1 //===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the classes used to generate code from scalar expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_TRANSFORMS_UTILS_SCALAREVOLUTIONEXPANDER_H 14 #define LLVM_TRANSFORMS_UTILS_SCALAREVOLUTIONEXPANDER_H 15 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/InstSimplifyFolder.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/IR/IRBuilder.h" 24 #include "llvm/IR/ValueHandle.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/InstructionCost.h" 27 28 namespace llvm { 29 extern cl::opt<unsigned> SCEVCheapExpansionBudget; 30 31 /// Return true if the given expression is safe to expand in the sense that 32 /// all materialized values are safe to speculate anywhere their operands are 33 /// defined, and the expander is capable of expanding the expression. 34 /// CanonicalMode indicates whether the expander will be used in canonical mode. 35 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE, 36 bool CanonicalMode = true); 37 38 /// Return true if the given expression is safe to expand in the sense that 39 /// all materialized values are defined and safe to speculate at the specified 40 /// location and their operands are defined at this location. 41 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint, 42 ScalarEvolution &SE); 43 44 /// struct for holding enough information to help calculate the cost of the 45 /// given SCEV when expanded into IR. 46 struct SCEVOperand { 47 explicit SCEVOperand(unsigned Opc, int Idx, const SCEV *S) : 48 ParentOpcode(Opc), OperandIdx(Idx), S(S) { } 49 /// LLVM instruction opcode that uses the operand. 50 unsigned ParentOpcode; 51 /// The use index of an expanded instruction. 52 int OperandIdx; 53 /// The SCEV operand to be costed. 54 const SCEV* S; 55 }; 56 57 /// This class uses information about analyze scalars to rewrite expressions 58 /// in canonical form. 59 /// 60 /// Clients should create an instance of this class when rewriting is needed, 61 /// and destroy it when finished to allow the release of the associated 62 /// memory. 63 class SCEVExpander : public SCEVVisitor<SCEVExpander, Value *> { 64 ScalarEvolution &SE; 65 const DataLayout &DL; 66 67 // New instructions receive a name to identify them with the current pass. 68 const char *IVName; 69 70 /// Indicates whether LCSSA phis should be created for inserted values. 71 bool PreserveLCSSA; 72 73 // InsertedExpressions caches Values for reuse, so must track RAUW. 74 DenseMap<std::pair<const SCEV *, Instruction *>, TrackingVH<Value>> 75 InsertedExpressions; 76 77 // InsertedValues only flags inserted instructions so needs no RAUW. 78 DenseSet<AssertingVH<Value>> InsertedValues; 79 DenseSet<AssertingVH<Value>> InsertedPostIncValues; 80 81 /// Keep track of the existing IR values re-used during expansion. 82 /// FIXME: Ideally re-used instructions would not be added to 83 /// InsertedValues/InsertedPostIncValues. 84 SmallPtrSet<Value *, 16> ReusedValues; 85 86 // The induction variables generated. 87 SmallVector<WeakVH, 2> InsertedIVs; 88 89 /// A memoization of the "relevant" loop for a given SCEV. 90 DenseMap<const SCEV *, const Loop *> RelevantLoops; 91 92 /// Addrecs referring to any of the given loops are expanded in post-inc 93 /// mode. For example, expanding {1,+,1}<L> in post-inc mode returns the add 94 /// instruction that adds one to the phi for {0,+,1}<L>, as opposed to a new 95 /// phi starting at 1. This is only supported in non-canonical mode. 96 PostIncLoopSet PostIncLoops; 97 98 /// When this is non-null, addrecs expanded in the loop it indicates should 99 /// be inserted with increments at IVIncInsertPos. 100 const Loop *IVIncInsertLoop; 101 102 /// When expanding addrecs in the IVIncInsertLoop loop, insert the IV 103 /// increment at this position. 104 Instruction *IVIncInsertPos; 105 106 /// Phis that complete an IV chain. Reuse 107 DenseSet<AssertingVH<PHINode>> ChainedPhis; 108 109 /// When true, SCEVExpander tries to expand expressions in "canonical" form. 110 /// When false, expressions are expanded in a more literal form. 111 /// 112 /// In "canonical" form addrecs are expanded as arithmetic based on a 113 /// canonical induction variable. Note that CanonicalMode doesn't guarantee 114 /// that all expressions are expanded in "canonical" form. For some 115 /// expressions literal mode can be preferred. 116 bool CanonicalMode; 117 118 /// When invoked from LSR, the expander is in "strength reduction" mode. The 119 /// only difference is that phi's are only reused if they are already in 120 /// "expanded" form. 121 bool LSRMode; 122 123 typedef IRBuilder<InstSimplifyFolder, IRBuilderCallbackInserter> BuilderType; 124 BuilderType Builder; 125 126 // RAII object that stores the current insertion point and restores it when 127 // the object is destroyed. This includes the debug location. Duplicated 128 // from InsertPointGuard to add SetInsertPoint() which is used to updated 129 // InsertPointGuards stack when insert points are moved during SCEV 130 // expansion. 131 class SCEVInsertPointGuard { 132 IRBuilderBase &Builder; 133 AssertingVH<BasicBlock> Block; 134 BasicBlock::iterator Point; 135 DebugLoc DbgLoc; 136 SCEVExpander *SE; 137 138 SCEVInsertPointGuard(const SCEVInsertPointGuard &) = delete; 139 SCEVInsertPointGuard &operator=(const SCEVInsertPointGuard &) = delete; 140 141 public: 142 SCEVInsertPointGuard(IRBuilderBase &B, SCEVExpander *SE) 143 : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()), 144 DbgLoc(B.getCurrentDebugLocation()), SE(SE) { 145 SE->InsertPointGuards.push_back(this); 146 } 147 148 ~SCEVInsertPointGuard() { 149 // These guards should always created/destroyed in FIFO order since they 150 // are used to guard lexically scoped blocks of code in 151 // ScalarEvolutionExpander. 152 assert(SE->InsertPointGuards.back() == this); 153 SE->InsertPointGuards.pop_back(); 154 Builder.restoreIP(IRBuilderBase::InsertPoint(Block, Point)); 155 Builder.SetCurrentDebugLocation(DbgLoc); 156 } 157 158 BasicBlock::iterator GetInsertPoint() const { return Point; } 159 void SetInsertPoint(BasicBlock::iterator I) { Point = I; } 160 }; 161 162 /// Stack of pointers to saved insert points, used to keep insert points 163 /// consistent when instructions are moved. 164 SmallVector<SCEVInsertPointGuard *, 8> InsertPointGuards; 165 166 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 167 const char *DebugType; 168 #endif 169 170 friend struct SCEVVisitor<SCEVExpander, Value *>; 171 172 public: 173 /// Construct a SCEVExpander in "canonical" mode. 174 explicit SCEVExpander(ScalarEvolution &se, const DataLayout &DL, 175 const char *name, bool PreserveLCSSA = true) 176 : SE(se), DL(DL), IVName(name), PreserveLCSSA(PreserveLCSSA), 177 IVIncInsertLoop(nullptr), IVIncInsertPos(nullptr), CanonicalMode(true), 178 LSRMode(false), 179 Builder(se.getContext(), InstSimplifyFolder(DL), 180 IRBuilderCallbackInserter( 181 [this](Instruction *I) { rememberInstruction(I); })) { 182 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 183 DebugType = ""; 184 #endif 185 } 186 187 ~SCEVExpander() { 188 // Make sure the insert point guard stack is consistent. 189 assert(InsertPointGuards.empty()); 190 } 191 192 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 193 void setDebugType(const char *s) { DebugType = s; } 194 #endif 195 196 /// Erase the contents of the InsertedExpressions map so that users trying 197 /// to expand the same expression into multiple BasicBlocks or different 198 /// places within the same BasicBlock can do so. 199 void clear() { 200 InsertedExpressions.clear(); 201 InsertedValues.clear(); 202 InsertedPostIncValues.clear(); 203 ReusedValues.clear(); 204 ChainedPhis.clear(); 205 InsertedIVs.clear(); 206 } 207 208 ScalarEvolution *getSE() { return &SE; } 209 const SmallVectorImpl<WeakVH> &getInsertedIVs() const { return InsertedIVs; } 210 211 /// Return a vector containing all instructions inserted during expansion. 212 SmallVector<Instruction *, 32> getAllInsertedInstructions() const { 213 SmallVector<Instruction *, 32> Result; 214 for (auto &VH : InsertedValues) { 215 Value *V = VH; 216 if (ReusedValues.contains(V)) 217 continue; 218 if (auto *Inst = dyn_cast<Instruction>(V)) 219 Result.push_back(Inst); 220 } 221 for (auto &VH : InsertedPostIncValues) { 222 Value *V = VH; 223 if (ReusedValues.contains(V)) 224 continue; 225 if (auto *Inst = dyn_cast<Instruction>(V)) 226 Result.push_back(Inst); 227 } 228 229 return Result; 230 } 231 232 /// Return true for expressions that can't be evaluated at runtime 233 /// within given \b Budget. 234 /// 235 /// At is a parameter which specifies point in code where user is going to 236 /// expand this expression. Sometimes this knowledge can lead to 237 /// a less pessimistic cost estimation. 238 bool isHighCostExpansion(const SCEV *Expr, Loop *L, unsigned Budget, 239 const TargetTransformInfo *TTI, 240 const Instruction *At) { 241 assert(TTI && "This function requires TTI to be provided."); 242 assert(At && "This function requires At instruction to be provided."); 243 if (!TTI) // In assert-less builds, avoid crashing 244 return true; // by always claiming to be high-cost. 245 SmallVector<SCEVOperand, 8> Worklist; 246 SmallPtrSet<const SCEV *, 8> Processed; 247 InstructionCost Cost = 0; 248 unsigned ScaledBudget = Budget * TargetTransformInfo::TCC_Basic; 249 Worklist.emplace_back(-1, -1, Expr); 250 while (!Worklist.empty()) { 251 const SCEVOperand WorkItem = Worklist.pop_back_val(); 252 if (isHighCostExpansionHelper(WorkItem, L, *At, Cost, ScaledBudget, *TTI, 253 Processed, Worklist)) 254 return true; 255 } 256 assert(Cost <= ScaledBudget && "Should have returned from inner loop."); 257 return false; 258 } 259 260 /// Return the induction variable increment's IV operand. 261 Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos, 262 bool allowScale); 263 264 /// Utility for hoisting an IV increment. 265 bool hoistIVInc(Instruction *IncV, Instruction *InsertPos); 266 267 /// replace congruent phis with their most canonical representative. Return 268 /// the number of phis eliminated. 269 unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT, 270 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 271 const TargetTransformInfo *TTI = nullptr); 272 273 /// Insert code to directly compute the specified SCEV expression into the 274 /// program. The code is inserted into the specified block. 275 Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I) { 276 return expandCodeForImpl(SH, Ty, I, true); 277 } 278 279 /// Insert code to directly compute the specified SCEV expression into the 280 /// program. The code is inserted into the SCEVExpander's current 281 /// insertion point. If a type is specified, the result will be expanded to 282 /// have that type, with a cast if necessary. 283 Value *expandCodeFor(const SCEV *SH, Type *Ty = nullptr) { 284 return expandCodeForImpl(SH, Ty, true); 285 } 286 287 /// Generates a code sequence that evaluates this predicate. The inserted 288 /// instructions will be at position \p Loc. The result will be of type i1 289 /// and will have a value of 0 when the predicate is false and 1 otherwise. 290 Value *expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc); 291 292 /// A specialized variant of expandCodeForPredicate, handling the case when 293 /// we are expanding code for a SCEVComparePredicate. 294 Value *expandComparePredicate(const SCEVComparePredicate *Pred, 295 Instruction *Loc); 296 297 /// Generates code that evaluates if the \p AR expression will overflow. 298 Value *generateOverflowCheck(const SCEVAddRecExpr *AR, Instruction *Loc, 299 bool Signed); 300 301 /// A specialized variant of expandCodeForPredicate, handling the case when 302 /// we are expanding code for a SCEVWrapPredicate. 303 Value *expandWrapPredicate(const SCEVWrapPredicate *P, Instruction *Loc); 304 305 /// A specialized variant of expandCodeForPredicate, handling the case when 306 /// we are expanding code for a SCEVUnionPredicate. 307 Value *expandUnionPredicate(const SCEVUnionPredicate *Pred, Instruction *Loc); 308 309 /// Set the current IV increment loop and position. 310 void setIVIncInsertPos(const Loop *L, Instruction *Pos) { 311 assert(!CanonicalMode && 312 "IV increment positions are not supported in CanonicalMode"); 313 IVIncInsertLoop = L; 314 IVIncInsertPos = Pos; 315 } 316 317 /// Enable post-inc expansion for addrecs referring to the given 318 /// loops. Post-inc expansion is only supported in non-canonical mode. 319 void setPostInc(const PostIncLoopSet &L) { 320 assert(!CanonicalMode && 321 "Post-inc expansion is not supported in CanonicalMode"); 322 PostIncLoops = L; 323 } 324 325 /// Disable all post-inc expansion. 326 void clearPostInc() { 327 PostIncLoops.clear(); 328 329 // When we change the post-inc loop set, cached expansions may no 330 // longer be valid. 331 InsertedPostIncValues.clear(); 332 } 333 334 /// Disable the behavior of expanding expressions in canonical form rather 335 /// than in a more literal form. Non-canonical mode is useful for late 336 /// optimization passes. 337 void disableCanonicalMode() { CanonicalMode = false; } 338 339 void enableLSRMode() { LSRMode = true; } 340 341 /// Set the current insertion point. This is useful if multiple calls to 342 /// expandCodeFor() are going to be made with the same insert point and the 343 /// insert point may be moved during one of the expansions (e.g. if the 344 /// insert point is not a block terminator). 345 void setInsertPoint(Instruction *IP) { 346 assert(IP); 347 Builder.SetInsertPoint(IP); 348 } 349 350 /// Clear the current insertion point. This is useful if the instruction 351 /// that had been serving as the insertion point may have been deleted. 352 void clearInsertPoint() { Builder.ClearInsertionPoint(); } 353 354 /// Set location information used by debugging information. 355 void SetCurrentDebugLocation(DebugLoc L) { 356 Builder.SetCurrentDebugLocation(std::move(L)); 357 } 358 359 /// Get location information used by debugging information. 360 DebugLoc getCurrentDebugLocation() const { 361 return Builder.getCurrentDebugLocation(); 362 } 363 364 /// Return true if the specified instruction was inserted by the code 365 /// rewriter. If so, the client should not modify the instruction. Note that 366 /// this also includes instructions re-used during expansion. 367 bool isInsertedInstruction(Instruction *I) const { 368 return InsertedValues.count(I) || InsertedPostIncValues.count(I); 369 } 370 371 void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); } 372 373 /// Try to find the ValueOffsetPair for S. The function is mainly used to 374 /// check whether S can be expanded cheaply. If this returns a non-None 375 /// value, we know we can codegen the `ValueOffsetPair` into a suitable 376 /// expansion identical with S so that S can be expanded cheaply. 377 /// 378 /// L is a hint which tells in which loop to look for the suitable value. 379 /// On success return value which is equivalent to the expanded S at point 380 /// At. Return nullptr if value was not found. 381 /// 382 /// Note that this function does not perform an exhaustive search. I.e if it 383 /// didn't find any value it does not mean that there is no such value. 384 /// 385 Value *getRelatedExistingExpansion(const SCEV *S, const Instruction *At, 386 Loop *L); 387 388 /// Returns a suitable insert point after \p I, that dominates \p 389 /// MustDominate. Skips instructions inserted by the expander. 390 BasicBlock::iterator findInsertPointAfter(Instruction *I, 391 Instruction *MustDominate) const; 392 393 private: 394 LLVMContext &getContext() const { return SE.getContext(); } 395 396 /// Insert code to directly compute the specified SCEV expression into the 397 /// program. The code is inserted into the SCEVExpander's current 398 /// insertion point. If a type is specified, the result will be expanded to 399 /// have that type, with a cast if necessary. If \p Root is true, this 400 /// indicates that \p SH is the top-level expression to expand passed from 401 /// an external client call. 402 Value *expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root); 403 404 /// Insert code to directly compute the specified SCEV expression into the 405 /// program. The code is inserted into the specified block. If \p 406 /// Root is true, this indicates that \p SH is the top-level expression to 407 /// expand passed from an external client call. 408 Value *expandCodeForImpl(const SCEV *SH, Type *Ty, Instruction *I, bool Root); 409 410 /// Recursive helper function for isHighCostExpansion. 411 bool isHighCostExpansionHelper(const SCEVOperand &WorkItem, Loop *L, 412 const Instruction &At, InstructionCost &Cost, 413 unsigned Budget, 414 const TargetTransformInfo &TTI, 415 SmallPtrSetImpl<const SCEV *> &Processed, 416 SmallVectorImpl<SCEVOperand> &Worklist); 417 418 /// Insert the specified binary operator, doing a small amount of work to 419 /// avoid inserting an obviously redundant operation, and hoisting to an 420 /// outer loop when the opportunity is there and it is safe. 421 Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 422 SCEV::NoWrapFlags Flags, bool IsSafeToHoist); 423 424 /// We want to cast \p V. What would be the best place for such a cast? 425 BasicBlock::iterator GetOptimalInsertionPointForCastOf(Value *V) const; 426 427 /// Arrange for there to be a cast of V to Ty at IP, reusing an existing 428 /// cast if a suitable one exists, moving an existing cast if a suitable one 429 /// exists but isn't in the right place, or creating a new one. 430 Value *ReuseOrCreateCast(Value *V, Type *Ty, Instruction::CastOps Op, 431 BasicBlock::iterator IP); 432 433 /// Insert a cast of V to the specified type, which must be possible with a 434 /// noop cast, doing what we can to share the casts. 435 Value *InsertNoopCastOfTo(Value *V, Type *Ty); 436 437 /// Expand a SCEVAddExpr with a pointer type into a GEP instead of using 438 /// ptrtoint+arithmetic+inttoptr. 439 Value *expandAddToGEP(const SCEV *const *op_begin, const SCEV *const *op_end, 440 PointerType *PTy, Type *Ty, Value *V); 441 Value *expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, Value *V); 442 443 /// Find a previous Value in ExprValueMap for expand. 444 Value *FindValueInExprValueMap(const SCEV *S, const Instruction *InsertPt); 445 446 Value *expand(const SCEV *S); 447 448 /// Determine the most "relevant" loop for the given SCEV. 449 const Loop *getRelevantLoop(const SCEV *); 450 451 Value *expandMinMaxExpr(const SCEVNAryExpr *S, Intrinsic::ID IntrinID, 452 Twine Name, bool IsSequential = false); 453 454 Value *visitConstant(const SCEVConstant *S) { return S->getValue(); } 455 456 Value *visitPtrToIntExpr(const SCEVPtrToIntExpr *S); 457 458 Value *visitTruncateExpr(const SCEVTruncateExpr *S); 459 460 Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S); 461 462 Value *visitSignExtendExpr(const SCEVSignExtendExpr *S); 463 464 Value *visitAddExpr(const SCEVAddExpr *S); 465 466 Value *visitMulExpr(const SCEVMulExpr *S); 467 468 Value *visitUDivExpr(const SCEVUDivExpr *S); 469 470 Value *visitAddRecExpr(const SCEVAddRecExpr *S); 471 472 Value *visitSMaxExpr(const SCEVSMaxExpr *S); 473 474 Value *visitUMaxExpr(const SCEVUMaxExpr *S); 475 476 Value *visitSMinExpr(const SCEVSMinExpr *S); 477 478 Value *visitUMinExpr(const SCEVUMinExpr *S); 479 480 Value *visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S); 481 482 Value *visitUnknown(const SCEVUnknown *S) { return S->getValue(); } 483 484 void rememberInstruction(Value *I); 485 486 bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L); 487 488 bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L); 489 490 Value *expandAddRecExprLiterally(const SCEVAddRecExpr *); 491 PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 492 const Loop *L, Type *ExpandTy, Type *IntTy, 493 Type *&TruncTy, bool &InvertStep); 494 Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L, Type *ExpandTy, 495 Type *IntTy, bool useSubtract); 496 497 void fixupInsertPoints(Instruction *I); 498 499 /// If required, create LCSSA PHIs for \p Users' operand \p OpIdx. If new 500 /// LCSSA PHIs have been created, return the LCSSA PHI available at \p User. 501 /// If no PHIs have been created, return the unchanged operand \p OpIdx. 502 Value *fixupLCSSAFormFor(Instruction *User, unsigned OpIdx); 503 }; 504 505 /// Helper to remove instructions inserted during SCEV expansion, unless they 506 /// are marked as used. 507 class SCEVExpanderCleaner { 508 SCEVExpander &Expander; 509 510 /// Indicates whether the result of the expansion is used. If false, the 511 /// instructions added during expansion are removed. 512 bool ResultUsed; 513 514 public: 515 SCEVExpanderCleaner(SCEVExpander &Expander) 516 : Expander(Expander), ResultUsed(false) {} 517 518 ~SCEVExpanderCleaner() { cleanup(); } 519 520 /// Indicate that the result of the expansion is used. 521 void markResultUsed() { ResultUsed = true; } 522 523 void cleanup(); 524 }; 525 } // namespace llvm 526 527 #endif 528