1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file "describes" induction and recurrence variables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/IVDescriptors.h" 14 #include "llvm/Analysis/DemandedBits.h" 15 #include "llvm/Analysis/LoopInfo.h" 16 #include "llvm/Analysis/ScalarEvolution.h" 17 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/IR/Dominators.h" 20 #include "llvm/IR/Instructions.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/IR/PatternMatch.h" 23 #include "llvm/IR/ValueHandle.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/KnownBits.h" 26 27 #include <set> 28 29 using namespace llvm; 30 using namespace llvm::PatternMatch; 31 32 #define DEBUG_TYPE "iv-descriptors" 33 34 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, 35 SmallPtrSetImpl<Instruction *> &Set) { 36 for (const Use &Use : I->operands()) 37 if (!Set.count(dyn_cast<Instruction>(Use))) 38 return false; 39 return true; 40 } 41 42 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) { 43 switch (Kind) { 44 default: 45 break; 46 case RecurKind::Add: 47 case RecurKind::Mul: 48 case RecurKind::Or: 49 case RecurKind::And: 50 case RecurKind::Xor: 51 case RecurKind::SMax: 52 case RecurKind::SMin: 53 case RecurKind::UMax: 54 case RecurKind::UMin: 55 case RecurKind::SelectICmp: 56 case RecurKind::SelectFCmp: 57 return true; 58 } 59 return false; 60 } 61 62 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) { 63 return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind); 64 } 65 66 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurKind Kind) { 67 switch (Kind) { 68 default: 69 break; 70 case RecurKind::Add: 71 case RecurKind::Mul: 72 case RecurKind::FAdd: 73 case RecurKind::FMul: 74 case RecurKind::FMulAdd: 75 return true; 76 } 77 return false; 78 } 79 80 /// Determines if Phi may have been type-promoted. If Phi has a single user 81 /// that ANDs the Phi with a type mask, return the user. RT is updated to 82 /// account for the narrower bit width represented by the mask, and the AND 83 /// instruction is added to CI. 84 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT, 85 SmallPtrSetImpl<Instruction *> &Visited, 86 SmallPtrSetImpl<Instruction *> &CI) { 87 if (!Phi->hasOneUse()) 88 return Phi; 89 90 const APInt *M = nullptr; 91 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); 92 93 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT 94 // with a new integer type of the corresponding bit width. 95 if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) { 96 int32_t Bits = (*M + 1).exactLogBase2(); 97 if (Bits > 0) { 98 RT = IntegerType::get(Phi->getContext(), Bits); 99 Visited.insert(Phi); 100 CI.insert(J); 101 return J; 102 } 103 } 104 return Phi; 105 } 106 107 /// Compute the minimal bit width needed to represent a reduction whose exit 108 /// instruction is given by Exit. 109 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit, 110 DemandedBits *DB, 111 AssumptionCache *AC, 112 DominatorTree *DT) { 113 bool IsSigned = false; 114 const DataLayout &DL = Exit->getModule()->getDataLayout(); 115 uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType()); 116 117 if (DB) { 118 // Use the demanded bits analysis to determine the bits that are live out 119 // of the exit instruction, rounding up to the nearest power of two. If the 120 // use of demanded bits results in a smaller bit width, we know the value 121 // must be positive (i.e., IsSigned = false), because if this were not the 122 // case, the sign bit would have been demanded. 123 auto Mask = DB->getDemandedBits(Exit); 124 MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros(); 125 } 126 127 if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) { 128 // If demanded bits wasn't able to limit the bit width, we can try to use 129 // value tracking instead. This can be the case, for example, if the value 130 // may be negative. 131 auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT); 132 auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType()); 133 MaxBitWidth = NumTypeBits - NumSignBits; 134 KnownBits Bits = computeKnownBits(Exit, DL); 135 if (!Bits.isNonNegative()) { 136 // If the value is not known to be non-negative, we set IsSigned to true, 137 // meaning that we will use sext instructions instead of zext 138 // instructions to restore the original type. 139 IsSigned = true; 140 // Make sure at at least one sign bit is included in the result, so it 141 // will get properly sign-extended. 142 ++MaxBitWidth; 143 } 144 } 145 if (!isPowerOf2_64(MaxBitWidth)) 146 MaxBitWidth = NextPowerOf2(MaxBitWidth); 147 148 return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth), 149 IsSigned); 150 } 151 152 /// Collect cast instructions that can be ignored in the vectorizer's cost 153 /// model, given a reduction exit value and the minimal type in which the 154 // reduction can be represented. Also search casts to the recurrence type 155 // to find the minimum width used by the recurrence. 156 static void collectCastInstrs(Loop *TheLoop, Instruction *Exit, 157 Type *RecurrenceType, 158 SmallPtrSetImpl<Instruction *> &Casts, 159 unsigned &MinWidthCastToRecurTy) { 160 161 SmallVector<Instruction *, 8> Worklist; 162 SmallPtrSet<Instruction *, 8> Visited; 163 Worklist.push_back(Exit); 164 MinWidthCastToRecurTy = -1U; 165 166 while (!Worklist.empty()) { 167 Instruction *Val = Worklist.pop_back_val(); 168 Visited.insert(Val); 169 if (auto *Cast = dyn_cast<CastInst>(Val)) { 170 if (Cast->getSrcTy() == RecurrenceType) { 171 // If the source type of a cast instruction is equal to the recurrence 172 // type, it will be eliminated, and should be ignored in the vectorizer 173 // cost model. 174 Casts.insert(Cast); 175 continue; 176 } 177 if (Cast->getDestTy() == RecurrenceType) { 178 // The minimum width used by the recurrence is found by checking for 179 // casts on its operands. The minimum width is used by the vectorizer 180 // when finding the widest type for in-loop reductions without any 181 // loads/stores. 182 MinWidthCastToRecurTy = std::min<unsigned>( 183 MinWidthCastToRecurTy, Cast->getSrcTy()->getScalarSizeInBits()); 184 continue; 185 } 186 } 187 // Add all operands to the work list if they are loop-varying values that 188 // we haven't yet visited. 189 for (Value *O : cast<User>(Val)->operands()) 190 if (auto *I = dyn_cast<Instruction>(O)) 191 if (TheLoop->contains(I) && !Visited.count(I)) 192 Worklist.push_back(I); 193 } 194 } 195 196 // Check if a given Phi node can be recognized as an ordered reduction for 197 // vectorizing floating point operations without unsafe math. 198 static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst, 199 Instruction *Exit, PHINode *Phi) { 200 // Currently only FAdd and FMulAdd are supported. 201 if (Kind != RecurKind::FAdd && Kind != RecurKind::FMulAdd) 202 return false; 203 204 if (Kind == RecurKind::FAdd && Exit->getOpcode() != Instruction::FAdd) 205 return false; 206 207 if (Kind == RecurKind::FMulAdd && 208 !RecurrenceDescriptor::isFMulAddIntrinsic(Exit)) 209 return false; 210 211 // Ensure the exit instruction has only one user other than the reduction PHI 212 if (Exit != ExactFPMathInst || Exit->hasNUsesOrMore(3)) 213 return false; 214 215 // The only pattern accepted is the one in which the reduction PHI 216 // is used as one of the operands of the exit instruction 217 auto *Op0 = Exit->getOperand(0); 218 auto *Op1 = Exit->getOperand(1); 219 if (Kind == RecurKind::FAdd && Op0 != Phi && Op1 != Phi) 220 return false; 221 if (Kind == RecurKind::FMulAdd && Exit->getOperand(2) != Phi) 222 return false; 223 224 LLVM_DEBUG(dbgs() << "LV: Found an ordered reduction: Phi: " << *Phi 225 << ", ExitInst: " << *Exit << "\n"); 226 227 return true; 228 } 229 230 bool RecurrenceDescriptor::AddReductionVar( 231 PHINode *Phi, RecurKind Kind, Loop *TheLoop, FastMathFlags FuncFMF, 232 RecurrenceDescriptor &RedDes, DemandedBits *DB, AssumptionCache *AC, 233 DominatorTree *DT, ScalarEvolution *SE) { 234 if (Phi->getNumIncomingValues() != 2) 235 return false; 236 237 // Reduction variables are only found in the loop header block. 238 if (Phi->getParent() != TheLoop->getHeader()) 239 return false; 240 241 // Obtain the reduction start value from the value that comes from the loop 242 // preheader. 243 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 244 245 // ExitInstruction is the single value which is used outside the loop. 246 // We only allow for a single reduction value to be used outside the loop. 247 // This includes users of the reduction, variables (which form a cycle 248 // which ends in the phi node). 249 Instruction *ExitInstruction = nullptr; 250 251 // Variable to keep last visited store instruction. By the end of the 252 // algorithm this variable will be either empty or having intermediate 253 // reduction value stored in invariant address. 254 StoreInst *IntermediateStore = nullptr; 255 256 // Indicates that we found a reduction operation in our scan. 257 bool FoundReduxOp = false; 258 259 // We start with the PHI node and scan for all of the users of this 260 // instruction. All users must be instructions that can be used as reduction 261 // variables (such as ADD). We must have a single out-of-block user. The cycle 262 // must include the original PHI. 263 bool FoundStartPHI = false; 264 265 // To recognize min/max patterns formed by a icmp select sequence, we store 266 // the number of instruction we saw from the recognized min/max pattern, 267 // to make sure we only see exactly the two instructions. 268 unsigned NumCmpSelectPatternInst = 0; 269 InstDesc ReduxDesc(false, nullptr); 270 271 // Data used for determining if the recurrence has been type-promoted. 272 Type *RecurrenceType = Phi->getType(); 273 SmallPtrSet<Instruction *, 4> CastInsts; 274 unsigned MinWidthCastToRecurrenceType; 275 Instruction *Start = Phi; 276 bool IsSigned = false; 277 278 SmallPtrSet<Instruction *, 8> VisitedInsts; 279 SmallVector<Instruction *, 8> Worklist; 280 281 // Return early if the recurrence kind does not match the type of Phi. If the 282 // recurrence kind is arithmetic, we attempt to look through AND operations 283 // resulting from the type promotion performed by InstCombine. Vector 284 // operations are not limited to the legal integer widths, so we may be able 285 // to evaluate the reduction in the narrower width. 286 if (RecurrenceType->isFloatingPointTy()) { 287 if (!isFloatingPointRecurrenceKind(Kind)) 288 return false; 289 } else if (RecurrenceType->isIntegerTy()) { 290 if (!isIntegerRecurrenceKind(Kind)) 291 return false; 292 if (!isMinMaxRecurrenceKind(Kind)) 293 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); 294 } else { 295 // Pointer min/max may exist, but it is not supported as a reduction op. 296 return false; 297 } 298 299 Worklist.push_back(Start); 300 VisitedInsts.insert(Start); 301 302 // Start with all flags set because we will intersect this with the reduction 303 // flags from all the reduction operations. 304 FastMathFlags FMF = FastMathFlags::getFast(); 305 306 // The first instruction in the use-def chain of the Phi node that requires 307 // exact floating point operations. 308 Instruction *ExactFPMathInst = nullptr; 309 310 // A value in the reduction can be used: 311 // - By the reduction: 312 // - Reduction operation: 313 // - One use of reduction value (safe). 314 // - Multiple use of reduction value (not safe). 315 // - PHI: 316 // - All uses of the PHI must be the reduction (safe). 317 // - Otherwise, not safe. 318 // - By instructions outside of the loop (safe). 319 // * One value may have several outside users, but all outside 320 // uses must be of the same value. 321 // - By store instructions with a loop invariant address (safe with 322 // the following restrictions): 323 // * If there are several stores, all must have the same address. 324 // * Final value should be stored in that loop invariant address. 325 // - By an instruction that is not part of the reduction (not safe). 326 // This is either: 327 // * An instruction type other than PHI or the reduction operation. 328 // * A PHI in the header other than the initial PHI. 329 while (!Worklist.empty()) { 330 Instruction *Cur = Worklist.pop_back_val(); 331 332 // Store instructions are allowed iff it is the store of the reduction 333 // value to the same loop invariant memory location. 334 if (auto *SI = dyn_cast<StoreInst>(Cur)) { 335 if (!SE) { 336 LLVM_DEBUG(dbgs() << "Store instructions are not processed without " 337 << "Scalar Evolution Analysis\n"); 338 return false; 339 } 340 341 const SCEV *PtrScev = SE->getSCEV(SI->getPointerOperand()); 342 // Check it is the same address as previous stores 343 if (IntermediateStore) { 344 const SCEV *OtherScev = 345 SE->getSCEV(IntermediateStore->getPointerOperand()); 346 347 if (OtherScev != PtrScev) { 348 LLVM_DEBUG(dbgs() << "Storing reduction value to different addresses " 349 << "inside the loop: " << *SI->getPointerOperand() 350 << " and " 351 << *IntermediateStore->getPointerOperand() << '\n'); 352 return false; 353 } 354 } 355 356 // Check the pointer is loop invariant 357 if (!SE->isLoopInvariant(PtrScev, TheLoop)) { 358 LLVM_DEBUG(dbgs() << "Storing reduction value to non-uniform address " 359 << "inside the loop: " << *SI->getPointerOperand() 360 << '\n'); 361 return false; 362 } 363 364 // IntermediateStore is always the last store in the loop. 365 IntermediateStore = SI; 366 continue; 367 } 368 369 // No Users. 370 // If the instruction has no users then this is a broken chain and can't be 371 // a reduction variable. 372 if (Cur->use_empty()) 373 return false; 374 375 bool IsAPhi = isa<PHINode>(Cur); 376 377 // A header PHI use other than the original PHI. 378 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 379 return false; 380 381 // Reductions of instructions such as Div, and Sub is only possible if the 382 // LHS is the reduction variable. 383 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 384 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 385 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 386 return false; 387 388 // Any reduction instruction must be of one of the allowed kinds. We ignore 389 // the starting value (the Phi or an AND instruction if the Phi has been 390 // type-promoted). 391 if (Cur != Start) { 392 ReduxDesc = 393 isRecurrenceInstr(TheLoop, Phi, Cur, Kind, ReduxDesc, FuncFMF); 394 ExactFPMathInst = ExactFPMathInst == nullptr 395 ? ReduxDesc.getExactFPMathInst() 396 : ExactFPMathInst; 397 if (!ReduxDesc.isRecurrence()) 398 return false; 399 // FIXME: FMF is allowed on phi, but propagation is not handled correctly. 400 if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi) { 401 FastMathFlags CurFMF = ReduxDesc.getPatternInst()->getFastMathFlags(); 402 if (auto *Sel = dyn_cast<SelectInst>(ReduxDesc.getPatternInst())) { 403 // Accept FMF on either fcmp or select of a min/max idiom. 404 // TODO: This is a hack to work-around the fact that FMF may not be 405 // assigned/propagated correctly. If that problem is fixed or we 406 // standardize on fmin/fmax via intrinsics, this can be removed. 407 if (auto *FCmp = dyn_cast<FCmpInst>(Sel->getCondition())) 408 CurFMF |= FCmp->getFastMathFlags(); 409 } 410 FMF &= CurFMF; 411 } 412 // Update this reduction kind if we matched a new instruction. 413 // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind' 414 // state accurate while processing the worklist? 415 if (ReduxDesc.getRecKind() != RecurKind::None) 416 Kind = ReduxDesc.getRecKind(); 417 } 418 419 bool IsASelect = isa<SelectInst>(Cur); 420 421 // A conditional reduction operation must only have 2 or less uses in 422 // VisitedInsts. 423 if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) && 424 hasMultipleUsesOf(Cur, VisitedInsts, 2)) 425 return false; 426 427 // A reduction operation must only have one use of the reduction value. 428 if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) && 429 !isSelectCmpRecurrenceKind(Kind) && 430 hasMultipleUsesOf(Cur, VisitedInsts, 1)) 431 return false; 432 433 // All inputs to a PHI node must be a reduction value. 434 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 435 return false; 436 437 if ((isIntMinMaxRecurrenceKind(Kind) || Kind == RecurKind::SelectICmp) && 438 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) 439 ++NumCmpSelectPatternInst; 440 if ((isFPMinMaxRecurrenceKind(Kind) || Kind == RecurKind::SelectFCmp) && 441 (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) 442 ++NumCmpSelectPatternInst; 443 444 // Check whether we found a reduction operator. 445 FoundReduxOp |= !IsAPhi && Cur != Start; 446 447 // Process users of current instruction. Push non-PHI nodes after PHI nodes 448 // onto the stack. This way we are going to have seen all inputs to PHI 449 // nodes once we get to them. 450 SmallVector<Instruction *, 8> NonPHIs; 451 SmallVector<Instruction *, 8> PHIs; 452 for (User *U : Cur->users()) { 453 Instruction *UI = cast<Instruction>(U); 454 455 // If the user is a call to llvm.fmuladd then the instruction can only be 456 // the final operand. 457 if (isFMulAddIntrinsic(UI)) 458 if (Cur == UI->getOperand(0) || Cur == UI->getOperand(1)) 459 return false; 460 461 // Check if we found the exit user. 462 BasicBlock *Parent = UI->getParent(); 463 if (!TheLoop->contains(Parent)) { 464 // If we already know this instruction is used externally, move on to 465 // the next user. 466 if (ExitInstruction == Cur) 467 continue; 468 469 // Exit if you find multiple values used outside or if the header phi 470 // node is being used. In this case the user uses the value of the 471 // previous iteration, in which case we would loose "VF-1" iterations of 472 // the reduction operation if we vectorize. 473 if (ExitInstruction != nullptr || Cur == Phi) 474 return false; 475 476 // The instruction used by an outside user must be the last instruction 477 // before we feed back to the reduction phi. Otherwise, we loose VF-1 478 // operations on the value. 479 if (!is_contained(Phi->operands(), Cur)) 480 return false; 481 482 ExitInstruction = Cur; 483 continue; 484 } 485 486 // Process instructions only once (termination). Each reduction cycle 487 // value must only be used once, except by phi nodes and min/max 488 // reductions which are represented as a cmp followed by a select. 489 InstDesc IgnoredVal(false, nullptr); 490 if (VisitedInsts.insert(UI).second) { 491 if (isa<PHINode>(UI)) { 492 PHIs.push_back(UI); 493 } else { 494 StoreInst *SI = dyn_cast<StoreInst>(UI); 495 if (SI && SI->getPointerOperand() == Cur) { 496 // Reduction variable chain can only be stored somewhere but it 497 // can't be used as an address. 498 return false; 499 } 500 NonPHIs.push_back(UI); 501 } 502 } else if (!isa<PHINode>(UI) && 503 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && 504 !isa<SelectInst>(UI)) || 505 (!isConditionalRdxPattern(Kind, UI).isRecurrence() && 506 !isSelectCmpPattern(TheLoop, Phi, UI, IgnoredVal) 507 .isRecurrence() && 508 !isMinMaxPattern(UI, Kind, IgnoredVal).isRecurrence()))) 509 return false; 510 511 // Remember that we completed the cycle. 512 if (UI == Phi) 513 FoundStartPHI = true; 514 } 515 Worklist.append(PHIs.begin(), PHIs.end()); 516 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 517 } 518 519 // This means we have seen one but not the other instruction of the 520 // pattern or more than just a select and cmp. Zero implies that we saw a 521 // llvm.min/max intrinsic, which is always OK. 522 if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2 && 523 NumCmpSelectPatternInst != 0) 524 return false; 525 526 if (isSelectCmpRecurrenceKind(Kind) && NumCmpSelectPatternInst != 1) 527 return false; 528 529 if (IntermediateStore) { 530 // Check that stored value goes to the phi node again. This way we make sure 531 // that the value stored in IntermediateStore is indeed the final reduction 532 // value. 533 if (!is_contained(Phi->operands(), IntermediateStore->getValueOperand())) { 534 LLVM_DEBUG(dbgs() << "Not a final reduction value stored: " 535 << *IntermediateStore << '\n'); 536 return false; 537 } 538 539 // If there is an exit instruction it's value should be stored in 540 // IntermediateStore 541 if (ExitInstruction && 542 IntermediateStore->getValueOperand() != ExitInstruction) { 543 LLVM_DEBUG(dbgs() << "Last store Instruction of reduction value does not " 544 "store last calculated value of the reduction: " 545 << *IntermediateStore << '\n'); 546 return false; 547 } 548 549 // If all uses are inside the loop (intermediate stores), then the 550 // reduction value after the loop will be the one used in the last store. 551 if (!ExitInstruction) 552 ExitInstruction = cast<Instruction>(IntermediateStore->getValueOperand()); 553 } 554 555 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 556 return false; 557 558 const bool IsOrdered = 559 checkOrderedReduction(Kind, ExactFPMathInst, ExitInstruction, Phi); 560 561 if (Start != Phi) { 562 // If the starting value is not the same as the phi node, we speculatively 563 // looked through an 'and' instruction when evaluating a potential 564 // arithmetic reduction to determine if it may have been type-promoted. 565 // 566 // We now compute the minimal bit width that is required to represent the 567 // reduction. If this is the same width that was indicated by the 'and', we 568 // can represent the reduction in the smaller type. The 'and' instruction 569 // will be eliminated since it will essentially be a cast instruction that 570 // can be ignore in the cost model. If we compute a different type than we 571 // did when evaluating the 'and', the 'and' will not be eliminated, and we 572 // will end up with different kinds of operations in the recurrence 573 // expression (e.g., IntegerAND, IntegerADD). We give up if this is 574 // the case. 575 // 576 // The vectorizer relies on InstCombine to perform the actual 577 // type-shrinking. It does this by inserting instructions to truncate the 578 // exit value of the reduction to the width indicated by RecurrenceType and 579 // then extend this value back to the original width. If IsSigned is false, 580 // a 'zext' instruction will be generated; otherwise, a 'sext' will be 581 // used. 582 // 583 // TODO: We should not rely on InstCombine to rewrite the reduction in the 584 // smaller type. We should just generate a correctly typed expression 585 // to begin with. 586 Type *ComputedType; 587 std::tie(ComputedType, IsSigned) = 588 computeRecurrenceType(ExitInstruction, DB, AC, DT); 589 if (ComputedType != RecurrenceType) 590 return false; 591 } 592 593 // Collect cast instructions and the minimum width used by the recurrence. 594 // If the starting value is not the same as the phi node and the computed 595 // recurrence type is equal to the recurrence type, the recurrence expression 596 // will be represented in a narrower or wider type. If there are any cast 597 // instructions that will be unnecessary, collect them in CastsFromRecurTy. 598 // Note that the 'and' instruction was already included in this list. 599 // 600 // TODO: A better way to represent this may be to tag in some way all the 601 // instructions that are a part of the reduction. The vectorizer cost 602 // model could then apply the recurrence type to these instructions, 603 // without needing a white list of instructions to ignore. 604 // This may also be useful for the inloop reductions, if it can be 605 // kept simple enough. 606 collectCastInstrs(TheLoop, ExitInstruction, RecurrenceType, CastInsts, 607 MinWidthCastToRecurrenceType); 608 609 // We found a reduction var if we have reached the original phi node and we 610 // only have a single instruction with out-of-loop users. 611 612 // The ExitInstruction(Instruction which is allowed to have out-of-loop users) 613 // is saved as part of the RecurrenceDescriptor. 614 615 // Save the description of this reduction variable. 616 RecurrenceDescriptor RD(RdxStart, ExitInstruction, IntermediateStore, Kind, 617 FMF, ExactFPMathInst, RecurrenceType, IsSigned, 618 IsOrdered, CastInsts, MinWidthCastToRecurrenceType); 619 RedDes = RD; 620 621 return true; 622 } 623 624 // We are looking for loops that do something like this: 625 // int r = 0; 626 // for (int i = 0; i < n; i++) { 627 // if (src[i] > 3) 628 // r = 3; 629 // } 630 // where the reduction value (r) only has two states, in this example 0 or 3. 631 // The generated LLVM IR for this type of loop will be like this: 632 // for.body: 633 // %r = phi i32 [ %spec.select, %for.body ], [ 0, %entry ] 634 // ... 635 // %cmp = icmp sgt i32 %5, 3 636 // %spec.select = select i1 %cmp, i32 3, i32 %r 637 // ... 638 // In general we can support vectorization of loops where 'r' flips between 639 // any two non-constants, provided they are loop invariant. The only thing 640 // we actually care about at the end of the loop is whether or not any lane 641 // in the selected vector is different from the start value. The final 642 // across-vector reduction after the loop simply involves choosing the start 643 // value if nothing changed (0 in the example above) or the other selected 644 // value (3 in the example above). 645 RecurrenceDescriptor::InstDesc 646 RecurrenceDescriptor::isSelectCmpPattern(Loop *Loop, PHINode *OrigPhi, 647 Instruction *I, InstDesc &Prev) { 648 // We must handle the select(cmp(),x,y) as a single instruction. Advance to 649 // the select. 650 CmpInst::Predicate Pred; 651 if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) { 652 if (auto *Select = dyn_cast<SelectInst>(*I->user_begin())) 653 return InstDesc(Select, Prev.getRecKind()); 654 } 655 656 // Only match select with single use cmp condition. 657 if (!match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(), 658 m_Value()))) 659 return InstDesc(false, I); 660 661 SelectInst *SI = cast<SelectInst>(I); 662 Value *NonPhi = nullptr; 663 664 if (OrigPhi == dyn_cast<PHINode>(SI->getTrueValue())) 665 NonPhi = SI->getFalseValue(); 666 else if (OrigPhi == dyn_cast<PHINode>(SI->getFalseValue())) 667 NonPhi = SI->getTrueValue(); 668 else 669 return InstDesc(false, I); 670 671 // We are looking for selects of the form: 672 // select(cmp(), phi, loop_invariant) or 673 // select(cmp(), loop_invariant, phi) 674 if (!Loop->isLoopInvariant(NonPhi)) 675 return InstDesc(false, I); 676 677 return InstDesc(I, isa<ICmpInst>(I->getOperand(0)) ? RecurKind::SelectICmp 678 : RecurKind::SelectFCmp); 679 } 680 681 RecurrenceDescriptor::InstDesc 682 RecurrenceDescriptor::isMinMaxPattern(Instruction *I, RecurKind Kind, 683 const InstDesc &Prev) { 684 assert((isa<CmpInst>(I) || isa<SelectInst>(I) || isa<CallInst>(I)) && 685 "Expected a cmp or select or call instruction"); 686 if (!isMinMaxRecurrenceKind(Kind)) 687 return InstDesc(false, I); 688 689 // We must handle the select(cmp()) as a single instruction. Advance to the 690 // select. 691 CmpInst::Predicate Pred; 692 if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) { 693 if (auto *Select = dyn_cast<SelectInst>(*I->user_begin())) 694 return InstDesc(Select, Prev.getRecKind()); 695 } 696 697 // Only match select with single use cmp condition, or a min/max intrinsic. 698 if (!isa<IntrinsicInst>(I) && 699 !match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(), 700 m_Value()))) 701 return InstDesc(false, I); 702 703 // Look for a min/max pattern. 704 if (match(I, m_UMin(m_Value(), m_Value()))) 705 return InstDesc(Kind == RecurKind::UMin, I); 706 if (match(I, m_UMax(m_Value(), m_Value()))) 707 return InstDesc(Kind == RecurKind::UMax, I); 708 if (match(I, m_SMax(m_Value(), m_Value()))) 709 return InstDesc(Kind == RecurKind::SMax, I); 710 if (match(I, m_SMin(m_Value(), m_Value()))) 711 return InstDesc(Kind == RecurKind::SMin, I); 712 if (match(I, m_OrdFMin(m_Value(), m_Value()))) 713 return InstDesc(Kind == RecurKind::FMin, I); 714 if (match(I, m_OrdFMax(m_Value(), m_Value()))) 715 return InstDesc(Kind == RecurKind::FMax, I); 716 if (match(I, m_UnordFMin(m_Value(), m_Value()))) 717 return InstDesc(Kind == RecurKind::FMin, I); 718 if (match(I, m_UnordFMax(m_Value(), m_Value()))) 719 return InstDesc(Kind == RecurKind::FMax, I); 720 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 721 return InstDesc(Kind == RecurKind::FMin, I); 722 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 723 return InstDesc(Kind == RecurKind::FMax, I); 724 725 return InstDesc(false, I); 726 } 727 728 /// Returns true if the select instruction has users in the compare-and-add 729 /// reduction pattern below. The select instruction argument is the last one 730 /// in the sequence. 731 /// 732 /// %sum.1 = phi ... 733 /// ... 734 /// %cmp = fcmp pred %0, %CFP 735 /// %add = fadd %0, %sum.1 736 /// %sum.2 = select %cmp, %add, %sum.1 737 RecurrenceDescriptor::InstDesc 738 RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind, Instruction *I) { 739 SelectInst *SI = dyn_cast<SelectInst>(I); 740 if (!SI) 741 return InstDesc(false, I); 742 743 CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition()); 744 // Only handle single use cases for now. 745 if (!CI || !CI->hasOneUse()) 746 return InstDesc(false, I); 747 748 Value *TrueVal = SI->getTrueValue(); 749 Value *FalseVal = SI->getFalseValue(); 750 // Handle only when either of operands of select instruction is a PHI 751 // node for now. 752 if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) || 753 (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal))) 754 return InstDesc(false, I); 755 756 Instruction *I1 = 757 isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal) 758 : dyn_cast<Instruction>(TrueVal); 759 if (!I1 || !I1->isBinaryOp()) 760 return InstDesc(false, I); 761 762 Value *Op1, *Op2; 763 if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1) || 764 m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) && 765 I1->isFast()) 766 return InstDesc(Kind == RecurKind::FAdd, SI); 767 768 if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast())) 769 return InstDesc(Kind == RecurKind::FMul, SI); 770 771 return InstDesc(false, I); 772 } 773 774 RecurrenceDescriptor::InstDesc 775 RecurrenceDescriptor::isRecurrenceInstr(Loop *L, PHINode *OrigPhi, 776 Instruction *I, RecurKind Kind, 777 InstDesc &Prev, FastMathFlags FuncFMF) { 778 assert(Prev.getRecKind() == RecurKind::None || Prev.getRecKind() == Kind); 779 switch (I->getOpcode()) { 780 default: 781 return InstDesc(false, I); 782 case Instruction::PHI: 783 return InstDesc(I, Prev.getRecKind(), Prev.getExactFPMathInst()); 784 case Instruction::Sub: 785 case Instruction::Add: 786 return InstDesc(Kind == RecurKind::Add, I); 787 case Instruction::Mul: 788 return InstDesc(Kind == RecurKind::Mul, I); 789 case Instruction::And: 790 return InstDesc(Kind == RecurKind::And, I); 791 case Instruction::Or: 792 return InstDesc(Kind == RecurKind::Or, I); 793 case Instruction::Xor: 794 return InstDesc(Kind == RecurKind::Xor, I); 795 case Instruction::FDiv: 796 case Instruction::FMul: 797 return InstDesc(Kind == RecurKind::FMul, I, 798 I->hasAllowReassoc() ? nullptr : I); 799 case Instruction::FSub: 800 case Instruction::FAdd: 801 return InstDesc(Kind == RecurKind::FAdd, I, 802 I->hasAllowReassoc() ? nullptr : I); 803 case Instruction::Select: 804 if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) 805 return isConditionalRdxPattern(Kind, I); 806 LLVM_FALLTHROUGH; 807 case Instruction::FCmp: 808 case Instruction::ICmp: 809 case Instruction::Call: 810 if (isSelectCmpRecurrenceKind(Kind)) 811 return isSelectCmpPattern(L, OrigPhi, I, Prev); 812 if (isIntMinMaxRecurrenceKind(Kind) || 813 (((FuncFMF.noNaNs() && FuncFMF.noSignedZeros()) || 814 (isa<FPMathOperator>(I) && I->hasNoNaNs() && 815 I->hasNoSignedZeros())) && 816 isFPMinMaxRecurrenceKind(Kind))) 817 return isMinMaxPattern(I, Kind, Prev); 818 else if (isFMulAddIntrinsic(I)) 819 return InstDesc(Kind == RecurKind::FMulAdd, I, 820 I->hasAllowReassoc() ? nullptr : I); 821 return InstDesc(false, I); 822 } 823 } 824 825 bool RecurrenceDescriptor::hasMultipleUsesOf( 826 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts, 827 unsigned MaxNumUses) { 828 unsigned NumUses = 0; 829 for (const Use &U : I->operands()) { 830 if (Insts.count(dyn_cast<Instruction>(U))) 831 ++NumUses; 832 if (NumUses > MaxNumUses) 833 return true; 834 } 835 836 return false; 837 } 838 839 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, 840 RecurrenceDescriptor &RedDes, 841 DemandedBits *DB, AssumptionCache *AC, 842 DominatorTree *DT, 843 ScalarEvolution *SE) { 844 BasicBlock *Header = TheLoop->getHeader(); 845 Function &F = *Header->getParent(); 846 FastMathFlags FMF; 847 FMF.setNoNaNs( 848 F.getFnAttribute("no-nans-fp-math").getValueAsBool()); 849 FMF.setNoSignedZeros( 850 F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool()); 851 852 if (AddReductionVar(Phi, RecurKind::Add, TheLoop, FMF, RedDes, DB, AC, DT, 853 SE)) { 854 LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); 855 return true; 856 } 857 if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, FMF, RedDes, DB, AC, DT, 858 SE)) { 859 LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); 860 return true; 861 } 862 if (AddReductionVar(Phi, RecurKind::Or, TheLoop, FMF, RedDes, DB, AC, DT, 863 SE)) { 864 LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); 865 return true; 866 } 867 if (AddReductionVar(Phi, RecurKind::And, TheLoop, FMF, RedDes, DB, AC, DT, 868 SE)) { 869 LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); 870 return true; 871 } 872 if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, FMF, RedDes, DB, AC, DT, 873 SE)) { 874 LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); 875 return true; 876 } 877 if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, FMF, RedDes, DB, AC, DT, 878 SE)) { 879 LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n"); 880 return true; 881 } 882 if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, FMF, RedDes, DB, AC, DT, 883 SE)) { 884 LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n"); 885 return true; 886 } 887 if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, FMF, RedDes, DB, AC, DT, 888 SE)) { 889 LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n"); 890 return true; 891 } 892 if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, FMF, RedDes, DB, AC, DT, 893 SE)) { 894 LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n"); 895 return true; 896 } 897 if (AddReductionVar(Phi, RecurKind::SelectICmp, TheLoop, FMF, RedDes, DB, AC, 898 DT, SE)) { 899 LLVM_DEBUG(dbgs() << "Found an integer conditional select reduction PHI." 900 << *Phi << "\n"); 901 return true; 902 } 903 if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, FMF, RedDes, DB, AC, DT, 904 SE)) { 905 LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); 906 return true; 907 } 908 if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, FMF, RedDes, DB, AC, DT, 909 SE)) { 910 LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); 911 return true; 912 } 913 if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, FMF, RedDes, DB, AC, DT, 914 SE)) { 915 LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n"); 916 return true; 917 } 918 if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, FMF, RedDes, DB, AC, DT, 919 SE)) { 920 LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n"); 921 return true; 922 } 923 if (AddReductionVar(Phi, RecurKind::SelectFCmp, TheLoop, FMF, RedDes, DB, AC, 924 DT, SE)) { 925 LLVM_DEBUG(dbgs() << "Found a float conditional select reduction PHI." 926 << " PHI." << *Phi << "\n"); 927 return true; 928 } 929 if (AddReductionVar(Phi, RecurKind::FMulAdd, TheLoop, FMF, RedDes, DB, AC, DT, 930 SE)) { 931 LLVM_DEBUG(dbgs() << "Found an FMulAdd reduction PHI." << *Phi << "\n"); 932 return true; 933 } 934 // Not a reduction of known type. 935 return false; 936 } 937 938 bool RecurrenceDescriptor::isFirstOrderRecurrence( 939 PHINode *Phi, Loop *TheLoop, 940 MapVector<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) { 941 942 // Ensure the phi node is in the loop header and has two incoming values. 943 if (Phi->getParent() != TheLoop->getHeader() || 944 Phi->getNumIncomingValues() != 2) 945 return false; 946 947 // Ensure the loop has a preheader and a single latch block. The loop 948 // vectorizer will need the latch to set up the next iteration of the loop. 949 auto *Preheader = TheLoop->getLoopPreheader(); 950 auto *Latch = TheLoop->getLoopLatch(); 951 if (!Preheader || !Latch) 952 return false; 953 954 // Ensure the phi node's incoming blocks are the loop preheader and latch. 955 if (Phi->getBasicBlockIndex(Preheader) < 0 || 956 Phi->getBasicBlockIndex(Latch) < 0) 957 return false; 958 959 // Get the previous value. The previous value comes from the latch edge while 960 // the initial value comes form the preheader edge. 961 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); 962 if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) || 963 SinkAfter.count(Previous)) // Cannot rely on dominance due to motion. 964 return false; 965 966 // Ensure every user of the phi node (recursively) is dominated by the 967 // previous value. The dominance requirement ensures the loop vectorizer will 968 // not need to vectorize the initial value prior to the first iteration of the 969 // loop. 970 // TODO: Consider extending this sinking to handle memory instructions. 971 972 // We optimistically assume we can sink all users after Previous. Keep a set 973 // of instructions to sink after Previous ordered by dominance in the common 974 // basic block. It will be applied to SinkAfter if all users can be sunk. 975 auto CompareByComesBefore = [](const Instruction *A, const Instruction *B) { 976 return A->comesBefore(B); 977 }; 978 std::set<Instruction *, decltype(CompareByComesBefore)> InstrsToSink( 979 CompareByComesBefore); 980 981 BasicBlock *PhiBB = Phi->getParent(); 982 SmallVector<Instruction *, 8> WorkList; 983 auto TryToPushSinkCandidate = [&](Instruction *SinkCandidate) { 984 // Already sunk SinkCandidate. 985 if (SinkCandidate->getParent() == PhiBB && 986 InstrsToSink.find(SinkCandidate) != InstrsToSink.end()) 987 return true; 988 989 // Cyclic dependence. 990 if (Previous == SinkCandidate) 991 return false; 992 993 if (DT->dominates(Previous, 994 SinkCandidate)) // We already are good w/o sinking. 995 return true; 996 997 if (SinkCandidate->getParent() != PhiBB || 998 SinkCandidate->mayHaveSideEffects() || 999 SinkCandidate->mayReadFromMemory() || SinkCandidate->isTerminator()) 1000 return false; 1001 1002 // Avoid sinking an instruction multiple times (if multiple operands are 1003 // first order recurrences) by sinking once - after the latest 'previous' 1004 // instruction. 1005 auto It = SinkAfter.find(SinkCandidate); 1006 if (It != SinkAfter.end()) { 1007 auto *OtherPrev = It->second; 1008 // Find the earliest entry in the 'sink-after' chain. The last entry in 1009 // the chain is the original 'Previous' for a recurrence handled earlier. 1010 auto EarlierIt = SinkAfter.find(OtherPrev); 1011 while (EarlierIt != SinkAfter.end()) { 1012 Instruction *EarlierInst = EarlierIt->second; 1013 EarlierIt = SinkAfter.find(EarlierInst); 1014 // Bail out if order has not been preserved. 1015 if (EarlierIt != SinkAfter.end() && 1016 !DT->dominates(EarlierInst, OtherPrev)) 1017 return false; 1018 OtherPrev = EarlierInst; 1019 } 1020 // Bail out if order has not been preserved. 1021 if (OtherPrev != It->second && !DT->dominates(It->second, OtherPrev)) 1022 return false; 1023 1024 // SinkCandidate is already being sunk after an instruction after 1025 // Previous. Nothing left to do. 1026 if (DT->dominates(Previous, OtherPrev) || Previous == OtherPrev) 1027 return true; 1028 // Otherwise, Previous comes after OtherPrev and SinkCandidate needs to be 1029 // re-sunk to Previous, instead of sinking to OtherPrev. Remove 1030 // SinkCandidate from SinkAfter to ensure it's insert position is updated. 1031 SinkAfter.erase(SinkCandidate); 1032 } 1033 1034 // If we reach a PHI node that is not dominated by Previous, we reached a 1035 // header PHI. No need for sinking. 1036 if (isa<PHINode>(SinkCandidate)) 1037 return true; 1038 1039 // Sink User tentatively and check its users 1040 InstrsToSink.insert(SinkCandidate); 1041 WorkList.push_back(SinkCandidate); 1042 return true; 1043 }; 1044 1045 WorkList.push_back(Phi); 1046 // Try to recursively sink instructions and their users after Previous. 1047 while (!WorkList.empty()) { 1048 Instruction *Current = WorkList.pop_back_val(); 1049 for (User *User : Current->users()) { 1050 if (!TryToPushSinkCandidate(cast<Instruction>(User))) 1051 return false; 1052 } 1053 } 1054 1055 // We can sink all users of Phi. Update the mapping. 1056 for (Instruction *I : InstrsToSink) { 1057 SinkAfter[I] = Previous; 1058 Previous = I; 1059 } 1060 return true; 1061 } 1062 1063 /// This function returns the identity element (or neutral element) for 1064 /// the operation K. 1065 Value *RecurrenceDescriptor::getRecurrenceIdentity(RecurKind K, Type *Tp, 1066 FastMathFlags FMF) const { 1067 switch (K) { 1068 case RecurKind::Xor: 1069 case RecurKind::Add: 1070 case RecurKind::Or: 1071 // Adding, Xoring, Oring zero to a number does not change it. 1072 return ConstantInt::get(Tp, 0); 1073 case RecurKind::Mul: 1074 // Multiplying a number by 1 does not change it. 1075 return ConstantInt::get(Tp, 1); 1076 case RecurKind::And: 1077 // AND-ing a number with an all-1 value does not change it. 1078 return ConstantInt::get(Tp, -1, true); 1079 case RecurKind::FMul: 1080 // Multiplying a number by 1 does not change it. 1081 return ConstantFP::get(Tp, 1.0L); 1082 case RecurKind::FMulAdd: 1083 case RecurKind::FAdd: 1084 // Adding zero to a number does not change it. 1085 // FIXME: Ideally we should not need to check FMF for FAdd and should always 1086 // use -0.0. However, this will currently result in mixed vectors of 0.0/-0.0. 1087 // Instead, we should ensure that 1) the FMF from FAdd are propagated to the PHI 1088 // nodes where possible, and 2) PHIs with the nsz flag + -0.0 use 0.0. This would 1089 // mean we can then remove the check for noSignedZeros() below (see D98963). 1090 if (FMF.noSignedZeros()) 1091 return ConstantFP::get(Tp, 0.0L); 1092 return ConstantFP::get(Tp, -0.0L); 1093 case RecurKind::UMin: 1094 return ConstantInt::get(Tp, -1); 1095 case RecurKind::UMax: 1096 return ConstantInt::get(Tp, 0); 1097 case RecurKind::SMin: 1098 return ConstantInt::get(Tp, 1099 APInt::getSignedMaxValue(Tp->getIntegerBitWidth())); 1100 case RecurKind::SMax: 1101 return ConstantInt::get(Tp, 1102 APInt::getSignedMinValue(Tp->getIntegerBitWidth())); 1103 case RecurKind::FMin: 1104 return ConstantFP::getInfinity(Tp, true); 1105 case RecurKind::FMax: 1106 return ConstantFP::getInfinity(Tp, false); 1107 case RecurKind::SelectICmp: 1108 case RecurKind::SelectFCmp: 1109 return getRecurrenceStartValue(); 1110 break; 1111 default: 1112 llvm_unreachable("Unknown recurrence kind"); 1113 } 1114 } 1115 1116 unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) { 1117 switch (Kind) { 1118 case RecurKind::Add: 1119 return Instruction::Add; 1120 case RecurKind::Mul: 1121 return Instruction::Mul; 1122 case RecurKind::Or: 1123 return Instruction::Or; 1124 case RecurKind::And: 1125 return Instruction::And; 1126 case RecurKind::Xor: 1127 return Instruction::Xor; 1128 case RecurKind::FMul: 1129 return Instruction::FMul; 1130 case RecurKind::FMulAdd: 1131 case RecurKind::FAdd: 1132 return Instruction::FAdd; 1133 case RecurKind::SMax: 1134 case RecurKind::SMin: 1135 case RecurKind::UMax: 1136 case RecurKind::UMin: 1137 case RecurKind::SelectICmp: 1138 return Instruction::ICmp; 1139 case RecurKind::FMax: 1140 case RecurKind::FMin: 1141 case RecurKind::SelectFCmp: 1142 return Instruction::FCmp; 1143 default: 1144 llvm_unreachable("Unknown recurrence operation"); 1145 } 1146 } 1147 1148 SmallVector<Instruction *, 4> 1149 RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const { 1150 SmallVector<Instruction *, 4> ReductionOperations; 1151 unsigned RedOp = getOpcode(Kind); 1152 1153 // Search down from the Phi to the LoopExitInstr, looking for instructions 1154 // with a single user of the correct type for the reduction. 1155 1156 // Note that we check that the type of the operand is correct for each item in 1157 // the chain, including the last (the loop exit value). This can come up from 1158 // sub, which would otherwise be treated as an add reduction. MinMax also need 1159 // to check for a pair of icmp/select, for which we use getNextInstruction and 1160 // isCorrectOpcode functions to step the right number of instruction, and 1161 // check the icmp/select pair. 1162 // FIXME: We also do not attempt to look through Select's yet, which might 1163 // be part of the reduction chain, or attempt to looks through And's to find a 1164 // smaller bitwidth. Subs are also currently not allowed (which are usually 1165 // treated as part of a add reduction) as they are expected to generally be 1166 // more expensive than out-of-loop reductions, and need to be costed more 1167 // carefully. 1168 unsigned ExpectedUses = 1; 1169 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) 1170 ExpectedUses = 2; 1171 1172 auto getNextInstruction = [&](Instruction *Cur) -> Instruction * { 1173 for (auto User : Cur->users()) { 1174 Instruction *UI = cast<Instruction>(User); 1175 if (isa<PHINode>(UI)) 1176 continue; 1177 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) { 1178 // We are expecting a icmp/select pair, which we go to the next select 1179 // instruction if we can. We already know that Cur has 2 uses. 1180 if (isa<SelectInst>(UI)) 1181 return UI; 1182 continue; 1183 } 1184 return UI; 1185 } 1186 return nullptr; 1187 }; 1188 auto isCorrectOpcode = [&](Instruction *Cur) { 1189 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) { 1190 Value *LHS, *RHS; 1191 return SelectPatternResult::isMinOrMax( 1192 matchSelectPattern(Cur, LHS, RHS).Flavor); 1193 } 1194 // Recognize a call to the llvm.fmuladd intrinsic. 1195 if (isFMulAddIntrinsic(Cur)) 1196 return true; 1197 1198 return Cur->getOpcode() == RedOp; 1199 }; 1200 1201 // Attempt to look through Phis which are part of the reduction chain 1202 unsigned ExtraPhiUses = 0; 1203 Instruction *RdxInstr = LoopExitInstr; 1204 if (auto ExitPhi = dyn_cast<PHINode>(LoopExitInstr)) { 1205 if (ExitPhi->getNumIncomingValues() != 2) 1206 return {}; 1207 1208 Instruction *Inc0 = dyn_cast<Instruction>(ExitPhi->getIncomingValue(0)); 1209 Instruction *Inc1 = dyn_cast<Instruction>(ExitPhi->getIncomingValue(1)); 1210 1211 Instruction *Chain = nullptr; 1212 if (Inc0 == Phi) 1213 Chain = Inc1; 1214 else if (Inc1 == Phi) 1215 Chain = Inc0; 1216 else 1217 return {}; 1218 1219 RdxInstr = Chain; 1220 ExtraPhiUses = 1; 1221 } 1222 1223 // The loop exit instruction we check first (as a quick test) but add last. We 1224 // check the opcode is correct (and dont allow them to be Subs) and that they 1225 // have expected to have the expected number of uses. They will have one use 1226 // from the phi and one from a LCSSA value, no matter the type. 1227 if (!isCorrectOpcode(RdxInstr) || !LoopExitInstr->hasNUses(2)) 1228 return {}; 1229 1230 // Check that the Phi has one (or two for min/max) uses, plus an extra use 1231 // for conditional reductions. 1232 if (!Phi->hasNUses(ExpectedUses + ExtraPhiUses)) 1233 return {}; 1234 1235 Instruction *Cur = getNextInstruction(Phi); 1236 1237 // Each other instruction in the chain should have the expected number of uses 1238 // and be the correct opcode. 1239 while (Cur != RdxInstr) { 1240 if (!Cur || !isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses)) 1241 return {}; 1242 1243 ReductionOperations.push_back(Cur); 1244 Cur = getNextInstruction(Cur); 1245 } 1246 1247 ReductionOperations.push_back(Cur); 1248 return ReductionOperations; 1249 } 1250 1251 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, 1252 const SCEV *Step, BinaryOperator *BOp, 1253 Type *ElementType, 1254 SmallVectorImpl<Instruction *> *Casts) 1255 : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp), 1256 ElementType(ElementType) { 1257 assert(IK != IK_NoInduction && "Not an induction"); 1258 1259 // Start value type should match the induction kind and the value 1260 // itself should not be null. 1261 assert(StartValue && "StartValue is null"); 1262 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 1263 "StartValue is not a pointer for pointer induction"); 1264 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 1265 "StartValue is not an integer for integer induction"); 1266 1267 // Check the Step Value. It should be non-zero integer value. 1268 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && 1269 "Step value is zero"); 1270 1271 assert((IK != IK_PtrInduction || getConstIntStepValue()) && 1272 "Step value should be constant for pointer induction"); 1273 assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && 1274 "StepValue is not an integer"); 1275 1276 assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && 1277 "StepValue is not FP for FpInduction"); 1278 assert((IK != IK_FpInduction || 1279 (InductionBinOp && 1280 (InductionBinOp->getOpcode() == Instruction::FAdd || 1281 InductionBinOp->getOpcode() == Instruction::FSub))) && 1282 "Binary opcode should be specified for FP induction"); 1283 1284 if (IK == IK_PtrInduction) 1285 assert(ElementType && "Pointer induction must have element type"); 1286 else 1287 assert(!ElementType && "Non-pointer induction cannot have element type"); 1288 1289 if (Casts) { 1290 for (auto &Inst : *Casts) { 1291 RedundantCasts.push_back(Inst); 1292 } 1293 } 1294 } 1295 1296 ConstantInt *InductionDescriptor::getConstIntStepValue() const { 1297 if (isa<SCEVConstant>(Step)) 1298 return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue()); 1299 return nullptr; 1300 } 1301 1302 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, 1303 ScalarEvolution *SE, 1304 InductionDescriptor &D) { 1305 1306 // Here we only handle FP induction variables. 1307 assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type"); 1308 1309 if (TheLoop->getHeader() != Phi->getParent()) 1310 return false; 1311 1312 // The loop may have multiple entrances or multiple exits; we can analyze 1313 // this phi if it has a unique entry value and a unique backedge value. 1314 if (Phi->getNumIncomingValues() != 2) 1315 return false; 1316 Value *BEValue = nullptr, *StartValue = nullptr; 1317 if (TheLoop->contains(Phi->getIncomingBlock(0))) { 1318 BEValue = Phi->getIncomingValue(0); 1319 StartValue = Phi->getIncomingValue(1); 1320 } else { 1321 assert(TheLoop->contains(Phi->getIncomingBlock(1)) && 1322 "Unexpected Phi node in the loop"); 1323 BEValue = Phi->getIncomingValue(1); 1324 StartValue = Phi->getIncomingValue(0); 1325 } 1326 1327 BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue); 1328 if (!BOp) 1329 return false; 1330 1331 Value *Addend = nullptr; 1332 if (BOp->getOpcode() == Instruction::FAdd) { 1333 if (BOp->getOperand(0) == Phi) 1334 Addend = BOp->getOperand(1); 1335 else if (BOp->getOperand(1) == Phi) 1336 Addend = BOp->getOperand(0); 1337 } else if (BOp->getOpcode() == Instruction::FSub) 1338 if (BOp->getOperand(0) == Phi) 1339 Addend = BOp->getOperand(1); 1340 1341 if (!Addend) 1342 return false; 1343 1344 // The addend should be loop invariant 1345 if (auto *I = dyn_cast<Instruction>(Addend)) 1346 if (TheLoop->contains(I)) 1347 return false; 1348 1349 // FP Step has unknown SCEV 1350 const SCEV *Step = SE->getUnknown(Addend); 1351 D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); 1352 return true; 1353 } 1354 1355 /// This function is called when we suspect that the update-chain of a phi node 1356 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts, 1357 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime 1358 /// predicate P under which the SCEV expression for the phi can be the 1359 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the 1360 /// cast instructions that are involved in the update-chain of this induction. 1361 /// A caller that adds the required runtime predicate can be free to drop these 1362 /// cast instructions, and compute the phi using \p AR (instead of some scev 1363 /// expression with casts). 1364 /// 1365 /// For example, without a predicate the scev expression can take the following 1366 /// form: 1367 /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy) 1368 /// 1369 /// It corresponds to the following IR sequence: 1370 /// %for.body: 1371 /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ] 1372 /// %casted_phi = "ExtTrunc i64 %x" 1373 /// %add = add i64 %casted_phi, %step 1374 /// 1375 /// where %x is given in \p PN, 1376 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate, 1377 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of 1378 /// several forms, for example, such as: 1379 /// ExtTrunc1: %casted_phi = and %x, 2^n-1 1380 /// or: 1381 /// ExtTrunc2: %t = shl %x, m 1382 /// %casted_phi = ashr %t, m 1383 /// 1384 /// If we are able to find such sequence, we return the instructions 1385 /// we found, namely %casted_phi and the instructions on its use-def chain up 1386 /// to the phi (not including the phi). 1387 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE, 1388 const SCEVUnknown *PhiScev, 1389 const SCEVAddRecExpr *AR, 1390 SmallVectorImpl<Instruction *> &CastInsts) { 1391 1392 assert(CastInsts.empty() && "CastInsts is expected to be empty."); 1393 auto *PN = cast<PHINode>(PhiScev->getValue()); 1394 assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression"); 1395 const Loop *L = AR->getLoop(); 1396 1397 // Find any cast instructions that participate in the def-use chain of 1398 // PhiScev in the loop. 1399 // FORNOW/TODO: We currently expect the def-use chain to include only 1400 // two-operand instructions, where one of the operands is an invariant. 1401 // createAddRecFromPHIWithCasts() currently does not support anything more 1402 // involved than that, so we keep the search simple. This can be 1403 // extended/generalized as needed. 1404 1405 auto getDef = [&](const Value *Val) -> Value * { 1406 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val); 1407 if (!BinOp) 1408 return nullptr; 1409 Value *Op0 = BinOp->getOperand(0); 1410 Value *Op1 = BinOp->getOperand(1); 1411 Value *Def = nullptr; 1412 if (L->isLoopInvariant(Op0)) 1413 Def = Op1; 1414 else if (L->isLoopInvariant(Op1)) 1415 Def = Op0; 1416 return Def; 1417 }; 1418 1419 // Look for the instruction that defines the induction via the 1420 // loop backedge. 1421 BasicBlock *Latch = L->getLoopLatch(); 1422 if (!Latch) 1423 return false; 1424 Value *Val = PN->getIncomingValueForBlock(Latch); 1425 if (!Val) 1426 return false; 1427 1428 // Follow the def-use chain until the induction phi is reached. 1429 // If on the way we encounter a Value that has the same SCEV Expr as the 1430 // phi node, we can consider the instructions we visit from that point 1431 // as part of the cast-sequence that can be ignored. 1432 bool InCastSequence = false; 1433 auto *Inst = dyn_cast<Instruction>(Val); 1434 while (Val != PN) { 1435 // If we encountered a phi node other than PN, or if we left the loop, 1436 // we bail out. 1437 if (!Inst || !L->contains(Inst)) { 1438 return false; 1439 } 1440 auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val)); 1441 if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR)) 1442 InCastSequence = true; 1443 if (InCastSequence) { 1444 // Only the last instruction in the cast sequence is expected to have 1445 // uses outside the induction def-use chain. 1446 if (!CastInsts.empty()) 1447 if (!Inst->hasOneUse()) 1448 return false; 1449 CastInsts.push_back(Inst); 1450 } 1451 Val = getDef(Val); 1452 if (!Val) 1453 return false; 1454 Inst = dyn_cast<Instruction>(Val); 1455 } 1456 1457 return InCastSequence; 1458 } 1459 1460 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, 1461 PredicatedScalarEvolution &PSE, 1462 InductionDescriptor &D, bool Assume) { 1463 Type *PhiTy = Phi->getType(); 1464 1465 // Handle integer and pointer inductions variables. 1466 // Now we handle also FP induction but not trying to make a 1467 // recurrent expression from the PHI node in-place. 1468 1469 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() && 1470 !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) 1471 return false; 1472 1473 if (PhiTy->isFloatingPointTy()) 1474 return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D); 1475 1476 const SCEV *PhiScev = PSE.getSCEV(Phi); 1477 const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1478 1479 // We need this expression to be an AddRecExpr. 1480 if (Assume && !AR) 1481 AR = PSE.getAsAddRec(Phi); 1482 1483 if (!AR) { 1484 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 1485 return false; 1486 } 1487 1488 // Record any Cast instructions that participate in the induction update 1489 const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev); 1490 // If we started from an UnknownSCEV, and managed to build an addRecurrence 1491 // only after enabling Assume with PSCEV, this means we may have encountered 1492 // cast instructions that required adding a runtime check in order to 1493 // guarantee the correctness of the AddRecurrence respresentation of the 1494 // induction. 1495 if (PhiScev != AR && SymbolicPhi) { 1496 SmallVector<Instruction *, 2> Casts; 1497 if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts)) 1498 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts); 1499 } 1500 1501 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR); 1502 } 1503 1504 bool InductionDescriptor::isInductionPHI( 1505 PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE, 1506 InductionDescriptor &D, const SCEV *Expr, 1507 SmallVectorImpl<Instruction *> *CastsToIgnore) { 1508 Type *PhiTy = Phi->getType(); 1509 // We only handle integer and pointer inductions variables. 1510 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 1511 return false; 1512 1513 // Check that the PHI is consecutive. 1514 const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); 1515 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1516 1517 if (!AR) { 1518 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 1519 return false; 1520 } 1521 1522 if (AR->getLoop() != TheLoop) { 1523 // FIXME: We should treat this as a uniform. Unfortunately, we 1524 // don't currently know how to handled uniform PHIs. 1525 LLVM_DEBUG( 1526 dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n"); 1527 return false; 1528 } 1529 1530 Value *StartValue = 1531 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); 1532 1533 BasicBlock *Latch = AR->getLoop()->getLoopLatch(); 1534 if (!Latch) 1535 return false; 1536 1537 const SCEV *Step = AR->getStepRecurrence(*SE); 1538 // Calculate the pointer stride and check if it is consecutive. 1539 // The stride may be a constant or a loop invariant integer value. 1540 const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step); 1541 if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop)) 1542 return false; 1543 1544 if (PhiTy->isIntegerTy()) { 1545 BinaryOperator *BOp = 1546 dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch)); 1547 D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp, 1548 /* ElementType */ nullptr, CastsToIgnore); 1549 return true; 1550 } 1551 1552 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 1553 // Pointer induction should be a constant. 1554 if (!ConstStep) 1555 return false; 1556 1557 // Always use i8 element type for opaque pointer inductions. 1558 PointerType *PtrTy = cast<PointerType>(PhiTy); 1559 Type *ElementType = PtrTy->isOpaque() 1560 ? Type::getInt8Ty(PtrTy->getContext()) 1561 : PtrTy->getNonOpaquePointerElementType(); 1562 if (!ElementType->isSized()) 1563 return false; 1564 1565 ConstantInt *CV = ConstStep->getValue(); 1566 const DataLayout &DL = Phi->getModule()->getDataLayout(); 1567 TypeSize TySize = DL.getTypeAllocSize(ElementType); 1568 // TODO: We could potentially support this for scalable vectors if we can 1569 // prove at compile time that the constant step is always a multiple of 1570 // the scalable type. 1571 if (TySize.isZero() || TySize.isScalable()) 1572 return false; 1573 1574 int64_t Size = static_cast<int64_t>(TySize.getFixedSize()); 1575 int64_t CVSize = CV->getSExtValue(); 1576 if (CVSize % Size) 1577 return false; 1578 auto *StepValue = 1579 SE->getConstant(CV->getType(), CVSize / Size, true /* signed */); 1580 D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue, 1581 /* BinOp */ nullptr, ElementType); 1582 return true; 1583 } 1584