xref: /freebsd-src/contrib/llvm-project/llvm/include/llvm/Analysis/AliasAnalysis.h (revision 2eb4d8dc723da3cf7d735a3226ae49da4c8c5dbc)
1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the generic AliasAnalysis interface, which is used as the
10 // common interface used by all clients of alias analysis information, and
11 // implemented by all alias analysis implementations.  Mod/Ref information is
12 // also captured by this interface.
13 //
14 // Implementations of this interface must implement the various virtual methods,
15 // which automatically provides functionality for the entire suite of client
16 // APIs.
17 //
18 // This API identifies memory regions with the MemoryLocation class. The pointer
19 // component specifies the base memory address of the region. The Size specifies
20 // the maximum size (in address units) of the memory region, or
21 // MemoryLocation::UnknownSize if the size is not known. The TBAA tag
22 // identifies the "type" of the memory reference; see the
23 // TypeBasedAliasAnalysis class for details.
24 //
25 // Some non-obvious details include:
26 //  - Pointers that point to two completely different objects in memory never
27 //    alias, regardless of the value of the Size component.
28 //  - NoAlias doesn't imply inequal pointers. The most obvious example of this
29 //    is two pointers to constant memory. Even if they are equal, constant
30 //    memory is never stored to, so there will never be any dependencies.
31 //    In this and other situations, the pointers may be both NoAlias and
32 //    MustAlias at the same time. The current API can only return one result,
33 //    though this is rarely a problem in practice.
34 //
35 //===----------------------------------------------------------------------===//
36 
37 #ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
38 #define LLVM_ANALYSIS_ALIASANALYSIS_H
39 
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/Optional.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/Analysis/MemoryLocation.h"
45 #include "llvm/IR/PassManager.h"
46 #include "llvm/Pass.h"
47 #include <cstdint>
48 #include <functional>
49 #include <memory>
50 #include <vector>
51 
52 namespace llvm {
53 
54 class AnalysisUsage;
55 class AtomicCmpXchgInst;
56 class BasicAAResult;
57 class BasicBlock;
58 class CatchPadInst;
59 class CatchReturnInst;
60 class DominatorTree;
61 class FenceInst;
62 class Function;
63 class InvokeInst;
64 class PreservedAnalyses;
65 class TargetLibraryInfo;
66 class Value;
67 
68 /// The possible results of an alias query.
69 ///
70 /// These results are always computed between two MemoryLocation objects as
71 /// a query to some alias analysis.
72 ///
73 /// Note that these are unscoped enumerations because we would like to support
74 /// implicitly testing a result for the existence of any possible aliasing with
75 /// a conversion to bool, but an "enum class" doesn't support this. The
76 /// canonical names from the literature are suffixed and unique anyways, and so
77 /// they serve as global constants in LLVM for these results.
78 ///
79 /// See docs/AliasAnalysis.html for more information on the specific meanings
80 /// of these values.
81 enum AliasResult : uint8_t {
82   /// The two locations do not alias at all.
83   ///
84   /// This value is arranged to convert to false, while all other values
85   /// convert to true. This allows a boolean context to convert the result to
86   /// a binary flag indicating whether there is the possibility of aliasing.
87   NoAlias = 0,
88   /// The two locations may or may not alias. This is the least precise result.
89   MayAlias,
90   /// The two locations alias, but only due to a partial overlap.
91   PartialAlias,
92   /// The two locations precisely alias each other.
93   MustAlias,
94 };
95 
96 /// << operator for AliasResult.
97 raw_ostream &operator<<(raw_ostream &OS, AliasResult AR);
98 
99 /// Flags indicating whether a memory access modifies or references memory.
100 ///
101 /// This is no access at all, a modification, a reference, or both
102 /// a modification and a reference. These are specifically structured such that
103 /// they form a three bit matrix and bit-tests for 'mod' or 'ref' or 'must'
104 /// work with any of the possible values.
105 enum class ModRefInfo : uint8_t {
106   /// Must is provided for completeness, but no routines will return only
107   /// Must today. See definition of Must below.
108   Must = 0,
109   /// The access may reference the value stored in memory,
110   /// a mustAlias relation was found, and no mayAlias or partialAlias found.
111   MustRef = 1,
112   /// The access may modify the value stored in memory,
113   /// a mustAlias relation was found, and no mayAlias or partialAlias found.
114   MustMod = 2,
115   /// The access may reference, modify or both the value stored in memory,
116   /// a mustAlias relation was found, and no mayAlias or partialAlias found.
117   MustModRef = MustRef | MustMod,
118   /// The access neither references nor modifies the value stored in memory.
119   NoModRef = 4,
120   /// The access may reference the value stored in memory.
121   Ref = NoModRef | MustRef,
122   /// The access may modify the value stored in memory.
123   Mod = NoModRef | MustMod,
124   /// The access may reference and may modify the value stored in memory.
125   ModRef = Ref | Mod,
126 
127   /// About Must:
128   /// Must is set in a best effort manner.
129   /// We usually do not try our best to infer Must, instead it is merely
130   /// another piece of "free" information that is presented when available.
131   /// Must set means there was certainly a MustAlias found. For calls,
132   /// where multiple arguments are checked (argmemonly), this translates to
133   /// only MustAlias or NoAlias was found.
134   /// Must is not set for RAR accesses, even if the two locations must
135   /// alias. The reason is that two read accesses translate to an early return
136   /// of NoModRef. An additional alias check to set Must may be
137   /// expensive. Other cases may also not set Must(e.g. callCapturesBefore).
138   /// We refer to Must being *set* when the most significant bit is *cleared*.
139   /// Conversely we *clear* Must information by *setting* the Must bit to 1.
140 };
141 
142 LLVM_NODISCARD inline bool isNoModRef(const ModRefInfo MRI) {
143   return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
144          static_cast<int>(ModRefInfo::Must);
145 }
146 LLVM_NODISCARD inline bool isModOrRefSet(const ModRefInfo MRI) {
147   return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef);
148 }
149 LLVM_NODISCARD inline bool isModAndRefSet(const ModRefInfo MRI) {
150   return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
151          static_cast<int>(ModRefInfo::MustModRef);
152 }
153 LLVM_NODISCARD inline bool isModSet(const ModRefInfo MRI) {
154   return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustMod);
155 }
156 LLVM_NODISCARD inline bool isRefSet(const ModRefInfo MRI) {
157   return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustRef);
158 }
159 LLVM_NODISCARD inline bool isMustSet(const ModRefInfo MRI) {
160   return !(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::NoModRef));
161 }
162 
163 LLVM_NODISCARD inline ModRefInfo setMod(const ModRefInfo MRI) {
164   return ModRefInfo(static_cast<int>(MRI) |
165                     static_cast<int>(ModRefInfo::MustMod));
166 }
167 LLVM_NODISCARD inline ModRefInfo setRef(const ModRefInfo MRI) {
168   return ModRefInfo(static_cast<int>(MRI) |
169                     static_cast<int>(ModRefInfo::MustRef));
170 }
171 LLVM_NODISCARD inline ModRefInfo setMust(const ModRefInfo MRI) {
172   return ModRefInfo(static_cast<int>(MRI) &
173                     static_cast<int>(ModRefInfo::MustModRef));
174 }
175 LLVM_NODISCARD inline ModRefInfo setModAndRef(const ModRefInfo MRI) {
176   return ModRefInfo(static_cast<int>(MRI) |
177                     static_cast<int>(ModRefInfo::MustModRef));
178 }
179 LLVM_NODISCARD inline ModRefInfo clearMod(const ModRefInfo MRI) {
180   return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Ref));
181 }
182 LLVM_NODISCARD inline ModRefInfo clearRef(const ModRefInfo MRI) {
183   return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Mod));
184 }
185 LLVM_NODISCARD inline ModRefInfo clearMust(const ModRefInfo MRI) {
186   return ModRefInfo(static_cast<int>(MRI) |
187                     static_cast<int>(ModRefInfo::NoModRef));
188 }
189 LLVM_NODISCARD inline ModRefInfo unionModRef(const ModRefInfo MRI1,
190                                              const ModRefInfo MRI2) {
191   return ModRefInfo(static_cast<int>(MRI1) | static_cast<int>(MRI2));
192 }
193 LLVM_NODISCARD inline ModRefInfo intersectModRef(const ModRefInfo MRI1,
194                                                  const ModRefInfo MRI2) {
195   return ModRefInfo(static_cast<int>(MRI1) & static_cast<int>(MRI2));
196 }
197 
198 /// The locations at which a function might access memory.
199 ///
200 /// These are primarily used in conjunction with the \c AccessKind bits to
201 /// describe both the nature of access and the locations of access for a
202 /// function call.
203 enum FunctionModRefLocation {
204   /// Base case is no access to memory.
205   FMRL_Nowhere = 0,
206   /// Access to memory via argument pointers.
207   FMRL_ArgumentPointees = 8,
208   /// Memory that is inaccessible via LLVM IR.
209   FMRL_InaccessibleMem = 16,
210   /// Access to any memory.
211   FMRL_Anywhere = 32 | FMRL_InaccessibleMem | FMRL_ArgumentPointees
212 };
213 
214 /// Summary of how a function affects memory in the program.
215 ///
216 /// Loads from constant globals are not considered memory accesses for this
217 /// interface. Also, functions may freely modify stack space local to their
218 /// invocation without having to report it through these interfaces.
219 enum FunctionModRefBehavior {
220   /// This function does not perform any non-local loads or stores to memory.
221   ///
222   /// This property corresponds to the GCC 'const' attribute.
223   /// This property corresponds to the LLVM IR 'readnone' attribute.
224   /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
225   FMRB_DoesNotAccessMemory =
226       FMRL_Nowhere | static_cast<int>(ModRefInfo::NoModRef),
227 
228   /// The only memory references in this function (if it has any) are
229   /// non-volatile loads from objects pointed to by its pointer-typed
230   /// arguments, with arbitrary offsets.
231   ///
232   /// This property corresponds to the combination of the IntrReadMem
233   /// and IntrArgMemOnly LLVM intrinsic flags.
234   FMRB_OnlyReadsArgumentPointees =
235       FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Ref),
236 
237   /// The only memory references in this function (if it has any) are
238   /// non-volatile stores from objects pointed to by its pointer-typed
239   /// arguments, with arbitrary offsets.
240   ///
241   /// This property corresponds to the combination of the IntrWriteMem
242   /// and IntrArgMemOnly LLVM intrinsic flags.
243   FMRB_OnlyWritesArgumentPointees =
244       FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Mod),
245 
246   /// The only memory references in this function (if it has any) are
247   /// non-volatile loads and stores from objects pointed to by its
248   /// pointer-typed arguments, with arbitrary offsets.
249   ///
250   /// This property corresponds to the IntrArgMemOnly LLVM intrinsic flag.
251   FMRB_OnlyAccessesArgumentPointees =
252       FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::ModRef),
253 
254   /// The only memory references in this function (if it has any) are
255   /// reads of memory that is otherwise inaccessible via LLVM IR.
256   ///
257   /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
258   FMRB_OnlyReadsInaccessibleMem =
259       FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::Ref),
260 
261   /// The only memory references in this function (if it has any) are
262   /// writes to memory that is otherwise inaccessible via LLVM IR.
263   ///
264   /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
265   FMRB_OnlyWritesInaccessibleMem =
266       FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::Mod),
267 
268   /// The only memory references in this function (if it has any) are
269   /// references of memory that is otherwise inaccessible via LLVM IR.
270   ///
271   /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
272   FMRB_OnlyAccessesInaccessibleMem =
273       FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::ModRef),
274 
275   /// The function may perform non-volatile loads from objects pointed
276   /// to by its pointer-typed arguments, with arbitrary offsets, and
277   /// it may also perform loads of memory that is otherwise
278   /// inaccessible via LLVM IR.
279   ///
280   /// This property corresponds to the LLVM IR
281   /// inaccessiblemem_or_argmemonly attribute.
282   FMRB_OnlyReadsInaccessibleOrArgMem = FMRL_InaccessibleMem |
283                                        FMRL_ArgumentPointees |
284                                        static_cast<int>(ModRefInfo::Ref),
285 
286   /// The function may perform non-volatile stores to objects pointed
287   /// to by its pointer-typed arguments, with arbitrary offsets, and
288   /// it may also perform stores of memory that is otherwise
289   /// inaccessible via LLVM IR.
290   ///
291   /// This property corresponds to the LLVM IR
292   /// inaccessiblemem_or_argmemonly attribute.
293   FMRB_OnlyWritesInaccessibleOrArgMem = FMRL_InaccessibleMem |
294                                         FMRL_ArgumentPointees |
295                                         static_cast<int>(ModRefInfo::Mod),
296 
297   /// The function may perform non-volatile loads and stores of objects
298   /// pointed to by its pointer-typed arguments, with arbitrary offsets, and
299   /// it may also perform loads and stores of memory that is otherwise
300   /// inaccessible via LLVM IR.
301   ///
302   /// This property corresponds to the LLVM IR
303   /// inaccessiblemem_or_argmemonly attribute.
304   FMRB_OnlyAccessesInaccessibleOrArgMem = FMRL_InaccessibleMem |
305                                           FMRL_ArgumentPointees |
306                                           static_cast<int>(ModRefInfo::ModRef),
307 
308   /// This function does not perform any non-local stores or volatile loads,
309   /// but may read from any memory location.
310   ///
311   /// This property corresponds to the GCC 'pure' attribute.
312   /// This property corresponds to the LLVM IR 'readonly' attribute.
313   /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
314   FMRB_OnlyReadsMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Ref),
315 
316   // This function does not read from memory anywhere, but may write to any
317   // memory location.
318   //
319   // This property corresponds to the LLVM IR 'writeonly' attribute.
320   // This property corresponds to the IntrWriteMem LLVM intrinsic flag.
321   FMRB_OnlyWritesMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Mod),
322 
323   /// This indicates that the function could not be classified into one of the
324   /// behaviors above.
325   FMRB_UnknownModRefBehavior =
326       FMRL_Anywhere | static_cast<int>(ModRefInfo::ModRef)
327 };
328 
329 // Wrapper method strips bits significant only in FunctionModRefBehavior,
330 // to obtain a valid ModRefInfo. The benefit of using the wrapper is that if
331 // ModRefInfo enum changes, the wrapper can be updated to & with the new enum
332 // entry with all bits set to 1.
333 LLVM_NODISCARD inline ModRefInfo
334 createModRefInfo(const FunctionModRefBehavior FMRB) {
335   return ModRefInfo(FMRB & static_cast<int>(ModRefInfo::ModRef));
336 }
337 
338 /// This class stores info we want to provide to or retain within an alias
339 /// query. By default, the root query is stateless and starts with a freshly
340 /// constructed info object. Specific alias analyses can use this query info to
341 /// store per-query state that is important for recursive or nested queries to
342 /// avoid recomputing. To enable preserving this state across multiple queries
343 /// where safe (due to the IR not changing), use a `BatchAAResults` wrapper.
344 /// The information stored in an `AAQueryInfo` is currently limitted to the
345 /// caches used by BasicAA, but can further be extended to fit other AA needs.
346 class AAQueryInfo {
347 public:
348   using LocPair = std::pair<MemoryLocation, MemoryLocation>;
349   struct CacheEntry {
350     AliasResult Result;
351     /// Number of times a NoAlias assumption has been used.
352     /// 0 for assumptions that have not been used, -1 for definitive results.
353     int NumAssumptionUses;
354     /// Whether this is a definitive (non-assumption) result.
355     bool isDefinitive() const { return NumAssumptionUses < 0; }
356   };
357   using AliasCacheT = SmallDenseMap<LocPair, CacheEntry, 8>;
358   AliasCacheT AliasCache;
359 
360   using IsCapturedCacheT = SmallDenseMap<const Value *, bool, 8>;
361   IsCapturedCacheT IsCapturedCache;
362 
363   /// How many active NoAlias assumption uses there are.
364   int NumAssumptionUses = 0;
365 
366   /// Location pairs for which an assumption based result is currently stored.
367   /// Used to remove all potentially incorrect results from the cache if an
368   /// assumption is disproven.
369   SmallVector<AAQueryInfo::LocPair, 4> AssumptionBasedResults;
370 
371   AAQueryInfo() : AliasCache(), IsCapturedCache() {}
372 };
373 
374 class BatchAAResults;
375 
376 class AAResults {
377 public:
378   // Make these results default constructable and movable. We have to spell
379   // these out because MSVC won't synthesize them.
380   AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
381   AAResults(AAResults &&Arg);
382   ~AAResults();
383 
384   /// Register a specific AA result.
385   template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
386     // FIXME: We should use a much lighter weight system than the usual
387     // polymorphic pattern because we don't own AAResult. It should
388     // ideally involve two pointers and no separate allocation.
389     AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
390   }
391 
392   /// Register a function analysis ID that the results aggregation depends on.
393   ///
394   /// This is used in the new pass manager to implement the invalidation logic
395   /// where we must invalidate the results aggregation if any of our component
396   /// analyses become invalid.
397   void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
398 
399   /// Handle invalidation events in the new pass manager.
400   ///
401   /// The aggregation is invalidated if any of the underlying analyses is
402   /// invalidated.
403   bool invalidate(Function &F, const PreservedAnalyses &PA,
404                   FunctionAnalysisManager::Invalidator &Inv);
405 
406   //===--------------------------------------------------------------------===//
407   /// \name Alias Queries
408   /// @{
409 
410   /// The main low level interface to the alias analysis implementation.
411   /// Returns an AliasResult indicating whether the two pointers are aliased to
412   /// each other. This is the interface that must be implemented by specific
413   /// alias analysis implementations.
414   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
415 
416   /// A convenience wrapper around the primary \c alias interface.
417   AliasResult alias(const Value *V1, LocationSize V1Size, const Value *V2,
418                     LocationSize V2Size) {
419     return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
420   }
421 
422   /// A convenience wrapper around the primary \c alias interface.
423   AliasResult alias(const Value *V1, const Value *V2) {
424     return alias(MemoryLocation::getBeforeOrAfter(V1),
425                  MemoryLocation::getBeforeOrAfter(V2));
426   }
427 
428   /// A trivial helper function to check to see if the specified pointers are
429   /// no-alias.
430   bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
431     return alias(LocA, LocB) == NoAlias;
432   }
433 
434   /// A convenience wrapper around the \c isNoAlias helper interface.
435   bool isNoAlias(const Value *V1, LocationSize V1Size, const Value *V2,
436                  LocationSize V2Size) {
437     return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
438   }
439 
440   /// A convenience wrapper around the \c isNoAlias helper interface.
441   bool isNoAlias(const Value *V1, const Value *V2) {
442     return isNoAlias(MemoryLocation::getBeforeOrAfter(V1),
443                      MemoryLocation::getBeforeOrAfter(V2));
444   }
445 
446   /// A trivial helper function to check to see if the specified pointers are
447   /// must-alias.
448   bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
449     return alias(LocA, LocB) == MustAlias;
450   }
451 
452   /// A convenience wrapper around the \c isMustAlias helper interface.
453   bool isMustAlias(const Value *V1, const Value *V2) {
454     return alias(V1, LocationSize::precise(1), V2, LocationSize::precise(1)) ==
455            MustAlias;
456   }
457 
458   /// Checks whether the given location points to constant memory, or if
459   /// \p OrLocal is true whether it points to a local alloca.
460   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false);
461 
462   /// A convenience wrapper around the primary \c pointsToConstantMemory
463   /// interface.
464   bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
465     return pointsToConstantMemory(MemoryLocation::getBeforeOrAfter(P), OrLocal);
466   }
467 
468   /// @}
469   //===--------------------------------------------------------------------===//
470   /// \name Simple mod/ref information
471   /// @{
472 
473   /// Get the ModRef info associated with a pointer argument of a call. The
474   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
475   /// that these bits do not necessarily account for the overall behavior of
476   /// the function, but rather only provide additional per-argument
477   /// information. This never sets ModRefInfo::Must.
478   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx);
479 
480   /// Return the behavior of the given call site.
481   FunctionModRefBehavior getModRefBehavior(const CallBase *Call);
482 
483   /// Return the behavior when calling the given function.
484   FunctionModRefBehavior getModRefBehavior(const Function *F);
485 
486   /// Checks if the specified call is known to never read or write memory.
487   ///
488   /// Note that if the call only reads from known-constant memory, it is also
489   /// legal to return true. Also, calls that unwind the stack are legal for
490   /// this predicate.
491   ///
492   /// Many optimizations (such as CSE and LICM) can be performed on such calls
493   /// without worrying about aliasing properties, and many calls have this
494   /// property (e.g. calls to 'sin' and 'cos').
495   ///
496   /// This property corresponds to the GCC 'const' attribute.
497   bool doesNotAccessMemory(const CallBase *Call) {
498     return getModRefBehavior(Call) == FMRB_DoesNotAccessMemory;
499   }
500 
501   /// Checks if the specified function is known to never read or write memory.
502   ///
503   /// Note that if the function only reads from known-constant memory, it is
504   /// also legal to return true. Also, function that unwind the stack are legal
505   /// for this predicate.
506   ///
507   /// Many optimizations (such as CSE and LICM) can be performed on such calls
508   /// to such functions without worrying about aliasing properties, and many
509   /// functions have this property (e.g. 'sin' and 'cos').
510   ///
511   /// This property corresponds to the GCC 'const' attribute.
512   bool doesNotAccessMemory(const Function *F) {
513     return getModRefBehavior(F) == FMRB_DoesNotAccessMemory;
514   }
515 
516   /// Checks if the specified call is known to only read from non-volatile
517   /// memory (or not access memory at all).
518   ///
519   /// Calls that unwind the stack are legal for this predicate.
520   ///
521   /// This property allows many common optimizations to be performed in the
522   /// absence of interfering store instructions, such as CSE of strlen calls.
523   ///
524   /// This property corresponds to the GCC 'pure' attribute.
525   bool onlyReadsMemory(const CallBase *Call) {
526     return onlyReadsMemory(getModRefBehavior(Call));
527   }
528 
529   /// Checks if the specified function is known to only read from non-volatile
530   /// memory (or not access memory at all).
531   ///
532   /// Functions that unwind the stack are legal for this predicate.
533   ///
534   /// This property allows many common optimizations to be performed in the
535   /// absence of interfering store instructions, such as CSE of strlen calls.
536   ///
537   /// This property corresponds to the GCC 'pure' attribute.
538   bool onlyReadsMemory(const Function *F) {
539     return onlyReadsMemory(getModRefBehavior(F));
540   }
541 
542   /// Checks if functions with the specified behavior are known to only read
543   /// from non-volatile memory (or not access memory at all).
544   static bool onlyReadsMemory(FunctionModRefBehavior MRB) {
545     return !isModSet(createModRefInfo(MRB));
546   }
547 
548   /// Checks if functions with the specified behavior are known to only write
549   /// memory (or not access memory at all).
550   static bool doesNotReadMemory(FunctionModRefBehavior MRB) {
551     return !isRefSet(createModRefInfo(MRB));
552   }
553 
554   /// Checks if functions with the specified behavior are known to read and
555   /// write at most from objects pointed to by their pointer-typed arguments
556   /// (with arbitrary offsets).
557   static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) {
558     return !((unsigned)MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees);
559   }
560 
561   /// Checks if functions with the specified behavior are known to potentially
562   /// read or write from objects pointed to be their pointer-typed arguments
563   /// (with arbitrary offsets).
564   static bool doesAccessArgPointees(FunctionModRefBehavior MRB) {
565     return isModOrRefSet(createModRefInfo(MRB)) &&
566            ((unsigned)MRB & FMRL_ArgumentPointees);
567   }
568 
569   /// Checks if functions with the specified behavior are known to read and
570   /// write at most from memory that is inaccessible from LLVM IR.
571   static bool onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB) {
572     return !((unsigned)MRB & FMRL_Anywhere & ~FMRL_InaccessibleMem);
573   }
574 
575   /// Checks if functions with the specified behavior are known to potentially
576   /// read or write from memory that is inaccessible from LLVM IR.
577   static bool doesAccessInaccessibleMem(FunctionModRefBehavior MRB) {
578     return isModOrRefSet(createModRefInfo(MRB)) &&
579              ((unsigned)MRB & FMRL_InaccessibleMem);
580   }
581 
582   /// Checks if functions with the specified behavior are known to read and
583   /// write at most from memory that is inaccessible from LLVM IR or objects
584   /// pointed to by their pointer-typed arguments (with arbitrary offsets).
585   static bool onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB) {
586     return !((unsigned)MRB & FMRL_Anywhere &
587              ~(FMRL_InaccessibleMem | FMRL_ArgumentPointees));
588   }
589 
590   /// getModRefInfo (for call sites) - Return information about whether
591   /// a particular call site modifies or reads the specified memory location.
592   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc);
593 
594   /// getModRefInfo (for call sites) - A convenience wrapper.
595   ModRefInfo getModRefInfo(const CallBase *Call, const Value *P,
596                            LocationSize Size) {
597     return getModRefInfo(Call, MemoryLocation(P, Size));
598   }
599 
600   /// getModRefInfo (for loads) - Return information about whether
601   /// a particular load modifies or reads the specified memory location.
602   ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);
603 
604   /// getModRefInfo (for loads) - A convenience wrapper.
605   ModRefInfo getModRefInfo(const LoadInst *L, const Value *P,
606                            LocationSize Size) {
607     return getModRefInfo(L, MemoryLocation(P, Size));
608   }
609 
610   /// getModRefInfo (for stores) - Return information about whether
611   /// a particular store modifies or reads the specified memory location.
612   ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);
613 
614   /// getModRefInfo (for stores) - A convenience wrapper.
615   ModRefInfo getModRefInfo(const StoreInst *S, const Value *P,
616                            LocationSize Size) {
617     return getModRefInfo(S, MemoryLocation(P, Size));
618   }
619 
620   /// getModRefInfo (for fences) - Return information about whether
621   /// a particular store modifies or reads the specified memory location.
622   ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc);
623 
624   /// getModRefInfo (for fences) - A convenience wrapper.
625   ModRefInfo getModRefInfo(const FenceInst *S, const Value *P,
626                            LocationSize Size) {
627     return getModRefInfo(S, MemoryLocation(P, Size));
628   }
629 
630   /// getModRefInfo (for cmpxchges) - Return information about whether
631   /// a particular cmpxchg modifies or reads the specified memory location.
632   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
633                            const MemoryLocation &Loc);
634 
635   /// getModRefInfo (for cmpxchges) - A convenience wrapper.
636   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P,
637                            LocationSize Size) {
638     return getModRefInfo(CX, MemoryLocation(P, Size));
639   }
640 
641   /// getModRefInfo (for atomicrmws) - Return information about whether
642   /// a particular atomicrmw modifies or reads the specified memory location.
643   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc);
644 
645   /// getModRefInfo (for atomicrmws) - A convenience wrapper.
646   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P,
647                            LocationSize Size) {
648     return getModRefInfo(RMW, MemoryLocation(P, Size));
649   }
650 
651   /// getModRefInfo (for va_args) - Return information about whether
652   /// a particular va_arg modifies or reads the specified memory location.
653   ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);
654 
655   /// getModRefInfo (for va_args) - A convenience wrapper.
656   ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P,
657                            LocationSize Size) {
658     return getModRefInfo(I, MemoryLocation(P, Size));
659   }
660 
661   /// getModRefInfo (for catchpads) - Return information about whether
662   /// a particular catchpad modifies or reads the specified memory location.
663   ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc);
664 
665   /// getModRefInfo (for catchpads) - A convenience wrapper.
666   ModRefInfo getModRefInfo(const CatchPadInst *I, const Value *P,
667                            LocationSize Size) {
668     return getModRefInfo(I, MemoryLocation(P, Size));
669   }
670 
671   /// getModRefInfo (for catchrets) - Return information about whether
672   /// a particular catchret modifies or reads the specified memory location.
673   ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc);
674 
675   /// getModRefInfo (for catchrets) - A convenience wrapper.
676   ModRefInfo getModRefInfo(const CatchReturnInst *I, const Value *P,
677                            LocationSize Size) {
678     return getModRefInfo(I, MemoryLocation(P, Size));
679   }
680 
681   /// Check whether or not an instruction may read or write the optionally
682   /// specified memory location.
683   ///
684   ///
685   /// An instruction that doesn't read or write memory may be trivially LICM'd
686   /// for example.
687   ///
688   /// For function calls, this delegates to the alias-analysis specific
689   /// call-site mod-ref behavior queries. Otherwise it delegates to the specific
690   /// helpers above.
691   ModRefInfo getModRefInfo(const Instruction *I,
692                            const Optional<MemoryLocation> &OptLoc) {
693     AAQueryInfo AAQIP;
694     return getModRefInfo(I, OptLoc, AAQIP);
695   }
696 
697   /// A convenience wrapper for constructing the memory location.
698   ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
699                            LocationSize Size) {
700     return getModRefInfo(I, MemoryLocation(P, Size));
701   }
702 
703   /// Return information about whether a call and an instruction may refer to
704   /// the same memory locations.
705   ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call);
706 
707   /// Return information about whether two call sites may refer to the same set
708   /// of memory locations. See the AA documentation for details:
709   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
710   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2);
711 
712   /// Return information about whether a particular call site modifies
713   /// or reads the specified memory location \p MemLoc before instruction \p I
714   /// in a BasicBlock.
715   /// Early exits in callCapturesBefore may lead to ModRefInfo::Must not being
716   /// set.
717   ModRefInfo callCapturesBefore(const Instruction *I,
718                                 const MemoryLocation &MemLoc, DominatorTree *DT);
719 
720   /// A convenience wrapper to synthesize a memory location.
721   ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
722                                 LocationSize Size, DominatorTree *DT) {
723     return callCapturesBefore(I, MemoryLocation(P, Size), DT);
724   }
725 
726   /// @}
727   //===--------------------------------------------------------------------===//
728   /// \name Higher level methods for querying mod/ref information.
729   /// @{
730 
731   /// Check if it is possible for execution of the specified basic block to
732   /// modify the location Loc.
733   bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
734 
735   /// A convenience wrapper synthesizing a memory location.
736   bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
737                            LocationSize Size) {
738     return canBasicBlockModify(BB, MemoryLocation(P, Size));
739   }
740 
741   /// Check if it is possible for the execution of the specified instructions
742   /// to mod\ref (according to the mode) the location Loc.
743   ///
744   /// The instructions to consider are all of the instructions in the range of
745   /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
746   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
747                                  const MemoryLocation &Loc,
748                                  const ModRefInfo Mode);
749 
750   /// A convenience wrapper synthesizing a memory location.
751   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
752                                  const Value *Ptr, LocationSize Size,
753                                  const ModRefInfo Mode) {
754     return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
755   }
756 
757 private:
758   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
759                     AAQueryInfo &AAQI);
760   bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
761                               bool OrLocal = false);
762   ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2,
763                            AAQueryInfo &AAQIP);
764   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
765                            AAQueryInfo &AAQI);
766   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
767                            AAQueryInfo &AAQI);
768   ModRefInfo getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc,
769                            AAQueryInfo &AAQI);
770   ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc,
771                            AAQueryInfo &AAQI);
772   ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc,
773                            AAQueryInfo &AAQI);
774   ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc,
775                            AAQueryInfo &AAQI);
776   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
777                            const MemoryLocation &Loc, AAQueryInfo &AAQI);
778   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc,
779                            AAQueryInfo &AAQI);
780   ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc,
781                            AAQueryInfo &AAQI);
782   ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc,
783                            AAQueryInfo &AAQI);
784   ModRefInfo getModRefInfo(const Instruction *I,
785                            const Optional<MemoryLocation> &OptLoc,
786                            AAQueryInfo &AAQIP);
787 
788   class Concept;
789 
790   template <typename T> class Model;
791 
792   template <typename T> friend class AAResultBase;
793 
794   const TargetLibraryInfo &TLI;
795 
796   std::vector<std::unique_ptr<Concept>> AAs;
797 
798   std::vector<AnalysisKey *> AADeps;
799 
800   /// Query depth used to distinguish recursive queries.
801   unsigned Depth = 0;
802 
803   friend class BatchAAResults;
804 };
805 
806 /// This class is a wrapper over an AAResults, and it is intended to be used
807 /// only when there are no IR changes inbetween queries. BatchAAResults is
808 /// reusing the same `AAQueryInfo` to preserve the state across queries,
809 /// esentially making AA work in "batch mode". The internal state cannot be
810 /// cleared, so to go "out-of-batch-mode", the user must either use AAResults,
811 /// or create a new BatchAAResults.
812 class BatchAAResults {
813   AAResults &AA;
814   AAQueryInfo AAQI;
815 
816 public:
817   BatchAAResults(AAResults &AAR) : AA(AAR), AAQI() {}
818   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
819     return AA.alias(LocA, LocB, AAQI);
820   }
821   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
822     return AA.pointsToConstantMemory(Loc, AAQI, OrLocal);
823   }
824   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc) {
825     return AA.getModRefInfo(Call, Loc, AAQI);
826   }
827   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2) {
828     return AA.getModRefInfo(Call1, Call2, AAQI);
829   }
830   ModRefInfo getModRefInfo(const Instruction *I,
831                            const Optional<MemoryLocation> &OptLoc) {
832     return AA.getModRefInfo(I, OptLoc, AAQI);
833   }
834   ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2) {
835     return AA.getModRefInfo(I, Call2, AAQI);
836   }
837   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
838     return AA.getArgModRefInfo(Call, ArgIdx);
839   }
840   FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
841     return AA.getModRefBehavior(Call);
842   }
843   bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
844     return alias(LocA, LocB) == MustAlias;
845   }
846   bool isMustAlias(const Value *V1, const Value *V2) {
847     return alias(MemoryLocation(V1, LocationSize::precise(1)),
848                  MemoryLocation(V2, LocationSize::precise(1))) == MustAlias;
849   }
850 };
851 
852 /// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
853 /// pointer or reference.
854 using AliasAnalysis = AAResults;
855 
856 /// A private abstract base class describing the concept of an individual alias
857 /// analysis implementation.
858 ///
859 /// This interface is implemented by any \c Model instantiation. It is also the
860 /// interface which a type used to instantiate the model must provide.
861 ///
862 /// All of these methods model methods by the same name in the \c
863 /// AAResults class. Only differences and specifics to how the
864 /// implementations are called are documented here.
865 class AAResults::Concept {
866 public:
867   virtual ~Concept() = 0;
868 
869   /// An update API used internally by the AAResults to provide
870   /// a handle back to the top level aggregation.
871   virtual void setAAResults(AAResults *NewAAR) = 0;
872 
873   //===--------------------------------------------------------------------===//
874   /// \name Alias Queries
875   /// @{
876 
877   /// The main low level interface to the alias analysis implementation.
878   /// Returns an AliasResult indicating whether the two pointers are aliased to
879   /// each other. This is the interface that must be implemented by specific
880   /// alias analysis implementations.
881   virtual AliasResult alias(const MemoryLocation &LocA,
882                             const MemoryLocation &LocB, AAQueryInfo &AAQI) = 0;
883 
884   /// Checks whether the given location points to constant memory, or if
885   /// \p OrLocal is true whether it points to a local alloca.
886   virtual bool pointsToConstantMemory(const MemoryLocation &Loc,
887                                       AAQueryInfo &AAQI, bool OrLocal) = 0;
888 
889   /// @}
890   //===--------------------------------------------------------------------===//
891   /// \name Simple mod/ref information
892   /// @{
893 
894   /// Get the ModRef info associated with a pointer argument of a callsite. The
895   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
896   /// that these bits do not necessarily account for the overall behavior of
897   /// the function, but rather only provide additional per-argument
898   /// information.
899   virtual ModRefInfo getArgModRefInfo(const CallBase *Call,
900                                       unsigned ArgIdx) = 0;
901 
902   /// Return the behavior of the given call site.
903   virtual FunctionModRefBehavior getModRefBehavior(const CallBase *Call) = 0;
904 
905   /// Return the behavior when calling the given function.
906   virtual FunctionModRefBehavior getModRefBehavior(const Function *F) = 0;
907 
908   /// getModRefInfo (for call sites) - Return information about whether
909   /// a particular call site modifies or reads the specified memory location.
910   virtual ModRefInfo getModRefInfo(const CallBase *Call,
911                                    const MemoryLocation &Loc,
912                                    AAQueryInfo &AAQI) = 0;
913 
914   /// Return information about whether two call sites may refer to the same set
915   /// of memory locations. See the AA documentation for details:
916   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
917   virtual ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
918                                    AAQueryInfo &AAQI) = 0;
919 
920   /// @}
921 };
922 
923 /// A private class template which derives from \c Concept and wraps some other
924 /// type.
925 ///
926 /// This models the concept by directly forwarding each interface point to the
927 /// wrapped type which must implement a compatible interface. This provides
928 /// a type erased binding.
929 template <typename AAResultT> class AAResults::Model final : public Concept {
930   AAResultT &Result;
931 
932 public:
933   explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {
934     Result.setAAResults(&AAR);
935   }
936   ~Model() override = default;
937 
938   void setAAResults(AAResults *NewAAR) override { Result.setAAResults(NewAAR); }
939 
940   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
941                     AAQueryInfo &AAQI) override {
942     return Result.alias(LocA, LocB, AAQI);
943   }
944 
945   bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
946                               bool OrLocal) override {
947     return Result.pointsToConstantMemory(Loc, AAQI, OrLocal);
948   }
949 
950   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) override {
951     return Result.getArgModRefInfo(Call, ArgIdx);
952   }
953 
954   FunctionModRefBehavior getModRefBehavior(const CallBase *Call) override {
955     return Result.getModRefBehavior(Call);
956   }
957 
958   FunctionModRefBehavior getModRefBehavior(const Function *F) override {
959     return Result.getModRefBehavior(F);
960   }
961 
962   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
963                            AAQueryInfo &AAQI) override {
964     return Result.getModRefInfo(Call, Loc, AAQI);
965   }
966 
967   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
968                            AAQueryInfo &AAQI) override {
969     return Result.getModRefInfo(Call1, Call2, AAQI);
970   }
971 };
972 
973 /// A CRTP-driven "mixin" base class to help implement the function alias
974 /// analysis results concept.
975 ///
976 /// Because of the nature of many alias analysis implementations, they often
977 /// only implement a subset of the interface. This base class will attempt to
978 /// implement the remaining portions of the interface in terms of simpler forms
979 /// of the interface where possible, and otherwise provide conservatively
980 /// correct fallback implementations.
981 ///
982 /// Implementors of an alias analysis should derive from this CRTP, and then
983 /// override specific methods that they wish to customize. There is no need to
984 /// use virtual anywhere, the CRTP base class does static dispatch to the
985 /// derived type passed into it.
986 template <typename DerivedT> class AAResultBase {
987   // Expose some parts of the interface only to the AAResults::Model
988   // for wrapping. Specifically, this allows the model to call our
989   // setAAResults method without exposing it as a fully public API.
990   friend class AAResults::Model<DerivedT>;
991 
992   /// A pointer to the AAResults object that this AAResult is
993   /// aggregated within. May be null if not aggregated.
994   AAResults *AAR = nullptr;
995 
996   /// Helper to dispatch calls back through the derived type.
997   DerivedT &derived() { return static_cast<DerivedT &>(*this); }
998 
999   /// A setter for the AAResults pointer, which is used to satisfy the
1000   /// AAResults::Model contract.
1001   void setAAResults(AAResults *NewAAR) { AAR = NewAAR; }
1002 
1003 protected:
1004   /// This proxy class models a common pattern where we delegate to either the
1005   /// top-level \c AAResults aggregation if one is registered, or to the
1006   /// current result if none are registered.
1007   class AAResultsProxy {
1008     AAResults *AAR;
1009     DerivedT &CurrentResult;
1010 
1011   public:
1012     AAResultsProxy(AAResults *AAR, DerivedT &CurrentResult)
1013         : AAR(AAR), CurrentResult(CurrentResult) {}
1014 
1015     AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
1016                       AAQueryInfo &AAQI) {
1017       return AAR ? AAR->alias(LocA, LocB, AAQI)
1018                  : CurrentResult.alias(LocA, LocB, AAQI);
1019     }
1020 
1021     bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
1022                                 bool OrLocal) {
1023       return AAR ? AAR->pointsToConstantMemory(Loc, AAQI, OrLocal)
1024                  : CurrentResult.pointsToConstantMemory(Loc, AAQI, OrLocal);
1025     }
1026 
1027     ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
1028       return AAR ? AAR->getArgModRefInfo(Call, ArgIdx)
1029                  : CurrentResult.getArgModRefInfo(Call, ArgIdx);
1030     }
1031 
1032     FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
1033       return AAR ? AAR->getModRefBehavior(Call)
1034                  : CurrentResult.getModRefBehavior(Call);
1035     }
1036 
1037     FunctionModRefBehavior getModRefBehavior(const Function *F) {
1038       return AAR ? AAR->getModRefBehavior(F) : CurrentResult.getModRefBehavior(F);
1039     }
1040 
1041     ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1042                              AAQueryInfo &AAQI) {
1043       return AAR ? AAR->getModRefInfo(Call, Loc, AAQI)
1044                  : CurrentResult.getModRefInfo(Call, Loc, AAQI);
1045     }
1046 
1047     ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1048                              AAQueryInfo &AAQI) {
1049       return AAR ? AAR->getModRefInfo(Call1, Call2, AAQI)
1050                  : CurrentResult.getModRefInfo(Call1, Call2, AAQI);
1051     }
1052   };
1053 
1054   explicit AAResultBase() = default;
1055 
1056   // Provide all the copy and move constructors so that derived types aren't
1057   // constrained.
1058   AAResultBase(const AAResultBase &Arg) {}
1059   AAResultBase(AAResultBase &&Arg) {}
1060 
1061   /// Get a proxy for the best AA result set to query at this time.
1062   ///
1063   /// When this result is part of a larger aggregation, this will proxy to that
1064   /// aggregation. When this result is used in isolation, it will just delegate
1065   /// back to the derived class's implementation.
1066   ///
1067   /// Note that callers of this need to take considerable care to not cause
1068   /// performance problems when they use this routine, in the case of a large
1069   /// number of alias analyses being aggregated, it can be expensive to walk
1070   /// back across the chain.
1071   AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); }
1072 
1073 public:
1074   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
1075                     AAQueryInfo &AAQI) {
1076     return MayAlias;
1077   }
1078 
1079   bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
1080                               bool OrLocal) {
1081     return false;
1082   }
1083 
1084   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
1085     return ModRefInfo::ModRef;
1086   }
1087 
1088   FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
1089     return FMRB_UnknownModRefBehavior;
1090   }
1091 
1092   FunctionModRefBehavior getModRefBehavior(const Function *F) {
1093     return FMRB_UnknownModRefBehavior;
1094   }
1095 
1096   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1097                            AAQueryInfo &AAQI) {
1098     return ModRefInfo::ModRef;
1099   }
1100 
1101   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1102                            AAQueryInfo &AAQI) {
1103     return ModRefInfo::ModRef;
1104   }
1105 };
1106 
1107 /// Return true if this pointer is returned by a noalias function.
1108 bool isNoAliasCall(const Value *V);
1109 
1110 /// Return true if this pointer refers to a distinct and identifiable object.
1111 /// This returns true for:
1112 ///    Global Variables and Functions (but not Global Aliases)
1113 ///    Allocas
1114 ///    ByVal and NoAlias Arguments
1115 ///    NoAlias returns (e.g. calls to malloc)
1116 ///
1117 bool isIdentifiedObject(const Value *V);
1118 
1119 /// Return true if V is umabigously identified at the function-level.
1120 /// Different IdentifiedFunctionLocals can't alias.
1121 /// Further, an IdentifiedFunctionLocal can not alias with any function
1122 /// arguments other than itself, which is not necessarily true for
1123 /// IdentifiedObjects.
1124 bool isIdentifiedFunctionLocal(const Value *V);
1125 
1126 /// A manager for alias analyses.
1127 ///
1128 /// This class can have analyses registered with it and when run, it will run
1129 /// all of them and aggregate their results into single AA results interface
1130 /// that dispatches across all of the alias analysis results available.
1131 ///
1132 /// Note that the order in which analyses are registered is very significant.
1133 /// That is the order in which the results will be aggregated and queried.
1134 ///
1135 /// This manager effectively wraps the AnalysisManager for registering alias
1136 /// analyses. When you register your alias analysis with this manager, it will
1137 /// ensure the analysis itself is registered with its AnalysisManager.
1138 ///
1139 /// The result of this analysis is only invalidated if one of the particular
1140 /// aggregated AA results end up being invalidated. This removes the need to
1141 /// explicitly preserve the results of `AAManager`. Note that analyses should no
1142 /// longer be registered once the `AAManager` is run.
1143 class AAManager : public AnalysisInfoMixin<AAManager> {
1144 public:
1145   using Result = AAResults;
1146 
1147   /// Register a specific AA result.
1148   template <typename AnalysisT> void registerFunctionAnalysis() {
1149     ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
1150   }
1151 
1152   /// Register a specific AA result.
1153   template <typename AnalysisT> void registerModuleAnalysis() {
1154     ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
1155   }
1156 
1157   Result run(Function &F, FunctionAnalysisManager &AM);
1158 
1159 private:
1160   friend AnalysisInfoMixin<AAManager>;
1161 
1162   static AnalysisKey Key;
1163 
1164   SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
1165                        AAResults &AAResults),
1166               4> ResultGetters;
1167 
1168   template <typename AnalysisT>
1169   static void getFunctionAAResultImpl(Function &F,
1170                                       FunctionAnalysisManager &AM,
1171                                       AAResults &AAResults) {
1172     AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
1173     AAResults.addAADependencyID(AnalysisT::ID());
1174   }
1175 
1176   template <typename AnalysisT>
1177   static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
1178                                     AAResults &AAResults) {
1179     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1180     if (auto *R =
1181             MAMProxy.template getCachedResult<AnalysisT>(*F.getParent())) {
1182       AAResults.addAAResult(*R);
1183       MAMProxy
1184           .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
1185     }
1186   }
1187 };
1188 
1189 /// A wrapper pass to provide the legacy pass manager access to a suitably
1190 /// prepared AAResults object.
1191 class AAResultsWrapperPass : public FunctionPass {
1192   std::unique_ptr<AAResults> AAR;
1193 
1194 public:
1195   static char ID;
1196 
1197   AAResultsWrapperPass();
1198 
1199   AAResults &getAAResults() { return *AAR; }
1200   const AAResults &getAAResults() const { return *AAR; }
1201 
1202   bool runOnFunction(Function &F) override;
1203 
1204   void getAnalysisUsage(AnalysisUsage &AU) const override;
1205 };
1206 
1207 /// A wrapper pass for external alias analyses. This just squirrels away the
1208 /// callback used to run any analyses and register their results.
1209 struct ExternalAAWrapperPass : ImmutablePass {
1210   using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
1211 
1212   CallbackT CB;
1213 
1214   static char ID;
1215 
1216   ExternalAAWrapperPass();
1217 
1218   explicit ExternalAAWrapperPass(CallbackT CB);
1219 
1220   void getAnalysisUsage(AnalysisUsage &AU) const override {
1221     AU.setPreservesAll();
1222   }
1223 };
1224 
1225 FunctionPass *createAAResultsWrapperPass();
1226 
1227 /// A wrapper pass around a callback which can be used to populate the
1228 /// AAResults in the AAResultsWrapperPass from an external AA.
1229 ///
1230 /// The callback provided here will be used each time we prepare an AAResults
1231 /// object, and will receive a reference to the function wrapper pass, the
1232 /// function, and the AAResults object to populate. This should be used when
1233 /// setting up a custom pass pipeline to inject a hook into the AA results.
1234 ImmutablePass *createExternalAAWrapperPass(
1235     std::function<void(Pass &, Function &, AAResults &)> Callback);
1236 
1237 /// A helper for the legacy pass manager to create a \c AAResults
1238 /// object populated to the best of our ability for a particular function when
1239 /// inside of a \c ModulePass or a \c CallGraphSCCPass.
1240 ///
1241 /// If a \c ModulePass or a \c CallGraphSCCPass calls \p
1242 /// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p
1243 /// getAnalysisUsage.
1244 AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);
1245 
1246 /// A helper for the legacy pass manager to populate \p AU to add uses to make
1247 /// sure the analyses required by \p createLegacyPMAAResults are available.
1248 void getAAResultsAnalysisUsage(AnalysisUsage &AU);
1249 
1250 } // end namespace llvm
1251 
1252 #endif // LLVM_ANALYSIS_ALIASANALYSIS_H
1253