1 //===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the classes used to generate code from scalar expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_TRANSFORMS_UTILS_SCALAREVOLUTIONEXPANDER_H 14 #define LLVM_TRANSFORMS_UTILS_SCALAREVOLUTIONEXPANDER_H 15 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 22 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 23 #include "llvm/Analysis/TargetFolder.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/ValueHandle.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/InstructionCost.h" 29 30 namespace llvm { 31 extern cl::opt<unsigned> SCEVCheapExpansionBudget; 32 33 /// Return true if the given expression is safe to expand in the sense that 34 /// all materialized values are safe to speculate anywhere their operands are 35 /// defined, and the expander is capable of expanding the expression. 36 /// CanonicalMode indicates whether the expander will be used in canonical mode. 37 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE, 38 bool CanonicalMode = true); 39 40 /// Return true if the given expression is safe to expand in the sense that 41 /// all materialized values are defined and safe to speculate at the specified 42 /// location and their operands are defined at this location. 43 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint, 44 ScalarEvolution &SE); 45 46 /// struct for holding enough information to help calculate the cost of the 47 /// given SCEV when expanded into IR. 48 struct SCEVOperand { 49 explicit SCEVOperand(unsigned Opc, int Idx, const SCEV *S) : 50 ParentOpcode(Opc), OperandIdx(Idx), S(S) { } 51 /// LLVM instruction opcode that uses the operand. 52 unsigned ParentOpcode; 53 /// The use index of an expanded instruction. 54 int OperandIdx; 55 /// The SCEV operand to be costed. 56 const SCEV* S; 57 }; 58 59 /// This class uses information about analyze scalars to rewrite expressions 60 /// in canonical form. 61 /// 62 /// Clients should create an instance of this class when rewriting is needed, 63 /// and destroy it when finished to allow the release of the associated 64 /// memory. 65 class SCEVExpander : public SCEVVisitor<SCEVExpander, Value *> { 66 ScalarEvolution &SE; 67 const DataLayout &DL; 68 69 // New instructions receive a name to identify them with the current pass. 70 const char *IVName; 71 72 /// Indicates whether LCSSA phis should be created for inserted values. 73 bool PreserveLCSSA; 74 75 // InsertedExpressions caches Values for reuse, so must track RAUW. 76 DenseMap<std::pair<const SCEV *, Instruction *>, TrackingVH<Value>> 77 InsertedExpressions; 78 79 // InsertedValues only flags inserted instructions so needs no RAUW. 80 DenseSet<AssertingVH<Value>> InsertedValues; 81 DenseSet<AssertingVH<Value>> InsertedPostIncValues; 82 83 /// Keep track of the existing IR values re-used during expansion. 84 /// FIXME: Ideally re-used instructions would not be added to 85 /// InsertedValues/InsertedPostIncValues. 86 SmallPtrSet<Value *, 16> ReusedValues; 87 88 // The induction variables generated. 89 SmallVector<WeakVH, 2> InsertedIVs; 90 91 /// A memoization of the "relevant" loop for a given SCEV. 92 DenseMap<const SCEV *, const Loop *> RelevantLoops; 93 94 /// Addrecs referring to any of the given loops are expanded in post-inc 95 /// mode. For example, expanding {1,+,1}<L> in post-inc mode returns the add 96 /// instruction that adds one to the phi for {0,+,1}<L>, as opposed to a new 97 /// phi starting at 1. This is only supported in non-canonical mode. 98 PostIncLoopSet PostIncLoops; 99 100 /// When this is non-null, addrecs expanded in the loop it indicates should 101 /// be inserted with increments at IVIncInsertPos. 102 const Loop *IVIncInsertLoop; 103 104 /// When expanding addrecs in the IVIncInsertLoop loop, insert the IV 105 /// increment at this position. 106 Instruction *IVIncInsertPos; 107 108 /// Phis that complete an IV chain. Reuse 109 DenseSet<AssertingVH<PHINode>> ChainedPhis; 110 111 /// When true, SCEVExpander tries to expand expressions in "canonical" form. 112 /// When false, expressions are expanded in a more literal form. 113 /// 114 /// In "canonical" form addrecs are expanded as arithmetic based on a 115 /// canonical induction variable. Note that CanonicalMode doesn't guarantee 116 /// that all expressions are expanded in "canonical" form. For some 117 /// expressions literal mode can be preferred. 118 bool CanonicalMode; 119 120 /// When invoked from LSR, the expander is in "strength reduction" mode. The 121 /// only difference is that phi's are only reused if they are already in 122 /// "expanded" form. 123 bool LSRMode; 124 125 typedef IRBuilder<TargetFolder, IRBuilderCallbackInserter> BuilderType; 126 BuilderType Builder; 127 128 // RAII object that stores the current insertion point and restores it when 129 // the object is destroyed. This includes the debug location. Duplicated 130 // from InsertPointGuard to add SetInsertPoint() which is used to updated 131 // InsertPointGuards stack when insert points are moved during SCEV 132 // expansion. 133 class SCEVInsertPointGuard { 134 IRBuilderBase &Builder; 135 AssertingVH<BasicBlock> Block; 136 BasicBlock::iterator Point; 137 DebugLoc DbgLoc; 138 SCEVExpander *SE; 139 140 SCEVInsertPointGuard(const SCEVInsertPointGuard &) = delete; 141 SCEVInsertPointGuard &operator=(const SCEVInsertPointGuard &) = delete; 142 143 public: 144 SCEVInsertPointGuard(IRBuilderBase &B, SCEVExpander *SE) 145 : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()), 146 DbgLoc(B.getCurrentDebugLocation()), SE(SE) { 147 SE->InsertPointGuards.push_back(this); 148 } 149 150 ~SCEVInsertPointGuard() { 151 // These guards should always created/destroyed in FIFO order since they 152 // are used to guard lexically scoped blocks of code in 153 // ScalarEvolutionExpander. 154 assert(SE->InsertPointGuards.back() == this); 155 SE->InsertPointGuards.pop_back(); 156 Builder.restoreIP(IRBuilderBase::InsertPoint(Block, Point)); 157 Builder.SetCurrentDebugLocation(DbgLoc); 158 } 159 160 BasicBlock::iterator GetInsertPoint() const { return Point; } 161 void SetInsertPoint(BasicBlock::iterator I) { Point = I; } 162 }; 163 164 /// Stack of pointers to saved insert points, used to keep insert points 165 /// consistent when instructions are moved. 166 SmallVector<SCEVInsertPointGuard *, 8> InsertPointGuards; 167 168 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 169 const char *DebugType; 170 #endif 171 172 friend struct SCEVVisitor<SCEVExpander, Value *>; 173 174 public: 175 /// Construct a SCEVExpander in "canonical" mode. 176 explicit SCEVExpander(ScalarEvolution &se, const DataLayout &DL, 177 const char *name, bool PreserveLCSSA = true) 178 : SE(se), DL(DL), IVName(name), PreserveLCSSA(PreserveLCSSA), 179 IVIncInsertLoop(nullptr), IVIncInsertPos(nullptr), CanonicalMode(true), 180 LSRMode(false), 181 Builder(se.getContext(), TargetFolder(DL), 182 IRBuilderCallbackInserter( 183 [this](Instruction *I) { rememberInstruction(I); })) { 184 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 185 DebugType = ""; 186 #endif 187 } 188 189 ~SCEVExpander() { 190 // Make sure the insert point guard stack is consistent. 191 assert(InsertPointGuards.empty()); 192 } 193 194 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 195 void setDebugType(const char *s) { DebugType = s; } 196 #endif 197 198 /// Erase the contents of the InsertedExpressions map so that users trying 199 /// to expand the same expression into multiple BasicBlocks or different 200 /// places within the same BasicBlock can do so. 201 void clear() { 202 InsertedExpressions.clear(); 203 InsertedValues.clear(); 204 InsertedPostIncValues.clear(); 205 ReusedValues.clear(); 206 ChainedPhis.clear(); 207 InsertedIVs.clear(); 208 } 209 210 ScalarEvolution *getSE() { return &SE; } 211 const SmallVectorImpl<WeakVH> &getInsertedIVs() const { return InsertedIVs; } 212 213 /// Return a vector containing all instructions inserted during expansion. 214 SmallVector<Instruction *, 32> getAllInsertedInstructions() const { 215 SmallVector<Instruction *, 32> Result; 216 for (auto &VH : InsertedValues) { 217 Value *V = VH; 218 if (ReusedValues.contains(V)) 219 continue; 220 if (auto *Inst = dyn_cast<Instruction>(V)) 221 Result.push_back(Inst); 222 } 223 for (auto &VH : InsertedPostIncValues) { 224 Value *V = VH; 225 if (ReusedValues.contains(V)) 226 continue; 227 if (auto *Inst = dyn_cast<Instruction>(V)) 228 Result.push_back(Inst); 229 } 230 231 return Result; 232 } 233 234 /// Return true for expressions that can't be evaluated at runtime 235 /// within given \b Budget. 236 /// 237 /// At is a parameter which specifies point in code where user is going to 238 /// expand this expression. Sometimes this knowledge can lead to 239 /// a less pessimistic cost estimation. 240 bool isHighCostExpansion(const SCEV *Expr, Loop *L, unsigned Budget, 241 const TargetTransformInfo *TTI, 242 const Instruction *At) { 243 assert(TTI && "This function requires TTI to be provided."); 244 assert(At && "This function requires At instruction to be provided."); 245 if (!TTI) // In assert-less builds, avoid crashing 246 return true; // by always claiming to be high-cost. 247 SmallVector<SCEVOperand, 8> Worklist; 248 SmallPtrSet<const SCEV *, 8> Processed; 249 InstructionCost Cost = 0; 250 unsigned ScaledBudget = Budget * TargetTransformInfo::TCC_Basic; 251 Worklist.emplace_back(-1, -1, Expr); 252 while (!Worklist.empty()) { 253 const SCEVOperand WorkItem = Worklist.pop_back_val(); 254 if (isHighCostExpansionHelper(WorkItem, L, *At, Cost, ScaledBudget, *TTI, 255 Processed, Worklist)) 256 return true; 257 } 258 assert(Cost <= ScaledBudget && "Should have returned from inner loop."); 259 return false; 260 } 261 262 /// Return the induction variable increment's IV operand. 263 Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos, 264 bool allowScale); 265 266 /// Utility for hoisting an IV increment. 267 bool hoistIVInc(Instruction *IncV, Instruction *InsertPos); 268 269 /// replace congruent phis with their most canonical representative. Return 270 /// the number of phis eliminated. 271 unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT, 272 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 273 const TargetTransformInfo *TTI = nullptr); 274 275 /// Insert code to directly compute the specified SCEV expression into the 276 /// program. The code is inserted into the specified block. 277 Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I) { 278 return expandCodeForImpl(SH, Ty, I, true); 279 } 280 281 /// Insert code to directly compute the specified SCEV expression into the 282 /// program. The code is inserted into the SCEVExpander's current 283 /// insertion point. If a type is specified, the result will be expanded to 284 /// have that type, with a cast if necessary. 285 Value *expandCodeFor(const SCEV *SH, Type *Ty = nullptr) { 286 return expandCodeForImpl(SH, Ty, true); 287 } 288 289 /// Generates a code sequence that evaluates this predicate. The inserted 290 /// instructions will be at position \p Loc. The result will be of type i1 291 /// and will have a value of 0 when the predicate is false and 1 otherwise. 292 Value *expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc); 293 294 /// A specialized variant of expandCodeForPredicate, handling the case when 295 /// we are expanding code for a SCEVEqualPredicate. 296 Value *expandEqualPredicate(const SCEVEqualPredicate *Pred, Instruction *Loc); 297 298 /// Generates code that evaluates if the \p AR expression will overflow. 299 Value *generateOverflowCheck(const SCEVAddRecExpr *AR, Instruction *Loc, 300 bool Signed); 301 302 /// A specialized variant of expandCodeForPredicate, handling the case when 303 /// we are expanding code for a SCEVWrapPredicate. 304 Value *expandWrapPredicate(const SCEVWrapPredicate *P, Instruction *Loc); 305 306 /// A specialized variant of expandCodeForPredicate, handling the case when 307 /// we are expanding code for a SCEVUnionPredicate. 308 Value *expandUnionPredicate(const SCEVUnionPredicate *Pred, Instruction *Loc); 309 310 /// Set the current IV increment loop and position. 311 void setIVIncInsertPos(const Loop *L, Instruction *Pos) { 312 assert(!CanonicalMode && 313 "IV increment positions are not supported in CanonicalMode"); 314 IVIncInsertLoop = L; 315 IVIncInsertPos = Pos; 316 } 317 318 /// Enable post-inc expansion for addrecs referring to the given 319 /// loops. Post-inc expansion is only supported in non-canonical mode. 320 void setPostInc(const PostIncLoopSet &L) { 321 assert(!CanonicalMode && 322 "Post-inc expansion is not supported in CanonicalMode"); 323 PostIncLoops = L; 324 } 325 326 /// Disable all post-inc expansion. 327 void clearPostInc() { 328 PostIncLoops.clear(); 329 330 // When we change the post-inc loop set, cached expansions may no 331 // longer be valid. 332 InsertedPostIncValues.clear(); 333 } 334 335 /// Disable the behavior of expanding expressions in canonical form rather 336 /// than in a more literal form. Non-canonical mode is useful for late 337 /// optimization passes. 338 void disableCanonicalMode() { CanonicalMode = false; } 339 340 void enableLSRMode() { LSRMode = true; } 341 342 /// Set the current insertion point. This is useful if multiple calls to 343 /// expandCodeFor() are going to be made with the same insert point and the 344 /// insert point may be moved during one of the expansions (e.g. if the 345 /// insert point is not a block terminator). 346 void setInsertPoint(Instruction *IP) { 347 assert(IP); 348 Builder.SetInsertPoint(IP); 349 } 350 351 /// Clear the current insertion point. This is useful if the instruction 352 /// that had been serving as the insertion point may have been deleted. 353 void clearInsertPoint() { Builder.ClearInsertionPoint(); } 354 355 /// Set location information used by debugging information. 356 void SetCurrentDebugLocation(DebugLoc L) { 357 Builder.SetCurrentDebugLocation(std::move(L)); 358 } 359 360 /// Get location information used by debugging information. 361 DebugLoc getCurrentDebugLocation() const { 362 return Builder.getCurrentDebugLocation(); 363 } 364 365 /// Return true if the specified instruction was inserted by the code 366 /// rewriter. If so, the client should not modify the instruction. Note that 367 /// this also includes instructions re-used during expansion. 368 bool isInsertedInstruction(Instruction *I) const { 369 return InsertedValues.count(I) || InsertedPostIncValues.count(I); 370 } 371 372 void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); } 373 374 /// Try to find the ValueOffsetPair for S. The function is mainly used to 375 /// check whether S can be expanded cheaply. If this returns a non-None 376 /// value, we know we can codegen the `ValueOffsetPair` into a suitable 377 /// expansion identical with S so that S can be expanded cheaply. 378 /// 379 /// L is a hint which tells in which loop to look for the suitable value. 380 /// On success return value which is equivalent to the expanded S at point 381 /// At. Return nullptr if value was not found. 382 /// 383 /// Note that this function does not perform an exhaustive search. I.e if it 384 /// didn't find any value it does not mean that there is no such value. 385 /// 386 Optional<ScalarEvolution::ValueOffsetPair> 387 getRelatedExistingExpansion(const SCEV *S, const Instruction *At, Loop *L); 388 389 /// Returns a suitable insert point after \p I, that dominates \p 390 /// MustDominate. Skips instructions inserted by the expander. 391 BasicBlock::iterator findInsertPointAfter(Instruction *I, 392 Instruction *MustDominate) const; 393 394 private: 395 LLVMContext &getContext() const { return SE.getContext(); } 396 397 /// Insert code to directly compute the specified SCEV expression into the 398 /// program. The code is inserted into the SCEVExpander's current 399 /// insertion point. If a type is specified, the result will be expanded to 400 /// have that type, with a cast if necessary. If \p Root is true, this 401 /// indicates that \p SH is the top-level expression to expand passed from 402 /// an external client call. 403 Value *expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root); 404 405 /// Insert code to directly compute the specified SCEV expression into the 406 /// program. The code is inserted into the specified block. If \p 407 /// Root is true, this indicates that \p SH is the top-level expression to 408 /// expand passed from an external client call. 409 Value *expandCodeForImpl(const SCEV *SH, Type *Ty, Instruction *I, bool Root); 410 411 /// Recursive helper function for isHighCostExpansion. 412 bool isHighCostExpansionHelper(const SCEVOperand &WorkItem, Loop *L, 413 const Instruction &At, InstructionCost &Cost, 414 unsigned Budget, 415 const TargetTransformInfo &TTI, 416 SmallPtrSetImpl<const SCEV *> &Processed, 417 SmallVectorImpl<SCEVOperand> &Worklist); 418 419 /// Insert the specified binary operator, doing a small amount of work to 420 /// avoid inserting an obviously redundant operation, and hoisting to an 421 /// outer loop when the opportunity is there and it is safe. 422 Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 423 SCEV::NoWrapFlags Flags, bool IsSafeToHoist); 424 425 /// We want to cast \p V. What would be the best place for such a cast? 426 BasicBlock::iterator GetOptimalInsertionPointForCastOf(Value *V) const; 427 428 /// Arrange for there to be a cast of V to Ty at IP, reusing an existing 429 /// cast if a suitable one exists, moving an existing cast if a suitable one 430 /// exists but isn't in the right place, or creating a new one. 431 Value *ReuseOrCreateCast(Value *V, Type *Ty, Instruction::CastOps Op, 432 BasicBlock::iterator IP); 433 434 /// Insert a cast of V to the specified type, which must be possible with a 435 /// noop cast, doing what we can to share the casts. 436 Value *InsertNoopCastOfTo(Value *V, Type *Ty); 437 438 /// Expand a SCEVAddExpr with a pointer type into a GEP instead of using 439 /// ptrtoint+arithmetic+inttoptr. 440 Value *expandAddToGEP(const SCEV *const *op_begin, const SCEV *const *op_end, 441 PointerType *PTy, Type *Ty, Value *V); 442 Value *expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, Value *V); 443 444 /// Find a previous Value in ExprValueMap for expand. 445 ScalarEvolution::ValueOffsetPair 446 FindValueInExprValueMap(const SCEV *S, const Instruction *InsertPt); 447 448 Value *expand(const SCEV *S); 449 450 /// Determine the most "relevant" loop for the given SCEV. 451 const Loop *getRelevantLoop(const SCEV *); 452 453 Value *visitConstant(const SCEVConstant *S) { return S->getValue(); } 454 455 Value *visitPtrToIntExpr(const SCEVPtrToIntExpr *S); 456 457 Value *visitTruncateExpr(const SCEVTruncateExpr *S); 458 459 Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S); 460 461 Value *visitSignExtendExpr(const SCEVSignExtendExpr *S); 462 463 Value *visitAddExpr(const SCEVAddExpr *S); 464 465 Value *visitMulExpr(const SCEVMulExpr *S); 466 467 Value *visitUDivExpr(const SCEVUDivExpr *S); 468 469 Value *visitAddRecExpr(const SCEVAddRecExpr *S); 470 471 Value *visitSMaxExpr(const SCEVSMaxExpr *S); 472 473 Value *visitUMaxExpr(const SCEVUMaxExpr *S); 474 475 Value *visitSMinExpr(const SCEVSMinExpr *S); 476 477 Value *visitUMinExpr(const SCEVUMinExpr *S); 478 479 Value *visitUnknown(const SCEVUnknown *S) { return S->getValue(); } 480 481 void rememberInstruction(Value *I); 482 483 bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L); 484 485 bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L); 486 487 Value *expandAddRecExprLiterally(const SCEVAddRecExpr *); 488 PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 489 const Loop *L, Type *ExpandTy, Type *IntTy, 490 Type *&TruncTy, bool &InvertStep); 491 Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L, Type *ExpandTy, 492 Type *IntTy, bool useSubtract); 493 494 void fixupInsertPoints(Instruction *I); 495 496 /// If required, create LCSSA PHIs for \p Users' operand \p OpIdx. If new 497 /// LCSSA PHIs have been created, return the LCSSA PHI available at \p User. 498 /// If no PHIs have been created, return the unchanged operand \p OpIdx. 499 Value *fixupLCSSAFormFor(Instruction *User, unsigned OpIdx); 500 }; 501 502 /// Helper to remove instructions inserted during SCEV expansion, unless they 503 /// are marked as used. 504 class SCEVExpanderCleaner { 505 SCEVExpander &Expander; 506 507 DominatorTree &DT; 508 509 /// Indicates whether the result of the expansion is used. If false, the 510 /// instructions added during expansion are removed. 511 bool ResultUsed; 512 513 public: 514 SCEVExpanderCleaner(SCEVExpander &Expander, DominatorTree &DT) 515 : Expander(Expander), DT(DT), ResultUsed(false) {} 516 517 ~SCEVExpanderCleaner() { cleanup(); } 518 519 /// Indicate that the result of the expansion is used. 520 void markResultUsed() { ResultUsed = true; } 521 522 void cleanup(); 523 }; 524 } // namespace llvm 525 526 #endif 527