xref: /freebsd-src/contrib/llvm-project/lldb/source/Utility/DataExtractor.cpp (revision 0b57cec536236d46e3dba9bd041533462f33dbb7)
1 //===-- DataExtractor.cpp ---------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "lldb/Utility/DataExtractor.h"
10 
11 #include "lldb/lldb-defines.h"
12 #include "lldb/lldb-enumerations.h"
13 #include "lldb/lldb-forward.h"
14 #include "lldb/lldb-types.h"
15 
16 #include "lldb/Utility/DataBuffer.h"
17 #include "lldb/Utility/DataBufferHeap.h"
18 #include "lldb/Utility/Endian.h"
19 #include "lldb/Utility/LLDBAssert.h"
20 #include "lldb/Utility/Log.h"
21 #include "lldb/Utility/Stream.h"
22 #include "lldb/Utility/StreamString.h"
23 #include "lldb/Utility/UUID.h"
24 
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/Support/MD5.h"
28 #include "llvm/Support/MathExtras.h"
29 
30 #include <algorithm>
31 #include <array>
32 #include <cassert>
33 #include <cstdint>
34 #include <string>
35 
36 #include <ctype.h>
37 #include <inttypes.h>
38 #include <string.h>
39 
40 using namespace lldb;
41 using namespace lldb_private;
42 
43 static inline uint16_t ReadInt16(const unsigned char *ptr, offset_t offset) {
44   uint16_t value;
45   memcpy(&value, ptr + offset, 2);
46   return value;
47 }
48 
49 static inline uint32_t ReadInt32(const unsigned char *ptr,
50                                  offset_t offset = 0) {
51   uint32_t value;
52   memcpy(&value, ptr + offset, 4);
53   return value;
54 }
55 
56 static inline uint64_t ReadInt64(const unsigned char *ptr,
57                                  offset_t offset = 0) {
58   uint64_t value;
59   memcpy(&value, ptr + offset, 8);
60   return value;
61 }
62 
63 static inline uint16_t ReadInt16(const void *ptr) {
64   uint16_t value;
65   memcpy(&value, ptr, 2);
66   return value;
67 }
68 
69 static inline uint16_t ReadSwapInt16(const unsigned char *ptr,
70                                      offset_t offset) {
71   uint16_t value;
72   memcpy(&value, ptr + offset, 2);
73   return llvm::ByteSwap_16(value);
74 }
75 
76 static inline uint32_t ReadSwapInt32(const unsigned char *ptr,
77                                      offset_t offset) {
78   uint32_t value;
79   memcpy(&value, ptr + offset, 4);
80   return llvm::ByteSwap_32(value);
81 }
82 
83 static inline uint64_t ReadSwapInt64(const unsigned char *ptr,
84                                      offset_t offset) {
85   uint64_t value;
86   memcpy(&value, ptr + offset, 8);
87   return llvm::ByteSwap_64(value);
88 }
89 
90 static inline uint16_t ReadSwapInt16(const void *ptr) {
91   uint16_t value;
92   memcpy(&value, ptr, 2);
93   return llvm::ByteSwap_16(value);
94 }
95 
96 static inline uint32_t ReadSwapInt32(const void *ptr) {
97   uint32_t value;
98   memcpy(&value, ptr, 4);
99   return llvm::ByteSwap_32(value);
100 }
101 
102 static inline uint64_t ReadSwapInt64(const void *ptr) {
103   uint64_t value;
104   memcpy(&value, ptr, 8);
105   return llvm::ByteSwap_64(value);
106 }
107 
108 static inline uint64_t ReadMaxInt64(const uint8_t *data, size_t byte_size,
109                                     ByteOrder byte_order) {
110   uint64_t res = 0;
111   if (byte_order == eByteOrderBig)
112     for (size_t i = 0; i < byte_size; ++i)
113       res = (res << 8) | data[i];
114   else {
115     assert(byte_order == eByteOrderLittle);
116     for (size_t i = 0; i < byte_size; ++i)
117       res = (res << 8) | data[byte_size - 1 - i];
118   }
119   return res;
120 }
121 
122 DataExtractor::DataExtractor()
123     : m_start(nullptr), m_end(nullptr),
124       m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)),
125       m_data_sp(), m_target_byte_size(1) {}
126 
127 // This constructor allows us to use data that is owned by someone else. The
128 // data must stay around as long as this object is valid.
129 DataExtractor::DataExtractor(const void *data, offset_t length,
130                              ByteOrder endian, uint32_t addr_size,
131                              uint32_t target_byte_size /*=1*/)
132     : m_start(const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(data))),
133       m_end(const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(data)) +
134             length),
135       m_byte_order(endian), m_addr_size(addr_size), m_data_sp(),
136       m_target_byte_size(target_byte_size) {
137   assert(addr_size == 4 || addr_size == 8);
138 }
139 
140 // Make a shared pointer reference to the shared data in "data_sp" and set the
141 // endian swapping setting to "swap", and the address size to "addr_size". The
142 // shared data reference will ensure the data lives as long as any
143 // DataExtractor objects exist that have a reference to this data.
144 DataExtractor::DataExtractor(const DataBufferSP &data_sp, ByteOrder endian,
145                              uint32_t addr_size,
146                              uint32_t target_byte_size /*=1*/)
147     : m_start(nullptr), m_end(nullptr), m_byte_order(endian),
148       m_addr_size(addr_size), m_data_sp(),
149       m_target_byte_size(target_byte_size) {
150   assert(addr_size == 4 || addr_size == 8);
151   SetData(data_sp);
152 }
153 
154 // Initialize this object with a subset of the data bytes in "data". If "data"
155 // contains shared data, then a reference to this shared data will added and
156 // the shared data will stay around as long as any object contains a reference
157 // to that data. The endian swap and address size settings are copied from
158 // "data".
159 DataExtractor::DataExtractor(const DataExtractor &data, offset_t offset,
160                              offset_t length, uint32_t target_byte_size /*=1*/)
161     : m_start(nullptr), m_end(nullptr), m_byte_order(data.m_byte_order),
162       m_addr_size(data.m_addr_size), m_data_sp(),
163       m_target_byte_size(target_byte_size) {
164   assert(m_addr_size == 4 || m_addr_size == 8);
165   if (data.ValidOffset(offset)) {
166     offset_t bytes_available = data.GetByteSize() - offset;
167     if (length > bytes_available)
168       length = bytes_available;
169     SetData(data, offset, length);
170   }
171 }
172 
173 DataExtractor::DataExtractor(const DataExtractor &rhs)
174     : m_start(rhs.m_start), m_end(rhs.m_end), m_byte_order(rhs.m_byte_order),
175       m_addr_size(rhs.m_addr_size), m_data_sp(rhs.m_data_sp),
176       m_target_byte_size(rhs.m_target_byte_size) {
177   assert(m_addr_size == 4 || m_addr_size == 8);
178 }
179 
180 // Assignment operator
181 const DataExtractor &DataExtractor::operator=(const DataExtractor &rhs) {
182   if (this != &rhs) {
183     m_start = rhs.m_start;
184     m_end = rhs.m_end;
185     m_byte_order = rhs.m_byte_order;
186     m_addr_size = rhs.m_addr_size;
187     m_data_sp = rhs.m_data_sp;
188   }
189   return *this;
190 }
191 
192 DataExtractor::~DataExtractor() = default;
193 
194 // Clears the object contents back to a default invalid state, and release any
195 // references to shared data that this object may contain.
196 void DataExtractor::Clear() {
197   m_start = nullptr;
198   m_end = nullptr;
199   m_byte_order = endian::InlHostByteOrder();
200   m_addr_size = sizeof(void *);
201   m_data_sp.reset();
202 }
203 
204 // If this object contains shared data, this function returns the offset into
205 // that shared data. Else zero is returned.
206 size_t DataExtractor::GetSharedDataOffset() const {
207   if (m_start != nullptr) {
208     const DataBuffer *data = m_data_sp.get();
209     if (data != nullptr) {
210       const uint8_t *data_bytes = data->GetBytes();
211       if (data_bytes != nullptr) {
212         assert(m_start >= data_bytes);
213         return m_start - data_bytes;
214       }
215     }
216   }
217   return 0;
218 }
219 
220 // Set the data with which this object will extract from to data starting at
221 // BYTES and set the length of the data to LENGTH bytes long. The data is
222 // externally owned must be around at least as long as this object points to
223 // the data. No copy of the data is made, this object just refers to this data
224 // and can extract from it. If this object refers to any shared data upon
225 // entry, the reference to that data will be released. Is SWAP is set to true,
226 // any data extracted will be endian swapped.
227 lldb::offset_t DataExtractor::SetData(const void *bytes, offset_t length,
228                                       ByteOrder endian) {
229   m_byte_order = endian;
230   m_data_sp.reset();
231   if (bytes == nullptr || length == 0) {
232     m_start = nullptr;
233     m_end = nullptr;
234   } else {
235     m_start = const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(bytes));
236     m_end = m_start + length;
237   }
238   return GetByteSize();
239 }
240 
241 // Assign the data for this object to be a subrange in "data" starting
242 // "data_offset" bytes into "data" and ending "data_length" bytes later. If
243 // "data_offset" is not a valid offset into "data", then this object will
244 // contain no bytes. If "data_offset" is within "data" yet "data_length" is too
245 // large, the length will be capped at the number of bytes remaining in "data".
246 // If "data" contains a shared pointer to other data, then a ref counted
247 // pointer to that data will be made in this object. If "data" doesn't contain
248 // a shared pointer to data, then the bytes referred to in "data" will need to
249 // exist at least as long as this object refers to those bytes. The address
250 // size and endian swap settings are copied from the current values in "data".
251 lldb::offset_t DataExtractor::SetData(const DataExtractor &data,
252                                       offset_t data_offset,
253                                       offset_t data_length) {
254   m_addr_size = data.m_addr_size;
255   assert(m_addr_size == 4 || m_addr_size == 8);
256   // If "data" contains shared pointer to data, then we can use that
257   if (data.m_data_sp) {
258     m_byte_order = data.m_byte_order;
259     return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset,
260                    data_length);
261   }
262 
263   // We have a DataExtractor object that just has a pointer to bytes
264   if (data.ValidOffset(data_offset)) {
265     if (data_length > data.GetByteSize() - data_offset)
266       data_length = data.GetByteSize() - data_offset;
267     return SetData(data.GetDataStart() + data_offset, data_length,
268                    data.GetByteOrder());
269   }
270   return 0;
271 }
272 
273 // Assign the data for this object to be a subrange of the shared data in
274 // "data_sp" starting "data_offset" bytes into "data_sp" and ending
275 // "data_length" bytes later. If "data_offset" is not a valid offset into
276 // "data_sp", then this object will contain no bytes. If "data_offset" is
277 // within "data_sp" yet "data_length" is too large, the length will be capped
278 // at the number of bytes remaining in "data_sp". A ref counted pointer to the
279 // data in "data_sp" will be made in this object IF the number of bytes this
280 // object refers to in greater than zero (if at least one byte was available
281 // starting at "data_offset") to ensure the data stays around as long as it is
282 // needed. The address size and endian swap settings will remain unchanged from
283 // their current settings.
284 lldb::offset_t DataExtractor::SetData(const DataBufferSP &data_sp,
285                                       offset_t data_offset,
286                                       offset_t data_length) {
287   m_start = m_end = nullptr;
288 
289   if (data_length > 0) {
290     m_data_sp = data_sp;
291     if (data_sp) {
292       const size_t data_size = data_sp->GetByteSize();
293       if (data_offset < data_size) {
294         m_start = data_sp->GetBytes() + data_offset;
295         const size_t bytes_left = data_size - data_offset;
296         // Cap the length of we asked for too many
297         if (data_length <= bytes_left)
298           m_end = m_start + data_length; // We got all the bytes we wanted
299         else
300           m_end = m_start + bytes_left; // Not all the bytes requested were
301                                         // available in the shared data
302       }
303     }
304   }
305 
306   size_t new_size = GetByteSize();
307 
308   // Don't hold a shared pointer to the data buffer if we don't share any valid
309   // bytes in the shared buffer.
310   if (new_size == 0)
311     m_data_sp.reset();
312 
313   return new_size;
314 }
315 
316 // Extract a single unsigned char from the binary data and update the offset
317 // pointed to by "offset_ptr".
318 //
319 // RETURNS the byte that was extracted, or zero on failure.
320 uint8_t DataExtractor::GetU8(offset_t *offset_ptr) const {
321   const uint8_t *data = static_cast<const uint8_t *>(GetData(offset_ptr, 1));
322   if (data)
323     return *data;
324   return 0;
325 }
326 
327 // Extract "count" unsigned chars from the binary data and update the offset
328 // pointed to by "offset_ptr". The extracted data is copied into "dst".
329 //
330 // RETURNS the non-nullptr buffer pointer upon successful extraction of
331 // all the requested bytes, or nullptr when the data is not available in the
332 // buffer due to being out of bounds, or insufficient data.
333 void *DataExtractor::GetU8(offset_t *offset_ptr, void *dst,
334                            uint32_t count) const {
335   const uint8_t *data =
336       static_cast<const uint8_t *>(GetData(offset_ptr, count));
337   if (data) {
338     // Copy the data into the buffer
339     memcpy(dst, data, count);
340     // Return a non-nullptr pointer to the converted data as an indicator of
341     // success
342     return dst;
343   }
344   return nullptr;
345 }
346 
347 // Extract a single uint16_t from the data and update the offset pointed to by
348 // "offset_ptr".
349 //
350 // RETURNS the uint16_t that was extracted, or zero on failure.
351 uint16_t DataExtractor::GetU16(offset_t *offset_ptr) const {
352   uint16_t val = 0;
353   const uint8_t *data =
354       static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
355   if (data) {
356     if (m_byte_order != endian::InlHostByteOrder())
357       val = ReadSwapInt16(data);
358     else
359       val = ReadInt16(data);
360   }
361   return val;
362 }
363 
364 uint16_t DataExtractor::GetU16_unchecked(offset_t *offset_ptr) const {
365   uint16_t val;
366   if (m_byte_order == endian::InlHostByteOrder())
367     val = ReadInt16(m_start, *offset_ptr);
368   else
369     val = ReadSwapInt16(m_start, *offset_ptr);
370   *offset_ptr += sizeof(val);
371   return val;
372 }
373 
374 uint32_t DataExtractor::GetU32_unchecked(offset_t *offset_ptr) const {
375   uint32_t val;
376   if (m_byte_order == endian::InlHostByteOrder())
377     val = ReadInt32(m_start, *offset_ptr);
378   else
379     val = ReadSwapInt32(m_start, *offset_ptr);
380   *offset_ptr += sizeof(val);
381   return val;
382 }
383 
384 uint64_t DataExtractor::GetU64_unchecked(offset_t *offset_ptr) const {
385   uint64_t val;
386   if (m_byte_order == endian::InlHostByteOrder())
387     val = ReadInt64(m_start, *offset_ptr);
388   else
389     val = ReadSwapInt64(m_start, *offset_ptr);
390   *offset_ptr += sizeof(val);
391   return val;
392 }
393 
394 // Extract "count" uint16_t values from the binary data and update the offset
395 // pointed to by "offset_ptr". The extracted data is copied into "dst".
396 //
397 // RETURNS the non-nullptr buffer pointer upon successful extraction of
398 // all the requested bytes, or nullptr when the data is not available in the
399 // buffer due to being out of bounds, or insufficient data.
400 void *DataExtractor::GetU16(offset_t *offset_ptr, void *void_dst,
401                             uint32_t count) const {
402   const size_t src_size = sizeof(uint16_t) * count;
403   const uint16_t *src =
404       static_cast<const uint16_t *>(GetData(offset_ptr, src_size));
405   if (src) {
406     if (m_byte_order != endian::InlHostByteOrder()) {
407       uint16_t *dst_pos = static_cast<uint16_t *>(void_dst);
408       uint16_t *dst_end = dst_pos + count;
409       const uint16_t *src_pos = src;
410       while (dst_pos < dst_end) {
411         *dst_pos = ReadSwapInt16(src_pos);
412         ++dst_pos;
413         ++src_pos;
414       }
415     } else {
416       memcpy(void_dst, src, src_size);
417     }
418     // Return a non-nullptr pointer to the converted data as an indicator of
419     // success
420     return void_dst;
421   }
422   return nullptr;
423 }
424 
425 // Extract a single uint32_t from the data and update the offset pointed to by
426 // "offset_ptr".
427 //
428 // RETURNS the uint32_t that was extracted, or zero on failure.
429 uint32_t DataExtractor::GetU32(offset_t *offset_ptr) const {
430   uint32_t val = 0;
431   const uint8_t *data =
432       static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
433   if (data) {
434     if (m_byte_order != endian::InlHostByteOrder()) {
435       val = ReadSwapInt32(data);
436     } else {
437       memcpy(&val, data, 4);
438     }
439   }
440   return val;
441 }
442 
443 // Extract "count" uint32_t values from the binary data and update the offset
444 // pointed to by "offset_ptr". The extracted data is copied into "dst".
445 //
446 // RETURNS the non-nullptr buffer pointer upon successful extraction of
447 // all the requested bytes, or nullptr when the data is not available in the
448 // buffer due to being out of bounds, or insufficient data.
449 void *DataExtractor::GetU32(offset_t *offset_ptr, void *void_dst,
450                             uint32_t count) const {
451   const size_t src_size = sizeof(uint32_t) * count;
452   const uint32_t *src =
453       static_cast<const uint32_t *>(GetData(offset_ptr, src_size));
454   if (src) {
455     if (m_byte_order != endian::InlHostByteOrder()) {
456       uint32_t *dst_pos = static_cast<uint32_t *>(void_dst);
457       uint32_t *dst_end = dst_pos + count;
458       const uint32_t *src_pos = src;
459       while (dst_pos < dst_end) {
460         *dst_pos = ReadSwapInt32(src_pos);
461         ++dst_pos;
462         ++src_pos;
463       }
464     } else {
465       memcpy(void_dst, src, src_size);
466     }
467     // Return a non-nullptr pointer to the converted data as an indicator of
468     // success
469     return void_dst;
470   }
471   return nullptr;
472 }
473 
474 // Extract a single uint64_t from the data and update the offset pointed to by
475 // "offset_ptr".
476 //
477 // RETURNS the uint64_t that was extracted, or zero on failure.
478 uint64_t DataExtractor::GetU64(offset_t *offset_ptr) const {
479   uint64_t val = 0;
480   const uint8_t *data =
481       static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
482   if (data) {
483     if (m_byte_order != endian::InlHostByteOrder()) {
484       val = ReadSwapInt64(data);
485     } else {
486       memcpy(&val, data, 8);
487     }
488   }
489   return val;
490 }
491 
492 // GetU64
493 //
494 // Get multiple consecutive 64 bit values. Return true if the entire read
495 // succeeds and increment the offset pointed to by offset_ptr, else return
496 // false and leave the offset pointed to by offset_ptr unchanged.
497 void *DataExtractor::GetU64(offset_t *offset_ptr, void *void_dst,
498                             uint32_t count) const {
499   const size_t src_size = sizeof(uint64_t) * count;
500   const uint64_t *src =
501       static_cast<const uint64_t *>(GetData(offset_ptr, src_size));
502   if (src) {
503     if (m_byte_order != endian::InlHostByteOrder()) {
504       uint64_t *dst_pos = static_cast<uint64_t *>(void_dst);
505       uint64_t *dst_end = dst_pos + count;
506       const uint64_t *src_pos = src;
507       while (dst_pos < dst_end) {
508         *dst_pos = ReadSwapInt64(src_pos);
509         ++dst_pos;
510         ++src_pos;
511       }
512     } else {
513       memcpy(void_dst, src, src_size);
514     }
515     // Return a non-nullptr pointer to the converted data as an indicator of
516     // success
517     return void_dst;
518   }
519   return nullptr;
520 }
521 
522 uint32_t DataExtractor::GetMaxU32(offset_t *offset_ptr,
523                                   size_t byte_size) const {
524   lldbassert(byte_size > 0 && byte_size <= 4 && "GetMaxU32 invalid byte_size!");
525   return GetMaxU64(offset_ptr, byte_size);
526 }
527 
528 uint64_t DataExtractor::GetMaxU64(offset_t *offset_ptr,
529                                   size_t byte_size) const {
530   lldbassert(byte_size > 0 && byte_size <= 8 && "GetMaxU64 invalid byte_size!");
531   switch (byte_size) {
532   case 1:
533     return GetU8(offset_ptr);
534   case 2:
535     return GetU16(offset_ptr);
536   case 4:
537     return GetU32(offset_ptr);
538   case 8:
539     return GetU64(offset_ptr);
540   default: {
541     // General case.
542     const uint8_t *data =
543         static_cast<const uint8_t *>(GetData(offset_ptr, byte_size));
544     if (data == nullptr)
545       return 0;
546     return ReadMaxInt64(data, byte_size, m_byte_order);
547   }
548   }
549   return 0;
550 }
551 
552 uint64_t DataExtractor::GetMaxU64_unchecked(offset_t *offset_ptr,
553                                             size_t byte_size) const {
554   switch (byte_size) {
555   case 1:
556     return GetU8_unchecked(offset_ptr);
557   case 2:
558     return GetU16_unchecked(offset_ptr);
559   case 4:
560     return GetU32_unchecked(offset_ptr);
561   case 8:
562     return GetU64_unchecked(offset_ptr);
563   default: {
564     uint64_t res = ReadMaxInt64(&m_start[*offset_ptr], byte_size, m_byte_order);
565     *offset_ptr += byte_size;
566     return res;
567   }
568   }
569   return 0;
570 }
571 
572 int64_t DataExtractor::GetMaxS64(offset_t *offset_ptr, size_t byte_size) const {
573   uint64_t u64 = GetMaxU64(offset_ptr, byte_size);
574   return llvm::SignExtend64(u64, 8 * byte_size);
575 }
576 
577 uint64_t DataExtractor::GetMaxU64Bitfield(offset_t *offset_ptr, size_t size,
578                                           uint32_t bitfield_bit_size,
579                                           uint32_t bitfield_bit_offset) const {
580   uint64_t uval64 = GetMaxU64(offset_ptr, size);
581   if (bitfield_bit_size > 0) {
582     int32_t lsbcount = bitfield_bit_offset;
583     if (m_byte_order == eByteOrderBig)
584       lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
585     if (lsbcount > 0)
586       uval64 >>= lsbcount;
587     uint64_t bitfield_mask = ((1ul << bitfield_bit_size) - 1);
588     if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64)
589       return uval64;
590     uval64 &= bitfield_mask;
591   }
592   return uval64;
593 }
594 
595 int64_t DataExtractor::GetMaxS64Bitfield(offset_t *offset_ptr, size_t size,
596                                          uint32_t bitfield_bit_size,
597                                          uint32_t bitfield_bit_offset) const {
598   int64_t sval64 = GetMaxS64(offset_ptr, size);
599   if (bitfield_bit_size > 0) {
600     int32_t lsbcount = bitfield_bit_offset;
601     if (m_byte_order == eByteOrderBig)
602       lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
603     if (lsbcount > 0)
604       sval64 >>= lsbcount;
605     uint64_t bitfield_mask =
606         ((static_cast<uint64_t>(1)) << bitfield_bit_size) - 1;
607     sval64 &= bitfield_mask;
608     // sign extend if needed
609     if (sval64 & ((static_cast<uint64_t>(1)) << (bitfield_bit_size - 1)))
610       sval64 |= ~bitfield_mask;
611   }
612   return sval64;
613 }
614 
615 float DataExtractor::GetFloat(offset_t *offset_ptr) const {
616   typedef float float_type;
617   float_type val = 0.0;
618   const size_t src_size = sizeof(float_type);
619   const float_type *src =
620       static_cast<const float_type *>(GetData(offset_ptr, src_size));
621   if (src) {
622     if (m_byte_order != endian::InlHostByteOrder()) {
623       const uint8_t *src_data = reinterpret_cast<const uint8_t *>(src);
624       uint8_t *dst_data = reinterpret_cast<uint8_t *>(&val);
625       for (size_t i = 0; i < sizeof(float_type); ++i)
626         dst_data[sizeof(float_type) - 1 - i] = src_data[i];
627     } else {
628       val = *src;
629     }
630   }
631   return val;
632 }
633 
634 double DataExtractor::GetDouble(offset_t *offset_ptr) const {
635   typedef double float_type;
636   float_type val = 0.0;
637   const size_t src_size = sizeof(float_type);
638   const float_type *src =
639       static_cast<const float_type *>(GetData(offset_ptr, src_size));
640   if (src) {
641     if (m_byte_order != endian::InlHostByteOrder()) {
642       const uint8_t *src_data = reinterpret_cast<const uint8_t *>(src);
643       uint8_t *dst_data = reinterpret_cast<uint8_t *>(&val);
644       for (size_t i = 0; i < sizeof(float_type); ++i)
645         dst_data[sizeof(float_type) - 1 - i] = src_data[i];
646     } else {
647       val = *src;
648     }
649   }
650   return val;
651 }
652 
653 long double DataExtractor::GetLongDouble(offset_t *offset_ptr) const {
654   long double val = 0.0;
655 #if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) ||          \
656     defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64)
657   *offset_ptr += CopyByteOrderedData(*offset_ptr, 10, &val, sizeof(val),
658                                      endian::InlHostByteOrder());
659 #else
660   *offset_ptr += CopyByteOrderedData(*offset_ptr, sizeof(val), &val,
661                                      sizeof(val), endian::InlHostByteOrder());
662 #endif
663   return val;
664 }
665 
666 // Extract a single address from the data and update the offset pointed to by
667 // "offset_ptr". The size of the extracted address comes from the
668 // "this->m_addr_size" member variable and should be set correctly prior to
669 // extracting any address values.
670 //
671 // RETURNS the address that was extracted, or zero on failure.
672 uint64_t DataExtractor::GetAddress(offset_t *offset_ptr) const {
673   assert(m_addr_size == 4 || m_addr_size == 8);
674   return GetMaxU64(offset_ptr, m_addr_size);
675 }
676 
677 uint64_t DataExtractor::GetAddress_unchecked(offset_t *offset_ptr) const {
678   assert(m_addr_size == 4 || m_addr_size == 8);
679   return GetMaxU64_unchecked(offset_ptr, m_addr_size);
680 }
681 
682 // Extract a single pointer from the data and update the offset pointed to by
683 // "offset_ptr". The size of the extracted pointer comes from the
684 // "this->m_addr_size" member variable and should be set correctly prior to
685 // extracting any pointer values.
686 //
687 // RETURNS the pointer that was extracted, or zero on failure.
688 uint64_t DataExtractor::GetPointer(offset_t *offset_ptr) const {
689   assert(m_addr_size == 4 || m_addr_size == 8);
690   return GetMaxU64(offset_ptr, m_addr_size);
691 }
692 
693 size_t DataExtractor::ExtractBytes(offset_t offset, offset_t length,
694                                    ByteOrder dst_byte_order, void *dst) const {
695   const uint8_t *src = PeekData(offset, length);
696   if (src) {
697     if (dst_byte_order != GetByteOrder()) {
698       // Validate that only a word- or register-sized dst is byte swapped
699       assert(length == 1 || length == 2 || length == 4 || length == 8 ||
700              length == 10 || length == 16 || length == 32);
701 
702       for (uint32_t i = 0; i < length; ++i)
703         (static_cast<uint8_t *>(dst))[i] = src[length - i - 1];
704     } else
705       ::memcpy(dst, src, length);
706     return length;
707   }
708   return 0;
709 }
710 
711 // Extract data as it exists in target memory
712 lldb::offset_t DataExtractor::CopyData(offset_t offset, offset_t length,
713                                        void *dst) const {
714   const uint8_t *src = PeekData(offset, length);
715   if (src) {
716     ::memcpy(dst, src, length);
717     return length;
718   }
719   return 0;
720 }
721 
722 // Extract data and swap if needed when doing the copy
723 lldb::offset_t
724 DataExtractor::CopyByteOrderedData(offset_t src_offset, offset_t src_len,
725                                    void *dst_void_ptr, offset_t dst_len,
726                                    ByteOrder dst_byte_order) const {
727   // Validate the source info
728   if (!ValidOffsetForDataOfSize(src_offset, src_len))
729     assert(ValidOffsetForDataOfSize(src_offset, src_len));
730   assert(src_len > 0);
731   assert(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle);
732 
733   // Validate the destination info
734   assert(dst_void_ptr != nullptr);
735   assert(dst_len > 0);
736   assert(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle);
737 
738   // Validate that only a word- or register-sized dst is byte swapped
739   assert(dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 ||
740          dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 ||
741          dst_len == 32);
742 
743   // Must have valid byte orders set in this object and for destination
744   if (!(dst_byte_order == eByteOrderBig ||
745         dst_byte_order == eByteOrderLittle) ||
746       !(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle))
747     return 0;
748 
749   uint8_t *dst = static_cast<uint8_t *>(dst_void_ptr);
750   const uint8_t *src = PeekData(src_offset, src_len);
751   if (src) {
752     if (dst_len >= src_len) {
753       // We are copying the entire value from src into dst. Calculate how many,
754       // if any, zeroes we need for the most significant bytes if "dst_len" is
755       // greater than "src_len"...
756       const size_t num_zeroes = dst_len - src_len;
757       if (dst_byte_order == eByteOrderBig) {
758         // Big endian, so we lead with zeroes...
759         if (num_zeroes > 0)
760           ::memset(dst, 0, num_zeroes);
761         // Then either copy or swap the rest
762         if (m_byte_order == eByteOrderBig) {
763           ::memcpy(dst + num_zeroes, src, src_len);
764         } else {
765           for (uint32_t i = 0; i < src_len; ++i)
766             dst[i + num_zeroes] = src[src_len - 1 - i];
767         }
768       } else {
769         // Little endian destination, so we lead the value bytes
770         if (m_byte_order == eByteOrderBig) {
771           for (uint32_t i = 0; i < src_len; ++i)
772             dst[i] = src[src_len - 1 - i];
773         } else {
774           ::memcpy(dst, src, src_len);
775         }
776         // And zero the rest...
777         if (num_zeroes > 0)
778           ::memset(dst + src_len, 0, num_zeroes);
779       }
780       return src_len;
781     } else {
782       // We are only copying some of the value from src into dst..
783 
784       if (dst_byte_order == eByteOrderBig) {
785         // Big endian dst
786         if (m_byte_order == eByteOrderBig) {
787           // Big endian dst, with big endian src
788           ::memcpy(dst, src + (src_len - dst_len), dst_len);
789         } else {
790           // Big endian dst, with little endian src
791           for (uint32_t i = 0; i < dst_len; ++i)
792             dst[i] = src[dst_len - 1 - i];
793         }
794       } else {
795         // Little endian dst
796         if (m_byte_order == eByteOrderBig) {
797           // Little endian dst, with big endian src
798           for (uint32_t i = 0; i < dst_len; ++i)
799             dst[i] = src[src_len - 1 - i];
800         } else {
801           // Little endian dst, with big endian src
802           ::memcpy(dst, src, dst_len);
803         }
804       }
805       return dst_len;
806     }
807   }
808   return 0;
809 }
810 
811 // Extracts a variable length NULL terminated C string from the data at the
812 // offset pointed to by "offset_ptr".  The "offset_ptr" will be updated with
813 // the offset of the byte that follows the NULL terminator byte.
814 //
815 // If the offset pointed to by "offset_ptr" is out of bounds, or if "length" is
816 // non-zero and there aren't enough available bytes, nullptr will be returned
817 // and "offset_ptr" will not be updated.
818 const char *DataExtractor::GetCStr(offset_t *offset_ptr) const {
819   const char *cstr = reinterpret_cast<const char *>(PeekData(*offset_ptr, 1));
820   if (cstr) {
821     const char *cstr_end = cstr;
822     const char *end = reinterpret_cast<const char *>(m_end);
823     while (cstr_end < end && *cstr_end)
824       ++cstr_end;
825 
826     // Now we are either at the end of the data or we point to the
827     // NULL C string terminator with cstr_end...
828     if (*cstr_end == '\0') {
829       // Advance the offset with one extra byte for the NULL terminator
830       *offset_ptr += (cstr_end - cstr + 1);
831       return cstr;
832     }
833 
834     // We reached the end of the data without finding a NULL C string
835     // terminator. Fall through and return nullptr otherwise anyone that would
836     // have used the result as a C string can wander into unknown memory...
837   }
838   return nullptr;
839 }
840 
841 // Extracts a NULL terminated C string from the fixed length field of length
842 // "len" at the offset pointed to by "offset_ptr". The "offset_ptr" will be
843 // updated with the offset of the byte that follows the fixed length field.
844 //
845 // If the offset pointed to by "offset_ptr" is out of bounds, or if the offset
846 // plus the length of the field is out of bounds, or if the field does not
847 // contain a NULL terminator byte, nullptr will be returned and "offset_ptr"
848 // will not be updated.
849 const char *DataExtractor::GetCStr(offset_t *offset_ptr, offset_t len) const {
850   const char *cstr = reinterpret_cast<const char *>(PeekData(*offset_ptr, len));
851   if (cstr != nullptr) {
852     if (memchr(cstr, '\0', len) == nullptr) {
853       return nullptr;
854     }
855     *offset_ptr += len;
856     return cstr;
857   }
858   return nullptr;
859 }
860 
861 // Peeks at a string in the contained data. No verification is done to make
862 // sure the entire string lies within the bounds of this object's data, only
863 // "offset" is verified to be a valid offset.
864 //
865 // Returns a valid C string pointer if "offset" is a valid offset in this
866 // object's data, else nullptr is returned.
867 const char *DataExtractor::PeekCStr(offset_t offset) const {
868   return reinterpret_cast<const char *>(PeekData(offset, 1));
869 }
870 
871 // Extracts an unsigned LEB128 number from this object's data starting at the
872 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
873 // will be updated with the offset of the byte following the last extracted
874 // byte.
875 //
876 // Returned the extracted integer value.
877 uint64_t DataExtractor::GetULEB128(offset_t *offset_ptr) const {
878   const uint8_t *src = PeekData(*offset_ptr, 1);
879   if (src == nullptr)
880     return 0;
881 
882   const uint8_t *end = m_end;
883 
884   if (src < end) {
885     uint64_t result = *src++;
886     if (result >= 0x80) {
887       result &= 0x7f;
888       int shift = 7;
889       while (src < end) {
890         uint8_t byte = *src++;
891         result |= static_cast<uint64_t>(byte & 0x7f) << shift;
892         if ((byte & 0x80) == 0)
893           break;
894         shift += 7;
895       }
896     }
897     *offset_ptr = src - m_start;
898     return result;
899   }
900 
901   return 0;
902 }
903 
904 // Extracts an signed LEB128 number from this object's data starting at the
905 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
906 // will be updated with the offset of the byte following the last extracted
907 // byte.
908 //
909 // Returned the extracted integer value.
910 int64_t DataExtractor::GetSLEB128(offset_t *offset_ptr) const {
911   const uint8_t *src = PeekData(*offset_ptr, 1);
912   if (src == nullptr)
913     return 0;
914 
915   const uint8_t *end = m_end;
916 
917   if (src < end) {
918     int64_t result = 0;
919     int shift = 0;
920     int size = sizeof(int64_t) * 8;
921 
922     uint8_t byte = 0;
923     int bytecount = 0;
924 
925     while (src < end) {
926       bytecount++;
927       byte = *src++;
928       result |= static_cast<int64_t>(byte & 0x7f) << shift;
929       shift += 7;
930       if ((byte & 0x80) == 0)
931         break;
932     }
933 
934     // Sign bit of byte is 2nd high order bit (0x40)
935     if (shift < size && (byte & 0x40))
936       result |= -(1 << shift);
937 
938     *offset_ptr += bytecount;
939     return result;
940   }
941   return 0;
942 }
943 
944 // Skips a ULEB128 number (signed or unsigned) from this object's data starting
945 // at the offset pointed to by "offset_ptr". The offset pointed to by
946 // "offset_ptr" will be updated with the offset of the byte following the last
947 // extracted byte.
948 //
949 // Returns the number of bytes consumed during the extraction.
950 uint32_t DataExtractor::Skip_LEB128(offset_t *offset_ptr) const {
951   uint32_t bytes_consumed = 0;
952   const uint8_t *src = PeekData(*offset_ptr, 1);
953   if (src == nullptr)
954     return 0;
955 
956   const uint8_t *end = m_end;
957 
958   if (src < end) {
959     const uint8_t *src_pos = src;
960     while ((src_pos < end) && (*src_pos++ & 0x80))
961       ++bytes_consumed;
962     *offset_ptr += src_pos - src;
963   }
964   return bytes_consumed;
965 }
966 
967 // Dumps bytes from this object's data to the stream "s" starting
968 // "start_offset" bytes into this data, and ending with the byte before
969 // "end_offset". "base_addr" will be added to the offset into the dumped data
970 // when showing the offset into the data in the output information.
971 // "num_per_line" objects of type "type" will be dumped with the option to
972 // override the format for each object with "type_format". "type_format" is a
973 // printf style formatting string. If "type_format" is nullptr, then an
974 // appropriate format string will be used for the supplied "type". If the
975 // stream "s" is nullptr, then the output will be send to Log().
976 lldb::offset_t DataExtractor::PutToLog(Log *log, offset_t start_offset,
977                                        offset_t length, uint64_t base_addr,
978                                        uint32_t num_per_line,
979                                        DataExtractor::Type type,
980                                        const char *format) const {
981   if (log == nullptr)
982     return start_offset;
983 
984   offset_t offset;
985   offset_t end_offset;
986   uint32_t count;
987   StreamString sstr;
988   for (offset = start_offset, end_offset = offset + length, count = 0;
989        ValidOffset(offset) && offset < end_offset; ++count) {
990     if ((count % num_per_line) == 0) {
991       // Print out any previous string
992       if (sstr.GetSize() > 0) {
993         log->PutString(sstr.GetString());
994         sstr.Clear();
995       }
996       // Reset string offset and fill the current line string with address:
997       if (base_addr != LLDB_INVALID_ADDRESS)
998         sstr.Printf("0x%8.8" PRIx64 ":",
999                     static_cast<uint64_t>(base_addr + (offset - start_offset)));
1000     }
1001 
1002     switch (type) {
1003     case TypeUInt8:
1004       sstr.Printf(format ? format : " %2.2x", GetU8(&offset));
1005       break;
1006     case TypeChar: {
1007       char ch = GetU8(&offset);
1008       sstr.Printf(format ? format : " %c", isprint(ch) ? ch : ' ');
1009     } break;
1010     case TypeUInt16:
1011       sstr.Printf(format ? format : " %4.4x", GetU16(&offset));
1012       break;
1013     case TypeUInt32:
1014       sstr.Printf(format ? format : " %8.8x", GetU32(&offset));
1015       break;
1016     case TypeUInt64:
1017       sstr.Printf(format ? format : " %16.16" PRIx64, GetU64(&offset));
1018       break;
1019     case TypePointer:
1020       sstr.Printf(format ? format : " 0x%" PRIx64, GetAddress(&offset));
1021       break;
1022     case TypeULEB128:
1023       sstr.Printf(format ? format : " 0x%" PRIx64, GetULEB128(&offset));
1024       break;
1025     case TypeSLEB128:
1026       sstr.Printf(format ? format : " %" PRId64, GetSLEB128(&offset));
1027       break;
1028     }
1029   }
1030 
1031   if (!sstr.Empty())
1032     log->PutString(sstr.GetString());
1033 
1034   return offset; // Return the offset at which we ended up
1035 }
1036 
1037 size_t DataExtractor::Copy(DataExtractor &dest_data) const {
1038   if (m_data_sp) {
1039     // we can pass along the SP to the data
1040     dest_data.SetData(m_data_sp);
1041   } else {
1042     const uint8_t *base_ptr = m_start;
1043     size_t data_size = GetByteSize();
1044     dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size)));
1045   }
1046   return GetByteSize();
1047 }
1048 
1049 bool DataExtractor::Append(DataExtractor &rhs) {
1050   if (rhs.GetByteOrder() != GetByteOrder())
1051     return false;
1052 
1053   if (rhs.GetByteSize() == 0)
1054     return true;
1055 
1056   if (GetByteSize() == 0)
1057     return (rhs.Copy(*this) > 0);
1058 
1059   size_t bytes = GetByteSize() + rhs.GetByteSize();
1060 
1061   DataBufferHeap *buffer_heap_ptr = nullptr;
1062   DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
1063 
1064   if (!buffer_sp || buffer_heap_ptr == nullptr)
1065     return false;
1066 
1067   uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
1068 
1069   memcpy(bytes_ptr, GetDataStart(), GetByteSize());
1070   memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize());
1071 
1072   SetData(buffer_sp);
1073 
1074   return true;
1075 }
1076 
1077 bool DataExtractor::Append(void *buf, offset_t length) {
1078   if (buf == nullptr)
1079     return false;
1080 
1081   if (length == 0)
1082     return true;
1083 
1084   size_t bytes = GetByteSize() + length;
1085 
1086   DataBufferHeap *buffer_heap_ptr = nullptr;
1087   DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
1088 
1089   if (!buffer_sp || buffer_heap_ptr == nullptr)
1090     return false;
1091 
1092   uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
1093 
1094   if (GetByteSize() > 0)
1095     memcpy(bytes_ptr, GetDataStart(), GetByteSize());
1096 
1097   memcpy(bytes_ptr + GetByteSize(), buf, length);
1098 
1099   SetData(buffer_sp);
1100 
1101   return true;
1102 }
1103 
1104 void DataExtractor::Checksum(llvm::SmallVectorImpl<uint8_t> &dest,
1105                              uint64_t max_data) {
1106   if (max_data == 0)
1107     max_data = GetByteSize();
1108   else
1109     max_data = std::min(max_data, GetByteSize());
1110 
1111   llvm::MD5 md5;
1112 
1113   const llvm::ArrayRef<uint8_t> data(GetDataStart(), max_data);
1114   md5.update(data);
1115 
1116   llvm::MD5::MD5Result result;
1117   md5.final(result);
1118 
1119   dest.clear();
1120   dest.append(result.Bytes.begin(), result.Bytes.end());
1121 }
1122