1 //===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the MCOperandInfo and MCInstrDesc classes, which 10 // are used to describe target instructions and their operands. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_MC_MCINSTRDESC_H 15 #define LLVM_MC_MCINSTRDESC_H 16 17 #include "llvm/MC/MCRegisterInfo.h" 18 #include "llvm/Support/DataTypes.h" 19 #include <string> 20 21 namespace llvm { 22 class MCInst; 23 class MCSubtargetInfo; 24 class FeatureBitset; 25 26 //===----------------------------------------------------------------------===// 27 // Machine Operand Flags and Description 28 //===----------------------------------------------------------------------===// 29 30 namespace MCOI { 31 // Operand constraints 32 enum OperandConstraint { 33 TIED_TO = 0, // Must be allocated the same register as. 34 EARLY_CLOBBER // Operand is an early clobber register operand 35 }; 36 37 /// These are flags set on operands, but should be considered 38 /// private, all access should go through the MCOperandInfo accessors. 39 /// See the accessors for a description of what these are. 40 enum OperandFlags { LookupPtrRegClass = 0, Predicate, OptionalDef }; 41 42 /// Operands are tagged with one of the values of this enum. 43 enum OperandType { 44 OPERAND_UNKNOWN = 0, 45 OPERAND_IMMEDIATE = 1, 46 OPERAND_REGISTER = 2, 47 OPERAND_MEMORY = 3, 48 OPERAND_PCREL = 4, 49 50 OPERAND_FIRST_GENERIC = 6, 51 OPERAND_GENERIC_0 = 6, 52 OPERAND_GENERIC_1 = 7, 53 OPERAND_GENERIC_2 = 8, 54 OPERAND_GENERIC_3 = 9, 55 OPERAND_GENERIC_4 = 10, 56 OPERAND_GENERIC_5 = 11, 57 OPERAND_LAST_GENERIC = 11, 58 59 OPERAND_FIRST_GENERIC_IMM = 12, 60 OPERAND_GENERIC_IMM_0 = 12, 61 OPERAND_LAST_GENERIC_IMM = 12, 62 63 OPERAND_FIRST_TARGET = 13, 64 }; 65 66 } 67 68 /// This holds information about one operand of a machine instruction, 69 /// indicating the register class for register operands, etc. 70 class MCOperandInfo { 71 public: 72 /// This specifies the register class enumeration of the operand 73 /// if the operand is a register. If isLookupPtrRegClass is set, then this is 74 /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to 75 /// get a dynamic register class. 76 int16_t RegClass; 77 78 /// These are flags from the MCOI::OperandFlags enum. 79 uint8_t Flags; 80 81 /// Information about the type of the operand. 82 uint8_t OperandType; 83 /// The lower 16 bits are used to specify which constraints are set. 84 /// The higher 16 bits are used to specify the value of constraints (4 bits 85 /// each). 86 uint32_t Constraints; 87 88 /// Set if this operand is a pointer value and it requires a callback 89 /// to look up its register class. 90 bool isLookupPtrRegClass() const { 91 return Flags & (1 << MCOI::LookupPtrRegClass); 92 } 93 94 /// Set if this is one of the operands that made up of the predicate 95 /// operand that controls an isPredicable() instruction. 96 bool isPredicate() const { return Flags & (1 << MCOI::Predicate); } 97 98 /// Set if this operand is a optional def. 99 bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); } 100 101 bool isGenericType() const { 102 return OperandType >= MCOI::OPERAND_FIRST_GENERIC && 103 OperandType <= MCOI::OPERAND_LAST_GENERIC; 104 } 105 106 unsigned getGenericTypeIndex() const { 107 assert(isGenericType() && "non-generic types don't have an index"); 108 return OperandType - MCOI::OPERAND_FIRST_GENERIC; 109 } 110 111 bool isGenericImm() const { 112 return OperandType >= MCOI::OPERAND_FIRST_GENERIC_IMM && 113 OperandType <= MCOI::OPERAND_LAST_GENERIC_IMM; 114 } 115 116 unsigned getGenericImmIndex() const { 117 assert(isGenericImm() && "non-generic immediates don't have an index"); 118 return OperandType - MCOI::OPERAND_FIRST_GENERIC_IMM; 119 } 120 }; 121 122 //===----------------------------------------------------------------------===// 123 // Machine Instruction Flags and Description 124 //===----------------------------------------------------------------------===// 125 126 namespace MCID { 127 /// These should be considered private to the implementation of the 128 /// MCInstrDesc class. Clients should use the predicate methods on MCInstrDesc, 129 /// not use these directly. These all correspond to bitfields in the 130 /// MCInstrDesc::Flags field. 131 enum Flag { 132 PreISelOpcode = 0, 133 Variadic, 134 HasOptionalDef, 135 Pseudo, 136 Return, 137 EHScopeReturn, 138 Call, 139 Barrier, 140 Terminator, 141 Branch, 142 IndirectBranch, 143 Compare, 144 MoveImm, 145 MoveReg, 146 Bitcast, 147 Select, 148 DelaySlot, 149 FoldableAsLoad, 150 MayLoad, 151 MayStore, 152 MayRaiseFPException, 153 Predicable, 154 NotDuplicable, 155 UnmodeledSideEffects, 156 Commutable, 157 ConvertibleTo3Addr, 158 UsesCustomInserter, 159 HasPostISelHook, 160 Rematerializable, 161 CheapAsAMove, 162 ExtraSrcRegAllocReq, 163 ExtraDefRegAllocReq, 164 RegSequence, 165 ExtractSubreg, 166 InsertSubreg, 167 Convergent, 168 Add, 169 Trap, 170 VariadicOpsAreDefs, 171 }; 172 } 173 174 /// Describe properties that are true of each instruction in the target 175 /// description file. This captures information about side effects, register 176 /// use and many other things. There is one instance of this struct for each 177 /// target instruction class, and the MachineInstr class points to this struct 178 /// directly to describe itself. 179 class MCInstrDesc { 180 public: 181 unsigned short Opcode; // The opcode number 182 unsigned short NumOperands; // Num of args (may be more if variable_ops) 183 unsigned char NumDefs; // Num of args that are definitions 184 unsigned char Size; // Number of bytes in encoding. 185 unsigned short SchedClass; // enum identifying instr sched class 186 uint64_t Flags; // Flags identifying machine instr class 187 uint64_t TSFlags; // Target Specific Flag values 188 const MCPhysReg *ImplicitUses; // Registers implicitly read by this instr 189 const MCPhysReg *ImplicitDefs; // Registers implicitly defined by this instr 190 const MCOperandInfo *OpInfo; // 'NumOperands' entries about operands 191 // Subtarget feature that this is deprecated on, if any 192 // -1 implies this is not deprecated by any single feature. It may still be 193 // deprecated due to a "complex" reason, below. 194 int64_t DeprecatedFeature; 195 196 // A complex method to determine if a certain instruction is deprecated or 197 // not, and return the reason for deprecation. 198 bool (*ComplexDeprecationInfo)(MCInst &, const MCSubtargetInfo &, 199 std::string &); 200 201 /// Returns the value of the specific constraint if 202 /// it is set. Returns -1 if it is not set. 203 int getOperandConstraint(unsigned OpNum, 204 MCOI::OperandConstraint Constraint) const { 205 if (OpNum < NumOperands && 206 (OpInfo[OpNum].Constraints & (1 << Constraint))) { 207 unsigned Pos = 16 + Constraint * 4; 208 return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf; 209 } 210 return -1; 211 } 212 213 /// Returns true if a certain instruction is deprecated and if so 214 /// returns the reason in \p Info. 215 bool getDeprecatedInfo(MCInst &MI, const MCSubtargetInfo &STI, 216 std::string &Info) const; 217 218 /// Return the opcode number for this descriptor. 219 unsigned getOpcode() const { return Opcode; } 220 221 /// Return the number of declared MachineOperands for this 222 /// MachineInstruction. Note that variadic (isVariadic() returns true) 223 /// instructions may have additional operands at the end of the list, and note 224 /// that the machine instruction may include implicit register def/uses as 225 /// well. 226 unsigned getNumOperands() const { return NumOperands; } 227 228 using const_opInfo_iterator = const MCOperandInfo *; 229 230 const_opInfo_iterator opInfo_begin() const { return OpInfo; } 231 const_opInfo_iterator opInfo_end() const { return OpInfo + NumOperands; } 232 233 iterator_range<const_opInfo_iterator> operands() const { 234 return make_range(opInfo_begin(), opInfo_end()); 235 } 236 237 /// Return the number of MachineOperands that are register 238 /// definitions. Register definitions always occur at the start of the 239 /// machine operand list. This is the number of "outs" in the .td file, 240 /// and does not include implicit defs. 241 unsigned getNumDefs() const { return NumDefs; } 242 243 /// Return flags of this instruction. 244 uint64_t getFlags() const { return Flags; } 245 246 /// \returns true if this instruction is emitted before instruction selection 247 /// and should be legalized/regbankselected/selected. 248 bool isPreISelOpcode() const { return Flags & (1ULL << MCID::PreISelOpcode); } 249 250 /// Return true if this instruction can have a variable number of 251 /// operands. In this case, the variable operands will be after the normal 252 /// operands but before the implicit definitions and uses (if any are 253 /// present). 254 bool isVariadic() const { return Flags & (1ULL << MCID::Variadic); } 255 256 /// Set if this instruction has an optional definition, e.g. 257 /// ARM instructions which can set condition code if 's' bit is set. 258 bool hasOptionalDef() const { return Flags & (1ULL << MCID::HasOptionalDef); } 259 260 /// Return true if this is a pseudo instruction that doesn't 261 /// correspond to a real machine instruction. 262 bool isPseudo() const { return Flags & (1ULL << MCID::Pseudo); } 263 264 /// Return true if the instruction is a return. 265 bool isReturn() const { return Flags & (1ULL << MCID::Return); } 266 267 /// Return true if the instruction is an add instruction. 268 bool isAdd() const { return Flags & (1ULL << MCID::Add); } 269 270 /// Return true if this instruction is a trap. 271 bool isTrap() const { return Flags & (1ULL << MCID::Trap); } 272 273 /// Return true if the instruction is a register to register move. 274 bool isMoveReg() const { return Flags & (1ULL << MCID::MoveReg); } 275 276 /// Return true if the instruction is a call. 277 bool isCall() const { return Flags & (1ULL << MCID::Call); } 278 279 /// Returns true if the specified instruction stops control flow 280 /// from executing the instruction immediately following it. Examples include 281 /// unconditional branches and return instructions. 282 bool isBarrier() const { return Flags & (1ULL << MCID::Barrier); } 283 284 /// Returns true if this instruction part of the terminator for 285 /// a basic block. Typically this is things like return and branch 286 /// instructions. 287 /// 288 /// Various passes use this to insert code into the bottom of a basic block, 289 /// but before control flow occurs. 290 bool isTerminator() const { return Flags & (1ULL << MCID::Terminator); } 291 292 /// Returns true if this is a conditional, unconditional, or 293 /// indirect branch. Predicates below can be used to discriminate between 294 /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to 295 /// get more information. 296 bool isBranch() const { return Flags & (1ULL << MCID::Branch); } 297 298 /// Return true if this is an indirect branch, such as a 299 /// branch through a register. 300 bool isIndirectBranch() const { return Flags & (1ULL << MCID::IndirectBranch); } 301 302 /// Return true if this is a branch which may fall 303 /// through to the next instruction or may transfer control flow to some other 304 /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more 305 /// information about this branch. 306 bool isConditionalBranch() const { 307 return isBranch() & !isBarrier() & !isIndirectBranch(); 308 } 309 310 /// Return true if this is a branch which always 311 /// transfers control flow to some other block. The 312 /// TargetInstrInfo::AnalyzeBranch method can be used to get more information 313 /// about this branch. 314 bool isUnconditionalBranch() const { 315 return isBranch() & isBarrier() & !isIndirectBranch(); 316 } 317 318 /// Return true if this is a branch or an instruction which directly 319 /// writes to the program counter. Considered 'may' affect rather than 320 /// 'does' affect as things like predication are not taken into account. 321 bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const; 322 323 /// Return true if this instruction has a predicate operand 324 /// that controls execution. It may be set to 'always', or may be set to other 325 /// values. There are various methods in TargetInstrInfo that can be used to 326 /// control and modify the predicate in this instruction. 327 bool isPredicable() const { return Flags & (1ULL << MCID::Predicable); } 328 329 /// Return true if this instruction is a comparison. 330 bool isCompare() const { return Flags & (1ULL << MCID::Compare); } 331 332 /// Return true if this instruction is a move immediate 333 /// (including conditional moves) instruction. 334 bool isMoveImmediate() const { return Flags & (1ULL << MCID::MoveImm); } 335 336 /// Return true if this instruction is a bitcast instruction. 337 bool isBitcast() const { return Flags & (1ULL << MCID::Bitcast); } 338 339 /// Return true if this is a select instruction. 340 bool isSelect() const { return Flags & (1ULL << MCID::Select); } 341 342 /// Return true if this instruction cannot be safely 343 /// duplicated. For example, if the instruction has a unique labels attached 344 /// to it, duplicating it would cause multiple definition errors. 345 bool isNotDuplicable() const { return Flags & (1ULL << MCID::NotDuplicable); } 346 347 /// Returns true if the specified instruction has a delay slot which 348 /// must be filled by the code generator. 349 bool hasDelaySlot() const { return Flags & (1ULL << MCID::DelaySlot); } 350 351 /// Return true for instructions that can be folded as memory operands 352 /// in other instructions. The most common use for this is instructions that 353 /// are simple loads from memory that don't modify the loaded value in any 354 /// way, but it can also be used for instructions that can be expressed as 355 /// constant-pool loads, such as V_SETALLONES on x86, to allow them to be 356 /// folded when it is beneficial. This should only be set on instructions 357 /// that return a value in their only virtual register definition. 358 bool canFoldAsLoad() const { return Flags & (1ULL << MCID::FoldableAsLoad); } 359 360 /// Return true if this instruction behaves 361 /// the same way as the generic REG_SEQUENCE instructions. 362 /// E.g., on ARM, 363 /// dX VMOVDRR rY, rZ 364 /// is equivalent to 365 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. 366 /// 367 /// Note that for the optimizers to be able to take advantage of 368 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be 369 /// override accordingly. 370 bool isRegSequenceLike() const { return Flags & (1ULL << MCID::RegSequence); } 371 372 /// Return true if this instruction behaves 373 /// the same way as the generic EXTRACT_SUBREG instructions. 374 /// E.g., on ARM, 375 /// rX, rY VMOVRRD dZ 376 /// is equivalent to two EXTRACT_SUBREG: 377 /// rX = EXTRACT_SUBREG dZ, ssub_0 378 /// rY = EXTRACT_SUBREG dZ, ssub_1 379 /// 380 /// Note that for the optimizers to be able to take advantage of 381 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be 382 /// override accordingly. 383 bool isExtractSubregLike() const { 384 return Flags & (1ULL << MCID::ExtractSubreg); 385 } 386 387 /// Return true if this instruction behaves 388 /// the same way as the generic INSERT_SUBREG instructions. 389 /// E.g., on ARM, 390 /// dX = VSETLNi32 dY, rZ, Imm 391 /// is equivalent to a INSERT_SUBREG: 392 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) 393 /// 394 /// Note that for the optimizers to be able to take advantage of 395 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be 396 /// override accordingly. 397 bool isInsertSubregLike() const { return Flags & (1ULL << MCID::InsertSubreg); } 398 399 400 /// Return true if this instruction is convergent. 401 /// 402 /// Convergent instructions may not be made control-dependent on any 403 /// additional values. 404 bool isConvergent() const { return Flags & (1ULL << MCID::Convergent); } 405 406 /// Return true if variadic operands of this instruction are definitions. 407 bool variadicOpsAreDefs() const { 408 return Flags & (1ULL << MCID::VariadicOpsAreDefs); 409 } 410 411 //===--------------------------------------------------------------------===// 412 // Side Effect Analysis 413 //===--------------------------------------------------------------------===// 414 415 /// Return true if this instruction could possibly read memory. 416 /// Instructions with this flag set are not necessarily simple load 417 /// instructions, they may load a value and modify it, for example. 418 bool mayLoad() const { return Flags & (1ULL << MCID::MayLoad); } 419 420 /// Return true if this instruction could possibly modify memory. 421 /// Instructions with this flag set are not necessarily simple store 422 /// instructions, they may store a modified value based on their operands, or 423 /// may not actually modify anything, for example. 424 bool mayStore() const { return Flags & (1ULL << MCID::MayStore); } 425 426 /// Return true if this instruction may raise a floating-point exception. 427 bool mayRaiseFPException() const { 428 return Flags & (1ULL << MCID::MayRaiseFPException); 429 } 430 431 /// Return true if this instruction has side 432 /// effects that are not modeled by other flags. This does not return true 433 /// for instructions whose effects are captured by: 434 /// 435 /// 1. Their operand list and implicit definition/use list. Register use/def 436 /// info is explicit for instructions. 437 /// 2. Memory accesses. Use mayLoad/mayStore. 438 /// 3. Calling, branching, returning: use isCall/isReturn/isBranch. 439 /// 440 /// Examples of side effects would be modifying 'invisible' machine state like 441 /// a control register, flushing a cache, modifying a register invisible to 442 /// LLVM, etc. 443 bool hasUnmodeledSideEffects() const { 444 return Flags & (1ULL << MCID::UnmodeledSideEffects); 445 } 446 447 //===--------------------------------------------------------------------===// 448 // Flags that indicate whether an instruction can be modified by a method. 449 //===--------------------------------------------------------------------===// 450 451 /// Return true if this may be a 2- or 3-address instruction (of the 452 /// form "X = op Y, Z, ..."), which produces the same result if Y and Z are 453 /// exchanged. If this flag is set, then the 454 /// TargetInstrInfo::commuteInstruction method may be used to hack on the 455 /// instruction. 456 /// 457 /// Note that this flag may be set on instructions that are only commutable 458 /// sometimes. In these cases, the call to commuteInstruction will fail. 459 /// Also note that some instructions require non-trivial modification to 460 /// commute them. 461 bool isCommutable() const { return Flags & (1ULL << MCID::Commutable); } 462 463 /// Return true if this is a 2-address instruction which can be changed 464 /// into a 3-address instruction if needed. Doing this transformation can be 465 /// profitable in the register allocator, because it means that the 466 /// instruction can use a 2-address form if possible, but degrade into a less 467 /// efficient form if the source and dest register cannot be assigned to the 468 /// same register. For example, this allows the x86 backend to turn a "shl 469 /// reg, 3" instruction into an LEA instruction, which is the same speed as 470 /// the shift but has bigger code size. 471 /// 472 /// If this returns true, then the target must implement the 473 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which 474 /// is allowed to fail if the transformation isn't valid for this specific 475 /// instruction (e.g. shl reg, 4 on x86). 476 /// 477 bool isConvertibleTo3Addr() const { 478 return Flags & (1ULL << MCID::ConvertibleTo3Addr); 479 } 480 481 /// Return true if this instruction requires custom insertion support 482 /// when the DAG scheduler is inserting it into a machine basic block. If 483 /// this is true for the instruction, it basically means that it is a pseudo 484 /// instruction used at SelectionDAG time that is expanded out into magic code 485 /// by the target when MachineInstrs are formed. 486 /// 487 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method 488 /// is used to insert this into the MachineBasicBlock. 489 bool usesCustomInsertionHook() const { 490 return Flags & (1ULL << MCID::UsesCustomInserter); 491 } 492 493 /// Return true if this instruction requires *adjustment* after 494 /// instruction selection by calling a target hook. For example, this can be 495 /// used to fill in ARM 's' optional operand depending on whether the 496 /// conditional flag register is used. 497 bool hasPostISelHook() const { return Flags & (1ULL << MCID::HasPostISelHook); } 498 499 /// Returns true if this instruction is a candidate for remat. This 500 /// flag is only used in TargetInstrInfo method isTriviallyRematerializable. 501 /// 502 /// If this flag is set, the isReallyTriviallyReMaterializable() 503 /// or isReallyTriviallyReMaterializableGeneric methods are called to verify 504 /// the instruction is really rematable. 505 bool isRematerializable() const { 506 return Flags & (1ULL << MCID::Rematerializable); 507 } 508 509 /// Returns true if this instruction has the same cost (or less) than a 510 /// move instruction. This is useful during certain types of optimizations 511 /// (e.g., remat during two-address conversion or machine licm) where we would 512 /// like to remat or hoist the instruction, but not if it costs more than 513 /// moving the instruction into the appropriate register. Note, we are not 514 /// marking copies from and to the same register class with this flag. 515 /// 516 /// This method could be called by interface TargetInstrInfo::isAsCheapAsAMove 517 /// for different subtargets. 518 bool isAsCheapAsAMove() const { return Flags & (1ULL << MCID::CheapAsAMove); } 519 520 /// Returns true if this instruction source operands have special 521 /// register allocation requirements that are not captured by the operand 522 /// register classes. e.g. ARM::STRD's two source registers must be an even / 523 /// odd pair, ARM::STM registers have to be in ascending order. Post-register 524 /// allocation passes should not attempt to change allocations for sources of 525 /// instructions with this flag. 526 bool hasExtraSrcRegAllocReq() const { 527 return Flags & (1ULL << MCID::ExtraSrcRegAllocReq); 528 } 529 530 /// Returns true if this instruction def operands have special register 531 /// allocation requirements that are not captured by the operand register 532 /// classes. e.g. ARM::LDRD's two def registers must be an even / odd pair, 533 /// ARM::LDM registers have to be in ascending order. Post-register 534 /// allocation passes should not attempt to change allocations for definitions 535 /// of instructions with this flag. 536 bool hasExtraDefRegAllocReq() const { 537 return Flags & (1ULL << MCID::ExtraDefRegAllocReq); 538 } 539 540 /// Return a list of registers that are potentially read by any 541 /// instance of this machine instruction. For example, on X86, the "adc" 542 /// instruction adds two register operands and adds the carry bit in from the 543 /// flags register. In this case, the instruction is marked as implicitly 544 /// reading the flags. Likewise, the variable shift instruction on X86 is 545 /// marked as implicitly reading the 'CL' register, which it always does. 546 /// 547 /// This method returns null if the instruction has no implicit uses. 548 const MCPhysReg *getImplicitUses() const { return ImplicitUses; } 549 550 /// Return the number of implicit uses this instruction has. 551 unsigned getNumImplicitUses() const { 552 if (!ImplicitUses) 553 return 0; 554 unsigned i = 0; 555 for (; ImplicitUses[i]; ++i) /*empty*/ 556 ; 557 return i; 558 } 559 560 /// Return a list of registers that are potentially written by any 561 /// instance of this machine instruction. For example, on X86, many 562 /// instructions implicitly set the flags register. In this case, they are 563 /// marked as setting the FLAGS. Likewise, many instructions always deposit 564 /// their result in a physical register. For example, the X86 divide 565 /// instruction always deposits the quotient and remainder in the EAX/EDX 566 /// registers. For that instruction, this will return a list containing the 567 /// EAX/EDX/EFLAGS registers. 568 /// 569 /// This method returns null if the instruction has no implicit defs. 570 const MCPhysReg *getImplicitDefs() const { return ImplicitDefs; } 571 572 /// Return the number of implicit defs this instruct has. 573 unsigned getNumImplicitDefs() const { 574 if (!ImplicitDefs) 575 return 0; 576 unsigned i = 0; 577 for (; ImplicitDefs[i]; ++i) /*empty*/ 578 ; 579 return i; 580 } 581 582 /// Return true if this instruction implicitly 583 /// uses the specified physical register. 584 bool hasImplicitUseOfPhysReg(unsigned Reg) const { 585 if (const MCPhysReg *ImpUses = ImplicitUses) 586 for (; *ImpUses; ++ImpUses) 587 if (*ImpUses == Reg) 588 return true; 589 return false; 590 } 591 592 /// Return true if this instruction implicitly 593 /// defines the specified physical register. 594 bool hasImplicitDefOfPhysReg(unsigned Reg, 595 const MCRegisterInfo *MRI = nullptr) const; 596 597 /// Return the scheduling class for this instruction. The 598 /// scheduling class is an index into the InstrItineraryData table. This 599 /// returns zero if there is no known scheduling information for the 600 /// instruction. 601 unsigned getSchedClass() const { return SchedClass; } 602 603 /// Return the number of bytes in the encoding of this instruction, 604 /// or zero if the encoding size cannot be known from the opcode. 605 unsigned getSize() const { return Size; } 606 607 /// Find the index of the first operand in the 608 /// operand list that is used to represent the predicate. It returns -1 if 609 /// none is found. 610 int findFirstPredOperandIdx() const { 611 if (isPredicable()) { 612 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 613 if (OpInfo[i].isPredicate()) 614 return i; 615 } 616 return -1; 617 } 618 619 /// Return true if this instruction defines the specified physical 620 /// register, either explicitly or implicitly. 621 bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg, 622 const MCRegisterInfo &RI) const; 623 }; 624 625 } // end namespace llvm 626 627 #endif 628