xref: /freebsd-src/contrib/llvm-project/llvm/include/llvm/Transforms/Utils/ScalarEvolutionExpander.h (revision 81ad626541db97eb356e2c1d4a20eb2a26a766ab)
1 //===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the classes used to generate code from scalar expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_TRANSFORMS_UTILS_SCALAREVOLUTIONEXPANDER_H
14 #define LLVM_TRANSFORMS_UTILS_SCALAREVOLUTIONEXPANDER_H
15 
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/InstSimplifyFolder.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/IR/IRBuilder.h"
24 #include "llvm/IR/ValueHandle.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/InstructionCost.h"
27 
28 namespace llvm {
29 extern cl::opt<unsigned> SCEVCheapExpansionBudget;
30 
31 /// Return true if the given expression is safe to expand in the sense that
32 /// all materialized values are safe to speculate anywhere their operands are
33 /// defined, and the expander is capable of expanding the expression.
34 /// CanonicalMode indicates whether the expander will be used in canonical mode.
35 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE,
36                     bool CanonicalMode = true);
37 
38 /// Return true if the given expression is safe to expand in the sense that
39 /// all materialized values are defined and safe to speculate at the specified
40 /// location and their operands are defined at this location.
41 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
42                       ScalarEvolution &SE);
43 
44 /// struct for holding enough information to help calculate the cost of the
45 /// given SCEV when expanded into IR.
46 struct SCEVOperand {
47   explicit SCEVOperand(unsigned Opc, int Idx, const SCEV *S) :
48     ParentOpcode(Opc), OperandIdx(Idx), S(S) { }
49   /// LLVM instruction opcode that uses the operand.
50   unsigned ParentOpcode;
51   /// The use index of an expanded instruction.
52   int OperandIdx;
53   /// The SCEV operand to be costed.
54   const SCEV* S;
55 };
56 
57 /// This class uses information about analyze scalars to rewrite expressions
58 /// in canonical form.
59 ///
60 /// Clients should create an instance of this class when rewriting is needed,
61 /// and destroy it when finished to allow the release of the associated
62 /// memory.
63 class SCEVExpander : public SCEVVisitor<SCEVExpander, Value *> {
64   ScalarEvolution &SE;
65   const DataLayout &DL;
66 
67   // New instructions receive a name to identify them with the current pass.
68   const char *IVName;
69 
70   /// Indicates whether LCSSA phis should be created for inserted values.
71   bool PreserveLCSSA;
72 
73   // InsertedExpressions caches Values for reuse, so must track RAUW.
74   DenseMap<std::pair<const SCEV *, Instruction *>, TrackingVH<Value>>
75       InsertedExpressions;
76 
77   // InsertedValues only flags inserted instructions so needs no RAUW.
78   DenseSet<AssertingVH<Value>> InsertedValues;
79   DenseSet<AssertingVH<Value>> InsertedPostIncValues;
80 
81   /// Keep track of the existing IR values re-used during expansion.
82   /// FIXME: Ideally re-used instructions would not be added to
83   /// InsertedValues/InsertedPostIncValues.
84   SmallPtrSet<Value *, 16> ReusedValues;
85 
86   // The induction variables generated.
87   SmallVector<WeakVH, 2> InsertedIVs;
88 
89   /// A memoization of the "relevant" loop for a given SCEV.
90   DenseMap<const SCEV *, const Loop *> RelevantLoops;
91 
92   /// Addrecs referring to any of the given loops are expanded in post-inc
93   /// mode. For example, expanding {1,+,1}<L> in post-inc mode returns the add
94   /// instruction that adds one to the phi for {0,+,1}<L>, as opposed to a new
95   /// phi starting at 1. This is only supported in non-canonical mode.
96   PostIncLoopSet PostIncLoops;
97 
98   /// When this is non-null, addrecs expanded in the loop it indicates should
99   /// be inserted with increments at IVIncInsertPos.
100   const Loop *IVIncInsertLoop;
101 
102   /// When expanding addrecs in the IVIncInsertLoop loop, insert the IV
103   /// increment at this position.
104   Instruction *IVIncInsertPos;
105 
106   /// Phis that complete an IV chain. Reuse
107   DenseSet<AssertingVH<PHINode>> ChainedPhis;
108 
109   /// When true, SCEVExpander tries to expand expressions in "canonical" form.
110   /// When false, expressions are expanded in a more literal form.
111   ///
112   /// In "canonical" form addrecs are expanded as arithmetic based on a
113   /// canonical induction variable. Note that CanonicalMode doesn't guarantee
114   /// that all expressions are expanded in "canonical" form. For some
115   /// expressions literal mode can be preferred.
116   bool CanonicalMode;
117 
118   /// When invoked from LSR, the expander is in "strength reduction" mode. The
119   /// only difference is that phi's are only reused if they are already in
120   /// "expanded" form.
121   bool LSRMode;
122 
123   typedef IRBuilder<InstSimplifyFolder, IRBuilderCallbackInserter> BuilderType;
124   BuilderType Builder;
125 
126   // RAII object that stores the current insertion point and restores it when
127   // the object is destroyed. This includes the debug location.  Duplicated
128   // from InsertPointGuard to add SetInsertPoint() which is used to updated
129   // InsertPointGuards stack when insert points are moved during SCEV
130   // expansion.
131   class SCEVInsertPointGuard {
132     IRBuilderBase &Builder;
133     AssertingVH<BasicBlock> Block;
134     BasicBlock::iterator Point;
135     DebugLoc DbgLoc;
136     SCEVExpander *SE;
137 
138     SCEVInsertPointGuard(const SCEVInsertPointGuard &) = delete;
139     SCEVInsertPointGuard &operator=(const SCEVInsertPointGuard &) = delete;
140 
141   public:
142     SCEVInsertPointGuard(IRBuilderBase &B, SCEVExpander *SE)
143         : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()),
144           DbgLoc(B.getCurrentDebugLocation()), SE(SE) {
145       SE->InsertPointGuards.push_back(this);
146     }
147 
148     ~SCEVInsertPointGuard() {
149       // These guards should always created/destroyed in FIFO order since they
150       // are used to guard lexically scoped blocks of code in
151       // ScalarEvolutionExpander.
152       assert(SE->InsertPointGuards.back() == this);
153       SE->InsertPointGuards.pop_back();
154       Builder.restoreIP(IRBuilderBase::InsertPoint(Block, Point));
155       Builder.SetCurrentDebugLocation(DbgLoc);
156     }
157 
158     BasicBlock::iterator GetInsertPoint() const { return Point; }
159     void SetInsertPoint(BasicBlock::iterator I) { Point = I; }
160   };
161 
162   /// Stack of pointers to saved insert points, used to keep insert points
163   /// consistent when instructions are moved.
164   SmallVector<SCEVInsertPointGuard *, 8> InsertPointGuards;
165 
166 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
167   const char *DebugType;
168 #endif
169 
170   friend struct SCEVVisitor<SCEVExpander, Value *>;
171 
172 public:
173   /// Construct a SCEVExpander in "canonical" mode.
174   explicit SCEVExpander(ScalarEvolution &se, const DataLayout &DL,
175                         const char *name, bool PreserveLCSSA = true)
176       : SE(se), DL(DL), IVName(name), PreserveLCSSA(PreserveLCSSA),
177         IVIncInsertLoop(nullptr), IVIncInsertPos(nullptr), CanonicalMode(true),
178         LSRMode(false),
179         Builder(se.getContext(), InstSimplifyFolder(DL),
180                 IRBuilderCallbackInserter(
181                     [this](Instruction *I) { rememberInstruction(I); })) {
182 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
183     DebugType = "";
184 #endif
185   }
186 
187   ~SCEVExpander() {
188     // Make sure the insert point guard stack is consistent.
189     assert(InsertPointGuards.empty());
190   }
191 
192 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
193   void setDebugType(const char *s) { DebugType = s; }
194 #endif
195 
196   /// Erase the contents of the InsertedExpressions map so that users trying
197   /// to expand the same expression into multiple BasicBlocks or different
198   /// places within the same BasicBlock can do so.
199   void clear() {
200     InsertedExpressions.clear();
201     InsertedValues.clear();
202     InsertedPostIncValues.clear();
203     ReusedValues.clear();
204     ChainedPhis.clear();
205     InsertedIVs.clear();
206   }
207 
208   ScalarEvolution *getSE() { return &SE; }
209   const SmallVectorImpl<WeakVH> &getInsertedIVs() const { return InsertedIVs; }
210 
211   /// Return a vector containing all instructions inserted during expansion.
212   SmallVector<Instruction *, 32> getAllInsertedInstructions() const {
213     SmallVector<Instruction *, 32> Result;
214     for (auto &VH : InsertedValues) {
215       Value *V = VH;
216       if (ReusedValues.contains(V))
217         continue;
218       if (auto *Inst = dyn_cast<Instruction>(V))
219         Result.push_back(Inst);
220     }
221     for (auto &VH : InsertedPostIncValues) {
222       Value *V = VH;
223       if (ReusedValues.contains(V))
224         continue;
225       if (auto *Inst = dyn_cast<Instruction>(V))
226         Result.push_back(Inst);
227     }
228 
229     return Result;
230   }
231 
232   /// Return true for expressions that can't be evaluated at runtime
233   /// within given \b Budget.
234   ///
235   /// At is a parameter which specifies point in code where user is going to
236   /// expand this expression. Sometimes this knowledge can lead to
237   /// a less pessimistic cost estimation.
238   bool isHighCostExpansion(const SCEV *Expr, Loop *L, unsigned Budget,
239                            const TargetTransformInfo *TTI,
240                            const Instruction *At) {
241     assert(TTI && "This function requires TTI to be provided.");
242     assert(At && "This function requires At instruction to be provided.");
243     if (!TTI)      // In assert-less builds, avoid crashing
244       return true; // by always claiming to be high-cost.
245     SmallVector<SCEVOperand, 8> Worklist;
246     SmallPtrSet<const SCEV *, 8> Processed;
247     InstructionCost Cost = 0;
248     unsigned ScaledBudget = Budget * TargetTransformInfo::TCC_Basic;
249     Worklist.emplace_back(-1, -1, Expr);
250     while (!Worklist.empty()) {
251       const SCEVOperand WorkItem = Worklist.pop_back_val();
252       if (isHighCostExpansionHelper(WorkItem, L, *At, Cost, ScaledBudget, *TTI,
253                                     Processed, Worklist))
254         return true;
255     }
256     assert(Cost <= ScaledBudget && "Should have returned from inner loop.");
257     return false;
258   }
259 
260   /// Return the induction variable increment's IV operand.
261   Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos,
262                                bool allowScale);
263 
264   /// Utility for hoisting an IV increment.
265   bool hoistIVInc(Instruction *IncV, Instruction *InsertPos);
266 
267   /// replace congruent phis with their most canonical representative. Return
268   /// the number of phis eliminated.
269   unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT,
270                                SmallVectorImpl<WeakTrackingVH> &DeadInsts,
271                                const TargetTransformInfo *TTI = nullptr);
272 
273   /// Insert code to directly compute the specified SCEV expression into the
274   /// program.  The code is inserted into the specified block.
275   Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I) {
276     return expandCodeForImpl(SH, Ty, I, true);
277   }
278 
279   /// Insert code to directly compute the specified SCEV expression into the
280   /// program.  The code is inserted into the SCEVExpander's current
281   /// insertion point. If a type is specified, the result will be expanded to
282   /// have that type, with a cast if necessary.
283   Value *expandCodeFor(const SCEV *SH, Type *Ty = nullptr) {
284     return expandCodeForImpl(SH, Ty, true);
285   }
286 
287   /// Generates a code sequence that evaluates this predicate.  The inserted
288   /// instructions will be at position \p Loc.  The result will be of type i1
289   /// and will have a value of 0 when the predicate is false and 1 otherwise.
290   Value *expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc);
291 
292   /// A specialized variant of expandCodeForPredicate, handling the case when
293   /// we are expanding code for a SCEVComparePredicate.
294   Value *expandComparePredicate(const SCEVComparePredicate *Pred,
295                                 Instruction *Loc);
296 
297   /// Generates code that evaluates if the \p AR expression will overflow.
298   Value *generateOverflowCheck(const SCEVAddRecExpr *AR, Instruction *Loc,
299                                bool Signed);
300 
301   /// A specialized variant of expandCodeForPredicate, handling the case when
302   /// we are expanding code for a SCEVWrapPredicate.
303   Value *expandWrapPredicate(const SCEVWrapPredicate *P, Instruction *Loc);
304 
305   /// A specialized variant of expandCodeForPredicate, handling the case when
306   /// we are expanding code for a SCEVUnionPredicate.
307   Value *expandUnionPredicate(const SCEVUnionPredicate *Pred, Instruction *Loc);
308 
309   /// Set the current IV increment loop and position.
310   void setIVIncInsertPos(const Loop *L, Instruction *Pos) {
311     assert(!CanonicalMode &&
312            "IV increment positions are not supported in CanonicalMode");
313     IVIncInsertLoop = L;
314     IVIncInsertPos = Pos;
315   }
316 
317   /// Enable post-inc expansion for addrecs referring to the given
318   /// loops. Post-inc expansion is only supported in non-canonical mode.
319   void setPostInc(const PostIncLoopSet &L) {
320     assert(!CanonicalMode &&
321            "Post-inc expansion is not supported in CanonicalMode");
322     PostIncLoops = L;
323   }
324 
325   /// Disable all post-inc expansion.
326   void clearPostInc() {
327     PostIncLoops.clear();
328 
329     // When we change the post-inc loop set, cached expansions may no
330     // longer be valid.
331     InsertedPostIncValues.clear();
332   }
333 
334   /// Disable the behavior of expanding expressions in canonical form rather
335   /// than in a more literal form. Non-canonical mode is useful for late
336   /// optimization passes.
337   void disableCanonicalMode() { CanonicalMode = false; }
338 
339   void enableLSRMode() { LSRMode = true; }
340 
341   /// Set the current insertion point. This is useful if multiple calls to
342   /// expandCodeFor() are going to be made with the same insert point and the
343   /// insert point may be moved during one of the expansions (e.g. if the
344   /// insert point is not a block terminator).
345   void setInsertPoint(Instruction *IP) {
346     assert(IP);
347     Builder.SetInsertPoint(IP);
348   }
349 
350   /// Clear the current insertion point. This is useful if the instruction
351   /// that had been serving as the insertion point may have been deleted.
352   void clearInsertPoint() { Builder.ClearInsertionPoint(); }
353 
354   /// Set location information used by debugging information.
355   void SetCurrentDebugLocation(DebugLoc L) {
356     Builder.SetCurrentDebugLocation(std::move(L));
357   }
358 
359   /// Get location information used by debugging information.
360   DebugLoc getCurrentDebugLocation() const {
361     return Builder.getCurrentDebugLocation();
362   }
363 
364   /// Return true if the specified instruction was inserted by the code
365   /// rewriter.  If so, the client should not modify the instruction. Note that
366   /// this also includes instructions re-used during expansion.
367   bool isInsertedInstruction(Instruction *I) const {
368     return InsertedValues.count(I) || InsertedPostIncValues.count(I);
369   }
370 
371   void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); }
372 
373   /// Try to find the ValueOffsetPair for S. The function is mainly used to
374   /// check whether S can be expanded cheaply.  If this returns a non-None
375   /// value, we know we can codegen the `ValueOffsetPair` into a suitable
376   /// expansion identical with S so that S can be expanded cheaply.
377   ///
378   /// L is a hint which tells in which loop to look for the suitable value.
379   /// On success return value which is equivalent to the expanded S at point
380   /// At. Return nullptr if value was not found.
381   ///
382   /// Note that this function does not perform an exhaustive search. I.e if it
383   /// didn't find any value it does not mean that there is no such value.
384   ///
385   Value *getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
386                                      Loop *L);
387 
388   /// Returns a suitable insert point after \p I, that dominates \p
389   /// MustDominate. Skips instructions inserted by the expander.
390   BasicBlock::iterator findInsertPointAfter(Instruction *I,
391                                             Instruction *MustDominate) const;
392 
393 private:
394   LLVMContext &getContext() const { return SE.getContext(); }
395 
396   /// Insert code to directly compute the specified SCEV expression into the
397   /// program. The code is inserted into the SCEVExpander's current
398   /// insertion point. If a type is specified, the result will be expanded to
399   /// have that type, with a cast if necessary. If \p Root is true, this
400   /// indicates that \p SH is the top-level expression to expand passed from
401   /// an external client call.
402   Value *expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root);
403 
404   /// Insert code to directly compute the specified SCEV expression into the
405   /// program. The code is inserted into the specified block. If \p
406   /// Root is true, this indicates that \p SH is the top-level expression to
407   /// expand passed from an external client call.
408   Value *expandCodeForImpl(const SCEV *SH, Type *Ty, Instruction *I, bool Root);
409 
410   /// Recursive helper function for isHighCostExpansion.
411   bool isHighCostExpansionHelper(const SCEVOperand &WorkItem, Loop *L,
412                                  const Instruction &At, InstructionCost &Cost,
413                                  unsigned Budget,
414                                  const TargetTransformInfo &TTI,
415                                  SmallPtrSetImpl<const SCEV *> &Processed,
416                                  SmallVectorImpl<SCEVOperand> &Worklist);
417 
418   /// Insert the specified binary operator, doing a small amount of work to
419   /// avoid inserting an obviously redundant operation, and hoisting to an
420   /// outer loop when the opportunity is there and it is safe.
421   Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
422                      SCEV::NoWrapFlags Flags, bool IsSafeToHoist);
423 
424   /// We want to cast \p V. What would be the best place for such a cast?
425   BasicBlock::iterator GetOptimalInsertionPointForCastOf(Value *V) const;
426 
427   /// Arrange for there to be a cast of V to Ty at IP, reusing an existing
428   /// cast if a suitable one exists, moving an existing cast if a suitable one
429   /// exists but isn't in the right place, or creating a new one.
430   Value *ReuseOrCreateCast(Value *V, Type *Ty, Instruction::CastOps Op,
431                            BasicBlock::iterator IP);
432 
433   /// Insert a cast of V to the specified type, which must be possible with a
434   /// noop cast, doing what we can to share the casts.
435   Value *InsertNoopCastOfTo(Value *V, Type *Ty);
436 
437   /// Expand a SCEVAddExpr with a pointer type into a GEP instead of using
438   /// ptrtoint+arithmetic+inttoptr.
439   Value *expandAddToGEP(const SCEV *const *op_begin, const SCEV *const *op_end,
440                         PointerType *PTy, Type *Ty, Value *V);
441   Value *expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, Value *V);
442 
443   /// Find a previous Value in ExprValueMap for expand.
444   Value *FindValueInExprValueMap(const SCEV *S, const Instruction *InsertPt);
445 
446   Value *expand(const SCEV *S);
447 
448   /// Determine the most "relevant" loop for the given SCEV.
449   const Loop *getRelevantLoop(const SCEV *);
450 
451   Value *expandMinMaxExpr(const SCEVNAryExpr *S, Intrinsic::ID IntrinID,
452                           Twine Name, bool IsSequential = false);
453 
454   Value *visitConstant(const SCEVConstant *S) { return S->getValue(); }
455 
456   Value *visitPtrToIntExpr(const SCEVPtrToIntExpr *S);
457 
458   Value *visitTruncateExpr(const SCEVTruncateExpr *S);
459 
460   Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S);
461 
462   Value *visitSignExtendExpr(const SCEVSignExtendExpr *S);
463 
464   Value *visitAddExpr(const SCEVAddExpr *S);
465 
466   Value *visitMulExpr(const SCEVMulExpr *S);
467 
468   Value *visitUDivExpr(const SCEVUDivExpr *S);
469 
470   Value *visitAddRecExpr(const SCEVAddRecExpr *S);
471 
472   Value *visitSMaxExpr(const SCEVSMaxExpr *S);
473 
474   Value *visitUMaxExpr(const SCEVUMaxExpr *S);
475 
476   Value *visitSMinExpr(const SCEVSMinExpr *S);
477 
478   Value *visitUMinExpr(const SCEVUMinExpr *S);
479 
480   Value *visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S);
481 
482   Value *visitUnknown(const SCEVUnknown *S) { return S->getValue(); }
483 
484   void rememberInstruction(Value *I);
485 
486   bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
487 
488   bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
489 
490   Value *expandAddRecExprLiterally(const SCEVAddRecExpr *);
491   PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
492                                      const Loop *L, Type *ExpandTy, Type *IntTy,
493                                      Type *&TruncTy, bool &InvertStep);
494   Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L, Type *ExpandTy,
495                      Type *IntTy, bool useSubtract);
496 
497   void fixupInsertPoints(Instruction *I);
498 
499   /// If required, create LCSSA PHIs for \p Users' operand \p OpIdx. If new
500   /// LCSSA PHIs have been created, return the LCSSA PHI available at \p User.
501   /// If no PHIs have been created, return the unchanged operand \p OpIdx.
502   Value *fixupLCSSAFormFor(Instruction *User, unsigned OpIdx);
503 };
504 
505 /// Helper to remove instructions inserted during SCEV expansion, unless they
506 /// are marked as used.
507 class SCEVExpanderCleaner {
508   SCEVExpander &Expander;
509 
510   /// Indicates whether the result of the expansion is used. If false, the
511   /// instructions added during expansion are removed.
512   bool ResultUsed;
513 
514 public:
515   SCEVExpanderCleaner(SCEVExpander &Expander)
516       : Expander(Expander), ResultUsed(false) {}
517 
518   ~SCEVExpanderCleaner() { cleanup(); }
519 
520   /// Indicate that the result of the expansion is used.
521   void markResultUsed() { ResultUsed = true; }
522 
523   void cleanup();
524 };
525 } // namespace llvm
526 
527 #endif
528