1 //===-- DataExtractor.cpp ---------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Utility/DataExtractor.h" 10 11 #include "lldb/lldb-defines.h" 12 #include "lldb/lldb-enumerations.h" 13 #include "lldb/lldb-forward.h" 14 #include "lldb/lldb-types.h" 15 16 #include "lldb/Utility/DataBuffer.h" 17 #include "lldb/Utility/DataBufferHeap.h" 18 #include "lldb/Utility/Endian.h" 19 #include "lldb/Utility/LLDBAssert.h" 20 #include "lldb/Utility/Log.h" 21 #include "lldb/Utility/Stream.h" 22 #include "lldb/Utility/StreamString.h" 23 #include "lldb/Utility/UUID.h" 24 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/Support/MD5.h" 28 #include "llvm/Support/MathExtras.h" 29 30 #include <algorithm> 31 #include <array> 32 #include <cassert> 33 #include <cstdint> 34 #include <string> 35 36 #include <ctype.h> 37 #include <inttypes.h> 38 #include <string.h> 39 40 using namespace lldb; 41 using namespace lldb_private; 42 43 static inline uint16_t ReadInt16(const unsigned char *ptr, offset_t offset) { 44 uint16_t value; 45 memcpy(&value, ptr + offset, 2); 46 return value; 47 } 48 49 static inline uint32_t ReadInt32(const unsigned char *ptr, 50 offset_t offset = 0) { 51 uint32_t value; 52 memcpy(&value, ptr + offset, 4); 53 return value; 54 } 55 56 static inline uint64_t ReadInt64(const unsigned char *ptr, 57 offset_t offset = 0) { 58 uint64_t value; 59 memcpy(&value, ptr + offset, 8); 60 return value; 61 } 62 63 static inline uint16_t ReadInt16(const void *ptr) { 64 uint16_t value; 65 memcpy(&value, ptr, 2); 66 return value; 67 } 68 69 static inline uint16_t ReadSwapInt16(const unsigned char *ptr, 70 offset_t offset) { 71 uint16_t value; 72 memcpy(&value, ptr + offset, 2); 73 return llvm::ByteSwap_16(value); 74 } 75 76 static inline uint32_t ReadSwapInt32(const unsigned char *ptr, 77 offset_t offset) { 78 uint32_t value; 79 memcpy(&value, ptr + offset, 4); 80 return llvm::ByteSwap_32(value); 81 } 82 83 static inline uint64_t ReadSwapInt64(const unsigned char *ptr, 84 offset_t offset) { 85 uint64_t value; 86 memcpy(&value, ptr + offset, 8); 87 return llvm::ByteSwap_64(value); 88 } 89 90 static inline uint16_t ReadSwapInt16(const void *ptr) { 91 uint16_t value; 92 memcpy(&value, ptr, 2); 93 return llvm::ByteSwap_16(value); 94 } 95 96 static inline uint32_t ReadSwapInt32(const void *ptr) { 97 uint32_t value; 98 memcpy(&value, ptr, 4); 99 return llvm::ByteSwap_32(value); 100 } 101 102 static inline uint64_t ReadSwapInt64(const void *ptr) { 103 uint64_t value; 104 memcpy(&value, ptr, 8); 105 return llvm::ByteSwap_64(value); 106 } 107 108 static inline uint64_t ReadMaxInt64(const uint8_t *data, size_t byte_size, 109 ByteOrder byte_order) { 110 uint64_t res = 0; 111 if (byte_order == eByteOrderBig) 112 for (size_t i = 0; i < byte_size; ++i) 113 res = (res << 8) | data[i]; 114 else { 115 assert(byte_order == eByteOrderLittle); 116 for (size_t i = 0; i < byte_size; ++i) 117 res = (res << 8) | data[byte_size - 1 - i]; 118 } 119 return res; 120 } 121 122 DataExtractor::DataExtractor() 123 : m_start(nullptr), m_end(nullptr), 124 m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)), 125 m_data_sp(), m_target_byte_size(1) {} 126 127 // This constructor allows us to use data that is owned by someone else. The 128 // data must stay around as long as this object is valid. 129 DataExtractor::DataExtractor(const void *data, offset_t length, 130 ByteOrder endian, uint32_t addr_size, 131 uint32_t target_byte_size /*=1*/) 132 : m_start(const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(data))), 133 m_end(const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(data)) + 134 length), 135 m_byte_order(endian), m_addr_size(addr_size), m_data_sp(), 136 m_target_byte_size(target_byte_size) { 137 assert(addr_size == 4 || addr_size == 8); 138 } 139 140 // Make a shared pointer reference to the shared data in "data_sp" and set the 141 // endian swapping setting to "swap", and the address size to "addr_size". The 142 // shared data reference will ensure the data lives as long as any 143 // DataExtractor objects exist that have a reference to this data. 144 DataExtractor::DataExtractor(const DataBufferSP &data_sp, ByteOrder endian, 145 uint32_t addr_size, 146 uint32_t target_byte_size /*=1*/) 147 : m_start(nullptr), m_end(nullptr), m_byte_order(endian), 148 m_addr_size(addr_size), m_data_sp(), 149 m_target_byte_size(target_byte_size) { 150 assert(addr_size == 4 || addr_size == 8); 151 SetData(data_sp); 152 } 153 154 // Initialize this object with a subset of the data bytes in "data". If "data" 155 // contains shared data, then a reference to this shared data will added and 156 // the shared data will stay around as long as any object contains a reference 157 // to that data. The endian swap and address size settings are copied from 158 // "data". 159 DataExtractor::DataExtractor(const DataExtractor &data, offset_t offset, 160 offset_t length, uint32_t target_byte_size /*=1*/) 161 : m_start(nullptr), m_end(nullptr), m_byte_order(data.m_byte_order), 162 m_addr_size(data.m_addr_size), m_data_sp(), 163 m_target_byte_size(target_byte_size) { 164 assert(m_addr_size == 4 || m_addr_size == 8); 165 if (data.ValidOffset(offset)) { 166 offset_t bytes_available = data.GetByteSize() - offset; 167 if (length > bytes_available) 168 length = bytes_available; 169 SetData(data, offset, length); 170 } 171 } 172 173 DataExtractor::DataExtractor(const DataExtractor &rhs) 174 : m_start(rhs.m_start), m_end(rhs.m_end), m_byte_order(rhs.m_byte_order), 175 m_addr_size(rhs.m_addr_size), m_data_sp(rhs.m_data_sp), 176 m_target_byte_size(rhs.m_target_byte_size) { 177 assert(m_addr_size == 4 || m_addr_size == 8); 178 } 179 180 // Assignment operator 181 const DataExtractor &DataExtractor::operator=(const DataExtractor &rhs) { 182 if (this != &rhs) { 183 m_start = rhs.m_start; 184 m_end = rhs.m_end; 185 m_byte_order = rhs.m_byte_order; 186 m_addr_size = rhs.m_addr_size; 187 m_data_sp = rhs.m_data_sp; 188 } 189 return *this; 190 } 191 192 DataExtractor::~DataExtractor() = default; 193 194 // Clears the object contents back to a default invalid state, and release any 195 // references to shared data that this object may contain. 196 void DataExtractor::Clear() { 197 m_start = nullptr; 198 m_end = nullptr; 199 m_byte_order = endian::InlHostByteOrder(); 200 m_addr_size = sizeof(void *); 201 m_data_sp.reset(); 202 } 203 204 // If this object contains shared data, this function returns the offset into 205 // that shared data. Else zero is returned. 206 size_t DataExtractor::GetSharedDataOffset() const { 207 if (m_start != nullptr) { 208 const DataBuffer *data = m_data_sp.get(); 209 if (data != nullptr) { 210 const uint8_t *data_bytes = data->GetBytes(); 211 if (data_bytes != nullptr) { 212 assert(m_start >= data_bytes); 213 return m_start - data_bytes; 214 } 215 } 216 } 217 return 0; 218 } 219 220 // Set the data with which this object will extract from to data starting at 221 // BYTES and set the length of the data to LENGTH bytes long. The data is 222 // externally owned must be around at least as long as this object points to 223 // the data. No copy of the data is made, this object just refers to this data 224 // and can extract from it. If this object refers to any shared data upon 225 // entry, the reference to that data will be released. Is SWAP is set to true, 226 // any data extracted will be endian swapped. 227 lldb::offset_t DataExtractor::SetData(const void *bytes, offset_t length, 228 ByteOrder endian) { 229 m_byte_order = endian; 230 m_data_sp.reset(); 231 if (bytes == nullptr || length == 0) { 232 m_start = nullptr; 233 m_end = nullptr; 234 } else { 235 m_start = const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(bytes)); 236 m_end = m_start + length; 237 } 238 return GetByteSize(); 239 } 240 241 // Assign the data for this object to be a subrange in "data" starting 242 // "data_offset" bytes into "data" and ending "data_length" bytes later. If 243 // "data_offset" is not a valid offset into "data", then this object will 244 // contain no bytes. If "data_offset" is within "data" yet "data_length" is too 245 // large, the length will be capped at the number of bytes remaining in "data". 246 // If "data" contains a shared pointer to other data, then a ref counted 247 // pointer to that data will be made in this object. If "data" doesn't contain 248 // a shared pointer to data, then the bytes referred to in "data" will need to 249 // exist at least as long as this object refers to those bytes. The address 250 // size and endian swap settings are copied from the current values in "data". 251 lldb::offset_t DataExtractor::SetData(const DataExtractor &data, 252 offset_t data_offset, 253 offset_t data_length) { 254 m_addr_size = data.m_addr_size; 255 assert(m_addr_size == 4 || m_addr_size == 8); 256 // If "data" contains shared pointer to data, then we can use that 257 if (data.m_data_sp) { 258 m_byte_order = data.m_byte_order; 259 return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset, 260 data_length); 261 } 262 263 // We have a DataExtractor object that just has a pointer to bytes 264 if (data.ValidOffset(data_offset)) { 265 if (data_length > data.GetByteSize() - data_offset) 266 data_length = data.GetByteSize() - data_offset; 267 return SetData(data.GetDataStart() + data_offset, data_length, 268 data.GetByteOrder()); 269 } 270 return 0; 271 } 272 273 // Assign the data for this object to be a subrange of the shared data in 274 // "data_sp" starting "data_offset" bytes into "data_sp" and ending 275 // "data_length" bytes later. If "data_offset" is not a valid offset into 276 // "data_sp", then this object will contain no bytes. If "data_offset" is 277 // within "data_sp" yet "data_length" is too large, the length will be capped 278 // at the number of bytes remaining in "data_sp". A ref counted pointer to the 279 // data in "data_sp" will be made in this object IF the number of bytes this 280 // object refers to in greater than zero (if at least one byte was available 281 // starting at "data_offset") to ensure the data stays around as long as it is 282 // needed. The address size and endian swap settings will remain unchanged from 283 // their current settings. 284 lldb::offset_t DataExtractor::SetData(const DataBufferSP &data_sp, 285 offset_t data_offset, 286 offset_t data_length) { 287 m_start = m_end = nullptr; 288 289 if (data_length > 0) { 290 m_data_sp = data_sp; 291 if (data_sp) { 292 const size_t data_size = data_sp->GetByteSize(); 293 if (data_offset < data_size) { 294 m_start = data_sp->GetBytes() + data_offset; 295 const size_t bytes_left = data_size - data_offset; 296 // Cap the length of we asked for too many 297 if (data_length <= bytes_left) 298 m_end = m_start + data_length; // We got all the bytes we wanted 299 else 300 m_end = m_start + bytes_left; // Not all the bytes requested were 301 // available in the shared data 302 } 303 } 304 } 305 306 size_t new_size = GetByteSize(); 307 308 // Don't hold a shared pointer to the data buffer if we don't share any valid 309 // bytes in the shared buffer. 310 if (new_size == 0) 311 m_data_sp.reset(); 312 313 return new_size; 314 } 315 316 // Extract a single unsigned char from the binary data and update the offset 317 // pointed to by "offset_ptr". 318 // 319 // RETURNS the byte that was extracted, or zero on failure. 320 uint8_t DataExtractor::GetU8(offset_t *offset_ptr) const { 321 const uint8_t *data = static_cast<const uint8_t *>(GetData(offset_ptr, 1)); 322 if (data) 323 return *data; 324 return 0; 325 } 326 327 // Extract "count" unsigned chars from the binary data and update the offset 328 // pointed to by "offset_ptr". The extracted data is copied into "dst". 329 // 330 // RETURNS the non-nullptr buffer pointer upon successful extraction of 331 // all the requested bytes, or nullptr when the data is not available in the 332 // buffer due to being out of bounds, or insufficient data. 333 void *DataExtractor::GetU8(offset_t *offset_ptr, void *dst, 334 uint32_t count) const { 335 const uint8_t *data = 336 static_cast<const uint8_t *>(GetData(offset_ptr, count)); 337 if (data) { 338 // Copy the data into the buffer 339 memcpy(dst, data, count); 340 // Return a non-nullptr pointer to the converted data as an indicator of 341 // success 342 return dst; 343 } 344 return nullptr; 345 } 346 347 // Extract a single uint16_t from the data and update the offset pointed to by 348 // "offset_ptr". 349 // 350 // RETURNS the uint16_t that was extracted, or zero on failure. 351 uint16_t DataExtractor::GetU16(offset_t *offset_ptr) const { 352 uint16_t val = 0; 353 const uint8_t *data = 354 static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val))); 355 if (data) { 356 if (m_byte_order != endian::InlHostByteOrder()) 357 val = ReadSwapInt16(data); 358 else 359 val = ReadInt16(data); 360 } 361 return val; 362 } 363 364 uint16_t DataExtractor::GetU16_unchecked(offset_t *offset_ptr) const { 365 uint16_t val; 366 if (m_byte_order == endian::InlHostByteOrder()) 367 val = ReadInt16(m_start, *offset_ptr); 368 else 369 val = ReadSwapInt16(m_start, *offset_ptr); 370 *offset_ptr += sizeof(val); 371 return val; 372 } 373 374 uint32_t DataExtractor::GetU32_unchecked(offset_t *offset_ptr) const { 375 uint32_t val; 376 if (m_byte_order == endian::InlHostByteOrder()) 377 val = ReadInt32(m_start, *offset_ptr); 378 else 379 val = ReadSwapInt32(m_start, *offset_ptr); 380 *offset_ptr += sizeof(val); 381 return val; 382 } 383 384 uint64_t DataExtractor::GetU64_unchecked(offset_t *offset_ptr) const { 385 uint64_t val; 386 if (m_byte_order == endian::InlHostByteOrder()) 387 val = ReadInt64(m_start, *offset_ptr); 388 else 389 val = ReadSwapInt64(m_start, *offset_ptr); 390 *offset_ptr += sizeof(val); 391 return val; 392 } 393 394 // Extract "count" uint16_t values from the binary data and update the offset 395 // pointed to by "offset_ptr". The extracted data is copied into "dst". 396 // 397 // RETURNS the non-nullptr buffer pointer upon successful extraction of 398 // all the requested bytes, or nullptr when the data is not available in the 399 // buffer due to being out of bounds, or insufficient data. 400 void *DataExtractor::GetU16(offset_t *offset_ptr, void *void_dst, 401 uint32_t count) const { 402 const size_t src_size = sizeof(uint16_t) * count; 403 const uint16_t *src = 404 static_cast<const uint16_t *>(GetData(offset_ptr, src_size)); 405 if (src) { 406 if (m_byte_order != endian::InlHostByteOrder()) { 407 uint16_t *dst_pos = static_cast<uint16_t *>(void_dst); 408 uint16_t *dst_end = dst_pos + count; 409 const uint16_t *src_pos = src; 410 while (dst_pos < dst_end) { 411 *dst_pos = ReadSwapInt16(src_pos); 412 ++dst_pos; 413 ++src_pos; 414 } 415 } else { 416 memcpy(void_dst, src, src_size); 417 } 418 // Return a non-nullptr pointer to the converted data as an indicator of 419 // success 420 return void_dst; 421 } 422 return nullptr; 423 } 424 425 // Extract a single uint32_t from the data and update the offset pointed to by 426 // "offset_ptr". 427 // 428 // RETURNS the uint32_t that was extracted, or zero on failure. 429 uint32_t DataExtractor::GetU32(offset_t *offset_ptr) const { 430 uint32_t val = 0; 431 const uint8_t *data = 432 static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val))); 433 if (data) { 434 if (m_byte_order != endian::InlHostByteOrder()) { 435 val = ReadSwapInt32(data); 436 } else { 437 memcpy(&val, data, 4); 438 } 439 } 440 return val; 441 } 442 443 // Extract "count" uint32_t values from the binary data and update the offset 444 // pointed to by "offset_ptr". The extracted data is copied into "dst". 445 // 446 // RETURNS the non-nullptr buffer pointer upon successful extraction of 447 // all the requested bytes, or nullptr when the data is not available in the 448 // buffer due to being out of bounds, or insufficient data. 449 void *DataExtractor::GetU32(offset_t *offset_ptr, void *void_dst, 450 uint32_t count) const { 451 const size_t src_size = sizeof(uint32_t) * count; 452 const uint32_t *src = 453 static_cast<const uint32_t *>(GetData(offset_ptr, src_size)); 454 if (src) { 455 if (m_byte_order != endian::InlHostByteOrder()) { 456 uint32_t *dst_pos = static_cast<uint32_t *>(void_dst); 457 uint32_t *dst_end = dst_pos + count; 458 const uint32_t *src_pos = src; 459 while (dst_pos < dst_end) { 460 *dst_pos = ReadSwapInt32(src_pos); 461 ++dst_pos; 462 ++src_pos; 463 } 464 } else { 465 memcpy(void_dst, src, src_size); 466 } 467 // Return a non-nullptr pointer to the converted data as an indicator of 468 // success 469 return void_dst; 470 } 471 return nullptr; 472 } 473 474 // Extract a single uint64_t from the data and update the offset pointed to by 475 // "offset_ptr". 476 // 477 // RETURNS the uint64_t that was extracted, or zero on failure. 478 uint64_t DataExtractor::GetU64(offset_t *offset_ptr) const { 479 uint64_t val = 0; 480 const uint8_t *data = 481 static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val))); 482 if (data) { 483 if (m_byte_order != endian::InlHostByteOrder()) { 484 val = ReadSwapInt64(data); 485 } else { 486 memcpy(&val, data, 8); 487 } 488 } 489 return val; 490 } 491 492 // GetU64 493 // 494 // Get multiple consecutive 64 bit values. Return true if the entire read 495 // succeeds and increment the offset pointed to by offset_ptr, else return 496 // false and leave the offset pointed to by offset_ptr unchanged. 497 void *DataExtractor::GetU64(offset_t *offset_ptr, void *void_dst, 498 uint32_t count) const { 499 const size_t src_size = sizeof(uint64_t) * count; 500 const uint64_t *src = 501 static_cast<const uint64_t *>(GetData(offset_ptr, src_size)); 502 if (src) { 503 if (m_byte_order != endian::InlHostByteOrder()) { 504 uint64_t *dst_pos = static_cast<uint64_t *>(void_dst); 505 uint64_t *dst_end = dst_pos + count; 506 const uint64_t *src_pos = src; 507 while (dst_pos < dst_end) { 508 *dst_pos = ReadSwapInt64(src_pos); 509 ++dst_pos; 510 ++src_pos; 511 } 512 } else { 513 memcpy(void_dst, src, src_size); 514 } 515 // Return a non-nullptr pointer to the converted data as an indicator of 516 // success 517 return void_dst; 518 } 519 return nullptr; 520 } 521 522 uint32_t DataExtractor::GetMaxU32(offset_t *offset_ptr, 523 size_t byte_size) const { 524 lldbassert(byte_size > 0 && byte_size <= 4 && "GetMaxU32 invalid byte_size!"); 525 return GetMaxU64(offset_ptr, byte_size); 526 } 527 528 uint64_t DataExtractor::GetMaxU64(offset_t *offset_ptr, 529 size_t byte_size) const { 530 lldbassert(byte_size > 0 && byte_size <= 8 && "GetMaxU64 invalid byte_size!"); 531 switch (byte_size) { 532 case 1: 533 return GetU8(offset_ptr); 534 case 2: 535 return GetU16(offset_ptr); 536 case 4: 537 return GetU32(offset_ptr); 538 case 8: 539 return GetU64(offset_ptr); 540 default: { 541 // General case. 542 const uint8_t *data = 543 static_cast<const uint8_t *>(GetData(offset_ptr, byte_size)); 544 if (data == nullptr) 545 return 0; 546 return ReadMaxInt64(data, byte_size, m_byte_order); 547 } 548 } 549 return 0; 550 } 551 552 uint64_t DataExtractor::GetMaxU64_unchecked(offset_t *offset_ptr, 553 size_t byte_size) const { 554 switch (byte_size) { 555 case 1: 556 return GetU8_unchecked(offset_ptr); 557 case 2: 558 return GetU16_unchecked(offset_ptr); 559 case 4: 560 return GetU32_unchecked(offset_ptr); 561 case 8: 562 return GetU64_unchecked(offset_ptr); 563 default: { 564 uint64_t res = ReadMaxInt64(&m_start[*offset_ptr], byte_size, m_byte_order); 565 *offset_ptr += byte_size; 566 return res; 567 } 568 } 569 return 0; 570 } 571 572 int64_t DataExtractor::GetMaxS64(offset_t *offset_ptr, size_t byte_size) const { 573 uint64_t u64 = GetMaxU64(offset_ptr, byte_size); 574 return llvm::SignExtend64(u64, 8 * byte_size); 575 } 576 577 uint64_t DataExtractor::GetMaxU64Bitfield(offset_t *offset_ptr, size_t size, 578 uint32_t bitfield_bit_size, 579 uint32_t bitfield_bit_offset) const { 580 uint64_t uval64 = GetMaxU64(offset_ptr, size); 581 if (bitfield_bit_size > 0) { 582 int32_t lsbcount = bitfield_bit_offset; 583 if (m_byte_order == eByteOrderBig) 584 lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size; 585 if (lsbcount > 0) 586 uval64 >>= lsbcount; 587 uint64_t bitfield_mask = ((1ul << bitfield_bit_size) - 1); 588 if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64) 589 return uval64; 590 uval64 &= bitfield_mask; 591 } 592 return uval64; 593 } 594 595 int64_t DataExtractor::GetMaxS64Bitfield(offset_t *offset_ptr, size_t size, 596 uint32_t bitfield_bit_size, 597 uint32_t bitfield_bit_offset) const { 598 int64_t sval64 = GetMaxS64(offset_ptr, size); 599 if (bitfield_bit_size > 0) { 600 int32_t lsbcount = bitfield_bit_offset; 601 if (m_byte_order == eByteOrderBig) 602 lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size; 603 if (lsbcount > 0) 604 sval64 >>= lsbcount; 605 uint64_t bitfield_mask = 606 ((static_cast<uint64_t>(1)) << bitfield_bit_size) - 1; 607 sval64 &= bitfield_mask; 608 // sign extend if needed 609 if (sval64 & ((static_cast<uint64_t>(1)) << (bitfield_bit_size - 1))) 610 sval64 |= ~bitfield_mask; 611 } 612 return sval64; 613 } 614 615 float DataExtractor::GetFloat(offset_t *offset_ptr) const { 616 typedef float float_type; 617 float_type val = 0.0; 618 const size_t src_size = sizeof(float_type); 619 const float_type *src = 620 static_cast<const float_type *>(GetData(offset_ptr, src_size)); 621 if (src) { 622 if (m_byte_order != endian::InlHostByteOrder()) { 623 const uint8_t *src_data = reinterpret_cast<const uint8_t *>(src); 624 uint8_t *dst_data = reinterpret_cast<uint8_t *>(&val); 625 for (size_t i = 0; i < sizeof(float_type); ++i) 626 dst_data[sizeof(float_type) - 1 - i] = src_data[i]; 627 } else { 628 val = *src; 629 } 630 } 631 return val; 632 } 633 634 double DataExtractor::GetDouble(offset_t *offset_ptr) const { 635 typedef double float_type; 636 float_type val = 0.0; 637 const size_t src_size = sizeof(float_type); 638 const float_type *src = 639 static_cast<const float_type *>(GetData(offset_ptr, src_size)); 640 if (src) { 641 if (m_byte_order != endian::InlHostByteOrder()) { 642 const uint8_t *src_data = reinterpret_cast<const uint8_t *>(src); 643 uint8_t *dst_data = reinterpret_cast<uint8_t *>(&val); 644 for (size_t i = 0; i < sizeof(float_type); ++i) 645 dst_data[sizeof(float_type) - 1 - i] = src_data[i]; 646 } else { 647 val = *src; 648 } 649 } 650 return val; 651 } 652 653 long double DataExtractor::GetLongDouble(offset_t *offset_ptr) const { 654 long double val = 0.0; 655 #if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) || \ 656 defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64) 657 *offset_ptr += CopyByteOrderedData(*offset_ptr, 10, &val, sizeof(val), 658 endian::InlHostByteOrder()); 659 #else 660 *offset_ptr += CopyByteOrderedData(*offset_ptr, sizeof(val), &val, 661 sizeof(val), endian::InlHostByteOrder()); 662 #endif 663 return val; 664 } 665 666 // Extract a single address from the data and update the offset pointed to by 667 // "offset_ptr". The size of the extracted address comes from the 668 // "this->m_addr_size" member variable and should be set correctly prior to 669 // extracting any address values. 670 // 671 // RETURNS the address that was extracted, or zero on failure. 672 uint64_t DataExtractor::GetAddress(offset_t *offset_ptr) const { 673 assert(m_addr_size == 4 || m_addr_size == 8); 674 return GetMaxU64(offset_ptr, m_addr_size); 675 } 676 677 uint64_t DataExtractor::GetAddress_unchecked(offset_t *offset_ptr) const { 678 assert(m_addr_size == 4 || m_addr_size == 8); 679 return GetMaxU64_unchecked(offset_ptr, m_addr_size); 680 } 681 682 // Extract a single pointer from the data and update the offset pointed to by 683 // "offset_ptr". The size of the extracted pointer comes from the 684 // "this->m_addr_size" member variable and should be set correctly prior to 685 // extracting any pointer values. 686 // 687 // RETURNS the pointer that was extracted, or zero on failure. 688 uint64_t DataExtractor::GetPointer(offset_t *offset_ptr) const { 689 assert(m_addr_size == 4 || m_addr_size == 8); 690 return GetMaxU64(offset_ptr, m_addr_size); 691 } 692 693 size_t DataExtractor::ExtractBytes(offset_t offset, offset_t length, 694 ByteOrder dst_byte_order, void *dst) const { 695 const uint8_t *src = PeekData(offset, length); 696 if (src) { 697 if (dst_byte_order != GetByteOrder()) { 698 // Validate that only a word- or register-sized dst is byte swapped 699 assert(length == 1 || length == 2 || length == 4 || length == 8 || 700 length == 10 || length == 16 || length == 32); 701 702 for (uint32_t i = 0; i < length; ++i) 703 (static_cast<uint8_t *>(dst))[i] = src[length - i - 1]; 704 } else 705 ::memcpy(dst, src, length); 706 return length; 707 } 708 return 0; 709 } 710 711 // Extract data as it exists in target memory 712 lldb::offset_t DataExtractor::CopyData(offset_t offset, offset_t length, 713 void *dst) const { 714 const uint8_t *src = PeekData(offset, length); 715 if (src) { 716 ::memcpy(dst, src, length); 717 return length; 718 } 719 return 0; 720 } 721 722 // Extract data and swap if needed when doing the copy 723 lldb::offset_t 724 DataExtractor::CopyByteOrderedData(offset_t src_offset, offset_t src_len, 725 void *dst_void_ptr, offset_t dst_len, 726 ByteOrder dst_byte_order) const { 727 // Validate the source info 728 if (!ValidOffsetForDataOfSize(src_offset, src_len)) 729 assert(ValidOffsetForDataOfSize(src_offset, src_len)); 730 assert(src_len > 0); 731 assert(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle); 732 733 // Validate the destination info 734 assert(dst_void_ptr != nullptr); 735 assert(dst_len > 0); 736 assert(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle); 737 738 // Validate that only a word- or register-sized dst is byte swapped 739 assert(dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 || 740 dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 || 741 dst_len == 32); 742 743 // Must have valid byte orders set in this object and for destination 744 if (!(dst_byte_order == eByteOrderBig || 745 dst_byte_order == eByteOrderLittle) || 746 !(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle)) 747 return 0; 748 749 uint8_t *dst = static_cast<uint8_t *>(dst_void_ptr); 750 const uint8_t *src = PeekData(src_offset, src_len); 751 if (src) { 752 if (dst_len >= src_len) { 753 // We are copying the entire value from src into dst. Calculate how many, 754 // if any, zeroes we need for the most significant bytes if "dst_len" is 755 // greater than "src_len"... 756 const size_t num_zeroes = dst_len - src_len; 757 if (dst_byte_order == eByteOrderBig) { 758 // Big endian, so we lead with zeroes... 759 if (num_zeroes > 0) 760 ::memset(dst, 0, num_zeroes); 761 // Then either copy or swap the rest 762 if (m_byte_order == eByteOrderBig) { 763 ::memcpy(dst + num_zeroes, src, src_len); 764 } else { 765 for (uint32_t i = 0; i < src_len; ++i) 766 dst[i + num_zeroes] = src[src_len - 1 - i]; 767 } 768 } else { 769 // Little endian destination, so we lead the value bytes 770 if (m_byte_order == eByteOrderBig) { 771 for (uint32_t i = 0; i < src_len; ++i) 772 dst[i] = src[src_len - 1 - i]; 773 } else { 774 ::memcpy(dst, src, src_len); 775 } 776 // And zero the rest... 777 if (num_zeroes > 0) 778 ::memset(dst + src_len, 0, num_zeroes); 779 } 780 return src_len; 781 } else { 782 // We are only copying some of the value from src into dst.. 783 784 if (dst_byte_order == eByteOrderBig) { 785 // Big endian dst 786 if (m_byte_order == eByteOrderBig) { 787 // Big endian dst, with big endian src 788 ::memcpy(dst, src + (src_len - dst_len), dst_len); 789 } else { 790 // Big endian dst, with little endian src 791 for (uint32_t i = 0; i < dst_len; ++i) 792 dst[i] = src[dst_len - 1 - i]; 793 } 794 } else { 795 // Little endian dst 796 if (m_byte_order == eByteOrderBig) { 797 // Little endian dst, with big endian src 798 for (uint32_t i = 0; i < dst_len; ++i) 799 dst[i] = src[src_len - 1 - i]; 800 } else { 801 // Little endian dst, with big endian src 802 ::memcpy(dst, src, dst_len); 803 } 804 } 805 return dst_len; 806 } 807 } 808 return 0; 809 } 810 811 // Extracts a variable length NULL terminated C string from the data at the 812 // offset pointed to by "offset_ptr". The "offset_ptr" will be updated with 813 // the offset of the byte that follows the NULL terminator byte. 814 // 815 // If the offset pointed to by "offset_ptr" is out of bounds, or if "length" is 816 // non-zero and there aren't enough available bytes, nullptr will be returned 817 // and "offset_ptr" will not be updated. 818 const char *DataExtractor::GetCStr(offset_t *offset_ptr) const { 819 const char *cstr = reinterpret_cast<const char *>(PeekData(*offset_ptr, 1)); 820 if (cstr) { 821 const char *cstr_end = cstr; 822 const char *end = reinterpret_cast<const char *>(m_end); 823 while (cstr_end < end && *cstr_end) 824 ++cstr_end; 825 826 // Now we are either at the end of the data or we point to the 827 // NULL C string terminator with cstr_end... 828 if (*cstr_end == '\0') { 829 // Advance the offset with one extra byte for the NULL terminator 830 *offset_ptr += (cstr_end - cstr + 1); 831 return cstr; 832 } 833 834 // We reached the end of the data without finding a NULL C string 835 // terminator. Fall through and return nullptr otherwise anyone that would 836 // have used the result as a C string can wander into unknown memory... 837 } 838 return nullptr; 839 } 840 841 // Extracts a NULL terminated C string from the fixed length field of length 842 // "len" at the offset pointed to by "offset_ptr". The "offset_ptr" will be 843 // updated with the offset of the byte that follows the fixed length field. 844 // 845 // If the offset pointed to by "offset_ptr" is out of bounds, or if the offset 846 // plus the length of the field is out of bounds, or if the field does not 847 // contain a NULL terminator byte, nullptr will be returned and "offset_ptr" 848 // will not be updated. 849 const char *DataExtractor::GetCStr(offset_t *offset_ptr, offset_t len) const { 850 const char *cstr = reinterpret_cast<const char *>(PeekData(*offset_ptr, len)); 851 if (cstr != nullptr) { 852 if (memchr(cstr, '\0', len) == nullptr) { 853 return nullptr; 854 } 855 *offset_ptr += len; 856 return cstr; 857 } 858 return nullptr; 859 } 860 861 // Peeks at a string in the contained data. No verification is done to make 862 // sure the entire string lies within the bounds of this object's data, only 863 // "offset" is verified to be a valid offset. 864 // 865 // Returns a valid C string pointer if "offset" is a valid offset in this 866 // object's data, else nullptr is returned. 867 const char *DataExtractor::PeekCStr(offset_t offset) const { 868 return reinterpret_cast<const char *>(PeekData(offset, 1)); 869 } 870 871 // Extracts an unsigned LEB128 number from this object's data starting at the 872 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr" 873 // will be updated with the offset of the byte following the last extracted 874 // byte. 875 // 876 // Returned the extracted integer value. 877 uint64_t DataExtractor::GetULEB128(offset_t *offset_ptr) const { 878 const uint8_t *src = PeekData(*offset_ptr, 1); 879 if (src == nullptr) 880 return 0; 881 882 const uint8_t *end = m_end; 883 884 if (src < end) { 885 uint64_t result = *src++; 886 if (result >= 0x80) { 887 result &= 0x7f; 888 int shift = 7; 889 while (src < end) { 890 uint8_t byte = *src++; 891 result |= static_cast<uint64_t>(byte & 0x7f) << shift; 892 if ((byte & 0x80) == 0) 893 break; 894 shift += 7; 895 } 896 } 897 *offset_ptr = src - m_start; 898 return result; 899 } 900 901 return 0; 902 } 903 904 // Extracts an signed LEB128 number from this object's data starting at the 905 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr" 906 // will be updated with the offset of the byte following the last extracted 907 // byte. 908 // 909 // Returned the extracted integer value. 910 int64_t DataExtractor::GetSLEB128(offset_t *offset_ptr) const { 911 const uint8_t *src = PeekData(*offset_ptr, 1); 912 if (src == nullptr) 913 return 0; 914 915 const uint8_t *end = m_end; 916 917 if (src < end) { 918 int64_t result = 0; 919 int shift = 0; 920 int size = sizeof(int64_t) * 8; 921 922 uint8_t byte = 0; 923 int bytecount = 0; 924 925 while (src < end) { 926 bytecount++; 927 byte = *src++; 928 result |= static_cast<int64_t>(byte & 0x7f) << shift; 929 shift += 7; 930 if ((byte & 0x80) == 0) 931 break; 932 } 933 934 // Sign bit of byte is 2nd high order bit (0x40) 935 if (shift < size && (byte & 0x40)) 936 result |= -(1 << shift); 937 938 *offset_ptr += bytecount; 939 return result; 940 } 941 return 0; 942 } 943 944 // Skips a ULEB128 number (signed or unsigned) from this object's data starting 945 // at the offset pointed to by "offset_ptr". The offset pointed to by 946 // "offset_ptr" will be updated with the offset of the byte following the last 947 // extracted byte. 948 // 949 // Returns the number of bytes consumed during the extraction. 950 uint32_t DataExtractor::Skip_LEB128(offset_t *offset_ptr) const { 951 uint32_t bytes_consumed = 0; 952 const uint8_t *src = PeekData(*offset_ptr, 1); 953 if (src == nullptr) 954 return 0; 955 956 const uint8_t *end = m_end; 957 958 if (src < end) { 959 const uint8_t *src_pos = src; 960 while ((src_pos < end) && (*src_pos++ & 0x80)) 961 ++bytes_consumed; 962 *offset_ptr += src_pos - src; 963 } 964 return bytes_consumed; 965 } 966 967 // Dumps bytes from this object's data to the stream "s" starting 968 // "start_offset" bytes into this data, and ending with the byte before 969 // "end_offset". "base_addr" will be added to the offset into the dumped data 970 // when showing the offset into the data in the output information. 971 // "num_per_line" objects of type "type" will be dumped with the option to 972 // override the format for each object with "type_format". "type_format" is a 973 // printf style formatting string. If "type_format" is nullptr, then an 974 // appropriate format string will be used for the supplied "type". If the 975 // stream "s" is nullptr, then the output will be send to Log(). 976 lldb::offset_t DataExtractor::PutToLog(Log *log, offset_t start_offset, 977 offset_t length, uint64_t base_addr, 978 uint32_t num_per_line, 979 DataExtractor::Type type, 980 const char *format) const { 981 if (log == nullptr) 982 return start_offset; 983 984 offset_t offset; 985 offset_t end_offset; 986 uint32_t count; 987 StreamString sstr; 988 for (offset = start_offset, end_offset = offset + length, count = 0; 989 ValidOffset(offset) && offset < end_offset; ++count) { 990 if ((count % num_per_line) == 0) { 991 // Print out any previous string 992 if (sstr.GetSize() > 0) { 993 log->PutString(sstr.GetString()); 994 sstr.Clear(); 995 } 996 // Reset string offset and fill the current line string with address: 997 if (base_addr != LLDB_INVALID_ADDRESS) 998 sstr.Printf("0x%8.8" PRIx64 ":", 999 static_cast<uint64_t>(base_addr + (offset - start_offset))); 1000 } 1001 1002 switch (type) { 1003 case TypeUInt8: 1004 sstr.Printf(format ? format : " %2.2x", GetU8(&offset)); 1005 break; 1006 case TypeChar: { 1007 char ch = GetU8(&offset); 1008 sstr.Printf(format ? format : " %c", isprint(ch) ? ch : ' '); 1009 } break; 1010 case TypeUInt16: 1011 sstr.Printf(format ? format : " %4.4x", GetU16(&offset)); 1012 break; 1013 case TypeUInt32: 1014 sstr.Printf(format ? format : " %8.8x", GetU32(&offset)); 1015 break; 1016 case TypeUInt64: 1017 sstr.Printf(format ? format : " %16.16" PRIx64, GetU64(&offset)); 1018 break; 1019 case TypePointer: 1020 sstr.Printf(format ? format : " 0x%" PRIx64, GetAddress(&offset)); 1021 break; 1022 case TypeULEB128: 1023 sstr.Printf(format ? format : " 0x%" PRIx64, GetULEB128(&offset)); 1024 break; 1025 case TypeSLEB128: 1026 sstr.Printf(format ? format : " %" PRId64, GetSLEB128(&offset)); 1027 break; 1028 } 1029 } 1030 1031 if (!sstr.Empty()) 1032 log->PutString(sstr.GetString()); 1033 1034 return offset; // Return the offset at which we ended up 1035 } 1036 1037 size_t DataExtractor::Copy(DataExtractor &dest_data) const { 1038 if (m_data_sp) { 1039 // we can pass along the SP to the data 1040 dest_data.SetData(m_data_sp); 1041 } else { 1042 const uint8_t *base_ptr = m_start; 1043 size_t data_size = GetByteSize(); 1044 dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size))); 1045 } 1046 return GetByteSize(); 1047 } 1048 1049 bool DataExtractor::Append(DataExtractor &rhs) { 1050 if (rhs.GetByteOrder() != GetByteOrder()) 1051 return false; 1052 1053 if (rhs.GetByteSize() == 0) 1054 return true; 1055 1056 if (GetByteSize() == 0) 1057 return (rhs.Copy(*this) > 0); 1058 1059 size_t bytes = GetByteSize() + rhs.GetByteSize(); 1060 1061 DataBufferHeap *buffer_heap_ptr = nullptr; 1062 DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0)); 1063 1064 if (!buffer_sp || buffer_heap_ptr == nullptr) 1065 return false; 1066 1067 uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes(); 1068 1069 memcpy(bytes_ptr, GetDataStart(), GetByteSize()); 1070 memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize()); 1071 1072 SetData(buffer_sp); 1073 1074 return true; 1075 } 1076 1077 bool DataExtractor::Append(void *buf, offset_t length) { 1078 if (buf == nullptr) 1079 return false; 1080 1081 if (length == 0) 1082 return true; 1083 1084 size_t bytes = GetByteSize() + length; 1085 1086 DataBufferHeap *buffer_heap_ptr = nullptr; 1087 DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0)); 1088 1089 if (!buffer_sp || buffer_heap_ptr == nullptr) 1090 return false; 1091 1092 uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes(); 1093 1094 if (GetByteSize() > 0) 1095 memcpy(bytes_ptr, GetDataStart(), GetByteSize()); 1096 1097 memcpy(bytes_ptr + GetByteSize(), buf, length); 1098 1099 SetData(buffer_sp); 1100 1101 return true; 1102 } 1103 1104 void DataExtractor::Checksum(llvm::SmallVectorImpl<uint8_t> &dest, 1105 uint64_t max_data) { 1106 if (max_data == 0) 1107 max_data = GetByteSize(); 1108 else 1109 max_data = std::min(max_data, GetByteSize()); 1110 1111 llvm::MD5 md5; 1112 1113 const llvm::ArrayRef<uint8_t> data(GetDataStart(), max_data); 1114 md5.update(data); 1115 1116 llvm::MD5::MD5Result result; 1117 md5.final(result); 1118 1119 dest.clear(); 1120 dest.append(result.Bytes.begin(), result.Bytes.end()); 1121 } 1122