1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines routines for folding instructions into constants. 10 // 11 // Also, to supplement the basic IR ConstantExpr simplifications, 12 // this file defines some additional folding routines that can make use of 13 // DataLayout information. These functions cannot go in IR due to library 14 // dependency issues. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/ADT/APFloat.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/APSInt.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/TargetFolder.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/Config/config.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GlobalValue.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/IntrinsicsAArch64.h" 45 #include "llvm/IR/IntrinsicsAMDGPU.h" 46 #include "llvm/IR/IntrinsicsARM.h" 47 #include "llvm/IR/IntrinsicsWebAssembly.h" 48 #include "llvm/IR/IntrinsicsX86.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/KnownBits.h" 55 #include "llvm/Support/MathExtras.h" 56 #include <cassert> 57 #include <cerrno> 58 #include <cfenv> 59 #include <cmath> 60 #include <cstddef> 61 #include <cstdint> 62 63 using namespace llvm; 64 65 namespace { 66 67 //===----------------------------------------------------------------------===// 68 // Constant Folding internal helper functions 69 //===----------------------------------------------------------------------===// 70 71 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy, 72 Constant *C, Type *SrcEltTy, 73 unsigned NumSrcElts, 74 const DataLayout &DL) { 75 // Now that we know that the input value is a vector of integers, just shift 76 // and insert them into our result. 77 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy); 78 for (unsigned i = 0; i != NumSrcElts; ++i) { 79 Constant *Element; 80 if (DL.isLittleEndian()) 81 Element = C->getAggregateElement(NumSrcElts - i - 1); 82 else 83 Element = C->getAggregateElement(i); 84 85 if (Element && isa<UndefValue>(Element)) { 86 Result <<= BitShift; 87 continue; 88 } 89 90 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 91 if (!ElementCI) 92 return ConstantExpr::getBitCast(C, DestTy); 93 94 Result <<= BitShift; 95 Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth()); 96 } 97 98 return nullptr; 99 } 100 101 /// Constant fold bitcast, symbolically evaluating it with DataLayout. 102 /// This always returns a non-null constant, but it may be a 103 /// ConstantExpr if unfoldable. 104 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { 105 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) && 106 "Invalid constantexpr bitcast!"); 107 108 // Catch the obvious splat cases. 109 if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy()) 110 return Constant::getNullValue(DestTy); 111 if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() && 112 !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types! 113 return Constant::getAllOnesValue(DestTy); 114 115 if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 116 // Handle a vector->scalar integer/fp cast. 117 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) { 118 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements(); 119 Type *SrcEltTy = VTy->getElementType(); 120 121 // If the vector is a vector of floating point, convert it to vector of int 122 // to simplify things. 123 if (SrcEltTy->isFloatingPointTy()) { 124 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 125 auto *SrcIVTy = FixedVectorType::get( 126 IntegerType::get(C->getContext(), FPWidth), NumSrcElts); 127 // Ask IR to do the conversion now that #elts line up. 128 C = ConstantExpr::getBitCast(C, SrcIVTy); 129 } 130 131 APInt Result(DL.getTypeSizeInBits(DestTy), 0); 132 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C, 133 SrcEltTy, NumSrcElts, DL)) 134 return CE; 135 136 if (isa<IntegerType>(DestTy)) 137 return ConstantInt::get(DestTy, Result); 138 139 APFloat FP(DestTy->getFltSemantics(), Result); 140 return ConstantFP::get(DestTy->getContext(), FP); 141 } 142 } 143 144 // The code below only handles casts to vectors currently. 145 auto *DestVTy = dyn_cast<VectorType>(DestTy); 146 if (!DestVTy) 147 return ConstantExpr::getBitCast(C, DestTy); 148 149 // If this is a scalar -> vector cast, convert the input into a <1 x scalar> 150 // vector so the code below can handle it uniformly. 151 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) { 152 Constant *Ops = C; // don't take the address of C! 153 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL); 154 } 155 156 // If this is a bitcast from constant vector -> vector, fold it. 157 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C)) 158 return ConstantExpr::getBitCast(C, DestTy); 159 160 // If the element types match, IR can fold it. 161 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements(); 162 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements(); 163 if (NumDstElt == NumSrcElt) 164 return ConstantExpr::getBitCast(C, DestTy); 165 166 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType(); 167 Type *DstEltTy = DestVTy->getElementType(); 168 169 // Otherwise, we're changing the number of elements in a vector, which 170 // requires endianness information to do the right thing. For example, 171 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 172 // folds to (little endian): 173 // <4 x i32> <i32 0, i32 0, i32 1, i32 0> 174 // and to (big endian): 175 // <4 x i32> <i32 0, i32 0, i32 0, i32 1> 176 177 // First thing is first. We only want to think about integer here, so if 178 // we have something in FP form, recast it as integer. 179 if (DstEltTy->isFloatingPointTy()) { 180 // Fold to an vector of integers with same size as our FP type. 181 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); 182 auto *DestIVTy = FixedVectorType::get( 183 IntegerType::get(C->getContext(), FPWidth), NumDstElt); 184 // Recursively handle this integer conversion, if possible. 185 C = FoldBitCast(C, DestIVTy, DL); 186 187 // Finally, IR can handle this now that #elts line up. 188 return ConstantExpr::getBitCast(C, DestTy); 189 } 190 191 // Okay, we know the destination is integer, if the input is FP, convert 192 // it to integer first. 193 if (SrcEltTy->isFloatingPointTy()) { 194 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 195 auto *SrcIVTy = FixedVectorType::get( 196 IntegerType::get(C->getContext(), FPWidth), NumSrcElt); 197 // Ask IR to do the conversion now that #elts line up. 198 C = ConstantExpr::getBitCast(C, SrcIVTy); 199 // If IR wasn't able to fold it, bail out. 200 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector. 201 !isa<ConstantDataVector>(C)) 202 return C; 203 } 204 205 // Now we know that the input and output vectors are both integer vectors 206 // of the same size, and that their #elements is not the same. Do the 207 // conversion here, which depends on whether the input or output has 208 // more elements. 209 bool isLittleEndian = DL.isLittleEndian(); 210 211 SmallVector<Constant*, 32> Result; 212 if (NumDstElt < NumSrcElt) { 213 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) 214 Constant *Zero = Constant::getNullValue(DstEltTy); 215 unsigned Ratio = NumSrcElt/NumDstElt; 216 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); 217 unsigned SrcElt = 0; 218 for (unsigned i = 0; i != NumDstElt; ++i) { 219 // Build each element of the result. 220 Constant *Elt = Zero; 221 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); 222 for (unsigned j = 0; j != Ratio; ++j) { 223 Constant *Src = C->getAggregateElement(SrcElt++); 224 if (Src && isa<UndefValue>(Src)) 225 Src = Constant::getNullValue( 226 cast<VectorType>(C->getType())->getElementType()); 227 else 228 Src = dyn_cast_or_null<ConstantInt>(Src); 229 if (!Src) // Reject constantexpr elements. 230 return ConstantExpr::getBitCast(C, DestTy); 231 232 // Zero extend the element to the right size. 233 Src = ConstantExpr::getZExt(Src, Elt->getType()); 234 235 // Shift it to the right place, depending on endianness. 236 Src = ConstantExpr::getShl(Src, 237 ConstantInt::get(Src->getType(), ShiftAmt)); 238 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; 239 240 // Mix it in. 241 Elt = ConstantExpr::getOr(Elt, Src); 242 } 243 Result.push_back(Elt); 244 } 245 return ConstantVector::get(Result); 246 } 247 248 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 249 unsigned Ratio = NumDstElt/NumSrcElt; 250 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy); 251 252 // Loop over each source value, expanding into multiple results. 253 for (unsigned i = 0; i != NumSrcElt; ++i) { 254 auto *Element = C->getAggregateElement(i); 255 256 if (!Element) // Reject constantexpr elements. 257 return ConstantExpr::getBitCast(C, DestTy); 258 259 if (isa<UndefValue>(Element)) { 260 // Correctly Propagate undef values. 261 Result.append(Ratio, UndefValue::get(DstEltTy)); 262 continue; 263 } 264 265 auto *Src = dyn_cast<ConstantInt>(Element); 266 if (!Src) 267 return ConstantExpr::getBitCast(C, DestTy); 268 269 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); 270 for (unsigned j = 0; j != Ratio; ++j) { 271 // Shift the piece of the value into the right place, depending on 272 // endianness. 273 Constant *Elt = ConstantExpr::getLShr(Src, 274 ConstantInt::get(Src->getType(), ShiftAmt)); 275 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; 276 277 // Truncate the element to an integer with the same pointer size and 278 // convert the element back to a pointer using a inttoptr. 279 if (DstEltTy->isPointerTy()) { 280 IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize); 281 Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy); 282 Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy)); 283 continue; 284 } 285 286 // Truncate and remember this piece. 287 Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy)); 288 } 289 } 290 291 return ConstantVector::get(Result); 292 } 293 294 } // end anonymous namespace 295 296 /// If this constant is a constant offset from a global, return the global and 297 /// the constant. Because of constantexprs, this function is recursive. 298 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, 299 APInt &Offset, const DataLayout &DL, 300 DSOLocalEquivalent **DSOEquiv) { 301 if (DSOEquiv) 302 *DSOEquiv = nullptr; 303 304 // Trivial case, constant is the global. 305 if ((GV = dyn_cast<GlobalValue>(C))) { 306 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 307 Offset = APInt(BitWidth, 0); 308 return true; 309 } 310 311 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) { 312 if (DSOEquiv) 313 *DSOEquiv = FoundDSOEquiv; 314 GV = FoundDSOEquiv->getGlobalValue(); 315 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 316 Offset = APInt(BitWidth, 0); 317 return true; 318 } 319 320 // Otherwise, if this isn't a constant expr, bail out. 321 auto *CE = dyn_cast<ConstantExpr>(C); 322 if (!CE) return false; 323 324 // Look through ptr->int and ptr->ptr casts. 325 if (CE->getOpcode() == Instruction::PtrToInt || 326 CE->getOpcode() == Instruction::BitCast) 327 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL, 328 DSOEquiv); 329 330 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) 331 auto *GEP = dyn_cast<GEPOperator>(CE); 332 if (!GEP) 333 return false; 334 335 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 336 APInt TmpOffset(BitWidth, 0); 337 338 // If the base isn't a global+constant, we aren't either. 339 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL, 340 DSOEquiv)) 341 return false; 342 343 // Otherwise, add any offset that our operands provide. 344 if (!GEP->accumulateConstantOffset(DL, TmpOffset)) 345 return false; 346 347 Offset = TmpOffset; 348 return true; 349 } 350 351 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, 352 const DataLayout &DL) { 353 do { 354 Type *SrcTy = C->getType(); 355 if (SrcTy == DestTy) 356 return C; 357 358 TypeSize DestSize = DL.getTypeSizeInBits(DestTy); 359 TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy); 360 if (!TypeSize::isKnownGE(SrcSize, DestSize)) 361 return nullptr; 362 363 // Catch the obvious splat cases (since all-zeros can coerce non-integral 364 // pointers legally). 365 if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy()) 366 return Constant::getNullValue(DestTy); 367 if (C->isAllOnesValue() && 368 (DestTy->isIntegerTy() || DestTy->isFloatingPointTy() || 369 DestTy->isVectorTy()) && 370 !DestTy->isX86_AMXTy() && !DestTy->isX86_MMXTy() && 371 !DestTy->isPtrOrPtrVectorTy()) 372 // Get ones when the input is trivial, but 373 // only for supported types inside getAllOnesValue. 374 return Constant::getAllOnesValue(DestTy); 375 376 // If the type sizes are the same and a cast is legal, just directly 377 // cast the constant. 378 // But be careful not to coerce non-integral pointers illegally. 379 if (SrcSize == DestSize && 380 DL.isNonIntegralPointerType(SrcTy->getScalarType()) == 381 DL.isNonIntegralPointerType(DestTy->getScalarType())) { 382 Instruction::CastOps Cast = Instruction::BitCast; 383 // If we are going from a pointer to int or vice versa, we spell the cast 384 // differently. 385 if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) 386 Cast = Instruction::IntToPtr; 387 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) 388 Cast = Instruction::PtrToInt; 389 390 if (CastInst::castIsValid(Cast, C, DestTy)) 391 return ConstantExpr::getCast(Cast, C, DestTy); 392 } 393 394 // If this isn't an aggregate type, there is nothing we can do to drill down 395 // and find a bitcastable constant. 396 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy()) 397 return nullptr; 398 399 // We're simulating a load through a pointer that was bitcast to point to 400 // a different type, so we can try to walk down through the initial 401 // elements of an aggregate to see if some part of the aggregate is 402 // castable to implement the "load" semantic model. 403 if (SrcTy->isStructTy()) { 404 // Struct types might have leading zero-length elements like [0 x i32], 405 // which are certainly not what we are looking for, so skip them. 406 unsigned Elem = 0; 407 Constant *ElemC; 408 do { 409 ElemC = C->getAggregateElement(Elem++); 410 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero()); 411 C = ElemC; 412 } else { 413 C = C->getAggregateElement(0u); 414 } 415 } while (C); 416 417 return nullptr; 418 } 419 420 namespace { 421 422 /// Recursive helper to read bits out of global. C is the constant being copied 423 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy 424 /// results into and BytesLeft is the number of bytes left in 425 /// the CurPtr buffer. DL is the DataLayout. 426 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, 427 unsigned BytesLeft, const DataLayout &DL) { 428 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && 429 "Out of range access"); 430 431 // If this element is zero or undefined, we can just return since *CurPtr is 432 // zero initialized. 433 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) 434 return true; 435 436 if (auto *CI = dyn_cast<ConstantInt>(C)) { 437 if (CI->getBitWidth() > 64 || 438 (CI->getBitWidth() & 7) != 0) 439 return false; 440 441 uint64_t Val = CI->getZExtValue(); 442 unsigned IntBytes = unsigned(CI->getBitWidth()/8); 443 444 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) { 445 int n = ByteOffset; 446 if (!DL.isLittleEndian()) 447 n = IntBytes - n - 1; 448 CurPtr[i] = (unsigned char)(Val >> (n * 8)); 449 ++ByteOffset; 450 } 451 return true; 452 } 453 454 if (auto *CFP = dyn_cast<ConstantFP>(C)) { 455 if (CFP->getType()->isDoubleTy()) { 456 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL); 457 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 458 } 459 if (CFP->getType()->isFloatTy()){ 460 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL); 461 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 462 } 463 if (CFP->getType()->isHalfTy()){ 464 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL); 465 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 466 } 467 return false; 468 } 469 470 if (auto *CS = dyn_cast<ConstantStruct>(C)) { 471 const StructLayout *SL = DL.getStructLayout(CS->getType()); 472 unsigned Index = SL->getElementContainingOffset(ByteOffset); 473 uint64_t CurEltOffset = SL->getElementOffset(Index); 474 ByteOffset -= CurEltOffset; 475 476 while (true) { 477 // If the element access is to the element itself and not to tail padding, 478 // read the bytes from the element. 479 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType()); 480 481 if (ByteOffset < EltSize && 482 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr, 483 BytesLeft, DL)) 484 return false; 485 486 ++Index; 487 488 // Check to see if we read from the last struct element, if so we're done. 489 if (Index == CS->getType()->getNumElements()) 490 return true; 491 492 // If we read all of the bytes we needed from this element we're done. 493 uint64_t NextEltOffset = SL->getElementOffset(Index); 494 495 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset) 496 return true; 497 498 // Move to the next element of the struct. 499 CurPtr += NextEltOffset - CurEltOffset - ByteOffset; 500 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset; 501 ByteOffset = 0; 502 CurEltOffset = NextEltOffset; 503 } 504 // not reached. 505 } 506 507 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) || 508 isa<ConstantDataSequential>(C)) { 509 uint64_t NumElts; 510 Type *EltTy; 511 if (auto *AT = dyn_cast<ArrayType>(C->getType())) { 512 NumElts = AT->getNumElements(); 513 EltTy = AT->getElementType(); 514 } else { 515 NumElts = cast<FixedVectorType>(C->getType())->getNumElements(); 516 EltTy = cast<FixedVectorType>(C->getType())->getElementType(); 517 } 518 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 519 uint64_t Index = ByteOffset / EltSize; 520 uint64_t Offset = ByteOffset - Index * EltSize; 521 522 for (; Index != NumElts; ++Index) { 523 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr, 524 BytesLeft, DL)) 525 return false; 526 527 uint64_t BytesWritten = EltSize - Offset; 528 assert(BytesWritten <= EltSize && "Not indexing into this element?"); 529 if (BytesWritten >= BytesLeft) 530 return true; 531 532 Offset = 0; 533 BytesLeft -= BytesWritten; 534 CurPtr += BytesWritten; 535 } 536 return true; 537 } 538 539 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 540 if (CE->getOpcode() == Instruction::IntToPtr && 541 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) { 542 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, 543 BytesLeft, DL); 544 } 545 } 546 547 // Otherwise, unknown initializer type. 548 return false; 549 } 550 551 Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy, 552 int64_t Offset, const DataLayout &DL) { 553 // Bail out early. Not expect to load from scalable global variable. 554 if (isa<ScalableVectorType>(LoadTy)) 555 return nullptr; 556 557 auto *IntType = dyn_cast<IntegerType>(LoadTy); 558 559 // If this isn't an integer load we can't fold it directly. 560 if (!IntType) { 561 // If this is a float/double load, we can try folding it as an int32/64 load 562 // and then bitcast the result. This can be useful for union cases. Note 563 // that address spaces don't matter here since we're not going to result in 564 // an actual new load. 565 Type *MapTy; 566 if (LoadTy->isHalfTy()) 567 MapTy = Type::getInt16Ty(C->getContext()); 568 else if (LoadTy->isFloatTy()) 569 MapTy = Type::getInt32Ty(C->getContext()); 570 else if (LoadTy->isDoubleTy()) 571 MapTy = Type::getInt64Ty(C->getContext()); 572 else if (LoadTy->isVectorTy()) { 573 MapTy = PointerType::getIntNTy( 574 C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize()); 575 } else 576 return nullptr; 577 578 if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) { 579 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && 580 !LoadTy->isX86_AMXTy()) 581 // Materializing a zero can be done trivially without a bitcast 582 return Constant::getNullValue(LoadTy); 583 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy; 584 Res = FoldBitCast(Res, CastTy, DL); 585 if (LoadTy->isPtrOrPtrVectorTy()) { 586 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr 587 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && 588 !LoadTy->isX86_AMXTy()) 589 return Constant::getNullValue(LoadTy); 590 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) 591 // Be careful not to replace a load of an addrspace value with an inttoptr here 592 return nullptr; 593 Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy); 594 } 595 return Res; 596 } 597 return nullptr; 598 } 599 600 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; 601 if (BytesLoaded > 32 || BytesLoaded == 0) 602 return nullptr; 603 604 int64_t InitializerSize = DL.getTypeAllocSize(C->getType()).getFixedSize(); 605 606 // If we're not accessing anything in this constant, the result is undefined. 607 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded)) 608 return UndefValue::get(IntType); 609 610 // If we're not accessing anything in this constant, the result is undefined. 611 if (Offset >= InitializerSize) 612 return UndefValue::get(IntType); 613 614 unsigned char RawBytes[32] = {0}; 615 unsigned char *CurPtr = RawBytes; 616 unsigned BytesLeft = BytesLoaded; 617 618 // If we're loading off the beginning of the global, some bytes may be valid. 619 if (Offset < 0) { 620 CurPtr += -Offset; 621 BytesLeft += Offset; 622 Offset = 0; 623 } 624 625 if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL)) 626 return nullptr; 627 628 APInt ResultVal = APInt(IntType->getBitWidth(), 0); 629 if (DL.isLittleEndian()) { 630 ResultVal = RawBytes[BytesLoaded - 1]; 631 for (unsigned i = 1; i != BytesLoaded; ++i) { 632 ResultVal <<= 8; 633 ResultVal |= RawBytes[BytesLoaded - 1 - i]; 634 } 635 } else { 636 ResultVal = RawBytes[0]; 637 for (unsigned i = 1; i != BytesLoaded; ++i) { 638 ResultVal <<= 8; 639 ResultVal |= RawBytes[i]; 640 } 641 } 642 643 return ConstantInt::get(IntType->getContext(), ResultVal); 644 } 645 646 /// If this Offset points exactly to the start of an aggregate element, return 647 /// that element, otherwise return nullptr. 648 Constant *getConstantAtOffset(Constant *Base, APInt Offset, 649 const DataLayout &DL) { 650 if (Offset.isZero()) 651 return Base; 652 653 if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base)) 654 return nullptr; 655 656 Type *ElemTy = Base->getType(); 657 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset); 658 if (!Offset.isZero() || !Indices[0].isZero()) 659 return nullptr; 660 661 Constant *C = Base; 662 for (const APInt &Index : drop_begin(Indices)) { 663 if (Index.isNegative() || Index.getActiveBits() >= 32) 664 return nullptr; 665 666 C = C->getAggregateElement(Index.getZExtValue()); 667 if (!C) 668 return nullptr; 669 } 670 671 return C; 672 } 673 674 } // end anonymous namespace 675 676 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, 677 const APInt &Offset, 678 const DataLayout &DL) { 679 if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL)) 680 if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL)) 681 return Result; 682 683 // Try hard to fold loads from bitcasted strange and non-type-safe things. 684 if (Offset.getMinSignedBits() <= 64) 685 return FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL); 686 687 return nullptr; 688 } 689 690 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, 691 const DataLayout &DL) { 692 return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL); 693 } 694 695 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 696 APInt Offset, 697 const DataLayout &DL) { 698 C = cast<Constant>(C->stripAndAccumulateConstantOffsets( 699 DL, Offset, /* AllowNonInbounds */ true)); 700 701 if (auto *GV = dyn_cast<GlobalVariable>(C)) 702 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 703 if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty, 704 Offset, DL)) 705 return Result; 706 707 // If this load comes from anywhere in a constant global, and if the global 708 // is all undef or zero, we know what it loads. 709 if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C))) { 710 if (GV->isConstant() && GV->hasDefinitiveInitializer()) { 711 if (GV->getInitializer()->isNullValue() && !Ty->isX86_MMXTy() && 712 !Ty->isX86_AMXTy()) 713 return Constant::getNullValue(Ty); 714 if (isa<UndefValue>(GV->getInitializer())) 715 return UndefValue::get(Ty); 716 } 717 } 718 719 return nullptr; 720 } 721 722 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 723 const DataLayout &DL) { 724 APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0); 725 return ConstantFoldLoadFromConstPtr(C, Ty, Offset, DL); 726 } 727 728 namespace { 729 730 /// One of Op0/Op1 is a constant expression. 731 /// Attempt to symbolically evaluate the result of a binary operator merging 732 /// these together. If target data info is available, it is provided as DL, 733 /// otherwise DL is null. 734 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, 735 const DataLayout &DL) { 736 // SROA 737 738 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. 739 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute 740 // bits. 741 742 if (Opc == Instruction::And) { 743 KnownBits Known0 = computeKnownBits(Op0, DL); 744 KnownBits Known1 = computeKnownBits(Op1, DL); 745 if ((Known1.One | Known0.Zero).isAllOnes()) { 746 // All the bits of Op0 that the 'and' could be masking are already zero. 747 return Op0; 748 } 749 if ((Known0.One | Known1.Zero).isAllOnes()) { 750 // All the bits of Op1 that the 'and' could be masking are already zero. 751 return Op1; 752 } 753 754 Known0 &= Known1; 755 if (Known0.isConstant()) 756 return ConstantInt::get(Op0->getType(), Known0.getConstant()); 757 } 758 759 // If the constant expr is something like &A[123] - &A[4].f, fold this into a 760 // constant. This happens frequently when iterating over a global array. 761 if (Opc == Instruction::Sub) { 762 GlobalValue *GV1, *GV2; 763 APInt Offs1, Offs2; 764 765 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL)) 766 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) { 767 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType()); 768 769 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. 770 // PtrToInt may change the bitwidth so we have convert to the right size 771 // first. 772 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) - 773 Offs2.zextOrTrunc(OpSize)); 774 } 775 } 776 777 return nullptr; 778 } 779 780 /// If array indices are not pointer-sized integers, explicitly cast them so 781 /// that they aren't implicitly casted by the getelementptr. 782 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops, 783 Type *ResultTy, Optional<unsigned> InRangeIndex, 784 const DataLayout &DL, const TargetLibraryInfo *TLI) { 785 Type *IntIdxTy = DL.getIndexType(ResultTy); 786 Type *IntIdxScalarTy = IntIdxTy->getScalarType(); 787 788 bool Any = false; 789 SmallVector<Constant*, 32> NewIdxs; 790 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 791 if ((i == 1 || 792 !isa<StructType>(GetElementPtrInst::getIndexedType( 793 SrcElemTy, Ops.slice(1, i - 1)))) && 794 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) { 795 Any = true; 796 Type *NewType = Ops[i]->getType()->isVectorTy() 797 ? IntIdxTy 798 : IntIdxScalarTy; 799 NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i], 800 true, 801 NewType, 802 true), 803 Ops[i], NewType)); 804 } else 805 NewIdxs.push_back(Ops[i]); 806 } 807 808 if (!Any) 809 return nullptr; 810 811 Constant *C = ConstantExpr::getGetElementPtr( 812 SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex); 813 return ConstantFoldConstant(C, DL, TLI); 814 } 815 816 /// Strip the pointer casts, but preserve the address space information. 817 Constant *StripPtrCastKeepAS(Constant *Ptr) { 818 assert(Ptr->getType()->isPointerTy() && "Not a pointer type"); 819 auto *OldPtrTy = cast<PointerType>(Ptr->getType()); 820 Ptr = cast<Constant>(Ptr->stripPointerCasts()); 821 auto *NewPtrTy = cast<PointerType>(Ptr->getType()); 822 823 // Preserve the address space number of the pointer. 824 if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) { 825 Ptr = ConstantExpr::getPointerCast( 826 Ptr, PointerType::getWithSamePointeeType(NewPtrTy, 827 OldPtrTy->getAddressSpace())); 828 } 829 return Ptr; 830 } 831 832 /// If we can symbolically evaluate the GEP constant expression, do so. 833 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, 834 ArrayRef<Constant *> Ops, 835 const DataLayout &DL, 836 const TargetLibraryInfo *TLI) { 837 const GEPOperator *InnermostGEP = GEP; 838 bool InBounds = GEP->isInBounds(); 839 840 Type *SrcElemTy = GEP->getSourceElementType(); 841 Type *ResElemTy = GEP->getResultElementType(); 842 Type *ResTy = GEP->getType(); 843 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy)) 844 return nullptr; 845 846 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, 847 GEP->getInRangeIndex(), DL, TLI)) 848 return C; 849 850 Constant *Ptr = Ops[0]; 851 if (!Ptr->getType()->isPointerTy()) 852 return nullptr; 853 854 Type *IntIdxTy = DL.getIndexType(Ptr->getType()); 855 856 // If this is "gep i8* Ptr, (sub 0, V)", fold this as: 857 // "inttoptr (sub (ptrtoint Ptr), V)" 858 if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) { 859 auto *CE = dyn_cast<ConstantExpr>(Ops[1]); 860 assert((!CE || CE->getType() == IntIdxTy) && 861 "CastGEPIndices didn't canonicalize index types!"); 862 if (CE && CE->getOpcode() == Instruction::Sub && 863 CE->getOperand(0)->isNullValue()) { 864 Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType()); 865 Res = ConstantExpr::getSub(Res, CE->getOperand(1)); 866 Res = ConstantExpr::getIntToPtr(Res, ResTy); 867 return ConstantFoldConstant(Res, DL, TLI); 868 } 869 } 870 871 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 872 if (!isa<ConstantInt>(Ops[i])) 873 return nullptr; 874 875 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy); 876 APInt Offset = 877 APInt(BitWidth, 878 DL.getIndexedOffsetInType( 879 SrcElemTy, 880 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1))); 881 Ptr = StripPtrCastKeepAS(Ptr); 882 883 // If this is a GEP of a GEP, fold it all into a single GEP. 884 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 885 InnermostGEP = GEP; 886 InBounds &= GEP->isInBounds(); 887 888 SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands())); 889 890 // Do not try the incorporate the sub-GEP if some index is not a number. 891 bool AllConstantInt = true; 892 for (Value *NestedOp : NestedOps) 893 if (!isa<ConstantInt>(NestedOp)) { 894 AllConstantInt = false; 895 break; 896 } 897 if (!AllConstantInt) 898 break; 899 900 Ptr = cast<Constant>(GEP->getOperand(0)); 901 SrcElemTy = GEP->getSourceElementType(); 902 Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)); 903 Ptr = StripPtrCastKeepAS(Ptr); 904 } 905 906 // If the base value for this address is a literal integer value, fold the 907 // getelementptr to the resulting integer value casted to the pointer type. 908 APInt BasePtr(BitWidth, 0); 909 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) { 910 if (CE->getOpcode() == Instruction::IntToPtr) { 911 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) 912 BasePtr = Base->getValue().zextOrTrunc(BitWidth); 913 } 914 } 915 916 auto *PTy = cast<PointerType>(Ptr->getType()); 917 if ((Ptr->isNullValue() || BasePtr != 0) && 918 !DL.isNonIntegralPointerType(PTy)) { 919 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr); 920 return ConstantExpr::getIntToPtr(C, ResTy); 921 } 922 923 // Otherwise form a regular getelementptr. Recompute the indices so that 924 // we eliminate over-indexing of the notional static type array bounds. 925 // This makes it easy to determine if the getelementptr is "inbounds". 926 // Also, this helps GlobalOpt do SROA on GlobalVariables. 927 928 // For GEPs of GlobalValues, use the value type even for opaque pointers. 929 // Otherwise use an i8 GEP. 930 if (auto *GV = dyn_cast<GlobalValue>(Ptr)) 931 SrcElemTy = GV->getValueType(); 932 else if (!PTy->isOpaque()) 933 SrcElemTy = PTy->getElementType(); 934 else 935 SrcElemTy = Type::getInt8Ty(Ptr->getContext()); 936 937 if (!SrcElemTy->isSized()) 938 return nullptr; 939 940 Type *ElemTy = SrcElemTy; 941 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset); 942 if (Offset != 0) 943 return nullptr; 944 945 // Try to add additional zero indices to reach the desired result element 946 // type. 947 // TODO: Should we avoid extra zero indices if ResElemTy can't be reached and 948 // we'll have to insert a bitcast anyway? 949 while (ElemTy != ResElemTy) { 950 Type *NextTy = GetElementPtrInst::getTypeAtIndex(ElemTy, (uint64_t)0); 951 if (!NextTy) 952 break; 953 954 Indices.push_back(APInt::getZero(isa<StructType>(ElemTy) ? 32 : BitWidth)); 955 ElemTy = NextTy; 956 } 957 958 SmallVector<Constant *, 32> NewIdxs; 959 for (const APInt &Index : Indices) 960 NewIdxs.push_back(ConstantInt::get( 961 Type::getIntNTy(Ptr->getContext(), Index.getBitWidth()), Index)); 962 963 // Preserve the inrange index from the innermost GEP if possible. We must 964 // have calculated the same indices up to and including the inrange index. 965 Optional<unsigned> InRangeIndex; 966 if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex()) 967 if (SrcElemTy == InnermostGEP->getSourceElementType() && 968 NewIdxs.size() > *LastIRIndex) { 969 InRangeIndex = LastIRIndex; 970 for (unsigned I = 0; I <= *LastIRIndex; ++I) 971 if (NewIdxs[I] != InnermostGEP->getOperand(I + 1)) 972 return nullptr; 973 } 974 975 // Create a GEP. 976 Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs, 977 InBounds, InRangeIndex); 978 assert( 979 cast<PointerType>(C->getType())->isOpaqueOrPointeeTypeMatches(ElemTy) && 980 "Computed GetElementPtr has unexpected type!"); 981 982 // If we ended up indexing a member with a type that doesn't match 983 // the type of what the original indices indexed, add a cast. 984 if (C->getType() != ResTy) 985 C = FoldBitCast(C, ResTy, DL); 986 987 return C; 988 } 989 990 /// Attempt to constant fold an instruction with the 991 /// specified opcode and operands. If successful, the constant result is 992 /// returned, if not, null is returned. Note that this function can fail when 993 /// attempting to fold instructions like loads and stores, which have no 994 /// constant expression form. 995 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode, 996 ArrayRef<Constant *> Ops, 997 const DataLayout &DL, 998 const TargetLibraryInfo *TLI) { 999 Type *DestTy = InstOrCE->getType(); 1000 1001 if (Instruction::isUnaryOp(Opcode)) 1002 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL); 1003 1004 if (Instruction::isBinaryOp(Opcode)) 1005 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL); 1006 1007 if (Instruction::isCast(Opcode)) 1008 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL); 1009 1010 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) { 1011 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI)) 1012 return C; 1013 1014 return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0], 1015 Ops.slice(1), GEP->isInBounds(), 1016 GEP->getInRangeIndex()); 1017 } 1018 1019 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) 1020 return CE->getWithOperands(Ops); 1021 1022 switch (Opcode) { 1023 default: return nullptr; 1024 case Instruction::ICmp: 1025 case Instruction::FCmp: llvm_unreachable("Invalid for compares"); 1026 case Instruction::Freeze: 1027 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr; 1028 case Instruction::Call: 1029 if (auto *F = dyn_cast<Function>(Ops.back())) { 1030 const auto *Call = cast<CallBase>(InstOrCE); 1031 if (canConstantFoldCallTo(Call, F)) 1032 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI); 1033 } 1034 return nullptr; 1035 case Instruction::Select: 1036 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); 1037 case Instruction::ExtractElement: 1038 return ConstantExpr::getExtractElement(Ops[0], Ops[1]); 1039 case Instruction::ExtractValue: 1040 return ConstantExpr::getExtractValue( 1041 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices()); 1042 case Instruction::InsertElement: 1043 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); 1044 case Instruction::ShuffleVector: 1045 return ConstantExpr::getShuffleVector( 1046 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask()); 1047 } 1048 } 1049 1050 } // end anonymous namespace 1051 1052 //===----------------------------------------------------------------------===// 1053 // Constant Folding public APIs 1054 //===----------------------------------------------------------------------===// 1055 1056 namespace { 1057 1058 Constant * 1059 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL, 1060 const TargetLibraryInfo *TLI, 1061 SmallDenseMap<Constant *, Constant *> &FoldedOps) { 1062 if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C)) 1063 return const_cast<Constant *>(C); 1064 1065 SmallVector<Constant *, 8> Ops; 1066 for (const Use &OldU : C->operands()) { 1067 Constant *OldC = cast<Constant>(&OldU); 1068 Constant *NewC = OldC; 1069 // Recursively fold the ConstantExpr's operands. If we have already folded 1070 // a ConstantExpr, we don't have to process it again. 1071 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) { 1072 auto It = FoldedOps.find(OldC); 1073 if (It == FoldedOps.end()) { 1074 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps); 1075 FoldedOps.insert({OldC, NewC}); 1076 } else { 1077 NewC = It->second; 1078 } 1079 } 1080 Ops.push_back(NewC); 1081 } 1082 1083 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1084 if (CE->isCompare()) 1085 return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1], 1086 DL, TLI); 1087 1088 return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI); 1089 } 1090 1091 assert(isa<ConstantVector>(C)); 1092 return ConstantVector::get(Ops); 1093 } 1094 1095 } // end anonymous namespace 1096 1097 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, 1098 const TargetLibraryInfo *TLI) { 1099 // Handle PHI nodes quickly here... 1100 if (auto *PN = dyn_cast<PHINode>(I)) { 1101 Constant *CommonValue = nullptr; 1102 1103 SmallDenseMap<Constant *, Constant *> FoldedOps; 1104 for (Value *Incoming : PN->incoming_values()) { 1105 // If the incoming value is undef then skip it. Note that while we could 1106 // skip the value if it is equal to the phi node itself we choose not to 1107 // because that would break the rule that constant folding only applies if 1108 // all operands are constants. 1109 if (isa<UndefValue>(Incoming)) 1110 continue; 1111 // If the incoming value is not a constant, then give up. 1112 auto *C = dyn_cast<Constant>(Incoming); 1113 if (!C) 1114 return nullptr; 1115 // Fold the PHI's operands. 1116 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1117 // If the incoming value is a different constant to 1118 // the one we saw previously, then give up. 1119 if (CommonValue && C != CommonValue) 1120 return nullptr; 1121 CommonValue = C; 1122 } 1123 1124 // If we reach here, all incoming values are the same constant or undef. 1125 return CommonValue ? CommonValue : UndefValue::get(PN->getType()); 1126 } 1127 1128 // Scan the operand list, checking to see if they are all constants, if so, 1129 // hand off to ConstantFoldInstOperandsImpl. 1130 if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); })) 1131 return nullptr; 1132 1133 SmallDenseMap<Constant *, Constant *> FoldedOps; 1134 SmallVector<Constant *, 8> Ops; 1135 for (const Use &OpU : I->operands()) { 1136 auto *Op = cast<Constant>(&OpU); 1137 // Fold the Instruction's operands. 1138 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps); 1139 Ops.push_back(Op); 1140 } 1141 1142 if (const auto *CI = dyn_cast<CmpInst>(I)) 1143 return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1], 1144 DL, TLI); 1145 1146 if (const auto *LI = dyn_cast<LoadInst>(I)) { 1147 if (LI->isVolatile()) 1148 return nullptr; 1149 return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL); 1150 } 1151 1152 if (auto *IVI = dyn_cast<InsertValueInst>(I)) 1153 return ConstantExpr::getInsertValue(Ops[0], Ops[1], IVI->getIndices()); 1154 1155 if (auto *EVI = dyn_cast<ExtractValueInst>(I)) 1156 return ConstantExpr::getExtractValue(Ops[0], EVI->getIndices()); 1157 1158 return ConstantFoldInstOperands(I, Ops, DL, TLI); 1159 } 1160 1161 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL, 1162 const TargetLibraryInfo *TLI) { 1163 SmallDenseMap<Constant *, Constant *> FoldedOps; 1164 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1165 } 1166 1167 Constant *llvm::ConstantFoldInstOperands(Instruction *I, 1168 ArrayRef<Constant *> Ops, 1169 const DataLayout &DL, 1170 const TargetLibraryInfo *TLI) { 1171 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI); 1172 } 1173 1174 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, 1175 Constant *Ops0, Constant *Ops1, 1176 const DataLayout &DL, 1177 const TargetLibraryInfo *TLI) { 1178 // fold: icmp (inttoptr x), null -> icmp x, 0 1179 // fold: icmp null, (inttoptr x) -> icmp 0, x 1180 // fold: icmp (ptrtoint x), 0 -> icmp x, null 1181 // fold: icmp 0, (ptrtoint x) -> icmp null, x 1182 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y 1183 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y 1184 // 1185 // FIXME: The following comment is out of data and the DataLayout is here now. 1186 // ConstantExpr::getCompare cannot do this, because it doesn't have DL 1187 // around to know if bit truncation is happening. 1188 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) { 1189 if (Ops1->isNullValue()) { 1190 if (CE0->getOpcode() == Instruction::IntToPtr) { 1191 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1192 // Convert the integer value to the right size to ensure we get the 1193 // proper extension or truncation. 1194 Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1195 IntPtrTy, false); 1196 Constant *Null = Constant::getNullValue(C->getType()); 1197 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1198 } 1199 1200 // Only do this transformation if the int is intptrty in size, otherwise 1201 // there is a truncation or extension that we aren't modeling. 1202 if (CE0->getOpcode() == Instruction::PtrToInt) { 1203 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1204 if (CE0->getType() == IntPtrTy) { 1205 Constant *C = CE0->getOperand(0); 1206 Constant *Null = Constant::getNullValue(C->getType()); 1207 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1208 } 1209 } 1210 } 1211 1212 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) { 1213 if (CE0->getOpcode() == CE1->getOpcode()) { 1214 if (CE0->getOpcode() == Instruction::IntToPtr) { 1215 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1216 1217 // Convert the integer value to the right size to ensure we get the 1218 // proper extension or truncation. 1219 Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1220 IntPtrTy, false); 1221 Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0), 1222 IntPtrTy, false); 1223 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI); 1224 } 1225 1226 // Only do this transformation if the int is intptrty in size, otherwise 1227 // there is a truncation or extension that we aren't modeling. 1228 if (CE0->getOpcode() == Instruction::PtrToInt) { 1229 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1230 if (CE0->getType() == IntPtrTy && 1231 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) { 1232 return ConstantFoldCompareInstOperands( 1233 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI); 1234 } 1235 } 1236 } 1237 } 1238 1239 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0) 1240 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0) 1241 if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) && 1242 CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) { 1243 Constant *LHS = ConstantFoldCompareInstOperands( 1244 Predicate, CE0->getOperand(0), Ops1, DL, TLI); 1245 Constant *RHS = ConstantFoldCompareInstOperands( 1246 Predicate, CE0->getOperand(1), Ops1, DL, TLI); 1247 unsigned OpC = 1248 Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1249 return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL); 1250 } 1251 } else if (isa<ConstantExpr>(Ops1)) { 1252 // If RHS is a constant expression, but the left side isn't, swap the 1253 // operands and try again. 1254 Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate); 1255 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI); 1256 } 1257 1258 return ConstantExpr::getCompare(Predicate, Ops0, Ops1); 1259 } 1260 1261 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, 1262 const DataLayout &DL) { 1263 assert(Instruction::isUnaryOp(Opcode)); 1264 1265 return ConstantExpr::get(Opcode, Op); 1266 } 1267 1268 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, 1269 Constant *RHS, 1270 const DataLayout &DL) { 1271 assert(Instruction::isBinaryOp(Opcode)); 1272 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS)) 1273 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL)) 1274 return C; 1275 1276 return ConstantExpr::get(Opcode, LHS, RHS); 1277 } 1278 1279 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, 1280 Type *DestTy, const DataLayout &DL) { 1281 assert(Instruction::isCast(Opcode)); 1282 switch (Opcode) { 1283 default: 1284 llvm_unreachable("Missing case"); 1285 case Instruction::PtrToInt: 1286 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1287 Constant *FoldedValue = nullptr; 1288 // If the input is a inttoptr, eliminate the pair. This requires knowing 1289 // the width of a pointer, so it can't be done in ConstantExpr::getCast. 1290 if (CE->getOpcode() == Instruction::IntToPtr) { 1291 // zext/trunc the inttoptr to pointer size. 1292 FoldedValue = ConstantExpr::getIntegerCast( 1293 CE->getOperand(0), DL.getIntPtrType(CE->getType()), 1294 /*IsSigned=*/false); 1295 } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) { 1296 // If we have GEP, we can perform the following folds: 1297 // (ptrtoint (gep null, x)) -> x 1298 // (ptrtoint (gep (gep null, x), y) -> x + y, etc. 1299 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 1300 APInt BaseOffset(BitWidth, 0); 1301 auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets( 1302 DL, BaseOffset, /*AllowNonInbounds=*/true)); 1303 if (Base->isNullValue()) { 1304 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset); 1305 } 1306 } 1307 if (FoldedValue) { 1308 // Do a zext or trunc to get to the ptrtoint dest size. 1309 return ConstantExpr::getIntegerCast(FoldedValue, DestTy, 1310 /*IsSigned=*/false); 1311 } 1312 } 1313 return ConstantExpr::getCast(Opcode, C, DestTy); 1314 case Instruction::IntToPtr: 1315 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if 1316 // the int size is >= the ptr size and the address spaces are the same. 1317 // This requires knowing the width of a pointer, so it can't be done in 1318 // ConstantExpr::getCast. 1319 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1320 if (CE->getOpcode() == Instruction::PtrToInt) { 1321 Constant *SrcPtr = CE->getOperand(0); 1322 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); 1323 unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); 1324 1325 if (MidIntSize >= SrcPtrSize) { 1326 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); 1327 if (SrcAS == DestTy->getPointerAddressSpace()) 1328 return FoldBitCast(CE->getOperand(0), DestTy, DL); 1329 } 1330 } 1331 } 1332 1333 return ConstantExpr::getCast(Opcode, C, DestTy); 1334 case Instruction::Trunc: 1335 case Instruction::ZExt: 1336 case Instruction::SExt: 1337 case Instruction::FPTrunc: 1338 case Instruction::FPExt: 1339 case Instruction::UIToFP: 1340 case Instruction::SIToFP: 1341 case Instruction::FPToUI: 1342 case Instruction::FPToSI: 1343 case Instruction::AddrSpaceCast: 1344 return ConstantExpr::getCast(Opcode, C, DestTy); 1345 case Instruction::BitCast: 1346 return FoldBitCast(C, DestTy, DL); 1347 } 1348 } 1349 1350 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, 1351 ConstantExpr *CE, 1352 Type *Ty, 1353 const DataLayout &DL) { 1354 if (!CE->getOperand(1)->isNullValue()) 1355 return nullptr; // Do not allow stepping over the value! 1356 1357 // Loop over all of the operands, tracking down which value we are 1358 // addressing. 1359 for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) { 1360 C = C->getAggregateElement(CE->getOperand(i)); 1361 if (!C) 1362 return nullptr; 1363 } 1364 return ConstantFoldLoadThroughBitcast(C, Ty, DL); 1365 } 1366 1367 //===----------------------------------------------------------------------===// 1368 // Constant Folding for Calls 1369 // 1370 1371 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) { 1372 if (Call->isNoBuiltin()) 1373 return false; 1374 switch (F->getIntrinsicID()) { 1375 // Operations that do not operate floating-point numbers and do not depend on 1376 // FP environment can be folded even in strictfp functions. 1377 case Intrinsic::bswap: 1378 case Intrinsic::ctpop: 1379 case Intrinsic::ctlz: 1380 case Intrinsic::cttz: 1381 case Intrinsic::fshl: 1382 case Intrinsic::fshr: 1383 case Intrinsic::launder_invariant_group: 1384 case Intrinsic::strip_invariant_group: 1385 case Intrinsic::masked_load: 1386 case Intrinsic::get_active_lane_mask: 1387 case Intrinsic::abs: 1388 case Intrinsic::smax: 1389 case Intrinsic::smin: 1390 case Intrinsic::umax: 1391 case Intrinsic::umin: 1392 case Intrinsic::sadd_with_overflow: 1393 case Intrinsic::uadd_with_overflow: 1394 case Intrinsic::ssub_with_overflow: 1395 case Intrinsic::usub_with_overflow: 1396 case Intrinsic::smul_with_overflow: 1397 case Intrinsic::umul_with_overflow: 1398 case Intrinsic::sadd_sat: 1399 case Intrinsic::uadd_sat: 1400 case Intrinsic::ssub_sat: 1401 case Intrinsic::usub_sat: 1402 case Intrinsic::smul_fix: 1403 case Intrinsic::smul_fix_sat: 1404 case Intrinsic::bitreverse: 1405 case Intrinsic::is_constant: 1406 case Intrinsic::vector_reduce_add: 1407 case Intrinsic::vector_reduce_mul: 1408 case Intrinsic::vector_reduce_and: 1409 case Intrinsic::vector_reduce_or: 1410 case Intrinsic::vector_reduce_xor: 1411 case Intrinsic::vector_reduce_smin: 1412 case Intrinsic::vector_reduce_smax: 1413 case Intrinsic::vector_reduce_umin: 1414 case Intrinsic::vector_reduce_umax: 1415 // Target intrinsics 1416 case Intrinsic::amdgcn_perm: 1417 case Intrinsic::arm_mve_vctp8: 1418 case Intrinsic::arm_mve_vctp16: 1419 case Intrinsic::arm_mve_vctp32: 1420 case Intrinsic::arm_mve_vctp64: 1421 case Intrinsic::aarch64_sve_convert_from_svbool: 1422 // WebAssembly float semantics are always known 1423 case Intrinsic::wasm_trunc_signed: 1424 case Intrinsic::wasm_trunc_unsigned: 1425 return true; 1426 1427 // Floating point operations cannot be folded in strictfp functions in 1428 // general case. They can be folded if FP environment is known to compiler. 1429 case Intrinsic::minnum: 1430 case Intrinsic::maxnum: 1431 case Intrinsic::minimum: 1432 case Intrinsic::maximum: 1433 case Intrinsic::log: 1434 case Intrinsic::log2: 1435 case Intrinsic::log10: 1436 case Intrinsic::exp: 1437 case Intrinsic::exp2: 1438 case Intrinsic::sqrt: 1439 case Intrinsic::sin: 1440 case Intrinsic::cos: 1441 case Intrinsic::pow: 1442 case Intrinsic::powi: 1443 case Intrinsic::fma: 1444 case Intrinsic::fmuladd: 1445 case Intrinsic::fptoui_sat: 1446 case Intrinsic::fptosi_sat: 1447 case Intrinsic::convert_from_fp16: 1448 case Intrinsic::convert_to_fp16: 1449 case Intrinsic::amdgcn_cos: 1450 case Intrinsic::amdgcn_cubeid: 1451 case Intrinsic::amdgcn_cubema: 1452 case Intrinsic::amdgcn_cubesc: 1453 case Intrinsic::amdgcn_cubetc: 1454 case Intrinsic::amdgcn_fmul_legacy: 1455 case Intrinsic::amdgcn_fma_legacy: 1456 case Intrinsic::amdgcn_fract: 1457 case Intrinsic::amdgcn_ldexp: 1458 case Intrinsic::amdgcn_sin: 1459 // The intrinsics below depend on rounding mode in MXCSR. 1460 case Intrinsic::x86_sse_cvtss2si: 1461 case Intrinsic::x86_sse_cvtss2si64: 1462 case Intrinsic::x86_sse_cvttss2si: 1463 case Intrinsic::x86_sse_cvttss2si64: 1464 case Intrinsic::x86_sse2_cvtsd2si: 1465 case Intrinsic::x86_sse2_cvtsd2si64: 1466 case Intrinsic::x86_sse2_cvttsd2si: 1467 case Intrinsic::x86_sse2_cvttsd2si64: 1468 case Intrinsic::x86_avx512_vcvtss2si32: 1469 case Intrinsic::x86_avx512_vcvtss2si64: 1470 case Intrinsic::x86_avx512_cvttss2si: 1471 case Intrinsic::x86_avx512_cvttss2si64: 1472 case Intrinsic::x86_avx512_vcvtsd2si32: 1473 case Intrinsic::x86_avx512_vcvtsd2si64: 1474 case Intrinsic::x86_avx512_cvttsd2si: 1475 case Intrinsic::x86_avx512_cvttsd2si64: 1476 case Intrinsic::x86_avx512_vcvtss2usi32: 1477 case Intrinsic::x86_avx512_vcvtss2usi64: 1478 case Intrinsic::x86_avx512_cvttss2usi: 1479 case Intrinsic::x86_avx512_cvttss2usi64: 1480 case Intrinsic::x86_avx512_vcvtsd2usi32: 1481 case Intrinsic::x86_avx512_vcvtsd2usi64: 1482 case Intrinsic::x86_avx512_cvttsd2usi: 1483 case Intrinsic::x86_avx512_cvttsd2usi64: 1484 return !Call->isStrictFP(); 1485 1486 // Sign operations are actually bitwise operations, they do not raise 1487 // exceptions even for SNANs. 1488 case Intrinsic::fabs: 1489 case Intrinsic::copysign: 1490 // Non-constrained variants of rounding operations means default FP 1491 // environment, they can be folded in any case. 1492 case Intrinsic::ceil: 1493 case Intrinsic::floor: 1494 case Intrinsic::round: 1495 case Intrinsic::roundeven: 1496 case Intrinsic::trunc: 1497 case Intrinsic::nearbyint: 1498 case Intrinsic::rint: 1499 // Constrained intrinsics can be folded if FP environment is known 1500 // to compiler. 1501 case Intrinsic::experimental_constrained_fma: 1502 case Intrinsic::experimental_constrained_fmuladd: 1503 case Intrinsic::experimental_constrained_fadd: 1504 case Intrinsic::experimental_constrained_fsub: 1505 case Intrinsic::experimental_constrained_fmul: 1506 case Intrinsic::experimental_constrained_fdiv: 1507 case Intrinsic::experimental_constrained_frem: 1508 case Intrinsic::experimental_constrained_ceil: 1509 case Intrinsic::experimental_constrained_floor: 1510 case Intrinsic::experimental_constrained_round: 1511 case Intrinsic::experimental_constrained_roundeven: 1512 case Intrinsic::experimental_constrained_trunc: 1513 case Intrinsic::experimental_constrained_nearbyint: 1514 case Intrinsic::experimental_constrained_rint: 1515 return true; 1516 default: 1517 return false; 1518 case Intrinsic::not_intrinsic: break; 1519 } 1520 1521 if (!F->hasName() || Call->isStrictFP()) 1522 return false; 1523 1524 // In these cases, the check of the length is required. We don't want to 1525 // return true for a name like "cos\0blah" which strcmp would return equal to 1526 // "cos", but has length 8. 1527 StringRef Name = F->getName(); 1528 switch (Name[0]) { 1529 default: 1530 return false; 1531 case 'a': 1532 return Name == "acos" || Name == "acosf" || 1533 Name == "asin" || Name == "asinf" || 1534 Name == "atan" || Name == "atanf" || 1535 Name == "atan2" || Name == "atan2f"; 1536 case 'c': 1537 return Name == "ceil" || Name == "ceilf" || 1538 Name == "cos" || Name == "cosf" || 1539 Name == "cosh" || Name == "coshf"; 1540 case 'e': 1541 return Name == "exp" || Name == "expf" || 1542 Name == "exp2" || Name == "exp2f"; 1543 case 'f': 1544 return Name == "fabs" || Name == "fabsf" || 1545 Name == "floor" || Name == "floorf" || 1546 Name == "fmod" || Name == "fmodf"; 1547 case 'l': 1548 return Name == "log" || Name == "logf" || 1549 Name == "log2" || Name == "log2f" || 1550 Name == "log10" || Name == "log10f"; 1551 case 'n': 1552 return Name == "nearbyint" || Name == "nearbyintf"; 1553 case 'p': 1554 return Name == "pow" || Name == "powf"; 1555 case 'r': 1556 return Name == "remainder" || Name == "remainderf" || 1557 Name == "rint" || Name == "rintf" || 1558 Name == "round" || Name == "roundf"; 1559 case 's': 1560 return Name == "sin" || Name == "sinf" || 1561 Name == "sinh" || Name == "sinhf" || 1562 Name == "sqrt" || Name == "sqrtf"; 1563 case 't': 1564 return Name == "tan" || Name == "tanf" || 1565 Name == "tanh" || Name == "tanhf" || 1566 Name == "trunc" || Name == "truncf"; 1567 case '_': 1568 // Check for various function names that get used for the math functions 1569 // when the header files are preprocessed with the macro 1570 // __FINITE_MATH_ONLY__ enabled. 1571 // The '12' here is the length of the shortest name that can match. 1572 // We need to check the size before looking at Name[1] and Name[2] 1573 // so we may as well check a limit that will eliminate mismatches. 1574 if (Name.size() < 12 || Name[1] != '_') 1575 return false; 1576 switch (Name[2]) { 1577 default: 1578 return false; 1579 case 'a': 1580 return Name == "__acos_finite" || Name == "__acosf_finite" || 1581 Name == "__asin_finite" || Name == "__asinf_finite" || 1582 Name == "__atan2_finite" || Name == "__atan2f_finite"; 1583 case 'c': 1584 return Name == "__cosh_finite" || Name == "__coshf_finite"; 1585 case 'e': 1586 return Name == "__exp_finite" || Name == "__expf_finite" || 1587 Name == "__exp2_finite" || Name == "__exp2f_finite"; 1588 case 'l': 1589 return Name == "__log_finite" || Name == "__logf_finite" || 1590 Name == "__log10_finite" || Name == "__log10f_finite"; 1591 case 'p': 1592 return Name == "__pow_finite" || Name == "__powf_finite"; 1593 case 's': 1594 return Name == "__sinh_finite" || Name == "__sinhf_finite"; 1595 } 1596 } 1597 } 1598 1599 namespace { 1600 1601 Constant *GetConstantFoldFPValue(double V, Type *Ty) { 1602 if (Ty->isHalfTy() || Ty->isFloatTy()) { 1603 APFloat APF(V); 1604 bool unused; 1605 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused); 1606 return ConstantFP::get(Ty->getContext(), APF); 1607 } 1608 if (Ty->isDoubleTy()) 1609 return ConstantFP::get(Ty->getContext(), APFloat(V)); 1610 llvm_unreachable("Can only constant fold half/float/double"); 1611 } 1612 1613 /// Clear the floating-point exception state. 1614 inline void llvm_fenv_clearexcept() { 1615 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT 1616 feclearexcept(FE_ALL_EXCEPT); 1617 #endif 1618 errno = 0; 1619 } 1620 1621 /// Test if a floating-point exception was raised. 1622 inline bool llvm_fenv_testexcept() { 1623 int errno_val = errno; 1624 if (errno_val == ERANGE || errno_val == EDOM) 1625 return true; 1626 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT 1627 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) 1628 return true; 1629 #endif 1630 return false; 1631 } 1632 1633 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V, 1634 Type *Ty) { 1635 llvm_fenv_clearexcept(); 1636 double Result = NativeFP(V.convertToDouble()); 1637 if (llvm_fenv_testexcept()) { 1638 llvm_fenv_clearexcept(); 1639 return nullptr; 1640 } 1641 1642 return GetConstantFoldFPValue(Result, Ty); 1643 } 1644 1645 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), 1646 const APFloat &V, const APFloat &W, Type *Ty) { 1647 llvm_fenv_clearexcept(); 1648 double Result = NativeFP(V.convertToDouble(), W.convertToDouble()); 1649 if (llvm_fenv_testexcept()) { 1650 llvm_fenv_clearexcept(); 1651 return nullptr; 1652 } 1653 1654 return GetConstantFoldFPValue(Result, Ty); 1655 } 1656 1657 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) { 1658 FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType()); 1659 if (!VT) 1660 return nullptr; 1661 1662 // This isn't strictly necessary, but handle the special/common case of zero: 1663 // all integer reductions of a zero input produce zero. 1664 if (isa<ConstantAggregateZero>(Op)) 1665 return ConstantInt::get(VT->getElementType(), 0); 1666 1667 // This is the same as the underlying binops - poison propagates. 1668 if (isa<PoisonValue>(Op) || Op->containsPoisonElement()) 1669 return PoisonValue::get(VT->getElementType()); 1670 1671 // TODO: Handle undef. 1672 if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op)) 1673 return nullptr; 1674 1675 auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U)); 1676 if (!EltC) 1677 return nullptr; 1678 1679 APInt Acc = EltC->getValue(); 1680 for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) { 1681 if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I)))) 1682 return nullptr; 1683 const APInt &X = EltC->getValue(); 1684 switch (IID) { 1685 case Intrinsic::vector_reduce_add: 1686 Acc = Acc + X; 1687 break; 1688 case Intrinsic::vector_reduce_mul: 1689 Acc = Acc * X; 1690 break; 1691 case Intrinsic::vector_reduce_and: 1692 Acc = Acc & X; 1693 break; 1694 case Intrinsic::vector_reduce_or: 1695 Acc = Acc | X; 1696 break; 1697 case Intrinsic::vector_reduce_xor: 1698 Acc = Acc ^ X; 1699 break; 1700 case Intrinsic::vector_reduce_smin: 1701 Acc = APIntOps::smin(Acc, X); 1702 break; 1703 case Intrinsic::vector_reduce_smax: 1704 Acc = APIntOps::smax(Acc, X); 1705 break; 1706 case Intrinsic::vector_reduce_umin: 1707 Acc = APIntOps::umin(Acc, X); 1708 break; 1709 case Intrinsic::vector_reduce_umax: 1710 Acc = APIntOps::umax(Acc, X); 1711 break; 1712 } 1713 } 1714 1715 return ConstantInt::get(Op->getContext(), Acc); 1716 } 1717 1718 /// Attempt to fold an SSE floating point to integer conversion of a constant 1719 /// floating point. If roundTowardZero is false, the default IEEE rounding is 1720 /// used (toward nearest, ties to even). This matches the behavior of the 1721 /// non-truncating SSE instructions in the default rounding mode. The desired 1722 /// integer type Ty is used to select how many bits are available for the 1723 /// result. Returns null if the conversion cannot be performed, otherwise 1724 /// returns the Constant value resulting from the conversion. 1725 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, 1726 Type *Ty, bool IsSigned) { 1727 // All of these conversion intrinsics form an integer of at most 64bits. 1728 unsigned ResultWidth = Ty->getIntegerBitWidth(); 1729 assert(ResultWidth <= 64 && 1730 "Can only constant fold conversions to 64 and 32 bit ints"); 1731 1732 uint64_t UIntVal; 1733 bool isExact = false; 1734 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero 1735 : APFloat::rmNearestTiesToEven; 1736 APFloat::opStatus status = 1737 Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth, 1738 IsSigned, mode, &isExact); 1739 if (status != APFloat::opOK && 1740 (!roundTowardZero || status != APFloat::opInexact)) 1741 return nullptr; 1742 return ConstantInt::get(Ty, UIntVal, IsSigned); 1743 } 1744 1745 double getValueAsDouble(ConstantFP *Op) { 1746 Type *Ty = Op->getType(); 1747 1748 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) 1749 return Op->getValueAPF().convertToDouble(); 1750 1751 bool unused; 1752 APFloat APF = Op->getValueAPF(); 1753 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused); 1754 return APF.convertToDouble(); 1755 } 1756 1757 static bool getConstIntOrUndef(Value *Op, const APInt *&C) { 1758 if (auto *CI = dyn_cast<ConstantInt>(Op)) { 1759 C = &CI->getValue(); 1760 return true; 1761 } 1762 if (isa<UndefValue>(Op)) { 1763 C = nullptr; 1764 return true; 1765 } 1766 return false; 1767 } 1768 1769 /// Checks if the given intrinsic call, which evaluates to constant, is allowed 1770 /// to be folded. 1771 /// 1772 /// \param CI Constrained intrinsic call. 1773 /// \param St Exception flags raised during constant evaluation. 1774 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI, 1775 APFloat::opStatus St) { 1776 Optional<RoundingMode> ORM = CI->getRoundingMode(); 1777 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 1778 1779 // If the operation does not change exception status flags, it is safe 1780 // to fold. 1781 if (St == APFloat::opStatus::opOK) 1782 return true; 1783 1784 // If evaluation raised FP exception, the result can depend on rounding 1785 // mode. If the latter is unknown, folding is not possible. 1786 if (!ORM || *ORM == RoundingMode::Dynamic) 1787 return false; 1788 1789 // If FP exceptions are ignored, fold the call, even if such exception is 1790 // raised. 1791 if (!EB || *EB != fp::ExceptionBehavior::ebStrict) 1792 return true; 1793 1794 // Leave the calculation for runtime so that exception flags be correctly set 1795 // in hardware. 1796 return false; 1797 } 1798 1799 /// Returns the rounding mode that should be used for constant evaluation. 1800 static RoundingMode 1801 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) { 1802 Optional<RoundingMode> ORM = CI->getRoundingMode(); 1803 if (!ORM || *ORM == RoundingMode::Dynamic) 1804 // Even if the rounding mode is unknown, try evaluating the operation. 1805 // If it does not raise inexact exception, rounding was not applied, 1806 // so the result is exact and does not depend on rounding mode. Whether 1807 // other FP exceptions are raised, it does not depend on rounding mode. 1808 return RoundingMode::NearestTiesToEven; 1809 return *ORM; 1810 } 1811 1812 static Constant *ConstantFoldScalarCall1(StringRef Name, 1813 Intrinsic::ID IntrinsicID, 1814 Type *Ty, 1815 ArrayRef<Constant *> Operands, 1816 const TargetLibraryInfo *TLI, 1817 const CallBase *Call) { 1818 assert(Operands.size() == 1 && "Wrong number of operands."); 1819 1820 if (IntrinsicID == Intrinsic::is_constant) { 1821 // We know we have a "Constant" argument. But we want to only 1822 // return true for manifest constants, not those that depend on 1823 // constants with unknowable values, e.g. GlobalValue or BlockAddress. 1824 if (Operands[0]->isManifestConstant()) 1825 return ConstantInt::getTrue(Ty->getContext()); 1826 return nullptr; 1827 } 1828 if (isa<UndefValue>(Operands[0])) { 1829 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN. 1830 // ctpop() is between 0 and bitwidth, pick 0 for undef. 1831 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input). 1832 if (IntrinsicID == Intrinsic::cos || 1833 IntrinsicID == Intrinsic::ctpop || 1834 IntrinsicID == Intrinsic::fptoui_sat || 1835 IntrinsicID == Intrinsic::fptosi_sat) 1836 return Constant::getNullValue(Ty); 1837 if (IntrinsicID == Intrinsic::bswap || 1838 IntrinsicID == Intrinsic::bitreverse || 1839 IntrinsicID == Intrinsic::launder_invariant_group || 1840 IntrinsicID == Intrinsic::strip_invariant_group) 1841 return Operands[0]; 1842 } 1843 1844 if (isa<ConstantPointerNull>(Operands[0])) { 1845 // launder(null) == null == strip(null) iff in addrspace 0 1846 if (IntrinsicID == Intrinsic::launder_invariant_group || 1847 IntrinsicID == Intrinsic::strip_invariant_group) { 1848 // If instruction is not yet put in a basic block (e.g. when cloning 1849 // a function during inlining), Call's caller may not be available. 1850 // So check Call's BB first before querying Call->getCaller. 1851 const Function *Caller = 1852 Call->getParent() ? Call->getCaller() : nullptr; 1853 if (Caller && 1854 !NullPointerIsDefined( 1855 Caller, Operands[0]->getType()->getPointerAddressSpace())) { 1856 return Operands[0]; 1857 } 1858 return nullptr; 1859 } 1860 } 1861 1862 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) { 1863 if (IntrinsicID == Intrinsic::convert_to_fp16) { 1864 APFloat Val(Op->getValueAPF()); 1865 1866 bool lost = false; 1867 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost); 1868 1869 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt()); 1870 } 1871 1872 APFloat U = Op->getValueAPF(); 1873 1874 if (IntrinsicID == Intrinsic::wasm_trunc_signed || 1875 IntrinsicID == Intrinsic::wasm_trunc_unsigned) { 1876 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed; 1877 1878 if (U.isNaN()) 1879 return nullptr; 1880 1881 unsigned Width = Ty->getIntegerBitWidth(); 1882 APSInt Int(Width, !Signed); 1883 bool IsExact = false; 1884 APFloat::opStatus Status = 1885 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 1886 1887 if (Status == APFloat::opOK || Status == APFloat::opInexact) 1888 return ConstantInt::get(Ty, Int); 1889 1890 return nullptr; 1891 } 1892 1893 if (IntrinsicID == Intrinsic::fptoui_sat || 1894 IntrinsicID == Intrinsic::fptosi_sat) { 1895 // convertToInteger() already has the desired saturation semantics. 1896 APSInt Int(Ty->getIntegerBitWidth(), 1897 IntrinsicID == Intrinsic::fptoui_sat); 1898 bool IsExact; 1899 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 1900 return ConstantInt::get(Ty, Int); 1901 } 1902 1903 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 1904 return nullptr; 1905 1906 // Use internal versions of these intrinsics. 1907 1908 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) { 1909 U.roundToIntegral(APFloat::rmNearestTiesToEven); 1910 return ConstantFP::get(Ty->getContext(), U); 1911 } 1912 1913 if (IntrinsicID == Intrinsic::round) { 1914 U.roundToIntegral(APFloat::rmNearestTiesToAway); 1915 return ConstantFP::get(Ty->getContext(), U); 1916 } 1917 1918 if (IntrinsicID == Intrinsic::roundeven) { 1919 U.roundToIntegral(APFloat::rmNearestTiesToEven); 1920 return ConstantFP::get(Ty->getContext(), U); 1921 } 1922 1923 if (IntrinsicID == Intrinsic::ceil) { 1924 U.roundToIntegral(APFloat::rmTowardPositive); 1925 return ConstantFP::get(Ty->getContext(), U); 1926 } 1927 1928 if (IntrinsicID == Intrinsic::floor) { 1929 U.roundToIntegral(APFloat::rmTowardNegative); 1930 return ConstantFP::get(Ty->getContext(), U); 1931 } 1932 1933 if (IntrinsicID == Intrinsic::trunc) { 1934 U.roundToIntegral(APFloat::rmTowardZero); 1935 return ConstantFP::get(Ty->getContext(), U); 1936 } 1937 1938 if (IntrinsicID == Intrinsic::fabs) { 1939 U.clearSign(); 1940 return ConstantFP::get(Ty->getContext(), U); 1941 } 1942 1943 if (IntrinsicID == Intrinsic::amdgcn_fract) { 1944 // The v_fract instruction behaves like the OpenCL spec, which defines 1945 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is 1946 // there to prevent fract(-small) from returning 1.0. It returns the 1947 // largest positive floating-point number less than 1.0." 1948 APFloat FloorU(U); 1949 FloorU.roundToIntegral(APFloat::rmTowardNegative); 1950 APFloat FractU(U - FloorU); 1951 APFloat AlmostOne(U.getSemantics(), 1); 1952 AlmostOne.next(/*nextDown*/ true); 1953 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne)); 1954 } 1955 1956 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not 1957 // raise FP exceptions, unless the argument is signaling NaN. 1958 1959 Optional<APFloat::roundingMode> RM; 1960 switch (IntrinsicID) { 1961 default: 1962 break; 1963 case Intrinsic::experimental_constrained_nearbyint: 1964 case Intrinsic::experimental_constrained_rint: { 1965 auto CI = cast<ConstrainedFPIntrinsic>(Call); 1966 RM = CI->getRoundingMode(); 1967 if (!RM || RM.getValue() == RoundingMode::Dynamic) 1968 return nullptr; 1969 break; 1970 } 1971 case Intrinsic::experimental_constrained_round: 1972 RM = APFloat::rmNearestTiesToAway; 1973 break; 1974 case Intrinsic::experimental_constrained_ceil: 1975 RM = APFloat::rmTowardPositive; 1976 break; 1977 case Intrinsic::experimental_constrained_floor: 1978 RM = APFloat::rmTowardNegative; 1979 break; 1980 case Intrinsic::experimental_constrained_trunc: 1981 RM = APFloat::rmTowardZero; 1982 break; 1983 } 1984 if (RM) { 1985 auto CI = cast<ConstrainedFPIntrinsic>(Call); 1986 if (U.isFinite()) { 1987 APFloat::opStatus St = U.roundToIntegral(*RM); 1988 if (IntrinsicID == Intrinsic::experimental_constrained_rint && 1989 St == APFloat::opInexact) { 1990 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 1991 if (EB && *EB == fp::ebStrict) 1992 return nullptr; 1993 } 1994 } else if (U.isSignaling()) { 1995 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 1996 if (EB && *EB != fp::ebIgnore) 1997 return nullptr; 1998 U = APFloat::getQNaN(U.getSemantics()); 1999 } 2000 return ConstantFP::get(Ty->getContext(), U); 2001 } 2002 2003 /// We only fold functions with finite arguments. Folding NaN and inf is 2004 /// likely to be aborted with an exception anyway, and some host libms 2005 /// have known errors raising exceptions. 2006 if (!U.isFinite()) 2007 return nullptr; 2008 2009 /// Currently APFloat versions of these functions do not exist, so we use 2010 /// the host native double versions. Float versions are not called 2011 /// directly but for all these it is true (float)(f((double)arg)) == 2012 /// f(arg). Long double not supported yet. 2013 const APFloat &APF = Op->getValueAPF(); 2014 2015 switch (IntrinsicID) { 2016 default: break; 2017 case Intrinsic::log: 2018 return ConstantFoldFP(log, APF, Ty); 2019 case Intrinsic::log2: 2020 // TODO: What about hosts that lack a C99 library? 2021 return ConstantFoldFP(Log2, APF, Ty); 2022 case Intrinsic::log10: 2023 // TODO: What about hosts that lack a C99 library? 2024 return ConstantFoldFP(log10, APF, Ty); 2025 case Intrinsic::exp: 2026 return ConstantFoldFP(exp, APF, Ty); 2027 case Intrinsic::exp2: 2028 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2029 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); 2030 case Intrinsic::sin: 2031 return ConstantFoldFP(sin, APF, Ty); 2032 case Intrinsic::cos: 2033 return ConstantFoldFP(cos, APF, Ty); 2034 case Intrinsic::sqrt: 2035 return ConstantFoldFP(sqrt, APF, Ty); 2036 case Intrinsic::amdgcn_cos: 2037 case Intrinsic::amdgcn_sin: { 2038 double V = getValueAsDouble(Op); 2039 if (V < -256.0 || V > 256.0) 2040 // The gfx8 and gfx9 architectures handle arguments outside the range 2041 // [-256, 256] differently. This should be a rare case so bail out 2042 // rather than trying to handle the difference. 2043 return nullptr; 2044 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos; 2045 double V4 = V * 4.0; 2046 if (V4 == floor(V4)) { 2047 // Force exact results for quarter-integer inputs. 2048 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 }; 2049 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3]; 2050 } else { 2051 if (IsCos) 2052 V = cos(V * 2.0 * numbers::pi); 2053 else 2054 V = sin(V * 2.0 * numbers::pi); 2055 } 2056 return GetConstantFoldFPValue(V, Ty); 2057 } 2058 } 2059 2060 if (!TLI) 2061 return nullptr; 2062 2063 LibFunc Func = NotLibFunc; 2064 if (!TLI->getLibFunc(Name, Func)) 2065 return nullptr; 2066 2067 switch (Func) { 2068 default: 2069 break; 2070 case LibFunc_acos: 2071 case LibFunc_acosf: 2072 case LibFunc_acos_finite: 2073 case LibFunc_acosf_finite: 2074 if (TLI->has(Func)) 2075 return ConstantFoldFP(acos, APF, Ty); 2076 break; 2077 case LibFunc_asin: 2078 case LibFunc_asinf: 2079 case LibFunc_asin_finite: 2080 case LibFunc_asinf_finite: 2081 if (TLI->has(Func)) 2082 return ConstantFoldFP(asin, APF, Ty); 2083 break; 2084 case LibFunc_atan: 2085 case LibFunc_atanf: 2086 if (TLI->has(Func)) 2087 return ConstantFoldFP(atan, APF, Ty); 2088 break; 2089 case LibFunc_ceil: 2090 case LibFunc_ceilf: 2091 if (TLI->has(Func)) { 2092 U.roundToIntegral(APFloat::rmTowardPositive); 2093 return ConstantFP::get(Ty->getContext(), U); 2094 } 2095 break; 2096 case LibFunc_cos: 2097 case LibFunc_cosf: 2098 if (TLI->has(Func)) 2099 return ConstantFoldFP(cos, APF, Ty); 2100 break; 2101 case LibFunc_cosh: 2102 case LibFunc_coshf: 2103 case LibFunc_cosh_finite: 2104 case LibFunc_coshf_finite: 2105 if (TLI->has(Func)) 2106 return ConstantFoldFP(cosh, APF, Ty); 2107 break; 2108 case LibFunc_exp: 2109 case LibFunc_expf: 2110 case LibFunc_exp_finite: 2111 case LibFunc_expf_finite: 2112 if (TLI->has(Func)) 2113 return ConstantFoldFP(exp, APF, Ty); 2114 break; 2115 case LibFunc_exp2: 2116 case LibFunc_exp2f: 2117 case LibFunc_exp2_finite: 2118 case LibFunc_exp2f_finite: 2119 if (TLI->has(Func)) 2120 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2121 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); 2122 break; 2123 case LibFunc_fabs: 2124 case LibFunc_fabsf: 2125 if (TLI->has(Func)) { 2126 U.clearSign(); 2127 return ConstantFP::get(Ty->getContext(), U); 2128 } 2129 break; 2130 case LibFunc_floor: 2131 case LibFunc_floorf: 2132 if (TLI->has(Func)) { 2133 U.roundToIntegral(APFloat::rmTowardNegative); 2134 return ConstantFP::get(Ty->getContext(), U); 2135 } 2136 break; 2137 case LibFunc_log: 2138 case LibFunc_logf: 2139 case LibFunc_log_finite: 2140 case LibFunc_logf_finite: 2141 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2142 return ConstantFoldFP(log, APF, Ty); 2143 break; 2144 case LibFunc_log2: 2145 case LibFunc_log2f: 2146 case LibFunc_log2_finite: 2147 case LibFunc_log2f_finite: 2148 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2149 // TODO: What about hosts that lack a C99 library? 2150 return ConstantFoldFP(Log2, APF, Ty); 2151 break; 2152 case LibFunc_log10: 2153 case LibFunc_log10f: 2154 case LibFunc_log10_finite: 2155 case LibFunc_log10f_finite: 2156 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2157 // TODO: What about hosts that lack a C99 library? 2158 return ConstantFoldFP(log10, APF, Ty); 2159 break; 2160 case LibFunc_nearbyint: 2161 case LibFunc_nearbyintf: 2162 case LibFunc_rint: 2163 case LibFunc_rintf: 2164 if (TLI->has(Func)) { 2165 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2166 return ConstantFP::get(Ty->getContext(), U); 2167 } 2168 break; 2169 case LibFunc_round: 2170 case LibFunc_roundf: 2171 if (TLI->has(Func)) { 2172 U.roundToIntegral(APFloat::rmNearestTiesToAway); 2173 return ConstantFP::get(Ty->getContext(), U); 2174 } 2175 break; 2176 case LibFunc_sin: 2177 case LibFunc_sinf: 2178 if (TLI->has(Func)) 2179 return ConstantFoldFP(sin, APF, Ty); 2180 break; 2181 case LibFunc_sinh: 2182 case LibFunc_sinhf: 2183 case LibFunc_sinh_finite: 2184 case LibFunc_sinhf_finite: 2185 if (TLI->has(Func)) 2186 return ConstantFoldFP(sinh, APF, Ty); 2187 break; 2188 case LibFunc_sqrt: 2189 case LibFunc_sqrtf: 2190 if (!APF.isNegative() && TLI->has(Func)) 2191 return ConstantFoldFP(sqrt, APF, Ty); 2192 break; 2193 case LibFunc_tan: 2194 case LibFunc_tanf: 2195 if (TLI->has(Func)) 2196 return ConstantFoldFP(tan, APF, Ty); 2197 break; 2198 case LibFunc_tanh: 2199 case LibFunc_tanhf: 2200 if (TLI->has(Func)) 2201 return ConstantFoldFP(tanh, APF, Ty); 2202 break; 2203 case LibFunc_trunc: 2204 case LibFunc_truncf: 2205 if (TLI->has(Func)) { 2206 U.roundToIntegral(APFloat::rmTowardZero); 2207 return ConstantFP::get(Ty->getContext(), U); 2208 } 2209 break; 2210 } 2211 return nullptr; 2212 } 2213 2214 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 2215 switch (IntrinsicID) { 2216 case Intrinsic::bswap: 2217 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); 2218 case Intrinsic::ctpop: 2219 return ConstantInt::get(Ty, Op->getValue().countPopulation()); 2220 case Intrinsic::bitreverse: 2221 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits()); 2222 case Intrinsic::convert_from_fp16: { 2223 APFloat Val(APFloat::IEEEhalf(), Op->getValue()); 2224 2225 bool lost = false; 2226 APFloat::opStatus status = Val.convert( 2227 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost); 2228 2229 // Conversion is always precise. 2230 (void)status; 2231 assert(status == APFloat::opOK && !lost && 2232 "Precision lost during fp16 constfolding"); 2233 2234 return ConstantFP::get(Ty->getContext(), Val); 2235 } 2236 default: 2237 return nullptr; 2238 } 2239 } 2240 2241 switch (IntrinsicID) { 2242 default: break; 2243 case Intrinsic::vector_reduce_add: 2244 case Intrinsic::vector_reduce_mul: 2245 case Intrinsic::vector_reduce_and: 2246 case Intrinsic::vector_reduce_or: 2247 case Intrinsic::vector_reduce_xor: 2248 case Intrinsic::vector_reduce_smin: 2249 case Intrinsic::vector_reduce_smax: 2250 case Intrinsic::vector_reduce_umin: 2251 case Intrinsic::vector_reduce_umax: 2252 if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0])) 2253 return C; 2254 break; 2255 } 2256 2257 // Support ConstantVector in case we have an Undef in the top. 2258 if (isa<ConstantVector>(Operands[0]) || 2259 isa<ConstantDataVector>(Operands[0])) { 2260 auto *Op = cast<Constant>(Operands[0]); 2261 switch (IntrinsicID) { 2262 default: break; 2263 case Intrinsic::x86_sse_cvtss2si: 2264 case Intrinsic::x86_sse_cvtss2si64: 2265 case Intrinsic::x86_sse2_cvtsd2si: 2266 case Intrinsic::x86_sse2_cvtsd2si64: 2267 if (ConstantFP *FPOp = 2268 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2269 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2270 /*roundTowardZero=*/false, Ty, 2271 /*IsSigned*/true); 2272 break; 2273 case Intrinsic::x86_sse_cvttss2si: 2274 case Intrinsic::x86_sse_cvttss2si64: 2275 case Intrinsic::x86_sse2_cvttsd2si: 2276 case Intrinsic::x86_sse2_cvttsd2si64: 2277 if (ConstantFP *FPOp = 2278 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2279 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2280 /*roundTowardZero=*/true, Ty, 2281 /*IsSigned*/true); 2282 break; 2283 } 2284 } 2285 2286 return nullptr; 2287 } 2288 2289 static Constant *ConstantFoldScalarCall2(StringRef Name, 2290 Intrinsic::ID IntrinsicID, 2291 Type *Ty, 2292 ArrayRef<Constant *> Operands, 2293 const TargetLibraryInfo *TLI, 2294 const CallBase *Call) { 2295 assert(Operands.size() == 2 && "Wrong number of operands."); 2296 2297 if (Ty->isFloatingPointTy()) { 2298 // TODO: We should have undef handling for all of the FP intrinsics that 2299 // are attempted to be folded in this function. 2300 bool IsOp0Undef = isa<UndefValue>(Operands[0]); 2301 bool IsOp1Undef = isa<UndefValue>(Operands[1]); 2302 switch (IntrinsicID) { 2303 case Intrinsic::maxnum: 2304 case Intrinsic::minnum: 2305 case Intrinsic::maximum: 2306 case Intrinsic::minimum: 2307 // If one argument is undef, return the other argument. 2308 if (IsOp0Undef) 2309 return Operands[1]; 2310 if (IsOp1Undef) 2311 return Operands[0]; 2312 break; 2313 } 2314 } 2315 2316 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2317 if (!Ty->isFloatingPointTy()) 2318 return nullptr; 2319 const APFloat &Op1V = Op1->getValueAPF(); 2320 2321 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2322 if (Op2->getType() != Op1->getType()) 2323 return nullptr; 2324 const APFloat &Op2V = Op2->getValueAPF(); 2325 2326 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) { 2327 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); 2328 APFloat Res = Op1V; 2329 APFloat::opStatus St; 2330 switch (IntrinsicID) { 2331 default: 2332 return nullptr; 2333 case Intrinsic::experimental_constrained_fadd: 2334 St = Res.add(Op2V, RM); 2335 break; 2336 case Intrinsic::experimental_constrained_fsub: 2337 St = Res.subtract(Op2V, RM); 2338 break; 2339 case Intrinsic::experimental_constrained_fmul: 2340 St = Res.multiply(Op2V, RM); 2341 break; 2342 case Intrinsic::experimental_constrained_fdiv: 2343 St = Res.divide(Op2V, RM); 2344 break; 2345 case Intrinsic::experimental_constrained_frem: 2346 St = Res.mod(Op2V); 2347 break; 2348 } 2349 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), 2350 St)) 2351 return ConstantFP::get(Ty->getContext(), Res); 2352 return nullptr; 2353 } 2354 2355 switch (IntrinsicID) { 2356 default: 2357 break; 2358 case Intrinsic::copysign: 2359 return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V)); 2360 case Intrinsic::minnum: 2361 return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V)); 2362 case Intrinsic::maxnum: 2363 return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V)); 2364 case Intrinsic::minimum: 2365 return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V)); 2366 case Intrinsic::maximum: 2367 return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V)); 2368 } 2369 2370 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2371 return nullptr; 2372 2373 switch (IntrinsicID) { 2374 default: 2375 break; 2376 case Intrinsic::pow: 2377 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2378 case Intrinsic::amdgcn_fmul_legacy: 2379 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 2380 // NaN or infinity, gives +0.0. 2381 if (Op1V.isZero() || Op2V.isZero()) 2382 return ConstantFP::getNullValue(Ty); 2383 return ConstantFP::get(Ty->getContext(), Op1V * Op2V); 2384 } 2385 2386 if (!TLI) 2387 return nullptr; 2388 2389 LibFunc Func = NotLibFunc; 2390 if (!TLI->getLibFunc(Name, Func)) 2391 return nullptr; 2392 2393 switch (Func) { 2394 default: 2395 break; 2396 case LibFunc_pow: 2397 case LibFunc_powf: 2398 case LibFunc_pow_finite: 2399 case LibFunc_powf_finite: 2400 if (TLI->has(Func)) 2401 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2402 break; 2403 case LibFunc_fmod: 2404 case LibFunc_fmodf: 2405 if (TLI->has(Func)) { 2406 APFloat V = Op1->getValueAPF(); 2407 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF())) 2408 return ConstantFP::get(Ty->getContext(), V); 2409 } 2410 break; 2411 case LibFunc_remainder: 2412 case LibFunc_remainderf: 2413 if (TLI->has(Func)) { 2414 APFloat V = Op1->getValueAPF(); 2415 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF())) 2416 return ConstantFP::get(Ty->getContext(), V); 2417 } 2418 break; 2419 case LibFunc_atan2: 2420 case LibFunc_atan2f: 2421 case LibFunc_atan2_finite: 2422 case LibFunc_atan2f_finite: 2423 if (TLI->has(Func)) 2424 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); 2425 break; 2426 } 2427 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) { 2428 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2429 return nullptr; 2430 if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy()) 2431 return ConstantFP::get( 2432 Ty->getContext(), 2433 APFloat((float)std::pow((float)Op1V.convertToDouble(), 2434 (int)Op2C->getZExtValue()))); 2435 if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy()) 2436 return ConstantFP::get( 2437 Ty->getContext(), 2438 APFloat((float)std::pow((float)Op1V.convertToDouble(), 2439 (int)Op2C->getZExtValue()))); 2440 if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy()) 2441 return ConstantFP::get( 2442 Ty->getContext(), 2443 APFloat((double)std::pow(Op1V.convertToDouble(), 2444 (int)Op2C->getZExtValue()))); 2445 2446 if (IntrinsicID == Intrinsic::amdgcn_ldexp) { 2447 // FIXME: Should flush denorms depending on FP mode, but that's ignored 2448 // everywhere else. 2449 2450 // scalbn is equivalent to ldexp with float radix 2 2451 APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(), 2452 APFloat::rmNearestTiesToEven); 2453 return ConstantFP::get(Ty->getContext(), Result); 2454 } 2455 } 2456 return nullptr; 2457 } 2458 2459 if (Operands[0]->getType()->isIntegerTy() && 2460 Operands[1]->getType()->isIntegerTy()) { 2461 const APInt *C0, *C1; 2462 if (!getConstIntOrUndef(Operands[0], C0) || 2463 !getConstIntOrUndef(Operands[1], C1)) 2464 return nullptr; 2465 2466 unsigned BitWidth = Ty->getScalarSizeInBits(); 2467 switch (IntrinsicID) { 2468 default: break; 2469 case Intrinsic::smax: 2470 if (!C0 && !C1) 2471 return UndefValue::get(Ty); 2472 if (!C0 || !C1) 2473 return ConstantInt::get(Ty, APInt::getSignedMaxValue(BitWidth)); 2474 return ConstantInt::get(Ty, C0->sgt(*C1) ? *C0 : *C1); 2475 2476 case Intrinsic::smin: 2477 if (!C0 && !C1) 2478 return UndefValue::get(Ty); 2479 if (!C0 || !C1) 2480 return ConstantInt::get(Ty, APInt::getSignedMinValue(BitWidth)); 2481 return ConstantInt::get(Ty, C0->slt(*C1) ? *C0 : *C1); 2482 2483 case Intrinsic::umax: 2484 if (!C0 && !C1) 2485 return UndefValue::get(Ty); 2486 if (!C0 || !C1) 2487 return ConstantInt::get(Ty, APInt::getMaxValue(BitWidth)); 2488 return ConstantInt::get(Ty, C0->ugt(*C1) ? *C0 : *C1); 2489 2490 case Intrinsic::umin: 2491 if (!C0 && !C1) 2492 return UndefValue::get(Ty); 2493 if (!C0 || !C1) 2494 return ConstantInt::get(Ty, APInt::getMinValue(BitWidth)); 2495 return ConstantInt::get(Ty, C0->ult(*C1) ? *C0 : *C1); 2496 2497 case Intrinsic::usub_with_overflow: 2498 case Intrinsic::ssub_with_overflow: 2499 // X - undef -> { 0, false } 2500 // undef - X -> { 0, false } 2501 if (!C0 || !C1) 2502 return Constant::getNullValue(Ty); 2503 LLVM_FALLTHROUGH; 2504 case Intrinsic::uadd_with_overflow: 2505 case Intrinsic::sadd_with_overflow: 2506 // X + undef -> { -1, false } 2507 // undef + x -> { -1, false } 2508 if (!C0 || !C1) { 2509 return ConstantStruct::get( 2510 cast<StructType>(Ty), 2511 {Constant::getAllOnesValue(Ty->getStructElementType(0)), 2512 Constant::getNullValue(Ty->getStructElementType(1))}); 2513 } 2514 LLVM_FALLTHROUGH; 2515 case Intrinsic::smul_with_overflow: 2516 case Intrinsic::umul_with_overflow: { 2517 // undef * X -> { 0, false } 2518 // X * undef -> { 0, false } 2519 if (!C0 || !C1) 2520 return Constant::getNullValue(Ty); 2521 2522 APInt Res; 2523 bool Overflow; 2524 switch (IntrinsicID) { 2525 default: llvm_unreachable("Invalid case"); 2526 case Intrinsic::sadd_with_overflow: 2527 Res = C0->sadd_ov(*C1, Overflow); 2528 break; 2529 case Intrinsic::uadd_with_overflow: 2530 Res = C0->uadd_ov(*C1, Overflow); 2531 break; 2532 case Intrinsic::ssub_with_overflow: 2533 Res = C0->ssub_ov(*C1, Overflow); 2534 break; 2535 case Intrinsic::usub_with_overflow: 2536 Res = C0->usub_ov(*C1, Overflow); 2537 break; 2538 case Intrinsic::smul_with_overflow: 2539 Res = C0->smul_ov(*C1, Overflow); 2540 break; 2541 case Intrinsic::umul_with_overflow: 2542 Res = C0->umul_ov(*C1, Overflow); 2543 break; 2544 } 2545 Constant *Ops[] = { 2546 ConstantInt::get(Ty->getContext(), Res), 2547 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow) 2548 }; 2549 return ConstantStruct::get(cast<StructType>(Ty), Ops); 2550 } 2551 case Intrinsic::uadd_sat: 2552 case Intrinsic::sadd_sat: 2553 if (!C0 && !C1) 2554 return UndefValue::get(Ty); 2555 if (!C0 || !C1) 2556 return Constant::getAllOnesValue(Ty); 2557 if (IntrinsicID == Intrinsic::uadd_sat) 2558 return ConstantInt::get(Ty, C0->uadd_sat(*C1)); 2559 else 2560 return ConstantInt::get(Ty, C0->sadd_sat(*C1)); 2561 case Intrinsic::usub_sat: 2562 case Intrinsic::ssub_sat: 2563 if (!C0 && !C1) 2564 return UndefValue::get(Ty); 2565 if (!C0 || !C1) 2566 return Constant::getNullValue(Ty); 2567 if (IntrinsicID == Intrinsic::usub_sat) 2568 return ConstantInt::get(Ty, C0->usub_sat(*C1)); 2569 else 2570 return ConstantInt::get(Ty, C0->ssub_sat(*C1)); 2571 case Intrinsic::cttz: 2572 case Intrinsic::ctlz: 2573 assert(C1 && "Must be constant int"); 2574 2575 // cttz(0, 1) and ctlz(0, 1) are undef. 2576 if (C1->isOne() && (!C0 || C0->isZero())) 2577 return UndefValue::get(Ty); 2578 if (!C0) 2579 return Constant::getNullValue(Ty); 2580 if (IntrinsicID == Intrinsic::cttz) 2581 return ConstantInt::get(Ty, C0->countTrailingZeros()); 2582 else 2583 return ConstantInt::get(Ty, C0->countLeadingZeros()); 2584 2585 case Intrinsic::abs: 2586 // Undef or minimum val operand with poison min --> undef 2587 assert(C1 && "Must be constant int"); 2588 if (C1->isOne() && (!C0 || C0->isMinSignedValue())) 2589 return UndefValue::get(Ty); 2590 2591 // Undef operand with no poison min --> 0 (sign bit must be clear) 2592 if (C1->isZero() && !C0) 2593 return Constant::getNullValue(Ty); 2594 2595 return ConstantInt::get(Ty, C0->abs()); 2596 } 2597 2598 return nullptr; 2599 } 2600 2601 // Support ConstantVector in case we have an Undef in the top. 2602 if ((isa<ConstantVector>(Operands[0]) || 2603 isa<ConstantDataVector>(Operands[0])) && 2604 // Check for default rounding mode. 2605 // FIXME: Support other rounding modes? 2606 isa<ConstantInt>(Operands[1]) && 2607 cast<ConstantInt>(Operands[1])->getValue() == 4) { 2608 auto *Op = cast<Constant>(Operands[0]); 2609 switch (IntrinsicID) { 2610 default: break; 2611 case Intrinsic::x86_avx512_vcvtss2si32: 2612 case Intrinsic::x86_avx512_vcvtss2si64: 2613 case Intrinsic::x86_avx512_vcvtsd2si32: 2614 case Intrinsic::x86_avx512_vcvtsd2si64: 2615 if (ConstantFP *FPOp = 2616 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2617 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2618 /*roundTowardZero=*/false, Ty, 2619 /*IsSigned*/true); 2620 break; 2621 case Intrinsic::x86_avx512_vcvtss2usi32: 2622 case Intrinsic::x86_avx512_vcvtss2usi64: 2623 case Intrinsic::x86_avx512_vcvtsd2usi32: 2624 case Intrinsic::x86_avx512_vcvtsd2usi64: 2625 if (ConstantFP *FPOp = 2626 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2627 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2628 /*roundTowardZero=*/false, Ty, 2629 /*IsSigned*/false); 2630 break; 2631 case Intrinsic::x86_avx512_cvttss2si: 2632 case Intrinsic::x86_avx512_cvttss2si64: 2633 case Intrinsic::x86_avx512_cvttsd2si: 2634 case Intrinsic::x86_avx512_cvttsd2si64: 2635 if (ConstantFP *FPOp = 2636 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2637 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2638 /*roundTowardZero=*/true, Ty, 2639 /*IsSigned*/true); 2640 break; 2641 case Intrinsic::x86_avx512_cvttss2usi: 2642 case Intrinsic::x86_avx512_cvttss2usi64: 2643 case Intrinsic::x86_avx512_cvttsd2usi: 2644 case Intrinsic::x86_avx512_cvttsd2usi64: 2645 if (ConstantFP *FPOp = 2646 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2647 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2648 /*roundTowardZero=*/true, Ty, 2649 /*IsSigned*/false); 2650 break; 2651 } 2652 } 2653 return nullptr; 2654 } 2655 2656 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID, 2657 const APFloat &S0, 2658 const APFloat &S1, 2659 const APFloat &S2) { 2660 unsigned ID; 2661 const fltSemantics &Sem = S0.getSemantics(); 2662 APFloat MA(Sem), SC(Sem), TC(Sem); 2663 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) { 2664 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) { 2665 // S2 < 0 2666 ID = 5; 2667 SC = -S0; 2668 } else { 2669 ID = 4; 2670 SC = S0; 2671 } 2672 MA = S2; 2673 TC = -S1; 2674 } else if (abs(S1) >= abs(S0)) { 2675 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) { 2676 // S1 < 0 2677 ID = 3; 2678 TC = -S2; 2679 } else { 2680 ID = 2; 2681 TC = S2; 2682 } 2683 MA = S1; 2684 SC = S0; 2685 } else { 2686 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) { 2687 // S0 < 0 2688 ID = 1; 2689 SC = S2; 2690 } else { 2691 ID = 0; 2692 SC = -S2; 2693 } 2694 MA = S0; 2695 TC = -S1; 2696 } 2697 switch (IntrinsicID) { 2698 default: 2699 llvm_unreachable("unhandled amdgcn cube intrinsic"); 2700 case Intrinsic::amdgcn_cubeid: 2701 return APFloat(Sem, ID); 2702 case Intrinsic::amdgcn_cubema: 2703 return MA + MA; 2704 case Intrinsic::amdgcn_cubesc: 2705 return SC; 2706 case Intrinsic::amdgcn_cubetc: 2707 return TC; 2708 } 2709 } 2710 2711 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands, 2712 Type *Ty) { 2713 const APInt *C0, *C1, *C2; 2714 if (!getConstIntOrUndef(Operands[0], C0) || 2715 !getConstIntOrUndef(Operands[1], C1) || 2716 !getConstIntOrUndef(Operands[2], C2)) 2717 return nullptr; 2718 2719 if (!C2) 2720 return UndefValue::get(Ty); 2721 2722 APInt Val(32, 0); 2723 unsigned NumUndefBytes = 0; 2724 for (unsigned I = 0; I < 32; I += 8) { 2725 unsigned Sel = C2->extractBitsAsZExtValue(8, I); 2726 unsigned B = 0; 2727 2728 if (Sel >= 13) 2729 B = 0xff; 2730 else if (Sel == 12) 2731 B = 0x00; 2732 else { 2733 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1; 2734 if (!Src) 2735 ++NumUndefBytes; 2736 else if (Sel < 8) 2737 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8); 2738 else 2739 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff; 2740 } 2741 2742 Val.insertBits(B, I, 8); 2743 } 2744 2745 if (NumUndefBytes == 4) 2746 return UndefValue::get(Ty); 2747 2748 return ConstantInt::get(Ty, Val); 2749 } 2750 2751 static Constant *ConstantFoldScalarCall3(StringRef Name, 2752 Intrinsic::ID IntrinsicID, 2753 Type *Ty, 2754 ArrayRef<Constant *> Operands, 2755 const TargetLibraryInfo *TLI, 2756 const CallBase *Call) { 2757 assert(Operands.size() == 3 && "Wrong number of operands."); 2758 2759 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2760 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2761 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) { 2762 const APFloat &C1 = Op1->getValueAPF(); 2763 const APFloat &C2 = Op2->getValueAPF(); 2764 const APFloat &C3 = Op3->getValueAPF(); 2765 2766 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) { 2767 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); 2768 APFloat Res = C1; 2769 APFloat::opStatus St; 2770 switch (IntrinsicID) { 2771 default: 2772 return nullptr; 2773 case Intrinsic::experimental_constrained_fma: 2774 case Intrinsic::experimental_constrained_fmuladd: 2775 St = Res.fusedMultiplyAdd(C2, C3, RM); 2776 break; 2777 } 2778 if (mayFoldConstrained( 2779 const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St)) 2780 return ConstantFP::get(Ty->getContext(), Res); 2781 return nullptr; 2782 } 2783 2784 switch (IntrinsicID) { 2785 default: break; 2786 case Intrinsic::amdgcn_fma_legacy: { 2787 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 2788 // NaN or infinity, gives +0.0. 2789 if (C1.isZero() || C2.isZero()) { 2790 // It's tempting to just return C3 here, but that would give the 2791 // wrong result if C3 was -0.0. 2792 return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3); 2793 } 2794 LLVM_FALLTHROUGH; 2795 } 2796 case Intrinsic::fma: 2797 case Intrinsic::fmuladd: { 2798 APFloat V = C1; 2799 V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven); 2800 return ConstantFP::get(Ty->getContext(), V); 2801 } 2802 case Intrinsic::amdgcn_cubeid: 2803 case Intrinsic::amdgcn_cubema: 2804 case Intrinsic::amdgcn_cubesc: 2805 case Intrinsic::amdgcn_cubetc: { 2806 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3); 2807 return ConstantFP::get(Ty->getContext(), V); 2808 } 2809 } 2810 } 2811 } 2812 } 2813 2814 if (IntrinsicID == Intrinsic::smul_fix || 2815 IntrinsicID == Intrinsic::smul_fix_sat) { 2816 // poison * C -> poison 2817 // C * poison -> poison 2818 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 2819 return PoisonValue::get(Ty); 2820 2821 const APInt *C0, *C1; 2822 if (!getConstIntOrUndef(Operands[0], C0) || 2823 !getConstIntOrUndef(Operands[1], C1)) 2824 return nullptr; 2825 2826 // undef * C -> 0 2827 // C * undef -> 0 2828 if (!C0 || !C1) 2829 return Constant::getNullValue(Ty); 2830 2831 // This code performs rounding towards negative infinity in case the result 2832 // cannot be represented exactly for the given scale. Targets that do care 2833 // about rounding should use a target hook for specifying how rounding 2834 // should be done, and provide their own folding to be consistent with 2835 // rounding. This is the same approach as used by 2836 // DAGTypeLegalizer::ExpandIntRes_MULFIX. 2837 unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue(); 2838 unsigned Width = C0->getBitWidth(); 2839 assert(Scale < Width && "Illegal scale."); 2840 unsigned ExtendedWidth = Width * 2; 2841 APInt Product = (C0->sextOrSelf(ExtendedWidth) * 2842 C1->sextOrSelf(ExtendedWidth)).ashr(Scale); 2843 if (IntrinsicID == Intrinsic::smul_fix_sat) { 2844 APInt Max = APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth); 2845 APInt Min = APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth); 2846 Product = APIntOps::smin(Product, Max); 2847 Product = APIntOps::smax(Product, Min); 2848 } 2849 return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width)); 2850 } 2851 2852 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) { 2853 const APInt *C0, *C1, *C2; 2854 if (!getConstIntOrUndef(Operands[0], C0) || 2855 !getConstIntOrUndef(Operands[1], C1) || 2856 !getConstIntOrUndef(Operands[2], C2)) 2857 return nullptr; 2858 2859 bool IsRight = IntrinsicID == Intrinsic::fshr; 2860 if (!C2) 2861 return Operands[IsRight ? 1 : 0]; 2862 if (!C0 && !C1) 2863 return UndefValue::get(Ty); 2864 2865 // The shift amount is interpreted as modulo the bitwidth. If the shift 2866 // amount is effectively 0, avoid UB due to oversized inverse shift below. 2867 unsigned BitWidth = C2->getBitWidth(); 2868 unsigned ShAmt = C2->urem(BitWidth); 2869 if (!ShAmt) 2870 return Operands[IsRight ? 1 : 0]; 2871 2872 // (C0 << ShlAmt) | (C1 >> LshrAmt) 2873 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt; 2874 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt; 2875 if (!C0) 2876 return ConstantInt::get(Ty, C1->lshr(LshrAmt)); 2877 if (!C1) 2878 return ConstantInt::get(Ty, C0->shl(ShlAmt)); 2879 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt)); 2880 } 2881 2882 if (IntrinsicID == Intrinsic::amdgcn_perm) 2883 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty); 2884 2885 return nullptr; 2886 } 2887 2888 static Constant *ConstantFoldScalarCall(StringRef Name, 2889 Intrinsic::ID IntrinsicID, 2890 Type *Ty, 2891 ArrayRef<Constant *> Operands, 2892 const TargetLibraryInfo *TLI, 2893 const CallBase *Call) { 2894 if (Operands.size() == 1) 2895 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call); 2896 2897 if (Operands.size() == 2) 2898 return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call); 2899 2900 if (Operands.size() == 3) 2901 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call); 2902 2903 return nullptr; 2904 } 2905 2906 static Constant *ConstantFoldFixedVectorCall( 2907 StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy, 2908 ArrayRef<Constant *> Operands, const DataLayout &DL, 2909 const TargetLibraryInfo *TLI, const CallBase *Call) { 2910 SmallVector<Constant *, 4> Result(FVTy->getNumElements()); 2911 SmallVector<Constant *, 4> Lane(Operands.size()); 2912 Type *Ty = FVTy->getElementType(); 2913 2914 switch (IntrinsicID) { 2915 case Intrinsic::masked_load: { 2916 auto *SrcPtr = Operands[0]; 2917 auto *Mask = Operands[2]; 2918 auto *Passthru = Operands[3]; 2919 2920 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL); 2921 2922 SmallVector<Constant *, 32> NewElements; 2923 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 2924 auto *MaskElt = Mask->getAggregateElement(I); 2925 if (!MaskElt) 2926 break; 2927 auto *PassthruElt = Passthru->getAggregateElement(I); 2928 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr; 2929 if (isa<UndefValue>(MaskElt)) { 2930 if (PassthruElt) 2931 NewElements.push_back(PassthruElt); 2932 else if (VecElt) 2933 NewElements.push_back(VecElt); 2934 else 2935 return nullptr; 2936 } 2937 if (MaskElt->isNullValue()) { 2938 if (!PassthruElt) 2939 return nullptr; 2940 NewElements.push_back(PassthruElt); 2941 } else if (MaskElt->isOneValue()) { 2942 if (!VecElt) 2943 return nullptr; 2944 NewElements.push_back(VecElt); 2945 } else { 2946 return nullptr; 2947 } 2948 } 2949 if (NewElements.size() != FVTy->getNumElements()) 2950 return nullptr; 2951 return ConstantVector::get(NewElements); 2952 } 2953 case Intrinsic::arm_mve_vctp8: 2954 case Intrinsic::arm_mve_vctp16: 2955 case Intrinsic::arm_mve_vctp32: 2956 case Intrinsic::arm_mve_vctp64: { 2957 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 2958 unsigned Lanes = FVTy->getNumElements(); 2959 uint64_t Limit = Op->getZExtValue(); 2960 2961 SmallVector<Constant *, 16> NCs; 2962 for (unsigned i = 0; i < Lanes; i++) { 2963 if (i < Limit) 2964 NCs.push_back(ConstantInt::getTrue(Ty)); 2965 else 2966 NCs.push_back(ConstantInt::getFalse(Ty)); 2967 } 2968 return ConstantVector::get(NCs); 2969 } 2970 break; 2971 } 2972 case Intrinsic::get_active_lane_mask: { 2973 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]); 2974 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]); 2975 if (Op0 && Op1) { 2976 unsigned Lanes = FVTy->getNumElements(); 2977 uint64_t Base = Op0->getZExtValue(); 2978 uint64_t Limit = Op1->getZExtValue(); 2979 2980 SmallVector<Constant *, 16> NCs; 2981 for (unsigned i = 0; i < Lanes; i++) { 2982 if (Base + i < Limit) 2983 NCs.push_back(ConstantInt::getTrue(Ty)); 2984 else 2985 NCs.push_back(ConstantInt::getFalse(Ty)); 2986 } 2987 return ConstantVector::get(NCs); 2988 } 2989 break; 2990 } 2991 default: 2992 break; 2993 } 2994 2995 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 2996 // Gather a column of constants. 2997 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { 2998 // Some intrinsics use a scalar type for certain arguments. 2999 if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) { 3000 Lane[J] = Operands[J]; 3001 continue; 3002 } 3003 3004 Constant *Agg = Operands[J]->getAggregateElement(I); 3005 if (!Agg) 3006 return nullptr; 3007 3008 Lane[J] = Agg; 3009 } 3010 3011 // Use the regular scalar folding to simplify this column. 3012 Constant *Folded = 3013 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call); 3014 if (!Folded) 3015 return nullptr; 3016 Result[I] = Folded; 3017 } 3018 3019 return ConstantVector::get(Result); 3020 } 3021 3022 static Constant *ConstantFoldScalableVectorCall( 3023 StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy, 3024 ArrayRef<Constant *> Operands, const DataLayout &DL, 3025 const TargetLibraryInfo *TLI, const CallBase *Call) { 3026 switch (IntrinsicID) { 3027 case Intrinsic::aarch64_sve_convert_from_svbool: { 3028 auto *Src = dyn_cast<Constant>(Operands[0]); 3029 if (!Src || !Src->isNullValue()) 3030 break; 3031 3032 return ConstantInt::getFalse(SVTy); 3033 } 3034 default: 3035 break; 3036 } 3037 return nullptr; 3038 } 3039 3040 } // end anonymous namespace 3041 3042 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F, 3043 ArrayRef<Constant *> Operands, 3044 const TargetLibraryInfo *TLI) { 3045 if (Call->isNoBuiltin()) 3046 return nullptr; 3047 if (!F->hasName()) 3048 return nullptr; 3049 3050 // If this is not an intrinsic and not recognized as a library call, bail out. 3051 if (F->getIntrinsicID() == Intrinsic::not_intrinsic) { 3052 if (!TLI) 3053 return nullptr; 3054 LibFunc LibF; 3055 if (!TLI->getLibFunc(*F, LibF)) 3056 return nullptr; 3057 } 3058 3059 StringRef Name = F->getName(); 3060 Type *Ty = F->getReturnType(); 3061 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) 3062 return ConstantFoldFixedVectorCall( 3063 Name, F->getIntrinsicID(), FVTy, Operands, 3064 F->getParent()->getDataLayout(), TLI, Call); 3065 3066 if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty)) 3067 return ConstantFoldScalableVectorCall( 3068 Name, F->getIntrinsicID(), SVTy, Operands, 3069 F->getParent()->getDataLayout(), TLI, Call); 3070 3071 // TODO: If this is a library function, we already discovered that above, 3072 // so we should pass the LibFunc, not the name (and it might be better 3073 // still to separate intrinsic handling from libcalls). 3074 return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI, 3075 Call); 3076 } 3077 3078 bool llvm::isMathLibCallNoop(const CallBase *Call, 3079 const TargetLibraryInfo *TLI) { 3080 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap 3081 // (and to some extent ConstantFoldScalarCall). 3082 if (Call->isNoBuiltin() || Call->isStrictFP()) 3083 return false; 3084 Function *F = Call->getCalledFunction(); 3085 if (!F) 3086 return false; 3087 3088 LibFunc Func; 3089 if (!TLI || !TLI->getLibFunc(*F, Func)) 3090 return false; 3091 3092 if (Call->arg_size() == 1) { 3093 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) { 3094 const APFloat &Op = OpC->getValueAPF(); 3095 switch (Func) { 3096 case LibFunc_logl: 3097 case LibFunc_log: 3098 case LibFunc_logf: 3099 case LibFunc_log2l: 3100 case LibFunc_log2: 3101 case LibFunc_log2f: 3102 case LibFunc_log10l: 3103 case LibFunc_log10: 3104 case LibFunc_log10f: 3105 return Op.isNaN() || (!Op.isZero() && !Op.isNegative()); 3106 3107 case LibFunc_expl: 3108 case LibFunc_exp: 3109 case LibFunc_expf: 3110 // FIXME: These boundaries are slightly conservative. 3111 if (OpC->getType()->isDoubleTy()) 3112 return !(Op < APFloat(-745.0) || Op > APFloat(709.0)); 3113 if (OpC->getType()->isFloatTy()) 3114 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f)); 3115 break; 3116 3117 case LibFunc_exp2l: 3118 case LibFunc_exp2: 3119 case LibFunc_exp2f: 3120 // FIXME: These boundaries are slightly conservative. 3121 if (OpC->getType()->isDoubleTy()) 3122 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0)); 3123 if (OpC->getType()->isFloatTy()) 3124 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f)); 3125 break; 3126 3127 case LibFunc_sinl: 3128 case LibFunc_sin: 3129 case LibFunc_sinf: 3130 case LibFunc_cosl: 3131 case LibFunc_cos: 3132 case LibFunc_cosf: 3133 return !Op.isInfinity(); 3134 3135 case LibFunc_tanl: 3136 case LibFunc_tan: 3137 case LibFunc_tanf: { 3138 // FIXME: Stop using the host math library. 3139 // FIXME: The computation isn't done in the right precision. 3140 Type *Ty = OpC->getType(); 3141 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) 3142 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr; 3143 break; 3144 } 3145 3146 case LibFunc_asinl: 3147 case LibFunc_asin: 3148 case LibFunc_asinf: 3149 case LibFunc_acosl: 3150 case LibFunc_acos: 3151 case LibFunc_acosf: 3152 return !(Op < APFloat(Op.getSemantics(), "-1") || 3153 Op > APFloat(Op.getSemantics(), "1")); 3154 3155 case LibFunc_sinh: 3156 case LibFunc_cosh: 3157 case LibFunc_sinhf: 3158 case LibFunc_coshf: 3159 case LibFunc_sinhl: 3160 case LibFunc_coshl: 3161 // FIXME: These boundaries are slightly conservative. 3162 if (OpC->getType()->isDoubleTy()) 3163 return !(Op < APFloat(-710.0) || Op > APFloat(710.0)); 3164 if (OpC->getType()->isFloatTy()) 3165 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f)); 3166 break; 3167 3168 case LibFunc_sqrtl: 3169 case LibFunc_sqrt: 3170 case LibFunc_sqrtf: 3171 return Op.isNaN() || Op.isZero() || !Op.isNegative(); 3172 3173 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p, 3174 // maybe others? 3175 default: 3176 break; 3177 } 3178 } 3179 } 3180 3181 if (Call->arg_size() == 2) { 3182 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0)); 3183 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1)); 3184 if (Op0C && Op1C) { 3185 const APFloat &Op0 = Op0C->getValueAPF(); 3186 const APFloat &Op1 = Op1C->getValueAPF(); 3187 3188 switch (Func) { 3189 case LibFunc_powl: 3190 case LibFunc_pow: 3191 case LibFunc_powf: { 3192 // FIXME: Stop using the host math library. 3193 // FIXME: The computation isn't done in the right precision. 3194 Type *Ty = Op0C->getType(); 3195 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { 3196 if (Ty == Op1C->getType()) 3197 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr; 3198 } 3199 break; 3200 } 3201 3202 case LibFunc_fmodl: 3203 case LibFunc_fmod: 3204 case LibFunc_fmodf: 3205 case LibFunc_remainderl: 3206 case LibFunc_remainder: 3207 case LibFunc_remainderf: 3208 return Op0.isNaN() || Op1.isNaN() || 3209 (!Op0.isInfinity() && !Op1.isZero()); 3210 3211 default: 3212 break; 3213 } 3214 } 3215 } 3216 3217 return false; 3218 } 3219 3220 void TargetFolder::anchor() {} 3221