1 //===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the MCOperandInfo and MCInstrDesc classes, which 10 // are used to describe target instructions and their operands. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_MC_MCINSTRDESC_H 15 #define LLVM_MC_MCINSTRDESC_H 16 17 #include "llvm/MC/MCRegisterInfo.h" 18 #include "llvm/Support/DataTypes.h" 19 #include <string> 20 21 namespace llvm { 22 class MCInst; 23 class MCSubtargetInfo; 24 class FeatureBitset; 25 26 //===----------------------------------------------------------------------===// 27 // Machine Operand Flags and Description 28 //===----------------------------------------------------------------------===// 29 30 namespace MCOI { 31 // Operand constraints 32 enum OperandConstraint { 33 TIED_TO = 0, // Must be allocated the same register as. 34 EARLY_CLOBBER // Operand is an early clobber register operand 35 }; 36 37 /// These are flags set on operands, but should be considered 38 /// private, all access should go through the MCOperandInfo accessors. 39 /// See the accessors for a description of what these are. 40 enum OperandFlags { LookupPtrRegClass = 0, Predicate, OptionalDef }; 41 42 /// Operands are tagged with one of the values of this enum. 43 enum OperandType { 44 OPERAND_UNKNOWN = 0, 45 OPERAND_IMMEDIATE = 1, 46 OPERAND_REGISTER = 2, 47 OPERAND_MEMORY = 3, 48 OPERAND_PCREL = 4, 49 50 OPERAND_FIRST_GENERIC = 6, 51 OPERAND_GENERIC_0 = 6, 52 OPERAND_GENERIC_1 = 7, 53 OPERAND_GENERIC_2 = 8, 54 OPERAND_GENERIC_3 = 9, 55 OPERAND_GENERIC_4 = 10, 56 OPERAND_GENERIC_5 = 11, 57 OPERAND_LAST_GENERIC = 11, 58 59 OPERAND_FIRST_TARGET = 12, 60 }; 61 62 } 63 64 /// This holds information about one operand of a machine instruction, 65 /// indicating the register class for register operands, etc. 66 class MCOperandInfo { 67 public: 68 /// This specifies the register class enumeration of the operand 69 /// if the operand is a register. If isLookupPtrRegClass is set, then this is 70 /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to 71 /// get a dynamic register class. 72 int16_t RegClass; 73 74 /// These are flags from the MCOI::OperandFlags enum. 75 uint8_t Flags; 76 77 /// Information about the type of the operand. 78 uint8_t OperandType; 79 /// The lower 16 bits are used to specify which constraints are set. 80 /// The higher 16 bits are used to specify the value of constraints (4 bits 81 /// each). 82 uint32_t Constraints; 83 84 /// Set if this operand is a pointer value and it requires a callback 85 /// to look up its register class. 86 bool isLookupPtrRegClass() const { 87 return Flags & (1 << MCOI::LookupPtrRegClass); 88 } 89 90 /// Set if this is one of the operands that made up of the predicate 91 /// operand that controls an isPredicable() instruction. 92 bool isPredicate() const { return Flags & (1 << MCOI::Predicate); } 93 94 /// Set if this operand is a optional def. 95 bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); } 96 97 bool isGenericType() const { 98 return OperandType >= MCOI::OPERAND_FIRST_GENERIC && 99 OperandType <= MCOI::OPERAND_LAST_GENERIC; 100 } 101 102 unsigned getGenericTypeIndex() const { 103 assert(isGenericType() && "non-generic types don't have an index"); 104 return OperandType - MCOI::OPERAND_FIRST_GENERIC; 105 } 106 }; 107 108 //===----------------------------------------------------------------------===// 109 // Machine Instruction Flags and Description 110 //===----------------------------------------------------------------------===// 111 112 namespace MCID { 113 /// These should be considered private to the implementation of the 114 /// MCInstrDesc class. Clients should use the predicate methods on MCInstrDesc, 115 /// not use these directly. These all correspond to bitfields in the 116 /// MCInstrDesc::Flags field. 117 enum Flag { 118 Variadic = 0, 119 HasOptionalDef, 120 Pseudo, 121 Return, 122 EHScopeReturn, 123 Call, 124 Barrier, 125 Terminator, 126 Branch, 127 IndirectBranch, 128 Compare, 129 MoveImm, 130 MoveReg, 131 Bitcast, 132 Select, 133 DelaySlot, 134 FoldableAsLoad, 135 MayLoad, 136 MayStore, 137 MayRaiseFPException, 138 Predicable, 139 NotDuplicable, 140 UnmodeledSideEffects, 141 Commutable, 142 ConvertibleTo3Addr, 143 UsesCustomInserter, 144 HasPostISelHook, 145 Rematerializable, 146 CheapAsAMove, 147 ExtraSrcRegAllocReq, 148 ExtraDefRegAllocReq, 149 RegSequence, 150 ExtractSubreg, 151 InsertSubreg, 152 Convergent, 153 Add, 154 Trap, 155 VariadicOpsAreDefs, 156 }; 157 } 158 159 /// Describe properties that are true of each instruction in the target 160 /// description file. This captures information about side effects, register 161 /// use and many other things. There is one instance of this struct for each 162 /// target instruction class, and the MachineInstr class points to this struct 163 /// directly to describe itself. 164 class MCInstrDesc { 165 public: 166 unsigned short Opcode; // The opcode number 167 unsigned short NumOperands; // Num of args (may be more if variable_ops) 168 unsigned char NumDefs; // Num of args that are definitions 169 unsigned char Size; // Number of bytes in encoding. 170 unsigned short SchedClass; // enum identifying instr sched class 171 uint64_t Flags; // Flags identifying machine instr class 172 uint64_t TSFlags; // Target Specific Flag values 173 const MCPhysReg *ImplicitUses; // Registers implicitly read by this instr 174 const MCPhysReg *ImplicitDefs; // Registers implicitly defined by this instr 175 const MCOperandInfo *OpInfo; // 'NumOperands' entries about operands 176 // Subtarget feature that this is deprecated on, if any 177 // -1 implies this is not deprecated by any single feature. It may still be 178 // deprecated due to a "complex" reason, below. 179 int64_t DeprecatedFeature; 180 181 // A complex method to determine if a certain instruction is deprecated or 182 // not, and return the reason for deprecation. 183 bool (*ComplexDeprecationInfo)(MCInst &, const MCSubtargetInfo &, 184 std::string &); 185 186 /// Returns the value of the specific constraint if 187 /// it is set. Returns -1 if it is not set. 188 int getOperandConstraint(unsigned OpNum, 189 MCOI::OperandConstraint Constraint) const { 190 if (OpNum < NumOperands && 191 (OpInfo[OpNum].Constraints & (1 << Constraint))) { 192 unsigned Pos = 16 + Constraint * 4; 193 return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf; 194 } 195 return -1; 196 } 197 198 /// Returns true if a certain instruction is deprecated and if so 199 /// returns the reason in \p Info. 200 bool getDeprecatedInfo(MCInst &MI, const MCSubtargetInfo &STI, 201 std::string &Info) const; 202 203 /// Return the opcode number for this descriptor. 204 unsigned getOpcode() const { return Opcode; } 205 206 /// Return the number of declared MachineOperands for this 207 /// MachineInstruction. Note that variadic (isVariadic() returns true) 208 /// instructions may have additional operands at the end of the list, and note 209 /// that the machine instruction may include implicit register def/uses as 210 /// well. 211 unsigned getNumOperands() const { return NumOperands; } 212 213 using const_opInfo_iterator = const MCOperandInfo *; 214 215 const_opInfo_iterator opInfo_begin() const { return OpInfo; } 216 const_opInfo_iterator opInfo_end() const { return OpInfo + NumOperands; } 217 218 iterator_range<const_opInfo_iterator> operands() const { 219 return make_range(opInfo_begin(), opInfo_end()); 220 } 221 222 /// Return the number of MachineOperands that are register 223 /// definitions. Register definitions always occur at the start of the 224 /// machine operand list. This is the number of "outs" in the .td file, 225 /// and does not include implicit defs. 226 unsigned getNumDefs() const { return NumDefs; } 227 228 /// Return flags of this instruction. 229 uint64_t getFlags() const { return Flags; } 230 231 /// Return true if this instruction can have a variable number of 232 /// operands. In this case, the variable operands will be after the normal 233 /// operands but before the implicit definitions and uses (if any are 234 /// present). 235 bool isVariadic() const { return Flags & (1ULL << MCID::Variadic); } 236 237 /// Set if this instruction has an optional definition, e.g. 238 /// ARM instructions which can set condition code if 's' bit is set. 239 bool hasOptionalDef() const { return Flags & (1ULL << MCID::HasOptionalDef); } 240 241 /// Return true if this is a pseudo instruction that doesn't 242 /// correspond to a real machine instruction. 243 bool isPseudo() const { return Flags & (1ULL << MCID::Pseudo); } 244 245 /// Return true if the instruction is a return. 246 bool isReturn() const { return Flags & (1ULL << MCID::Return); } 247 248 /// Return true if the instruction is an add instruction. 249 bool isAdd() const { return Flags & (1ULL << MCID::Add); } 250 251 /// Return true if this instruction is a trap. 252 bool isTrap() const { return Flags & (1ULL << MCID::Trap); } 253 254 /// Return true if the instruction is a register to register move. 255 bool isMoveReg() const { return Flags & (1ULL << MCID::MoveReg); } 256 257 /// Return true if the instruction is a call. 258 bool isCall() const { return Flags & (1ULL << MCID::Call); } 259 260 /// Returns true if the specified instruction stops control flow 261 /// from executing the instruction immediately following it. Examples include 262 /// unconditional branches and return instructions. 263 bool isBarrier() const { return Flags & (1ULL << MCID::Barrier); } 264 265 /// Returns true if this instruction part of the terminator for 266 /// a basic block. Typically this is things like return and branch 267 /// instructions. 268 /// 269 /// Various passes use this to insert code into the bottom of a basic block, 270 /// but before control flow occurs. 271 bool isTerminator() const { return Flags & (1ULL << MCID::Terminator); } 272 273 /// Returns true if this is a conditional, unconditional, or 274 /// indirect branch. Predicates below can be used to discriminate between 275 /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to 276 /// get more information. 277 bool isBranch() const { return Flags & (1ULL << MCID::Branch); } 278 279 /// Return true if this is an indirect branch, such as a 280 /// branch through a register. 281 bool isIndirectBranch() const { return Flags & (1ULL << MCID::IndirectBranch); } 282 283 /// Return true if this is a branch which may fall 284 /// through to the next instruction or may transfer control flow to some other 285 /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more 286 /// information about this branch. 287 bool isConditionalBranch() const { 288 return isBranch() & !isBarrier() & !isIndirectBranch(); 289 } 290 291 /// Return true if this is a branch which always 292 /// transfers control flow to some other block. The 293 /// TargetInstrInfo::AnalyzeBranch method can be used to get more information 294 /// about this branch. 295 bool isUnconditionalBranch() const { 296 return isBranch() & isBarrier() & !isIndirectBranch(); 297 } 298 299 /// Return true if this is a branch or an instruction which directly 300 /// writes to the program counter. Considered 'may' affect rather than 301 /// 'does' affect as things like predication are not taken into account. 302 bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const; 303 304 /// Return true if this instruction has a predicate operand 305 /// that controls execution. It may be set to 'always', or may be set to other 306 /// values. There are various methods in TargetInstrInfo that can be used to 307 /// control and modify the predicate in this instruction. 308 bool isPredicable() const { return Flags & (1ULL << MCID::Predicable); } 309 310 /// Return true if this instruction is a comparison. 311 bool isCompare() const { return Flags & (1ULL << MCID::Compare); } 312 313 /// Return true if this instruction is a move immediate 314 /// (including conditional moves) instruction. 315 bool isMoveImmediate() const { return Flags & (1ULL << MCID::MoveImm); } 316 317 /// Return true if this instruction is a bitcast instruction. 318 bool isBitcast() const { return Flags & (1ULL << MCID::Bitcast); } 319 320 /// Return true if this is a select instruction. 321 bool isSelect() const { return Flags & (1ULL << MCID::Select); } 322 323 /// Return true if this instruction cannot be safely 324 /// duplicated. For example, if the instruction has a unique labels attached 325 /// to it, duplicating it would cause multiple definition errors. 326 bool isNotDuplicable() const { return Flags & (1ULL << MCID::NotDuplicable); } 327 328 /// Returns true if the specified instruction has a delay slot which 329 /// must be filled by the code generator. 330 bool hasDelaySlot() const { return Flags & (1ULL << MCID::DelaySlot); } 331 332 /// Return true for instructions that can be folded as memory operands 333 /// in other instructions. The most common use for this is instructions that 334 /// are simple loads from memory that don't modify the loaded value in any 335 /// way, but it can also be used for instructions that can be expressed as 336 /// constant-pool loads, such as V_SETALLONES on x86, to allow them to be 337 /// folded when it is beneficial. This should only be set on instructions 338 /// that return a value in their only virtual register definition. 339 bool canFoldAsLoad() const { return Flags & (1ULL << MCID::FoldableAsLoad); } 340 341 /// Return true if this instruction behaves 342 /// the same way as the generic REG_SEQUENCE instructions. 343 /// E.g., on ARM, 344 /// dX VMOVDRR rY, rZ 345 /// is equivalent to 346 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. 347 /// 348 /// Note that for the optimizers to be able to take advantage of 349 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be 350 /// override accordingly. 351 bool isRegSequenceLike() const { return Flags & (1ULL << MCID::RegSequence); } 352 353 /// Return true if this instruction behaves 354 /// the same way as the generic EXTRACT_SUBREG instructions. 355 /// E.g., on ARM, 356 /// rX, rY VMOVRRD dZ 357 /// is equivalent to two EXTRACT_SUBREG: 358 /// rX = EXTRACT_SUBREG dZ, ssub_0 359 /// rY = EXTRACT_SUBREG dZ, ssub_1 360 /// 361 /// Note that for the optimizers to be able to take advantage of 362 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be 363 /// override accordingly. 364 bool isExtractSubregLike() const { 365 return Flags & (1ULL << MCID::ExtractSubreg); 366 } 367 368 /// Return true if this instruction behaves 369 /// the same way as the generic INSERT_SUBREG instructions. 370 /// E.g., on ARM, 371 /// dX = VSETLNi32 dY, rZ, Imm 372 /// is equivalent to a INSERT_SUBREG: 373 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) 374 /// 375 /// Note that for the optimizers to be able to take advantage of 376 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be 377 /// override accordingly. 378 bool isInsertSubregLike() const { return Flags & (1ULL << MCID::InsertSubreg); } 379 380 381 /// Return true if this instruction is convergent. 382 /// 383 /// Convergent instructions may not be made control-dependent on any 384 /// additional values. 385 bool isConvergent() const { return Flags & (1ULL << MCID::Convergent); } 386 387 /// Return true if variadic operands of this instruction are definitions. 388 bool variadicOpsAreDefs() const { 389 return Flags & (1ULL << MCID::VariadicOpsAreDefs); 390 } 391 392 //===--------------------------------------------------------------------===// 393 // Side Effect Analysis 394 //===--------------------------------------------------------------------===// 395 396 /// Return true if this instruction could possibly read memory. 397 /// Instructions with this flag set are not necessarily simple load 398 /// instructions, they may load a value and modify it, for example. 399 bool mayLoad() const { return Flags & (1ULL << MCID::MayLoad); } 400 401 /// Return true if this instruction could possibly modify memory. 402 /// Instructions with this flag set are not necessarily simple store 403 /// instructions, they may store a modified value based on their operands, or 404 /// may not actually modify anything, for example. 405 bool mayStore() const { return Flags & (1ULL << MCID::MayStore); } 406 407 /// Return true if this instruction may raise a floating-point exception. 408 bool mayRaiseFPException() const { 409 return Flags & (1ULL << MCID::MayRaiseFPException); 410 } 411 412 /// Return true if this instruction has side 413 /// effects that are not modeled by other flags. This does not return true 414 /// for instructions whose effects are captured by: 415 /// 416 /// 1. Their operand list and implicit definition/use list. Register use/def 417 /// info is explicit for instructions. 418 /// 2. Memory accesses. Use mayLoad/mayStore. 419 /// 3. Calling, branching, returning: use isCall/isReturn/isBranch. 420 /// 421 /// Examples of side effects would be modifying 'invisible' machine state like 422 /// a control register, flushing a cache, modifying a register invisible to 423 /// LLVM, etc. 424 bool hasUnmodeledSideEffects() const { 425 return Flags & (1ULL << MCID::UnmodeledSideEffects); 426 } 427 428 //===--------------------------------------------------------------------===// 429 // Flags that indicate whether an instruction can be modified by a method. 430 //===--------------------------------------------------------------------===// 431 432 /// Return true if this may be a 2- or 3-address instruction (of the 433 /// form "X = op Y, Z, ..."), which produces the same result if Y and Z are 434 /// exchanged. If this flag is set, then the 435 /// TargetInstrInfo::commuteInstruction method may be used to hack on the 436 /// instruction. 437 /// 438 /// Note that this flag may be set on instructions that are only commutable 439 /// sometimes. In these cases, the call to commuteInstruction will fail. 440 /// Also note that some instructions require non-trivial modification to 441 /// commute them. 442 bool isCommutable() const { return Flags & (1ULL << MCID::Commutable); } 443 444 /// Return true if this is a 2-address instruction which can be changed 445 /// into a 3-address instruction if needed. Doing this transformation can be 446 /// profitable in the register allocator, because it means that the 447 /// instruction can use a 2-address form if possible, but degrade into a less 448 /// efficient form if the source and dest register cannot be assigned to the 449 /// same register. For example, this allows the x86 backend to turn a "shl 450 /// reg, 3" instruction into an LEA instruction, which is the same speed as 451 /// the shift but has bigger code size. 452 /// 453 /// If this returns true, then the target must implement the 454 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which 455 /// is allowed to fail if the transformation isn't valid for this specific 456 /// instruction (e.g. shl reg, 4 on x86). 457 /// 458 bool isConvertibleTo3Addr() const { 459 return Flags & (1ULL << MCID::ConvertibleTo3Addr); 460 } 461 462 /// Return true if this instruction requires custom insertion support 463 /// when the DAG scheduler is inserting it into a machine basic block. If 464 /// this is true for the instruction, it basically means that it is a pseudo 465 /// instruction used at SelectionDAG time that is expanded out into magic code 466 /// by the target when MachineInstrs are formed. 467 /// 468 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method 469 /// is used to insert this into the MachineBasicBlock. 470 bool usesCustomInsertionHook() const { 471 return Flags & (1ULL << MCID::UsesCustomInserter); 472 } 473 474 /// Return true if this instruction requires *adjustment* after 475 /// instruction selection by calling a target hook. For example, this can be 476 /// used to fill in ARM 's' optional operand depending on whether the 477 /// conditional flag register is used. 478 bool hasPostISelHook() const { return Flags & (1ULL << MCID::HasPostISelHook); } 479 480 /// Returns true if this instruction is a candidate for remat. This 481 /// flag is only used in TargetInstrInfo method isTriviallyRematerializable. 482 /// 483 /// If this flag is set, the isReallyTriviallyReMaterializable() 484 /// or isReallyTriviallyReMaterializableGeneric methods are called to verify 485 /// the instruction is really rematable. 486 bool isRematerializable() const { 487 return Flags & (1ULL << MCID::Rematerializable); 488 } 489 490 /// Returns true if this instruction has the same cost (or less) than a 491 /// move instruction. This is useful during certain types of optimizations 492 /// (e.g., remat during two-address conversion or machine licm) where we would 493 /// like to remat or hoist the instruction, but not if it costs more than 494 /// moving the instruction into the appropriate register. Note, we are not 495 /// marking copies from and to the same register class with this flag. 496 /// 497 /// This method could be called by interface TargetInstrInfo::isAsCheapAsAMove 498 /// for different subtargets. 499 bool isAsCheapAsAMove() const { return Flags & (1ULL << MCID::CheapAsAMove); } 500 501 /// Returns true if this instruction source operands have special 502 /// register allocation requirements that are not captured by the operand 503 /// register classes. e.g. ARM::STRD's two source registers must be an even / 504 /// odd pair, ARM::STM registers have to be in ascending order. Post-register 505 /// allocation passes should not attempt to change allocations for sources of 506 /// instructions with this flag. 507 bool hasExtraSrcRegAllocReq() const { 508 return Flags & (1ULL << MCID::ExtraSrcRegAllocReq); 509 } 510 511 /// Returns true if this instruction def operands have special register 512 /// allocation requirements that are not captured by the operand register 513 /// classes. e.g. ARM::LDRD's two def registers must be an even / odd pair, 514 /// ARM::LDM registers have to be in ascending order. Post-register 515 /// allocation passes should not attempt to change allocations for definitions 516 /// of instructions with this flag. 517 bool hasExtraDefRegAllocReq() const { 518 return Flags & (1ULL << MCID::ExtraDefRegAllocReq); 519 } 520 521 /// Return a list of registers that are potentially read by any 522 /// instance of this machine instruction. For example, on X86, the "adc" 523 /// instruction adds two register operands and adds the carry bit in from the 524 /// flags register. In this case, the instruction is marked as implicitly 525 /// reading the flags. Likewise, the variable shift instruction on X86 is 526 /// marked as implicitly reading the 'CL' register, which it always does. 527 /// 528 /// This method returns null if the instruction has no implicit uses. 529 const MCPhysReg *getImplicitUses() const { return ImplicitUses; } 530 531 /// Return the number of implicit uses this instruction has. 532 unsigned getNumImplicitUses() const { 533 if (!ImplicitUses) 534 return 0; 535 unsigned i = 0; 536 for (; ImplicitUses[i]; ++i) /*empty*/ 537 ; 538 return i; 539 } 540 541 /// Return a list of registers that are potentially written by any 542 /// instance of this machine instruction. For example, on X86, many 543 /// instructions implicitly set the flags register. In this case, they are 544 /// marked as setting the FLAGS. Likewise, many instructions always deposit 545 /// their result in a physical register. For example, the X86 divide 546 /// instruction always deposits the quotient and remainder in the EAX/EDX 547 /// registers. For that instruction, this will return a list containing the 548 /// EAX/EDX/EFLAGS registers. 549 /// 550 /// This method returns null if the instruction has no implicit defs. 551 const MCPhysReg *getImplicitDefs() const { return ImplicitDefs; } 552 553 /// Return the number of implicit defs this instruct has. 554 unsigned getNumImplicitDefs() const { 555 if (!ImplicitDefs) 556 return 0; 557 unsigned i = 0; 558 for (; ImplicitDefs[i]; ++i) /*empty*/ 559 ; 560 return i; 561 } 562 563 /// Return true if this instruction implicitly 564 /// uses the specified physical register. 565 bool hasImplicitUseOfPhysReg(unsigned Reg) const { 566 if (const MCPhysReg *ImpUses = ImplicitUses) 567 for (; *ImpUses; ++ImpUses) 568 if (*ImpUses == Reg) 569 return true; 570 return false; 571 } 572 573 /// Return true if this instruction implicitly 574 /// defines the specified physical register. 575 bool hasImplicitDefOfPhysReg(unsigned Reg, 576 const MCRegisterInfo *MRI = nullptr) const; 577 578 /// Return the scheduling class for this instruction. The 579 /// scheduling class is an index into the InstrItineraryData table. This 580 /// returns zero if there is no known scheduling information for the 581 /// instruction. 582 unsigned getSchedClass() const { return SchedClass; } 583 584 /// Return the number of bytes in the encoding of this instruction, 585 /// or zero if the encoding size cannot be known from the opcode. 586 unsigned getSize() const { return Size; } 587 588 /// Find the index of the first operand in the 589 /// operand list that is used to represent the predicate. It returns -1 if 590 /// none is found. 591 int findFirstPredOperandIdx() const { 592 if (isPredicable()) { 593 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 594 if (OpInfo[i].isPredicate()) 595 return i; 596 } 597 return -1; 598 } 599 600 /// Return true if this instruction defines the specified physical 601 /// register, either explicitly or implicitly. 602 bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg, 603 const MCRegisterInfo &RI) const; 604 }; 605 606 } // end namespace llvm 607 608 #endif 609