1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This simple pass provides alias and mod/ref information for global values 10 // that do not have their address taken, and keeps track of whether functions 11 // read or write memory (are "pure"). For this simple (but very common) case, 12 // we can provide pretty accurate and useful information. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/GlobalsModRef.h" 17 #include "llvm/ADT/SCCIterator.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/CallGraph.h" 21 #include "llvm/Analysis/MemoryBuiltins.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/InstIterator.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/PassManager.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/CommandLine.h" 32 33 using namespace llvm; 34 35 #define DEBUG_TYPE "globalsmodref-aa" 36 37 STATISTIC(NumNonAddrTakenGlobalVars, 38 "Number of global vars without address taken"); 39 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken"); 40 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory"); 41 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory"); 42 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects"); 43 44 // An option to enable unsafe alias results from the GlobalsModRef analysis. 45 // When enabled, GlobalsModRef will provide no-alias results which in extremely 46 // rare cases may not be conservatively correct. In particular, in the face of 47 // transforms which cause asymmetry between how effective getUnderlyingObject 48 // is for two pointers, it may produce incorrect results. 49 // 50 // These unsafe results have been returned by GMR for many years without 51 // causing significant issues in the wild and so we provide a mechanism to 52 // re-enable them for users of LLVM that have a particular performance 53 // sensitivity and no known issues. The option also makes it easy to evaluate 54 // the performance impact of these results. 55 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults( 56 "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden); 57 58 /// The mod/ref information collected for a particular function. 59 /// 60 /// We collect information about mod/ref behavior of a function here, both in 61 /// general and as pertains to specific globals. We only have this detailed 62 /// information when we know *something* useful about the behavior. If we 63 /// saturate to fully general mod/ref, we remove the info for the function. 64 class GlobalsAAResult::FunctionInfo { 65 typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType; 66 67 /// Build a wrapper struct that has 8-byte alignment. All heap allocations 68 /// should provide this much alignment at least, but this makes it clear we 69 /// specifically rely on this amount of alignment. 70 struct alignas(8) AlignedMap { 71 AlignedMap() = default; 72 AlignedMap(const AlignedMap &Arg) = default; 73 GlobalInfoMapType Map; 74 }; 75 76 /// Pointer traits for our aligned map. 77 struct AlignedMapPointerTraits { 78 static inline void *getAsVoidPointer(AlignedMap *P) { return P; } 79 static inline AlignedMap *getFromVoidPointer(void *P) { 80 return (AlignedMap *)P; 81 } 82 static constexpr int NumLowBitsAvailable = 3; 83 static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable), 84 "AlignedMap insufficiently aligned to have enough low bits."); 85 }; 86 87 /// The bit that flags that this function may read any global. This is 88 /// chosen to mix together with ModRefInfo bits. 89 /// FIXME: This assumes ModRefInfo lattice will remain 4 bits! 90 /// It overlaps with ModRefInfo::Must bit! 91 /// FunctionInfo.getModRefInfo() masks out everything except ModRef so 92 /// this remains correct, but the Must info is lost. 93 enum { MayReadAnyGlobal = 4 }; 94 95 /// Checks to document the invariants of the bit packing here. 96 static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::MustModRef)) == 97 0, 98 "ModRef and the MayReadAnyGlobal flag bits overlap."); 99 static_assert(((MayReadAnyGlobal | 100 static_cast<int>(ModRefInfo::MustModRef)) >> 101 AlignedMapPointerTraits::NumLowBitsAvailable) == 0, 102 "Insufficient low bits to store our flag and ModRef info."); 103 104 public: 105 FunctionInfo() = default; 106 ~FunctionInfo() { 107 delete Info.getPointer(); 108 } 109 // Spell out the copy ond move constructors and assignment operators to get 110 // deep copy semantics and correct move semantics in the face of the 111 // pointer-int pair. 112 FunctionInfo(const FunctionInfo &Arg) 113 : Info(nullptr, Arg.Info.getInt()) { 114 if (const auto *ArgPtr = Arg.Info.getPointer()) 115 Info.setPointer(new AlignedMap(*ArgPtr)); 116 } 117 FunctionInfo(FunctionInfo &&Arg) 118 : Info(Arg.Info.getPointer(), Arg.Info.getInt()) { 119 Arg.Info.setPointerAndInt(nullptr, 0); 120 } 121 FunctionInfo &operator=(const FunctionInfo &RHS) { 122 delete Info.getPointer(); 123 Info.setPointerAndInt(nullptr, RHS.Info.getInt()); 124 if (const auto *RHSPtr = RHS.Info.getPointer()) 125 Info.setPointer(new AlignedMap(*RHSPtr)); 126 return *this; 127 } 128 FunctionInfo &operator=(FunctionInfo &&RHS) { 129 delete Info.getPointer(); 130 Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt()); 131 RHS.Info.setPointerAndInt(nullptr, 0); 132 return *this; 133 } 134 135 /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return 136 /// the corresponding ModRefInfo. It must align in functionality with 137 /// clearMust(). 138 ModRefInfo globalClearMayReadAnyGlobal(int I) const { 139 return ModRefInfo((I & static_cast<int>(ModRefInfo::ModRef)) | 140 static_cast<int>(ModRefInfo::NoModRef)); 141 } 142 143 /// Returns the \c ModRefInfo info for this function. 144 ModRefInfo getModRefInfo() const { 145 return globalClearMayReadAnyGlobal(Info.getInt()); 146 } 147 148 /// Adds new \c ModRefInfo for this function to its state. 149 void addModRefInfo(ModRefInfo NewMRI) { 150 Info.setInt(Info.getInt() | static_cast<int>(setMust(NewMRI))); 151 } 152 153 /// Returns whether this function may read any global variable, and we don't 154 /// know which global. 155 bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; } 156 157 /// Sets this function as potentially reading from any global. 158 void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); } 159 160 /// Returns the \c ModRefInfo info for this function w.r.t. a particular 161 /// global, which may be more precise than the general information above. 162 ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const { 163 ModRefInfo GlobalMRI = 164 mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef; 165 if (AlignedMap *P = Info.getPointer()) { 166 auto I = P->Map.find(&GV); 167 if (I != P->Map.end()) 168 GlobalMRI = unionModRef(GlobalMRI, I->second); 169 } 170 return GlobalMRI; 171 } 172 173 /// Add mod/ref info from another function into ours, saturating towards 174 /// ModRef. 175 void addFunctionInfo(const FunctionInfo &FI) { 176 addModRefInfo(FI.getModRefInfo()); 177 178 if (FI.mayReadAnyGlobal()) 179 setMayReadAnyGlobal(); 180 181 if (AlignedMap *P = FI.Info.getPointer()) 182 for (const auto &G : P->Map) 183 addModRefInfoForGlobal(*G.first, G.second); 184 } 185 186 void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) { 187 AlignedMap *P = Info.getPointer(); 188 if (!P) { 189 P = new AlignedMap(); 190 Info.setPointer(P); 191 } 192 auto &GlobalMRI = P->Map[&GV]; 193 GlobalMRI = unionModRef(GlobalMRI, NewMRI); 194 } 195 196 /// Clear a global's ModRef info. Should be used when a global is being 197 /// deleted. 198 void eraseModRefInfoForGlobal(const GlobalValue &GV) { 199 if (AlignedMap *P = Info.getPointer()) 200 P->Map.erase(&GV); 201 } 202 203 private: 204 /// All of the information is encoded into a single pointer, with a three bit 205 /// integer in the low three bits. The high bit provides a flag for when this 206 /// function may read any global. The low two bits are the ModRefInfo. And 207 /// the pointer, when non-null, points to a map from GlobalValue to 208 /// ModRefInfo specific to that GlobalValue. 209 PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info; 210 }; 211 212 void GlobalsAAResult::DeletionCallbackHandle::deleted() { 213 Value *V = getValPtr(); 214 if (auto *F = dyn_cast<Function>(V)) 215 GAR->FunctionInfos.erase(F); 216 217 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 218 if (GAR->NonAddressTakenGlobals.erase(GV)) { 219 // This global might be an indirect global. If so, remove it and 220 // remove any AllocRelatedValues for it. 221 if (GAR->IndirectGlobals.erase(GV)) { 222 // Remove any entries in AllocsForIndirectGlobals for this global. 223 for (auto I = GAR->AllocsForIndirectGlobals.begin(), 224 E = GAR->AllocsForIndirectGlobals.end(); 225 I != E; ++I) 226 if (I->second == GV) 227 GAR->AllocsForIndirectGlobals.erase(I); 228 } 229 230 // Scan the function info we have collected and remove this global 231 // from all of them. 232 for (auto &FIPair : GAR->FunctionInfos) 233 FIPair.second.eraseModRefInfoForGlobal(*GV); 234 } 235 } 236 237 // If this is an allocation related to an indirect global, remove it. 238 GAR->AllocsForIndirectGlobals.erase(V); 239 240 // And clear out the handle. 241 setValPtr(nullptr); 242 GAR->Handles.erase(I); 243 // This object is now destroyed! 244 } 245 246 FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) { 247 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 248 249 if (FunctionInfo *FI = getFunctionInfo(F)) { 250 if (!isModOrRefSet(FI->getModRefInfo())) 251 Min = FMRB_DoesNotAccessMemory; 252 else if (!isModSet(FI->getModRefInfo())) 253 Min = FMRB_OnlyReadsMemory; 254 } 255 256 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min); 257 } 258 259 FunctionModRefBehavior 260 GlobalsAAResult::getModRefBehavior(const CallBase *Call) { 261 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 262 263 if (!Call->hasOperandBundles()) 264 if (const Function *F = Call->getCalledFunction()) 265 if (FunctionInfo *FI = getFunctionInfo(F)) { 266 if (!isModOrRefSet(FI->getModRefInfo())) 267 Min = FMRB_DoesNotAccessMemory; 268 else if (!isModSet(FI->getModRefInfo())) 269 Min = FMRB_OnlyReadsMemory; 270 } 271 272 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(Call) & Min); 273 } 274 275 /// Returns the function info for the function, or null if we don't have 276 /// anything useful to say about it. 277 GlobalsAAResult::FunctionInfo * 278 GlobalsAAResult::getFunctionInfo(const Function *F) { 279 auto I = FunctionInfos.find(F); 280 if (I != FunctionInfos.end()) 281 return &I->second; 282 return nullptr; 283 } 284 285 /// AnalyzeGlobals - Scan through the users of all of the internal 286 /// GlobalValue's in the program. If none of them have their "address taken" 287 /// (really, their address passed to something nontrivial), record this fact, 288 /// and record the functions that they are used directly in. 289 void GlobalsAAResult::AnalyzeGlobals(Module &M) { 290 SmallPtrSet<Function *, 32> TrackedFunctions; 291 for (Function &F : M) 292 if (F.hasLocalLinkage()) { 293 if (!AnalyzeUsesOfPointer(&F)) { 294 // Remember that we are tracking this global. 295 NonAddressTakenGlobals.insert(&F); 296 TrackedFunctions.insert(&F); 297 Handles.emplace_front(*this, &F); 298 Handles.front().I = Handles.begin(); 299 ++NumNonAddrTakenFunctions; 300 } else 301 UnknownFunctionsWithLocalLinkage = true; 302 } 303 304 SmallPtrSet<Function *, 16> Readers, Writers; 305 for (GlobalVariable &GV : M.globals()) 306 if (GV.hasLocalLinkage()) { 307 if (!AnalyzeUsesOfPointer(&GV, &Readers, 308 GV.isConstant() ? nullptr : &Writers)) { 309 // Remember that we are tracking this global, and the mod/ref fns 310 NonAddressTakenGlobals.insert(&GV); 311 Handles.emplace_front(*this, &GV); 312 Handles.front().I = Handles.begin(); 313 314 for (Function *Reader : Readers) { 315 if (TrackedFunctions.insert(Reader).second) { 316 Handles.emplace_front(*this, Reader); 317 Handles.front().I = Handles.begin(); 318 } 319 FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref); 320 } 321 322 if (!GV.isConstant()) // No need to keep track of writers to constants 323 for (Function *Writer : Writers) { 324 if (TrackedFunctions.insert(Writer).second) { 325 Handles.emplace_front(*this, Writer); 326 Handles.front().I = Handles.begin(); 327 } 328 FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod); 329 } 330 ++NumNonAddrTakenGlobalVars; 331 332 // If this global holds a pointer type, see if it is an indirect global. 333 if (GV.getValueType()->isPointerTy() && 334 AnalyzeIndirectGlobalMemory(&GV)) 335 ++NumIndirectGlobalVars; 336 } 337 Readers.clear(); 338 Writers.clear(); 339 } 340 } 341 342 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer. 343 /// If this is used by anything complex (i.e., the address escapes), return 344 /// true. Also, while we are at it, keep track of those functions that read and 345 /// write to the value. 346 /// 347 /// If OkayStoreDest is non-null, stores into this global are allowed. 348 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V, 349 SmallPtrSetImpl<Function *> *Readers, 350 SmallPtrSetImpl<Function *> *Writers, 351 GlobalValue *OkayStoreDest) { 352 if (!V->getType()->isPointerTy()) 353 return true; 354 355 for (Use &U : V->uses()) { 356 User *I = U.getUser(); 357 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 358 if (Readers) 359 Readers->insert(LI->getParent()->getParent()); 360 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 361 if (V == SI->getOperand(1)) { 362 if (Writers) 363 Writers->insert(SI->getParent()->getParent()); 364 } else if (SI->getOperand(1) != OkayStoreDest) { 365 return true; // Storing the pointer 366 } 367 } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) { 368 if (AnalyzeUsesOfPointer(I, Readers, Writers)) 369 return true; 370 } else if (Operator::getOpcode(I) == Instruction::BitCast || 371 Operator::getOpcode(I) == Instruction::AddrSpaceCast) { 372 if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest)) 373 return true; 374 } else if (auto *Call = dyn_cast<CallBase>(I)) { 375 // Make sure that this is just the function being called, not that it is 376 // passing into the function. 377 if (Call->isDataOperand(&U)) { 378 // Detect calls to free. 379 if (Call->isArgOperand(&U) && 380 isFreeCall(I, &GetTLI(*Call->getFunction()))) { 381 if (Writers) 382 Writers->insert(Call->getParent()->getParent()); 383 } else { 384 return true; // Argument of an unknown call. 385 } 386 } 387 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 388 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 389 return true; // Allow comparison against null. 390 } else if (Constant *C = dyn_cast<Constant>(I)) { 391 // Ignore constants which don't have any live uses. 392 if (isa<GlobalValue>(C) || C->isConstantUsed()) 393 return true; 394 } else { 395 return true; 396 } 397 } 398 399 return false; 400 } 401 402 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable 403 /// which holds a pointer type. See if the global always points to non-aliased 404 /// heap memory: that is, all initializers of the globals store a value known 405 /// to be obtained via a noalias return function call which have no other use. 406 /// Further, all loads out of GV must directly use the memory, not store the 407 /// pointer somewhere. If this is true, we consider the memory pointed to by 408 /// GV to be owned by GV and can disambiguate other pointers from it. 409 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) { 410 // Keep track of values related to the allocation of the memory, f.e. the 411 // value produced by the noalias call and any casts. 412 std::vector<Value *> AllocRelatedValues; 413 414 // If the initializer is a valid pointer, bail. 415 if (Constant *C = GV->getInitializer()) 416 if (!C->isNullValue()) 417 return false; 418 419 // Walk the user list of the global. If we find anything other than a direct 420 // load or store, bail out. 421 for (User *U : GV->users()) { 422 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 423 // The pointer loaded from the global can only be used in simple ways: 424 // we allow addressing of it and loading storing to it. We do *not* allow 425 // storing the loaded pointer somewhere else or passing to a function. 426 if (AnalyzeUsesOfPointer(LI)) 427 return false; // Loaded pointer escapes. 428 // TODO: Could try some IP mod/ref of the loaded pointer. 429 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 430 // Storing the global itself. 431 if (SI->getOperand(0) == GV) 432 return false; 433 434 // If storing the null pointer, ignore it. 435 if (isa<ConstantPointerNull>(SI->getOperand(0))) 436 continue; 437 438 // Check the value being stored. 439 Value *Ptr = getUnderlyingObject(SI->getOperand(0)); 440 441 if (!isNoAliasCall(Ptr)) 442 return false; // Too hard to analyze. 443 444 // Analyze all uses of the allocation. If any of them are used in a 445 // non-simple way (e.g. stored to another global) bail out. 446 if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr, 447 GV)) 448 return false; // Loaded pointer escapes. 449 450 // Remember that this allocation is related to the indirect global. 451 AllocRelatedValues.push_back(Ptr); 452 } else { 453 // Something complex, bail out. 454 return false; 455 } 456 } 457 458 // Okay, this is an indirect global. Remember all of the allocations for 459 // this global in AllocsForIndirectGlobals. 460 while (!AllocRelatedValues.empty()) { 461 AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV; 462 Handles.emplace_front(*this, AllocRelatedValues.back()); 463 Handles.front().I = Handles.begin(); 464 AllocRelatedValues.pop_back(); 465 } 466 IndirectGlobals.insert(GV); 467 Handles.emplace_front(*this, GV); 468 Handles.front().I = Handles.begin(); 469 return true; 470 } 471 472 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) { 473 // We do a bottom-up SCC traversal of the call graph. In other words, we 474 // visit all callees before callers (leaf-first). 475 unsigned SCCID = 0; 476 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 477 const std::vector<CallGraphNode *> &SCC = *I; 478 assert(!SCC.empty() && "SCC with no functions?"); 479 480 for (auto *CGN : SCC) 481 if (Function *F = CGN->getFunction()) 482 FunctionToSCCMap[F] = SCCID; 483 ++SCCID; 484 } 485 } 486 487 /// AnalyzeCallGraph - At this point, we know the functions where globals are 488 /// immediately stored to and read from. Propagate this information up the call 489 /// graph to all callers and compute the mod/ref info for all memory for each 490 /// function. 491 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) { 492 // We do a bottom-up SCC traversal of the call graph. In other words, we 493 // visit all callees before callers (leaf-first). 494 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 495 const std::vector<CallGraphNode *> &SCC = *I; 496 assert(!SCC.empty() && "SCC with no functions?"); 497 498 Function *F = SCC[0]->getFunction(); 499 500 if (!F || !F->isDefinitionExact()) { 501 // Calls externally or not exact - can't say anything useful. Remove any 502 // existing function records (may have been created when scanning 503 // globals). 504 for (auto *Node : SCC) 505 FunctionInfos.erase(Node->getFunction()); 506 continue; 507 } 508 509 FunctionInfo &FI = FunctionInfos[F]; 510 Handles.emplace_front(*this, F); 511 Handles.front().I = Handles.begin(); 512 bool KnowNothing = false; 513 514 // Intrinsics, like any other synchronizing function, can make effects 515 // of other threads visible. Without nosync we know nothing really. 516 // Similarly, if `nocallback` is missing the function, or intrinsic, 517 // can call into the module arbitrarily. If both are set the function 518 // has an effect but will not interact with accesses of internal 519 // globals inside the module. We are conservative here for optnone 520 // functions, might not be necessary. 521 auto MaySyncOrCallIntoModule = [](const Function &F) { 522 return !F.isDeclaration() || !F.hasNoSync() || 523 !F.hasFnAttribute(Attribute::NoCallback); 524 }; 525 526 // Collect the mod/ref properties due to called functions. We only compute 527 // one mod-ref set. 528 for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) { 529 if (!F) { 530 KnowNothing = true; 531 break; 532 } 533 534 if (F->isDeclaration() || F->hasOptNone()) { 535 // Try to get mod/ref behaviour from function attributes. 536 if (F->doesNotAccessMemory()) { 537 // Can't do better than that! 538 } else if (F->onlyReadsMemory()) { 539 FI.addModRefInfo(ModRefInfo::Ref); 540 if (!F->onlyAccessesArgMemory() && MaySyncOrCallIntoModule(*F)) 541 // This function might call back into the module and read a global - 542 // consider every global as possibly being read by this function. 543 FI.setMayReadAnyGlobal(); 544 } else { 545 FI.addModRefInfo(ModRefInfo::ModRef); 546 if (!F->onlyAccessesArgMemory()) 547 FI.setMayReadAnyGlobal(); 548 if (MaySyncOrCallIntoModule(*F)) { 549 KnowNothing = true; 550 break; 551 } 552 } 553 continue; 554 } 555 556 for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end(); 557 CI != E && !KnowNothing; ++CI) 558 if (Function *Callee = CI->second->getFunction()) { 559 if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) { 560 // Propagate function effect up. 561 FI.addFunctionInfo(*CalleeFI); 562 } else { 563 // Can't say anything about it. However, if it is inside our SCC, 564 // then nothing needs to be done. 565 CallGraphNode *CalleeNode = CG[Callee]; 566 if (!is_contained(SCC, CalleeNode)) 567 KnowNothing = true; 568 } 569 } else { 570 KnowNothing = true; 571 } 572 } 573 574 // If we can't say anything useful about this SCC, remove all SCC functions 575 // from the FunctionInfos map. 576 if (KnowNothing) { 577 for (auto *Node : SCC) 578 FunctionInfos.erase(Node->getFunction()); 579 continue; 580 } 581 582 // Scan the function bodies for explicit loads or stores. 583 for (auto *Node : SCC) { 584 if (isModAndRefSet(FI.getModRefInfo())) 585 break; // The mod/ref lattice saturates here. 586 587 // Don't prove any properties based on the implementation of an optnone 588 // function. Function attributes were already used as a best approximation 589 // above. 590 if (Node->getFunction()->hasOptNone()) 591 continue; 592 593 for (Instruction &I : instructions(Node->getFunction())) { 594 if (isModAndRefSet(FI.getModRefInfo())) 595 break; // The mod/ref lattice saturates here. 596 597 // We handle calls specially because the graph-relevant aspects are 598 // handled above. 599 if (auto *Call = dyn_cast<CallBase>(&I)) { 600 if (Function *Callee = Call->getCalledFunction()) { 601 // The callgraph doesn't include intrinsic calls. 602 if (Callee->isIntrinsic()) { 603 if (isa<DbgInfoIntrinsic>(Call)) 604 // Don't let dbg intrinsics affect alias info. 605 continue; 606 607 FunctionModRefBehavior Behaviour = 608 AAResultBase::getModRefBehavior(Callee); 609 FI.addModRefInfo(createModRefInfo(Behaviour)); 610 } 611 } 612 continue; 613 } 614 615 // All non-call instructions we use the primary predicates for whether 616 // they read or write memory. 617 if (I.mayReadFromMemory()) 618 FI.addModRefInfo(ModRefInfo::Ref); 619 if (I.mayWriteToMemory()) 620 FI.addModRefInfo(ModRefInfo::Mod); 621 } 622 } 623 624 if (!isModSet(FI.getModRefInfo())) 625 ++NumReadMemFunctions; 626 if (!isModOrRefSet(FI.getModRefInfo())) 627 ++NumNoMemFunctions; 628 629 // Finally, now that we know the full effect on this SCC, clone the 630 // information to each function in the SCC. 631 // FI is a reference into FunctionInfos, so copy it now so that it doesn't 632 // get invalidated if DenseMap decides to re-hash. 633 FunctionInfo CachedFI = FI; 634 for (unsigned i = 1, e = SCC.size(); i != e; ++i) 635 FunctionInfos[SCC[i]->getFunction()] = CachedFI; 636 } 637 } 638 639 // GV is a non-escaping global. V is a pointer address that has been loaded from. 640 // If we can prove that V must escape, we can conclude that a load from V cannot 641 // alias GV. 642 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV, 643 const Value *V, 644 int &Depth, 645 const DataLayout &DL) { 646 SmallPtrSet<const Value *, 8> Visited; 647 SmallVector<const Value *, 8> Inputs; 648 Visited.insert(V); 649 Inputs.push_back(V); 650 do { 651 const Value *Input = Inputs.pop_back_val(); 652 653 if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) || 654 isa<InvokeInst>(Input)) 655 // Arguments to functions or returns from functions are inherently 656 // escaping, so we can immediately classify those as not aliasing any 657 // non-addr-taken globals. 658 // 659 // (Transitive) loads from a global are also safe - if this aliased 660 // another global, its address would escape, so no alias. 661 continue; 662 663 // Recurse through a limited number of selects, loads and PHIs. This is an 664 // arbitrary depth of 4, lower numbers could be used to fix compile time 665 // issues if needed, but this is generally expected to be only be important 666 // for small depths. 667 if (++Depth > 4) 668 return false; 669 670 if (auto *LI = dyn_cast<LoadInst>(Input)) { 671 Inputs.push_back(getUnderlyingObject(LI->getPointerOperand())); 672 continue; 673 } 674 if (auto *SI = dyn_cast<SelectInst>(Input)) { 675 const Value *LHS = getUnderlyingObject(SI->getTrueValue()); 676 const Value *RHS = getUnderlyingObject(SI->getFalseValue()); 677 if (Visited.insert(LHS).second) 678 Inputs.push_back(LHS); 679 if (Visited.insert(RHS).second) 680 Inputs.push_back(RHS); 681 continue; 682 } 683 if (auto *PN = dyn_cast<PHINode>(Input)) { 684 for (const Value *Op : PN->incoming_values()) { 685 Op = getUnderlyingObject(Op); 686 if (Visited.insert(Op).second) 687 Inputs.push_back(Op); 688 } 689 continue; 690 } 691 692 return false; 693 } while (!Inputs.empty()); 694 695 // All inputs were known to be no-alias. 696 return true; 697 } 698 699 // There are particular cases where we can conclude no-alias between 700 // a non-addr-taken global and some other underlying object. Specifically, 701 // a non-addr-taken global is known to not be escaped from any function. It is 702 // also incorrect for a transformation to introduce an escape of a global in 703 // a way that is observable when it was not there previously. One function 704 // being transformed to introduce an escape which could possibly be observed 705 // (via loading from a global or the return value for example) within another 706 // function is never safe. If the observation is made through non-atomic 707 // operations on different threads, it is a data-race and UB. If the 708 // observation is well defined, by being observed the transformation would have 709 // changed program behavior by introducing the observed escape, making it an 710 // invalid transform. 711 // 712 // This property does require that transformations which *temporarily* escape 713 // a global that was not previously escaped, prior to restoring it, cannot rely 714 // on the results of GMR::alias. This seems a reasonable restriction, although 715 // currently there is no way to enforce it. There is also no realistic 716 // optimization pass that would make this mistake. The closest example is 717 // a transformation pass which does reg2mem of SSA values but stores them into 718 // global variables temporarily before restoring the global variable's value. 719 // This could be useful to expose "benign" races for example. However, it seems 720 // reasonable to require that a pass which introduces escapes of global 721 // variables in this way to either not trust AA results while the escape is 722 // active, or to be forced to operate as a module pass that cannot co-exist 723 // with an alias analysis such as GMR. 724 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV, 725 const Value *V) { 726 // In order to know that the underlying object cannot alias the 727 // non-addr-taken global, we must know that it would have to be an escape. 728 // Thus if the underlying object is a function argument, a load from 729 // a global, or the return of a function, it cannot alias. We can also 730 // recurse through PHI nodes and select nodes provided all of their inputs 731 // resolve to one of these known-escaping roots. 732 SmallPtrSet<const Value *, 8> Visited; 733 SmallVector<const Value *, 8> Inputs; 734 Visited.insert(V); 735 Inputs.push_back(V); 736 int Depth = 0; 737 do { 738 const Value *Input = Inputs.pop_back_val(); 739 740 if (auto *InputGV = dyn_cast<GlobalValue>(Input)) { 741 // If one input is the very global we're querying against, then we can't 742 // conclude no-alias. 743 if (InputGV == GV) 744 return false; 745 746 // Distinct GlobalVariables never alias, unless overriden or zero-sized. 747 // FIXME: The condition can be refined, but be conservative for now. 748 auto *GVar = dyn_cast<GlobalVariable>(GV); 749 auto *InputGVar = dyn_cast<GlobalVariable>(InputGV); 750 if (GVar && InputGVar && 751 !GVar->isDeclaration() && !InputGVar->isDeclaration() && 752 !GVar->isInterposable() && !InputGVar->isInterposable()) { 753 Type *GVType = GVar->getInitializer()->getType(); 754 Type *InputGVType = InputGVar->getInitializer()->getType(); 755 if (GVType->isSized() && InputGVType->isSized() && 756 (DL.getTypeAllocSize(GVType) > 0) && 757 (DL.getTypeAllocSize(InputGVType) > 0)) 758 continue; 759 } 760 761 // Conservatively return false, even though we could be smarter 762 // (e.g. look through GlobalAliases). 763 return false; 764 } 765 766 if (isa<Argument>(Input) || isa<CallInst>(Input) || 767 isa<InvokeInst>(Input)) { 768 // Arguments to functions or returns from functions are inherently 769 // escaping, so we can immediately classify those as not aliasing any 770 // non-addr-taken globals. 771 continue; 772 } 773 774 // Recurse through a limited number of selects, loads and PHIs. This is an 775 // arbitrary depth of 4, lower numbers could be used to fix compile time 776 // issues if needed, but this is generally expected to be only be important 777 // for small depths. 778 if (++Depth > 4) 779 return false; 780 781 if (auto *LI = dyn_cast<LoadInst>(Input)) { 782 // A pointer loaded from a global would have been captured, and we know 783 // that the global is non-escaping, so no alias. 784 const Value *Ptr = getUnderlyingObject(LI->getPointerOperand()); 785 if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL)) 786 // The load does not alias with GV. 787 continue; 788 // Otherwise, a load could come from anywhere, so bail. 789 return false; 790 } 791 if (auto *SI = dyn_cast<SelectInst>(Input)) { 792 const Value *LHS = getUnderlyingObject(SI->getTrueValue()); 793 const Value *RHS = getUnderlyingObject(SI->getFalseValue()); 794 if (Visited.insert(LHS).second) 795 Inputs.push_back(LHS); 796 if (Visited.insert(RHS).second) 797 Inputs.push_back(RHS); 798 continue; 799 } 800 if (auto *PN = dyn_cast<PHINode>(Input)) { 801 for (const Value *Op : PN->incoming_values()) { 802 Op = getUnderlyingObject(Op); 803 if (Visited.insert(Op).second) 804 Inputs.push_back(Op); 805 } 806 continue; 807 } 808 809 // FIXME: It would be good to handle other obvious no-alias cases here, but 810 // it isn't clear how to do so reasonably without building a small version 811 // of BasicAA into this code. We could recurse into AAResultBase::alias 812 // here but that seems likely to go poorly as we're inside the 813 // implementation of such a query. Until then, just conservatively return 814 // false. 815 return false; 816 } while (!Inputs.empty()); 817 818 // If all the inputs to V were definitively no-alias, then V is no-alias. 819 return true; 820 } 821 822 bool GlobalsAAResult::invalidate(Module &, const PreservedAnalyses &PA, 823 ModuleAnalysisManager::Invalidator &) { 824 // Check whether the analysis has been explicitly invalidated. Otherwise, it's 825 // stateless and remains preserved. 826 auto PAC = PA.getChecker<GlobalsAA>(); 827 return !PAC.preservedWhenStateless(); 828 } 829 830 /// alias - If one of the pointers is to a global that we are tracking, and the 831 /// other is some random pointer, we know there cannot be an alias, because the 832 /// address of the global isn't taken. 833 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA, 834 const MemoryLocation &LocB, 835 AAQueryInfo &AAQI) { 836 // Get the base object these pointers point to. 837 const Value *UV1 = 838 getUnderlyingObject(LocA.Ptr->stripPointerCastsForAliasAnalysis()); 839 const Value *UV2 = 840 getUnderlyingObject(LocB.Ptr->stripPointerCastsForAliasAnalysis()); 841 842 // If either of the underlying values is a global, they may be non-addr-taken 843 // globals, which we can answer queries about. 844 const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1); 845 const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2); 846 if (GV1 || GV2) { 847 // If the global's address is taken, pretend we don't know it's a pointer to 848 // the global. 849 if (GV1 && !NonAddressTakenGlobals.count(GV1)) 850 GV1 = nullptr; 851 if (GV2 && !NonAddressTakenGlobals.count(GV2)) 852 GV2 = nullptr; 853 854 // If the two pointers are derived from two different non-addr-taken 855 // globals we know these can't alias. 856 if (GV1 && GV2 && GV1 != GV2) 857 return AliasResult::NoAlias; 858 859 // If one is and the other isn't, it isn't strictly safe but we can fake 860 // this result if necessary for performance. This does not appear to be 861 // a common problem in practice. 862 if (EnableUnsafeGlobalsModRefAliasResults) 863 if ((GV1 || GV2) && GV1 != GV2) 864 return AliasResult::NoAlias; 865 866 // Check for a special case where a non-escaping global can be used to 867 // conclude no-alias. 868 if ((GV1 || GV2) && GV1 != GV2) { 869 const GlobalValue *GV = GV1 ? GV1 : GV2; 870 const Value *UV = GV1 ? UV2 : UV1; 871 if (isNonEscapingGlobalNoAlias(GV, UV)) 872 return AliasResult::NoAlias; 873 } 874 875 // Otherwise if they are both derived from the same addr-taken global, we 876 // can't know the two accesses don't overlap. 877 } 878 879 // These pointers may be based on the memory owned by an indirect global. If 880 // so, we may be able to handle this. First check to see if the base pointer 881 // is a direct load from an indirect global. 882 GV1 = GV2 = nullptr; 883 if (const LoadInst *LI = dyn_cast<LoadInst>(UV1)) 884 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 885 if (IndirectGlobals.count(GV)) 886 GV1 = GV; 887 if (const LoadInst *LI = dyn_cast<LoadInst>(UV2)) 888 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 889 if (IndirectGlobals.count(GV)) 890 GV2 = GV; 891 892 // These pointers may also be from an allocation for the indirect global. If 893 // so, also handle them. 894 if (!GV1) 895 GV1 = AllocsForIndirectGlobals.lookup(UV1); 896 if (!GV2) 897 GV2 = AllocsForIndirectGlobals.lookup(UV2); 898 899 // Now that we know whether the two pointers are related to indirect globals, 900 // use this to disambiguate the pointers. If the pointers are based on 901 // different indirect globals they cannot alias. 902 if (GV1 && GV2 && GV1 != GV2) 903 return AliasResult::NoAlias; 904 905 // If one is based on an indirect global and the other isn't, it isn't 906 // strictly safe but we can fake this result if necessary for performance. 907 // This does not appear to be a common problem in practice. 908 if (EnableUnsafeGlobalsModRefAliasResults) 909 if ((GV1 || GV2) && GV1 != GV2) 910 return AliasResult::NoAlias; 911 912 return AAResultBase::alias(LocA, LocB, AAQI); 913 } 914 915 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(const CallBase *Call, 916 const GlobalValue *GV, 917 AAQueryInfo &AAQI) { 918 if (Call->doesNotAccessMemory()) 919 return ModRefInfo::NoModRef; 920 ModRefInfo ConservativeResult = 921 Call->onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef; 922 923 // Iterate through all the arguments to the called function. If any argument 924 // is based on GV, return the conservative result. 925 for (auto &A : Call->args()) { 926 SmallVector<const Value*, 4> Objects; 927 getUnderlyingObjects(A, Objects); 928 929 // All objects must be identified. 930 if (!all_of(Objects, isIdentifiedObject) && 931 // Try ::alias to see if all objects are known not to alias GV. 932 !all_of(Objects, [&](const Value *V) { 933 return this->alias(MemoryLocation::getBeforeOrAfter(V), 934 MemoryLocation::getBeforeOrAfter(GV), 935 AAQI) == AliasResult::NoAlias; 936 })) 937 return ConservativeResult; 938 939 if (is_contained(Objects, GV)) 940 return ConservativeResult; 941 } 942 943 // We identified all objects in the argument list, and none of them were GV. 944 return ModRefInfo::NoModRef; 945 } 946 947 ModRefInfo GlobalsAAResult::getModRefInfo(const CallBase *Call, 948 const MemoryLocation &Loc, 949 AAQueryInfo &AAQI) { 950 ModRefInfo Known = ModRefInfo::ModRef; 951 952 // If we are asking for mod/ref info of a direct call with a pointer to a 953 // global we are tracking, return information if we have it. 954 if (const GlobalValue *GV = 955 dyn_cast<GlobalValue>(getUnderlyingObject(Loc.Ptr))) 956 // If GV is internal to this IR and there is no function with local linkage 957 // that has had their address taken, keep looking for a tighter ModRefInfo. 958 if (GV->hasLocalLinkage() && !UnknownFunctionsWithLocalLinkage) 959 if (const Function *F = Call->getCalledFunction()) 960 if (NonAddressTakenGlobals.count(GV)) 961 if (const FunctionInfo *FI = getFunctionInfo(F)) 962 Known = unionModRef(FI->getModRefInfoForGlobal(*GV), 963 getModRefInfoForArgument(Call, GV, AAQI)); 964 965 if (!isModOrRefSet(Known)) 966 return ModRefInfo::NoModRef; // No need to query other mod/ref analyses 967 return intersectModRef(Known, AAResultBase::getModRefInfo(Call, Loc, AAQI)); 968 } 969 970 GlobalsAAResult::GlobalsAAResult( 971 const DataLayout &DL, 972 std::function<const TargetLibraryInfo &(Function &F)> GetTLI) 973 : DL(DL), GetTLI(std::move(GetTLI)) {} 974 975 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg) 976 : AAResultBase(std::move(Arg)), DL(Arg.DL), GetTLI(std::move(Arg.GetTLI)), 977 NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)), 978 IndirectGlobals(std::move(Arg.IndirectGlobals)), 979 AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)), 980 FunctionInfos(std::move(Arg.FunctionInfos)), 981 Handles(std::move(Arg.Handles)) { 982 // Update the parent for each DeletionCallbackHandle. 983 for (auto &H : Handles) { 984 assert(H.GAR == &Arg); 985 H.GAR = this; 986 } 987 } 988 989 GlobalsAAResult::~GlobalsAAResult() = default; 990 991 /*static*/ GlobalsAAResult GlobalsAAResult::analyzeModule( 992 Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI, 993 CallGraph &CG) { 994 GlobalsAAResult Result(M.getDataLayout(), GetTLI); 995 996 // Discover which functions aren't recursive, to feed into AnalyzeGlobals. 997 Result.CollectSCCMembership(CG); 998 999 // Find non-addr taken globals. 1000 Result.AnalyzeGlobals(M); 1001 1002 // Propagate on CG. 1003 Result.AnalyzeCallGraph(CG, M); 1004 1005 return Result; 1006 } 1007 1008 AnalysisKey GlobalsAA::Key; 1009 1010 GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) { 1011 FunctionAnalysisManager &FAM = 1012 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1013 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 1014 return FAM.getResult<TargetLibraryAnalysis>(F); 1015 }; 1016 return GlobalsAAResult::analyzeModule(M, GetTLI, 1017 AM.getResult<CallGraphAnalysis>(M)); 1018 } 1019 1020 PreservedAnalyses RecomputeGlobalsAAPass::run(Module &M, 1021 ModuleAnalysisManager &AM) { 1022 if (auto *G = AM.getCachedResult<GlobalsAA>(M)) { 1023 auto &CG = AM.getResult<CallGraphAnalysis>(M); 1024 G->NonAddressTakenGlobals.clear(); 1025 G->UnknownFunctionsWithLocalLinkage = false; 1026 G->IndirectGlobals.clear(); 1027 G->AllocsForIndirectGlobals.clear(); 1028 G->FunctionInfos.clear(); 1029 G->FunctionToSCCMap.clear(); 1030 G->Handles.clear(); 1031 G->CollectSCCMembership(CG); 1032 G->AnalyzeGlobals(M); 1033 G->AnalyzeCallGraph(CG, M); 1034 } 1035 return PreservedAnalyses::all(); 1036 } 1037 1038 char GlobalsAAWrapperPass::ID = 0; 1039 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa", 1040 "Globals Alias Analysis", false, true) 1041 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1042 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1043 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa", 1044 "Globals Alias Analysis", false, true) 1045 1046 ModulePass *llvm::createGlobalsAAWrapperPass() { 1047 return new GlobalsAAWrapperPass(); 1048 } 1049 1050 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) { 1051 initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1052 } 1053 1054 bool GlobalsAAWrapperPass::runOnModule(Module &M) { 1055 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 1056 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1057 }; 1058 Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule( 1059 M, GetTLI, getAnalysis<CallGraphWrapperPass>().getCallGraph()))); 1060 return false; 1061 } 1062 1063 bool GlobalsAAWrapperPass::doFinalization(Module &M) { 1064 Result.reset(); 1065 return false; 1066 } 1067 1068 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1069 AU.setPreservesAll(); 1070 AU.addRequired<CallGraphWrapperPass>(); 1071 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1072 } 1073