xref: /freebsd-src/contrib/llvm-project/llvm/lib/Analysis/BranchProbabilityInfo.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loops should be simplified before this analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/BranchProbabilityInfo.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/SCCIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/PostDominators.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/IR/Attributes.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/PassManager.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/InitializePasses.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/BranchProbability.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <cassert>
43 #include <cstdint>
44 #include <iterator>
45 #include <utility>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "branch-prob"
50 
51 static cl::opt<bool> PrintBranchProb(
52     "print-bpi", cl::init(false), cl::Hidden,
53     cl::desc("Print the branch probability info."));
54 
55 cl::opt<std::string> PrintBranchProbFuncName(
56     "print-bpi-func-name", cl::Hidden,
57     cl::desc("The option to specify the name of the function "
58              "whose branch probability info is printed."));
59 
60 INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
61                       "Branch Probability Analysis", false, true)
62 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
63 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
64 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
65 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
66 INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
67                     "Branch Probability Analysis", false, true)
68 
69 BranchProbabilityInfoWrapperPass::BranchProbabilityInfoWrapperPass()
70     : FunctionPass(ID) {
71   initializeBranchProbabilityInfoWrapperPassPass(
72       *PassRegistry::getPassRegistry());
73 }
74 
75 char BranchProbabilityInfoWrapperPass::ID = 0;
76 
77 // Weights are for internal use only. They are used by heuristics to help to
78 // estimate edges' probability. Example:
79 //
80 // Using "Loop Branch Heuristics" we predict weights of edges for the
81 // block BB2.
82 //         ...
83 //          |
84 //          V
85 //         BB1<-+
86 //          |   |
87 //          |   | (Weight = 124)
88 //          V   |
89 //         BB2--+
90 //          |
91 //          | (Weight = 4)
92 //          V
93 //         BB3
94 //
95 // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
96 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
97 static const uint32_t LBH_TAKEN_WEIGHT = 124;
98 static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
99 
100 /// Unreachable-terminating branch taken probability.
101 ///
102 /// This is the probability for a branch being taken to a block that terminates
103 /// (eventually) in unreachable. These are predicted as unlikely as possible.
104 /// All reachable probability will proportionally share the remaining part.
105 static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);
106 
107 /// Heuristics and lookup tables for non-loop branches:
108 /// Pointer Heuristics (PH)
109 static const uint32_t PH_TAKEN_WEIGHT = 20;
110 static const uint32_t PH_NONTAKEN_WEIGHT = 12;
111 static const BranchProbability
112     PtrTakenProb(PH_TAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
113 static const BranchProbability
114     PtrUntakenProb(PH_NONTAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
115 
116 using ProbabilityList = SmallVector<BranchProbability>;
117 using ProbabilityTable = std::map<CmpInst::Predicate, ProbabilityList>;
118 
119 /// Pointer comparisons:
120 static const ProbabilityTable PointerTable{
121     {ICmpInst::ICMP_NE, {PtrTakenProb, PtrUntakenProb}}, /// p != q -> Likely
122     {ICmpInst::ICMP_EQ, {PtrUntakenProb, PtrTakenProb}}, /// p == q -> Unlikely
123 };
124 
125 /// Zero Heuristics (ZH)
126 static const uint32_t ZH_TAKEN_WEIGHT = 20;
127 static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
128 static const BranchProbability
129     ZeroTakenProb(ZH_TAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
130 static const BranchProbability
131     ZeroUntakenProb(ZH_NONTAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
132 
133 /// Integer compares with 0:
134 static const ProbabilityTable ICmpWithZeroTable{
135     {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},  /// X == 0 -> Unlikely
136     {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},  /// X != 0 -> Likely
137     {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X < 0  -> Unlikely
138     {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X > 0  -> Likely
139 };
140 
141 /// Integer compares with -1:
142 static const ProbabilityTable ICmpWithMinusOneTable{
143     {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},  /// X == -1 -> Unlikely
144     {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},  /// X != -1 -> Likely
145     // InstCombine canonicalizes X >= 0 into X > -1
146     {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X >= 0  -> Likely
147 };
148 
149 /// Integer compares with 1:
150 static const ProbabilityTable ICmpWithOneTable{
151     // InstCombine canonicalizes X <= 0 into X < 1
152     {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X <= 0 -> Unlikely
153 };
154 
155 /// strcmp and similar functions return zero, negative, or positive, if the
156 /// first string is equal, less, or greater than the second. We consider it
157 /// likely that the strings are not equal, so a comparison with zero is
158 /// probably false, but also a comparison with any other number is also
159 /// probably false given that what exactly is returned for nonzero values is
160 /// not specified. Any kind of comparison other than equality we know
161 /// nothing about.
162 static const ProbabilityTable ICmpWithLibCallTable{
163     {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},
164     {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},
165 };
166 
167 // Floating-Point Heuristics (FPH)
168 static const uint32_t FPH_TAKEN_WEIGHT = 20;
169 static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
170 
171 /// This is the probability for an ordered floating point comparison.
172 static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1;
173 /// This is the probability for an unordered floating point comparison, it means
174 /// one or two of the operands are NaN. Usually it is used to test for an
175 /// exceptional case, so the result is unlikely.
176 static const uint32_t FPH_UNO_WEIGHT = 1;
177 
178 static const BranchProbability FPOrdTakenProb(FPH_ORD_WEIGHT,
179                                               FPH_ORD_WEIGHT + FPH_UNO_WEIGHT);
180 static const BranchProbability
181     FPOrdUntakenProb(FPH_UNO_WEIGHT, FPH_ORD_WEIGHT + FPH_UNO_WEIGHT);
182 static const BranchProbability
183     FPTakenProb(FPH_TAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
184 static const BranchProbability
185     FPUntakenProb(FPH_NONTAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
186 
187 /// Floating-Point compares:
188 static const ProbabilityTable FCmpTable{
189     {FCmpInst::FCMP_ORD, {FPOrdTakenProb, FPOrdUntakenProb}}, /// !isnan -> Likely
190     {FCmpInst::FCMP_UNO, {FPOrdUntakenProb, FPOrdTakenProb}}, /// isnan -> Unlikely
191 };
192 
193 /// Set of dedicated "absolute" execution weights for a block. These weights are
194 /// meaningful relative to each other and their derivatives only.
195 enum class BlockExecWeight : std::uint32_t {
196   /// Special weight used for cases with exact zero probability.
197   ZERO = 0x0,
198   /// Minimal possible non zero weight.
199   LOWEST_NON_ZERO = 0x1,
200   /// Weight to an 'unreachable' block.
201   UNREACHABLE = ZERO,
202   /// Weight to a block containing non returning call.
203   NORETURN = LOWEST_NON_ZERO,
204   /// Weight to 'unwind' block of an invoke instruction.
205   UNWIND = LOWEST_NON_ZERO,
206   /// Weight to a 'cold' block. Cold blocks are the ones containing calls marked
207   /// with attribute 'cold'.
208   COLD = 0xffff,
209   /// Default weight is used in cases when there is no dedicated execution
210   /// weight set. It is not propagated through the domination line either.
211   DEFAULT = 0xfffff
212 };
213 
214 BranchProbabilityInfo::SccInfo::SccInfo(const Function &F) {
215   // Record SCC numbers of blocks in the CFG to identify irreducible loops.
216   // FIXME: We could only calculate this if the CFG is known to be irreducible
217   // (perhaps cache this info in LoopInfo if we can easily calculate it there?).
218   int SccNum = 0;
219   for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd();
220        ++It, ++SccNum) {
221     // Ignore single-block SCCs since they either aren't loops or LoopInfo will
222     // catch them.
223     const std::vector<const BasicBlock *> &Scc = *It;
224     if (Scc.size() == 1)
225       continue;
226 
227     LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":");
228     for (const auto *BB : Scc) {
229       LLVM_DEBUG(dbgs() << " " << BB->getName());
230       SccNums[BB] = SccNum;
231       calculateSccBlockType(BB, SccNum);
232     }
233     LLVM_DEBUG(dbgs() << "\n");
234   }
235 }
236 
237 int BranchProbabilityInfo::SccInfo::getSCCNum(const BasicBlock *BB) const {
238   auto SccIt = SccNums.find(BB);
239   if (SccIt == SccNums.end())
240     return -1;
241   return SccIt->second;
242 }
243 
244 void BranchProbabilityInfo::SccInfo::getSccEnterBlocks(
245     int SccNum, SmallVectorImpl<BasicBlock *> &Enters) const {
246 
247   for (auto MapIt : SccBlocks[SccNum]) {
248     const auto *BB = MapIt.first;
249     if (isSCCHeader(BB, SccNum))
250       for (const auto *Pred : predecessors(BB))
251         if (getSCCNum(Pred) != SccNum)
252           Enters.push_back(const_cast<BasicBlock *>(BB));
253   }
254 }
255 
256 void BranchProbabilityInfo::SccInfo::getSccExitBlocks(
257     int SccNum, SmallVectorImpl<BasicBlock *> &Exits) const {
258   for (auto MapIt : SccBlocks[SccNum]) {
259     const auto *BB = MapIt.first;
260     if (isSCCExitingBlock(BB, SccNum))
261       for (const auto *Succ : successors(BB))
262         if (getSCCNum(Succ) != SccNum)
263           Exits.push_back(const_cast<BasicBlock *>(Succ));
264   }
265 }
266 
267 uint32_t BranchProbabilityInfo::SccInfo::getSccBlockType(const BasicBlock *BB,
268                                                          int SccNum) const {
269   assert(getSCCNum(BB) == SccNum);
270 
271   assert(SccBlocks.size() > static_cast<unsigned>(SccNum) && "Unknown SCC");
272   const auto &SccBlockTypes = SccBlocks[SccNum];
273 
274   auto It = SccBlockTypes.find(BB);
275   if (It != SccBlockTypes.end()) {
276     return It->second;
277   }
278   return Inner;
279 }
280 
281 void BranchProbabilityInfo::SccInfo::calculateSccBlockType(const BasicBlock *BB,
282                                                            int SccNum) {
283   assert(getSCCNum(BB) == SccNum);
284   uint32_t BlockType = Inner;
285 
286   if (llvm::any_of(predecessors(BB), [&](const BasicBlock *Pred) {
287         // Consider any block that is an entry point to the SCC as
288         // a header.
289         return getSCCNum(Pred) != SccNum;
290       }))
291     BlockType |= Header;
292 
293   if (llvm::any_of(successors(BB), [&](const BasicBlock *Succ) {
294         return getSCCNum(Succ) != SccNum;
295       }))
296     BlockType |= Exiting;
297 
298   // Lazily compute the set of headers for a given SCC and cache the results
299   // in the SccHeaderMap.
300   if (SccBlocks.size() <= static_cast<unsigned>(SccNum))
301     SccBlocks.resize(SccNum + 1);
302   auto &SccBlockTypes = SccBlocks[SccNum];
303 
304   if (BlockType != Inner) {
305     bool IsInserted;
306     std::tie(std::ignore, IsInserted) =
307         SccBlockTypes.insert(std::make_pair(BB, BlockType));
308     assert(IsInserted && "Duplicated block in SCC");
309   }
310 }
311 
312 BranchProbabilityInfo::LoopBlock::LoopBlock(const BasicBlock *BB,
313                                             const LoopInfo &LI,
314                                             const SccInfo &SccI)
315     : BB(BB) {
316   LD.first = LI.getLoopFor(BB);
317   if (!LD.first) {
318     LD.second = SccI.getSCCNum(BB);
319   }
320 }
321 
322 bool BranchProbabilityInfo::isLoopEnteringEdge(const LoopEdge &Edge) const {
323   const auto &SrcBlock = Edge.first;
324   const auto &DstBlock = Edge.second;
325   return (DstBlock.getLoop() &&
326           !DstBlock.getLoop()->contains(SrcBlock.getLoop())) ||
327          // Assume that SCCs can't be nested.
328          (DstBlock.getSccNum() != -1 &&
329           SrcBlock.getSccNum() != DstBlock.getSccNum());
330 }
331 
332 bool BranchProbabilityInfo::isLoopExitingEdge(const LoopEdge &Edge) const {
333   return isLoopEnteringEdge({Edge.second, Edge.first});
334 }
335 
336 bool BranchProbabilityInfo::isLoopEnteringExitingEdge(
337     const LoopEdge &Edge) const {
338   return isLoopEnteringEdge(Edge) || isLoopExitingEdge(Edge);
339 }
340 
341 bool BranchProbabilityInfo::isLoopBackEdge(const LoopEdge &Edge) const {
342   const auto &SrcBlock = Edge.first;
343   const auto &DstBlock = Edge.second;
344   return SrcBlock.belongsToSameLoop(DstBlock) &&
345          ((DstBlock.getLoop() &&
346            DstBlock.getLoop()->getHeader() == DstBlock.getBlock()) ||
347           (DstBlock.getSccNum() != -1 &&
348            SccI->isSCCHeader(DstBlock.getBlock(), DstBlock.getSccNum())));
349 }
350 
351 void BranchProbabilityInfo::getLoopEnterBlocks(
352     const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Enters) const {
353   if (LB.getLoop()) {
354     auto *Header = LB.getLoop()->getHeader();
355     Enters.append(pred_begin(Header), pred_end(Header));
356   } else {
357     assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
358     SccI->getSccEnterBlocks(LB.getSccNum(), Enters);
359   }
360 }
361 
362 void BranchProbabilityInfo::getLoopExitBlocks(
363     const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Exits) const {
364   if (LB.getLoop()) {
365     LB.getLoop()->getExitBlocks(Exits);
366   } else {
367     assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
368     SccI->getSccExitBlocks(LB.getSccNum(), Exits);
369   }
370 }
371 
372 // Propagate existing explicit probabilities from either profile data or
373 // 'expect' intrinsic processing. Examine metadata against unreachable
374 // heuristic. The probability of the edge coming to unreachable block is
375 // set to min of metadata and unreachable heuristic.
376 bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
377   const Instruction *TI = BB->getTerminator();
378   assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
379   if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI) ||
380         isa<InvokeInst>(TI)))
381     return false;
382 
383   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
384   if (!WeightsNode)
385     return false;
386 
387   // Check that the number of successors is manageable.
388   assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");
389 
390   // Ensure there are weights for all of the successors. Note that the first
391   // operand to the metadata node is a name, not a weight.
392   if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
393     return false;
394 
395   // Build up the final weights that will be used in a temporary buffer.
396   // Compute the sum of all weights to later decide whether they need to
397   // be scaled to fit in 32 bits.
398   uint64_t WeightSum = 0;
399   SmallVector<uint32_t, 2> Weights;
400   SmallVector<unsigned, 2> UnreachableIdxs;
401   SmallVector<unsigned, 2> ReachableIdxs;
402   Weights.reserve(TI->getNumSuccessors());
403   for (unsigned I = 1, E = WeightsNode->getNumOperands(); I != E; ++I) {
404     ConstantInt *Weight =
405         mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(I));
406     if (!Weight)
407       return false;
408     assert(Weight->getValue().getActiveBits() <= 32 &&
409            "Too many bits for uint32_t");
410     Weights.push_back(Weight->getZExtValue());
411     WeightSum += Weights.back();
412     const LoopBlock SrcLoopBB = getLoopBlock(BB);
413     const LoopBlock DstLoopBB = getLoopBlock(TI->getSuccessor(I - 1));
414     auto EstimatedWeight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
415     if (EstimatedWeight &&
416         EstimatedWeight.getValue() <=
417             static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
418       UnreachableIdxs.push_back(I - 1);
419     else
420       ReachableIdxs.push_back(I - 1);
421   }
422   assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
423 
424   // If the sum of weights does not fit in 32 bits, scale every weight down
425   // accordingly.
426   uint64_t ScalingFactor =
427       (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;
428 
429   if (ScalingFactor > 1) {
430     WeightSum = 0;
431     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
432       Weights[I] /= ScalingFactor;
433       WeightSum += Weights[I];
434     }
435   }
436   assert(WeightSum <= UINT32_MAX &&
437          "Expected weights to scale down to 32 bits");
438 
439   if (WeightSum == 0 || ReachableIdxs.size() == 0) {
440     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
441       Weights[I] = 1;
442     WeightSum = TI->getNumSuccessors();
443   }
444 
445   // Set the probability.
446   SmallVector<BranchProbability, 2> BP;
447   for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
448     BP.push_back({ Weights[I], static_cast<uint32_t>(WeightSum) });
449 
450   // Examine the metadata against unreachable heuristic.
451   // If the unreachable heuristic is more strong then we use it for this edge.
452   if (UnreachableIdxs.size() == 0 || ReachableIdxs.size() == 0) {
453     setEdgeProbability(BB, BP);
454     return true;
455   }
456 
457   auto UnreachableProb = UR_TAKEN_PROB;
458   for (auto I : UnreachableIdxs)
459     if (UnreachableProb < BP[I]) {
460       BP[I] = UnreachableProb;
461     }
462 
463   // Sum of all edge probabilities must be 1.0. If we modified the probability
464   // of some edges then we must distribute the introduced difference over the
465   // reachable blocks.
466   //
467   // Proportional distribution: the relation between probabilities of the
468   // reachable edges is kept unchanged. That is for any reachable edges i and j:
469   //   newBP[i] / newBP[j] == oldBP[i] / oldBP[j] =>
470   //   newBP[i] / oldBP[i] == newBP[j] / oldBP[j] == K
471   // Where K is independent of i,j.
472   //   newBP[i] == oldBP[i] * K
473   // We need to find K.
474   // Make sum of all reachables of the left and right parts:
475   //   sum_of_reachable(newBP) == K * sum_of_reachable(oldBP)
476   // Sum of newBP must be equal to 1.0:
477   //   sum_of_reachable(newBP) + sum_of_unreachable(newBP) == 1.0 =>
478   //   sum_of_reachable(newBP) = 1.0 - sum_of_unreachable(newBP)
479   // Where sum_of_unreachable(newBP) is what has been just changed.
480   // Finally:
481   //   K == sum_of_reachable(newBP) / sum_of_reachable(oldBP) =>
482   //   K == (1.0 - sum_of_unreachable(newBP)) / sum_of_reachable(oldBP)
483   BranchProbability NewUnreachableSum = BranchProbability::getZero();
484   for (auto I : UnreachableIdxs)
485     NewUnreachableSum += BP[I];
486 
487   BranchProbability NewReachableSum =
488       BranchProbability::getOne() - NewUnreachableSum;
489 
490   BranchProbability OldReachableSum = BranchProbability::getZero();
491   for (auto I : ReachableIdxs)
492     OldReachableSum += BP[I];
493 
494   if (OldReachableSum != NewReachableSum) { // Anything to dsitribute?
495     if (OldReachableSum.isZero()) {
496       // If all oldBP[i] are zeroes then the proportional distribution results
497       // in all zero probabilities and the error stays big. In this case we
498       // evenly spread NewReachableSum over the reachable edges.
499       BranchProbability PerEdge = NewReachableSum / ReachableIdxs.size();
500       for (auto I : ReachableIdxs)
501         BP[I] = PerEdge;
502     } else {
503       for (auto I : ReachableIdxs) {
504         // We use uint64_t to avoid double rounding error of the following
505         // calculation: BP[i] = BP[i] * NewReachableSum / OldReachableSum
506         // The formula is taken from the private constructor
507         // BranchProbability(uint32_t Numerator, uint32_t Denominator)
508         uint64_t Mul = static_cast<uint64_t>(NewReachableSum.getNumerator()) *
509                        BP[I].getNumerator();
510         uint32_t Div = static_cast<uint32_t>(
511             divideNearest(Mul, OldReachableSum.getNumerator()));
512         BP[I] = BranchProbability::getRaw(Div);
513       }
514     }
515   }
516 
517   setEdgeProbability(BB, BP);
518 
519   return true;
520 }
521 
522 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparison
523 // between two pointer or pointer and NULL will fail.
524 bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
525   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
526   if (!BI || !BI->isConditional())
527     return false;
528 
529   Value *Cond = BI->getCondition();
530   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
531   if (!CI || !CI->isEquality())
532     return false;
533 
534   Value *LHS = CI->getOperand(0);
535 
536   if (!LHS->getType()->isPointerTy())
537     return false;
538 
539   assert(CI->getOperand(1)->getType()->isPointerTy());
540 
541   auto Search = PointerTable.find(CI->getPredicate());
542   if (Search == PointerTable.end())
543     return false;
544   setEdgeProbability(BB, Search->second);
545   return true;
546 }
547 
548 // Compute the unlikely successors to the block BB in the loop L, specifically
549 // those that are unlikely because this is a loop, and add them to the
550 // UnlikelyBlocks set.
551 static void
552 computeUnlikelySuccessors(const BasicBlock *BB, Loop *L,
553                           SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) {
554   // Sometimes in a loop we have a branch whose condition is made false by
555   // taking it. This is typically something like
556   //  int n = 0;
557   //  while (...) {
558   //    if (++n >= MAX) {
559   //      n = 0;
560   //    }
561   //  }
562   // In this sort of situation taking the branch means that at the very least it
563   // won't be taken again in the next iteration of the loop, so we should
564   // consider it less likely than a typical branch.
565   //
566   // We detect this by looking back through the graph of PHI nodes that sets the
567   // value that the condition depends on, and seeing if we can reach a successor
568   // block which can be determined to make the condition false.
569   //
570   // FIXME: We currently consider unlikely blocks to be half as likely as other
571   // blocks, but if we consider the example above the likelyhood is actually
572   // 1/MAX. We could therefore be more precise in how unlikely we consider
573   // blocks to be, but it would require more careful examination of the form
574   // of the comparison expression.
575   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
576   if (!BI || !BI->isConditional())
577     return;
578 
579   // Check if the branch is based on an instruction compared with a constant
580   CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
581   if (!CI || !isa<Instruction>(CI->getOperand(0)) ||
582       !isa<Constant>(CI->getOperand(1)))
583     return;
584 
585   // Either the instruction must be a PHI, or a chain of operations involving
586   // constants that ends in a PHI which we can then collapse into a single value
587   // if the PHI value is known.
588   Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0));
589   PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS);
590   Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1));
591   // Collect the instructions until we hit a PHI
592   SmallVector<BinaryOperator *, 1> InstChain;
593   while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) &&
594          isa<Constant>(CmpLHS->getOperand(1))) {
595     // Stop if the chain extends outside of the loop
596     if (!L->contains(CmpLHS))
597       return;
598     InstChain.push_back(cast<BinaryOperator>(CmpLHS));
599     CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0));
600     if (CmpLHS)
601       CmpPHI = dyn_cast<PHINode>(CmpLHS);
602   }
603   if (!CmpPHI || !L->contains(CmpPHI))
604     return;
605 
606   // Trace the phi node to find all values that come from successors of BB
607   SmallPtrSet<PHINode*, 8> VisitedInsts;
608   SmallVector<PHINode*, 8> WorkList;
609   WorkList.push_back(CmpPHI);
610   VisitedInsts.insert(CmpPHI);
611   while (!WorkList.empty()) {
612     PHINode *P = WorkList.pop_back_val();
613     for (BasicBlock *B : P->blocks()) {
614       // Skip blocks that aren't part of the loop
615       if (!L->contains(B))
616         continue;
617       Value *V = P->getIncomingValueForBlock(B);
618       // If the source is a PHI add it to the work list if we haven't
619       // already visited it.
620       if (PHINode *PN = dyn_cast<PHINode>(V)) {
621         if (VisitedInsts.insert(PN).second)
622           WorkList.push_back(PN);
623         continue;
624       }
625       // If this incoming value is a constant and B is a successor of BB, then
626       // we can constant-evaluate the compare to see if it makes the branch be
627       // taken or not.
628       Constant *CmpLHSConst = dyn_cast<Constant>(V);
629       if (!CmpLHSConst || !llvm::is_contained(successors(BB), B))
630         continue;
631       // First collapse InstChain
632       for (Instruction *I : llvm::reverse(InstChain)) {
633         CmpLHSConst = ConstantExpr::get(I->getOpcode(), CmpLHSConst,
634                                         cast<Constant>(I->getOperand(1)), true);
635         if (!CmpLHSConst)
636           break;
637       }
638       if (!CmpLHSConst)
639         continue;
640       // Now constant-evaluate the compare
641       Constant *Result = ConstantExpr::getCompare(CI->getPredicate(),
642                                                   CmpLHSConst, CmpConst, true);
643       // If the result means we don't branch to the block then that block is
644       // unlikely.
645       if (Result &&
646           ((Result->isZeroValue() && B == BI->getSuccessor(0)) ||
647            (Result->isOneValue() && B == BI->getSuccessor(1))))
648         UnlikelyBlocks.insert(B);
649     }
650   }
651 }
652 
653 Optional<uint32_t>
654 BranchProbabilityInfo::getEstimatedBlockWeight(const BasicBlock *BB) const {
655   auto WeightIt = EstimatedBlockWeight.find(BB);
656   if (WeightIt == EstimatedBlockWeight.end())
657     return None;
658   return WeightIt->second;
659 }
660 
661 Optional<uint32_t>
662 BranchProbabilityInfo::getEstimatedLoopWeight(const LoopData &L) const {
663   auto WeightIt = EstimatedLoopWeight.find(L);
664   if (WeightIt == EstimatedLoopWeight.end())
665     return None;
666   return WeightIt->second;
667 }
668 
669 Optional<uint32_t>
670 BranchProbabilityInfo::getEstimatedEdgeWeight(const LoopEdge &Edge) const {
671   // For edges entering a loop take weight of a loop rather than an individual
672   // block in the loop.
673   return isLoopEnteringEdge(Edge)
674              ? getEstimatedLoopWeight(Edge.second.getLoopData())
675              : getEstimatedBlockWeight(Edge.second.getBlock());
676 }
677 
678 template <class IterT>
679 Optional<uint32_t> BranchProbabilityInfo::getMaxEstimatedEdgeWeight(
680     const LoopBlock &SrcLoopBB, iterator_range<IterT> Successors) const {
681   SmallVector<uint32_t, 4> Weights;
682   Optional<uint32_t> MaxWeight;
683   for (const BasicBlock *DstBB : Successors) {
684     const LoopBlock DstLoopBB = getLoopBlock(DstBB);
685     auto Weight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
686 
687     if (!Weight)
688       return None;
689 
690     if (!MaxWeight || MaxWeight.getValue() < Weight.getValue())
691       MaxWeight = Weight;
692   }
693 
694   return MaxWeight;
695 }
696 
697 // Updates \p LoopBB's weight and returns true. If \p LoopBB has already
698 // an associated weight it is unchanged and false is returned.
699 //
700 // Please note by the algorithm the weight is not expected to change once set
701 // thus 'false' status is used to track visited blocks.
702 bool BranchProbabilityInfo::updateEstimatedBlockWeight(
703     LoopBlock &LoopBB, uint32_t BBWeight,
704     SmallVectorImpl<BasicBlock *> &BlockWorkList,
705     SmallVectorImpl<LoopBlock> &LoopWorkList) {
706   BasicBlock *BB = LoopBB.getBlock();
707 
708   // In general, weight is assigned to a block when it has final value and
709   // can't/shouldn't be changed.  However, there are cases when a block
710   // inherently has several (possibly "contradicting") weights. For example,
711   // "unwind" block may also contain "cold" call. In that case the first
712   // set weight is favored and all consequent weights are ignored.
713   if (!EstimatedBlockWeight.insert({BB, BBWeight}).second)
714     return false;
715 
716   for (BasicBlock *PredBlock : predecessors(BB)) {
717     LoopBlock PredLoop = getLoopBlock(PredBlock);
718     // Add affected block/loop to a working list.
719     if (isLoopExitingEdge({PredLoop, LoopBB})) {
720       if (!EstimatedLoopWeight.count(PredLoop.getLoopData()))
721         LoopWorkList.push_back(PredLoop);
722     } else if (!EstimatedBlockWeight.count(PredBlock))
723       BlockWorkList.push_back(PredBlock);
724   }
725   return true;
726 }
727 
728 // Starting from \p BB traverse through dominator blocks and assign \p BBWeight
729 // to all such blocks that are post dominated by \BB. In other words to all
730 // blocks that the one is executed if and only if another one is executed.
731 // Importantly, we skip loops here for two reasons. First weights of blocks in
732 // a loop should be scaled by trip count (yet possibly unknown). Second there is
733 // no any value in doing that because that doesn't give any additional
734 // information regarding distribution of probabilities inside the loop.
735 // Exception is loop 'enter' and 'exit' edges that are handled in a special way
736 // at calcEstimatedHeuristics.
737 //
738 // In addition, \p WorkList is populated with basic blocks if at leas one
739 // successor has updated estimated weight.
740 void BranchProbabilityInfo::propagateEstimatedBlockWeight(
741     const LoopBlock &LoopBB, DominatorTree *DT, PostDominatorTree *PDT,
742     uint32_t BBWeight, SmallVectorImpl<BasicBlock *> &BlockWorkList,
743     SmallVectorImpl<LoopBlock> &LoopWorkList) {
744   const BasicBlock *BB = LoopBB.getBlock();
745   const auto *DTStartNode = DT->getNode(BB);
746   const auto *PDTStartNode = PDT->getNode(BB);
747 
748   // TODO: Consider propagating weight down the domination line as well.
749   for (const auto *DTNode = DTStartNode; DTNode != nullptr;
750        DTNode = DTNode->getIDom()) {
751     auto *DomBB = DTNode->getBlock();
752     // Consider blocks which lie on one 'line'.
753     if (!PDT->dominates(PDTStartNode, PDT->getNode(DomBB)))
754       // If BB doesn't post dominate DomBB it will not post dominate dominators
755       // of DomBB as well.
756       break;
757 
758     LoopBlock DomLoopBB = getLoopBlock(DomBB);
759     const LoopEdge Edge{DomLoopBB, LoopBB};
760     // Don't propagate weight to blocks belonging to different loops.
761     if (!isLoopEnteringExitingEdge(Edge)) {
762       if (!updateEstimatedBlockWeight(DomLoopBB, BBWeight, BlockWorkList,
763                                       LoopWorkList))
764         // If DomBB has weight set then all it's predecessors are already
765         // processed (since we propagate weight up to the top of IR each time).
766         break;
767     } else if (isLoopExitingEdge(Edge)) {
768       LoopWorkList.push_back(DomLoopBB);
769     }
770   }
771 }
772 
773 Optional<uint32_t> BranchProbabilityInfo::getInitialEstimatedBlockWeight(
774     const BasicBlock *BB) {
775   // Returns true if \p BB has call marked with "NoReturn" attribute.
776   auto hasNoReturn = [&](const BasicBlock *BB) {
777     for (const auto &I : reverse(*BB))
778       if (const CallInst *CI = dyn_cast<CallInst>(&I))
779         if (CI->hasFnAttr(Attribute::NoReturn))
780           return true;
781 
782     return false;
783   };
784 
785   // Important note regarding the order of checks. They are ordered by weight
786   // from lowest to highest. Doing that allows to avoid "unstable" results
787   // when several conditions heuristics can be applied simultaneously.
788   if (isa<UnreachableInst>(BB->getTerminator()) ||
789       // If this block is terminated by a call to
790       // @llvm.experimental.deoptimize then treat it like an unreachable
791       // since it is expected to practically never execute.
792       // TODO: Should we actually treat as never returning call?
793       BB->getTerminatingDeoptimizeCall())
794     return hasNoReturn(BB)
795                ? static_cast<uint32_t>(BlockExecWeight::NORETURN)
796                : static_cast<uint32_t>(BlockExecWeight::UNREACHABLE);
797 
798   // Check if the block is 'unwind' handler of  some invoke instruction.
799   for (const auto *Pred : predecessors(BB))
800     if (Pred)
801       if (const auto *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
802         if (II->getUnwindDest() == BB)
803           return static_cast<uint32_t>(BlockExecWeight::UNWIND);
804 
805   // Check if the block contains 'cold' call.
806   for (const auto &I : *BB)
807     if (const CallInst *CI = dyn_cast<CallInst>(&I))
808       if (CI->hasFnAttr(Attribute::Cold))
809         return static_cast<uint32_t>(BlockExecWeight::COLD);
810 
811   return None;
812 }
813 
814 // Does RPO traversal over all blocks in \p F and assigns weights to
815 // 'unreachable', 'noreturn', 'cold', 'unwind' blocks. In addition it does its
816 // best to propagate the weight to up/down the IR.
817 void BranchProbabilityInfo::computeEestimateBlockWeight(
818     const Function &F, DominatorTree *DT, PostDominatorTree *PDT) {
819   SmallVector<BasicBlock *, 8> BlockWorkList;
820   SmallVector<LoopBlock, 8> LoopWorkList;
821 
822   // By doing RPO we make sure that all predecessors already have weights
823   // calculated before visiting theirs successors.
824   ReversePostOrderTraversal<const Function *> RPOT(&F);
825   for (const auto *BB : RPOT)
826     if (auto BBWeight = getInitialEstimatedBlockWeight(BB))
827       // If we were able to find estimated weight for the block set it to this
828       // block and propagate up the IR.
829       propagateEstimatedBlockWeight(getLoopBlock(BB), DT, PDT,
830                                     BBWeight.getValue(), BlockWorkList,
831                                     LoopWorkList);
832 
833   // BlockWorklist/LoopWorkList contains blocks/loops with at least one
834   // successor/exit having estimated weight. Try to propagate weight to such
835   // blocks/loops from successors/exits.
836   // Process loops and blocks. Order is not important.
837   do {
838     while (!LoopWorkList.empty()) {
839       const LoopBlock LoopBB = LoopWorkList.pop_back_val();
840 
841       if (EstimatedLoopWeight.count(LoopBB.getLoopData()))
842         continue;
843 
844       SmallVector<BasicBlock *, 4> Exits;
845       getLoopExitBlocks(LoopBB, Exits);
846       auto LoopWeight = getMaxEstimatedEdgeWeight(
847           LoopBB, make_range(Exits.begin(), Exits.end()));
848 
849       if (LoopWeight) {
850         // If we never exit the loop then we can enter it once at maximum.
851         if (LoopWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
852           LoopWeight = static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
853 
854         EstimatedLoopWeight.insert(
855             {LoopBB.getLoopData(), LoopWeight.getValue()});
856         // Add all blocks entering the loop into working list.
857         getLoopEnterBlocks(LoopBB, BlockWorkList);
858       }
859     }
860 
861     while (!BlockWorkList.empty()) {
862       // We can reach here only if BlockWorkList is not empty.
863       const BasicBlock *BB = BlockWorkList.pop_back_val();
864       if (EstimatedBlockWeight.count(BB))
865         continue;
866 
867       // We take maximum over all weights of successors. In other words we take
868       // weight of "hot" path. In theory we can probably find a better function
869       // which gives higher accuracy results (comparing to "maximum") but I
870       // can't
871       // think of any right now. And I doubt it will make any difference in
872       // practice.
873       const LoopBlock LoopBB = getLoopBlock(BB);
874       auto MaxWeight = getMaxEstimatedEdgeWeight(LoopBB, successors(BB));
875 
876       if (MaxWeight)
877         propagateEstimatedBlockWeight(LoopBB, DT, PDT, MaxWeight.getValue(),
878                                       BlockWorkList, LoopWorkList);
879     }
880   } while (!BlockWorkList.empty() || !LoopWorkList.empty());
881 }
882 
883 // Calculate edge probabilities based on block's estimated weight.
884 // Note that gathered weights were not scaled for loops. Thus edges entering
885 // and exiting loops requires special processing.
886 bool BranchProbabilityInfo::calcEstimatedHeuristics(const BasicBlock *BB) {
887   assert(BB->getTerminator()->getNumSuccessors() > 1 &&
888          "expected more than one successor!");
889 
890   const LoopBlock LoopBB = getLoopBlock(BB);
891 
892   SmallPtrSet<const BasicBlock *, 8> UnlikelyBlocks;
893   uint32_t TC = LBH_TAKEN_WEIGHT / LBH_NONTAKEN_WEIGHT;
894   if (LoopBB.getLoop())
895     computeUnlikelySuccessors(BB, LoopBB.getLoop(), UnlikelyBlocks);
896 
897   // Changed to 'true' if at least one successor has estimated weight.
898   bool FoundEstimatedWeight = false;
899   SmallVector<uint32_t, 4> SuccWeights;
900   uint64_t TotalWeight = 0;
901   // Go over all successors of BB and put their weights into SuccWeights.
902   for (const BasicBlock *SuccBB : successors(BB)) {
903     Optional<uint32_t> Weight;
904     const LoopBlock SuccLoopBB = getLoopBlock(SuccBB);
905     const LoopEdge Edge{LoopBB, SuccLoopBB};
906 
907     Weight = getEstimatedEdgeWeight(Edge);
908 
909     if (isLoopExitingEdge(Edge) &&
910         // Avoid adjustment of ZERO weight since it should remain unchanged.
911         Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
912       // Scale down loop exiting weight by trip count.
913       Weight = std::max(
914           static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
915           Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) /
916               TC);
917     }
918     bool IsUnlikelyEdge = LoopBB.getLoop() && UnlikelyBlocks.contains(SuccBB);
919     if (IsUnlikelyEdge &&
920         // Avoid adjustment of ZERO weight since it should remain unchanged.
921         Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
922       // 'Unlikely' blocks have twice lower weight.
923       Weight = std::max(
924           static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
925           Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) /
926               2);
927     }
928 
929     if (Weight)
930       FoundEstimatedWeight = true;
931 
932     auto WeightVal =
933         Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT));
934     TotalWeight += WeightVal;
935     SuccWeights.push_back(WeightVal);
936   }
937 
938   // If non of blocks have estimated weight bail out.
939   // If TotalWeight is 0 that means weight of each successor is 0 as well and
940   // equally likely. Bail out early to not deal with devision by zero.
941   if (!FoundEstimatedWeight || TotalWeight == 0)
942     return false;
943 
944   assert(SuccWeights.size() == succ_size(BB) && "Missed successor?");
945   const unsigned SuccCount = SuccWeights.size();
946 
947   // If the sum of weights does not fit in 32 bits, scale every weight down
948   // accordingly.
949   if (TotalWeight > UINT32_MAX) {
950     uint64_t ScalingFactor = TotalWeight / UINT32_MAX + 1;
951     TotalWeight = 0;
952     for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
953       SuccWeights[Idx] /= ScalingFactor;
954       if (SuccWeights[Idx] == static_cast<uint32_t>(BlockExecWeight::ZERO))
955         SuccWeights[Idx] =
956             static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
957       TotalWeight += SuccWeights[Idx];
958     }
959     assert(TotalWeight <= UINT32_MAX && "Total weight overflows");
960   }
961 
962   // Finally set probabilities to edges according to estimated block weights.
963   SmallVector<BranchProbability, 4> EdgeProbabilities(
964       SuccCount, BranchProbability::getUnknown());
965 
966   for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
967     EdgeProbabilities[Idx] =
968         BranchProbability(SuccWeights[Idx], (uint32_t)TotalWeight);
969   }
970   setEdgeProbability(BB, EdgeProbabilities);
971   return true;
972 }
973 
974 bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
975                                                const TargetLibraryInfo *TLI) {
976   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
977   if (!BI || !BI->isConditional())
978     return false;
979 
980   Value *Cond = BI->getCondition();
981   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
982   if (!CI)
983     return false;
984 
985   auto GetConstantInt = [](Value *V) {
986     if (auto *I = dyn_cast<BitCastInst>(V))
987       return dyn_cast<ConstantInt>(I->getOperand(0));
988     return dyn_cast<ConstantInt>(V);
989   };
990 
991   Value *RHS = CI->getOperand(1);
992   ConstantInt *CV = GetConstantInt(RHS);
993   if (!CV)
994     return false;
995 
996   // If the LHS is the result of AND'ing a value with a single bit bitmask,
997   // we don't have information about probabilities.
998   if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
999     if (LHS->getOpcode() == Instruction::And)
1000       if (ConstantInt *AndRHS = GetConstantInt(LHS->getOperand(1)))
1001         if (AndRHS->getValue().isPowerOf2())
1002           return false;
1003 
1004   // Check if the LHS is the return value of a library function
1005   LibFunc Func = NumLibFuncs;
1006   if (TLI)
1007     if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
1008       if (Function *CalledFn = Call->getCalledFunction())
1009         TLI->getLibFunc(*CalledFn, Func);
1010 
1011   ProbabilityTable::const_iterator Search;
1012   if (Func == LibFunc_strcasecmp ||
1013       Func == LibFunc_strcmp ||
1014       Func == LibFunc_strncasecmp ||
1015       Func == LibFunc_strncmp ||
1016       Func == LibFunc_memcmp ||
1017       Func == LibFunc_bcmp) {
1018     Search = ICmpWithLibCallTable.find(CI->getPredicate());
1019     if (Search == ICmpWithLibCallTable.end())
1020       return false;
1021   } else if (CV->isZero()) {
1022     Search = ICmpWithZeroTable.find(CI->getPredicate());
1023     if (Search == ICmpWithZeroTable.end())
1024       return false;
1025   } else if (CV->isOne()) {
1026     Search = ICmpWithOneTable.find(CI->getPredicate());
1027     if (Search == ICmpWithOneTable.end())
1028       return false;
1029   } else if (CV->isMinusOne()) {
1030     Search = ICmpWithMinusOneTable.find(CI->getPredicate());
1031     if (Search == ICmpWithMinusOneTable.end())
1032       return false;
1033   } else {
1034     return false;
1035   }
1036 
1037   setEdgeProbability(BB, Search->second);
1038   return true;
1039 }
1040 
1041 bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
1042   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
1043   if (!BI || !BI->isConditional())
1044     return false;
1045 
1046   Value *Cond = BI->getCondition();
1047   FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
1048   if (!FCmp)
1049     return false;
1050 
1051   ProbabilityList ProbList;
1052   if (FCmp->isEquality()) {
1053     ProbList = !FCmp->isTrueWhenEqual() ?
1054       // f1 == f2 -> Unlikely
1055       ProbabilityList({FPTakenProb, FPUntakenProb}) :
1056       // f1 != f2 -> Likely
1057       ProbabilityList({FPUntakenProb, FPTakenProb});
1058   } else {
1059     auto Search = FCmpTable.find(FCmp->getPredicate());
1060     if (Search == FCmpTable.end())
1061       return false;
1062     ProbList = Search->second;
1063   }
1064 
1065   setEdgeProbability(BB, ProbList);
1066   return true;
1067 }
1068 
1069 void BranchProbabilityInfo::releaseMemory() {
1070   Probs.clear();
1071   Handles.clear();
1072 }
1073 
1074 bool BranchProbabilityInfo::invalidate(Function &, const PreservedAnalyses &PA,
1075                                        FunctionAnalysisManager::Invalidator &) {
1076   // Check whether the analysis, all analyses on functions, or the function's
1077   // CFG have been preserved.
1078   auto PAC = PA.getChecker<BranchProbabilityAnalysis>();
1079   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
1080            PAC.preservedSet<CFGAnalyses>());
1081 }
1082 
1083 void BranchProbabilityInfo::print(raw_ostream &OS) const {
1084   OS << "---- Branch Probabilities ----\n";
1085   // We print the probabilities from the last function the analysis ran over,
1086   // or the function it is currently running over.
1087   assert(LastF && "Cannot print prior to running over a function");
1088   for (const auto &BI : *LastF) {
1089     for (const BasicBlock *Succ : successors(&BI))
1090       printEdgeProbability(OS << "  ", &BI, Succ);
1091   }
1092 }
1093 
1094 bool BranchProbabilityInfo::
1095 isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
1096   // Hot probability is at least 4/5 = 80%
1097   // FIXME: Compare against a static "hot" BranchProbability.
1098   return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
1099 }
1100 
1101 /// Get the raw edge probability for the edge. If can't find it, return a
1102 /// default probability 1/N where N is the number of successors. Here an edge is
1103 /// specified using PredBlock and an
1104 /// index to the successors.
1105 BranchProbability
1106 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1107                                           unsigned IndexInSuccessors) const {
1108   auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));
1109   assert((Probs.end() == Probs.find(std::make_pair(Src, 0))) ==
1110              (Probs.end() == I) &&
1111          "Probability for I-th successor must always be defined along with the "
1112          "probability for the first successor");
1113 
1114   if (I != Probs.end())
1115     return I->second;
1116 
1117   return {1, static_cast<uint32_t>(succ_size(Src))};
1118 }
1119 
1120 BranchProbability
1121 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1122                                           const_succ_iterator Dst) const {
1123   return getEdgeProbability(Src, Dst.getSuccessorIndex());
1124 }
1125 
1126 /// Get the raw edge probability calculated for the block pair. This returns the
1127 /// sum of all raw edge probabilities from Src to Dst.
1128 BranchProbability
1129 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1130                                           const BasicBlock *Dst) const {
1131   if (!Probs.count(std::make_pair(Src, 0)))
1132     return BranchProbability(llvm::count(successors(Src), Dst), succ_size(Src));
1133 
1134   auto Prob = BranchProbability::getZero();
1135   for (const_succ_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
1136     if (*I == Dst)
1137       Prob += Probs.find(std::make_pair(Src, I.getSuccessorIndex()))->second;
1138 
1139   return Prob;
1140 }
1141 
1142 /// Set the edge probability for all edges at once.
1143 void BranchProbabilityInfo::setEdgeProbability(
1144     const BasicBlock *Src, const SmallVectorImpl<BranchProbability> &Probs) {
1145   assert(Src->getTerminator()->getNumSuccessors() == Probs.size());
1146   eraseBlock(Src); // Erase stale data if any.
1147   if (Probs.size() == 0)
1148     return; // Nothing to set.
1149 
1150   Handles.insert(BasicBlockCallbackVH(Src, this));
1151   uint64_t TotalNumerator = 0;
1152   for (unsigned SuccIdx = 0; SuccIdx < Probs.size(); ++SuccIdx) {
1153     this->Probs[std::make_pair(Src, SuccIdx)] = Probs[SuccIdx];
1154     LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << SuccIdx
1155                       << " successor probability to " << Probs[SuccIdx]
1156                       << "\n");
1157     TotalNumerator += Probs[SuccIdx].getNumerator();
1158   }
1159 
1160   // Because of rounding errors the total probability cannot be checked to be
1161   // 1.0 exactly. That is TotalNumerator == BranchProbability::getDenominator.
1162   // Instead, every single probability in Probs must be as accurate as possible.
1163   // This results in error 1/denominator at most, thus the total absolute error
1164   // should be within Probs.size / BranchProbability::getDenominator.
1165   assert(TotalNumerator <= BranchProbability::getDenominator() + Probs.size());
1166   assert(TotalNumerator >= BranchProbability::getDenominator() - Probs.size());
1167   (void)TotalNumerator;
1168 }
1169 
1170 void BranchProbabilityInfo::copyEdgeProbabilities(BasicBlock *Src,
1171                                                   BasicBlock *Dst) {
1172   eraseBlock(Dst); // Erase stale data if any.
1173   unsigned NumSuccessors = Src->getTerminator()->getNumSuccessors();
1174   assert(NumSuccessors == Dst->getTerminator()->getNumSuccessors());
1175   if (NumSuccessors == 0)
1176     return; // Nothing to set.
1177   if (this->Probs.find(std::make_pair(Src, 0)) == this->Probs.end())
1178     return; // No probability is set for edges from Src. Keep the same for Dst.
1179 
1180   Handles.insert(BasicBlockCallbackVH(Dst, this));
1181   for (unsigned SuccIdx = 0; SuccIdx < NumSuccessors; ++SuccIdx) {
1182     auto Prob = this->Probs[std::make_pair(Src, SuccIdx)];
1183     this->Probs[std::make_pair(Dst, SuccIdx)] = Prob;
1184     LLVM_DEBUG(dbgs() << "set edge " << Dst->getName() << " -> " << SuccIdx
1185                       << " successor probability to " << Prob << "\n");
1186   }
1187 }
1188 
1189 raw_ostream &
1190 BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
1191                                             const BasicBlock *Src,
1192                                             const BasicBlock *Dst) const {
1193   const BranchProbability Prob = getEdgeProbability(Src, Dst);
1194   OS << "edge " << Src->getName() << " -> " << Dst->getName()
1195      << " probability is " << Prob
1196      << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
1197 
1198   return OS;
1199 }
1200 
1201 void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
1202   LLVM_DEBUG(dbgs() << "eraseBlock " << BB->getName() << "\n");
1203 
1204   // Note that we cannot use successors of BB because the terminator of BB may
1205   // have changed when eraseBlock is called as a BasicBlockCallbackVH callback.
1206   // Instead we remove prob data for the block by iterating successors by their
1207   // indices from 0 till the last which exists. There could not be prob data for
1208   // a pair (BB, N) if there is no data for (BB, N-1) because the data is always
1209   // set for all successors from 0 to M at once by the method
1210   // setEdgeProbability().
1211   Handles.erase(BasicBlockCallbackVH(BB, this));
1212   for (unsigned I = 0;; ++I) {
1213     auto MapI = Probs.find(std::make_pair(BB, I));
1214     if (MapI == Probs.end()) {
1215       assert(Probs.count(std::make_pair(BB, I + 1)) == 0 &&
1216              "Must be no more successors");
1217       return;
1218     }
1219     Probs.erase(MapI);
1220   }
1221 }
1222 
1223 void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LoopI,
1224                                       const TargetLibraryInfo *TLI,
1225                                       DominatorTree *DT,
1226                                       PostDominatorTree *PDT) {
1227   LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
1228                     << " ----\n\n");
1229   LastF = &F; // Store the last function we ran on for printing.
1230   LI = &LoopI;
1231 
1232   SccI = std::make_unique<SccInfo>(F);
1233 
1234   assert(EstimatedBlockWeight.empty());
1235   assert(EstimatedLoopWeight.empty());
1236 
1237   std::unique_ptr<DominatorTree> DTPtr;
1238   std::unique_ptr<PostDominatorTree> PDTPtr;
1239 
1240   if (!DT) {
1241     DTPtr = std::make_unique<DominatorTree>(const_cast<Function &>(F));
1242     DT = DTPtr.get();
1243   }
1244 
1245   if (!PDT) {
1246     PDTPtr = std::make_unique<PostDominatorTree>(const_cast<Function &>(F));
1247     PDT = PDTPtr.get();
1248   }
1249 
1250   computeEestimateBlockWeight(F, DT, PDT);
1251 
1252   // Walk the basic blocks in post-order so that we can build up state about
1253   // the successors of a block iteratively.
1254   for (auto BB : post_order(&F.getEntryBlock())) {
1255     LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName()
1256                       << "\n");
1257     // If there is no at least two successors, no sense to set probability.
1258     if (BB->getTerminator()->getNumSuccessors() < 2)
1259       continue;
1260     if (calcMetadataWeights(BB))
1261       continue;
1262     if (calcEstimatedHeuristics(BB))
1263       continue;
1264     if (calcPointerHeuristics(BB))
1265       continue;
1266     if (calcZeroHeuristics(BB, TLI))
1267       continue;
1268     if (calcFloatingPointHeuristics(BB))
1269       continue;
1270   }
1271 
1272   EstimatedLoopWeight.clear();
1273   EstimatedBlockWeight.clear();
1274   SccI.reset();
1275 
1276   if (PrintBranchProb &&
1277       (PrintBranchProbFuncName.empty() ||
1278        F.getName().equals(PrintBranchProbFuncName))) {
1279     print(dbgs());
1280   }
1281 }
1282 
1283 void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
1284     AnalysisUsage &AU) const {
1285   // We require DT so it's available when LI is available. The LI updating code
1286   // asserts that DT is also present so if we don't make sure that we have DT
1287   // here, that assert will trigger.
1288   AU.addRequired<DominatorTreeWrapperPass>();
1289   AU.addRequired<LoopInfoWrapperPass>();
1290   AU.addRequired<TargetLibraryInfoWrapperPass>();
1291   AU.addRequired<DominatorTreeWrapperPass>();
1292   AU.addRequired<PostDominatorTreeWrapperPass>();
1293   AU.setPreservesAll();
1294 }
1295 
1296 bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
1297   const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1298   const TargetLibraryInfo &TLI =
1299       getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1300   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1301   PostDominatorTree &PDT =
1302       getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1303   BPI.calculate(F, LI, &TLI, &DT, &PDT);
1304   return false;
1305 }
1306 
1307 void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }
1308 
1309 void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
1310                                              const Module *) const {
1311   BPI.print(OS);
1312 }
1313 
1314 AnalysisKey BranchProbabilityAnalysis::Key;
1315 BranchProbabilityInfo
1316 BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1317   BranchProbabilityInfo BPI;
1318   BPI.calculate(F, AM.getResult<LoopAnalysis>(F),
1319                 &AM.getResult<TargetLibraryAnalysis>(F),
1320                 &AM.getResult<DominatorTreeAnalysis>(F),
1321                 &AM.getResult<PostDominatorTreeAnalysis>(F));
1322   return BPI;
1323 }
1324 
1325 PreservedAnalyses
1326 BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
1327   OS << "Printing analysis results of BPI for function "
1328      << "'" << F.getName() << "':"
1329      << "\n";
1330   AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
1331   return PreservedAnalyses::all();
1332 }
1333