 // when n > 3. So, the number of comparisons from leaves should be n, while 488 // the number of non-leaf should be : 489 // 2^(log2(n) - 1) - 1 490 // = 2^log2(n) * 2^-1 - 1 491 // = n / 2 - 1. 492 // Considering comparisons from leaf and non-leaf nodes, we can estimate the 493 // number of comparisons in a simple closed form : 494 // n + n / 2 - 1 = n * 3 / 2 - 1 495 int64_t getExpectedNumberOfCompare(int NumCaseCluster) { 496 return 3 * static_cast<int64_t>(NumCaseCluster) / 2 - 1; 497 } 498 499 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note 500 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer 501 class InlineCostCallAnalyzer final : public CallAnalyzer { 502 const int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1; 503 const bool ComputeFullInlineCost; 504 int LoadEliminationCost = 0; 505 /// Bonus to be applied when percentage of vector instructions in callee is 506 /// high (see more details in updateThreshold). 507 int VectorBonus = 0; 508 /// Bonus to be applied when the callee has only one reachable basic block. 509 int SingleBBBonus = 0; 510 511 /// Tunable parameters that control the analysis. 512 const InlineParams &Params; 513 514 // This DenseMap stores the delta change in cost and threshold after 515 // accounting for the given instruction. The map is filled only with the 516 // flag PrintInstructionComments on. 517 DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap; 518 519 /// Upper bound for the inlining cost. Bonuses are being applied to account 520 /// for speculative "expected profit" of the inlining decision. 521 int Threshold = 0; 522 523 /// Attempt to evaluate indirect calls to boost its inline cost. 524 const bool BoostIndirectCalls; 525 526 /// Ignore the threshold when finalizing analysis. 527 const bool IgnoreThreshold; 528 529 // True if the cost-benefit-analysis-based inliner is enabled. 530 const bool CostBenefitAnalysisEnabled; 531 532 /// Inlining cost measured in abstract units, accounts for all the 533 /// instructions expected to be executed for a given function invocation. 534 /// Instructions that are statically proven to be dead based on call-site 535 /// arguments are not counted here. 536 int Cost = 0; 537 538 // The cumulative cost at the beginning of the basic block being analyzed. At 539 // the end of analyzing each basic block, "Cost - CostAtBBStart" represents 540 // the size of that basic block. 541 int CostAtBBStart = 0; 542 543 // The static size of live but cold basic blocks. This is "static" in the 544 // sense that it's not weighted by profile counts at all. 545 int ColdSize = 0; 546 547 // Whether inlining is decided by cost-threshold analysis. 548 bool DecidedByCostThreshold = false; 549 550 // Whether inlining is decided by cost-benefit analysis. 551 bool DecidedByCostBenefit = false; 552 553 // The cost-benefit pair computed by cost-benefit analysis. 554 Optional<CostBenefitPair> CostBenefit = None; 555 556 bool SingleBB = true; 557 558 unsigned SROACostSavings = 0; 559 unsigned SROACostSavingsLost = 0; 560 561 /// The mapping of caller Alloca values to their accumulated cost savings. If 562 /// we have to disable SROA for one of the allocas, this tells us how much 563 /// cost must be added. 564 DenseMap<AllocaInst *, int> SROAArgCosts; 565 566 /// Return true if \p Call is a cold callsite. 567 bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI); 568 569 /// Update Threshold based on callsite properties such as callee 570 /// attributes and callee hotness for PGO builds. The Callee is explicitly 571 /// passed to support analyzing indirect calls whose target is inferred by 572 /// analysis. 573 void updateThreshold(CallBase &Call, Function &Callee); 574 /// Return a higher threshold if \p Call is a hot callsite. 575 Optional<int> getHotCallSiteThreshold(CallBase &Call, 576 BlockFrequencyInfo *CallerBFI); 577 578 /// Handle a capped 'int' increment for Cost. 579 void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) { 580 assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound"); 581 Cost = std::min<int>(UpperBound, Cost + Inc); 582 } 583 584 void onDisableSROA(AllocaInst *Arg) override { 585 auto CostIt = SROAArgCosts.find(Arg); 586 if (CostIt == SROAArgCosts.end()) 587 return; 588 addCost(CostIt->second); 589 SROACostSavings -= CostIt->second; 590 SROACostSavingsLost += CostIt->second; 591 SROAArgCosts.erase(CostIt); 592 } 593 594 void onDisableLoadElimination() override { 595 addCost(LoadEliminationCost); 596 LoadEliminationCost = 0; 597 } 598 599 bool onCallBaseVisitStart(CallBase &Call) override { 600 if (Optional<int> AttrCallThresholdBonus = 601 getStringFnAttrAsInt(Call, "call-threshold-bonus")) 602 Threshold += *AttrCallThresholdBonus; 603 604 if (Optional<int> AttrCallCost = 605 getStringFnAttrAsInt(Call, "call-inline-cost")) { 606 addCost(*AttrCallCost); 607 // Prevent further processing of the call since we want to override its 608 // inline cost, not just add to it. 609 return false; 610 } 611 return true; 612 } 613 614 void onCallPenalty() override { addCost(CallPenalty); } 615 void onCallArgumentSetup(const CallBase &Call) override { 616 // Pay the price of the argument setup. We account for the average 1 617 // instruction per call argument setup here. 618 addCost(Call.arg_size() * InlineConstants::InstrCost); 619 } 620 void onLoadRelativeIntrinsic() override { 621 // This is normally lowered to 4 LLVM instructions. 622 addCost(3 * InlineConstants::InstrCost); 623 } 624 void onLoweredCall(Function *F, CallBase &Call, 625 bool IsIndirectCall) override { 626 // We account for the average 1 instruction per call argument setup here. 627 addCost(Call.arg_size() * InlineConstants::InstrCost); 628 629 // If we have a constant that we are calling as a function, we can peer 630 // through it and see the function target. This happens not infrequently 631 // during devirtualization and so we want to give it a hefty bonus for 632 // inlining, but cap that bonus in the event that inlining wouldn't pan out. 633 // Pretend to inline the function, with a custom threshold. 634 if (IsIndirectCall && BoostIndirectCalls) { 635 auto IndirectCallParams = Params; 636 IndirectCallParams.DefaultThreshold = 637 InlineConstants::IndirectCallThreshold; 638 /// FIXME: if InlineCostCallAnalyzer is derived from, this may need 639 /// to instantiate the derived class. 640 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 641 GetAssumptionCache, GetBFI, PSI, ORE, false); 642 if (CA.analyze().isSuccess()) { 643 // We were able to inline the indirect call! Subtract the cost from the 644 // threshold to get the bonus we want to apply, but don't go below zero. 645 Cost -= std::max(0, CA.getThreshold() - CA.getCost()); 646 } 647 } else 648 // Otherwise simply add the cost for merely making the call. 649 addCost(CallPenalty); 650 } 651 652 void onFinalizeSwitch(unsigned JumpTableSize, 653 unsigned NumCaseCluster) override { 654 // If suitable for a jump table, consider the cost for the table size and 655 // branch to destination. 656 // Maximum valid cost increased in this function. 657 if (JumpTableSize) { 658 int64_t JTCost = 659 static_cast<int64_t>(JumpTableSize) * InlineConstants::InstrCost + 660 4 * InlineConstants::InstrCost; 661 662 addCost(JTCost, static_cast<int64_t>(CostUpperBound)); 663 return; 664 } 665 666 if (NumCaseCluster <= 3) { 667 // Suppose a comparison includes one compare and one conditional branch. 668 addCost(NumCaseCluster * 2 * InlineConstants::InstrCost); 669 return; 670 } 671 672 int64_t ExpectedNumberOfCompare = 673 getExpectedNumberOfCompare(NumCaseCluster); 674 int64_t SwitchCost = 675 ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost; 676 677 addCost(SwitchCost, static_cast<int64_t>(CostUpperBound)); 678 } 679 void onMissedSimplification() override { 680 addCost(InlineConstants::InstrCost); 681 } 682 683 void onInitializeSROAArg(AllocaInst *Arg) override { 684 assert(Arg != nullptr && 685 "Should not initialize SROA costs for null value."); 686 SROAArgCosts[Arg] = 0; 687 } 688 689 void onAggregateSROAUse(AllocaInst *SROAArg) override { 690 auto CostIt = SROAArgCosts.find(SROAArg); 691 assert(CostIt != SROAArgCosts.end() && 692 "expected this argument to have a cost"); 693 CostIt->second += InlineConstants::InstrCost; 694 SROACostSavings += InlineConstants::InstrCost; 695 } 696 697 void onBlockStart(const BasicBlock *BB) override { CostAtBBStart = Cost; } 698 699 void onBlockAnalyzed(const BasicBlock *BB) override { 700 if (CostBenefitAnalysisEnabled) { 701 // Keep track of the static size of live but cold basic blocks. For now, 702 // we define a cold basic block to be one that's never executed. 703 assert(GetBFI && "GetBFI must be available"); 704 BlockFrequencyInfo *BFI = &(GetBFI(F)); 705 assert(BFI && "BFI must be available"); 706 auto ProfileCount = BFI->getBlockProfileCount(BB); 707 assert(ProfileCount.hasValue()); 708 if (ProfileCount.getValue() == 0) 709 ColdSize += Cost - CostAtBBStart; 710 } 711 712 auto *TI = BB->getTerminator(); 713 // If we had any successors at this point, than post-inlining is likely to 714 // have them as well. Note that we assume any basic blocks which existed 715 // due to branches or switches which folded above will also fold after 716 // inlining. 717 if (SingleBB && TI->getNumSuccessors() > 1) { 718 // Take off the bonus we applied to the threshold. 719 Threshold -= SingleBBBonus; 720 SingleBB = false; 721 } 722 } 723 724 void onInstructionAnalysisStart(const Instruction *I) override { 725 // This function is called to store the initial cost of inlining before 726 // the given instruction was assessed. 727 if (!PrintInstructionComments) 728 return; 729 InstructionCostDetailMap[I].CostBefore = Cost; 730 InstructionCostDetailMap[I].ThresholdBefore = Threshold; 731 } 732 733 void onInstructionAnalysisFinish(const Instruction *I) override { 734 // This function is called to find new values of cost and threshold after 735 // the instruction has been assessed. 736 if (!PrintInstructionComments) 737 return; 738 InstructionCostDetailMap[I].CostAfter = Cost; 739 InstructionCostDetailMap[I].ThresholdAfter = Threshold; 740 } 741 742 bool isCostBenefitAnalysisEnabled() { 743 if (!PSI || !PSI->hasProfileSummary()) 744 return false; 745 746 if (!GetBFI) 747 return false; 748 749 if (InlineEnableCostBenefitAnalysis.getNumOccurrences()) { 750 // Honor the explicit request from the user. 751 if (!InlineEnableCostBenefitAnalysis) 752 return false; 753 } else { 754 // Otherwise, require instrumentation profile. 755 if (!PSI->hasInstrumentationProfile()) 756 return false; 757 } 758 759 auto *Caller = CandidateCall.getParent()->getParent(); 760 if (!Caller->getEntryCount()) 761 return false; 762 763 BlockFrequencyInfo *CallerBFI = &(GetBFI(*Caller)); 764 if (!CallerBFI) 765 return false; 766 767 // For now, limit to hot call site. 768 if (!PSI->isHotCallSite(CandidateCall, CallerBFI)) 769 return false; 770 771 // Make sure we have a nonzero entry count. 772 auto EntryCount = F.getEntryCount(); 773 if (!EntryCount || !EntryCount->getCount()) 774 return false; 775 776 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 777 if (!CalleeBFI) 778 return false; 779 780 return true; 781 } 782 783 // Determine whether we should inline the given call site, taking into account 784 // both the size cost and the cycle savings. Return None if we don't have 785 // suficient profiling information to determine. 786 Optional<bool> costBenefitAnalysis() { 787 if (!CostBenefitAnalysisEnabled) 788 return None; 789 790 // buildInlinerPipeline in the pass builder sets HotCallSiteThreshold to 0 791 // for the prelink phase of the AutoFDO + ThinLTO build. Honor the logic by 792 // falling back to the cost-based metric. 793 // TODO: Improve this hacky condition. 794 if (Threshold == 0) 795 return None; 796 797 assert(GetBFI); 798 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 799 assert(CalleeBFI); 800 801 // The cycle savings expressed as the sum of InlineConstants::InstrCost 802 // multiplied by the estimated dynamic count of each instruction we can 803 // avoid. Savings come from the call site cost, such as argument setup and 804 // the call instruction, as well as the instructions that are folded. 805 // 806 // We use 128-bit APInt here to avoid potential overflow. This variable 807 // should stay well below 10^^24 (or 2^^80) in practice. This "worst" case 808 // assumes that we can avoid or fold a billion instructions, each with a 809 // profile count of 10^^15 -- roughly the number of cycles for a 24-hour 810 // period on a 4GHz machine. 811 APInt CycleSavings(128, 0); 812 813 for (auto &BB : F) { 814 APInt CurrentSavings(128, 0); 815 for (auto &I : BB) { 816 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) { 817 // Count a conditional branch as savings if it becomes unconditional. 818 if (BI->isConditional() && 819 isa_and_nonnull<ConstantInt>( 820 SimplifiedValues.lookup(BI->getCondition()))) { 821 CurrentSavings += InlineConstants::InstrCost; 822 } 823 } else if (Value *V = dyn_cast<Value>(&I)) { 824 // Count an instruction as savings if we can fold it. 825 if (SimplifiedValues.count(V)) { 826 CurrentSavings += InlineConstants::InstrCost; 827 } 828 } 829 } 830 831 auto ProfileCount = CalleeBFI->getBlockProfileCount(&BB); 832 assert(ProfileCount.hasValue()); 833 CurrentSavings *= ProfileCount.getValue(); 834 CycleSavings += CurrentSavings; 835 } 836 837 // Compute the cycle savings per call. 838 auto EntryProfileCount = F.getEntryCount(); 839 assert(EntryProfileCount.hasValue() && EntryProfileCount->getCount()); 840 auto EntryCount = EntryProfileCount->getCount(); 841 CycleSavings += EntryCount / 2; 842 CycleSavings = CycleSavings.udiv(EntryCount); 843 844 // Compute the total savings for the call site. 845 auto *CallerBB = CandidateCall.getParent(); 846 BlockFrequencyInfo *CallerBFI = &(GetBFI(*(CallerBB->getParent()))); 847 CycleSavings += getCallsiteCost(this->CandidateCall, DL); 848 CycleSavings *= CallerBFI->getBlockProfileCount(CallerBB).getValue(); 849 850 // Remove the cost of the cold basic blocks. 851 int Size = Cost - ColdSize; 852 853 // Allow tiny callees to be inlined regardless of whether they meet the 854 // savings threshold. 855 Size = Size > InlineSizeAllowance ? Size - InlineSizeAllowance : 1; 856 857 CostBenefit.emplace(APInt(128, Size), CycleSavings); 858 859 // Return true if the savings justify the cost of inlining. Specifically, 860 // we evaluate the following inequality: 861 // 862 // CycleSavings PSI->getOrCompHotCountThreshold() 863 // -------------- >= ----------------------------------- 864 // Size InlineSavingsMultiplier 865 // 866 // Note that the left hand side is specific to a call site. The right hand 867 // side is a constant for the entire executable. 868 APInt LHS = CycleSavings; 869 LHS *= InlineSavingsMultiplier; 870 APInt RHS(128, PSI->getOrCompHotCountThreshold()); 871 RHS *= Size; 872 return LHS.uge(RHS); 873 } 874 875 InlineResult finalizeAnalysis() override { 876 // Loops generally act a lot like calls in that they act like barriers to 877 // movement, require a certain amount of setup, etc. So when optimising for 878 // size, we penalise any call sites that perform loops. We do this after all 879 // other costs here, so will likely only be dealing with relatively small 880 // functions (and hence DT and LI will hopefully be cheap). 881 auto *Caller = CandidateCall.getFunction(); 882 if (Caller->hasMinSize()) { 883 DominatorTree DT(F); 884 LoopInfo LI(DT); 885 int NumLoops = 0; 886 for (Loop *L : LI) { 887 // Ignore loops that will not be executed 888 if (DeadBlocks.count(L->getHeader())) 889 continue; 890 NumLoops++; 891 } 892 addCost(NumLoops * InlineConstants::LoopPenalty); 893 } 894 895 // We applied the maximum possible vector bonus at the beginning. Now, 896 // subtract the excess bonus, if any, from the Threshold before 897 // comparing against Cost. 898 if (NumVectorInstructions <= NumInstructions / 10) 899 Threshold -= VectorBonus; 900 else if (NumVectorInstructions <= NumInstructions / 2) 901 Threshold -= VectorBonus / 2; 902 903 if (Optional<int> AttrCost = 904 getStringFnAttrAsInt(CandidateCall, "function-inline-cost")) 905 Cost = *AttrCost; 906 907 if (Optional<int> AttrThreshold = 908 getStringFnAttrAsInt(CandidateCall, "function-inline-threshold")) 909 Threshold = *AttrThreshold; 910 911 if (auto Result = costBenefitAnalysis()) { 912 DecidedByCostBenefit = true; 913 if (Result.getValue()) 914 return InlineResult::success(); 915 else 916 return InlineResult::failure("Cost over threshold."); 917 } 918 919 if (IgnoreThreshold) 920 return InlineResult::success(); 921 922 DecidedByCostThreshold = true; 923 return Cost < std::max(1, Threshold) 924 ? InlineResult::success() 925 : InlineResult::failure("Cost over threshold."); 926 } 927 928 bool shouldStop() override { 929 if (IgnoreThreshold || ComputeFullInlineCost) 930 return false; 931 // Bail out the moment we cross the threshold. This means we'll under-count 932 // the cost, but only when undercounting doesn't matter. 933 if (Cost < Threshold) 934 return false; 935 DecidedByCostThreshold = true; 936 return true; 937 } 938 939 void onLoadEliminationOpportunity() override { 940 LoadEliminationCost += InlineConstants::InstrCost; 941 } 942 943 InlineResult onAnalysisStart() override { 944 // Perform some tweaks to the cost and threshold based on the direct 945 // callsite information. 946 947 // We want to more aggressively inline vector-dense kernels, so up the 948 // threshold, and we'll lower it if the % of vector instructions gets too 949 // low. Note that these bonuses are some what arbitrary and evolved over 950 // time by accident as much as because they are principled bonuses. 951 // 952 // FIXME: It would be nice to remove all such bonuses. At least it would be 953 // nice to base the bonus values on something more scientific. 954 assert(NumInstructions == 0); 955 assert(NumVectorInstructions == 0); 956 957 // Update the threshold based on callsite properties 958 updateThreshold(CandidateCall, F); 959 960 // While Threshold depends on commandline options that can take negative 961 // values, we want to enforce the invariant that the computed threshold and 962 // bonuses are non-negative. 963 assert(Threshold >= 0); 964 assert(SingleBBBonus >= 0); 965 assert(VectorBonus >= 0); 966 967 // Speculatively apply all possible bonuses to Threshold. If cost exceeds 968 // this Threshold any time, and cost cannot decrease, we can stop processing 969 // the rest of the function body. 970 Threshold += (SingleBBBonus + VectorBonus); 971 972 // Give out bonuses for the callsite, as the instructions setting them up 973 // will be gone after inlining. 974 addCost(-getCallsiteCost(this->CandidateCall, DL)); 975 976 // If this function uses the coldcc calling convention, prefer not to inline 977 // it. 978 if (F.getCallingConv() == CallingConv::Cold) 979 Cost += InlineConstants::ColdccPenalty; 980 981 // Check if we're done. This can happen due to bonuses and penalties. 982 if (Cost >= Threshold && !ComputeFullInlineCost) 983 return InlineResult::failure("high cost"); 984 985 return InlineResult::success(); 986 } 987 988 public: 989 InlineCostCallAnalyzer( 990 Function &Callee, CallBase &Call, const InlineParams &Params, 991 const TargetTransformInfo &TTI, 992 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 993 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 994 ProfileSummaryInfo *PSI = nullptr, 995 OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true, 996 bool IgnoreThreshold = false) 997 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE), 998 ComputeFullInlineCost(OptComputeFullInlineCost || 999 Params.ComputeFullInlineCost || ORE || 1000 isCostBenefitAnalysisEnabled()), 1001 Params(Params), Threshold(Params.DefaultThreshold), 1002 BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold), 1003 CostBenefitAnalysisEnabled(isCostBenefitAnalysisEnabled()), 1004 Writer(this) { 1005 AllowRecursiveCall = Params.AllowRecursiveCall.getValue(); 1006 } 1007 1008 /// Annotation Writer for instruction details 1009 InlineCostAnnotationWriter Writer; 1010 1011 void dump(); 1012 1013 // Prints the same analysis as dump(), but its definition is not dependent 1014 // on the build. 1015 void print(raw_ostream &OS); 1016 1017 Optional<InstructionCostDetail> getCostDetails(const Instruction *I) { 1018 if (InstructionCostDetailMap.find(I) != InstructionCostDetailMap.end()) 1019 return InstructionCostDetailMap[I]; 1020 return None; 1021 } 1022 1023 virtual ~InlineCostCallAnalyzer() {} 1024 int getThreshold() const { return Threshold; } 1025 int getCost() const { return Cost; } 1026 Optional<CostBenefitPair> getCostBenefitPair() { return CostBenefit; } 1027 bool wasDecidedByCostBenefit() const { return DecidedByCostBenefit; } 1028 bool wasDecidedByCostThreshold() const { return DecidedByCostThreshold; } 1029 }; 1030 1031 class InlineCostFeaturesAnalyzer final : public CallAnalyzer { 1032 private: 1033 InlineCostFeatures Cost = {}; 1034 1035 // FIXME: These constants are taken from the heuristic-based cost visitor. 1036 // These should be removed entirely in a later revision to avoid reliance on 1037 // heuristics in the ML inliner. 1038 static constexpr int JTCostMultiplier = 4; 1039 static constexpr int CaseClusterCostMultiplier = 2; 1040 static constexpr int SwitchCostMultiplier = 2; 1041 1042 // FIXME: These are taken from the heuristic-based cost visitor: we should 1043 // eventually abstract these to the CallAnalyzer to avoid duplication. 1044 unsigned SROACostSavingOpportunities = 0; 1045 int VectorBonus = 0; 1046 int SingleBBBonus = 0; 1047 int Threshold = 5; 1048 1049 DenseMap<AllocaInst *, unsigned> SROACosts; 1050 1051 void increment(InlineCostFeatureIndex Feature, int64_t Delta = 1) { 1052 Cost[static_cast<size_t>(Feature)] += Delta; 1053 } 1054 1055 void set(InlineCostFeatureIndex Feature, int64_t Value) { 1056 Cost[static_cast<size_t>(Feature)] = Value; 1057 } 1058 1059 void onDisableSROA(AllocaInst *Arg) override { 1060 auto CostIt = SROACosts.find(Arg); 1061 if (CostIt == SROACosts.end()) 1062 return; 1063 1064 increment(InlineCostFeatureIndex::SROALosses, CostIt->second); 1065 SROACostSavingOpportunities -= CostIt->second; 1066 SROACosts.erase(CostIt); 1067 } 1068 1069 void onDisableLoadElimination() override { 1070 set(InlineCostFeatureIndex::LoadElimination, 1); 1071 } 1072 1073 void onCallPenalty() override { 1074 increment(InlineCostFeatureIndex::CallPenalty, CallPenalty); 1075 } 1076 1077 void onCallArgumentSetup(const CallBase &Call) override { 1078 increment(InlineCostFeatureIndex::CallArgumentSetup, 1079 Call.arg_size() * InlineConstants::InstrCost); 1080 } 1081 1082 void onLoadRelativeIntrinsic() override { 1083 increment(InlineCostFeatureIndex::LoadRelativeIntrinsic, 1084 3 * InlineConstants::InstrCost); 1085 } 1086 1087 void onLoweredCall(Function *F, CallBase &Call, 1088 bool IsIndirectCall) override { 1089 increment(InlineCostFeatureIndex::LoweredCallArgSetup, 1090 Call.arg_size() * InlineConstants::InstrCost); 1091 1092 if (IsIndirectCall) { 1093 InlineParams IndirectCallParams = {/* DefaultThreshold*/ 0, 1094 /*HintThreshold*/ {}, 1095 /*ColdThreshold*/ {}, 1096 /*OptSizeThreshold*/ {}, 1097 /*OptMinSizeThreshold*/ {}, 1098 /*HotCallSiteThreshold*/ {}, 1099 /*LocallyHotCallSiteThreshold*/ {}, 1100 /*ColdCallSiteThreshold*/ {}, 1101 /*ComputeFullInlineCost*/ true, 1102 /*EnableDeferral*/ true}; 1103 IndirectCallParams.DefaultThreshold = 1104 InlineConstants::IndirectCallThreshold; 1105 1106 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 1107 GetAssumptionCache, GetBFI, PSI, ORE, false, 1108 true); 1109 if (CA.analyze().isSuccess()) { 1110 increment(InlineCostFeatureIndex::NestedInlineCostEstimate, 1111 CA.getCost()); 1112 increment(InlineCostFeatureIndex::NestedInlines, 1); 1113 } 1114 } else { 1115 onCallPenalty(); 1116 } 1117 } 1118 1119 void onFinalizeSwitch(unsigned JumpTableSize, 1120 unsigned NumCaseCluster) override { 1121 1122 if (JumpTableSize) { 1123 int64_t JTCost = 1124 static_cast<int64_t>(JumpTableSize) * InlineConstants::InstrCost + 1125 JTCostMultiplier * InlineConstants::InstrCost; 1126 increment(InlineCostFeatureIndex::JumpTablePenalty, JTCost); 1127 return; 1128 } 1129 1130 if (NumCaseCluster <= 3) { 1131 increment(InlineCostFeatureIndex::CaseClusterPenalty, 1132 NumCaseCluster * CaseClusterCostMultiplier * 1133 InlineConstants::InstrCost); 1134 return; 1135 } 1136 1137 int64_t ExpectedNumberOfCompare = 1138 getExpectedNumberOfCompare(NumCaseCluster); 1139 1140 int64_t SwitchCost = ExpectedNumberOfCompare * SwitchCostMultiplier * 1141 InlineConstants::InstrCost; 1142 increment(InlineCostFeatureIndex::SwitchPenalty, SwitchCost); 1143 } 1144 1145 void onMissedSimplification() override { 1146 increment(InlineCostFeatureIndex::UnsimplifiedCommonInstructions, 1147 InlineConstants::InstrCost); 1148 } 1149 1150 void onInitializeSROAArg(AllocaInst *Arg) override { SROACosts[Arg] = 0; } 1151 void onAggregateSROAUse(AllocaInst *Arg) override { 1152 SROACosts.find(Arg)->second += InlineConstants::InstrCost; 1153 SROACostSavingOpportunities += InlineConstants::InstrCost; 1154 } 1155 1156 void onBlockAnalyzed(const BasicBlock *BB) override { 1157 if (BB->getTerminator()->getNumSuccessors() > 1) 1158 set(InlineCostFeatureIndex::IsMultipleBlocks, 1); 1159 Threshold -= SingleBBBonus; 1160 } 1161 1162 InlineResult finalizeAnalysis() override { 1163 auto *Caller = CandidateCall.getFunction(); 1164 if (Caller->hasMinSize()) { 1165 DominatorTree DT(F); 1166 LoopInfo LI(DT); 1167 for (Loop *L : LI) { 1168 // Ignore loops that will not be executed 1169 if (DeadBlocks.count(L->getHeader())) 1170 continue; 1171 increment(InlineCostFeatureIndex::NumLoops, 1172 InlineConstants::LoopPenalty); 1173 } 1174 } 1175 set(InlineCostFeatureIndex::DeadBlocks, DeadBlocks.size()); 1176 set(InlineCostFeatureIndex::SimplifiedInstructions, 1177 NumInstructionsSimplified); 1178 set(InlineCostFeatureIndex::ConstantArgs, NumConstantArgs); 1179 set(InlineCostFeatureIndex::ConstantOffsetPtrArgs, 1180 NumConstantOffsetPtrArgs); 1181 set(InlineCostFeatureIndex::SROASavings, SROACostSavingOpportunities); 1182 1183 if (NumVectorInstructions <= NumInstructions / 10) 1184 Threshold -= VectorBonus; 1185 else if (NumVectorInstructions <= NumInstructions / 2) 1186 Threshold -= VectorBonus / 2; 1187 1188 set(InlineCostFeatureIndex::Threshold, Threshold); 1189 1190 return InlineResult::success(); 1191 } 1192 1193 bool shouldStop() override { return false; } 1194 1195 void onLoadEliminationOpportunity() override { 1196 increment(InlineCostFeatureIndex::LoadElimination, 1); 1197 } 1198 1199 InlineResult onAnalysisStart() override { 1200 increment(InlineCostFeatureIndex::CallSiteCost, 1201 -1 * getCallsiteCost(this->CandidateCall, DL)); 1202 1203 set(InlineCostFeatureIndex::ColdCcPenalty, 1204 (F.getCallingConv() == CallingConv::Cold)); 1205 1206 // FIXME: we shouldn't repeat this logic in both the Features and Cost 1207 // analyzer - instead, we should abstract it to a common method in the 1208 // CallAnalyzer 1209 int SingleBBBonusPercent = 50; 1210 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1211 Threshold += TTI.adjustInliningThreshold(&CandidateCall); 1212 Threshold *= TTI.getInliningThresholdMultiplier(); 1213 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1214 VectorBonus = Threshold * VectorBonusPercent / 100; 1215 Threshold += (SingleBBBonus + VectorBonus); 1216 1217 return InlineResult::success(); 1218 } 1219 1220 public: 1221 InlineCostFeaturesAnalyzer( 1222 const TargetTransformInfo &TTI, 1223 function_ref<AssumptionCache &(Function &)> &GetAssumptionCache, 1224 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1225 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, Function &Callee, 1226 CallBase &Call) 1227 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI) {} 1228 1229 const InlineCostFeatures &features() const { return Cost; } 1230 }; 1231 1232 } // namespace 1233 1234 /// Test whether the given value is an Alloca-derived function argument. 1235 bool CallAnalyzer::isAllocaDerivedArg(Value *V) { 1236 return SROAArgValues.count(V); 1237 } 1238 1239 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) { 1240 onDisableSROA(SROAArg); 1241 EnabledSROAAllocas.erase(SROAArg); 1242 disableLoadElimination(); 1243 } 1244 1245 void InlineCostAnnotationWriter::emitInstructionAnnot( 1246 const Instruction *I, formatted_raw_ostream &OS) { 1247 // The cost of inlining of the given instruction is printed always. 1248 // The threshold delta is printed only when it is non-zero. It happens 1249 // when we decided to give a bonus at a particular instruction. 1250 Optional<InstructionCostDetail> Record = ICCA->getCostDetails(I); 1251 if (!Record) 1252 OS << "; No analysis for the instruction"; 1253 else { 1254 OS << "; cost before = " << Record->CostBefore 1255 << ", cost after = " << Record->CostAfter 1256 << ", threshold before = " << Record->ThresholdBefore 1257 << ", threshold after = " << Record->ThresholdAfter << ", "; 1258 OS << "cost delta = " << Record->getCostDelta(); 1259 if (Record->hasThresholdChanged()) 1260 OS << ", threshold delta = " << Record->getThresholdDelta(); 1261 } 1262 auto C = ICCA->getSimplifiedValue(const_cast<Instruction *>(I)); 1263 if (C) { 1264 OS << ", simplified to "; 1265 C.getValue()->print(OS, true); 1266 } 1267 OS << "\n"; 1268 } 1269 1270 /// If 'V' maps to a SROA candidate, disable SROA for it. 1271 void CallAnalyzer::disableSROA(Value *V) { 1272 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 1273 disableSROAForArg(SROAArg); 1274 } 1275 } 1276 1277 void CallAnalyzer::disableLoadElimination() { 1278 if (EnableLoadElimination) { 1279 onDisableLoadElimination(); 1280 EnableLoadElimination = false; 1281 } 1282 } 1283 1284 /// Accumulate a constant GEP offset into an APInt if possible. 1285 /// 1286 /// Returns false if unable to compute the offset for any reason. Respects any 1287 /// simplified values known during the analysis of this callsite. 1288 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { 1289 unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType()); 1290 assert(IntPtrWidth == Offset.getBitWidth()); 1291 1292 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1293 GTI != GTE; ++GTI) { 1294 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 1295 if (!OpC) 1296 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) 1297 OpC = dyn_cast<ConstantInt>(SimpleOp); 1298 if (!OpC) 1299 return false; 1300 if (OpC->isZero()) 1301 continue; 1302 1303 // Handle a struct index, which adds its field offset to the pointer. 1304 if (StructType *STy = GTI.getStructTypeOrNull()) { 1305 unsigned ElementIdx = OpC->getZExtValue(); 1306 const StructLayout *SL = DL.getStructLayout(STy); 1307 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); 1308 continue; 1309 } 1310 1311 APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType())); 1312 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; 1313 } 1314 return true; 1315 } 1316 1317 /// Use TTI to check whether a GEP is free. 1318 /// 1319 /// Respects any simplified values known during the analysis of this callsite. 1320 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) { 1321 SmallVector<Value *, 4> Operands; 1322 Operands.push_back(GEP.getOperand(0)); 1323 for (const Use &Op : GEP.indices()) 1324 if (Constant *SimpleOp = SimplifiedValues.lookup(Op)) 1325 Operands.push_back(SimpleOp); 1326 else 1327 Operands.push_back(Op); 1328 return TTI.getUserCost(&GEP, Operands, 1329 TargetTransformInfo::TCK_SizeAndLatency) == 1330 TargetTransformInfo::TCC_Free; 1331 } 1332 1333 bool CallAnalyzer::visitAlloca(AllocaInst &I) { 1334 disableSROA(I.getOperand(0)); 1335 1336 // Check whether inlining will turn a dynamic alloca into a static 1337 // alloca and handle that case. 1338 if (I.isArrayAllocation()) { 1339 Constant *Size = SimplifiedValues.lookup(I.getArraySize()); 1340 if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) { 1341 // Sometimes a dynamic alloca could be converted into a static alloca 1342 // after this constant prop, and become a huge static alloca on an 1343 // unconditional CFG path. Avoid inlining if this is going to happen above 1344 // a threshold. 1345 // FIXME: If the threshold is removed or lowered too much, we could end up 1346 // being too pessimistic and prevent inlining non-problematic code. This 1347 // could result in unintended perf regressions. A better overall strategy 1348 // is needed to track stack usage during inlining. 1349 Type *Ty = I.getAllocatedType(); 1350 AllocatedSize = SaturatingMultiplyAdd( 1351 AllocSize->getLimitedValue(), 1352 DL.getTypeAllocSize(Ty).getKnownMinSize(), AllocatedSize); 1353 if (AllocatedSize > InlineConstants::MaxSimplifiedDynamicAllocaToInline) 1354 HasDynamicAlloca = true; 1355 return false; 1356 } 1357 } 1358 1359 // Accumulate the allocated size. 1360 if (I.isStaticAlloca()) { 1361 Type *Ty = I.getAllocatedType(); 1362 AllocatedSize = 1363 SaturatingAdd(DL.getTypeAllocSize(Ty).getKnownMinSize(), AllocatedSize); 1364 } 1365 1366 // FIXME: This is overly conservative. Dynamic allocas are inefficient for 1367 // a variety of reasons, and so we would like to not inline them into 1368 // functions which don't currently have a dynamic alloca. This simply 1369 // disables inlining altogether in the presence of a dynamic alloca. 1370 if (!I.isStaticAlloca()) 1371 HasDynamicAlloca = true; 1372 1373 return false; 1374 } 1375 1376 bool CallAnalyzer::visitPHI(PHINode &I) { 1377 // FIXME: We need to propagate SROA *disabling* through phi nodes, even 1378 // though we don't want to propagate it's bonuses. The idea is to disable 1379 // SROA if it *might* be used in an inappropriate manner. 1380 1381 // Phi nodes are always zero-cost. 1382 // FIXME: Pointer sizes may differ between different address spaces, so do we 1383 // need to use correct address space in the call to getPointerSizeInBits here? 1384 // Or could we skip the getPointerSizeInBits call completely? As far as I can 1385 // see the ZeroOffset is used as a dummy value, so we can probably use any 1386 // bit width for the ZeroOffset? 1387 APInt ZeroOffset = APInt::getZero(DL.getPointerSizeInBits(0)); 1388 bool CheckSROA = I.getType()->isPointerTy(); 1389 1390 // Track the constant or pointer with constant offset we've seen so far. 1391 Constant *FirstC = nullptr; 1392 std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset}; 1393 Value *FirstV = nullptr; 1394 1395 for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) { 1396 BasicBlock *Pred = I.getIncomingBlock(i); 1397 // If the incoming block is dead, skip the incoming block. 1398 if (DeadBlocks.count(Pred)) 1399 continue; 1400 // If the parent block of phi is not the known successor of the incoming 1401 // block, skip the incoming block. 1402 BasicBlock *KnownSuccessor = KnownSuccessors[Pred]; 1403 if (KnownSuccessor && KnownSuccessor != I.getParent()) 1404 continue; 1405 1406 Value *V = I.getIncomingValue(i); 1407 // If the incoming value is this phi itself, skip the incoming value. 1408 if (&I == V) 1409 continue; 1410 1411 Constant *C = dyn_cast<Constant>(V); 1412 if (!C) 1413 C = SimplifiedValues.lookup(V); 1414 1415 std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset}; 1416 if (!C && CheckSROA) 1417 BaseAndOffset = ConstantOffsetPtrs.lookup(V); 1418 1419 if (!C && !BaseAndOffset.first) 1420 // The incoming value is neither a constant nor a pointer with constant 1421 // offset, exit early. 1422 return true; 1423 1424 if (FirstC) { 1425 if (FirstC == C) 1426 // If we've seen a constant incoming value before and it is the same 1427 // constant we see this time, continue checking the next incoming value. 1428 continue; 1429 // Otherwise early exit because we either see a different constant or saw 1430 // a constant before but we have a pointer with constant offset this time. 1431 return true; 1432 } 1433 1434 if (FirstV) { 1435 // The same logic as above, but check pointer with constant offset here. 1436 if (FirstBaseAndOffset == BaseAndOffset) 1437 continue; 1438 return true; 1439 } 1440 1441 if (C) { 1442 // This is the 1st time we've seen a constant, record it. 1443 FirstC = C; 1444 continue; 1445 } 1446 1447 // The remaining case is that this is the 1st time we've seen a pointer with 1448 // constant offset, record it. 1449 FirstV = V; 1450 FirstBaseAndOffset = BaseAndOffset; 1451 } 1452 1453 // Check if we can map phi to a constant. 1454 if (FirstC) { 1455 SimplifiedValues[&I] = FirstC; 1456 return true; 1457 } 1458 1459 // Check if we can map phi to a pointer with constant offset. 1460 if (FirstBaseAndOffset.first) { 1461 ConstantOffsetPtrs[&I] = FirstBaseAndOffset; 1462 1463 if (auto *SROAArg = getSROAArgForValueOrNull(FirstV)) 1464 SROAArgValues[&I] = SROAArg; 1465 } 1466 1467 return true; 1468 } 1469 1470 /// Check we can fold GEPs of constant-offset call site argument pointers. 1471 /// This requires target data and inbounds GEPs. 1472 /// 1473 /// \return true if the specified GEP can be folded. 1474 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) { 1475 // Check if we have a base + offset for the pointer. 1476 std::pair<Value *, APInt> BaseAndOffset = 1477 ConstantOffsetPtrs.lookup(I.getPointerOperand()); 1478 if (!BaseAndOffset.first) 1479 return false; 1480 1481 // Check if the offset of this GEP is constant, and if so accumulate it 1482 // into Offset. 1483 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) 1484 return false; 1485 1486 // Add the result as a new mapping to Base + Offset. 1487 ConstantOffsetPtrs[&I] = BaseAndOffset; 1488 1489 return true; 1490 } 1491 1492 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { 1493 auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand()); 1494 1495 // Lambda to check whether a GEP's indices are all constant. 1496 auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) { 1497 for (const Use &Op : GEP.indices()) 1498 if (!isa<Constant>(Op) && !SimplifiedValues.lookup(Op)) 1499 return false; 1500 return true; 1501 }; 1502 1503 if (!DisableGEPConstOperand) 1504 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1505 SmallVector<Constant *, 2> Indices; 1506 for (unsigned int Index = 1; Index < COps.size(); ++Index) 1507 Indices.push_back(COps[Index]); 1508 return ConstantExpr::getGetElementPtr( 1509 I.getSourceElementType(), COps[0], Indices, I.isInBounds()); 1510 })) 1511 return true; 1512 1513 if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) { 1514 if (SROAArg) 1515 SROAArgValues[&I] = SROAArg; 1516 1517 // Constant GEPs are modeled as free. 1518 return true; 1519 } 1520 1521 // Variable GEPs will require math and will disable SROA. 1522 if (SROAArg) 1523 disableSROAForArg(SROAArg); 1524 return isGEPFree(I); 1525 } 1526 1527 /// Simplify \p I if its operands are constants and update SimplifiedValues. 1528 /// \p Evaluate is a callable specific to instruction type that evaluates the 1529 /// instruction when all the operands are constants. 1530 template <typename Callable> 1531 bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) { 1532 SmallVector<Constant *, 2> COps; 1533 for (Value *Op : I.operands()) { 1534 Constant *COp = dyn_cast<Constant>(Op); 1535 if (!COp) 1536 COp = SimplifiedValues.lookup(Op); 1537 if (!COp) 1538 return false; 1539 COps.push_back(COp); 1540 } 1541 auto *C = Evaluate(COps); 1542 if (!C) 1543 return false; 1544 SimplifiedValues[&I] = C; 1545 return true; 1546 } 1547 1548 /// Try to simplify a call to llvm.is.constant. 1549 /// 1550 /// Duplicate the argument checking from CallAnalyzer::simplifyCallSite since 1551 /// we expect calls of this specific intrinsic to be infrequent. 1552 /// 1553 /// FIXME: Given that we know CB's parent (F) caller 1554 /// (CandidateCall->getParent()->getParent()), we might be able to determine 1555 /// whether inlining F into F's caller would change how the call to 1556 /// llvm.is.constant would evaluate. 1557 bool CallAnalyzer::simplifyIntrinsicCallIsConstant(CallBase &CB) { 1558 Value *Arg = CB.getArgOperand(0); 1559 auto *C = dyn_cast<Constant>(Arg); 1560 1561 if (!C) 1562 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(Arg)); 1563 1564 Type *RT = CB.getFunctionType()->getReturnType(); 1565 SimplifiedValues[&CB] = ConstantInt::get(RT, C ? 1 : 0); 1566 return true; 1567 } 1568 1569 bool CallAnalyzer::visitBitCast(BitCastInst &I) { 1570 // Propagate constants through bitcasts. 1571 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1572 return ConstantExpr::getBitCast(COps[0], I.getType()); 1573 })) 1574 return true; 1575 1576 // Track base/offsets through casts 1577 std::pair<Value *, APInt> BaseAndOffset = 1578 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1579 // Casts don't change the offset, just wrap it up. 1580 if (BaseAndOffset.first) 1581 ConstantOffsetPtrs[&I] = BaseAndOffset; 1582 1583 // Also look for SROA candidates here. 1584 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1585 SROAArgValues[&I] = SROAArg; 1586 1587 // Bitcasts are always zero cost. 1588 return true; 1589 } 1590 1591 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { 1592 // Propagate constants through ptrtoint. 1593 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1594 return ConstantExpr::getPtrToInt(COps[0], I.getType()); 1595 })) 1596 return true; 1597 1598 // Track base/offset pairs when converted to a plain integer provided the 1599 // integer is large enough to represent the pointer. 1600 unsigned IntegerSize = I.getType()->getScalarSizeInBits(); 1601 unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace(); 1602 if (IntegerSize == DL.getPointerSizeInBits(AS)) { 1603 std::pair<Value *, APInt> BaseAndOffset = 1604 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1605 if (BaseAndOffset.first) 1606 ConstantOffsetPtrs[&I] = BaseAndOffset; 1607 } 1608 1609 // This is really weird. Technically, ptrtoint will disable SROA. However, 1610 // unless that ptrtoint is *used* somewhere in the live basic blocks after 1611 // inlining, it will be nuked, and SROA should proceed. All of the uses which 1612 // would block SROA would also block SROA if applied directly to a pointer, 1613 // and so we can just add the integer in here. The only places where SROA is 1614 // preserved either cannot fire on an integer, or won't in-and-of themselves 1615 // disable SROA (ext) w/o some later use that we would see and disable. 1616 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1617 SROAArgValues[&I] = SROAArg; 1618 1619 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1620 TargetTransformInfo::TCC_Free; 1621 } 1622 1623 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { 1624 // Propagate constants through ptrtoint. 1625 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1626 return ConstantExpr::getIntToPtr(COps[0], I.getType()); 1627 })) 1628 return true; 1629 1630 // Track base/offset pairs when round-tripped through a pointer without 1631 // modifications provided the integer is not too large. 1632 Value *Op = I.getOperand(0); 1633 unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); 1634 if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) { 1635 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); 1636 if (BaseAndOffset.first) 1637 ConstantOffsetPtrs[&I] = BaseAndOffset; 1638 } 1639 1640 // "Propagate" SROA here in the same manner as we do for ptrtoint above. 1641 if (auto *SROAArg = getSROAArgForValueOrNull(Op)) 1642 SROAArgValues[&I] = SROAArg; 1643 1644 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1645 TargetTransformInfo::TCC_Free; 1646 } 1647 1648 bool CallAnalyzer::visitCastInst(CastInst &I) { 1649 // Propagate constants through casts. 1650 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1651 return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType()); 1652 })) 1653 return true; 1654 1655 // Disable SROA in the face of arbitrary casts we don't explicitly list 1656 // elsewhere. 1657 disableSROA(I.getOperand(0)); 1658 1659 // If this is a floating-point cast, and the target says this operation 1660 // is expensive, this may eventually become a library call. Treat the cost 1661 // as such. 1662 switch (I.getOpcode()) { 1663 case Instruction::FPTrunc: 1664 case Instruction::FPExt: 1665 case Instruction::UIToFP: 1666 case Instruction::SIToFP: 1667 case Instruction::FPToUI: 1668 case Instruction::FPToSI: 1669 if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) 1670 onCallPenalty(); 1671 break; 1672 default: 1673 break; 1674 } 1675 1676 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1677 TargetTransformInfo::TCC_Free; 1678 } 1679 1680 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { 1681 return CandidateCall.paramHasAttr(A->getArgNo(), Attr); 1682 } 1683 1684 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { 1685 // Does the *call site* have the NonNull attribute set on an argument? We 1686 // use the attribute on the call site to memoize any analysis done in the 1687 // caller. This will also trip if the callee function has a non-null 1688 // parameter attribute, but that's a less interesting case because hopefully 1689 // the callee would already have been simplified based on that. 1690 if (Argument *A = dyn_cast<Argument>(V)) 1691 if (paramHasAttr(A, Attribute::NonNull)) 1692 return true; 1693 1694 // Is this an alloca in the caller? This is distinct from the attribute case 1695 // above because attributes aren't updated within the inliner itself and we 1696 // always want to catch the alloca derived case. 1697 if (isAllocaDerivedArg(V)) 1698 // We can actually predict the result of comparisons between an 1699 // alloca-derived value and null. Note that this fires regardless of 1700 // SROA firing. 1701 return true; 1702 1703 return false; 1704 } 1705 1706 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) { 1707 // If the normal destination of the invoke or the parent block of the call 1708 // site is unreachable-terminated, there is little point in inlining this 1709 // unless there is literally zero cost. 1710 // FIXME: Note that it is possible that an unreachable-terminated block has a 1711 // hot entry. For example, in below scenario inlining hot_call_X() may be 1712 // beneficial : 1713 // main() { 1714 // hot_call_1(); 1715 // ... 1716 // hot_call_N() 1717 // exit(0); 1718 // } 1719 // For now, we are not handling this corner case here as it is rare in real 1720 // code. In future, we should elaborate this based on BPI and BFI in more 1721 // general threshold adjusting heuristics in updateThreshold(). 1722 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 1723 if (isa<UnreachableInst>(II->getNormalDest()->getTerminator())) 1724 return false; 1725 } else if (isa<UnreachableInst>(Call.getParent()->getTerminator())) 1726 return false; 1727 1728 return true; 1729 } 1730 1731 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call, 1732 BlockFrequencyInfo *CallerBFI) { 1733 // If global profile summary is available, then callsite's coldness is 1734 // determined based on that. 1735 if (PSI && PSI->hasProfileSummary()) 1736 return PSI->isColdCallSite(Call, CallerBFI); 1737 1738 // Otherwise we need BFI to be available. 1739 if (!CallerBFI) 1740 return false; 1741 1742 // Determine if the callsite is cold relative to caller's entry. We could 1743 // potentially cache the computation of scaled entry frequency, but the added 1744 // complexity is not worth it unless this scaling shows up high in the 1745 // profiles. 1746 const BranchProbability ColdProb(ColdCallSiteRelFreq, 100); 1747 auto CallSiteBB = Call.getParent(); 1748 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); 1749 auto CallerEntryFreq = 1750 CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock())); 1751 return CallSiteFreq < CallerEntryFreq * ColdProb; 1752 } 1753 1754 Optional<int> 1755 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call, 1756 BlockFrequencyInfo *CallerBFI) { 1757 1758 // If global profile summary is available, then callsite's hotness is 1759 // determined based on that. 1760 if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI)) 1761 return Params.HotCallSiteThreshold; 1762 1763 // Otherwise we need BFI to be available and to have a locally hot callsite 1764 // threshold. 1765 if (!CallerBFI || !Params.LocallyHotCallSiteThreshold) 1766 return None; 1767 1768 // Determine if the callsite is hot relative to caller's entry. We could 1769 // potentially cache the computation of scaled entry frequency, but the added 1770 // complexity is not worth it unless this scaling shows up high in the 1771 // profiles. 1772 auto CallSiteBB = Call.getParent(); 1773 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency(); 1774 auto CallerEntryFreq = CallerBFI->getEntryFreq(); 1775 if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq) 1776 return Params.LocallyHotCallSiteThreshold; 1777 1778 // Otherwise treat it normally. 1779 return None; 1780 } 1781 1782 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) { 1783 // If no size growth is allowed for this inlining, set Threshold to 0. 1784 if (!allowSizeGrowth(Call)) { 1785 Threshold = 0; 1786 return; 1787 } 1788 1789 Function *Caller = Call.getCaller(); 1790 1791 // return min(A, B) if B is valid. 1792 auto MinIfValid = [](int A, Optional<int> B) { 1793 return B ? std::min(A, B.getValue()) : A; 1794 }; 1795 1796 // return max(A, B) if B is valid. 1797 auto MaxIfValid = [](int A, Optional<int> B) { 1798 return B ? std::max(A, B.getValue()) : A; 1799 }; 1800 1801 // Various bonus percentages. These are multiplied by Threshold to get the 1802 // bonus values. 1803 // SingleBBBonus: This bonus is applied if the callee has a single reachable 1804 // basic block at the given callsite context. This is speculatively applied 1805 // and withdrawn if more than one basic block is seen. 1806 // 1807 // LstCallToStaticBonus: This large bonus is applied to ensure the inlining 1808 // of the last call to a static function as inlining such functions is 1809 // guaranteed to reduce code size. 1810 // 1811 // These bonus percentages may be set to 0 based on properties of the caller 1812 // and the callsite. 1813 int SingleBBBonusPercent = 50; 1814 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1815 int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus; 1816 1817 // Lambda to set all the above bonus and bonus percentages to 0. 1818 auto DisallowAllBonuses = [&]() { 1819 SingleBBBonusPercent = 0; 1820 VectorBonusPercent = 0; 1821 LastCallToStaticBonus = 0; 1822 }; 1823 1824 // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available 1825 // and reduce the threshold if the caller has the necessary attribute. 1826 if (Caller->hasMinSize()) { 1827 Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold); 1828 // For minsize, we want to disable the single BB bonus and the vector 1829 // bonuses, but not the last-call-to-static bonus. Inlining the last call to 1830 // a static function will, at the minimum, eliminate the parameter setup and 1831 // call/return instructions. 1832 SingleBBBonusPercent = 0; 1833 VectorBonusPercent = 0; 1834 } else if (Caller->hasOptSize()) 1835 Threshold = MinIfValid(Threshold, Params.OptSizeThreshold); 1836 1837 // Adjust the threshold based on inlinehint attribute and profile based 1838 // hotness information if the caller does not have MinSize attribute. 1839 if (!Caller->hasMinSize()) { 1840 if (Callee.hasFnAttribute(Attribute::InlineHint)) 1841 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1842 1843 // FIXME: After switching to the new passmanager, simplify the logic below 1844 // by checking only the callsite hotness/coldness as we will reliably 1845 // have local profile information. 1846 // 1847 // Callsite hotness and coldness can be determined if sample profile is 1848 // used (which adds hotness metadata to calls) or if caller's 1849 // BlockFrequencyInfo is available. 1850 BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr; 1851 auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI); 1852 if (!Caller->hasOptSize() && HotCallSiteThreshold) { 1853 LLVM_DEBUG(dbgs() << "Hot callsite.\n"); 1854 // FIXME: This should update the threshold only if it exceeds the 1855 // current threshold, but AutoFDO + ThinLTO currently relies on this 1856 // behavior to prevent inlining of hot callsites during ThinLTO 1857 // compile phase. 1858 Threshold = HotCallSiteThreshold.getValue(); 1859 } else if (isColdCallSite(Call, CallerBFI)) { 1860 LLVM_DEBUG(dbgs() << "Cold callsite.\n"); 1861 // Do not apply bonuses for a cold callsite including the 1862 // LastCallToStatic bonus. While this bonus might result in code size 1863 // reduction, it can cause the size of a non-cold caller to increase 1864 // preventing it from being inlined. 1865 DisallowAllBonuses(); 1866 Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold); 1867 } else if (PSI) { 1868 // Use callee's global profile information only if we have no way of 1869 // determining this via callsite information. 1870 if (PSI->isFunctionEntryHot(&Callee)) { 1871 LLVM_DEBUG(dbgs() << "Hot callee.\n"); 1872 // If callsite hotness can not be determined, we may still know 1873 // that the callee is hot and treat it as a weaker hint for threshold 1874 // increase. 1875 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1876 } else if (PSI->isFunctionEntryCold(&Callee)) { 1877 LLVM_DEBUG(dbgs() << "Cold callee.\n"); 1878 // Do not apply bonuses for a cold callee including the 1879 // LastCallToStatic bonus. While this bonus might result in code size 1880 // reduction, it can cause the size of a non-cold caller to increase 1881 // preventing it from being inlined. 1882 DisallowAllBonuses(); 1883 Threshold = MinIfValid(Threshold, Params.ColdThreshold); 1884 } 1885 } 1886 } 1887 1888 Threshold += TTI.adjustInliningThreshold(&Call); 1889 1890 // Finally, take the target-specific inlining threshold multiplier into 1891 // account. 1892 Threshold *= TTI.getInliningThresholdMultiplier(); 1893 1894 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1895 VectorBonus = Threshold * VectorBonusPercent / 100; 1896 1897 bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneLiveUse() && 1898 &F == Call.getCalledFunction(); 1899 // If there is only one call of the function, and it has internal linkage, 1900 // the cost of inlining it drops dramatically. It may seem odd to update 1901 // Cost in updateThreshold, but the bonus depends on the logic in this method. 1902 if (OnlyOneCallAndLocalLinkage) 1903 Cost -= LastCallToStaticBonus; 1904 } 1905 1906 bool CallAnalyzer::visitCmpInst(CmpInst &I) { 1907 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1908 // First try to handle simplified comparisons. 1909 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1910 return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]); 1911 })) 1912 return true; 1913 1914 if (I.getOpcode() == Instruction::FCmp) 1915 return false; 1916 1917 // Otherwise look for a comparison between constant offset pointers with 1918 // a common base. 1919 Value *LHSBase, *RHSBase; 1920 APInt LHSOffset, RHSOffset; 1921 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1922 if (LHSBase) { 1923 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1924 if (RHSBase && LHSBase == RHSBase) { 1925 // We have common bases, fold the icmp to a constant based on the 1926 // offsets. 1927 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1928 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1929 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { 1930 SimplifiedValues[&I] = C; 1931 ++NumConstantPtrCmps; 1932 return true; 1933 } 1934 } 1935 } 1936 1937 // If the comparison is an equality comparison with null, we can simplify it 1938 // if we know the value (argument) can't be null 1939 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) && 1940 isKnownNonNullInCallee(I.getOperand(0))) { 1941 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; 1942 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) 1943 : ConstantInt::getFalse(I.getType()); 1944 return true; 1945 } 1946 return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1))); 1947 } 1948 1949 bool CallAnalyzer::visitSub(BinaryOperator &I) { 1950 // Try to handle a special case: we can fold computing the difference of two 1951 // constant-related pointers. 1952 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1953 Value *LHSBase, *RHSBase; 1954 APInt LHSOffset, RHSOffset; 1955 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1956 if (LHSBase) { 1957 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1958 if (RHSBase && LHSBase == RHSBase) { 1959 // We have common bases, fold the subtract to a constant based on the 1960 // offsets. 1961 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1962 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1963 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { 1964 SimplifiedValues[&I] = C; 1965 ++NumConstantPtrDiffs; 1966 return true; 1967 } 1968 } 1969 } 1970 1971 // Otherwise, fall back to the generic logic for simplifying and handling 1972 // instructions. 1973 return Base::visitSub(I); 1974 } 1975 1976 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { 1977 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1978 Constant *CLHS = dyn_cast<Constant>(LHS); 1979 if (!CLHS) 1980 CLHS = SimplifiedValues.lookup(LHS); 1981 Constant *CRHS = dyn_cast<Constant>(RHS); 1982 if (!CRHS) 1983 CRHS = SimplifiedValues.lookup(RHS); 1984 1985 Value *SimpleV = nullptr; 1986 if (auto FI = dyn_cast<FPMathOperator>(&I)) 1987 SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, 1988 FI->getFastMathFlags(), DL); 1989 else 1990 SimpleV = 1991 SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL); 1992 1993 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1994 SimplifiedValues[&I] = C; 1995 1996 if (SimpleV) 1997 return true; 1998 1999 // Disable any SROA on arguments to arbitrary, unsimplified binary operators. 2000 disableSROA(LHS); 2001 disableSROA(RHS); 2002 2003 // If the instruction is floating point, and the target says this operation 2004 // is expensive, this may eventually become a library call. Treat the cost 2005 // as such. Unless it's fneg which can be implemented with an xor. 2006 using namespace llvm::PatternMatch; 2007 if (I.getType()->isFloatingPointTy() && 2008 TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive && 2009 !match(&I, m_FNeg(m_Value()))) 2010 onCallPenalty(); 2011 2012 return false; 2013 } 2014 2015 bool CallAnalyzer::visitFNeg(UnaryOperator &I) { 2016 Value *Op = I.getOperand(0); 2017 Constant *COp = dyn_cast<Constant>(Op); 2018 if (!COp) 2019 COp = SimplifiedValues.lookup(Op); 2020 2021 Value *SimpleV = SimplifyFNegInst( 2022 COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL); 2023 2024 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 2025 SimplifiedValues[&I] = C; 2026 2027 if (SimpleV) 2028 return true; 2029 2030 // Disable any SROA on arguments to arbitrary, unsimplified fneg. 2031 disableSROA(Op); 2032 2033 return false; 2034 } 2035 2036 bool CallAnalyzer::visitLoad(LoadInst &I) { 2037 if (handleSROA(I.getPointerOperand(), I.isSimple())) 2038 return true; 2039 2040 // If the data is already loaded from this address and hasn't been clobbered 2041 // by any stores or calls, this load is likely to be redundant and can be 2042 // eliminated. 2043 if (EnableLoadElimination && 2044 !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) { 2045 onLoadEliminationOpportunity(); 2046 return true; 2047 } 2048 2049 return false; 2050 } 2051 2052 bool CallAnalyzer::visitStore(StoreInst &I) { 2053 if (handleSROA(I.getPointerOperand(), I.isSimple())) 2054 return true; 2055 2056 // The store can potentially clobber loads and prevent repeated loads from 2057 // being eliminated. 2058 // FIXME: 2059 // 1. We can probably keep an initial set of eliminatable loads substracted 2060 // from the cost even when we finally see a store. We just need to disable 2061 // *further* accumulation of elimination savings. 2062 // 2. We should probably at some point thread MemorySSA for the callee into 2063 // this and then use that to actually compute *really* precise savings. 2064 disableLoadElimination(); 2065 return false; 2066 } 2067 2068 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { 2069 // Constant folding for extract value is trivial. 2070 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 2071 return ConstantExpr::getExtractValue(COps[0], I.getIndices()); 2072 })) 2073 return true; 2074 2075 // SROA can't look through these, but they may be free. 2076 return Base::visitExtractValue(I); 2077 } 2078 2079 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { 2080 // Constant folding for insert value is trivial. 2081 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 2082 return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0], 2083 /*InsertedValueOperand*/ COps[1], 2084 I.getIndices()); 2085 })) 2086 return true; 2087 2088 // SROA can't look through these, but they may be free. 2089 return Base::visitInsertValue(I); 2090 } 2091 2092 /// Try to simplify a call site. 2093 /// 2094 /// Takes a concrete function and callsite and tries to actually simplify it by 2095 /// analyzing the arguments and call itself with instsimplify. Returns true if 2096 /// it has simplified the callsite to some other entity (a constant), making it 2097 /// free. 2098 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) { 2099 // FIXME: Using the instsimplify logic directly for this is inefficient 2100 // because we have to continually rebuild the argument list even when no 2101 // simplifications can be performed. Until that is fixed with remapping 2102 // inside of instsimplify, directly constant fold calls here. 2103 if (!canConstantFoldCallTo(&Call, F)) 2104 return false; 2105 2106 // Try to re-map the arguments to constants. 2107 SmallVector<Constant *, 4> ConstantArgs; 2108 ConstantArgs.reserve(Call.arg_size()); 2109 for (Value *I : Call.args()) { 2110 Constant *C = dyn_cast<Constant>(I); 2111 if (!C) 2112 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I)); 2113 if (!C) 2114 return false; // This argument doesn't map to a constant. 2115 2116 ConstantArgs.push_back(C); 2117 } 2118 if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) { 2119 SimplifiedValues[&Call] = C; 2120 return true; 2121 } 2122 2123 return false; 2124 } 2125 2126 bool CallAnalyzer::visitCallBase(CallBase &Call) { 2127 if (!onCallBaseVisitStart(Call)) 2128 return true; 2129 2130 if (Call.hasFnAttr(Attribute::ReturnsTwice) && 2131 !F.hasFnAttribute(Attribute::ReturnsTwice)) { 2132 // This aborts the entire analysis. 2133 ExposesReturnsTwice = true; 2134 return false; 2135 } 2136 if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate()) 2137 ContainsNoDuplicateCall = true; 2138 2139 Value *Callee = Call.getCalledOperand(); 2140 Function *F = dyn_cast_or_null<Function>(Callee); 2141 bool IsIndirectCall = !F; 2142 if (IsIndirectCall) { 2143 // Check if this happens to be an indirect function call to a known function 2144 // in this inline context. If not, we've done all we can. 2145 F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); 2146 if (!F) { 2147 onCallArgumentSetup(Call); 2148 2149 if (!Call.onlyReadsMemory()) 2150 disableLoadElimination(); 2151 return Base::visitCallBase(Call); 2152 } 2153 } 2154 2155 assert(F && "Expected a call to a known function"); 2156 2157 // When we have a concrete function, first try to simplify it directly. 2158 if (simplifyCallSite(F, Call)) 2159 return true; 2160 2161 // Next check if it is an intrinsic we know about. 2162 // FIXME: Lift this into part of the InstVisitor. 2163 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) { 2164 switch (II->getIntrinsicID()) { 2165 default: 2166 if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II)) 2167 disableLoadElimination(); 2168 return Base::visitCallBase(Call); 2169 2170 case Intrinsic::load_relative: 2171 onLoadRelativeIntrinsic(); 2172 return false; 2173 2174 case Intrinsic::memset: 2175 case Intrinsic::memcpy: 2176 case Intrinsic::memmove: 2177 disableLoadElimination(); 2178 // SROA can usually chew through these intrinsics, but they aren't free. 2179 return false; 2180 case Intrinsic::icall_branch_funnel: 2181 case Intrinsic::localescape: 2182 HasUninlineableIntrinsic = true; 2183 return false; 2184 case Intrinsic::vastart: 2185 InitsVargArgs = true; 2186 return false; 2187 case Intrinsic::launder_invariant_group: 2188 case Intrinsic::strip_invariant_group: 2189 if (auto *SROAArg = getSROAArgForValueOrNull(II->getOperand(0))) 2190 SROAArgValues[II] = SROAArg; 2191 return true; 2192 case Intrinsic::is_constant: 2193 return simplifyIntrinsicCallIsConstant(Call); 2194 } 2195 } 2196 2197 if (F == Call.getFunction()) { 2198 // This flag will fully abort the analysis, so don't bother with anything 2199 // else. 2200 IsRecursiveCall = true; 2201 if (!AllowRecursiveCall) 2202 return false; 2203 } 2204 2205 if (TTI.isLoweredToCall(F)) { 2206 onLoweredCall(F, Call, IsIndirectCall); 2207 } 2208 2209 if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory()))) 2210 disableLoadElimination(); 2211 return Base::visitCallBase(Call); 2212 } 2213 2214 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { 2215 // At least one return instruction will be free after inlining. 2216 bool Free = !HasReturn; 2217 HasReturn = true; 2218 return Free; 2219 } 2220 2221 bool CallAnalyzer::visitBranchInst(BranchInst &BI) { 2222 // We model unconditional branches as essentially free -- they really 2223 // shouldn't exist at all, but handling them makes the behavior of the 2224 // inliner more regular and predictable. Interestingly, conditional branches 2225 // which will fold away are also free. 2226 return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || 2227 isa_and_nonnull<ConstantInt>( 2228 SimplifiedValues.lookup(BI.getCondition())); 2229 } 2230 2231 bool CallAnalyzer::visitSelectInst(SelectInst &SI) { 2232 bool CheckSROA = SI.getType()->isPointerTy(); 2233 Value *TrueVal = SI.getTrueValue(); 2234 Value *FalseVal = SI.getFalseValue(); 2235 2236 Constant *TrueC = dyn_cast<Constant>(TrueVal); 2237 if (!TrueC) 2238 TrueC = SimplifiedValues.lookup(TrueVal); 2239 Constant *FalseC = dyn_cast<Constant>(FalseVal); 2240 if (!FalseC) 2241 FalseC = SimplifiedValues.lookup(FalseVal); 2242 Constant *CondC = 2243 dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition())); 2244 2245 if (!CondC) { 2246 // Select C, X, X => X 2247 if (TrueC == FalseC && TrueC) { 2248 SimplifiedValues[&SI] = TrueC; 2249 return true; 2250 } 2251 2252 if (!CheckSROA) 2253 return Base::visitSelectInst(SI); 2254 2255 std::pair<Value *, APInt> TrueBaseAndOffset = 2256 ConstantOffsetPtrs.lookup(TrueVal); 2257 std::pair<Value *, APInt> FalseBaseAndOffset = 2258 ConstantOffsetPtrs.lookup(FalseVal); 2259 if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) { 2260 ConstantOffsetPtrs[&SI] = TrueBaseAndOffset; 2261 2262 if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal)) 2263 SROAArgValues[&SI] = SROAArg; 2264 return true; 2265 } 2266 2267 return Base::visitSelectInst(SI); 2268 } 2269 2270 // Select condition is a constant. 2271 Value *SelectedV = CondC->isAllOnesValue() ? TrueVal 2272 : (CondC->isNullValue()) ? FalseVal 2273 : nullptr; 2274 if (!SelectedV) { 2275 // Condition is a vector constant that is not all 1s or all 0s. If all 2276 // operands are constants, ConstantExpr::getSelect() can handle the cases 2277 // such as select vectors. 2278 if (TrueC && FalseC) { 2279 if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) { 2280 SimplifiedValues[&SI] = C; 2281 return true; 2282 } 2283 } 2284 return Base::visitSelectInst(SI); 2285 } 2286 2287 // Condition is either all 1s or all 0s. SI can be simplified. 2288 if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) { 2289 SimplifiedValues[&SI] = SelectedC; 2290 return true; 2291 } 2292 2293 if (!CheckSROA) 2294 return true; 2295 2296 std::pair<Value *, APInt> BaseAndOffset = 2297 ConstantOffsetPtrs.lookup(SelectedV); 2298 if (BaseAndOffset.first) { 2299 ConstantOffsetPtrs[&SI] = BaseAndOffset; 2300 2301 if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV)) 2302 SROAArgValues[&SI] = SROAArg; 2303 } 2304 2305 return true; 2306 } 2307 2308 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { 2309 // We model unconditional switches as free, see the comments on handling 2310 // branches. 2311 if (isa<ConstantInt>(SI.getCondition())) 2312 return true; 2313 if (Value *V = SimplifiedValues.lookup(SI.getCondition())) 2314 if (isa<ConstantInt>(V)) 2315 return true; 2316 2317 // Assume the most general case where the switch is lowered into 2318 // either a jump table, bit test, or a balanced binary tree consisting of 2319 // case clusters without merging adjacent clusters with the same 2320 // destination. We do not consider the switches that are lowered with a mix 2321 // of jump table/bit test/binary search tree. The cost of the switch is 2322 // proportional to the size of the tree or the size of jump table range. 2323 // 2324 // NB: We convert large switches which are just used to initialize large phi 2325 // nodes to lookup tables instead in simplifycfg, so this shouldn't prevent 2326 // inlining those. It will prevent inlining in cases where the optimization 2327 // does not (yet) fire. 2328 2329 unsigned JumpTableSize = 0; 2330 BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr; 2331 unsigned NumCaseCluster = 2332 TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI); 2333 2334 onFinalizeSwitch(JumpTableSize, NumCaseCluster); 2335 return false; 2336 } 2337 2338 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { 2339 // We never want to inline functions that contain an indirectbr. This is 2340 // incorrect because all the blockaddress's (in static global initializers 2341 // for example) would be referring to the original function, and this 2342 // indirect jump would jump from the inlined copy of the function into the 2343 // original function which is extremely undefined behavior. 2344 // FIXME: This logic isn't really right; we can safely inline functions with 2345 // indirectbr's as long as no other function or global references the 2346 // blockaddress of a block within the current function. 2347 HasIndirectBr = true; 2348 return false; 2349 } 2350 2351 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { 2352 // FIXME: It's not clear that a single instruction is an accurate model for 2353 // the inline cost of a resume instruction. 2354 return false; 2355 } 2356 2357 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { 2358 // FIXME: It's not clear that a single instruction is an accurate model for 2359 // the inline cost of a cleanupret instruction. 2360 return false; 2361 } 2362 2363 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { 2364 // FIXME: It's not clear that a single instruction is an accurate model for 2365 // the inline cost of a catchret instruction. 2366 return false; 2367 } 2368 2369 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { 2370 // FIXME: It might be reasonably to discount the cost of instructions leading 2371 // to unreachable as they have the lowest possible impact on both runtime and 2372 // code size. 2373 return true; // No actual code is needed for unreachable. 2374 } 2375 2376 bool CallAnalyzer::visitInstruction(Instruction &I) { 2377 // Some instructions are free. All of the free intrinsics can also be 2378 // handled by SROA, etc. 2379 if (TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 2380 TargetTransformInfo::TCC_Free) 2381 return true; 2382 2383 // We found something we don't understand or can't handle. Mark any SROA-able 2384 // values in the operand list as no longer viable. 2385 for (const Use &Op : I.operands()) 2386 disableSROA(Op); 2387 2388 return false; 2389 } 2390 2391 /// Analyze a basic block for its contribution to the inline cost. 2392 /// 2393 /// This method walks the analyzer over every instruction in the given basic 2394 /// block and accounts for their cost during inlining at this callsite. It 2395 /// aborts early if the threshold has been exceeded or an impossible to inline 2396 /// construct has been detected. It returns false if inlining is no longer 2397 /// viable, and true if inlining remains viable. 2398 InlineResult 2399 CallAnalyzer::analyzeBlock(BasicBlock *BB, 2400 SmallPtrSetImpl<const Value *> &EphValues) { 2401 for (Instruction &I : *BB) { 2402 // FIXME: Currently, the number of instructions in a function regardless of 2403 // our ability to simplify them during inline to constants or dead code, 2404 // are actually used by the vector bonus heuristic. As long as that's true, 2405 // we have to special case debug intrinsics here to prevent differences in 2406 // inlining due to debug symbols. Eventually, the number of unsimplified 2407 // instructions shouldn't factor into the cost computation, but until then, 2408 // hack around it here. 2409 // Similarly, skip pseudo-probes. 2410 if (I.isDebugOrPseudoInst()) 2411 continue; 2412 2413 // Skip ephemeral values. 2414 if (EphValues.count(&I)) 2415 continue; 2416 2417 ++NumInstructions; 2418 if (isa<ExtractElementInst>(I) || I.getType()->isVectorTy()) 2419 ++NumVectorInstructions; 2420 2421 // If the instruction simplified to a constant, there is no cost to this 2422 // instruction. Visit the instructions using our InstVisitor to account for 2423 // all of the per-instruction logic. The visit tree returns true if we 2424 // consumed the instruction in any way, and false if the instruction's base 2425 // cost should count against inlining. 2426 onInstructionAnalysisStart(&I); 2427 2428 if (Base::visit(&I)) 2429 ++NumInstructionsSimplified; 2430 else 2431 onMissedSimplification(); 2432 2433 onInstructionAnalysisFinish(&I); 2434 using namespace ore; 2435 // If the visit this instruction detected an uninlinable pattern, abort. 2436 InlineResult IR = InlineResult::success(); 2437 if (IsRecursiveCall && !AllowRecursiveCall) 2438 IR = InlineResult::failure("recursive"); 2439 else if (ExposesReturnsTwice) 2440 IR = InlineResult::failure("exposes returns twice"); 2441 else if (HasDynamicAlloca) 2442 IR = InlineResult::failure("dynamic alloca"); 2443 else if (HasIndirectBr) 2444 IR = InlineResult::failure("indirect branch"); 2445 else if (HasUninlineableIntrinsic) 2446 IR = InlineResult::failure("uninlinable intrinsic"); 2447 else if (InitsVargArgs) 2448 IR = InlineResult::failure("varargs"); 2449 if (!IR.isSuccess()) { 2450 if (ORE) 2451 ORE->emit([&]() { 2452 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2453 &CandidateCall) 2454 << NV("Callee", &F) << " has uninlinable pattern (" 2455 << NV("InlineResult", IR.getFailureReason()) 2456 << ") and cost is not fully computed"; 2457 }); 2458 return IR; 2459 } 2460 2461 // If the caller is a recursive function then we don't want to inline 2462 // functions which allocate a lot of stack space because it would increase 2463 // the caller stack usage dramatically. 2464 if (IsCallerRecursive && 2465 AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) { 2466 auto IR = 2467 InlineResult::failure("recursive and allocates too much stack space"); 2468 if (ORE) 2469 ORE->emit([&]() { 2470 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2471 &CandidateCall) 2472 << NV("Callee", &F) << " is " 2473 << NV("InlineResult", IR.getFailureReason()) 2474 << ". Cost is not fully computed"; 2475 }); 2476 return IR; 2477 } 2478 2479 if (shouldStop()) 2480 return InlineResult::failure( 2481 "Call site analysis is not favorable to inlining."); 2482 } 2483 2484 return InlineResult::success(); 2485 } 2486 2487 /// Compute the base pointer and cumulative constant offsets for V. 2488 /// 2489 /// This strips all constant offsets off of V, leaving it the base pointer, and 2490 /// accumulates the total constant offset applied in the returned constant. It 2491 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 2492 /// no constant offsets applied. 2493 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { 2494 if (!V->getType()->isPointerTy()) 2495 return nullptr; 2496 2497 unsigned AS = V->getType()->getPointerAddressSpace(); 2498 unsigned IntPtrWidth = DL.getIndexSizeInBits(AS); 2499 APInt Offset = APInt::getZero(IntPtrWidth); 2500 2501 // Even though we don't look through PHI nodes, we could be called on an 2502 // instruction in an unreachable block, which may be on a cycle. 2503 SmallPtrSet<Value *, 4> Visited; 2504 Visited.insert(V); 2505 do { 2506 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2507 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) 2508 return nullptr; 2509 V = GEP->getPointerOperand(); 2510 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 2511 V = cast<Operator>(V)->getOperand(0); 2512 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2513 if (GA->isInterposable()) 2514 break; 2515 V = GA->getAliasee(); 2516 } else { 2517 break; 2518 } 2519 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2520 } while (Visited.insert(V).second); 2521 2522 Type *IdxPtrTy = DL.getIndexType(V->getType()); 2523 return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset)); 2524 } 2525 2526 /// Find dead blocks due to deleted CFG edges during inlining. 2527 /// 2528 /// If we know the successor of the current block, \p CurrBB, has to be \p 2529 /// NextBB, the other successors of \p CurrBB are dead if these successors have 2530 /// no live incoming CFG edges. If one block is found to be dead, we can 2531 /// continue growing the dead block list by checking the successors of the dead 2532 /// blocks to see if all their incoming edges are dead or not. 2533 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) { 2534 auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) { 2535 // A CFG edge is dead if the predecessor is dead or the predecessor has a 2536 // known successor which is not the one under exam. 2537 return (DeadBlocks.count(Pred) || 2538 (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ)); 2539 }; 2540 2541 auto IsNewlyDead = [&](BasicBlock *BB) { 2542 // If all the edges to a block are dead, the block is also dead. 2543 return (!DeadBlocks.count(BB) && 2544 llvm::all_of(predecessors(BB), 2545 [&](BasicBlock *P) { return IsEdgeDead(P, BB); })); 2546 }; 2547 2548 for (BasicBlock *Succ : successors(CurrBB)) { 2549 if (Succ == NextBB || !IsNewlyDead(Succ)) 2550 continue; 2551 SmallVector<BasicBlock *, 4> NewDead; 2552 NewDead.push_back(Succ); 2553 while (!NewDead.empty()) { 2554 BasicBlock *Dead = NewDead.pop_back_val(); 2555 if (DeadBlocks.insert(Dead)) 2556 // Continue growing the dead block lists. 2557 for (BasicBlock *S : successors(Dead)) 2558 if (IsNewlyDead(S)) 2559 NewDead.push_back(S); 2560 } 2561 } 2562 } 2563 2564 /// Analyze a call site for potential inlining. 2565 /// 2566 /// Returns true if inlining this call is viable, and false if it is not 2567 /// viable. It computes the cost and adjusts the threshold based on numerous 2568 /// factors and heuristics. If this method returns false but the computed cost 2569 /// is below the computed threshold, then inlining was forcibly disabled by 2570 /// some artifact of the routine. 2571 InlineResult CallAnalyzer::analyze() { 2572 ++NumCallsAnalyzed; 2573 2574 auto Result = onAnalysisStart(); 2575 if (!Result.isSuccess()) 2576 return Result; 2577 2578 if (F.empty()) 2579 return InlineResult::success(); 2580 2581 Function *Caller = CandidateCall.getFunction(); 2582 // Check if the caller function is recursive itself. 2583 for (User *U : Caller->users()) { 2584 CallBase *Call = dyn_cast<CallBase>(U); 2585 if (Call && Call->getFunction() == Caller) { 2586 IsCallerRecursive = true; 2587 break; 2588 } 2589 } 2590 2591 // Populate our simplified values by mapping from function arguments to call 2592 // arguments with known important simplifications. 2593 auto CAI = CandidateCall.arg_begin(); 2594 for (Argument &FAI : F.args()) { 2595 assert(CAI != CandidateCall.arg_end()); 2596 if (Constant *C = dyn_cast<Constant>(CAI)) 2597 SimplifiedValues[&FAI] = C; 2598 2599 Value *PtrArg = *CAI; 2600 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { 2601 ConstantOffsetPtrs[&FAI] = std::make_pair(PtrArg, C->getValue()); 2602 2603 // We can SROA any pointer arguments derived from alloca instructions. 2604 if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) { 2605 SROAArgValues[&FAI] = SROAArg; 2606 onInitializeSROAArg(SROAArg); 2607 EnabledSROAAllocas.insert(SROAArg); 2608 } 2609 } 2610 ++CAI; 2611 } 2612 NumConstantArgs = SimplifiedValues.size(); 2613 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); 2614 NumAllocaArgs = SROAArgValues.size(); 2615 2616 // FIXME: If a caller has multiple calls to a callee, we end up recomputing 2617 // the ephemeral values multiple times (and they're completely determined by 2618 // the callee, so this is purely duplicate work). 2619 SmallPtrSet<const Value *, 32> EphValues; 2620 CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues); 2621 2622 // The worklist of live basic blocks in the callee *after* inlining. We avoid 2623 // adding basic blocks of the callee which can be proven to be dead for this 2624 // particular call site in order to get more accurate cost estimates. This 2625 // requires a somewhat heavyweight iteration pattern: we need to walk the 2626 // basic blocks in a breadth-first order as we insert live successors. To 2627 // accomplish this, prioritizing for small iterations because we exit after 2628 // crossing our threshold, we use a small-size optimized SetVector. 2629 typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, 2630 SmallPtrSet<BasicBlock *, 16>> 2631 BBSetVector; 2632 BBSetVector BBWorklist; 2633 BBWorklist.insert(&F.getEntryBlock()); 2634 2635 // Note that we *must not* cache the size, this loop grows the worklist. 2636 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 2637 if (shouldStop()) 2638 break; 2639 2640 BasicBlock *BB = BBWorklist[Idx]; 2641 if (BB->empty()) 2642 continue; 2643 2644 onBlockStart(BB); 2645 2646 // Disallow inlining a blockaddress with uses other than strictly callbr. 2647 // A blockaddress only has defined behavior for an indirect branch in the 2648 // same function, and we do not currently support inlining indirect 2649 // branches. But, the inliner may not see an indirect branch that ends up 2650 // being dead code at a particular call site. If the blockaddress escapes 2651 // the function, e.g., via a global variable, inlining may lead to an 2652 // invalid cross-function reference. 2653 // FIXME: pr/39560: continue relaxing this overt restriction. 2654 if (BB->hasAddressTaken()) 2655 for (User *U : BlockAddress::get(&*BB)->users()) 2656 if (!isa<CallBrInst>(*U)) 2657 return InlineResult::failure("blockaddress used outside of callbr"); 2658 2659 // Analyze the cost of this block. If we blow through the threshold, this 2660 // returns false, and we can bail on out. 2661 InlineResult IR = analyzeBlock(BB, EphValues); 2662 if (!IR.isSuccess()) 2663 return IR; 2664 2665 Instruction *TI = BB->getTerminator(); 2666 2667 // Add in the live successors by first checking whether we have terminator 2668 // that may be simplified based on the values simplified by this call. 2669 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2670 if (BI->isConditional()) { 2671 Value *Cond = BI->getCondition(); 2672 if (ConstantInt *SimpleCond = 2673 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2674 BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0); 2675 BBWorklist.insert(NextBB); 2676 KnownSuccessors[BB] = NextBB; 2677 findDeadBlocks(BB, NextBB); 2678 continue; 2679 } 2680 } 2681 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2682 Value *Cond = SI->getCondition(); 2683 if (ConstantInt *SimpleCond = 2684 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2685 BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor(); 2686 BBWorklist.insert(NextBB); 2687 KnownSuccessors[BB] = NextBB; 2688 findDeadBlocks(BB, NextBB); 2689 continue; 2690 } 2691 } 2692 2693 // If we're unable to select a particular successor, just count all of 2694 // them. 2695 for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; 2696 ++TIdx) 2697 BBWorklist.insert(TI->getSuccessor(TIdx)); 2698 2699 onBlockAnalyzed(BB); 2700 } 2701 2702 bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneLiveUse() && 2703 &F == CandidateCall.getCalledFunction(); 2704 // If this is a noduplicate call, we can still inline as long as 2705 // inlining this would cause the removal of the caller (so the instruction 2706 // is not actually duplicated, just moved). 2707 if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) 2708 return InlineResult::failure("noduplicate"); 2709 2710 return finalizeAnalysis(); 2711 } 2712 2713 void InlineCostCallAnalyzer::print(raw_ostream &OS) { 2714 #define DEBUG_PRINT_STAT(x) OS << " " #x ": " << x << "\n" 2715 if (PrintInstructionComments) 2716 F.print(OS, &Writer); 2717 DEBUG_PRINT_STAT(NumConstantArgs); 2718 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); 2719 DEBUG_PRINT_STAT(NumAllocaArgs); 2720 DEBUG_PRINT_STAT(NumConstantPtrCmps); 2721 DEBUG_PRINT_STAT(NumConstantPtrDiffs); 2722 DEBUG_PRINT_STAT(NumInstructionsSimplified); 2723 DEBUG_PRINT_STAT(NumInstructions); 2724 DEBUG_PRINT_STAT(SROACostSavings); 2725 DEBUG_PRINT_STAT(SROACostSavingsLost); 2726 DEBUG_PRINT_STAT(LoadEliminationCost); 2727 DEBUG_PRINT_STAT(ContainsNoDuplicateCall); 2728 DEBUG_PRINT_STAT(Cost); 2729 DEBUG_PRINT_STAT(Threshold); 2730 #undef DEBUG_PRINT_STAT 2731 } 2732 2733 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2734 /// Dump stats about this call's analysis. 2735 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { print(dbgs()); } 2736 #endif 2737 2738 /// Test that there are no attribute conflicts between Caller and Callee 2739 /// that prevent inlining. 2740 static bool functionsHaveCompatibleAttributes( 2741 Function *Caller, Function *Callee, TargetTransformInfo &TTI, 2742 function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) { 2743 // Note that CalleeTLI must be a copy not a reference. The legacy pass manager 2744 // caches the most recently created TLI in the TargetLibraryInfoWrapperPass 2745 // object, and always returns the same object (which is overwritten on each 2746 // GetTLI call). Therefore we copy the first result. 2747 auto CalleeTLI = GetTLI(*Callee); 2748 return TTI.areInlineCompatible(Caller, Callee) && 2749 GetTLI(*Caller).areInlineCompatible(CalleeTLI, 2750 InlineCallerSupersetNoBuiltin) && 2751 AttributeFuncs::areInlineCompatible(*Caller, *Callee); 2752 } 2753 2754 int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) { 2755 int Cost = 0; 2756 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) { 2757 if (Call.isByValArgument(I)) { 2758 // We approximate the number of loads and stores needed by dividing the 2759 // size of the byval type by the target's pointer size. 2760 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2761 unsigned TypeSize = DL.getTypeSizeInBits(Call.getParamByValType(I)); 2762 unsigned AS = PTy->getAddressSpace(); 2763 unsigned PointerSize = DL.getPointerSizeInBits(AS); 2764 // Ceiling division. 2765 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; 2766 2767 // If it generates more than 8 stores it is likely to be expanded as an 2768 // inline memcpy so we take that as an upper bound. Otherwise we assume 2769 // one load and one store per word copied. 2770 // FIXME: The maxStoresPerMemcpy setting from the target should be used 2771 // here instead of a magic number of 8, but it's not available via 2772 // DataLayout. 2773 NumStores = std::min(NumStores, 8U); 2774 2775 Cost += 2 * NumStores * InlineConstants::InstrCost; 2776 } else { 2777 // For non-byval arguments subtract off one instruction per call 2778 // argument. 2779 Cost += InlineConstants::InstrCost; 2780 } 2781 } 2782 // The call instruction also disappears after inlining. 2783 Cost += InlineConstants::InstrCost + CallPenalty; 2784 return Cost; 2785 } 2786 2787 InlineCost llvm::getInlineCost( 2788 CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI, 2789 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2790 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2791 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2792 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2793 return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI, 2794 GetAssumptionCache, GetTLI, GetBFI, PSI, ORE); 2795 } 2796 2797 Optional<int> llvm::getInliningCostEstimate( 2798 CallBase &Call, TargetTransformInfo &CalleeTTI, 2799 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2800 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2801 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2802 const InlineParams Params = {/* DefaultThreshold*/ 0, 2803 /*HintThreshold*/ {}, 2804 /*ColdThreshold*/ {}, 2805 /*OptSizeThreshold*/ {}, 2806 /*OptMinSizeThreshold*/ {}, 2807 /*HotCallSiteThreshold*/ {}, 2808 /*LocallyHotCallSiteThreshold*/ {}, 2809 /*ColdCallSiteThreshold*/ {}, 2810 /*ComputeFullInlineCost*/ true, 2811 /*EnableDeferral*/ true}; 2812 2813 InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI, 2814 GetAssumptionCache, GetBFI, PSI, ORE, true, 2815 /*IgnoreThreshold*/ true); 2816 auto R = CA.analyze(); 2817 if (!R.isSuccess()) 2818 return None; 2819 return CA.getCost(); 2820 } 2821 2822 Optional<InlineCostFeatures> llvm::getInliningCostFeatures( 2823 CallBase &Call, TargetTransformInfo &CalleeTTI, 2824 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2825 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2826 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2827 InlineCostFeaturesAnalyzer CFA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, 2828 ORE, *Call.getCalledFunction(), Call); 2829 auto R = CFA.analyze(); 2830 if (!R.isSuccess()) 2831 return None; 2832 return CFA.features(); 2833 } 2834 2835 Optional<InlineResult> llvm::getAttributeBasedInliningDecision( 2836 CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI, 2837 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 2838 2839 // Cannot inline indirect calls. 2840 if (!Callee) 2841 return InlineResult::failure("indirect call"); 2842 2843 // When callee coroutine function is inlined into caller coroutine function 2844 // before coro-split pass, 2845 // coro-early pass can not handle this quiet well. 2846 // So we won't inline the coroutine function if it have not been unsplited 2847 if (Callee->isPresplitCoroutine()) 2848 return InlineResult::failure("unsplited coroutine call"); 2849 2850 // Never inline calls with byval arguments that does not have the alloca 2851 // address space. Since byval arguments can be replaced with a copy to an 2852 // alloca, the inlined code would need to be adjusted to handle that the 2853 // argument is in the alloca address space (so it is a little bit complicated 2854 // to solve). 2855 unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace(); 2856 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) 2857 if (Call.isByValArgument(I)) { 2858 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2859 if (PTy->getAddressSpace() != AllocaAS) 2860 return InlineResult::failure("byval arguments without alloca" 2861 " address space"); 2862 } 2863 2864 // Calls to functions with always-inline attributes should be inlined 2865 // whenever possible. 2866 if (Call.hasFnAttr(Attribute::AlwaysInline)) { 2867 auto IsViable = isInlineViable(*Callee); 2868 if (IsViable.isSuccess()) 2869 return InlineResult::success(); 2870 return InlineResult::failure(IsViable.getFailureReason()); 2871 } 2872 2873 // Never inline functions with conflicting attributes (unless callee has 2874 // always-inline attribute). 2875 Function *Caller = Call.getCaller(); 2876 if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI)) 2877 return InlineResult::failure("conflicting attributes"); 2878 2879 // Don't inline this call if the caller has the optnone attribute. 2880 if (Caller->hasOptNone()) 2881 return InlineResult::failure("optnone attribute"); 2882 2883 // Don't inline a function that treats null pointer as valid into a caller 2884 // that does not have this attribute. 2885 if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined()) 2886 return InlineResult::failure("nullptr definitions incompatible"); 2887 2888 // Don't inline functions which can be interposed at link-time. 2889 if (Callee->isInterposable()) 2890 return InlineResult::failure("interposable"); 2891 2892 // Don't inline functions marked noinline. 2893 if (Callee->hasFnAttribute(Attribute::NoInline)) 2894 return InlineResult::failure("noinline function attribute"); 2895 2896 // Don't inline call sites marked noinline. 2897 if (Call.isNoInline()) 2898 return InlineResult::failure("noinline call site attribute"); 2899 2900 return None; 2901 } 2902 2903 InlineCost llvm::getInlineCost( 2904 CallBase &Call, Function *Callee, const InlineParams &Params, 2905 TargetTransformInfo &CalleeTTI, 2906 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2907 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2908 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2909 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2910 2911 auto UserDecision = 2912 llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI); 2913 2914 if (UserDecision.hasValue()) { 2915 if (UserDecision->isSuccess()) 2916 return llvm::InlineCost::getAlways("always inline attribute"); 2917 return llvm::InlineCost::getNever(UserDecision->getFailureReason()); 2918 } 2919 2920 LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() 2921 << "... (caller:" << Call.getCaller()->getName() 2922 << ")\n"); 2923 2924 InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI, 2925 GetAssumptionCache, GetBFI, PSI, ORE); 2926 InlineResult ShouldInline = CA.analyze(); 2927 2928 LLVM_DEBUG(CA.dump()); 2929 2930 // Always make cost benefit based decision explicit. 2931 // We use always/never here since threshold is not meaningful, 2932 // as it's not what drives cost-benefit analysis. 2933 if (CA.wasDecidedByCostBenefit()) { 2934 if (ShouldInline.isSuccess()) 2935 return InlineCost::getAlways("benefit over cost", 2936 CA.getCostBenefitPair()); 2937 else 2938 return InlineCost::getNever("cost over benefit", CA.getCostBenefitPair()); 2939 } 2940 2941 if (CA.wasDecidedByCostThreshold()) 2942 return InlineCost::get(CA.getCost(), CA.getThreshold()); 2943 2944 // No details on how the decision was made, simply return always or never. 2945 return ShouldInline.isSuccess() 2946 ? InlineCost::getAlways("empty function") 2947 : InlineCost::getNever(ShouldInline.getFailureReason()); 2948 } 2949 2950 InlineResult llvm::isInlineViable(Function &F) { 2951 bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); 2952 for (BasicBlock &BB : F) { 2953 // Disallow inlining of functions which contain indirect branches. 2954 if (isa<IndirectBrInst>(BB.getTerminator())) 2955 return InlineResult::failure("contains indirect branches"); 2956 2957 // Disallow inlining of blockaddresses which are used by non-callbr 2958 // instructions. 2959 if (BB.hasAddressTaken()) 2960 for (User *U : BlockAddress::get(&BB)->users()) 2961 if (!isa<CallBrInst>(*U)) 2962 return InlineResult::failure("blockaddress used outside of callbr"); 2963 2964 for (auto &II : BB) { 2965 CallBase *Call = dyn_cast<CallBase>(&II); 2966 if (!Call) 2967 continue; 2968 2969 // Disallow recursive calls. 2970 Function *Callee = Call->getCalledFunction(); 2971 if (&F == Callee) 2972 return InlineResult::failure("recursive call"); 2973 2974 // Disallow calls which expose returns-twice to a function not previously 2975 // attributed as such. 2976 if (!ReturnsTwice && isa<CallInst>(Call) && 2977 cast<CallInst>(Call)->canReturnTwice()) 2978 return InlineResult::failure("exposes returns-twice attribute"); 2979 2980 if (Callee) 2981 switch (Callee->getIntrinsicID()) { 2982 default: 2983 break; 2984 case llvm::Intrinsic::icall_branch_funnel: 2985 // Disallow inlining of @llvm.icall.branch.funnel because current 2986 // backend can't separate call targets from call arguments. 2987 return InlineResult::failure( 2988 "disallowed inlining of @llvm.icall.branch.funnel"); 2989 case llvm::Intrinsic::localescape: 2990 // Disallow inlining functions that call @llvm.localescape. Doing this 2991 // correctly would require major changes to the inliner. 2992 return InlineResult::failure( 2993 "disallowed inlining of @llvm.localescape"); 2994 case llvm::Intrinsic::vastart: 2995 // Disallow inlining of functions that initialize VarArgs with 2996 // va_start. 2997 return InlineResult::failure( 2998 "contains VarArgs initialized with va_start"); 2999 } 3000 } 3001 } 3002 3003 return InlineResult::success(); 3004 } 3005 3006 // APIs to create InlineParams based on command line flags and/or other 3007 // parameters. 3008 3009 InlineParams llvm::getInlineParams(int Threshold) { 3010 InlineParams Params; 3011 3012 // This field is the threshold to use for a callee by default. This is 3013 // derived from one or more of: 3014 // * optimization or size-optimization levels, 3015 // * a value passed to createFunctionInliningPass function, or 3016 // * the -inline-threshold flag. 3017 // If the -inline-threshold flag is explicitly specified, that is used 3018 // irrespective of anything else. 3019 if (InlineThreshold.getNumOccurrences() > 0) 3020 Params.DefaultThreshold = InlineThreshold; 3021 else 3022 Params.DefaultThreshold = Threshold; 3023 3024 // Set the HintThreshold knob from the -inlinehint-threshold. 3025 Params.HintThreshold = HintThreshold; 3026 3027 // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold. 3028 Params.HotCallSiteThreshold = HotCallSiteThreshold; 3029 3030 // If the -locally-hot-callsite-threshold is explicitly specified, use it to 3031 // populate LocallyHotCallSiteThreshold. Later, we populate 3032 // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if 3033 // we know that optimization level is O3 (in the getInlineParams variant that 3034 // takes the opt and size levels). 3035 // FIXME: Remove this check (and make the assignment unconditional) after 3036 // addressing size regression issues at O2. 3037 if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0) 3038 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 3039 3040 // Set the ColdCallSiteThreshold knob from the 3041 // -inline-cold-callsite-threshold. 3042 Params.ColdCallSiteThreshold = ColdCallSiteThreshold; 3043 3044 // Set the OptMinSizeThreshold and OptSizeThreshold params only if the 3045 // -inlinehint-threshold commandline option is not explicitly given. If that 3046 // option is present, then its value applies even for callees with size and 3047 // minsize attributes. 3048 // If the -inline-threshold is not specified, set the ColdThreshold from the 3049 // -inlinecold-threshold even if it is not explicitly passed. If 3050 // -inline-threshold is specified, then -inlinecold-threshold needs to be 3051 // explicitly specified to set the ColdThreshold knob 3052 if (InlineThreshold.getNumOccurrences() == 0) { 3053 Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold; 3054 Params.OptSizeThreshold = InlineConstants::OptSizeThreshold; 3055 Params.ColdThreshold = ColdThreshold; 3056 } else if (ColdThreshold.getNumOccurrences() > 0) { 3057 Params.ColdThreshold = ColdThreshold; 3058 } 3059 return Params; 3060 } 3061 3062 InlineParams llvm::getInlineParams() { 3063 return getInlineParams(DefaultThreshold); 3064 } 3065 3066 // Compute the default threshold for inlining based on the opt level and the 3067 // size opt level. 3068 static int computeThresholdFromOptLevels(unsigned OptLevel, 3069 unsigned SizeOptLevel) { 3070 if (OptLevel > 2) 3071 return InlineConstants::OptAggressiveThreshold; 3072 if (SizeOptLevel == 1) // -Os 3073 return InlineConstants::OptSizeThreshold; 3074 if (SizeOptLevel == 2) // -Oz 3075 return InlineConstants::OptMinSizeThreshold; 3076 return DefaultThreshold; 3077 } 3078 3079 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) { 3080 auto Params = 3081 getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel)); 3082 // At O3, use the value of -locally-hot-callsite-threshold option to populate 3083 // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only 3084 // when it is specified explicitly. 3085 if (OptLevel > 2) 3086 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 3087 return Params; 3088 } 3089 3090 PreservedAnalyses 3091 InlineCostAnnotationPrinterPass::run(Function &F, 3092 FunctionAnalysisManager &FAM) { 3093 PrintInstructionComments = true; 3094 std::function<AssumptionCache &(Function &)> GetAssumptionCache = 3095 [&](Function &F) -> AssumptionCache & { 3096 return FAM.getResult<AssumptionAnalysis>(F); 3097 }; 3098 Module *M = F.getParent(); 3099 ProfileSummaryInfo PSI(*M); 3100 DataLayout DL(M); 3101 TargetTransformInfo TTI(DL); 3102 // FIXME: Redesign the usage of InlineParams to expand the scope of this pass. 3103 // In the current implementation, the type of InlineParams doesn't matter as 3104 // the pass serves only for verification of inliner's decisions. 3105 // We can add a flag which determines InlineParams for this run. Right now, 3106 // the default InlineParams are used. 3107 const InlineParams Params = llvm::getInlineParams(); 3108 for (BasicBlock &BB : F) { 3109 for (Instruction &I : BB) { 3110 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3111 Function *CalledFunction = CI->getCalledFunction(); 3112 if (!CalledFunction || CalledFunction->isDeclaration()) 3113 continue; 3114 OptimizationRemarkEmitter ORE(CalledFunction); 3115 InlineCostCallAnalyzer ICCA(*CalledFunction, *CI, Params, TTI, 3116 GetAssumptionCache, nullptr, &PSI, &ORE); 3117 ICCA.analyze(); 3118 OS << " Analyzing call of " << CalledFunction->getName() 3119 << "... (caller:" << CI->getCaller()->getName() << ")\n"; 3120 ICCA.print(OS); 3121 OS << "\n"; 3122 } 3123 } 3124 } 3125 return PreservedAnalyses::all(); 3126 } 3127