xref: /freebsd-src/contrib/llvm-project/llvm/include/llvm/CodeGen/MachineDominators.h (revision 68d75eff68281c1b445e3010bb975eae07aac225)
1 //==- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation -*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines classes mirroring those in llvm/Analysis/Dominators.h,
10 // but for target-specific code rather than target-independent IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H
15 #define LLVM_CODEGEN_MACHINEDOMINATORS_H
16 
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/Support/GenericDomTree.h"
23 #include "llvm/Support/GenericDomTreeConstruction.h"
24 #include <cassert>
25 #include <memory>
26 #include <vector>
27 
28 namespace llvm {
29 
30 template <>
31 inline void DominatorTreeBase<MachineBasicBlock, false>::addRoot(
32     MachineBasicBlock *MBB) {
33   this->Roots.push_back(MBB);
34 }
35 
36 extern template class DomTreeNodeBase<MachineBasicBlock>;
37 extern template class DominatorTreeBase<MachineBasicBlock, false>; // DomTree
38 extern template class DominatorTreeBase<MachineBasicBlock, true>; // PostDomTree
39 
40 using MachineDomTreeNode = DomTreeNodeBase<MachineBasicBlock>;
41 
42 //===-------------------------------------
43 /// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
44 /// compute a normal dominator tree.
45 ///
46 class MachineDominatorTree : public MachineFunctionPass {
47   using DomTreeT = DomTreeBase<MachineBasicBlock>;
48 
49   /// Helper structure used to hold all the basic blocks
50   /// involved in the split of a critical edge.
51   struct CriticalEdge {
52     MachineBasicBlock *FromBB;
53     MachineBasicBlock *ToBB;
54     MachineBasicBlock *NewBB;
55   };
56 
57   /// Pile up all the critical edges to be split.
58   /// The splitting of a critical edge is local and thus, it is possible
59   /// to apply several of those changes at the same time.
60   mutable SmallVector<CriticalEdge, 32> CriticalEdgesToSplit;
61 
62   /// Remember all the basic blocks that are inserted during
63   /// edge splitting.
64   /// Invariant: NewBBs == all the basic blocks contained in the NewBB
65   /// field of all the elements of CriticalEdgesToSplit.
66   /// I.e., forall elt in CriticalEdgesToSplit, it exists BB in NewBBs
67   /// such as BB == elt.NewBB.
68   mutable SmallSet<MachineBasicBlock *, 32> NewBBs;
69 
70   /// The DominatorTreeBase that is used to compute a normal dominator tree.
71   std::unique_ptr<DomTreeT> DT;
72 
73   /// Apply all the recorded critical edges to the DT.
74   /// This updates the underlying DT information in a way that uses
75   /// the fast query path of DT as much as possible.
76   ///
77   /// \post CriticalEdgesToSplit.empty().
78   void applySplitCriticalEdges() const;
79 
80 public:
81   static char ID; // Pass ID, replacement for typeid
82 
83   MachineDominatorTree();
84 
85   DomTreeT &getBase() {
86     if (!DT) DT.reset(new DomTreeT());
87     applySplitCriticalEdges();
88     return *DT;
89   }
90 
91   void getAnalysisUsage(AnalysisUsage &AU) const override;
92 
93   /// getRoots -  Return the root blocks of the current CFG.  This may include
94   /// multiple blocks if we are computing post dominators.  For forward
95   /// dominators, this will always be a single block (the entry node).
96   ///
97   const SmallVectorImpl<MachineBasicBlock*> &getRoots() const {
98     applySplitCriticalEdges();
99     return DT->getRoots();
100   }
101 
102   MachineBasicBlock *getRoot() const {
103     applySplitCriticalEdges();
104     return DT->getRoot();
105   }
106 
107   MachineDomTreeNode *getRootNode() const {
108     applySplitCriticalEdges();
109     return DT->getRootNode();
110   }
111 
112   bool runOnMachineFunction(MachineFunction &F) override;
113 
114   bool dominates(const MachineDomTreeNode *A,
115                  const MachineDomTreeNode *B) const {
116     applySplitCriticalEdges();
117     return DT->dominates(A, B);
118   }
119 
120   bool dominates(const MachineBasicBlock *A, const MachineBasicBlock *B) const {
121     applySplitCriticalEdges();
122     return DT->dominates(A, B);
123   }
124 
125   // dominates - Return true if A dominates B. This performs the
126   // special checks necessary if A and B are in the same basic block.
127   bool dominates(const MachineInstr *A, const MachineInstr *B) const {
128     applySplitCriticalEdges();
129     const MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent();
130     if (BBA != BBB) return DT->dominates(BBA, BBB);
131 
132     // Loop through the basic block until we find A or B.
133     MachineBasicBlock::const_iterator I = BBA->begin();
134     for (; &*I != A && &*I != B; ++I)
135       /*empty*/ ;
136 
137     return &*I == A;
138   }
139 
140   bool properlyDominates(const MachineDomTreeNode *A,
141                          const MachineDomTreeNode *B) const {
142     applySplitCriticalEdges();
143     return DT->properlyDominates(A, B);
144   }
145 
146   bool properlyDominates(const MachineBasicBlock *A,
147                          const MachineBasicBlock *B) const {
148     applySplitCriticalEdges();
149     return DT->properlyDominates(A, B);
150   }
151 
152   /// findNearestCommonDominator - Find nearest common dominator basic block
153   /// for basic block A and B. If there is no such block then return NULL.
154   MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A,
155                                                 MachineBasicBlock *B) {
156     applySplitCriticalEdges();
157     return DT->findNearestCommonDominator(A, B);
158   }
159 
160   MachineDomTreeNode *operator[](MachineBasicBlock *BB) const {
161     applySplitCriticalEdges();
162     return DT->getNode(BB);
163   }
164 
165   /// getNode - return the (Post)DominatorTree node for the specified basic
166   /// block.  This is the same as using operator[] on this class.
167   ///
168   MachineDomTreeNode *getNode(MachineBasicBlock *BB) const {
169     applySplitCriticalEdges();
170     return DT->getNode(BB);
171   }
172 
173   /// addNewBlock - Add a new node to the dominator tree information.  This
174   /// creates a new node as a child of DomBB dominator node,linking it into
175   /// the children list of the immediate dominator.
176   MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB,
177                                   MachineBasicBlock *DomBB) {
178     applySplitCriticalEdges();
179     return DT->addNewBlock(BB, DomBB);
180   }
181 
182   /// changeImmediateDominator - This method is used to update the dominator
183   /// tree information when a node's immediate dominator changes.
184   ///
185   void changeImmediateDominator(MachineBasicBlock *N,
186                                 MachineBasicBlock *NewIDom) {
187     applySplitCriticalEdges();
188     DT->changeImmediateDominator(N, NewIDom);
189   }
190 
191   void changeImmediateDominator(MachineDomTreeNode *N,
192                                 MachineDomTreeNode *NewIDom) {
193     applySplitCriticalEdges();
194     DT->changeImmediateDominator(N, NewIDom);
195   }
196 
197   /// eraseNode - Removes a node from  the dominator tree. Block must not
198   /// dominate any other blocks. Removes node from its immediate dominator's
199   /// children list. Deletes dominator node associated with basic block BB.
200   void eraseNode(MachineBasicBlock *BB) {
201     applySplitCriticalEdges();
202     DT->eraseNode(BB);
203   }
204 
205   /// splitBlock - BB is split and now it has one successor. Update dominator
206   /// tree to reflect this change.
207   void splitBlock(MachineBasicBlock* NewBB) {
208     applySplitCriticalEdges();
209     DT->splitBlock(NewBB);
210   }
211 
212   /// isReachableFromEntry - Return true if A is dominated by the entry
213   /// block of the function containing it.
214   bool isReachableFromEntry(const MachineBasicBlock *A) {
215     applySplitCriticalEdges();
216     return DT->isReachableFromEntry(A);
217   }
218 
219   void releaseMemory() override;
220 
221   void verifyAnalysis() const override;
222 
223   void print(raw_ostream &OS, const Module*) const override;
224 
225   /// Record that the critical edge (FromBB, ToBB) has been
226   /// split with NewBB.
227   /// This is best to use this method instead of directly update the
228   /// underlying information, because this helps mitigating the
229   /// number of time the DT information is invalidated.
230   ///
231   /// \note Do not use this method with regular edges.
232   ///
233   /// \note To benefit from the compile time improvement incurred by this
234   /// method, the users of this method have to limit the queries to the DT
235   /// interface between two edges splitting. In other words, they have to
236   /// pack the splitting of critical edges as much as possible.
237   void recordSplitCriticalEdge(MachineBasicBlock *FromBB,
238                               MachineBasicBlock *ToBB,
239                               MachineBasicBlock *NewBB) {
240     bool Inserted = NewBBs.insert(NewBB).second;
241     (void)Inserted;
242     assert(Inserted &&
243            "A basic block inserted via edge splitting cannot appear twice");
244     CriticalEdgesToSplit.push_back({FromBB, ToBB, NewBB});
245   }
246 };
247 
248 //===-------------------------------------
249 /// DominatorTree GraphTraits specialization so the DominatorTree can be
250 /// iterable by generic graph iterators.
251 ///
252 
253 template <class Node, class ChildIterator>
254 struct MachineDomTreeGraphTraitsBase {
255   using NodeRef = Node *;
256   using ChildIteratorType = ChildIterator;
257 
258   static NodeRef getEntryNode(NodeRef N) { return N; }
259   static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
260   static ChildIteratorType child_end(NodeRef N) { return N->end(); }
261 };
262 
263 template <class T> struct GraphTraits;
264 
265 template <>
266 struct GraphTraits<MachineDomTreeNode *>
267     : public MachineDomTreeGraphTraitsBase<MachineDomTreeNode,
268                                            MachineDomTreeNode::iterator> {};
269 
270 template <>
271 struct GraphTraits<const MachineDomTreeNode *>
272     : public MachineDomTreeGraphTraitsBase<const MachineDomTreeNode,
273                                            MachineDomTreeNode::const_iterator> {
274 };
275 
276 template <> struct GraphTraits<MachineDominatorTree*>
277   : public GraphTraits<MachineDomTreeNode *> {
278   static NodeRef getEntryNode(MachineDominatorTree *DT) {
279     return DT->getRootNode();
280   }
281 };
282 
283 } // end namespace llvm
284 
285 #endif // LLVM_CODEGEN_MACHINEDOMINATORS_H
286