1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file "describes" induction and recurrence variables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/IVDescriptors.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/Analysis/DemandedBits.h" 17 #include "llvm/Analysis/DomTreeUpdater.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/MustExecute.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/IR/ValueHandle.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/KnownBits.h" 36 37 using namespace llvm; 38 using namespace llvm::PatternMatch; 39 40 #define DEBUG_TYPE "iv-descriptors" 41 42 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, 43 SmallPtrSetImpl<Instruction *> &Set) { 44 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 45 if (!Set.count(dyn_cast<Instruction>(*Use))) 46 return false; 47 return true; 48 } 49 50 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) { 51 switch (Kind) { 52 default: 53 break; 54 case RecurKind::Add: 55 case RecurKind::Mul: 56 case RecurKind::Or: 57 case RecurKind::And: 58 case RecurKind::Xor: 59 case RecurKind::SMax: 60 case RecurKind::SMin: 61 case RecurKind::UMax: 62 case RecurKind::UMin: 63 return true; 64 } 65 return false; 66 } 67 68 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) { 69 return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind); 70 } 71 72 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurKind Kind) { 73 switch (Kind) { 74 default: 75 break; 76 case RecurKind::Add: 77 case RecurKind::Mul: 78 case RecurKind::FAdd: 79 case RecurKind::FMul: 80 return true; 81 } 82 return false; 83 } 84 85 /// Determines if Phi may have been type-promoted. If Phi has a single user 86 /// that ANDs the Phi with a type mask, return the user. RT is updated to 87 /// account for the narrower bit width represented by the mask, and the AND 88 /// instruction is added to CI. 89 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT, 90 SmallPtrSetImpl<Instruction *> &Visited, 91 SmallPtrSetImpl<Instruction *> &CI) { 92 if (!Phi->hasOneUse()) 93 return Phi; 94 95 const APInt *M = nullptr; 96 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); 97 98 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT 99 // with a new integer type of the corresponding bit width. 100 if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) { 101 int32_t Bits = (*M + 1).exactLogBase2(); 102 if (Bits > 0) { 103 RT = IntegerType::get(Phi->getContext(), Bits); 104 Visited.insert(Phi); 105 CI.insert(J); 106 return J; 107 } 108 } 109 return Phi; 110 } 111 112 /// Compute the minimal bit width needed to represent a reduction whose exit 113 /// instruction is given by Exit. 114 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit, 115 DemandedBits *DB, 116 AssumptionCache *AC, 117 DominatorTree *DT) { 118 bool IsSigned = false; 119 const DataLayout &DL = Exit->getModule()->getDataLayout(); 120 uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType()); 121 122 if (DB) { 123 // Use the demanded bits analysis to determine the bits that are live out 124 // of the exit instruction, rounding up to the nearest power of two. If the 125 // use of demanded bits results in a smaller bit width, we know the value 126 // must be positive (i.e., IsSigned = false), because if this were not the 127 // case, the sign bit would have been demanded. 128 auto Mask = DB->getDemandedBits(Exit); 129 MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros(); 130 } 131 132 if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) { 133 // If demanded bits wasn't able to limit the bit width, we can try to use 134 // value tracking instead. This can be the case, for example, if the value 135 // may be negative. 136 auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT); 137 auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType()); 138 MaxBitWidth = NumTypeBits - NumSignBits; 139 KnownBits Bits = computeKnownBits(Exit, DL); 140 if (!Bits.isNonNegative()) { 141 // If the value is not known to be non-negative, we set IsSigned to true, 142 // meaning that we will use sext instructions instead of zext 143 // instructions to restore the original type. 144 IsSigned = true; 145 if (!Bits.isNegative()) 146 // If the value is not known to be negative, we don't known what the 147 // upper bit is, and therefore, we don't know what kind of extend we 148 // will need. In this case, just increase the bit width by one bit and 149 // use sext. 150 ++MaxBitWidth; 151 } 152 } 153 if (!isPowerOf2_64(MaxBitWidth)) 154 MaxBitWidth = NextPowerOf2(MaxBitWidth); 155 156 return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth), 157 IsSigned); 158 } 159 160 /// Collect cast instructions that can be ignored in the vectorizer's cost 161 /// model, given a reduction exit value and the minimal type in which the 162 /// reduction can be represented. 163 static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit, 164 Type *RecurrenceType, 165 SmallPtrSetImpl<Instruction *> &Casts) { 166 167 SmallVector<Instruction *, 8> Worklist; 168 SmallPtrSet<Instruction *, 8> Visited; 169 Worklist.push_back(Exit); 170 171 while (!Worklist.empty()) { 172 Instruction *Val = Worklist.pop_back_val(); 173 Visited.insert(Val); 174 if (auto *Cast = dyn_cast<CastInst>(Val)) 175 if (Cast->getSrcTy() == RecurrenceType) { 176 // If the source type of a cast instruction is equal to the recurrence 177 // type, it will be eliminated, and should be ignored in the vectorizer 178 // cost model. 179 Casts.insert(Cast); 180 continue; 181 } 182 183 // Add all operands to the work list if they are loop-varying values that 184 // we haven't yet visited. 185 for (Value *O : cast<User>(Val)->operands()) 186 if (auto *I = dyn_cast<Instruction>(O)) 187 if (TheLoop->contains(I) && !Visited.count(I)) 188 Worklist.push_back(I); 189 } 190 } 191 192 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurKind Kind, 193 Loop *TheLoop, bool HasFunNoNaNAttr, 194 RecurrenceDescriptor &RedDes, 195 DemandedBits *DB, 196 AssumptionCache *AC, 197 DominatorTree *DT) { 198 if (Phi->getNumIncomingValues() != 2) 199 return false; 200 201 // Reduction variables are only found in the loop header block. 202 if (Phi->getParent() != TheLoop->getHeader()) 203 return false; 204 205 // Obtain the reduction start value from the value that comes from the loop 206 // preheader. 207 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 208 209 // ExitInstruction is the single value which is used outside the loop. 210 // We only allow for a single reduction value to be used outside the loop. 211 // This includes users of the reduction, variables (which form a cycle 212 // which ends in the phi node). 213 Instruction *ExitInstruction = nullptr; 214 // Indicates that we found a reduction operation in our scan. 215 bool FoundReduxOp = false; 216 217 // We start with the PHI node and scan for all of the users of this 218 // instruction. All users must be instructions that can be used as reduction 219 // variables (such as ADD). We must have a single out-of-block user. The cycle 220 // must include the original PHI. 221 bool FoundStartPHI = false; 222 223 // To recognize min/max patterns formed by a icmp select sequence, we store 224 // the number of instruction we saw from the recognized min/max pattern, 225 // to make sure we only see exactly the two instructions. 226 unsigned NumCmpSelectPatternInst = 0; 227 InstDesc ReduxDesc(false, nullptr); 228 229 // Data used for determining if the recurrence has been type-promoted. 230 Type *RecurrenceType = Phi->getType(); 231 SmallPtrSet<Instruction *, 4> CastInsts; 232 Instruction *Start = Phi; 233 bool IsSigned = false; 234 235 SmallPtrSet<Instruction *, 8> VisitedInsts; 236 SmallVector<Instruction *, 8> Worklist; 237 238 // Return early if the recurrence kind does not match the type of Phi. If the 239 // recurrence kind is arithmetic, we attempt to look through AND operations 240 // resulting from the type promotion performed by InstCombine. Vector 241 // operations are not limited to the legal integer widths, so we may be able 242 // to evaluate the reduction in the narrower width. 243 if (RecurrenceType->isFloatingPointTy()) { 244 if (!isFloatingPointRecurrenceKind(Kind)) 245 return false; 246 } else { 247 if (!isIntegerRecurrenceKind(Kind)) 248 return false; 249 if (isArithmeticRecurrenceKind(Kind)) 250 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); 251 } 252 253 Worklist.push_back(Start); 254 VisitedInsts.insert(Start); 255 256 // Start with all flags set because we will intersect this with the reduction 257 // flags from all the reduction operations. 258 FastMathFlags FMF = FastMathFlags::getFast(); 259 260 // A value in the reduction can be used: 261 // - By the reduction: 262 // - Reduction operation: 263 // - One use of reduction value (safe). 264 // - Multiple use of reduction value (not safe). 265 // - PHI: 266 // - All uses of the PHI must be the reduction (safe). 267 // - Otherwise, not safe. 268 // - By instructions outside of the loop (safe). 269 // * One value may have several outside users, but all outside 270 // uses must be of the same value. 271 // - By an instruction that is not part of the reduction (not safe). 272 // This is either: 273 // * An instruction type other than PHI or the reduction operation. 274 // * A PHI in the header other than the initial PHI. 275 while (!Worklist.empty()) { 276 Instruction *Cur = Worklist.pop_back_val(); 277 278 // No Users. 279 // If the instruction has no users then this is a broken chain and can't be 280 // a reduction variable. 281 if (Cur->use_empty()) 282 return false; 283 284 bool IsAPhi = isa<PHINode>(Cur); 285 286 // A header PHI use other than the original PHI. 287 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 288 return false; 289 290 // Reductions of instructions such as Div, and Sub is only possible if the 291 // LHS is the reduction variable. 292 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 293 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 294 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 295 return false; 296 297 // Any reduction instruction must be of one of the allowed kinds. We ignore 298 // the starting value (the Phi or an AND instruction if the Phi has been 299 // type-promoted). 300 if (Cur != Start) { 301 ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); 302 if (!ReduxDesc.isRecurrence()) 303 return false; 304 // FIXME: FMF is allowed on phi, but propagation is not handled correctly. 305 if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi) 306 FMF &= ReduxDesc.getPatternInst()->getFastMathFlags(); 307 // Update this reduction kind if we matched a new instruction. 308 // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind' 309 // state accurate while processing the worklist? 310 if (ReduxDesc.getRecKind() != RecurKind::None) 311 Kind = ReduxDesc.getRecKind(); 312 } 313 314 bool IsASelect = isa<SelectInst>(Cur); 315 316 // A conditional reduction operation must only have 2 or less uses in 317 // VisitedInsts. 318 if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) && 319 hasMultipleUsesOf(Cur, VisitedInsts, 2)) 320 return false; 321 322 // A reduction operation must only have one use of the reduction value. 323 if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) && 324 hasMultipleUsesOf(Cur, VisitedInsts, 1)) 325 return false; 326 327 // All inputs to a PHI node must be a reduction value. 328 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 329 return false; 330 331 if (isIntMinMaxRecurrenceKind(Kind) && 332 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) 333 ++NumCmpSelectPatternInst; 334 if (isFPMinMaxRecurrenceKind(Kind) && 335 (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) 336 ++NumCmpSelectPatternInst; 337 338 // Check whether we found a reduction operator. 339 FoundReduxOp |= !IsAPhi && Cur != Start; 340 341 // Process users of current instruction. Push non-PHI nodes after PHI nodes 342 // onto the stack. This way we are going to have seen all inputs to PHI 343 // nodes once we get to them. 344 SmallVector<Instruction *, 8> NonPHIs; 345 SmallVector<Instruction *, 8> PHIs; 346 for (User *U : Cur->users()) { 347 Instruction *UI = cast<Instruction>(U); 348 349 // Check if we found the exit user. 350 BasicBlock *Parent = UI->getParent(); 351 if (!TheLoop->contains(Parent)) { 352 // If we already know this instruction is used externally, move on to 353 // the next user. 354 if (ExitInstruction == Cur) 355 continue; 356 357 // Exit if you find multiple values used outside or if the header phi 358 // node is being used. In this case the user uses the value of the 359 // previous iteration, in which case we would loose "VF-1" iterations of 360 // the reduction operation if we vectorize. 361 if (ExitInstruction != nullptr || Cur == Phi) 362 return false; 363 364 // The instruction used by an outside user must be the last instruction 365 // before we feed back to the reduction phi. Otherwise, we loose VF-1 366 // operations on the value. 367 if (!is_contained(Phi->operands(), Cur)) 368 return false; 369 370 ExitInstruction = Cur; 371 continue; 372 } 373 374 // Process instructions only once (termination). Each reduction cycle 375 // value must only be used once, except by phi nodes and min/max 376 // reductions which are represented as a cmp followed by a select. 377 InstDesc IgnoredVal(false, nullptr); 378 if (VisitedInsts.insert(UI).second) { 379 if (isa<PHINode>(UI)) 380 PHIs.push_back(UI); 381 else 382 NonPHIs.push_back(UI); 383 } else if (!isa<PHINode>(UI) && 384 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && 385 !isa<SelectInst>(UI)) || 386 (!isConditionalRdxPattern(Kind, UI).isRecurrence() && 387 !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))) 388 return false; 389 390 // Remember that we completed the cycle. 391 if (UI == Phi) 392 FoundStartPHI = true; 393 } 394 Worklist.append(PHIs.begin(), PHIs.end()); 395 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 396 } 397 398 // This means we have seen one but not the other instruction of the 399 // pattern or more than just a select and cmp. 400 if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2) 401 return false; 402 403 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 404 return false; 405 406 if (Start != Phi) { 407 // If the starting value is not the same as the phi node, we speculatively 408 // looked through an 'and' instruction when evaluating a potential 409 // arithmetic reduction to determine if it may have been type-promoted. 410 // 411 // We now compute the minimal bit width that is required to represent the 412 // reduction. If this is the same width that was indicated by the 'and', we 413 // can represent the reduction in the smaller type. The 'and' instruction 414 // will be eliminated since it will essentially be a cast instruction that 415 // can be ignore in the cost model. If we compute a different type than we 416 // did when evaluating the 'and', the 'and' will not be eliminated, and we 417 // will end up with different kinds of operations in the recurrence 418 // expression (e.g., IntegerAND, IntegerADD). We give up if this is 419 // the case. 420 // 421 // The vectorizer relies on InstCombine to perform the actual 422 // type-shrinking. It does this by inserting instructions to truncate the 423 // exit value of the reduction to the width indicated by RecurrenceType and 424 // then extend this value back to the original width. If IsSigned is false, 425 // a 'zext' instruction will be generated; otherwise, a 'sext' will be 426 // used. 427 // 428 // TODO: We should not rely on InstCombine to rewrite the reduction in the 429 // smaller type. We should just generate a correctly typed expression 430 // to begin with. 431 Type *ComputedType; 432 std::tie(ComputedType, IsSigned) = 433 computeRecurrenceType(ExitInstruction, DB, AC, DT); 434 if (ComputedType != RecurrenceType) 435 return false; 436 437 // The recurrence expression will be represented in a narrower type. If 438 // there are any cast instructions that will be unnecessary, collect them 439 // in CastInsts. Note that the 'and' instruction was already included in 440 // this list. 441 // 442 // TODO: A better way to represent this may be to tag in some way all the 443 // instructions that are a part of the reduction. The vectorizer cost 444 // model could then apply the recurrence type to these instructions, 445 // without needing a white list of instructions to ignore. 446 // This may also be useful for the inloop reductions, if it can be 447 // kept simple enough. 448 collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts); 449 } 450 451 // We found a reduction var if we have reached the original phi node and we 452 // only have a single instruction with out-of-loop users. 453 454 // The ExitInstruction(Instruction which is allowed to have out-of-loop users) 455 // is saved as part of the RecurrenceDescriptor. 456 457 // Save the description of this reduction variable. 458 RecurrenceDescriptor RD(RdxStart, ExitInstruction, Kind, FMF, 459 ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, 460 IsSigned, CastInsts); 461 RedDes = RD; 462 463 return true; 464 } 465 466 RecurrenceDescriptor::InstDesc 467 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, 468 const InstDesc &Prev) { 469 assert((isa<CmpInst>(I) || isa<SelectInst>(I)) && 470 "Expected a cmp or select instruction"); 471 472 // We must handle the select(cmp()) as a single instruction. Advance to the 473 // select. 474 CmpInst::Predicate Pred; 475 if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) { 476 if (auto *Select = dyn_cast<SelectInst>(*I->user_begin())) 477 return InstDesc(Select, Prev.getRecKind()); 478 } 479 480 // Only match select with single use cmp condition. 481 if (!match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(), 482 m_Value()))) 483 return InstDesc(false, I); 484 485 // Look for a min/max pattern. 486 if (match(I, m_UMin(m_Value(), m_Value()))) 487 return InstDesc(I, RecurKind::UMin); 488 if (match(I, m_UMax(m_Value(), m_Value()))) 489 return InstDesc(I, RecurKind::UMax); 490 if (match(I, m_SMax(m_Value(), m_Value()))) 491 return InstDesc(I, RecurKind::SMax); 492 if (match(I, m_SMin(m_Value(), m_Value()))) 493 return InstDesc(I, RecurKind::SMin); 494 if (match(I, m_OrdFMin(m_Value(), m_Value()))) 495 return InstDesc(I, RecurKind::FMin); 496 if (match(I, m_OrdFMax(m_Value(), m_Value()))) 497 return InstDesc(I, RecurKind::FMax); 498 if (match(I, m_UnordFMin(m_Value(), m_Value()))) 499 return InstDesc(I, RecurKind::FMin); 500 if (match(I, m_UnordFMax(m_Value(), m_Value()))) 501 return InstDesc(I, RecurKind::FMax); 502 503 return InstDesc(false, I); 504 } 505 506 /// Returns true if the select instruction has users in the compare-and-add 507 /// reduction pattern below. The select instruction argument is the last one 508 /// in the sequence. 509 /// 510 /// %sum.1 = phi ... 511 /// ... 512 /// %cmp = fcmp pred %0, %CFP 513 /// %add = fadd %0, %sum.1 514 /// %sum.2 = select %cmp, %add, %sum.1 515 RecurrenceDescriptor::InstDesc 516 RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind, Instruction *I) { 517 SelectInst *SI = dyn_cast<SelectInst>(I); 518 if (!SI) 519 return InstDesc(false, I); 520 521 CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition()); 522 // Only handle single use cases for now. 523 if (!CI || !CI->hasOneUse()) 524 return InstDesc(false, I); 525 526 Value *TrueVal = SI->getTrueValue(); 527 Value *FalseVal = SI->getFalseValue(); 528 // Handle only when either of operands of select instruction is a PHI 529 // node for now. 530 if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) || 531 (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal))) 532 return InstDesc(false, I); 533 534 Instruction *I1 = 535 isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal) 536 : dyn_cast<Instruction>(TrueVal); 537 if (!I1 || !I1->isBinaryOp()) 538 return InstDesc(false, I); 539 540 Value *Op1, *Op2; 541 if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1) || 542 m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) && 543 I1->isFast()) 544 return InstDesc(Kind == RecurKind::FAdd, SI); 545 546 if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast())) 547 return InstDesc(Kind == RecurKind::FMul, SI); 548 549 return InstDesc(false, I); 550 } 551 552 RecurrenceDescriptor::InstDesc 553 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurKind Kind, 554 InstDesc &Prev, bool HasFunNoNaNAttr) { 555 Instruction *UAI = Prev.getUnsafeAlgebraInst(); 556 if (!UAI && isa<FPMathOperator>(I) && !I->hasAllowReassoc()) 557 UAI = I; // Found an unsafe (unvectorizable) algebra instruction. 558 559 switch (I->getOpcode()) { 560 default: 561 return InstDesc(false, I); 562 case Instruction::PHI: 563 return InstDesc(I, Prev.getRecKind(), Prev.getUnsafeAlgebraInst()); 564 case Instruction::Sub: 565 case Instruction::Add: 566 return InstDesc(Kind == RecurKind::Add, I); 567 case Instruction::Mul: 568 return InstDesc(Kind == RecurKind::Mul, I); 569 case Instruction::And: 570 return InstDesc(Kind == RecurKind::And, I); 571 case Instruction::Or: 572 return InstDesc(Kind == RecurKind::Or, I); 573 case Instruction::Xor: 574 return InstDesc(Kind == RecurKind::Xor, I); 575 case Instruction::FDiv: 576 case Instruction::FMul: 577 return InstDesc(Kind == RecurKind::FMul, I, UAI); 578 case Instruction::FSub: 579 case Instruction::FAdd: 580 return InstDesc(Kind == RecurKind::FAdd, I, UAI); 581 case Instruction::Select: 582 if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) 583 return isConditionalRdxPattern(Kind, I); 584 LLVM_FALLTHROUGH; 585 case Instruction::FCmp: 586 case Instruction::ICmp: 587 if (!isIntMinMaxRecurrenceKind(Kind) && 588 (!HasFunNoNaNAttr || !isFPMinMaxRecurrenceKind(Kind))) 589 return InstDesc(false, I); 590 return isMinMaxSelectCmpPattern(I, Prev); 591 } 592 } 593 594 bool RecurrenceDescriptor::hasMultipleUsesOf( 595 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts, 596 unsigned MaxNumUses) { 597 unsigned NumUses = 0; 598 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; 599 ++Use) { 600 if (Insts.count(dyn_cast<Instruction>(*Use))) 601 ++NumUses; 602 if (NumUses > MaxNumUses) 603 return true; 604 } 605 606 return false; 607 } 608 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, 609 RecurrenceDescriptor &RedDes, 610 DemandedBits *DB, AssumptionCache *AC, 611 DominatorTree *DT) { 612 613 BasicBlock *Header = TheLoop->getHeader(); 614 Function &F = *Header->getParent(); 615 bool HasFunNoNaNAttr = 616 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 617 618 if (AddReductionVar(Phi, RecurKind::Add, TheLoop, HasFunNoNaNAttr, RedDes, DB, 619 AC, DT)) { 620 LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); 621 return true; 622 } 623 if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, HasFunNoNaNAttr, RedDes, DB, 624 AC, DT)) { 625 LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); 626 return true; 627 } 628 if (AddReductionVar(Phi, RecurKind::Or, TheLoop, HasFunNoNaNAttr, RedDes, DB, 629 AC, DT)) { 630 LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); 631 return true; 632 } 633 if (AddReductionVar(Phi, RecurKind::And, TheLoop, HasFunNoNaNAttr, RedDes, DB, 634 AC, DT)) { 635 LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); 636 return true; 637 } 638 if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, HasFunNoNaNAttr, RedDes, DB, 639 AC, DT)) { 640 LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); 641 return true; 642 } 643 if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, HasFunNoNaNAttr, RedDes, 644 DB, AC, DT)) { 645 LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n"); 646 return true; 647 } 648 if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, HasFunNoNaNAttr, RedDes, 649 DB, AC, DT)) { 650 LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n"); 651 return true; 652 } 653 if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, HasFunNoNaNAttr, RedDes, 654 DB, AC, DT)) { 655 LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n"); 656 return true; 657 } 658 if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, HasFunNoNaNAttr, RedDes, 659 DB, AC, DT)) { 660 LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n"); 661 return true; 662 } 663 if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, HasFunNoNaNAttr, RedDes, 664 DB, AC, DT)) { 665 LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); 666 return true; 667 } 668 if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, HasFunNoNaNAttr, RedDes, 669 DB, AC, DT)) { 670 LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); 671 return true; 672 } 673 if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, HasFunNoNaNAttr, RedDes, 674 DB, AC, DT)) { 675 LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n"); 676 return true; 677 } 678 if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, HasFunNoNaNAttr, RedDes, 679 DB, AC, DT)) { 680 LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n"); 681 return true; 682 } 683 // Not a reduction of known type. 684 return false; 685 } 686 687 bool RecurrenceDescriptor::isFirstOrderRecurrence( 688 PHINode *Phi, Loop *TheLoop, 689 DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) { 690 691 // Ensure the phi node is in the loop header and has two incoming values. 692 if (Phi->getParent() != TheLoop->getHeader() || 693 Phi->getNumIncomingValues() != 2) 694 return false; 695 696 // Ensure the loop has a preheader and a single latch block. The loop 697 // vectorizer will need the latch to set up the next iteration of the loop. 698 auto *Preheader = TheLoop->getLoopPreheader(); 699 auto *Latch = TheLoop->getLoopLatch(); 700 if (!Preheader || !Latch) 701 return false; 702 703 // Ensure the phi node's incoming blocks are the loop preheader and latch. 704 if (Phi->getBasicBlockIndex(Preheader) < 0 || 705 Phi->getBasicBlockIndex(Latch) < 0) 706 return false; 707 708 // Get the previous value. The previous value comes from the latch edge while 709 // the initial value comes form the preheader edge. 710 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); 711 if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) || 712 SinkAfter.count(Previous)) // Cannot rely on dominance due to motion. 713 return false; 714 715 // Ensure every user of the phi node is dominated by the previous value. 716 // The dominance requirement ensures the loop vectorizer will not need to 717 // vectorize the initial value prior to the first iteration of the loop. 718 // TODO: Consider extending this sinking to handle memory instructions and 719 // phis with multiple users. 720 721 // Returns true, if all users of I are dominated by DominatedBy. 722 auto allUsesDominatedBy = [DT](Instruction *I, Instruction *DominatedBy) { 723 return all_of(I->uses(), [DT, DominatedBy](Use &U) { 724 return DT->dominates(DominatedBy, U); 725 }); 726 }; 727 728 if (Phi->hasOneUse()) { 729 Instruction *I = Phi->user_back(); 730 731 // If the user of the PHI is also the incoming value, we potentially have a 732 // reduction and which cannot be handled by sinking. 733 if (Previous == I) 734 return false; 735 736 // We cannot sink terminator instructions. 737 if (I->getParent()->getTerminator() == I) 738 return false; 739 740 // Do not try to sink an instruction multiple times (if multiple operands 741 // are first order recurrences). 742 // TODO: We can support this case, by sinking the instruction after the 743 // 'deepest' previous instruction. 744 if (SinkAfter.find(I) != SinkAfter.end()) 745 return false; 746 747 if (DT->dominates(Previous, I)) // We already are good w/o sinking. 748 return true; 749 750 // We can sink any instruction without side effects, as long as all users 751 // are dominated by the instruction we are sinking after. 752 if (I->getParent() == Phi->getParent() && !I->mayHaveSideEffects() && 753 allUsesDominatedBy(I, Previous)) { 754 SinkAfter[I] = Previous; 755 return true; 756 } 757 } 758 759 return allUsesDominatedBy(Phi, Previous); 760 } 761 762 /// This function returns the identity element (or neutral element) for 763 /// the operation K. 764 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurKind K, Type *Tp) { 765 switch (K) { 766 case RecurKind::Xor: 767 case RecurKind::Add: 768 case RecurKind::Or: 769 // Adding, Xoring, Oring zero to a number does not change it. 770 return ConstantInt::get(Tp, 0); 771 case RecurKind::Mul: 772 // Multiplying a number by 1 does not change it. 773 return ConstantInt::get(Tp, 1); 774 case RecurKind::And: 775 // AND-ing a number with an all-1 value does not change it. 776 return ConstantInt::get(Tp, -1, true); 777 case RecurKind::FMul: 778 // Multiplying a number by 1 does not change it. 779 return ConstantFP::get(Tp, 1.0L); 780 case RecurKind::FAdd: 781 // Adding zero to a number does not change it. 782 return ConstantFP::get(Tp, 0.0L); 783 case RecurKind::UMin: 784 return ConstantInt::get(Tp, -1); 785 case RecurKind::UMax: 786 return ConstantInt::get(Tp, 0); 787 case RecurKind::SMin: 788 return ConstantInt::get(Tp, 789 APInt::getSignedMaxValue(Tp->getIntegerBitWidth())); 790 case RecurKind::SMax: 791 return ConstantInt::get(Tp, 792 APInt::getSignedMinValue(Tp->getIntegerBitWidth())); 793 case RecurKind::FMin: 794 return ConstantFP::getInfinity(Tp, true); 795 case RecurKind::FMax: 796 return ConstantFP::getInfinity(Tp, false); 797 default: 798 llvm_unreachable("Unknown recurrence kind"); 799 } 800 } 801 802 unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) { 803 switch (Kind) { 804 case RecurKind::Add: 805 return Instruction::Add; 806 case RecurKind::Mul: 807 return Instruction::Mul; 808 case RecurKind::Or: 809 return Instruction::Or; 810 case RecurKind::And: 811 return Instruction::And; 812 case RecurKind::Xor: 813 return Instruction::Xor; 814 case RecurKind::FMul: 815 return Instruction::FMul; 816 case RecurKind::FAdd: 817 return Instruction::FAdd; 818 case RecurKind::SMax: 819 case RecurKind::SMin: 820 case RecurKind::UMax: 821 case RecurKind::UMin: 822 return Instruction::ICmp; 823 case RecurKind::FMax: 824 case RecurKind::FMin: 825 return Instruction::FCmp; 826 default: 827 llvm_unreachable("Unknown recurrence operation"); 828 } 829 } 830 831 SmallVector<Instruction *, 4> 832 RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const { 833 SmallVector<Instruction *, 4> ReductionOperations; 834 unsigned RedOp = getOpcode(Kind); 835 836 // Search down from the Phi to the LoopExitInstr, looking for instructions 837 // with a single user of the correct type for the reduction. 838 839 // Note that we check that the type of the operand is correct for each item in 840 // the chain, including the last (the loop exit value). This can come up from 841 // sub, which would otherwise be treated as an add reduction. MinMax also need 842 // to check for a pair of icmp/select, for which we use getNextInstruction and 843 // isCorrectOpcode functions to step the right number of instruction, and 844 // check the icmp/select pair. 845 // FIXME: We also do not attempt to look through Phi/Select's yet, which might 846 // be part of the reduction chain, or attempt to looks through And's to find a 847 // smaller bitwidth. Subs are also currently not allowed (which are usually 848 // treated as part of a add reduction) as they are expected to generally be 849 // more expensive than out-of-loop reductions, and need to be costed more 850 // carefully. 851 unsigned ExpectedUses = 1; 852 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) 853 ExpectedUses = 2; 854 855 auto getNextInstruction = [&](Instruction *Cur) { 856 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) { 857 // We are expecting a icmp/select pair, which we go to the next select 858 // instruction if we can. We already know that Cur has 2 uses. 859 if (isa<SelectInst>(*Cur->user_begin())) 860 return cast<Instruction>(*Cur->user_begin()); 861 else 862 return cast<Instruction>(*std::next(Cur->user_begin())); 863 } 864 return cast<Instruction>(*Cur->user_begin()); 865 }; 866 auto isCorrectOpcode = [&](Instruction *Cur) { 867 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) { 868 Value *LHS, *RHS; 869 return SelectPatternResult::isMinOrMax( 870 matchSelectPattern(Cur, LHS, RHS).Flavor); 871 } 872 return Cur->getOpcode() == RedOp; 873 }; 874 875 // The loop exit instruction we check first (as a quick test) but add last. We 876 // check the opcode is correct (and dont allow them to be Subs) and that they 877 // have expected to have the expected number of uses. They will have one use 878 // from the phi and one from a LCSSA value, no matter the type. 879 if (!isCorrectOpcode(LoopExitInstr) || !LoopExitInstr->hasNUses(2)) 880 return {}; 881 882 // Check that the Phi has one (or two for min/max) uses. 883 if (!Phi->hasNUses(ExpectedUses)) 884 return {}; 885 Instruction *Cur = getNextInstruction(Phi); 886 887 // Each other instruction in the chain should have the expected number of uses 888 // and be the correct opcode. 889 while (Cur != LoopExitInstr) { 890 if (!isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses)) 891 return {}; 892 893 ReductionOperations.push_back(Cur); 894 Cur = getNextInstruction(Cur); 895 } 896 897 ReductionOperations.push_back(Cur); 898 return ReductionOperations; 899 } 900 901 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, 902 const SCEV *Step, BinaryOperator *BOp, 903 SmallVectorImpl<Instruction *> *Casts) 904 : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) { 905 assert(IK != IK_NoInduction && "Not an induction"); 906 907 // Start value type should match the induction kind and the value 908 // itself should not be null. 909 assert(StartValue && "StartValue is null"); 910 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 911 "StartValue is not a pointer for pointer induction"); 912 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 913 "StartValue is not an integer for integer induction"); 914 915 // Check the Step Value. It should be non-zero integer value. 916 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && 917 "Step value is zero"); 918 919 assert((IK != IK_PtrInduction || getConstIntStepValue()) && 920 "Step value should be constant for pointer induction"); 921 assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && 922 "StepValue is not an integer"); 923 924 assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && 925 "StepValue is not FP for FpInduction"); 926 assert((IK != IK_FpInduction || 927 (InductionBinOp && 928 (InductionBinOp->getOpcode() == Instruction::FAdd || 929 InductionBinOp->getOpcode() == Instruction::FSub))) && 930 "Binary opcode should be specified for FP induction"); 931 932 if (Casts) { 933 for (auto &Inst : *Casts) { 934 RedundantCasts.push_back(Inst); 935 } 936 } 937 } 938 939 ConstantInt *InductionDescriptor::getConstIntStepValue() const { 940 if (isa<SCEVConstant>(Step)) 941 return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue()); 942 return nullptr; 943 } 944 945 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, 946 ScalarEvolution *SE, 947 InductionDescriptor &D) { 948 949 // Here we only handle FP induction variables. 950 assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type"); 951 952 if (TheLoop->getHeader() != Phi->getParent()) 953 return false; 954 955 // The loop may have multiple entrances or multiple exits; we can analyze 956 // this phi if it has a unique entry value and a unique backedge value. 957 if (Phi->getNumIncomingValues() != 2) 958 return false; 959 Value *BEValue = nullptr, *StartValue = nullptr; 960 if (TheLoop->contains(Phi->getIncomingBlock(0))) { 961 BEValue = Phi->getIncomingValue(0); 962 StartValue = Phi->getIncomingValue(1); 963 } else { 964 assert(TheLoop->contains(Phi->getIncomingBlock(1)) && 965 "Unexpected Phi node in the loop"); 966 BEValue = Phi->getIncomingValue(1); 967 StartValue = Phi->getIncomingValue(0); 968 } 969 970 BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue); 971 if (!BOp) 972 return false; 973 974 Value *Addend = nullptr; 975 if (BOp->getOpcode() == Instruction::FAdd) { 976 if (BOp->getOperand(0) == Phi) 977 Addend = BOp->getOperand(1); 978 else if (BOp->getOperand(1) == Phi) 979 Addend = BOp->getOperand(0); 980 } else if (BOp->getOpcode() == Instruction::FSub) 981 if (BOp->getOperand(0) == Phi) 982 Addend = BOp->getOperand(1); 983 984 if (!Addend) 985 return false; 986 987 // The addend should be loop invariant 988 if (auto *I = dyn_cast<Instruction>(Addend)) 989 if (TheLoop->contains(I)) 990 return false; 991 992 // FP Step has unknown SCEV 993 const SCEV *Step = SE->getUnknown(Addend); 994 D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); 995 return true; 996 } 997 998 /// This function is called when we suspect that the update-chain of a phi node 999 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts, 1000 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime 1001 /// predicate P under which the SCEV expression for the phi can be the 1002 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the 1003 /// cast instructions that are involved in the update-chain of this induction. 1004 /// A caller that adds the required runtime predicate can be free to drop these 1005 /// cast instructions, and compute the phi using \p AR (instead of some scev 1006 /// expression with casts). 1007 /// 1008 /// For example, without a predicate the scev expression can take the following 1009 /// form: 1010 /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy) 1011 /// 1012 /// It corresponds to the following IR sequence: 1013 /// %for.body: 1014 /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ] 1015 /// %casted_phi = "ExtTrunc i64 %x" 1016 /// %add = add i64 %casted_phi, %step 1017 /// 1018 /// where %x is given in \p PN, 1019 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate, 1020 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of 1021 /// several forms, for example, such as: 1022 /// ExtTrunc1: %casted_phi = and %x, 2^n-1 1023 /// or: 1024 /// ExtTrunc2: %t = shl %x, m 1025 /// %casted_phi = ashr %t, m 1026 /// 1027 /// If we are able to find such sequence, we return the instructions 1028 /// we found, namely %casted_phi and the instructions on its use-def chain up 1029 /// to the phi (not including the phi). 1030 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE, 1031 const SCEVUnknown *PhiScev, 1032 const SCEVAddRecExpr *AR, 1033 SmallVectorImpl<Instruction *> &CastInsts) { 1034 1035 assert(CastInsts.empty() && "CastInsts is expected to be empty."); 1036 auto *PN = cast<PHINode>(PhiScev->getValue()); 1037 assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression"); 1038 const Loop *L = AR->getLoop(); 1039 1040 // Find any cast instructions that participate in the def-use chain of 1041 // PhiScev in the loop. 1042 // FORNOW/TODO: We currently expect the def-use chain to include only 1043 // two-operand instructions, where one of the operands is an invariant. 1044 // createAddRecFromPHIWithCasts() currently does not support anything more 1045 // involved than that, so we keep the search simple. This can be 1046 // extended/generalized as needed. 1047 1048 auto getDef = [&](const Value *Val) -> Value * { 1049 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val); 1050 if (!BinOp) 1051 return nullptr; 1052 Value *Op0 = BinOp->getOperand(0); 1053 Value *Op1 = BinOp->getOperand(1); 1054 Value *Def = nullptr; 1055 if (L->isLoopInvariant(Op0)) 1056 Def = Op1; 1057 else if (L->isLoopInvariant(Op1)) 1058 Def = Op0; 1059 return Def; 1060 }; 1061 1062 // Look for the instruction that defines the induction via the 1063 // loop backedge. 1064 BasicBlock *Latch = L->getLoopLatch(); 1065 if (!Latch) 1066 return false; 1067 Value *Val = PN->getIncomingValueForBlock(Latch); 1068 if (!Val) 1069 return false; 1070 1071 // Follow the def-use chain until the induction phi is reached. 1072 // If on the way we encounter a Value that has the same SCEV Expr as the 1073 // phi node, we can consider the instructions we visit from that point 1074 // as part of the cast-sequence that can be ignored. 1075 bool InCastSequence = false; 1076 auto *Inst = dyn_cast<Instruction>(Val); 1077 while (Val != PN) { 1078 // If we encountered a phi node other than PN, or if we left the loop, 1079 // we bail out. 1080 if (!Inst || !L->contains(Inst)) { 1081 return false; 1082 } 1083 auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val)); 1084 if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR)) 1085 InCastSequence = true; 1086 if (InCastSequence) { 1087 // Only the last instruction in the cast sequence is expected to have 1088 // uses outside the induction def-use chain. 1089 if (!CastInsts.empty()) 1090 if (!Inst->hasOneUse()) 1091 return false; 1092 CastInsts.push_back(Inst); 1093 } 1094 Val = getDef(Val); 1095 if (!Val) 1096 return false; 1097 Inst = dyn_cast<Instruction>(Val); 1098 } 1099 1100 return InCastSequence; 1101 } 1102 1103 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, 1104 PredicatedScalarEvolution &PSE, 1105 InductionDescriptor &D, bool Assume) { 1106 Type *PhiTy = Phi->getType(); 1107 1108 // Handle integer and pointer inductions variables. 1109 // Now we handle also FP induction but not trying to make a 1110 // recurrent expression from the PHI node in-place. 1111 1112 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() && 1113 !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) 1114 return false; 1115 1116 if (PhiTy->isFloatingPointTy()) 1117 return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D); 1118 1119 const SCEV *PhiScev = PSE.getSCEV(Phi); 1120 const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1121 1122 // We need this expression to be an AddRecExpr. 1123 if (Assume && !AR) 1124 AR = PSE.getAsAddRec(Phi); 1125 1126 if (!AR) { 1127 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 1128 return false; 1129 } 1130 1131 // Record any Cast instructions that participate in the induction update 1132 const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev); 1133 // If we started from an UnknownSCEV, and managed to build an addRecurrence 1134 // only after enabling Assume with PSCEV, this means we may have encountered 1135 // cast instructions that required adding a runtime check in order to 1136 // guarantee the correctness of the AddRecurrence respresentation of the 1137 // induction. 1138 if (PhiScev != AR && SymbolicPhi) { 1139 SmallVector<Instruction *, 2> Casts; 1140 if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts)) 1141 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts); 1142 } 1143 1144 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR); 1145 } 1146 1147 bool InductionDescriptor::isInductionPHI( 1148 PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE, 1149 InductionDescriptor &D, const SCEV *Expr, 1150 SmallVectorImpl<Instruction *> *CastsToIgnore) { 1151 Type *PhiTy = Phi->getType(); 1152 // We only handle integer and pointer inductions variables. 1153 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 1154 return false; 1155 1156 // Check that the PHI is consecutive. 1157 const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); 1158 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1159 1160 if (!AR) { 1161 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 1162 return false; 1163 } 1164 1165 if (AR->getLoop() != TheLoop) { 1166 // FIXME: We should treat this as a uniform. Unfortunately, we 1167 // don't currently know how to handled uniform PHIs. 1168 LLVM_DEBUG( 1169 dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n"); 1170 return false; 1171 } 1172 1173 Value *StartValue = 1174 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); 1175 1176 BasicBlock *Latch = AR->getLoop()->getLoopLatch(); 1177 if (!Latch) 1178 return false; 1179 BinaryOperator *BOp = 1180 dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch)); 1181 1182 const SCEV *Step = AR->getStepRecurrence(*SE); 1183 // Calculate the pointer stride and check if it is consecutive. 1184 // The stride may be a constant or a loop invariant integer value. 1185 const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step); 1186 if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop)) 1187 return false; 1188 1189 if (PhiTy->isIntegerTy()) { 1190 D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp, 1191 CastsToIgnore); 1192 return true; 1193 } 1194 1195 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 1196 // Pointer induction should be a constant. 1197 if (!ConstStep) 1198 return false; 1199 1200 ConstantInt *CV = ConstStep->getValue(); 1201 Type *PointerElementType = PhiTy->getPointerElementType(); 1202 // The pointer stride cannot be determined if the pointer element type is not 1203 // sized. 1204 if (!PointerElementType->isSized()) 1205 return false; 1206 1207 const DataLayout &DL = Phi->getModule()->getDataLayout(); 1208 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); 1209 if (!Size) 1210 return false; 1211 1212 int64_t CVSize = CV->getSExtValue(); 1213 if (CVSize % Size) 1214 return false; 1215 auto *StepValue = 1216 SE->getConstant(CV->getType(), CVSize / Size, true /* signed */); 1217 D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue, BOp); 1218 return true; 1219 } 1220