1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines routines for folding instructions into constants. 10 // 11 // Also, to supplement the basic IR ConstantExpr simplifications, 12 // this file defines some additional folding routines that can make use of 13 // DataLayout information. These functions cannot go in IR due to library 14 // dependency issues. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/ADT/APFloat.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/APSInt.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/TargetFolder.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/Config/config.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GlobalValue.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/IntrinsicsAArch64.h" 45 #include "llvm/IR/IntrinsicsAMDGPU.h" 46 #include "llvm/IR/IntrinsicsARM.h" 47 #include "llvm/IR/IntrinsicsWebAssembly.h" 48 #include "llvm/IR/IntrinsicsX86.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/KnownBits.h" 55 #include "llvm/Support/MathExtras.h" 56 #include <cassert> 57 #include <cerrno> 58 #include <cfenv> 59 #include <cmath> 60 #include <cstddef> 61 #include <cstdint> 62 63 using namespace llvm; 64 65 namespace { 66 67 //===----------------------------------------------------------------------===// 68 // Constant Folding internal helper functions 69 //===----------------------------------------------------------------------===// 70 71 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy, 72 Constant *C, Type *SrcEltTy, 73 unsigned NumSrcElts, 74 const DataLayout &DL) { 75 // Now that we know that the input value is a vector of integers, just shift 76 // and insert them into our result. 77 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy); 78 for (unsigned i = 0; i != NumSrcElts; ++i) { 79 Constant *Element; 80 if (DL.isLittleEndian()) 81 Element = C->getAggregateElement(NumSrcElts - i - 1); 82 else 83 Element = C->getAggregateElement(i); 84 85 if (Element && isa<UndefValue>(Element)) { 86 Result <<= BitShift; 87 continue; 88 } 89 90 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 91 if (!ElementCI) 92 return ConstantExpr::getBitCast(C, DestTy); 93 94 Result <<= BitShift; 95 Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth()); 96 } 97 98 return nullptr; 99 } 100 101 /// Constant fold bitcast, symbolically evaluating it with DataLayout. 102 /// This always returns a non-null constant, but it may be a 103 /// ConstantExpr if unfoldable. 104 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { 105 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) && 106 "Invalid constantexpr bitcast!"); 107 108 // Catch the obvious splat cases. 109 if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy()) 110 return Constant::getNullValue(DestTy); 111 if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() && 112 !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types! 113 return Constant::getAllOnesValue(DestTy); 114 115 if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 116 // Handle a vector->scalar integer/fp cast. 117 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) { 118 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements(); 119 Type *SrcEltTy = VTy->getElementType(); 120 121 // If the vector is a vector of floating point, convert it to vector of int 122 // to simplify things. 123 if (SrcEltTy->isFloatingPointTy()) { 124 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 125 auto *SrcIVTy = FixedVectorType::get( 126 IntegerType::get(C->getContext(), FPWidth), NumSrcElts); 127 // Ask IR to do the conversion now that #elts line up. 128 C = ConstantExpr::getBitCast(C, SrcIVTy); 129 } 130 131 APInt Result(DL.getTypeSizeInBits(DestTy), 0); 132 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C, 133 SrcEltTy, NumSrcElts, DL)) 134 return CE; 135 136 if (isa<IntegerType>(DestTy)) 137 return ConstantInt::get(DestTy, Result); 138 139 APFloat FP(DestTy->getFltSemantics(), Result); 140 return ConstantFP::get(DestTy->getContext(), FP); 141 } 142 } 143 144 // The code below only handles casts to vectors currently. 145 auto *DestVTy = dyn_cast<VectorType>(DestTy); 146 if (!DestVTy) 147 return ConstantExpr::getBitCast(C, DestTy); 148 149 // If this is a scalar -> vector cast, convert the input into a <1 x scalar> 150 // vector so the code below can handle it uniformly. 151 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) { 152 Constant *Ops = C; // don't take the address of C! 153 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL); 154 } 155 156 // If this is a bitcast from constant vector -> vector, fold it. 157 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C)) 158 return ConstantExpr::getBitCast(C, DestTy); 159 160 // If the element types match, IR can fold it. 161 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements(); 162 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements(); 163 if (NumDstElt == NumSrcElt) 164 return ConstantExpr::getBitCast(C, DestTy); 165 166 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType(); 167 Type *DstEltTy = DestVTy->getElementType(); 168 169 // Otherwise, we're changing the number of elements in a vector, which 170 // requires endianness information to do the right thing. For example, 171 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 172 // folds to (little endian): 173 // <4 x i32> <i32 0, i32 0, i32 1, i32 0> 174 // and to (big endian): 175 // <4 x i32> <i32 0, i32 0, i32 0, i32 1> 176 177 // First thing is first. We only want to think about integer here, so if 178 // we have something in FP form, recast it as integer. 179 if (DstEltTy->isFloatingPointTy()) { 180 // Fold to an vector of integers with same size as our FP type. 181 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); 182 auto *DestIVTy = FixedVectorType::get( 183 IntegerType::get(C->getContext(), FPWidth), NumDstElt); 184 // Recursively handle this integer conversion, if possible. 185 C = FoldBitCast(C, DestIVTy, DL); 186 187 // Finally, IR can handle this now that #elts line up. 188 return ConstantExpr::getBitCast(C, DestTy); 189 } 190 191 // Okay, we know the destination is integer, if the input is FP, convert 192 // it to integer first. 193 if (SrcEltTy->isFloatingPointTy()) { 194 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 195 auto *SrcIVTy = FixedVectorType::get( 196 IntegerType::get(C->getContext(), FPWidth), NumSrcElt); 197 // Ask IR to do the conversion now that #elts line up. 198 C = ConstantExpr::getBitCast(C, SrcIVTy); 199 // If IR wasn't able to fold it, bail out. 200 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector. 201 !isa<ConstantDataVector>(C)) 202 return C; 203 } 204 205 // Now we know that the input and output vectors are both integer vectors 206 // of the same size, and that their #elements is not the same. Do the 207 // conversion here, which depends on whether the input or output has 208 // more elements. 209 bool isLittleEndian = DL.isLittleEndian(); 210 211 SmallVector<Constant*, 32> Result; 212 if (NumDstElt < NumSrcElt) { 213 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) 214 Constant *Zero = Constant::getNullValue(DstEltTy); 215 unsigned Ratio = NumSrcElt/NumDstElt; 216 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); 217 unsigned SrcElt = 0; 218 for (unsigned i = 0; i != NumDstElt; ++i) { 219 // Build each element of the result. 220 Constant *Elt = Zero; 221 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); 222 for (unsigned j = 0; j != Ratio; ++j) { 223 Constant *Src = C->getAggregateElement(SrcElt++); 224 if (Src && isa<UndefValue>(Src)) 225 Src = Constant::getNullValue( 226 cast<VectorType>(C->getType())->getElementType()); 227 else 228 Src = dyn_cast_or_null<ConstantInt>(Src); 229 if (!Src) // Reject constantexpr elements. 230 return ConstantExpr::getBitCast(C, DestTy); 231 232 // Zero extend the element to the right size. 233 Src = ConstantExpr::getZExt(Src, Elt->getType()); 234 235 // Shift it to the right place, depending on endianness. 236 Src = ConstantExpr::getShl(Src, 237 ConstantInt::get(Src->getType(), ShiftAmt)); 238 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; 239 240 // Mix it in. 241 Elt = ConstantExpr::getOr(Elt, Src); 242 } 243 Result.push_back(Elt); 244 } 245 return ConstantVector::get(Result); 246 } 247 248 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 249 unsigned Ratio = NumDstElt/NumSrcElt; 250 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy); 251 252 // Loop over each source value, expanding into multiple results. 253 for (unsigned i = 0; i != NumSrcElt; ++i) { 254 auto *Element = C->getAggregateElement(i); 255 256 if (!Element) // Reject constantexpr elements. 257 return ConstantExpr::getBitCast(C, DestTy); 258 259 if (isa<UndefValue>(Element)) { 260 // Correctly Propagate undef values. 261 Result.append(Ratio, UndefValue::get(DstEltTy)); 262 continue; 263 } 264 265 auto *Src = dyn_cast<ConstantInt>(Element); 266 if (!Src) 267 return ConstantExpr::getBitCast(C, DestTy); 268 269 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); 270 for (unsigned j = 0; j != Ratio; ++j) { 271 // Shift the piece of the value into the right place, depending on 272 // endianness. 273 Constant *Elt = ConstantExpr::getLShr(Src, 274 ConstantInt::get(Src->getType(), ShiftAmt)); 275 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; 276 277 // Truncate the element to an integer with the same pointer size and 278 // convert the element back to a pointer using a inttoptr. 279 if (DstEltTy->isPointerTy()) { 280 IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize); 281 Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy); 282 Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy)); 283 continue; 284 } 285 286 // Truncate and remember this piece. 287 Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy)); 288 } 289 } 290 291 return ConstantVector::get(Result); 292 } 293 294 } // end anonymous namespace 295 296 /// If this constant is a constant offset from a global, return the global and 297 /// the constant. Because of constantexprs, this function is recursive. 298 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, 299 APInt &Offset, const DataLayout &DL, 300 DSOLocalEquivalent **DSOEquiv) { 301 if (DSOEquiv) 302 *DSOEquiv = nullptr; 303 304 // Trivial case, constant is the global. 305 if ((GV = dyn_cast<GlobalValue>(C))) { 306 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 307 Offset = APInt(BitWidth, 0); 308 return true; 309 } 310 311 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) { 312 if (DSOEquiv) 313 *DSOEquiv = FoundDSOEquiv; 314 GV = FoundDSOEquiv->getGlobalValue(); 315 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 316 Offset = APInt(BitWidth, 0); 317 return true; 318 } 319 320 // Otherwise, if this isn't a constant expr, bail out. 321 auto *CE = dyn_cast<ConstantExpr>(C); 322 if (!CE) return false; 323 324 // Look through ptr->int and ptr->ptr casts. 325 if (CE->getOpcode() == Instruction::PtrToInt || 326 CE->getOpcode() == Instruction::BitCast) 327 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL, 328 DSOEquiv); 329 330 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) 331 auto *GEP = dyn_cast<GEPOperator>(CE); 332 if (!GEP) 333 return false; 334 335 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 336 APInt TmpOffset(BitWidth, 0); 337 338 // If the base isn't a global+constant, we aren't either. 339 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL, 340 DSOEquiv)) 341 return false; 342 343 // Otherwise, add any offset that our operands provide. 344 if (!GEP->accumulateConstantOffset(DL, TmpOffset)) 345 return false; 346 347 Offset = TmpOffset; 348 return true; 349 } 350 351 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, 352 const DataLayout &DL) { 353 do { 354 Type *SrcTy = C->getType(); 355 TypeSize DestSize = DL.getTypeSizeInBits(DestTy); 356 TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy); 357 if (!TypeSize::isKnownGE(SrcSize, DestSize)) 358 return nullptr; 359 360 // Catch the obvious splat cases (since all-zeros can coerce non-integral 361 // pointers legally). 362 if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy()) 363 return Constant::getNullValue(DestTy); 364 if (C->isAllOnesValue() && 365 (DestTy->isIntegerTy() || DestTy->isFloatingPointTy() || 366 DestTy->isVectorTy()) && 367 !DestTy->isX86_AMXTy() && !DestTy->isX86_MMXTy() && 368 !DestTy->isPtrOrPtrVectorTy()) 369 // Get ones when the input is trivial, but 370 // only for supported types inside getAllOnesValue. 371 return Constant::getAllOnesValue(DestTy); 372 373 // If the type sizes are the same and a cast is legal, just directly 374 // cast the constant. 375 // But be careful not to coerce non-integral pointers illegally. 376 if (SrcSize == DestSize && 377 DL.isNonIntegralPointerType(SrcTy->getScalarType()) == 378 DL.isNonIntegralPointerType(DestTy->getScalarType())) { 379 Instruction::CastOps Cast = Instruction::BitCast; 380 // If we are going from a pointer to int or vice versa, we spell the cast 381 // differently. 382 if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) 383 Cast = Instruction::IntToPtr; 384 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) 385 Cast = Instruction::PtrToInt; 386 387 if (CastInst::castIsValid(Cast, C, DestTy)) 388 return ConstantExpr::getCast(Cast, C, DestTy); 389 } 390 391 // If this isn't an aggregate type, there is nothing we can do to drill down 392 // and find a bitcastable constant. 393 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy()) 394 return nullptr; 395 396 // We're simulating a load through a pointer that was bitcast to point to 397 // a different type, so we can try to walk down through the initial 398 // elements of an aggregate to see if some part of the aggregate is 399 // castable to implement the "load" semantic model. 400 if (SrcTy->isStructTy()) { 401 // Struct types might have leading zero-length elements like [0 x i32], 402 // which are certainly not what we are looking for, so skip them. 403 unsigned Elem = 0; 404 Constant *ElemC; 405 do { 406 ElemC = C->getAggregateElement(Elem++); 407 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero()); 408 C = ElemC; 409 } else { 410 C = C->getAggregateElement(0u); 411 } 412 } while (C); 413 414 return nullptr; 415 } 416 417 namespace { 418 419 /// Recursive helper to read bits out of global. C is the constant being copied 420 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy 421 /// results into and BytesLeft is the number of bytes left in 422 /// the CurPtr buffer. DL is the DataLayout. 423 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, 424 unsigned BytesLeft, const DataLayout &DL) { 425 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && 426 "Out of range access"); 427 428 // If this element is zero or undefined, we can just return since *CurPtr is 429 // zero initialized. 430 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) 431 return true; 432 433 if (auto *CI = dyn_cast<ConstantInt>(C)) { 434 if (CI->getBitWidth() > 64 || 435 (CI->getBitWidth() & 7) != 0) 436 return false; 437 438 uint64_t Val = CI->getZExtValue(); 439 unsigned IntBytes = unsigned(CI->getBitWidth()/8); 440 441 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) { 442 int n = ByteOffset; 443 if (!DL.isLittleEndian()) 444 n = IntBytes - n - 1; 445 CurPtr[i] = (unsigned char)(Val >> (n * 8)); 446 ++ByteOffset; 447 } 448 return true; 449 } 450 451 if (auto *CFP = dyn_cast<ConstantFP>(C)) { 452 if (CFP->getType()->isDoubleTy()) { 453 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL); 454 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 455 } 456 if (CFP->getType()->isFloatTy()){ 457 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL); 458 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 459 } 460 if (CFP->getType()->isHalfTy()){ 461 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL); 462 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 463 } 464 return false; 465 } 466 467 if (auto *CS = dyn_cast<ConstantStruct>(C)) { 468 const StructLayout *SL = DL.getStructLayout(CS->getType()); 469 unsigned Index = SL->getElementContainingOffset(ByteOffset); 470 uint64_t CurEltOffset = SL->getElementOffset(Index); 471 ByteOffset -= CurEltOffset; 472 473 while (true) { 474 // If the element access is to the element itself and not to tail padding, 475 // read the bytes from the element. 476 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType()); 477 478 if (ByteOffset < EltSize && 479 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr, 480 BytesLeft, DL)) 481 return false; 482 483 ++Index; 484 485 // Check to see if we read from the last struct element, if so we're done. 486 if (Index == CS->getType()->getNumElements()) 487 return true; 488 489 // If we read all of the bytes we needed from this element we're done. 490 uint64_t NextEltOffset = SL->getElementOffset(Index); 491 492 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset) 493 return true; 494 495 // Move to the next element of the struct. 496 CurPtr += NextEltOffset - CurEltOffset - ByteOffset; 497 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset; 498 ByteOffset = 0; 499 CurEltOffset = NextEltOffset; 500 } 501 // not reached. 502 } 503 504 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) || 505 isa<ConstantDataSequential>(C)) { 506 uint64_t NumElts; 507 Type *EltTy; 508 if (auto *AT = dyn_cast<ArrayType>(C->getType())) { 509 NumElts = AT->getNumElements(); 510 EltTy = AT->getElementType(); 511 } else { 512 NumElts = cast<FixedVectorType>(C->getType())->getNumElements(); 513 EltTy = cast<FixedVectorType>(C->getType())->getElementType(); 514 } 515 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 516 uint64_t Index = ByteOffset / EltSize; 517 uint64_t Offset = ByteOffset - Index * EltSize; 518 519 for (; Index != NumElts; ++Index) { 520 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr, 521 BytesLeft, DL)) 522 return false; 523 524 uint64_t BytesWritten = EltSize - Offset; 525 assert(BytesWritten <= EltSize && "Not indexing into this element?"); 526 if (BytesWritten >= BytesLeft) 527 return true; 528 529 Offset = 0; 530 BytesLeft -= BytesWritten; 531 CurPtr += BytesWritten; 532 } 533 return true; 534 } 535 536 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 537 if (CE->getOpcode() == Instruction::IntToPtr && 538 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) { 539 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, 540 BytesLeft, DL); 541 } 542 } 543 544 // Otherwise, unknown initializer type. 545 return false; 546 } 547 548 Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy, 549 int64_t Offset, const DataLayout &DL) { 550 // Bail out early. Not expect to load from scalable global variable. 551 if (isa<ScalableVectorType>(LoadTy)) 552 return nullptr; 553 554 auto *IntType = dyn_cast<IntegerType>(LoadTy); 555 556 // If this isn't an integer load we can't fold it directly. 557 if (!IntType) { 558 // If this is a float/double load, we can try folding it as an int32/64 load 559 // and then bitcast the result. This can be useful for union cases. Note 560 // that address spaces don't matter here since we're not going to result in 561 // an actual new load. 562 Type *MapTy; 563 if (LoadTy->isHalfTy()) 564 MapTy = Type::getInt16Ty(C->getContext()); 565 else if (LoadTy->isFloatTy()) 566 MapTy = Type::getInt32Ty(C->getContext()); 567 else if (LoadTy->isDoubleTy()) 568 MapTy = Type::getInt64Ty(C->getContext()); 569 else if (LoadTy->isVectorTy()) { 570 MapTy = PointerType::getIntNTy( 571 C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize()); 572 } else 573 return nullptr; 574 575 if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) { 576 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && 577 !LoadTy->isX86_AMXTy()) 578 // Materializing a zero can be done trivially without a bitcast 579 return Constant::getNullValue(LoadTy); 580 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy; 581 Res = FoldBitCast(Res, CastTy, DL); 582 if (LoadTy->isPtrOrPtrVectorTy()) { 583 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr 584 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && 585 !LoadTy->isX86_AMXTy()) 586 return Constant::getNullValue(LoadTy); 587 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) 588 // Be careful not to replace a load of an addrspace value with an inttoptr here 589 return nullptr; 590 Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy); 591 } 592 return Res; 593 } 594 return nullptr; 595 } 596 597 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; 598 if (BytesLoaded > 32 || BytesLoaded == 0) 599 return nullptr; 600 601 int64_t InitializerSize = DL.getTypeAllocSize(C->getType()).getFixedSize(); 602 603 // If we're not accessing anything in this constant, the result is undefined. 604 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded)) 605 return UndefValue::get(IntType); 606 607 // If we're not accessing anything in this constant, the result is undefined. 608 if (Offset >= InitializerSize) 609 return UndefValue::get(IntType); 610 611 unsigned char RawBytes[32] = {0}; 612 unsigned char *CurPtr = RawBytes; 613 unsigned BytesLeft = BytesLoaded; 614 615 // If we're loading off the beginning of the global, some bytes may be valid. 616 if (Offset < 0) { 617 CurPtr += -Offset; 618 BytesLeft += Offset; 619 Offset = 0; 620 } 621 622 if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL)) 623 return nullptr; 624 625 APInt ResultVal = APInt(IntType->getBitWidth(), 0); 626 if (DL.isLittleEndian()) { 627 ResultVal = RawBytes[BytesLoaded - 1]; 628 for (unsigned i = 1; i != BytesLoaded; ++i) { 629 ResultVal <<= 8; 630 ResultVal |= RawBytes[BytesLoaded - 1 - i]; 631 } 632 } else { 633 ResultVal = RawBytes[0]; 634 for (unsigned i = 1; i != BytesLoaded; ++i) { 635 ResultVal <<= 8; 636 ResultVal |= RawBytes[i]; 637 } 638 } 639 640 return ConstantInt::get(IntType->getContext(), ResultVal); 641 } 642 643 /// If this Offset points exactly to the start of an aggregate element, return 644 /// that element, otherwise return nullptr. 645 Constant *getConstantAtOffset(Constant *Base, APInt Offset, 646 const DataLayout &DL) { 647 if (Offset.isZero()) 648 return Base; 649 650 if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base)) 651 return nullptr; 652 653 Type *ElemTy = Base->getType(); 654 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset); 655 if (!Offset.isZero() || !Indices[0].isZero()) 656 return nullptr; 657 658 Constant *C = Base; 659 for (const APInt &Index : drop_begin(Indices)) { 660 if (Index.isNegative() || Index.getActiveBits() >= 32) 661 return nullptr; 662 663 C = C->getAggregateElement(Index.getZExtValue()); 664 if (!C) 665 return nullptr; 666 } 667 668 return C; 669 } 670 671 } // end anonymous namespace 672 673 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, 674 const APInt &Offset, 675 const DataLayout &DL) { 676 if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL)) 677 if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL)) 678 return Result; 679 680 // Try hard to fold loads from bitcasted strange and non-type-safe things. 681 if (Offset.getMinSignedBits() <= 64) 682 return FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL); 683 684 return nullptr; 685 } 686 687 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, 688 const DataLayout &DL) { 689 return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL); 690 } 691 692 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 693 APInt Offset, 694 const DataLayout &DL) { 695 C = cast<Constant>(C->stripAndAccumulateConstantOffsets( 696 DL, Offset, /* AllowNonInbounds */ true)); 697 698 if (auto *GV = dyn_cast<GlobalVariable>(C)) 699 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 700 if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty, 701 Offset, DL)) 702 return Result; 703 704 // If this load comes from anywhere in a constant global, and if the global 705 // is all undef or zero, we know what it loads. 706 if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C))) { 707 if (GV->isConstant() && GV->hasDefinitiveInitializer()) { 708 if (GV->getInitializer()->isNullValue()) 709 return Constant::getNullValue(Ty); 710 if (isa<UndefValue>(GV->getInitializer())) 711 return UndefValue::get(Ty); 712 } 713 } 714 715 return nullptr; 716 } 717 718 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 719 const DataLayout &DL) { 720 APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0); 721 return ConstantFoldLoadFromConstPtr(C, Ty, Offset, DL); 722 } 723 724 namespace { 725 726 /// One of Op0/Op1 is a constant expression. 727 /// Attempt to symbolically evaluate the result of a binary operator merging 728 /// these together. If target data info is available, it is provided as DL, 729 /// otherwise DL is null. 730 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, 731 const DataLayout &DL) { 732 // SROA 733 734 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. 735 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute 736 // bits. 737 738 if (Opc == Instruction::And) { 739 KnownBits Known0 = computeKnownBits(Op0, DL); 740 KnownBits Known1 = computeKnownBits(Op1, DL); 741 if ((Known1.One | Known0.Zero).isAllOnes()) { 742 // All the bits of Op0 that the 'and' could be masking are already zero. 743 return Op0; 744 } 745 if ((Known0.One | Known1.Zero).isAllOnes()) { 746 // All the bits of Op1 that the 'and' could be masking are already zero. 747 return Op1; 748 } 749 750 Known0 &= Known1; 751 if (Known0.isConstant()) 752 return ConstantInt::get(Op0->getType(), Known0.getConstant()); 753 } 754 755 // If the constant expr is something like &A[123] - &A[4].f, fold this into a 756 // constant. This happens frequently when iterating over a global array. 757 if (Opc == Instruction::Sub) { 758 GlobalValue *GV1, *GV2; 759 APInt Offs1, Offs2; 760 761 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL)) 762 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) { 763 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType()); 764 765 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. 766 // PtrToInt may change the bitwidth so we have convert to the right size 767 // first. 768 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) - 769 Offs2.zextOrTrunc(OpSize)); 770 } 771 } 772 773 return nullptr; 774 } 775 776 /// If array indices are not pointer-sized integers, explicitly cast them so 777 /// that they aren't implicitly casted by the getelementptr. 778 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops, 779 Type *ResultTy, Optional<unsigned> InRangeIndex, 780 const DataLayout &DL, const TargetLibraryInfo *TLI) { 781 Type *IntIdxTy = DL.getIndexType(ResultTy); 782 Type *IntIdxScalarTy = IntIdxTy->getScalarType(); 783 784 bool Any = false; 785 SmallVector<Constant*, 32> NewIdxs; 786 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 787 if ((i == 1 || 788 !isa<StructType>(GetElementPtrInst::getIndexedType( 789 SrcElemTy, Ops.slice(1, i - 1)))) && 790 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) { 791 Any = true; 792 Type *NewType = Ops[i]->getType()->isVectorTy() 793 ? IntIdxTy 794 : IntIdxScalarTy; 795 NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i], 796 true, 797 NewType, 798 true), 799 Ops[i], NewType)); 800 } else 801 NewIdxs.push_back(Ops[i]); 802 } 803 804 if (!Any) 805 return nullptr; 806 807 Constant *C = ConstantExpr::getGetElementPtr( 808 SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex); 809 return ConstantFoldConstant(C, DL, TLI); 810 } 811 812 /// Strip the pointer casts, but preserve the address space information. 813 Constant *StripPtrCastKeepAS(Constant *Ptr) { 814 assert(Ptr->getType()->isPointerTy() && "Not a pointer type"); 815 auto *OldPtrTy = cast<PointerType>(Ptr->getType()); 816 Ptr = cast<Constant>(Ptr->stripPointerCasts()); 817 auto *NewPtrTy = cast<PointerType>(Ptr->getType()); 818 819 // Preserve the address space number of the pointer. 820 if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) { 821 Ptr = ConstantExpr::getPointerCast( 822 Ptr, PointerType::getWithSamePointeeType(NewPtrTy, 823 OldPtrTy->getAddressSpace())); 824 } 825 return Ptr; 826 } 827 828 /// If we can symbolically evaluate the GEP constant expression, do so. 829 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, 830 ArrayRef<Constant *> Ops, 831 const DataLayout &DL, 832 const TargetLibraryInfo *TLI) { 833 const GEPOperator *InnermostGEP = GEP; 834 bool InBounds = GEP->isInBounds(); 835 836 Type *SrcElemTy = GEP->getSourceElementType(); 837 Type *ResElemTy = GEP->getResultElementType(); 838 Type *ResTy = GEP->getType(); 839 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy)) 840 return nullptr; 841 842 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, 843 GEP->getInRangeIndex(), DL, TLI)) 844 return C; 845 846 Constant *Ptr = Ops[0]; 847 if (!Ptr->getType()->isPointerTy()) 848 return nullptr; 849 850 Type *IntIdxTy = DL.getIndexType(Ptr->getType()); 851 852 // If this is "gep i8* Ptr, (sub 0, V)", fold this as: 853 // "inttoptr (sub (ptrtoint Ptr), V)" 854 if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) { 855 auto *CE = dyn_cast<ConstantExpr>(Ops[1]); 856 assert((!CE || CE->getType() == IntIdxTy) && 857 "CastGEPIndices didn't canonicalize index types!"); 858 if (CE && CE->getOpcode() == Instruction::Sub && 859 CE->getOperand(0)->isNullValue()) { 860 Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType()); 861 Res = ConstantExpr::getSub(Res, CE->getOperand(1)); 862 Res = ConstantExpr::getIntToPtr(Res, ResTy); 863 return ConstantFoldConstant(Res, DL, TLI); 864 } 865 } 866 867 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 868 if (!isa<ConstantInt>(Ops[i])) 869 return nullptr; 870 871 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy); 872 APInt Offset = 873 APInt(BitWidth, 874 DL.getIndexedOffsetInType( 875 SrcElemTy, 876 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1))); 877 Ptr = StripPtrCastKeepAS(Ptr); 878 879 // If this is a GEP of a GEP, fold it all into a single GEP. 880 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 881 InnermostGEP = GEP; 882 InBounds &= GEP->isInBounds(); 883 884 SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end()); 885 886 // Do not try the incorporate the sub-GEP if some index is not a number. 887 bool AllConstantInt = true; 888 for (Value *NestedOp : NestedOps) 889 if (!isa<ConstantInt>(NestedOp)) { 890 AllConstantInt = false; 891 break; 892 } 893 if (!AllConstantInt) 894 break; 895 896 Ptr = cast<Constant>(GEP->getOperand(0)); 897 SrcElemTy = GEP->getSourceElementType(); 898 Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)); 899 Ptr = StripPtrCastKeepAS(Ptr); 900 } 901 902 // If the base value for this address is a literal integer value, fold the 903 // getelementptr to the resulting integer value casted to the pointer type. 904 APInt BasePtr(BitWidth, 0); 905 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) { 906 if (CE->getOpcode() == Instruction::IntToPtr) { 907 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) 908 BasePtr = Base->getValue().zextOrTrunc(BitWidth); 909 } 910 } 911 912 auto *PTy = cast<PointerType>(Ptr->getType()); 913 if ((Ptr->isNullValue() || BasePtr != 0) && 914 !DL.isNonIntegralPointerType(PTy)) { 915 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr); 916 return ConstantExpr::getIntToPtr(C, ResTy); 917 } 918 919 // Otherwise form a regular getelementptr. Recompute the indices so that 920 // we eliminate over-indexing of the notional static type array bounds. 921 // This makes it easy to determine if the getelementptr is "inbounds". 922 // Also, this helps GlobalOpt do SROA on GlobalVariables. 923 924 // For GEPs of GlobalValues, use the value type even for opaque pointers. 925 // Otherwise use an i8 GEP. 926 if (auto *GV = dyn_cast<GlobalValue>(Ptr)) 927 SrcElemTy = GV->getValueType(); 928 else if (!PTy->isOpaque()) 929 SrcElemTy = PTy->getElementType(); 930 else 931 SrcElemTy = Type::getInt8Ty(Ptr->getContext()); 932 933 if (!SrcElemTy->isSized()) 934 return nullptr; 935 936 Type *ElemTy = SrcElemTy; 937 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset); 938 if (Offset != 0) 939 return nullptr; 940 941 // Try to add additional zero indices to reach the desired result element 942 // type. 943 // TODO: Should we avoid extra zero indices if ResElemTy can't be reached and 944 // we'll have to insert a bitcast anyway? 945 while (ElemTy != ResElemTy) { 946 Type *NextTy = GetElementPtrInst::getTypeAtIndex(ElemTy, (uint64_t)0); 947 if (!NextTy) 948 break; 949 950 Indices.push_back(APInt::getZero(isa<StructType>(ElemTy) ? 32 : BitWidth)); 951 ElemTy = NextTy; 952 } 953 954 SmallVector<Constant *, 32> NewIdxs; 955 for (const APInt &Index : Indices) 956 NewIdxs.push_back(ConstantInt::get( 957 Type::getIntNTy(Ptr->getContext(), Index.getBitWidth()), Index)); 958 959 // Preserve the inrange index from the innermost GEP if possible. We must 960 // have calculated the same indices up to and including the inrange index. 961 Optional<unsigned> InRangeIndex; 962 if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex()) 963 if (SrcElemTy == InnermostGEP->getSourceElementType() && 964 NewIdxs.size() > *LastIRIndex) { 965 InRangeIndex = LastIRIndex; 966 for (unsigned I = 0; I <= *LastIRIndex; ++I) 967 if (NewIdxs[I] != InnermostGEP->getOperand(I + 1)) 968 return nullptr; 969 } 970 971 // Create a GEP. 972 Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs, 973 InBounds, InRangeIndex); 974 assert( 975 cast<PointerType>(C->getType())->isOpaqueOrPointeeTypeMatches(ElemTy) && 976 "Computed GetElementPtr has unexpected type!"); 977 978 // If we ended up indexing a member with a type that doesn't match 979 // the type of what the original indices indexed, add a cast. 980 if (C->getType() != ResTy) 981 C = FoldBitCast(C, ResTy, DL); 982 983 return C; 984 } 985 986 /// Attempt to constant fold an instruction with the 987 /// specified opcode and operands. If successful, the constant result is 988 /// returned, if not, null is returned. Note that this function can fail when 989 /// attempting to fold instructions like loads and stores, which have no 990 /// constant expression form. 991 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode, 992 ArrayRef<Constant *> Ops, 993 const DataLayout &DL, 994 const TargetLibraryInfo *TLI) { 995 Type *DestTy = InstOrCE->getType(); 996 997 if (Instruction::isUnaryOp(Opcode)) 998 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL); 999 1000 if (Instruction::isBinaryOp(Opcode)) 1001 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL); 1002 1003 if (Instruction::isCast(Opcode)) 1004 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL); 1005 1006 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) { 1007 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI)) 1008 return C; 1009 1010 return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0], 1011 Ops.slice(1), GEP->isInBounds(), 1012 GEP->getInRangeIndex()); 1013 } 1014 1015 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) 1016 return CE->getWithOperands(Ops); 1017 1018 switch (Opcode) { 1019 default: return nullptr; 1020 case Instruction::ICmp: 1021 case Instruction::FCmp: llvm_unreachable("Invalid for compares"); 1022 case Instruction::Freeze: 1023 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr; 1024 case Instruction::Call: 1025 if (auto *F = dyn_cast<Function>(Ops.back())) { 1026 const auto *Call = cast<CallBase>(InstOrCE); 1027 if (canConstantFoldCallTo(Call, F)) 1028 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI); 1029 } 1030 return nullptr; 1031 case Instruction::Select: 1032 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); 1033 case Instruction::ExtractElement: 1034 return ConstantExpr::getExtractElement(Ops[0], Ops[1]); 1035 case Instruction::ExtractValue: 1036 return ConstantExpr::getExtractValue( 1037 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices()); 1038 case Instruction::InsertElement: 1039 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); 1040 case Instruction::ShuffleVector: 1041 return ConstantExpr::getShuffleVector( 1042 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask()); 1043 } 1044 } 1045 1046 } // end anonymous namespace 1047 1048 //===----------------------------------------------------------------------===// 1049 // Constant Folding public APIs 1050 //===----------------------------------------------------------------------===// 1051 1052 namespace { 1053 1054 Constant * 1055 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL, 1056 const TargetLibraryInfo *TLI, 1057 SmallDenseMap<Constant *, Constant *> &FoldedOps) { 1058 if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C)) 1059 return const_cast<Constant *>(C); 1060 1061 SmallVector<Constant *, 8> Ops; 1062 for (const Use &OldU : C->operands()) { 1063 Constant *OldC = cast<Constant>(&OldU); 1064 Constant *NewC = OldC; 1065 // Recursively fold the ConstantExpr's operands. If we have already folded 1066 // a ConstantExpr, we don't have to process it again. 1067 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) { 1068 auto It = FoldedOps.find(OldC); 1069 if (It == FoldedOps.end()) { 1070 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps); 1071 FoldedOps.insert({OldC, NewC}); 1072 } else { 1073 NewC = It->second; 1074 } 1075 } 1076 Ops.push_back(NewC); 1077 } 1078 1079 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1080 if (CE->isCompare()) 1081 return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1], 1082 DL, TLI); 1083 1084 return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI); 1085 } 1086 1087 assert(isa<ConstantVector>(C)); 1088 return ConstantVector::get(Ops); 1089 } 1090 1091 } // end anonymous namespace 1092 1093 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, 1094 const TargetLibraryInfo *TLI) { 1095 // Handle PHI nodes quickly here... 1096 if (auto *PN = dyn_cast<PHINode>(I)) { 1097 Constant *CommonValue = nullptr; 1098 1099 SmallDenseMap<Constant *, Constant *> FoldedOps; 1100 for (Value *Incoming : PN->incoming_values()) { 1101 // If the incoming value is undef then skip it. Note that while we could 1102 // skip the value if it is equal to the phi node itself we choose not to 1103 // because that would break the rule that constant folding only applies if 1104 // all operands are constants. 1105 if (isa<UndefValue>(Incoming)) 1106 continue; 1107 // If the incoming value is not a constant, then give up. 1108 auto *C = dyn_cast<Constant>(Incoming); 1109 if (!C) 1110 return nullptr; 1111 // Fold the PHI's operands. 1112 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1113 // If the incoming value is a different constant to 1114 // the one we saw previously, then give up. 1115 if (CommonValue && C != CommonValue) 1116 return nullptr; 1117 CommonValue = C; 1118 } 1119 1120 // If we reach here, all incoming values are the same constant or undef. 1121 return CommonValue ? CommonValue : UndefValue::get(PN->getType()); 1122 } 1123 1124 // Scan the operand list, checking to see if they are all constants, if so, 1125 // hand off to ConstantFoldInstOperandsImpl. 1126 if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); })) 1127 return nullptr; 1128 1129 SmallDenseMap<Constant *, Constant *> FoldedOps; 1130 SmallVector<Constant *, 8> Ops; 1131 for (const Use &OpU : I->operands()) { 1132 auto *Op = cast<Constant>(&OpU); 1133 // Fold the Instruction's operands. 1134 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps); 1135 Ops.push_back(Op); 1136 } 1137 1138 if (const auto *CI = dyn_cast<CmpInst>(I)) 1139 return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1], 1140 DL, TLI); 1141 1142 if (const auto *LI = dyn_cast<LoadInst>(I)) { 1143 if (LI->isVolatile()) 1144 return nullptr; 1145 return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL); 1146 } 1147 1148 if (auto *IVI = dyn_cast<InsertValueInst>(I)) 1149 return ConstantExpr::getInsertValue(Ops[0], Ops[1], IVI->getIndices()); 1150 1151 if (auto *EVI = dyn_cast<ExtractValueInst>(I)) 1152 return ConstantExpr::getExtractValue(Ops[0], EVI->getIndices()); 1153 1154 return ConstantFoldInstOperands(I, Ops, DL, TLI); 1155 } 1156 1157 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL, 1158 const TargetLibraryInfo *TLI) { 1159 SmallDenseMap<Constant *, Constant *> FoldedOps; 1160 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1161 } 1162 1163 Constant *llvm::ConstantFoldInstOperands(Instruction *I, 1164 ArrayRef<Constant *> Ops, 1165 const DataLayout &DL, 1166 const TargetLibraryInfo *TLI) { 1167 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI); 1168 } 1169 1170 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, 1171 Constant *Ops0, Constant *Ops1, 1172 const DataLayout &DL, 1173 const TargetLibraryInfo *TLI) { 1174 // fold: icmp (inttoptr x), null -> icmp x, 0 1175 // fold: icmp null, (inttoptr x) -> icmp 0, x 1176 // fold: icmp (ptrtoint x), 0 -> icmp x, null 1177 // fold: icmp 0, (ptrtoint x) -> icmp null, x 1178 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y 1179 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y 1180 // 1181 // FIXME: The following comment is out of data and the DataLayout is here now. 1182 // ConstantExpr::getCompare cannot do this, because it doesn't have DL 1183 // around to know if bit truncation is happening. 1184 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) { 1185 if (Ops1->isNullValue()) { 1186 if (CE0->getOpcode() == Instruction::IntToPtr) { 1187 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1188 // Convert the integer value to the right size to ensure we get the 1189 // proper extension or truncation. 1190 Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1191 IntPtrTy, false); 1192 Constant *Null = Constant::getNullValue(C->getType()); 1193 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1194 } 1195 1196 // Only do this transformation if the int is intptrty in size, otherwise 1197 // there is a truncation or extension that we aren't modeling. 1198 if (CE0->getOpcode() == Instruction::PtrToInt) { 1199 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1200 if (CE0->getType() == IntPtrTy) { 1201 Constant *C = CE0->getOperand(0); 1202 Constant *Null = Constant::getNullValue(C->getType()); 1203 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1204 } 1205 } 1206 } 1207 1208 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) { 1209 if (CE0->getOpcode() == CE1->getOpcode()) { 1210 if (CE0->getOpcode() == Instruction::IntToPtr) { 1211 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1212 1213 // Convert the integer value to the right size to ensure we get the 1214 // proper extension or truncation. 1215 Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1216 IntPtrTy, false); 1217 Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0), 1218 IntPtrTy, false); 1219 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI); 1220 } 1221 1222 // Only do this transformation if the int is intptrty in size, otherwise 1223 // there is a truncation or extension that we aren't modeling. 1224 if (CE0->getOpcode() == Instruction::PtrToInt) { 1225 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1226 if (CE0->getType() == IntPtrTy && 1227 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) { 1228 return ConstantFoldCompareInstOperands( 1229 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI); 1230 } 1231 } 1232 } 1233 } 1234 1235 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0) 1236 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0) 1237 if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) && 1238 CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) { 1239 Constant *LHS = ConstantFoldCompareInstOperands( 1240 Predicate, CE0->getOperand(0), Ops1, DL, TLI); 1241 Constant *RHS = ConstantFoldCompareInstOperands( 1242 Predicate, CE0->getOperand(1), Ops1, DL, TLI); 1243 unsigned OpC = 1244 Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1245 return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL); 1246 } 1247 } else if (isa<ConstantExpr>(Ops1)) { 1248 // If RHS is a constant expression, but the left side isn't, swap the 1249 // operands and try again. 1250 Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate); 1251 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI); 1252 } 1253 1254 return ConstantExpr::getCompare(Predicate, Ops0, Ops1); 1255 } 1256 1257 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, 1258 const DataLayout &DL) { 1259 assert(Instruction::isUnaryOp(Opcode)); 1260 1261 return ConstantExpr::get(Opcode, Op); 1262 } 1263 1264 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, 1265 Constant *RHS, 1266 const DataLayout &DL) { 1267 assert(Instruction::isBinaryOp(Opcode)); 1268 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS)) 1269 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL)) 1270 return C; 1271 1272 return ConstantExpr::get(Opcode, LHS, RHS); 1273 } 1274 1275 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, 1276 Type *DestTy, const DataLayout &DL) { 1277 assert(Instruction::isCast(Opcode)); 1278 switch (Opcode) { 1279 default: 1280 llvm_unreachable("Missing case"); 1281 case Instruction::PtrToInt: 1282 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1283 Constant *FoldedValue = nullptr; 1284 // If the input is a inttoptr, eliminate the pair. This requires knowing 1285 // the width of a pointer, so it can't be done in ConstantExpr::getCast. 1286 if (CE->getOpcode() == Instruction::IntToPtr) { 1287 // zext/trunc the inttoptr to pointer size. 1288 FoldedValue = ConstantExpr::getIntegerCast( 1289 CE->getOperand(0), DL.getIntPtrType(CE->getType()), 1290 /*IsSigned=*/false); 1291 } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) { 1292 // If we have GEP, we can perform the following folds: 1293 // (ptrtoint (gep null, x)) -> x 1294 // (ptrtoint (gep (gep null, x), y) -> x + y, etc. 1295 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 1296 APInt BaseOffset(BitWidth, 0); 1297 auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets( 1298 DL, BaseOffset, /*AllowNonInbounds=*/true)); 1299 if (Base->isNullValue()) { 1300 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset); 1301 } 1302 } 1303 if (FoldedValue) { 1304 // Do a zext or trunc to get to the ptrtoint dest size. 1305 return ConstantExpr::getIntegerCast(FoldedValue, DestTy, 1306 /*IsSigned=*/false); 1307 } 1308 } 1309 return ConstantExpr::getCast(Opcode, C, DestTy); 1310 case Instruction::IntToPtr: 1311 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if 1312 // the int size is >= the ptr size and the address spaces are the same. 1313 // This requires knowing the width of a pointer, so it can't be done in 1314 // ConstantExpr::getCast. 1315 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1316 if (CE->getOpcode() == Instruction::PtrToInt) { 1317 Constant *SrcPtr = CE->getOperand(0); 1318 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); 1319 unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); 1320 1321 if (MidIntSize >= SrcPtrSize) { 1322 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); 1323 if (SrcAS == DestTy->getPointerAddressSpace()) 1324 return FoldBitCast(CE->getOperand(0), DestTy, DL); 1325 } 1326 } 1327 } 1328 1329 return ConstantExpr::getCast(Opcode, C, DestTy); 1330 case Instruction::Trunc: 1331 case Instruction::ZExt: 1332 case Instruction::SExt: 1333 case Instruction::FPTrunc: 1334 case Instruction::FPExt: 1335 case Instruction::UIToFP: 1336 case Instruction::SIToFP: 1337 case Instruction::FPToUI: 1338 case Instruction::FPToSI: 1339 case Instruction::AddrSpaceCast: 1340 return ConstantExpr::getCast(Opcode, C, DestTy); 1341 case Instruction::BitCast: 1342 return FoldBitCast(C, DestTy, DL); 1343 } 1344 } 1345 1346 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, 1347 ConstantExpr *CE, 1348 Type *Ty, 1349 const DataLayout &DL) { 1350 if (!CE->getOperand(1)->isNullValue()) 1351 return nullptr; // Do not allow stepping over the value! 1352 1353 // Loop over all of the operands, tracking down which value we are 1354 // addressing. 1355 for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) { 1356 C = C->getAggregateElement(CE->getOperand(i)); 1357 if (!C) 1358 return nullptr; 1359 } 1360 return ConstantFoldLoadThroughBitcast(C, Ty, DL); 1361 } 1362 1363 //===----------------------------------------------------------------------===// 1364 // Constant Folding for Calls 1365 // 1366 1367 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) { 1368 if (Call->isNoBuiltin()) 1369 return false; 1370 switch (F->getIntrinsicID()) { 1371 // Operations that do not operate floating-point numbers and do not depend on 1372 // FP environment can be folded even in strictfp functions. 1373 case Intrinsic::bswap: 1374 case Intrinsic::ctpop: 1375 case Intrinsic::ctlz: 1376 case Intrinsic::cttz: 1377 case Intrinsic::fshl: 1378 case Intrinsic::fshr: 1379 case Intrinsic::launder_invariant_group: 1380 case Intrinsic::strip_invariant_group: 1381 case Intrinsic::masked_load: 1382 case Intrinsic::get_active_lane_mask: 1383 case Intrinsic::abs: 1384 case Intrinsic::smax: 1385 case Intrinsic::smin: 1386 case Intrinsic::umax: 1387 case Intrinsic::umin: 1388 case Intrinsic::sadd_with_overflow: 1389 case Intrinsic::uadd_with_overflow: 1390 case Intrinsic::ssub_with_overflow: 1391 case Intrinsic::usub_with_overflow: 1392 case Intrinsic::smul_with_overflow: 1393 case Intrinsic::umul_with_overflow: 1394 case Intrinsic::sadd_sat: 1395 case Intrinsic::uadd_sat: 1396 case Intrinsic::ssub_sat: 1397 case Intrinsic::usub_sat: 1398 case Intrinsic::smul_fix: 1399 case Intrinsic::smul_fix_sat: 1400 case Intrinsic::bitreverse: 1401 case Intrinsic::is_constant: 1402 case Intrinsic::vector_reduce_add: 1403 case Intrinsic::vector_reduce_mul: 1404 case Intrinsic::vector_reduce_and: 1405 case Intrinsic::vector_reduce_or: 1406 case Intrinsic::vector_reduce_xor: 1407 case Intrinsic::vector_reduce_smin: 1408 case Intrinsic::vector_reduce_smax: 1409 case Intrinsic::vector_reduce_umin: 1410 case Intrinsic::vector_reduce_umax: 1411 // Target intrinsics 1412 case Intrinsic::amdgcn_perm: 1413 case Intrinsic::arm_mve_vctp8: 1414 case Intrinsic::arm_mve_vctp16: 1415 case Intrinsic::arm_mve_vctp32: 1416 case Intrinsic::arm_mve_vctp64: 1417 case Intrinsic::aarch64_sve_convert_from_svbool: 1418 // WebAssembly float semantics are always known 1419 case Intrinsic::wasm_trunc_signed: 1420 case Intrinsic::wasm_trunc_unsigned: 1421 return true; 1422 1423 // Floating point operations cannot be folded in strictfp functions in 1424 // general case. They can be folded if FP environment is known to compiler. 1425 case Intrinsic::minnum: 1426 case Intrinsic::maxnum: 1427 case Intrinsic::minimum: 1428 case Intrinsic::maximum: 1429 case Intrinsic::log: 1430 case Intrinsic::log2: 1431 case Intrinsic::log10: 1432 case Intrinsic::exp: 1433 case Intrinsic::exp2: 1434 case Intrinsic::sqrt: 1435 case Intrinsic::sin: 1436 case Intrinsic::cos: 1437 case Intrinsic::pow: 1438 case Intrinsic::powi: 1439 case Intrinsic::fma: 1440 case Intrinsic::fmuladd: 1441 case Intrinsic::fptoui_sat: 1442 case Intrinsic::fptosi_sat: 1443 case Intrinsic::convert_from_fp16: 1444 case Intrinsic::convert_to_fp16: 1445 case Intrinsic::amdgcn_cos: 1446 case Intrinsic::amdgcn_cubeid: 1447 case Intrinsic::amdgcn_cubema: 1448 case Intrinsic::amdgcn_cubesc: 1449 case Intrinsic::amdgcn_cubetc: 1450 case Intrinsic::amdgcn_fmul_legacy: 1451 case Intrinsic::amdgcn_fma_legacy: 1452 case Intrinsic::amdgcn_fract: 1453 case Intrinsic::amdgcn_ldexp: 1454 case Intrinsic::amdgcn_sin: 1455 // The intrinsics below depend on rounding mode in MXCSR. 1456 case Intrinsic::x86_sse_cvtss2si: 1457 case Intrinsic::x86_sse_cvtss2si64: 1458 case Intrinsic::x86_sse_cvttss2si: 1459 case Intrinsic::x86_sse_cvttss2si64: 1460 case Intrinsic::x86_sse2_cvtsd2si: 1461 case Intrinsic::x86_sse2_cvtsd2si64: 1462 case Intrinsic::x86_sse2_cvttsd2si: 1463 case Intrinsic::x86_sse2_cvttsd2si64: 1464 case Intrinsic::x86_avx512_vcvtss2si32: 1465 case Intrinsic::x86_avx512_vcvtss2si64: 1466 case Intrinsic::x86_avx512_cvttss2si: 1467 case Intrinsic::x86_avx512_cvttss2si64: 1468 case Intrinsic::x86_avx512_vcvtsd2si32: 1469 case Intrinsic::x86_avx512_vcvtsd2si64: 1470 case Intrinsic::x86_avx512_cvttsd2si: 1471 case Intrinsic::x86_avx512_cvttsd2si64: 1472 case Intrinsic::x86_avx512_vcvtss2usi32: 1473 case Intrinsic::x86_avx512_vcvtss2usi64: 1474 case Intrinsic::x86_avx512_cvttss2usi: 1475 case Intrinsic::x86_avx512_cvttss2usi64: 1476 case Intrinsic::x86_avx512_vcvtsd2usi32: 1477 case Intrinsic::x86_avx512_vcvtsd2usi64: 1478 case Intrinsic::x86_avx512_cvttsd2usi: 1479 case Intrinsic::x86_avx512_cvttsd2usi64: 1480 return !Call->isStrictFP(); 1481 1482 // Sign operations are actually bitwise operations, they do not raise 1483 // exceptions even for SNANs. 1484 case Intrinsic::fabs: 1485 case Intrinsic::copysign: 1486 // Non-constrained variants of rounding operations means default FP 1487 // environment, they can be folded in any case. 1488 case Intrinsic::ceil: 1489 case Intrinsic::floor: 1490 case Intrinsic::round: 1491 case Intrinsic::roundeven: 1492 case Intrinsic::trunc: 1493 case Intrinsic::nearbyint: 1494 case Intrinsic::rint: 1495 // Constrained intrinsics can be folded if FP environment is known 1496 // to compiler. 1497 case Intrinsic::experimental_constrained_fma: 1498 case Intrinsic::experimental_constrained_fmuladd: 1499 case Intrinsic::experimental_constrained_fadd: 1500 case Intrinsic::experimental_constrained_fsub: 1501 case Intrinsic::experimental_constrained_fmul: 1502 case Intrinsic::experimental_constrained_fdiv: 1503 case Intrinsic::experimental_constrained_frem: 1504 case Intrinsic::experimental_constrained_ceil: 1505 case Intrinsic::experimental_constrained_floor: 1506 case Intrinsic::experimental_constrained_round: 1507 case Intrinsic::experimental_constrained_roundeven: 1508 case Intrinsic::experimental_constrained_trunc: 1509 case Intrinsic::experimental_constrained_nearbyint: 1510 case Intrinsic::experimental_constrained_rint: 1511 return true; 1512 default: 1513 return false; 1514 case Intrinsic::not_intrinsic: break; 1515 } 1516 1517 if (!F->hasName() || Call->isStrictFP()) 1518 return false; 1519 1520 // In these cases, the check of the length is required. We don't want to 1521 // return true for a name like "cos\0blah" which strcmp would return equal to 1522 // "cos", but has length 8. 1523 StringRef Name = F->getName(); 1524 switch (Name[0]) { 1525 default: 1526 return false; 1527 case 'a': 1528 return Name == "acos" || Name == "acosf" || 1529 Name == "asin" || Name == "asinf" || 1530 Name == "atan" || Name == "atanf" || 1531 Name == "atan2" || Name == "atan2f"; 1532 case 'c': 1533 return Name == "ceil" || Name == "ceilf" || 1534 Name == "cos" || Name == "cosf" || 1535 Name == "cosh" || Name == "coshf"; 1536 case 'e': 1537 return Name == "exp" || Name == "expf" || 1538 Name == "exp2" || Name == "exp2f"; 1539 case 'f': 1540 return Name == "fabs" || Name == "fabsf" || 1541 Name == "floor" || Name == "floorf" || 1542 Name == "fmod" || Name == "fmodf"; 1543 case 'l': 1544 return Name == "log" || Name == "logf" || 1545 Name == "log2" || Name == "log2f" || 1546 Name == "log10" || Name == "log10f"; 1547 case 'n': 1548 return Name == "nearbyint" || Name == "nearbyintf"; 1549 case 'p': 1550 return Name == "pow" || Name == "powf"; 1551 case 'r': 1552 return Name == "remainder" || Name == "remainderf" || 1553 Name == "rint" || Name == "rintf" || 1554 Name == "round" || Name == "roundf"; 1555 case 's': 1556 return Name == "sin" || Name == "sinf" || 1557 Name == "sinh" || Name == "sinhf" || 1558 Name == "sqrt" || Name == "sqrtf"; 1559 case 't': 1560 return Name == "tan" || Name == "tanf" || 1561 Name == "tanh" || Name == "tanhf" || 1562 Name == "trunc" || Name == "truncf"; 1563 case '_': 1564 // Check for various function names that get used for the math functions 1565 // when the header files are preprocessed with the macro 1566 // __FINITE_MATH_ONLY__ enabled. 1567 // The '12' here is the length of the shortest name that can match. 1568 // We need to check the size before looking at Name[1] and Name[2] 1569 // so we may as well check a limit that will eliminate mismatches. 1570 if (Name.size() < 12 || Name[1] != '_') 1571 return false; 1572 switch (Name[2]) { 1573 default: 1574 return false; 1575 case 'a': 1576 return Name == "__acos_finite" || Name == "__acosf_finite" || 1577 Name == "__asin_finite" || Name == "__asinf_finite" || 1578 Name == "__atan2_finite" || Name == "__atan2f_finite"; 1579 case 'c': 1580 return Name == "__cosh_finite" || Name == "__coshf_finite"; 1581 case 'e': 1582 return Name == "__exp_finite" || Name == "__expf_finite" || 1583 Name == "__exp2_finite" || Name == "__exp2f_finite"; 1584 case 'l': 1585 return Name == "__log_finite" || Name == "__logf_finite" || 1586 Name == "__log10_finite" || Name == "__log10f_finite"; 1587 case 'p': 1588 return Name == "__pow_finite" || Name == "__powf_finite"; 1589 case 's': 1590 return Name == "__sinh_finite" || Name == "__sinhf_finite"; 1591 } 1592 } 1593 } 1594 1595 namespace { 1596 1597 Constant *GetConstantFoldFPValue(double V, Type *Ty) { 1598 if (Ty->isHalfTy() || Ty->isFloatTy()) { 1599 APFloat APF(V); 1600 bool unused; 1601 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused); 1602 return ConstantFP::get(Ty->getContext(), APF); 1603 } 1604 if (Ty->isDoubleTy()) 1605 return ConstantFP::get(Ty->getContext(), APFloat(V)); 1606 llvm_unreachable("Can only constant fold half/float/double"); 1607 } 1608 1609 /// Clear the floating-point exception state. 1610 inline void llvm_fenv_clearexcept() { 1611 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT 1612 feclearexcept(FE_ALL_EXCEPT); 1613 #endif 1614 errno = 0; 1615 } 1616 1617 /// Test if a floating-point exception was raised. 1618 inline bool llvm_fenv_testexcept() { 1619 int errno_val = errno; 1620 if (errno_val == ERANGE || errno_val == EDOM) 1621 return true; 1622 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT 1623 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) 1624 return true; 1625 #endif 1626 return false; 1627 } 1628 1629 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V, 1630 Type *Ty) { 1631 llvm_fenv_clearexcept(); 1632 double Result = NativeFP(V.convertToDouble()); 1633 if (llvm_fenv_testexcept()) { 1634 llvm_fenv_clearexcept(); 1635 return nullptr; 1636 } 1637 1638 return GetConstantFoldFPValue(Result, Ty); 1639 } 1640 1641 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), 1642 const APFloat &V, const APFloat &W, Type *Ty) { 1643 llvm_fenv_clearexcept(); 1644 double Result = NativeFP(V.convertToDouble(), W.convertToDouble()); 1645 if (llvm_fenv_testexcept()) { 1646 llvm_fenv_clearexcept(); 1647 return nullptr; 1648 } 1649 1650 return GetConstantFoldFPValue(Result, Ty); 1651 } 1652 1653 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) { 1654 FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType()); 1655 if (!VT) 1656 return nullptr; 1657 1658 // This isn't strictly necessary, but handle the special/common case of zero: 1659 // all integer reductions of a zero input produce zero. 1660 if (isa<ConstantAggregateZero>(Op)) 1661 return ConstantInt::get(VT->getElementType(), 0); 1662 1663 // This is the same as the underlying binops - poison propagates. 1664 if (isa<PoisonValue>(Op) || Op->containsPoisonElement()) 1665 return PoisonValue::get(VT->getElementType()); 1666 1667 // TODO: Handle undef. 1668 if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op)) 1669 return nullptr; 1670 1671 auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U)); 1672 if (!EltC) 1673 return nullptr; 1674 1675 APInt Acc = EltC->getValue(); 1676 for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) { 1677 if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I)))) 1678 return nullptr; 1679 const APInt &X = EltC->getValue(); 1680 switch (IID) { 1681 case Intrinsic::vector_reduce_add: 1682 Acc = Acc + X; 1683 break; 1684 case Intrinsic::vector_reduce_mul: 1685 Acc = Acc * X; 1686 break; 1687 case Intrinsic::vector_reduce_and: 1688 Acc = Acc & X; 1689 break; 1690 case Intrinsic::vector_reduce_or: 1691 Acc = Acc | X; 1692 break; 1693 case Intrinsic::vector_reduce_xor: 1694 Acc = Acc ^ X; 1695 break; 1696 case Intrinsic::vector_reduce_smin: 1697 Acc = APIntOps::smin(Acc, X); 1698 break; 1699 case Intrinsic::vector_reduce_smax: 1700 Acc = APIntOps::smax(Acc, X); 1701 break; 1702 case Intrinsic::vector_reduce_umin: 1703 Acc = APIntOps::umin(Acc, X); 1704 break; 1705 case Intrinsic::vector_reduce_umax: 1706 Acc = APIntOps::umax(Acc, X); 1707 break; 1708 } 1709 } 1710 1711 return ConstantInt::get(Op->getContext(), Acc); 1712 } 1713 1714 /// Attempt to fold an SSE floating point to integer conversion of a constant 1715 /// floating point. If roundTowardZero is false, the default IEEE rounding is 1716 /// used (toward nearest, ties to even). This matches the behavior of the 1717 /// non-truncating SSE instructions in the default rounding mode. The desired 1718 /// integer type Ty is used to select how many bits are available for the 1719 /// result. Returns null if the conversion cannot be performed, otherwise 1720 /// returns the Constant value resulting from the conversion. 1721 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, 1722 Type *Ty, bool IsSigned) { 1723 // All of these conversion intrinsics form an integer of at most 64bits. 1724 unsigned ResultWidth = Ty->getIntegerBitWidth(); 1725 assert(ResultWidth <= 64 && 1726 "Can only constant fold conversions to 64 and 32 bit ints"); 1727 1728 uint64_t UIntVal; 1729 bool isExact = false; 1730 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero 1731 : APFloat::rmNearestTiesToEven; 1732 APFloat::opStatus status = 1733 Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth, 1734 IsSigned, mode, &isExact); 1735 if (status != APFloat::opOK && 1736 (!roundTowardZero || status != APFloat::opInexact)) 1737 return nullptr; 1738 return ConstantInt::get(Ty, UIntVal, IsSigned); 1739 } 1740 1741 double getValueAsDouble(ConstantFP *Op) { 1742 Type *Ty = Op->getType(); 1743 1744 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) 1745 return Op->getValueAPF().convertToDouble(); 1746 1747 bool unused; 1748 APFloat APF = Op->getValueAPF(); 1749 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused); 1750 return APF.convertToDouble(); 1751 } 1752 1753 static bool getConstIntOrUndef(Value *Op, const APInt *&C) { 1754 if (auto *CI = dyn_cast<ConstantInt>(Op)) { 1755 C = &CI->getValue(); 1756 return true; 1757 } 1758 if (isa<UndefValue>(Op)) { 1759 C = nullptr; 1760 return true; 1761 } 1762 return false; 1763 } 1764 1765 /// Checks if the given intrinsic call, which evaluates to constant, is allowed 1766 /// to be folded. 1767 /// 1768 /// \param CI Constrained intrinsic call. 1769 /// \param St Exception flags raised during constant evaluation. 1770 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI, 1771 APFloat::opStatus St) { 1772 Optional<RoundingMode> ORM = CI->getRoundingMode(); 1773 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 1774 1775 // If the operation does not change exception status flags, it is safe 1776 // to fold. 1777 if (St == APFloat::opStatus::opOK) { 1778 // When FP exceptions are not ignored, intrinsic call will not be 1779 // eliminated, because it is considered as having side effect. But we 1780 // know that its evaluation does not raise exceptions, so side effect 1781 // is absent. To allow removing the call, mark it as not accessing memory. 1782 if (EB && *EB != fp::ExceptionBehavior::ebIgnore) 1783 CI->addFnAttr(Attribute::ReadNone); 1784 return true; 1785 } 1786 1787 // If evaluation raised FP exception, the result can depend on rounding 1788 // mode. If the latter is unknown, folding is not possible. 1789 if (!ORM || *ORM == RoundingMode::Dynamic) 1790 return false; 1791 1792 // If FP exceptions are ignored, fold the call, even if such exception is 1793 // raised. 1794 if (!EB || *EB != fp::ExceptionBehavior::ebStrict) 1795 return true; 1796 1797 // Leave the calculation for runtime so that exception flags be correctly set 1798 // in hardware. 1799 return false; 1800 } 1801 1802 /// Returns the rounding mode that should be used for constant evaluation. 1803 static RoundingMode 1804 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) { 1805 Optional<RoundingMode> ORM = CI->getRoundingMode(); 1806 if (!ORM || *ORM == RoundingMode::Dynamic) 1807 // Even if the rounding mode is unknown, try evaluating the operation. 1808 // If it does not raise inexact exception, rounding was not applied, 1809 // so the result is exact and does not depend on rounding mode. Whether 1810 // other FP exceptions are raised, it does not depend on rounding mode. 1811 return RoundingMode::NearestTiesToEven; 1812 return *ORM; 1813 } 1814 1815 static Constant *ConstantFoldScalarCall1(StringRef Name, 1816 Intrinsic::ID IntrinsicID, 1817 Type *Ty, 1818 ArrayRef<Constant *> Operands, 1819 const TargetLibraryInfo *TLI, 1820 const CallBase *Call) { 1821 assert(Operands.size() == 1 && "Wrong number of operands."); 1822 1823 if (IntrinsicID == Intrinsic::is_constant) { 1824 // We know we have a "Constant" argument. But we want to only 1825 // return true for manifest constants, not those that depend on 1826 // constants with unknowable values, e.g. GlobalValue or BlockAddress. 1827 if (Operands[0]->isManifestConstant()) 1828 return ConstantInt::getTrue(Ty->getContext()); 1829 return nullptr; 1830 } 1831 if (isa<UndefValue>(Operands[0])) { 1832 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN. 1833 // ctpop() is between 0 and bitwidth, pick 0 for undef. 1834 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input). 1835 if (IntrinsicID == Intrinsic::cos || 1836 IntrinsicID == Intrinsic::ctpop || 1837 IntrinsicID == Intrinsic::fptoui_sat || 1838 IntrinsicID == Intrinsic::fptosi_sat) 1839 return Constant::getNullValue(Ty); 1840 if (IntrinsicID == Intrinsic::bswap || 1841 IntrinsicID == Intrinsic::bitreverse || 1842 IntrinsicID == Intrinsic::launder_invariant_group || 1843 IntrinsicID == Intrinsic::strip_invariant_group) 1844 return Operands[0]; 1845 } 1846 1847 if (isa<ConstantPointerNull>(Operands[0])) { 1848 // launder(null) == null == strip(null) iff in addrspace 0 1849 if (IntrinsicID == Intrinsic::launder_invariant_group || 1850 IntrinsicID == Intrinsic::strip_invariant_group) { 1851 // If instruction is not yet put in a basic block (e.g. when cloning 1852 // a function during inlining), Call's caller may not be available. 1853 // So check Call's BB first before querying Call->getCaller. 1854 const Function *Caller = 1855 Call->getParent() ? Call->getCaller() : nullptr; 1856 if (Caller && 1857 !NullPointerIsDefined( 1858 Caller, Operands[0]->getType()->getPointerAddressSpace())) { 1859 return Operands[0]; 1860 } 1861 return nullptr; 1862 } 1863 } 1864 1865 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) { 1866 if (IntrinsicID == Intrinsic::convert_to_fp16) { 1867 APFloat Val(Op->getValueAPF()); 1868 1869 bool lost = false; 1870 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost); 1871 1872 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt()); 1873 } 1874 1875 APFloat U = Op->getValueAPF(); 1876 1877 if (IntrinsicID == Intrinsic::wasm_trunc_signed || 1878 IntrinsicID == Intrinsic::wasm_trunc_unsigned) { 1879 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed; 1880 1881 if (U.isNaN()) 1882 return nullptr; 1883 1884 unsigned Width = Ty->getIntegerBitWidth(); 1885 APSInt Int(Width, !Signed); 1886 bool IsExact = false; 1887 APFloat::opStatus Status = 1888 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 1889 1890 if (Status == APFloat::opOK || Status == APFloat::opInexact) 1891 return ConstantInt::get(Ty, Int); 1892 1893 return nullptr; 1894 } 1895 1896 if (IntrinsicID == Intrinsic::fptoui_sat || 1897 IntrinsicID == Intrinsic::fptosi_sat) { 1898 // convertToInteger() already has the desired saturation semantics. 1899 APSInt Int(Ty->getIntegerBitWidth(), 1900 IntrinsicID == Intrinsic::fptoui_sat); 1901 bool IsExact; 1902 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 1903 return ConstantInt::get(Ty, Int); 1904 } 1905 1906 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 1907 return nullptr; 1908 1909 // Use internal versions of these intrinsics. 1910 1911 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) { 1912 U.roundToIntegral(APFloat::rmNearestTiesToEven); 1913 return ConstantFP::get(Ty->getContext(), U); 1914 } 1915 1916 if (IntrinsicID == Intrinsic::round) { 1917 U.roundToIntegral(APFloat::rmNearestTiesToAway); 1918 return ConstantFP::get(Ty->getContext(), U); 1919 } 1920 1921 if (IntrinsicID == Intrinsic::roundeven) { 1922 U.roundToIntegral(APFloat::rmNearestTiesToEven); 1923 return ConstantFP::get(Ty->getContext(), U); 1924 } 1925 1926 if (IntrinsicID == Intrinsic::ceil) { 1927 U.roundToIntegral(APFloat::rmTowardPositive); 1928 return ConstantFP::get(Ty->getContext(), U); 1929 } 1930 1931 if (IntrinsicID == Intrinsic::floor) { 1932 U.roundToIntegral(APFloat::rmTowardNegative); 1933 return ConstantFP::get(Ty->getContext(), U); 1934 } 1935 1936 if (IntrinsicID == Intrinsic::trunc) { 1937 U.roundToIntegral(APFloat::rmTowardZero); 1938 return ConstantFP::get(Ty->getContext(), U); 1939 } 1940 1941 if (IntrinsicID == Intrinsic::fabs) { 1942 U.clearSign(); 1943 return ConstantFP::get(Ty->getContext(), U); 1944 } 1945 1946 if (IntrinsicID == Intrinsic::amdgcn_fract) { 1947 // The v_fract instruction behaves like the OpenCL spec, which defines 1948 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is 1949 // there to prevent fract(-small) from returning 1.0. It returns the 1950 // largest positive floating-point number less than 1.0." 1951 APFloat FloorU(U); 1952 FloorU.roundToIntegral(APFloat::rmTowardNegative); 1953 APFloat FractU(U - FloorU); 1954 APFloat AlmostOne(U.getSemantics(), 1); 1955 AlmostOne.next(/*nextDown*/ true); 1956 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne)); 1957 } 1958 1959 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not 1960 // raise FP exceptions, unless the argument is signaling NaN. 1961 1962 Optional<APFloat::roundingMode> RM; 1963 switch (IntrinsicID) { 1964 default: 1965 break; 1966 case Intrinsic::experimental_constrained_nearbyint: 1967 case Intrinsic::experimental_constrained_rint: { 1968 auto CI = cast<ConstrainedFPIntrinsic>(Call); 1969 RM = CI->getRoundingMode(); 1970 if (!RM || RM.getValue() == RoundingMode::Dynamic) 1971 return nullptr; 1972 break; 1973 } 1974 case Intrinsic::experimental_constrained_round: 1975 RM = APFloat::rmNearestTiesToAway; 1976 break; 1977 case Intrinsic::experimental_constrained_ceil: 1978 RM = APFloat::rmTowardPositive; 1979 break; 1980 case Intrinsic::experimental_constrained_floor: 1981 RM = APFloat::rmTowardNegative; 1982 break; 1983 case Intrinsic::experimental_constrained_trunc: 1984 RM = APFloat::rmTowardZero; 1985 break; 1986 } 1987 if (RM) { 1988 auto CI = cast<ConstrainedFPIntrinsic>(Call); 1989 if (U.isFinite()) { 1990 APFloat::opStatus St = U.roundToIntegral(*RM); 1991 if (IntrinsicID == Intrinsic::experimental_constrained_rint && 1992 St == APFloat::opInexact) { 1993 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 1994 if (EB && *EB == fp::ebStrict) 1995 return nullptr; 1996 } 1997 } else if (U.isSignaling()) { 1998 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 1999 if (EB && *EB != fp::ebIgnore) 2000 return nullptr; 2001 U = APFloat::getQNaN(U.getSemantics()); 2002 } 2003 return ConstantFP::get(Ty->getContext(), U); 2004 } 2005 2006 /// We only fold functions with finite arguments. Folding NaN and inf is 2007 /// likely to be aborted with an exception anyway, and some host libms 2008 /// have known errors raising exceptions. 2009 if (!U.isFinite()) 2010 return nullptr; 2011 2012 /// Currently APFloat versions of these functions do not exist, so we use 2013 /// the host native double versions. Float versions are not called 2014 /// directly but for all these it is true (float)(f((double)arg)) == 2015 /// f(arg). Long double not supported yet. 2016 const APFloat &APF = Op->getValueAPF(); 2017 2018 switch (IntrinsicID) { 2019 default: break; 2020 case Intrinsic::log: 2021 return ConstantFoldFP(log, APF, Ty); 2022 case Intrinsic::log2: 2023 // TODO: What about hosts that lack a C99 library? 2024 return ConstantFoldFP(Log2, APF, Ty); 2025 case Intrinsic::log10: 2026 // TODO: What about hosts that lack a C99 library? 2027 return ConstantFoldFP(log10, APF, Ty); 2028 case Intrinsic::exp: 2029 return ConstantFoldFP(exp, APF, Ty); 2030 case Intrinsic::exp2: 2031 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2032 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); 2033 case Intrinsic::sin: 2034 return ConstantFoldFP(sin, APF, Ty); 2035 case Intrinsic::cos: 2036 return ConstantFoldFP(cos, APF, Ty); 2037 case Intrinsic::sqrt: 2038 return ConstantFoldFP(sqrt, APF, Ty); 2039 case Intrinsic::amdgcn_cos: 2040 case Intrinsic::amdgcn_sin: { 2041 double V = getValueAsDouble(Op); 2042 if (V < -256.0 || V > 256.0) 2043 // The gfx8 and gfx9 architectures handle arguments outside the range 2044 // [-256, 256] differently. This should be a rare case so bail out 2045 // rather than trying to handle the difference. 2046 return nullptr; 2047 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos; 2048 double V4 = V * 4.0; 2049 if (V4 == floor(V4)) { 2050 // Force exact results for quarter-integer inputs. 2051 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 }; 2052 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3]; 2053 } else { 2054 if (IsCos) 2055 V = cos(V * 2.0 * numbers::pi); 2056 else 2057 V = sin(V * 2.0 * numbers::pi); 2058 } 2059 return GetConstantFoldFPValue(V, Ty); 2060 } 2061 } 2062 2063 if (!TLI) 2064 return nullptr; 2065 2066 LibFunc Func = NotLibFunc; 2067 if (!TLI->getLibFunc(Name, Func)) 2068 return nullptr; 2069 2070 switch (Func) { 2071 default: 2072 break; 2073 case LibFunc_acos: 2074 case LibFunc_acosf: 2075 case LibFunc_acos_finite: 2076 case LibFunc_acosf_finite: 2077 if (TLI->has(Func)) 2078 return ConstantFoldFP(acos, APF, Ty); 2079 break; 2080 case LibFunc_asin: 2081 case LibFunc_asinf: 2082 case LibFunc_asin_finite: 2083 case LibFunc_asinf_finite: 2084 if (TLI->has(Func)) 2085 return ConstantFoldFP(asin, APF, Ty); 2086 break; 2087 case LibFunc_atan: 2088 case LibFunc_atanf: 2089 if (TLI->has(Func)) 2090 return ConstantFoldFP(atan, APF, Ty); 2091 break; 2092 case LibFunc_ceil: 2093 case LibFunc_ceilf: 2094 if (TLI->has(Func)) { 2095 U.roundToIntegral(APFloat::rmTowardPositive); 2096 return ConstantFP::get(Ty->getContext(), U); 2097 } 2098 break; 2099 case LibFunc_cos: 2100 case LibFunc_cosf: 2101 if (TLI->has(Func)) 2102 return ConstantFoldFP(cos, APF, Ty); 2103 break; 2104 case LibFunc_cosh: 2105 case LibFunc_coshf: 2106 case LibFunc_cosh_finite: 2107 case LibFunc_coshf_finite: 2108 if (TLI->has(Func)) 2109 return ConstantFoldFP(cosh, APF, Ty); 2110 break; 2111 case LibFunc_exp: 2112 case LibFunc_expf: 2113 case LibFunc_exp_finite: 2114 case LibFunc_expf_finite: 2115 if (TLI->has(Func)) 2116 return ConstantFoldFP(exp, APF, Ty); 2117 break; 2118 case LibFunc_exp2: 2119 case LibFunc_exp2f: 2120 case LibFunc_exp2_finite: 2121 case LibFunc_exp2f_finite: 2122 if (TLI->has(Func)) 2123 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2124 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); 2125 break; 2126 case LibFunc_fabs: 2127 case LibFunc_fabsf: 2128 if (TLI->has(Func)) { 2129 U.clearSign(); 2130 return ConstantFP::get(Ty->getContext(), U); 2131 } 2132 break; 2133 case LibFunc_floor: 2134 case LibFunc_floorf: 2135 if (TLI->has(Func)) { 2136 U.roundToIntegral(APFloat::rmTowardNegative); 2137 return ConstantFP::get(Ty->getContext(), U); 2138 } 2139 break; 2140 case LibFunc_log: 2141 case LibFunc_logf: 2142 case LibFunc_log_finite: 2143 case LibFunc_logf_finite: 2144 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2145 return ConstantFoldFP(log, APF, Ty); 2146 break; 2147 case LibFunc_log2: 2148 case LibFunc_log2f: 2149 case LibFunc_log2_finite: 2150 case LibFunc_log2f_finite: 2151 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2152 // TODO: What about hosts that lack a C99 library? 2153 return ConstantFoldFP(Log2, APF, Ty); 2154 break; 2155 case LibFunc_log10: 2156 case LibFunc_log10f: 2157 case LibFunc_log10_finite: 2158 case LibFunc_log10f_finite: 2159 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2160 // TODO: What about hosts that lack a C99 library? 2161 return ConstantFoldFP(log10, APF, Ty); 2162 break; 2163 case LibFunc_nearbyint: 2164 case LibFunc_nearbyintf: 2165 case LibFunc_rint: 2166 case LibFunc_rintf: 2167 if (TLI->has(Func)) { 2168 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2169 return ConstantFP::get(Ty->getContext(), U); 2170 } 2171 break; 2172 case LibFunc_round: 2173 case LibFunc_roundf: 2174 if (TLI->has(Func)) { 2175 U.roundToIntegral(APFloat::rmNearestTiesToAway); 2176 return ConstantFP::get(Ty->getContext(), U); 2177 } 2178 break; 2179 case LibFunc_sin: 2180 case LibFunc_sinf: 2181 if (TLI->has(Func)) 2182 return ConstantFoldFP(sin, APF, Ty); 2183 break; 2184 case LibFunc_sinh: 2185 case LibFunc_sinhf: 2186 case LibFunc_sinh_finite: 2187 case LibFunc_sinhf_finite: 2188 if (TLI->has(Func)) 2189 return ConstantFoldFP(sinh, APF, Ty); 2190 break; 2191 case LibFunc_sqrt: 2192 case LibFunc_sqrtf: 2193 if (!APF.isNegative() && TLI->has(Func)) 2194 return ConstantFoldFP(sqrt, APF, Ty); 2195 break; 2196 case LibFunc_tan: 2197 case LibFunc_tanf: 2198 if (TLI->has(Func)) 2199 return ConstantFoldFP(tan, APF, Ty); 2200 break; 2201 case LibFunc_tanh: 2202 case LibFunc_tanhf: 2203 if (TLI->has(Func)) 2204 return ConstantFoldFP(tanh, APF, Ty); 2205 break; 2206 case LibFunc_trunc: 2207 case LibFunc_truncf: 2208 if (TLI->has(Func)) { 2209 U.roundToIntegral(APFloat::rmTowardZero); 2210 return ConstantFP::get(Ty->getContext(), U); 2211 } 2212 break; 2213 } 2214 return nullptr; 2215 } 2216 2217 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 2218 switch (IntrinsicID) { 2219 case Intrinsic::bswap: 2220 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); 2221 case Intrinsic::ctpop: 2222 return ConstantInt::get(Ty, Op->getValue().countPopulation()); 2223 case Intrinsic::bitreverse: 2224 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits()); 2225 case Intrinsic::convert_from_fp16: { 2226 APFloat Val(APFloat::IEEEhalf(), Op->getValue()); 2227 2228 bool lost = false; 2229 APFloat::opStatus status = Val.convert( 2230 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost); 2231 2232 // Conversion is always precise. 2233 (void)status; 2234 assert(status == APFloat::opOK && !lost && 2235 "Precision lost during fp16 constfolding"); 2236 2237 return ConstantFP::get(Ty->getContext(), Val); 2238 } 2239 default: 2240 return nullptr; 2241 } 2242 } 2243 2244 switch (IntrinsicID) { 2245 default: break; 2246 case Intrinsic::vector_reduce_add: 2247 case Intrinsic::vector_reduce_mul: 2248 case Intrinsic::vector_reduce_and: 2249 case Intrinsic::vector_reduce_or: 2250 case Intrinsic::vector_reduce_xor: 2251 case Intrinsic::vector_reduce_smin: 2252 case Intrinsic::vector_reduce_smax: 2253 case Intrinsic::vector_reduce_umin: 2254 case Intrinsic::vector_reduce_umax: 2255 if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0])) 2256 return C; 2257 break; 2258 } 2259 2260 // Support ConstantVector in case we have an Undef in the top. 2261 if (isa<ConstantVector>(Operands[0]) || 2262 isa<ConstantDataVector>(Operands[0])) { 2263 auto *Op = cast<Constant>(Operands[0]); 2264 switch (IntrinsicID) { 2265 default: break; 2266 case Intrinsic::x86_sse_cvtss2si: 2267 case Intrinsic::x86_sse_cvtss2si64: 2268 case Intrinsic::x86_sse2_cvtsd2si: 2269 case Intrinsic::x86_sse2_cvtsd2si64: 2270 if (ConstantFP *FPOp = 2271 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2272 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2273 /*roundTowardZero=*/false, Ty, 2274 /*IsSigned*/true); 2275 break; 2276 case Intrinsic::x86_sse_cvttss2si: 2277 case Intrinsic::x86_sse_cvttss2si64: 2278 case Intrinsic::x86_sse2_cvttsd2si: 2279 case Intrinsic::x86_sse2_cvttsd2si64: 2280 if (ConstantFP *FPOp = 2281 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2282 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2283 /*roundTowardZero=*/true, Ty, 2284 /*IsSigned*/true); 2285 break; 2286 } 2287 } 2288 2289 return nullptr; 2290 } 2291 2292 static Constant *ConstantFoldScalarCall2(StringRef Name, 2293 Intrinsic::ID IntrinsicID, 2294 Type *Ty, 2295 ArrayRef<Constant *> Operands, 2296 const TargetLibraryInfo *TLI, 2297 const CallBase *Call) { 2298 assert(Operands.size() == 2 && "Wrong number of operands."); 2299 2300 if (Ty->isFloatingPointTy()) { 2301 // TODO: We should have undef handling for all of the FP intrinsics that 2302 // are attempted to be folded in this function. 2303 bool IsOp0Undef = isa<UndefValue>(Operands[0]); 2304 bool IsOp1Undef = isa<UndefValue>(Operands[1]); 2305 switch (IntrinsicID) { 2306 case Intrinsic::maxnum: 2307 case Intrinsic::minnum: 2308 case Intrinsic::maximum: 2309 case Intrinsic::minimum: 2310 // If one argument is undef, return the other argument. 2311 if (IsOp0Undef) 2312 return Operands[1]; 2313 if (IsOp1Undef) 2314 return Operands[0]; 2315 break; 2316 } 2317 } 2318 2319 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2320 if (!Ty->isFloatingPointTy()) 2321 return nullptr; 2322 const APFloat &Op1V = Op1->getValueAPF(); 2323 2324 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2325 if (Op2->getType() != Op1->getType()) 2326 return nullptr; 2327 const APFloat &Op2V = Op2->getValueAPF(); 2328 2329 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) { 2330 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); 2331 APFloat Res = Op1V; 2332 APFloat::opStatus St; 2333 switch (IntrinsicID) { 2334 default: 2335 return nullptr; 2336 case Intrinsic::experimental_constrained_fadd: 2337 St = Res.add(Op2V, RM); 2338 break; 2339 case Intrinsic::experimental_constrained_fsub: 2340 St = Res.subtract(Op2V, RM); 2341 break; 2342 case Intrinsic::experimental_constrained_fmul: 2343 St = Res.multiply(Op2V, RM); 2344 break; 2345 case Intrinsic::experimental_constrained_fdiv: 2346 St = Res.divide(Op2V, RM); 2347 break; 2348 case Intrinsic::experimental_constrained_frem: 2349 St = Res.mod(Op2V); 2350 break; 2351 } 2352 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), 2353 St)) 2354 return ConstantFP::get(Ty->getContext(), Res); 2355 return nullptr; 2356 } 2357 2358 switch (IntrinsicID) { 2359 default: 2360 break; 2361 case Intrinsic::copysign: 2362 return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V)); 2363 case Intrinsic::minnum: 2364 return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V)); 2365 case Intrinsic::maxnum: 2366 return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V)); 2367 case Intrinsic::minimum: 2368 return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V)); 2369 case Intrinsic::maximum: 2370 return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V)); 2371 } 2372 2373 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2374 return nullptr; 2375 2376 switch (IntrinsicID) { 2377 default: 2378 break; 2379 case Intrinsic::pow: 2380 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2381 case Intrinsic::amdgcn_fmul_legacy: 2382 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 2383 // NaN or infinity, gives +0.0. 2384 if (Op1V.isZero() || Op2V.isZero()) 2385 return ConstantFP::getNullValue(Ty); 2386 return ConstantFP::get(Ty->getContext(), Op1V * Op2V); 2387 } 2388 2389 if (!TLI) 2390 return nullptr; 2391 2392 LibFunc Func = NotLibFunc; 2393 if (!TLI->getLibFunc(Name, Func)) 2394 return nullptr; 2395 2396 switch (Func) { 2397 default: 2398 break; 2399 case LibFunc_pow: 2400 case LibFunc_powf: 2401 case LibFunc_pow_finite: 2402 case LibFunc_powf_finite: 2403 if (TLI->has(Func)) 2404 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2405 break; 2406 case LibFunc_fmod: 2407 case LibFunc_fmodf: 2408 if (TLI->has(Func)) { 2409 APFloat V = Op1->getValueAPF(); 2410 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF())) 2411 return ConstantFP::get(Ty->getContext(), V); 2412 } 2413 break; 2414 case LibFunc_remainder: 2415 case LibFunc_remainderf: 2416 if (TLI->has(Func)) { 2417 APFloat V = Op1->getValueAPF(); 2418 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF())) 2419 return ConstantFP::get(Ty->getContext(), V); 2420 } 2421 break; 2422 case LibFunc_atan2: 2423 case LibFunc_atan2f: 2424 case LibFunc_atan2_finite: 2425 case LibFunc_atan2f_finite: 2426 if (TLI->has(Func)) 2427 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); 2428 break; 2429 } 2430 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) { 2431 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2432 return nullptr; 2433 if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy()) 2434 return ConstantFP::get( 2435 Ty->getContext(), 2436 APFloat((float)std::pow((float)Op1V.convertToDouble(), 2437 (int)Op2C->getZExtValue()))); 2438 if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy()) 2439 return ConstantFP::get( 2440 Ty->getContext(), 2441 APFloat((float)std::pow((float)Op1V.convertToDouble(), 2442 (int)Op2C->getZExtValue()))); 2443 if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy()) 2444 return ConstantFP::get( 2445 Ty->getContext(), 2446 APFloat((double)std::pow(Op1V.convertToDouble(), 2447 (int)Op2C->getZExtValue()))); 2448 2449 if (IntrinsicID == Intrinsic::amdgcn_ldexp) { 2450 // FIXME: Should flush denorms depending on FP mode, but that's ignored 2451 // everywhere else. 2452 2453 // scalbn is equivalent to ldexp with float radix 2 2454 APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(), 2455 APFloat::rmNearestTiesToEven); 2456 return ConstantFP::get(Ty->getContext(), Result); 2457 } 2458 } 2459 return nullptr; 2460 } 2461 2462 if (Operands[0]->getType()->isIntegerTy() && 2463 Operands[1]->getType()->isIntegerTy()) { 2464 const APInt *C0, *C1; 2465 if (!getConstIntOrUndef(Operands[0], C0) || 2466 !getConstIntOrUndef(Operands[1], C1)) 2467 return nullptr; 2468 2469 unsigned BitWidth = Ty->getScalarSizeInBits(); 2470 switch (IntrinsicID) { 2471 default: break; 2472 case Intrinsic::smax: 2473 if (!C0 && !C1) 2474 return UndefValue::get(Ty); 2475 if (!C0 || !C1) 2476 return ConstantInt::get(Ty, APInt::getSignedMaxValue(BitWidth)); 2477 return ConstantInt::get(Ty, C0->sgt(*C1) ? *C0 : *C1); 2478 2479 case Intrinsic::smin: 2480 if (!C0 && !C1) 2481 return UndefValue::get(Ty); 2482 if (!C0 || !C1) 2483 return ConstantInt::get(Ty, APInt::getSignedMinValue(BitWidth)); 2484 return ConstantInt::get(Ty, C0->slt(*C1) ? *C0 : *C1); 2485 2486 case Intrinsic::umax: 2487 if (!C0 && !C1) 2488 return UndefValue::get(Ty); 2489 if (!C0 || !C1) 2490 return ConstantInt::get(Ty, APInt::getMaxValue(BitWidth)); 2491 return ConstantInt::get(Ty, C0->ugt(*C1) ? *C0 : *C1); 2492 2493 case Intrinsic::umin: 2494 if (!C0 && !C1) 2495 return UndefValue::get(Ty); 2496 if (!C0 || !C1) 2497 return ConstantInt::get(Ty, APInt::getMinValue(BitWidth)); 2498 return ConstantInt::get(Ty, C0->ult(*C1) ? *C0 : *C1); 2499 2500 case Intrinsic::usub_with_overflow: 2501 case Intrinsic::ssub_with_overflow: 2502 // X - undef -> { 0, false } 2503 // undef - X -> { 0, false } 2504 if (!C0 || !C1) 2505 return Constant::getNullValue(Ty); 2506 LLVM_FALLTHROUGH; 2507 case Intrinsic::uadd_with_overflow: 2508 case Intrinsic::sadd_with_overflow: 2509 // X + undef -> { -1, false } 2510 // undef + x -> { -1, false } 2511 if (!C0 || !C1) { 2512 return ConstantStruct::get( 2513 cast<StructType>(Ty), 2514 {Constant::getAllOnesValue(Ty->getStructElementType(0)), 2515 Constant::getNullValue(Ty->getStructElementType(1))}); 2516 } 2517 LLVM_FALLTHROUGH; 2518 case Intrinsic::smul_with_overflow: 2519 case Intrinsic::umul_with_overflow: { 2520 // undef * X -> { 0, false } 2521 // X * undef -> { 0, false } 2522 if (!C0 || !C1) 2523 return Constant::getNullValue(Ty); 2524 2525 APInt Res; 2526 bool Overflow; 2527 switch (IntrinsicID) { 2528 default: llvm_unreachable("Invalid case"); 2529 case Intrinsic::sadd_with_overflow: 2530 Res = C0->sadd_ov(*C1, Overflow); 2531 break; 2532 case Intrinsic::uadd_with_overflow: 2533 Res = C0->uadd_ov(*C1, Overflow); 2534 break; 2535 case Intrinsic::ssub_with_overflow: 2536 Res = C0->ssub_ov(*C1, Overflow); 2537 break; 2538 case Intrinsic::usub_with_overflow: 2539 Res = C0->usub_ov(*C1, Overflow); 2540 break; 2541 case Intrinsic::smul_with_overflow: 2542 Res = C0->smul_ov(*C1, Overflow); 2543 break; 2544 case Intrinsic::umul_with_overflow: 2545 Res = C0->umul_ov(*C1, Overflow); 2546 break; 2547 } 2548 Constant *Ops[] = { 2549 ConstantInt::get(Ty->getContext(), Res), 2550 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow) 2551 }; 2552 return ConstantStruct::get(cast<StructType>(Ty), Ops); 2553 } 2554 case Intrinsic::uadd_sat: 2555 case Intrinsic::sadd_sat: 2556 if (!C0 && !C1) 2557 return UndefValue::get(Ty); 2558 if (!C0 || !C1) 2559 return Constant::getAllOnesValue(Ty); 2560 if (IntrinsicID == Intrinsic::uadd_sat) 2561 return ConstantInt::get(Ty, C0->uadd_sat(*C1)); 2562 else 2563 return ConstantInt::get(Ty, C0->sadd_sat(*C1)); 2564 case Intrinsic::usub_sat: 2565 case Intrinsic::ssub_sat: 2566 if (!C0 && !C1) 2567 return UndefValue::get(Ty); 2568 if (!C0 || !C1) 2569 return Constant::getNullValue(Ty); 2570 if (IntrinsicID == Intrinsic::usub_sat) 2571 return ConstantInt::get(Ty, C0->usub_sat(*C1)); 2572 else 2573 return ConstantInt::get(Ty, C0->ssub_sat(*C1)); 2574 case Intrinsic::cttz: 2575 case Intrinsic::ctlz: 2576 assert(C1 && "Must be constant int"); 2577 2578 // cttz(0, 1) and ctlz(0, 1) are undef. 2579 if (C1->isOne() && (!C0 || C0->isZero())) 2580 return UndefValue::get(Ty); 2581 if (!C0) 2582 return Constant::getNullValue(Ty); 2583 if (IntrinsicID == Intrinsic::cttz) 2584 return ConstantInt::get(Ty, C0->countTrailingZeros()); 2585 else 2586 return ConstantInt::get(Ty, C0->countLeadingZeros()); 2587 2588 case Intrinsic::abs: 2589 // Undef or minimum val operand with poison min --> undef 2590 assert(C1 && "Must be constant int"); 2591 if (C1->isOne() && (!C0 || C0->isMinSignedValue())) 2592 return UndefValue::get(Ty); 2593 2594 // Undef operand with no poison min --> 0 (sign bit must be clear) 2595 if (C1->isZero() && !C0) 2596 return Constant::getNullValue(Ty); 2597 2598 return ConstantInt::get(Ty, C0->abs()); 2599 } 2600 2601 return nullptr; 2602 } 2603 2604 // Support ConstantVector in case we have an Undef in the top. 2605 if ((isa<ConstantVector>(Operands[0]) || 2606 isa<ConstantDataVector>(Operands[0])) && 2607 // Check for default rounding mode. 2608 // FIXME: Support other rounding modes? 2609 isa<ConstantInt>(Operands[1]) && 2610 cast<ConstantInt>(Operands[1])->getValue() == 4) { 2611 auto *Op = cast<Constant>(Operands[0]); 2612 switch (IntrinsicID) { 2613 default: break; 2614 case Intrinsic::x86_avx512_vcvtss2si32: 2615 case Intrinsic::x86_avx512_vcvtss2si64: 2616 case Intrinsic::x86_avx512_vcvtsd2si32: 2617 case Intrinsic::x86_avx512_vcvtsd2si64: 2618 if (ConstantFP *FPOp = 2619 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2620 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2621 /*roundTowardZero=*/false, Ty, 2622 /*IsSigned*/true); 2623 break; 2624 case Intrinsic::x86_avx512_vcvtss2usi32: 2625 case Intrinsic::x86_avx512_vcvtss2usi64: 2626 case Intrinsic::x86_avx512_vcvtsd2usi32: 2627 case Intrinsic::x86_avx512_vcvtsd2usi64: 2628 if (ConstantFP *FPOp = 2629 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2630 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2631 /*roundTowardZero=*/false, Ty, 2632 /*IsSigned*/false); 2633 break; 2634 case Intrinsic::x86_avx512_cvttss2si: 2635 case Intrinsic::x86_avx512_cvttss2si64: 2636 case Intrinsic::x86_avx512_cvttsd2si: 2637 case Intrinsic::x86_avx512_cvttsd2si64: 2638 if (ConstantFP *FPOp = 2639 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2640 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2641 /*roundTowardZero=*/true, Ty, 2642 /*IsSigned*/true); 2643 break; 2644 case Intrinsic::x86_avx512_cvttss2usi: 2645 case Intrinsic::x86_avx512_cvttss2usi64: 2646 case Intrinsic::x86_avx512_cvttsd2usi: 2647 case Intrinsic::x86_avx512_cvttsd2usi64: 2648 if (ConstantFP *FPOp = 2649 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2650 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2651 /*roundTowardZero=*/true, Ty, 2652 /*IsSigned*/false); 2653 break; 2654 } 2655 } 2656 return nullptr; 2657 } 2658 2659 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID, 2660 const APFloat &S0, 2661 const APFloat &S1, 2662 const APFloat &S2) { 2663 unsigned ID; 2664 const fltSemantics &Sem = S0.getSemantics(); 2665 APFloat MA(Sem), SC(Sem), TC(Sem); 2666 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) { 2667 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) { 2668 // S2 < 0 2669 ID = 5; 2670 SC = -S0; 2671 } else { 2672 ID = 4; 2673 SC = S0; 2674 } 2675 MA = S2; 2676 TC = -S1; 2677 } else if (abs(S1) >= abs(S0)) { 2678 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) { 2679 // S1 < 0 2680 ID = 3; 2681 TC = -S2; 2682 } else { 2683 ID = 2; 2684 TC = S2; 2685 } 2686 MA = S1; 2687 SC = S0; 2688 } else { 2689 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) { 2690 // S0 < 0 2691 ID = 1; 2692 SC = S2; 2693 } else { 2694 ID = 0; 2695 SC = -S2; 2696 } 2697 MA = S0; 2698 TC = -S1; 2699 } 2700 switch (IntrinsicID) { 2701 default: 2702 llvm_unreachable("unhandled amdgcn cube intrinsic"); 2703 case Intrinsic::amdgcn_cubeid: 2704 return APFloat(Sem, ID); 2705 case Intrinsic::amdgcn_cubema: 2706 return MA + MA; 2707 case Intrinsic::amdgcn_cubesc: 2708 return SC; 2709 case Intrinsic::amdgcn_cubetc: 2710 return TC; 2711 } 2712 } 2713 2714 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands, 2715 Type *Ty) { 2716 const APInt *C0, *C1, *C2; 2717 if (!getConstIntOrUndef(Operands[0], C0) || 2718 !getConstIntOrUndef(Operands[1], C1) || 2719 !getConstIntOrUndef(Operands[2], C2)) 2720 return nullptr; 2721 2722 if (!C2) 2723 return UndefValue::get(Ty); 2724 2725 APInt Val(32, 0); 2726 unsigned NumUndefBytes = 0; 2727 for (unsigned I = 0; I < 32; I += 8) { 2728 unsigned Sel = C2->extractBitsAsZExtValue(8, I); 2729 unsigned B = 0; 2730 2731 if (Sel >= 13) 2732 B = 0xff; 2733 else if (Sel == 12) 2734 B = 0x00; 2735 else { 2736 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1; 2737 if (!Src) 2738 ++NumUndefBytes; 2739 else if (Sel < 8) 2740 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8); 2741 else 2742 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff; 2743 } 2744 2745 Val.insertBits(B, I, 8); 2746 } 2747 2748 if (NumUndefBytes == 4) 2749 return UndefValue::get(Ty); 2750 2751 return ConstantInt::get(Ty, Val); 2752 } 2753 2754 static Constant *ConstantFoldScalarCall3(StringRef Name, 2755 Intrinsic::ID IntrinsicID, 2756 Type *Ty, 2757 ArrayRef<Constant *> Operands, 2758 const TargetLibraryInfo *TLI, 2759 const CallBase *Call) { 2760 assert(Operands.size() == 3 && "Wrong number of operands."); 2761 2762 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2763 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2764 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) { 2765 const APFloat &C1 = Op1->getValueAPF(); 2766 const APFloat &C2 = Op2->getValueAPF(); 2767 const APFloat &C3 = Op3->getValueAPF(); 2768 2769 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) { 2770 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); 2771 APFloat Res = C1; 2772 APFloat::opStatus St; 2773 switch (IntrinsicID) { 2774 default: 2775 return nullptr; 2776 case Intrinsic::experimental_constrained_fma: 2777 case Intrinsic::experimental_constrained_fmuladd: 2778 St = Res.fusedMultiplyAdd(C2, C3, RM); 2779 break; 2780 } 2781 if (mayFoldConstrained( 2782 const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St)) 2783 return ConstantFP::get(Ty->getContext(), Res); 2784 return nullptr; 2785 } 2786 2787 switch (IntrinsicID) { 2788 default: break; 2789 case Intrinsic::amdgcn_fma_legacy: { 2790 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 2791 // NaN or infinity, gives +0.0. 2792 if (C1.isZero() || C2.isZero()) { 2793 // It's tempting to just return C3 here, but that would give the 2794 // wrong result if C3 was -0.0. 2795 return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3); 2796 } 2797 LLVM_FALLTHROUGH; 2798 } 2799 case Intrinsic::fma: 2800 case Intrinsic::fmuladd: { 2801 APFloat V = C1; 2802 V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven); 2803 return ConstantFP::get(Ty->getContext(), V); 2804 } 2805 case Intrinsic::amdgcn_cubeid: 2806 case Intrinsic::amdgcn_cubema: 2807 case Intrinsic::amdgcn_cubesc: 2808 case Intrinsic::amdgcn_cubetc: { 2809 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3); 2810 return ConstantFP::get(Ty->getContext(), V); 2811 } 2812 } 2813 } 2814 } 2815 } 2816 2817 if (IntrinsicID == Intrinsic::smul_fix || 2818 IntrinsicID == Intrinsic::smul_fix_sat) { 2819 // poison * C -> poison 2820 // C * poison -> poison 2821 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 2822 return PoisonValue::get(Ty); 2823 2824 const APInt *C0, *C1; 2825 if (!getConstIntOrUndef(Operands[0], C0) || 2826 !getConstIntOrUndef(Operands[1], C1)) 2827 return nullptr; 2828 2829 // undef * C -> 0 2830 // C * undef -> 0 2831 if (!C0 || !C1) 2832 return Constant::getNullValue(Ty); 2833 2834 // This code performs rounding towards negative infinity in case the result 2835 // cannot be represented exactly for the given scale. Targets that do care 2836 // about rounding should use a target hook for specifying how rounding 2837 // should be done, and provide their own folding to be consistent with 2838 // rounding. This is the same approach as used by 2839 // DAGTypeLegalizer::ExpandIntRes_MULFIX. 2840 unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue(); 2841 unsigned Width = C0->getBitWidth(); 2842 assert(Scale < Width && "Illegal scale."); 2843 unsigned ExtendedWidth = Width * 2; 2844 APInt Product = (C0->sextOrSelf(ExtendedWidth) * 2845 C1->sextOrSelf(ExtendedWidth)).ashr(Scale); 2846 if (IntrinsicID == Intrinsic::smul_fix_sat) { 2847 APInt Max = APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth); 2848 APInt Min = APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth); 2849 Product = APIntOps::smin(Product, Max); 2850 Product = APIntOps::smax(Product, Min); 2851 } 2852 return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width)); 2853 } 2854 2855 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) { 2856 const APInt *C0, *C1, *C2; 2857 if (!getConstIntOrUndef(Operands[0], C0) || 2858 !getConstIntOrUndef(Operands[1], C1) || 2859 !getConstIntOrUndef(Operands[2], C2)) 2860 return nullptr; 2861 2862 bool IsRight = IntrinsicID == Intrinsic::fshr; 2863 if (!C2) 2864 return Operands[IsRight ? 1 : 0]; 2865 if (!C0 && !C1) 2866 return UndefValue::get(Ty); 2867 2868 // The shift amount is interpreted as modulo the bitwidth. If the shift 2869 // amount is effectively 0, avoid UB due to oversized inverse shift below. 2870 unsigned BitWidth = C2->getBitWidth(); 2871 unsigned ShAmt = C2->urem(BitWidth); 2872 if (!ShAmt) 2873 return Operands[IsRight ? 1 : 0]; 2874 2875 // (C0 << ShlAmt) | (C1 >> LshrAmt) 2876 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt; 2877 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt; 2878 if (!C0) 2879 return ConstantInt::get(Ty, C1->lshr(LshrAmt)); 2880 if (!C1) 2881 return ConstantInt::get(Ty, C0->shl(ShlAmt)); 2882 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt)); 2883 } 2884 2885 if (IntrinsicID == Intrinsic::amdgcn_perm) 2886 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty); 2887 2888 return nullptr; 2889 } 2890 2891 static Constant *ConstantFoldScalarCall(StringRef Name, 2892 Intrinsic::ID IntrinsicID, 2893 Type *Ty, 2894 ArrayRef<Constant *> Operands, 2895 const TargetLibraryInfo *TLI, 2896 const CallBase *Call) { 2897 if (Operands.size() == 1) 2898 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call); 2899 2900 if (Operands.size() == 2) 2901 return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call); 2902 2903 if (Operands.size() == 3) 2904 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call); 2905 2906 return nullptr; 2907 } 2908 2909 static Constant *ConstantFoldFixedVectorCall( 2910 StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy, 2911 ArrayRef<Constant *> Operands, const DataLayout &DL, 2912 const TargetLibraryInfo *TLI, const CallBase *Call) { 2913 SmallVector<Constant *, 4> Result(FVTy->getNumElements()); 2914 SmallVector<Constant *, 4> Lane(Operands.size()); 2915 Type *Ty = FVTy->getElementType(); 2916 2917 switch (IntrinsicID) { 2918 case Intrinsic::masked_load: { 2919 auto *SrcPtr = Operands[0]; 2920 auto *Mask = Operands[2]; 2921 auto *Passthru = Operands[3]; 2922 2923 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL); 2924 2925 SmallVector<Constant *, 32> NewElements; 2926 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 2927 auto *MaskElt = Mask->getAggregateElement(I); 2928 if (!MaskElt) 2929 break; 2930 auto *PassthruElt = Passthru->getAggregateElement(I); 2931 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr; 2932 if (isa<UndefValue>(MaskElt)) { 2933 if (PassthruElt) 2934 NewElements.push_back(PassthruElt); 2935 else if (VecElt) 2936 NewElements.push_back(VecElt); 2937 else 2938 return nullptr; 2939 } 2940 if (MaskElt->isNullValue()) { 2941 if (!PassthruElt) 2942 return nullptr; 2943 NewElements.push_back(PassthruElt); 2944 } else if (MaskElt->isOneValue()) { 2945 if (!VecElt) 2946 return nullptr; 2947 NewElements.push_back(VecElt); 2948 } else { 2949 return nullptr; 2950 } 2951 } 2952 if (NewElements.size() != FVTy->getNumElements()) 2953 return nullptr; 2954 return ConstantVector::get(NewElements); 2955 } 2956 case Intrinsic::arm_mve_vctp8: 2957 case Intrinsic::arm_mve_vctp16: 2958 case Intrinsic::arm_mve_vctp32: 2959 case Intrinsic::arm_mve_vctp64: { 2960 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 2961 unsigned Lanes = FVTy->getNumElements(); 2962 uint64_t Limit = Op->getZExtValue(); 2963 // vctp64 are currently modelled as returning a v4i1, not a v2i1. Make 2964 // sure we get the limit right in that case and set all relevant lanes. 2965 if (IntrinsicID == Intrinsic::arm_mve_vctp64) 2966 Limit *= 2; 2967 2968 SmallVector<Constant *, 16> NCs; 2969 for (unsigned i = 0; i < Lanes; i++) { 2970 if (i < Limit) 2971 NCs.push_back(ConstantInt::getTrue(Ty)); 2972 else 2973 NCs.push_back(ConstantInt::getFalse(Ty)); 2974 } 2975 return ConstantVector::get(NCs); 2976 } 2977 break; 2978 } 2979 case Intrinsic::get_active_lane_mask: { 2980 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]); 2981 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]); 2982 if (Op0 && Op1) { 2983 unsigned Lanes = FVTy->getNumElements(); 2984 uint64_t Base = Op0->getZExtValue(); 2985 uint64_t Limit = Op1->getZExtValue(); 2986 2987 SmallVector<Constant *, 16> NCs; 2988 for (unsigned i = 0; i < Lanes; i++) { 2989 if (Base + i < Limit) 2990 NCs.push_back(ConstantInt::getTrue(Ty)); 2991 else 2992 NCs.push_back(ConstantInt::getFalse(Ty)); 2993 } 2994 return ConstantVector::get(NCs); 2995 } 2996 break; 2997 } 2998 default: 2999 break; 3000 } 3001 3002 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 3003 // Gather a column of constants. 3004 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { 3005 // Some intrinsics use a scalar type for certain arguments. 3006 if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) { 3007 Lane[J] = Operands[J]; 3008 continue; 3009 } 3010 3011 Constant *Agg = Operands[J]->getAggregateElement(I); 3012 if (!Agg) 3013 return nullptr; 3014 3015 Lane[J] = Agg; 3016 } 3017 3018 // Use the regular scalar folding to simplify this column. 3019 Constant *Folded = 3020 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call); 3021 if (!Folded) 3022 return nullptr; 3023 Result[I] = Folded; 3024 } 3025 3026 return ConstantVector::get(Result); 3027 } 3028 3029 static Constant *ConstantFoldScalableVectorCall( 3030 StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy, 3031 ArrayRef<Constant *> Operands, const DataLayout &DL, 3032 const TargetLibraryInfo *TLI, const CallBase *Call) { 3033 switch (IntrinsicID) { 3034 case Intrinsic::aarch64_sve_convert_from_svbool: { 3035 auto *Src = dyn_cast<Constant>(Operands[0]); 3036 if (!Src || !Src->isNullValue()) 3037 break; 3038 3039 return ConstantInt::getFalse(SVTy); 3040 } 3041 default: 3042 break; 3043 } 3044 return nullptr; 3045 } 3046 3047 } // end anonymous namespace 3048 3049 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F, 3050 ArrayRef<Constant *> Operands, 3051 const TargetLibraryInfo *TLI) { 3052 if (Call->isNoBuiltin()) 3053 return nullptr; 3054 if (!F->hasName()) 3055 return nullptr; 3056 3057 // If this is not an intrinsic and not recognized as a library call, bail out. 3058 if (F->getIntrinsicID() == Intrinsic::not_intrinsic) { 3059 if (!TLI) 3060 return nullptr; 3061 LibFunc LibF; 3062 if (!TLI->getLibFunc(*F, LibF)) 3063 return nullptr; 3064 } 3065 3066 StringRef Name = F->getName(); 3067 Type *Ty = F->getReturnType(); 3068 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) 3069 return ConstantFoldFixedVectorCall( 3070 Name, F->getIntrinsicID(), FVTy, Operands, 3071 F->getParent()->getDataLayout(), TLI, Call); 3072 3073 if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty)) 3074 return ConstantFoldScalableVectorCall( 3075 Name, F->getIntrinsicID(), SVTy, Operands, 3076 F->getParent()->getDataLayout(), TLI, Call); 3077 3078 // TODO: If this is a library function, we already discovered that above, 3079 // so we should pass the LibFunc, not the name (and it might be better 3080 // still to separate intrinsic handling from libcalls). 3081 return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI, 3082 Call); 3083 } 3084 3085 bool llvm::isMathLibCallNoop(const CallBase *Call, 3086 const TargetLibraryInfo *TLI) { 3087 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap 3088 // (and to some extent ConstantFoldScalarCall). 3089 if (Call->isNoBuiltin() || Call->isStrictFP()) 3090 return false; 3091 Function *F = Call->getCalledFunction(); 3092 if (!F) 3093 return false; 3094 3095 LibFunc Func; 3096 if (!TLI || !TLI->getLibFunc(*F, Func)) 3097 return false; 3098 3099 if (Call->arg_size() == 1) { 3100 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) { 3101 const APFloat &Op = OpC->getValueAPF(); 3102 switch (Func) { 3103 case LibFunc_logl: 3104 case LibFunc_log: 3105 case LibFunc_logf: 3106 case LibFunc_log2l: 3107 case LibFunc_log2: 3108 case LibFunc_log2f: 3109 case LibFunc_log10l: 3110 case LibFunc_log10: 3111 case LibFunc_log10f: 3112 return Op.isNaN() || (!Op.isZero() && !Op.isNegative()); 3113 3114 case LibFunc_expl: 3115 case LibFunc_exp: 3116 case LibFunc_expf: 3117 // FIXME: These boundaries are slightly conservative. 3118 if (OpC->getType()->isDoubleTy()) 3119 return !(Op < APFloat(-745.0) || Op > APFloat(709.0)); 3120 if (OpC->getType()->isFloatTy()) 3121 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f)); 3122 break; 3123 3124 case LibFunc_exp2l: 3125 case LibFunc_exp2: 3126 case LibFunc_exp2f: 3127 // FIXME: These boundaries are slightly conservative. 3128 if (OpC->getType()->isDoubleTy()) 3129 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0)); 3130 if (OpC->getType()->isFloatTy()) 3131 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f)); 3132 break; 3133 3134 case LibFunc_sinl: 3135 case LibFunc_sin: 3136 case LibFunc_sinf: 3137 case LibFunc_cosl: 3138 case LibFunc_cos: 3139 case LibFunc_cosf: 3140 return !Op.isInfinity(); 3141 3142 case LibFunc_tanl: 3143 case LibFunc_tan: 3144 case LibFunc_tanf: { 3145 // FIXME: Stop using the host math library. 3146 // FIXME: The computation isn't done in the right precision. 3147 Type *Ty = OpC->getType(); 3148 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) 3149 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr; 3150 break; 3151 } 3152 3153 case LibFunc_asinl: 3154 case LibFunc_asin: 3155 case LibFunc_asinf: 3156 case LibFunc_acosl: 3157 case LibFunc_acos: 3158 case LibFunc_acosf: 3159 return !(Op < APFloat(Op.getSemantics(), "-1") || 3160 Op > APFloat(Op.getSemantics(), "1")); 3161 3162 case LibFunc_sinh: 3163 case LibFunc_cosh: 3164 case LibFunc_sinhf: 3165 case LibFunc_coshf: 3166 case LibFunc_sinhl: 3167 case LibFunc_coshl: 3168 // FIXME: These boundaries are slightly conservative. 3169 if (OpC->getType()->isDoubleTy()) 3170 return !(Op < APFloat(-710.0) || Op > APFloat(710.0)); 3171 if (OpC->getType()->isFloatTy()) 3172 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f)); 3173 break; 3174 3175 case LibFunc_sqrtl: 3176 case LibFunc_sqrt: 3177 case LibFunc_sqrtf: 3178 return Op.isNaN() || Op.isZero() || !Op.isNegative(); 3179 3180 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p, 3181 // maybe others? 3182 default: 3183 break; 3184 } 3185 } 3186 } 3187 3188 if (Call->arg_size() == 2) { 3189 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0)); 3190 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1)); 3191 if (Op0C && Op1C) { 3192 const APFloat &Op0 = Op0C->getValueAPF(); 3193 const APFloat &Op1 = Op1C->getValueAPF(); 3194 3195 switch (Func) { 3196 case LibFunc_powl: 3197 case LibFunc_pow: 3198 case LibFunc_powf: { 3199 // FIXME: Stop using the host math library. 3200 // FIXME: The computation isn't done in the right precision. 3201 Type *Ty = Op0C->getType(); 3202 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { 3203 if (Ty == Op1C->getType()) 3204 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr; 3205 } 3206 break; 3207 } 3208 3209 case LibFunc_fmodl: 3210 case LibFunc_fmod: 3211 case LibFunc_fmodf: 3212 case LibFunc_remainderl: 3213 case LibFunc_remainder: 3214 case LibFunc_remainderf: 3215 return Op0.isNaN() || Op1.isNaN() || 3216 (!Op0.isInfinity() && !Op1.isZero()); 3217 3218 default: 3219 break; 3220 } 3221 } 3222 } 3223 3224 return false; 3225 } 3226 3227 void TargetFolder::anchor() {} 3228