1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 13 #include "llvm/ADT/ScopeExit.h" 14 #include "llvm/Support/ScopedPrinter.h" 15 #include "llvm/Support/Threading.h" 16 17 #include "lldb/Breakpoint/BreakpointLocation.h" 18 #include "lldb/Breakpoint/StoppointCallbackContext.h" 19 #include "lldb/Core/Debugger.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/ModuleSpec.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/StreamFile.h" 24 #include "lldb/Expression/DiagnosticManager.h" 25 #include "lldb/Expression/DynamicCheckerFunctions.h" 26 #include "lldb/Expression/UserExpression.h" 27 #include "lldb/Expression/UtilityFunction.h" 28 #include "lldb/Host/ConnectionFileDescriptor.h" 29 #include "lldb/Host/FileSystem.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/HostInfo.h" 32 #include "lldb/Host/OptionParser.h" 33 #include "lldb/Host/Pipe.h" 34 #include "lldb/Host/Terminal.h" 35 #include "lldb/Host/ThreadLauncher.h" 36 #include "lldb/Interpreter/CommandInterpreter.h" 37 #include "lldb/Interpreter/OptionArgParser.h" 38 #include "lldb/Interpreter/OptionValueProperties.h" 39 #include "lldb/Symbol/Function.h" 40 #include "lldb/Symbol/Symbol.h" 41 #include "lldb/Target/ABI.h" 42 #include "lldb/Target/AssertFrameRecognizer.h" 43 #include "lldb/Target/DynamicLoader.h" 44 #include "lldb/Target/InstrumentationRuntime.h" 45 #include "lldb/Target/JITLoader.h" 46 #include "lldb/Target/JITLoaderList.h" 47 #include "lldb/Target/Language.h" 48 #include "lldb/Target/LanguageRuntime.h" 49 #include "lldb/Target/MemoryHistory.h" 50 #include "lldb/Target/MemoryRegionInfo.h" 51 #include "lldb/Target/OperatingSystem.h" 52 #include "lldb/Target/Platform.h" 53 #include "lldb/Target/Process.h" 54 #include "lldb/Target/RegisterContext.h" 55 #include "lldb/Target/StopInfo.h" 56 #include "lldb/Target/StructuredDataPlugin.h" 57 #include "lldb/Target/SystemRuntime.h" 58 #include "lldb/Target/Target.h" 59 #include "lldb/Target/TargetList.h" 60 #include "lldb/Target/Thread.h" 61 #include "lldb/Target/ThreadPlan.h" 62 #include "lldb/Target/ThreadPlanBase.h" 63 #include "lldb/Target/ThreadPlanCallFunction.h" 64 #include "lldb/Target/ThreadPlanStack.h" 65 #include "lldb/Target/UnixSignals.h" 66 #include "lldb/Utility/Event.h" 67 #include "lldb/Utility/Log.h" 68 #include "lldb/Utility/NameMatches.h" 69 #include "lldb/Utility/ProcessInfo.h" 70 #include "lldb/Utility/SelectHelper.h" 71 #include "lldb/Utility/State.h" 72 #include "lldb/Utility/Timer.h" 73 74 using namespace lldb; 75 using namespace lldb_private; 76 using namespace std::chrono; 77 78 // Comment out line below to disable memory caching, overriding the process 79 // setting target.process.disable-memory-cache 80 #define ENABLE_MEMORY_CACHING 81 82 #ifdef ENABLE_MEMORY_CACHING 83 #define DISABLE_MEM_CACHE_DEFAULT false 84 #else 85 #define DISABLE_MEM_CACHE_DEFAULT true 86 #endif 87 88 class ProcessOptionValueProperties 89 : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> { 90 public: 91 ProcessOptionValueProperties(ConstString name) : Cloneable(name) {} 92 93 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 94 bool will_modify, 95 uint32_t idx) const override { 96 // When getting the value for a key from the process options, we will 97 // always try and grab the setting from the current process if there is 98 // one. Else we just use the one from this instance. 99 if (exe_ctx) { 100 Process *process = exe_ctx->GetProcessPtr(); 101 if (process) { 102 ProcessOptionValueProperties *instance_properties = 103 static_cast<ProcessOptionValueProperties *>( 104 process->GetValueProperties().get()); 105 if (this != instance_properties) 106 return instance_properties->ProtectedGetPropertyAtIndex(idx); 107 } 108 } 109 return ProtectedGetPropertyAtIndex(idx); 110 } 111 }; 112 113 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = { 114 { 115 eFollowParent, 116 "parent", 117 "Continue tracing the parent process and detach the child.", 118 }, 119 { 120 eFollowChild, 121 "child", 122 "Trace the child process and detach the parent.", 123 }, 124 }; 125 126 #define LLDB_PROPERTIES_process 127 #include "TargetProperties.inc" 128 129 enum { 130 #define LLDB_PROPERTIES_process 131 #include "TargetPropertiesEnum.inc" 132 ePropertyExperimental, 133 }; 134 135 #define LLDB_PROPERTIES_process_experimental 136 #include "TargetProperties.inc" 137 138 enum { 139 #define LLDB_PROPERTIES_process_experimental 140 #include "TargetPropertiesEnum.inc" 141 }; 142 143 class ProcessExperimentalOptionValueProperties 144 : public Cloneable<ProcessExperimentalOptionValueProperties, 145 OptionValueProperties> { 146 public: 147 ProcessExperimentalOptionValueProperties() 148 : Cloneable( 149 ConstString(Properties::GetExperimentalSettingsName())) {} 150 }; 151 152 ProcessExperimentalProperties::ProcessExperimentalProperties() 153 : Properties(OptionValuePropertiesSP( 154 new ProcessExperimentalOptionValueProperties())) { 155 m_collection_sp->Initialize(g_process_experimental_properties); 156 } 157 158 ProcessProperties::ProcessProperties(lldb_private::Process *process) 159 : Properties(), 160 m_process(process) // Can be nullptr for global ProcessProperties 161 { 162 if (process == nullptr) { 163 // Global process properties, set them up one time 164 m_collection_sp = 165 std::make_shared<ProcessOptionValueProperties>(ConstString("process")); 166 m_collection_sp->Initialize(g_process_properties); 167 m_collection_sp->AppendProperty( 168 ConstString("thread"), ConstString("Settings specific to threads."), 169 true, Thread::GetGlobalProperties().GetValueProperties()); 170 } else { 171 m_collection_sp = 172 OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties()); 173 m_collection_sp->SetValueChangedCallback( 174 ePropertyPythonOSPluginPath, 175 [this] { m_process->LoadOperatingSystemPlugin(true); }); 176 } 177 178 m_experimental_properties_up = 179 std::make_unique<ProcessExperimentalProperties>(); 180 m_collection_sp->AppendProperty( 181 ConstString(Properties::GetExperimentalSettingsName()), 182 ConstString("Experimental settings - setting these won't produce " 183 "errors if the setting is not present."), 184 true, m_experimental_properties_up->GetValueProperties()); 185 } 186 187 ProcessProperties::~ProcessProperties() = default; 188 189 bool ProcessProperties::GetDisableMemoryCache() const { 190 const uint32_t idx = ePropertyDisableMemCache; 191 return m_collection_sp->GetPropertyAtIndexAsBoolean( 192 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 193 } 194 195 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 196 const uint32_t idx = ePropertyMemCacheLineSize; 197 return m_collection_sp->GetPropertyAtIndexAsUInt64( 198 nullptr, idx, g_process_properties[idx].default_uint_value); 199 } 200 201 Args ProcessProperties::GetExtraStartupCommands() const { 202 Args args; 203 const uint32_t idx = ePropertyExtraStartCommand; 204 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 205 return args; 206 } 207 208 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 209 const uint32_t idx = ePropertyExtraStartCommand; 210 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 211 } 212 213 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 214 const uint32_t idx = ePropertyPythonOSPluginPath; 215 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 216 } 217 218 uint32_t ProcessProperties::GetVirtualAddressableBits() const { 219 const uint32_t idx = ePropertyVirtualAddressableBits; 220 return m_collection_sp->GetPropertyAtIndexAsUInt64( 221 nullptr, idx, g_process_properties[idx].default_uint_value); 222 } 223 224 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) { 225 const uint32_t idx = ePropertyVirtualAddressableBits; 226 m_collection_sp->SetPropertyAtIndexAsUInt64(nullptr, idx, bits); 227 } 228 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 229 const uint32_t idx = ePropertyPythonOSPluginPath; 230 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 231 } 232 233 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 234 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 235 return m_collection_sp->GetPropertyAtIndexAsBoolean( 236 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 237 } 238 239 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 240 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 241 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 242 } 243 244 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 245 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 246 return m_collection_sp->GetPropertyAtIndexAsBoolean( 247 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 248 } 249 250 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 251 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 252 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 253 } 254 255 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 256 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 257 return m_collection_sp->GetPropertyAtIndexAsBoolean( 258 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 259 } 260 261 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 262 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 263 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 264 } 265 266 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const { 267 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 268 return m_collection_sp->GetPropertyAtIndexAsBoolean( 269 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 270 } 271 272 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) { 273 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 274 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, disable); 275 m_process->Flush(); 276 } 277 278 bool ProcessProperties::GetDetachKeepsStopped() const { 279 const uint32_t idx = ePropertyDetachKeepsStopped; 280 return m_collection_sp->GetPropertyAtIndexAsBoolean( 281 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 282 } 283 284 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 285 const uint32_t idx = ePropertyDetachKeepsStopped; 286 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 287 } 288 289 bool ProcessProperties::GetWarningsOptimization() const { 290 const uint32_t idx = ePropertyWarningOptimization; 291 return m_collection_sp->GetPropertyAtIndexAsBoolean( 292 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 293 } 294 295 bool ProcessProperties::GetWarningsUnsupportedLanguage() const { 296 const uint32_t idx = ePropertyWarningUnsupportedLanguage; 297 return m_collection_sp->GetPropertyAtIndexAsBoolean( 298 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 299 } 300 301 bool ProcessProperties::GetStopOnExec() const { 302 const uint32_t idx = ePropertyStopOnExec; 303 return m_collection_sp->GetPropertyAtIndexAsBoolean( 304 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 305 } 306 307 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 308 const uint32_t idx = ePropertyUtilityExpressionTimeout; 309 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 310 nullptr, idx, g_process_properties[idx].default_uint_value); 311 return std::chrono::seconds(value); 312 } 313 314 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const { 315 const uint32_t idx = ePropertyInterruptTimeout; 316 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 317 nullptr, idx, g_process_properties[idx].default_uint_value); 318 return std::chrono::seconds(value); 319 } 320 321 bool ProcessProperties::GetSteppingRunsAllThreads() const { 322 const uint32_t idx = ePropertySteppingRunsAllThreads; 323 return m_collection_sp->GetPropertyAtIndexAsBoolean( 324 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 325 } 326 327 bool ProcessProperties::GetOSPluginReportsAllThreads() const { 328 const bool fail_value = true; 329 const Property *exp_property = 330 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 331 OptionValueProperties *exp_values = 332 exp_property->GetValue()->GetAsProperties(); 333 if (!exp_values) 334 return fail_value; 335 336 return exp_values->GetPropertyAtIndexAsBoolean( 337 nullptr, ePropertyOSPluginReportsAllThreads, fail_value); 338 } 339 340 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { 341 const Property *exp_property = 342 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 343 OptionValueProperties *exp_values = 344 exp_property->GetValue()->GetAsProperties(); 345 if (exp_values) 346 exp_values->SetPropertyAtIndexAsBoolean( 347 nullptr, ePropertyOSPluginReportsAllThreads, does_report); 348 } 349 350 FollowForkMode ProcessProperties::GetFollowForkMode() const { 351 const uint32_t idx = ePropertyFollowForkMode; 352 return (FollowForkMode)m_collection_sp->GetPropertyAtIndexAsEnumeration( 353 nullptr, idx, g_process_properties[idx].default_uint_value); 354 } 355 356 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 357 llvm::StringRef plugin_name, 358 ListenerSP listener_sp, 359 const FileSpec *crash_file_path, 360 bool can_connect) { 361 static uint32_t g_process_unique_id = 0; 362 363 ProcessSP process_sp; 364 ProcessCreateInstance create_callback = nullptr; 365 if (!plugin_name.empty()) { 366 create_callback = 367 PluginManager::GetProcessCreateCallbackForPluginName(plugin_name); 368 if (create_callback) { 369 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 370 can_connect); 371 if (process_sp) { 372 if (process_sp->CanDebug(target_sp, true)) { 373 process_sp->m_process_unique_id = ++g_process_unique_id; 374 } else 375 process_sp.reset(); 376 } 377 } 378 } else { 379 for (uint32_t idx = 0; 380 (create_callback = 381 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 382 ++idx) { 383 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 384 can_connect); 385 if (process_sp) { 386 if (process_sp->CanDebug(target_sp, false)) { 387 process_sp->m_process_unique_id = ++g_process_unique_id; 388 break; 389 } else 390 process_sp.reset(); 391 } 392 } 393 } 394 return process_sp; 395 } 396 397 ConstString &Process::GetStaticBroadcasterClass() { 398 static ConstString class_name("lldb.process"); 399 return class_name; 400 } 401 402 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 403 : Process(target_sp, listener_sp, 404 UnixSignals::Create(HostInfo::GetArchitecture())) { 405 // This constructor just delegates to the full Process constructor, 406 // defaulting to using the Host's UnixSignals. 407 } 408 409 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 410 const UnixSignalsSP &unix_signals_sp) 411 : ProcessProperties(this), 412 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 413 Process::GetStaticBroadcasterClass().AsCString()), 414 m_target_wp(target_sp), m_public_state(eStateUnloaded), 415 m_private_state(eStateUnloaded), 416 m_private_state_broadcaster(nullptr, 417 "lldb.process.internal_state_broadcaster"), 418 m_private_state_control_broadcaster( 419 nullptr, "lldb.process.internal_state_control_broadcaster"), 420 m_private_state_listener_sp( 421 Listener::MakeListener("lldb.process.internal_state_listener")), 422 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 423 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 424 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 425 m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this), 426 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 427 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 428 m_breakpoint_site_list(), m_dynamic_checkers_up(), 429 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 430 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 431 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 432 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 433 m_memory_cache(*this), m_allocated_memory_cache(*this), 434 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 435 m_private_run_lock(), m_finalizing(false), 436 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 437 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 438 m_can_interpret_function_calls(false), m_warnings_issued(), 439 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 440 CheckInWithManager(); 441 442 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 443 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 444 445 if (!m_unix_signals_sp) 446 m_unix_signals_sp = std::make_shared<UnixSignals>(); 447 448 SetEventName(eBroadcastBitStateChanged, "state-changed"); 449 SetEventName(eBroadcastBitInterrupt, "interrupt"); 450 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 451 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 452 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 453 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 454 455 m_private_state_control_broadcaster.SetEventName( 456 eBroadcastInternalStateControlStop, "control-stop"); 457 m_private_state_control_broadcaster.SetEventName( 458 eBroadcastInternalStateControlPause, "control-pause"); 459 m_private_state_control_broadcaster.SetEventName( 460 eBroadcastInternalStateControlResume, "control-resume"); 461 462 m_listener_sp->StartListeningForEvents( 463 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 464 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 465 eBroadcastBitProfileData | eBroadcastBitStructuredData); 466 467 m_private_state_listener_sp->StartListeningForEvents( 468 &m_private_state_broadcaster, 469 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 470 471 m_private_state_listener_sp->StartListeningForEvents( 472 &m_private_state_control_broadcaster, 473 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 474 eBroadcastInternalStateControlResume); 475 // We need something valid here, even if just the default UnixSignalsSP. 476 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 477 478 // Allow the platform to override the default cache line size 479 OptionValueSP value_sp = 480 m_collection_sp 481 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 482 ->GetValue(); 483 uint32_t platform_cache_line_size = 484 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 485 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 486 value_sp->SetUInt64Value(platform_cache_line_size); 487 488 RegisterAssertFrameRecognizer(this); 489 } 490 491 Process::~Process() { 492 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 493 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 494 StopPrivateStateThread(); 495 496 // ThreadList::Clear() will try to acquire this process's mutex, so 497 // explicitly clear the thread list here to ensure that the mutex is not 498 // destroyed before the thread list. 499 m_thread_list.Clear(); 500 } 501 502 ProcessProperties &Process::GetGlobalProperties() { 503 // NOTE: intentional leak so we don't crash if global destructor chain gets 504 // called as other threads still use the result of this function 505 static ProcessProperties *g_settings_ptr = 506 new ProcessProperties(nullptr); 507 return *g_settings_ptr; 508 } 509 510 void Process::Finalize() { 511 if (m_finalizing.exchange(true)) 512 return; 513 514 // Destroy the process. This will call the virtual function DoDestroy under 515 // the hood, giving our derived class a chance to do the ncessary tear down. 516 DestroyImpl(false); 517 518 // Clear our broadcaster before we proceed with destroying 519 Broadcaster::Clear(); 520 521 // Do any cleanup needed prior to being destructed... Subclasses that 522 // override this method should call this superclass method as well. 523 524 // We need to destroy the loader before the derived Process class gets 525 // destroyed since it is very likely that undoing the loader will require 526 // access to the real process. 527 m_dynamic_checkers_up.reset(); 528 m_abi_sp.reset(); 529 m_os_up.reset(); 530 m_system_runtime_up.reset(); 531 m_dyld_up.reset(); 532 m_jit_loaders_up.reset(); 533 m_thread_plans.Clear(); 534 m_thread_list_real.Destroy(); 535 m_thread_list.Destroy(); 536 m_extended_thread_list.Destroy(); 537 m_queue_list.Clear(); 538 m_queue_list_stop_id = 0; 539 std::vector<Notifications> empty_notifications; 540 m_notifications.swap(empty_notifications); 541 m_image_tokens.clear(); 542 m_memory_cache.Clear(); 543 m_allocated_memory_cache.Clear(); 544 { 545 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 546 m_language_runtimes.clear(); 547 } 548 m_instrumentation_runtimes.clear(); 549 m_next_event_action_up.reset(); 550 // Clear the last natural stop ID since it has a strong reference to this 551 // process 552 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 553 //#ifdef LLDB_CONFIGURATION_DEBUG 554 // StreamFile s(stdout, false); 555 // EventSP event_sp; 556 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 557 // { 558 // event_sp->Dump (&s); 559 // s.EOL(); 560 // } 561 //#endif 562 // We have to be very careful here as the m_private_state_listener might 563 // contain events that have ProcessSP values in them which can keep this 564 // process around forever. These events need to be cleared out. 565 m_private_state_listener_sp->Clear(); 566 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 567 m_public_run_lock.SetStopped(); 568 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 569 m_private_run_lock.SetStopped(); 570 m_structured_data_plugin_map.clear(); 571 } 572 573 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 574 m_notifications.push_back(callbacks); 575 if (callbacks.initialize != nullptr) 576 callbacks.initialize(callbacks.baton, this); 577 } 578 579 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 580 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 581 for (pos = m_notifications.begin(); pos != end; ++pos) { 582 if (pos->baton == callbacks.baton && 583 pos->initialize == callbacks.initialize && 584 pos->process_state_changed == callbacks.process_state_changed) { 585 m_notifications.erase(pos); 586 return true; 587 } 588 } 589 return false; 590 } 591 592 void Process::SynchronouslyNotifyStateChanged(StateType state) { 593 std::vector<Notifications>::iterator notification_pos, 594 notification_end = m_notifications.end(); 595 for (notification_pos = m_notifications.begin(); 596 notification_pos != notification_end; ++notification_pos) { 597 if (notification_pos->process_state_changed) 598 notification_pos->process_state_changed(notification_pos->baton, this, 599 state); 600 } 601 } 602 603 // FIXME: We need to do some work on events before the general Listener sees 604 // them. 605 // For instance if we are continuing from a breakpoint, we need to ensure that 606 // we do the little "insert real insn, step & stop" trick. But we can't do 607 // that when the event is delivered by the broadcaster - since that is done on 608 // the thread that is waiting for new events, so if we needed more than one 609 // event for our handling, we would stall. So instead we do it when we fetch 610 // the event off of the queue. 611 // 612 613 StateType Process::GetNextEvent(EventSP &event_sp) { 614 StateType state = eStateInvalid; 615 616 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 617 std::chrono::seconds(0)) && 618 event_sp) 619 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 620 621 return state; 622 } 623 624 void Process::SyncIOHandler(uint32_t iohandler_id, 625 const Timeout<std::micro> &timeout) { 626 // don't sync (potentially context switch) in case where there is no process 627 // IO 628 if (!m_process_input_reader) 629 return; 630 631 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 632 633 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 634 if (Result) { 635 LLDB_LOG( 636 log, 637 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 638 iohandler_id, *Result); 639 } else { 640 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 641 iohandler_id); 642 } 643 } 644 645 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 646 EventSP *event_sp_ptr, bool wait_always, 647 ListenerSP hijack_listener_sp, 648 Stream *stream, bool use_run_lock) { 649 // We can't just wait for a "stopped" event, because the stopped event may 650 // have restarted the target. We have to actually check each event, and in 651 // the case of a stopped event check the restarted flag on the event. 652 if (event_sp_ptr) 653 event_sp_ptr->reset(); 654 StateType state = GetState(); 655 // If we are exited or detached, we won't ever get back to any other valid 656 // state... 657 if (state == eStateDetached || state == eStateExited) 658 return state; 659 660 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 661 LLDB_LOG(log, "timeout = {0}", timeout); 662 663 if (!wait_always && StateIsStoppedState(state, true) && 664 StateIsStoppedState(GetPrivateState(), true)) { 665 LLDB_LOGF(log, 666 "Process::%s returning without waiting for events; process " 667 "private and public states are already 'stopped'.", 668 __FUNCTION__); 669 // We need to toggle the run lock as this won't get done in 670 // SetPublicState() if the process is hijacked. 671 if (hijack_listener_sp && use_run_lock) 672 m_public_run_lock.SetStopped(); 673 return state; 674 } 675 676 while (state != eStateInvalid) { 677 EventSP event_sp; 678 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 679 if (event_sp_ptr && event_sp) 680 *event_sp_ptr = event_sp; 681 682 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 683 Process::HandleProcessStateChangedEvent(event_sp, stream, 684 pop_process_io_handler); 685 686 switch (state) { 687 case eStateCrashed: 688 case eStateDetached: 689 case eStateExited: 690 case eStateUnloaded: 691 // We need to toggle the run lock as this won't get done in 692 // SetPublicState() if the process is hijacked. 693 if (hijack_listener_sp && use_run_lock) 694 m_public_run_lock.SetStopped(); 695 return state; 696 case eStateStopped: 697 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 698 continue; 699 else { 700 // We need to toggle the run lock as this won't get done in 701 // SetPublicState() if the process is hijacked. 702 if (hijack_listener_sp && use_run_lock) 703 m_public_run_lock.SetStopped(); 704 return state; 705 } 706 default: 707 continue; 708 } 709 } 710 return state; 711 } 712 713 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 714 Stream *stream, 715 bool &pop_process_io_handler) { 716 const bool handle_pop = pop_process_io_handler; 717 718 pop_process_io_handler = false; 719 ProcessSP process_sp = 720 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 721 722 if (!process_sp) 723 return false; 724 725 StateType event_state = 726 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 727 if (event_state == eStateInvalid) 728 return false; 729 730 switch (event_state) { 731 case eStateInvalid: 732 case eStateUnloaded: 733 case eStateAttaching: 734 case eStateLaunching: 735 case eStateStepping: 736 case eStateDetached: 737 if (stream) 738 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 739 StateAsCString(event_state)); 740 if (event_state == eStateDetached) 741 pop_process_io_handler = true; 742 break; 743 744 case eStateConnected: 745 case eStateRunning: 746 // Don't be chatty when we run... 747 break; 748 749 case eStateExited: 750 if (stream) 751 process_sp->GetStatus(*stream); 752 pop_process_io_handler = true; 753 break; 754 755 case eStateStopped: 756 case eStateCrashed: 757 case eStateSuspended: 758 // Make sure the program hasn't been auto-restarted: 759 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 760 if (stream) { 761 size_t num_reasons = 762 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 763 if (num_reasons > 0) { 764 // FIXME: Do we want to report this, or would that just be annoyingly 765 // chatty? 766 if (num_reasons == 1) { 767 const char *reason = 768 Process::ProcessEventData::GetRestartedReasonAtIndex( 769 event_sp.get(), 0); 770 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 771 process_sp->GetID(), 772 reason ? reason : "<UNKNOWN REASON>"); 773 } else { 774 stream->Printf("Process %" PRIu64 775 " stopped and restarted, reasons:\n", 776 process_sp->GetID()); 777 778 for (size_t i = 0; i < num_reasons; i++) { 779 const char *reason = 780 Process::ProcessEventData::GetRestartedReasonAtIndex( 781 event_sp.get(), i); 782 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 783 } 784 } 785 } 786 } 787 } else { 788 StopInfoSP curr_thread_stop_info_sp; 789 // Lock the thread list so it doesn't change on us, this is the scope for 790 // the locker: 791 { 792 ThreadList &thread_list = process_sp->GetThreadList(); 793 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 794 795 ThreadSP curr_thread(thread_list.GetSelectedThread()); 796 ThreadSP thread; 797 StopReason curr_thread_stop_reason = eStopReasonInvalid; 798 bool prefer_curr_thread = false; 799 if (curr_thread && curr_thread->IsValid()) { 800 curr_thread_stop_reason = curr_thread->GetStopReason(); 801 switch (curr_thread_stop_reason) { 802 case eStopReasonNone: 803 case eStopReasonInvalid: 804 // Don't prefer the current thread if it didn't stop for a reason. 805 break; 806 case eStopReasonSignal: { 807 // We need to do the same computation we do for other threads 808 // below in case the current thread happens to be the one that 809 // stopped for the no-stop signal. 810 uint64_t signo = curr_thread->GetStopInfo()->GetValue(); 811 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) 812 prefer_curr_thread = true; 813 } break; 814 default: 815 prefer_curr_thread = true; 816 break; 817 } 818 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 819 } 820 821 if (!prefer_curr_thread) { 822 // Prefer a thread that has just completed its plan over another 823 // thread as current thread. 824 ThreadSP plan_thread; 825 ThreadSP other_thread; 826 827 const size_t num_threads = thread_list.GetSize(); 828 size_t i; 829 for (i = 0; i < num_threads; ++i) { 830 thread = thread_list.GetThreadAtIndex(i); 831 StopReason thread_stop_reason = thread->GetStopReason(); 832 switch (thread_stop_reason) { 833 case eStopReasonInvalid: 834 case eStopReasonNone: 835 break; 836 837 case eStopReasonSignal: { 838 // Don't select a signal thread if we weren't going to stop at 839 // that signal. We have to have had another reason for stopping 840 // here, and the user doesn't want to see this thread. 841 uint64_t signo = thread->GetStopInfo()->GetValue(); 842 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 843 if (!other_thread) 844 other_thread = thread; 845 } 846 break; 847 } 848 case eStopReasonTrace: 849 case eStopReasonBreakpoint: 850 case eStopReasonWatchpoint: 851 case eStopReasonException: 852 case eStopReasonExec: 853 case eStopReasonFork: 854 case eStopReasonVFork: 855 case eStopReasonVForkDone: 856 case eStopReasonThreadExiting: 857 case eStopReasonInstrumentation: 858 case eStopReasonProcessorTrace: 859 if (!other_thread) 860 other_thread = thread; 861 break; 862 case eStopReasonPlanComplete: 863 if (!plan_thread) 864 plan_thread = thread; 865 break; 866 } 867 } 868 if (plan_thread) 869 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 870 else if (other_thread) 871 thread_list.SetSelectedThreadByID(other_thread->GetID()); 872 else { 873 if (curr_thread && curr_thread->IsValid()) 874 thread = curr_thread; 875 else 876 thread = thread_list.GetThreadAtIndex(0); 877 878 if (thread) 879 thread_list.SetSelectedThreadByID(thread->GetID()); 880 } 881 } 882 } 883 // Drop the ThreadList mutex by here, since GetThreadStatus below might 884 // have to run code, e.g. for Data formatters, and if we hold the 885 // ThreadList mutex, then the process is going to have a hard time 886 // restarting the process. 887 if (stream) { 888 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 889 if (debugger.GetTargetList().GetSelectedTarget().get() == 890 &process_sp->GetTarget()) { 891 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); 892 893 if (!thread_sp || !thread_sp->IsValid()) 894 return false; 895 896 const bool only_threads_with_stop_reason = true; 897 const uint32_t start_frame = thread_sp->GetSelectedFrameIndex(); 898 const uint32_t num_frames = 1; 899 const uint32_t num_frames_with_source = 1; 900 const bool stop_format = true; 901 902 process_sp->GetStatus(*stream); 903 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 904 start_frame, num_frames, 905 num_frames_with_source, 906 stop_format); 907 if (curr_thread_stop_info_sp) { 908 lldb::addr_t crashing_address; 909 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 910 curr_thread_stop_info_sp, &crashing_address); 911 if (valobj_sp) { 912 const ValueObject::GetExpressionPathFormat format = 913 ValueObject::GetExpressionPathFormat:: 914 eGetExpressionPathFormatHonorPointers; 915 stream->PutCString("Likely cause: "); 916 valobj_sp->GetExpressionPath(*stream, format); 917 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 918 } 919 } 920 } else { 921 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 922 process_sp->GetTarget().shared_from_this()); 923 if (target_idx != UINT32_MAX) 924 stream->Printf("Target %d: (", target_idx); 925 else 926 stream->Printf("Target <unknown index>: ("); 927 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 928 stream->Printf(") stopped.\n"); 929 } 930 } 931 932 // Pop the process IO handler 933 pop_process_io_handler = true; 934 } 935 break; 936 } 937 938 if (handle_pop && pop_process_io_handler) 939 process_sp->PopProcessIOHandler(); 940 941 return true; 942 } 943 944 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 945 if (listener_sp) { 946 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 947 eBroadcastBitInterrupt); 948 } else 949 return false; 950 } 951 952 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 953 954 StateType Process::GetStateChangedEvents(EventSP &event_sp, 955 const Timeout<std::micro> &timeout, 956 ListenerSP hijack_listener_sp) { 957 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 958 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 959 960 ListenerSP listener_sp = hijack_listener_sp; 961 if (!listener_sp) 962 listener_sp = m_listener_sp; 963 964 StateType state = eStateInvalid; 965 if (listener_sp->GetEventForBroadcasterWithType( 966 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 967 timeout)) { 968 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 969 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 970 else 971 LLDB_LOG(log, "got no event or was interrupted."); 972 } 973 974 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 975 return state; 976 } 977 978 Event *Process::PeekAtStateChangedEvents() { 979 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 980 981 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 982 983 Event *event_ptr; 984 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 985 this, eBroadcastBitStateChanged); 986 if (log) { 987 if (event_ptr) { 988 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 989 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 990 } else { 991 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 992 } 993 } 994 return event_ptr; 995 } 996 997 StateType 998 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 999 const Timeout<std::micro> &timeout) { 1000 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1001 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1002 1003 StateType state = eStateInvalid; 1004 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1005 &m_private_state_broadcaster, 1006 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1007 timeout)) 1008 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1009 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1010 1011 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1012 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1013 return state; 1014 } 1015 1016 bool Process::GetEventsPrivate(EventSP &event_sp, 1017 const Timeout<std::micro> &timeout, 1018 bool control_only) { 1019 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1020 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1021 1022 if (control_only) 1023 return m_private_state_listener_sp->GetEventForBroadcaster( 1024 &m_private_state_control_broadcaster, event_sp, timeout); 1025 else 1026 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1027 } 1028 1029 bool Process::IsRunning() const { 1030 return StateIsRunningState(m_public_state.GetValue()); 1031 } 1032 1033 int Process::GetExitStatus() { 1034 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1035 1036 if (m_public_state.GetValue() == eStateExited) 1037 return m_exit_status; 1038 return -1; 1039 } 1040 1041 const char *Process::GetExitDescription() { 1042 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1043 1044 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1045 return m_exit_string.c_str(); 1046 return nullptr; 1047 } 1048 1049 bool Process::SetExitStatus(int status, const char *cstr) { 1050 // Use a mutex to protect setting the exit status. 1051 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1052 1053 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1054 LIBLLDB_LOG_PROCESS)); 1055 LLDB_LOGF( 1056 log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1057 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : ""); 1058 1059 // We were already in the exited state 1060 if (m_private_state.GetValue() == eStateExited) { 1061 LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because " 1062 "state was already set to eStateExited"); 1063 return false; 1064 } 1065 1066 m_exit_status = status; 1067 if (cstr) 1068 m_exit_string = cstr; 1069 else 1070 m_exit_string.clear(); 1071 1072 // Clear the last natural stop ID since it has a strong reference to this 1073 // process 1074 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1075 1076 SetPrivateState(eStateExited); 1077 1078 // Allow subclasses to do some cleanup 1079 DidExit(); 1080 1081 return true; 1082 } 1083 1084 bool Process::IsAlive() { 1085 switch (m_private_state.GetValue()) { 1086 case eStateConnected: 1087 case eStateAttaching: 1088 case eStateLaunching: 1089 case eStateStopped: 1090 case eStateRunning: 1091 case eStateStepping: 1092 case eStateCrashed: 1093 case eStateSuspended: 1094 return true; 1095 default: 1096 return false; 1097 } 1098 } 1099 1100 // This static callback can be used to watch for local child processes on the 1101 // current host. The child process exits, the process will be found in the 1102 // global target list (we want to be completely sure that the 1103 // lldb_private::Process doesn't go away before we can deliver the signal. 1104 bool Process::SetProcessExitStatus( 1105 lldb::pid_t pid, bool exited, 1106 int signo, // Zero for no signal 1107 int exit_status // Exit value of process if signal is zero 1108 ) { 1109 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1110 LLDB_LOGF(log, 1111 "Process::SetProcessExitStatus (pid=%" PRIu64 1112 ", exited=%i, signal=%i, exit_status=%i)\n", 1113 pid, exited, signo, exit_status); 1114 1115 if (exited) { 1116 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1117 if (target_sp) { 1118 ProcessSP process_sp(target_sp->GetProcessSP()); 1119 if (process_sp) { 1120 const char *signal_cstr = nullptr; 1121 if (signo) 1122 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1123 1124 process_sp->SetExitStatus(exit_status, signal_cstr); 1125 } 1126 } 1127 return true; 1128 } 1129 return false; 1130 } 1131 1132 bool Process::UpdateThreadList(ThreadList &old_thread_list, 1133 ThreadList &new_thread_list) { 1134 m_thread_plans.ClearThreadCache(); 1135 return DoUpdateThreadList(old_thread_list, new_thread_list); 1136 } 1137 1138 void Process::UpdateThreadListIfNeeded() { 1139 const uint32_t stop_id = GetStopID(); 1140 if (m_thread_list.GetSize(false) == 0 || 1141 stop_id != m_thread_list.GetStopID()) { 1142 bool clear_unused_threads = true; 1143 const StateType state = GetPrivateState(); 1144 if (StateIsStoppedState(state, true)) { 1145 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1146 m_thread_list.SetStopID(stop_id); 1147 1148 // m_thread_list does have its own mutex, but we need to hold onto the 1149 // mutex between the call to UpdateThreadList(...) and the 1150 // os->UpdateThreadList(...) so it doesn't change on us 1151 ThreadList &old_thread_list = m_thread_list; 1152 ThreadList real_thread_list(this); 1153 ThreadList new_thread_list(this); 1154 // Always update the thread list with the protocol specific thread list, 1155 // but only update if "true" is returned 1156 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1157 // Don't call into the OperatingSystem to update the thread list if we 1158 // are shutting down, since that may call back into the SBAPI's, 1159 // requiring the API lock which is already held by whoever is shutting 1160 // us down, causing a deadlock. 1161 OperatingSystem *os = GetOperatingSystem(); 1162 if (os && !m_destroy_in_process) { 1163 // Clear any old backing threads where memory threads might have been 1164 // backed by actual threads from the lldb_private::Process subclass 1165 size_t num_old_threads = old_thread_list.GetSize(false); 1166 for (size_t i = 0; i < num_old_threads; ++i) 1167 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1168 // See if the OS plugin reports all threads. If it does, then 1169 // it is safe to clear unseen thread's plans here. Otherwise we 1170 // should preserve them in case they show up again: 1171 clear_unused_threads = GetOSPluginReportsAllThreads(); 1172 1173 // Turn off dynamic types to ensure we don't run any expressions. 1174 // Objective-C can run an expression to determine if a SBValue is a 1175 // dynamic type or not and we need to avoid this. OperatingSystem 1176 // plug-ins can't run expressions that require running code... 1177 1178 Target &target = GetTarget(); 1179 const lldb::DynamicValueType saved_prefer_dynamic = 1180 target.GetPreferDynamicValue(); 1181 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1182 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1183 1184 // Now let the OperatingSystem plug-in update the thread list 1185 1186 os->UpdateThreadList( 1187 old_thread_list, // Old list full of threads created by OS plug-in 1188 real_thread_list, // The actual thread list full of threads 1189 // created by each lldb_private::Process 1190 // subclass 1191 new_thread_list); // The new thread list that we will show to the 1192 // user that gets filled in 1193 1194 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1195 target.SetPreferDynamicValue(saved_prefer_dynamic); 1196 } else { 1197 // No OS plug-in, the new thread list is the same as the real thread 1198 // list. 1199 new_thread_list = real_thread_list; 1200 } 1201 1202 m_thread_list_real.Update(real_thread_list); 1203 m_thread_list.Update(new_thread_list); 1204 m_thread_list.SetStopID(stop_id); 1205 1206 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1207 // Clear any extended threads that we may have accumulated previously 1208 m_extended_thread_list.Clear(); 1209 m_extended_thread_stop_id = GetLastNaturalStopID(); 1210 1211 m_queue_list.Clear(); 1212 m_queue_list_stop_id = GetLastNaturalStopID(); 1213 } 1214 } 1215 // Now update the plan stack map. 1216 // If we do have an OS plugin, any absent real threads in the 1217 // m_thread_list have already been removed from the ThreadPlanStackMap. 1218 // So any remaining threads are OS Plugin threads, and those we want to 1219 // preserve in case they show up again. 1220 m_thread_plans.Update(m_thread_list, clear_unused_threads); 1221 } 1222 } 1223 } 1224 1225 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { 1226 return m_thread_plans.Find(tid); 1227 } 1228 1229 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { 1230 return m_thread_plans.PrunePlansForTID(tid); 1231 } 1232 1233 void Process::PruneThreadPlans() { 1234 m_thread_plans.Update(GetThreadList(), true, false); 1235 } 1236 1237 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, 1238 lldb::DescriptionLevel desc_level, 1239 bool internal, bool condense_trivial, 1240 bool skip_unreported_plans) { 1241 return m_thread_plans.DumpPlansForTID( 1242 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); 1243 } 1244 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, 1245 bool internal, bool condense_trivial, 1246 bool skip_unreported_plans) { 1247 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, 1248 skip_unreported_plans); 1249 } 1250 1251 void Process::UpdateQueueListIfNeeded() { 1252 if (m_system_runtime_up) { 1253 if (m_queue_list.GetSize() == 0 || 1254 m_queue_list_stop_id != GetLastNaturalStopID()) { 1255 const StateType state = GetPrivateState(); 1256 if (StateIsStoppedState(state, true)) { 1257 m_system_runtime_up->PopulateQueueList(m_queue_list); 1258 m_queue_list_stop_id = GetLastNaturalStopID(); 1259 } 1260 } 1261 } 1262 } 1263 1264 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1265 OperatingSystem *os = GetOperatingSystem(); 1266 if (os) 1267 return os->CreateThread(tid, context); 1268 return ThreadSP(); 1269 } 1270 1271 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1272 return AssignIndexIDToThread(thread_id); 1273 } 1274 1275 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1276 return (m_thread_id_to_index_id_map.find(thread_id) != 1277 m_thread_id_to_index_id_map.end()); 1278 } 1279 1280 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1281 uint32_t result = 0; 1282 std::map<uint64_t, uint32_t>::iterator iterator = 1283 m_thread_id_to_index_id_map.find(thread_id); 1284 if (iterator == m_thread_id_to_index_id_map.end()) { 1285 result = ++m_thread_index_id; 1286 m_thread_id_to_index_id_map[thread_id] = result; 1287 } else { 1288 result = iterator->second; 1289 } 1290 1291 return result; 1292 } 1293 1294 StateType Process::GetState() { 1295 return m_public_state.GetValue(); 1296 } 1297 1298 void Process::SetPublicState(StateType new_state, bool restarted) { 1299 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1300 if (new_state_is_stopped) { 1301 // This will only set the time if the public stop time has no value, so 1302 // it is ok to call this multiple times. With a public stop we can't look 1303 // at the stop ID because many private stops might have happened, so we 1304 // can't check for a stop ID of zero. This allows the "statistics" command 1305 // to dump the time it takes to reach somewhere in your code, like a 1306 // breakpoint you set. 1307 GetTarget().GetStatistics().SetFirstPublicStopTime(); 1308 } 1309 1310 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1311 LIBLLDB_LOG_PROCESS)); 1312 LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)", 1313 StateAsCString(new_state), restarted); 1314 const StateType old_state = m_public_state.GetValue(); 1315 m_public_state.SetValue(new_state); 1316 1317 // On the transition from Run to Stopped, we unlock the writer end of the run 1318 // lock. The lock gets locked in Resume, which is the public API to tell the 1319 // program to run. 1320 if (!StateChangedIsExternallyHijacked()) { 1321 if (new_state == eStateDetached) { 1322 LLDB_LOGF(log, 1323 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1324 StateAsCString(new_state)); 1325 m_public_run_lock.SetStopped(); 1326 } else { 1327 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1328 if ((old_state_is_stopped != new_state_is_stopped)) { 1329 if (new_state_is_stopped && !restarted) { 1330 LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock", 1331 StateAsCString(new_state)); 1332 m_public_run_lock.SetStopped(); 1333 } 1334 } 1335 } 1336 } 1337 } 1338 1339 Status Process::Resume() { 1340 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1341 LIBLLDB_LOG_PROCESS)); 1342 LLDB_LOGF(log, "Process::Resume -- locking run lock"); 1343 if (!m_public_run_lock.TrySetRunning()) { 1344 Status error("Resume request failed - process still running."); 1345 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1346 return error; 1347 } 1348 Status error = PrivateResume(); 1349 if (!error.Success()) { 1350 // Undo running state change 1351 m_public_run_lock.SetStopped(); 1352 } 1353 return error; 1354 } 1355 1356 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack"; 1357 1358 Status Process::ResumeSynchronous(Stream *stream) { 1359 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1360 LIBLLDB_LOG_PROCESS)); 1361 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1362 if (!m_public_run_lock.TrySetRunning()) { 1363 Status error("Resume request failed - process still running."); 1364 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1365 return error; 1366 } 1367 1368 ListenerSP listener_sp( 1369 Listener::MakeListener(g_resume_sync_name)); 1370 HijackProcessEvents(listener_sp); 1371 1372 Status error = PrivateResume(); 1373 if (error.Success()) { 1374 StateType state = WaitForProcessToStop(llvm::None, nullptr, true, 1375 listener_sp, stream); 1376 const bool must_be_alive = 1377 false; // eStateExited is ok, so this must be false 1378 if (!StateIsStoppedState(state, must_be_alive)) 1379 error.SetErrorStringWithFormat( 1380 "process not in stopped state after synchronous resume: %s", 1381 StateAsCString(state)); 1382 } else { 1383 // Undo running state change 1384 m_public_run_lock.SetStopped(); 1385 } 1386 1387 // Undo the hijacking of process events... 1388 RestoreProcessEvents(); 1389 1390 return error; 1391 } 1392 1393 bool Process::StateChangedIsExternallyHijacked() { 1394 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1395 const char *hijacking_name = GetHijackingListenerName(); 1396 if (hijacking_name && 1397 strcmp(hijacking_name, g_resume_sync_name)) 1398 return true; 1399 } 1400 return false; 1401 } 1402 1403 bool Process::StateChangedIsHijackedForSynchronousResume() { 1404 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1405 const char *hijacking_name = GetHijackingListenerName(); 1406 if (hijacking_name && 1407 strcmp(hijacking_name, g_resume_sync_name) == 0) 1408 return true; 1409 } 1410 return false; 1411 } 1412 1413 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1414 1415 void Process::SetPrivateState(StateType new_state) { 1416 if (m_finalizing) 1417 return; 1418 1419 Log *log(lldb_private::GetLogIfAnyCategoriesSet( 1420 LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_UNWIND)); 1421 bool state_changed = false; 1422 1423 LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state)); 1424 1425 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1426 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1427 1428 const StateType old_state = m_private_state.GetValueNoLock(); 1429 state_changed = old_state != new_state; 1430 1431 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1432 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1433 if (old_state_is_stopped != new_state_is_stopped) { 1434 if (new_state_is_stopped) 1435 m_private_run_lock.SetStopped(); 1436 else 1437 m_private_run_lock.SetRunning(); 1438 } 1439 1440 if (state_changed) { 1441 m_private_state.SetValueNoLock(new_state); 1442 EventSP event_sp( 1443 new Event(eBroadcastBitStateChanged, 1444 new ProcessEventData(shared_from_this(), new_state))); 1445 if (StateIsStoppedState(new_state, false)) { 1446 // Note, this currently assumes that all threads in the list stop when 1447 // the process stops. In the future we will want to support a debugging 1448 // model where some threads continue to run while others are stopped. 1449 // When that happens we will either need a way for the thread list to 1450 // identify which threads are stopping or create a special thread list 1451 // containing only threads which actually stopped. 1452 // 1453 // The process plugin is responsible for managing the actual behavior of 1454 // the threads and should have stopped any threads that are going to stop 1455 // before we get here. 1456 m_thread_list.DidStop(); 1457 1458 if (m_mod_id.BumpStopID() == 0) 1459 GetTarget().GetStatistics().SetFirstPrivateStopTime(); 1460 1461 if (!m_mod_id.IsLastResumeForUserExpression()) 1462 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1463 m_memory_cache.Clear(); 1464 LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u", 1465 StateAsCString(new_state), m_mod_id.GetStopID()); 1466 } 1467 1468 m_private_state_broadcaster.BroadcastEvent(event_sp); 1469 } else { 1470 LLDB_LOGF(log, 1471 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1472 StateAsCString(new_state)); 1473 } 1474 } 1475 1476 void Process::SetRunningUserExpression(bool on) { 1477 m_mod_id.SetRunningUserExpression(on); 1478 } 1479 1480 void Process::SetRunningUtilityFunction(bool on) { 1481 m_mod_id.SetRunningUtilityFunction(on); 1482 } 1483 1484 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1485 1486 const lldb::ABISP &Process::GetABI() { 1487 if (!m_abi_sp) 1488 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1489 return m_abi_sp; 1490 } 1491 1492 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1493 std::vector<LanguageRuntime *> language_runtimes; 1494 1495 if (m_finalizing) 1496 return language_runtimes; 1497 1498 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1499 // Before we pass off a copy of the language runtimes, we must make sure that 1500 // our collection is properly populated. It's possible that some of the 1501 // language runtimes were not loaded yet, either because nobody requested it 1502 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1503 // hadn't been loaded). 1504 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1505 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1506 language_runtimes.emplace_back(runtime); 1507 } 1508 1509 return language_runtimes; 1510 } 1511 1512 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1513 if (m_finalizing) 1514 return nullptr; 1515 1516 LanguageRuntime *runtime = nullptr; 1517 1518 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1519 LanguageRuntimeCollection::iterator pos; 1520 pos = m_language_runtimes.find(language); 1521 if (pos == m_language_runtimes.end() || !pos->second) { 1522 lldb::LanguageRuntimeSP runtime_sp( 1523 LanguageRuntime::FindPlugin(this, language)); 1524 1525 m_language_runtimes[language] = runtime_sp; 1526 runtime = runtime_sp.get(); 1527 } else 1528 runtime = pos->second.get(); 1529 1530 if (runtime) 1531 // It's possible that a language runtime can support multiple LanguageTypes, 1532 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1533 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1534 // primary language type and make sure that our runtime supports it. 1535 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1536 1537 return runtime; 1538 } 1539 1540 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1541 if (m_finalizing) 1542 return false; 1543 1544 if (in_value.IsDynamic()) 1545 return false; 1546 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1547 1548 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1549 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1550 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1551 } 1552 1553 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1554 if (runtime->CouldHaveDynamicValue(in_value)) 1555 return true; 1556 } 1557 1558 return false; 1559 } 1560 1561 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1562 m_dynamic_checkers_up.reset(dynamic_checkers); 1563 } 1564 1565 BreakpointSiteList &Process::GetBreakpointSiteList() { 1566 return m_breakpoint_site_list; 1567 } 1568 1569 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1570 return m_breakpoint_site_list; 1571 } 1572 1573 void Process::DisableAllBreakpointSites() { 1574 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1575 // bp_site->SetEnabled(true); 1576 DisableBreakpointSite(bp_site); 1577 }); 1578 } 1579 1580 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1581 Status error(DisableBreakpointSiteByID(break_id)); 1582 1583 if (error.Success()) 1584 m_breakpoint_site_list.Remove(break_id); 1585 1586 return error; 1587 } 1588 1589 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1590 Status error; 1591 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1592 if (bp_site_sp) { 1593 if (bp_site_sp->IsEnabled()) 1594 error = DisableBreakpointSite(bp_site_sp.get()); 1595 } else { 1596 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1597 break_id); 1598 } 1599 1600 return error; 1601 } 1602 1603 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1604 Status error; 1605 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1606 if (bp_site_sp) { 1607 if (!bp_site_sp->IsEnabled()) 1608 error = EnableBreakpointSite(bp_site_sp.get()); 1609 } else { 1610 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1611 break_id); 1612 } 1613 return error; 1614 } 1615 1616 lldb::break_id_t 1617 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1618 bool use_hardware) { 1619 addr_t load_addr = LLDB_INVALID_ADDRESS; 1620 1621 bool show_error = true; 1622 switch (GetState()) { 1623 case eStateInvalid: 1624 case eStateUnloaded: 1625 case eStateConnected: 1626 case eStateAttaching: 1627 case eStateLaunching: 1628 case eStateDetached: 1629 case eStateExited: 1630 show_error = false; 1631 break; 1632 1633 case eStateStopped: 1634 case eStateRunning: 1635 case eStateStepping: 1636 case eStateCrashed: 1637 case eStateSuspended: 1638 show_error = IsAlive(); 1639 break; 1640 } 1641 1642 // Reset the IsIndirect flag here, in case the location changes from pointing 1643 // to a indirect symbol to a regular symbol. 1644 owner->SetIsIndirect(false); 1645 1646 if (owner->ShouldResolveIndirectFunctions()) { 1647 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1648 if (symbol && symbol->IsIndirect()) { 1649 Status error; 1650 Address symbol_address = symbol->GetAddress(); 1651 load_addr = ResolveIndirectFunction(&symbol_address, error); 1652 if (!error.Success() && show_error) { 1653 GetTarget().GetDebugger().GetErrorStream().Printf( 1654 "warning: failed to resolve indirect function at 0x%" PRIx64 1655 " for breakpoint %i.%i: %s\n", 1656 symbol->GetLoadAddress(&GetTarget()), 1657 owner->GetBreakpoint().GetID(), owner->GetID(), 1658 error.AsCString() ? error.AsCString() : "unknown error"); 1659 return LLDB_INVALID_BREAK_ID; 1660 } 1661 Address resolved_address(load_addr); 1662 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1663 owner->SetIsIndirect(true); 1664 } else 1665 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1666 } else 1667 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1668 1669 if (load_addr != LLDB_INVALID_ADDRESS) { 1670 BreakpointSiteSP bp_site_sp; 1671 1672 // Look up this breakpoint site. If it exists, then add this new owner, 1673 // otherwise create a new breakpoint site and add it. 1674 1675 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1676 1677 if (bp_site_sp) { 1678 bp_site_sp->AddOwner(owner); 1679 owner->SetBreakpointSite(bp_site_sp); 1680 return bp_site_sp->GetID(); 1681 } else { 1682 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1683 load_addr, use_hardware)); 1684 if (bp_site_sp) { 1685 Status error = EnableBreakpointSite(bp_site_sp.get()); 1686 if (error.Success()) { 1687 owner->SetBreakpointSite(bp_site_sp); 1688 return m_breakpoint_site_list.Add(bp_site_sp); 1689 } else { 1690 if (show_error || use_hardware) { 1691 // Report error for setting breakpoint... 1692 GetTarget().GetDebugger().GetErrorStream().Printf( 1693 "warning: failed to set breakpoint site at 0x%" PRIx64 1694 " for breakpoint %i.%i: %s\n", 1695 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1696 error.AsCString() ? error.AsCString() : "unknown error"); 1697 } 1698 } 1699 } 1700 } 1701 } 1702 // We failed to enable the breakpoint 1703 return LLDB_INVALID_BREAK_ID; 1704 } 1705 1706 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1707 lldb::user_id_t owner_loc_id, 1708 BreakpointSiteSP &bp_site_sp) { 1709 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1710 if (num_owners == 0) { 1711 // Don't try to disable the site if we don't have a live process anymore. 1712 if (IsAlive()) 1713 DisableBreakpointSite(bp_site_sp.get()); 1714 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1715 } 1716 } 1717 1718 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1719 uint8_t *buf) const { 1720 size_t bytes_removed = 0; 1721 BreakpointSiteList bp_sites_in_range; 1722 1723 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1724 bp_sites_in_range)) { 1725 bp_sites_in_range.ForEach([bp_addr, size, 1726 buf](BreakpointSite *bp_site) -> void { 1727 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1728 addr_t intersect_addr; 1729 size_t intersect_size; 1730 size_t opcode_offset; 1731 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1732 &intersect_size, &opcode_offset)) { 1733 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1734 assert(bp_addr < intersect_addr + intersect_size && 1735 intersect_addr + intersect_size <= bp_addr + size); 1736 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1737 size_t buf_offset = intersect_addr - bp_addr; 1738 ::memcpy(buf + buf_offset, 1739 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1740 intersect_size); 1741 } 1742 } 1743 }); 1744 } 1745 return bytes_removed; 1746 } 1747 1748 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1749 PlatformSP platform_sp(GetTarget().GetPlatform()); 1750 if (platform_sp) 1751 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1752 return 0; 1753 } 1754 1755 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1756 Status error; 1757 assert(bp_site != nullptr); 1758 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1759 const addr_t bp_addr = bp_site->GetLoadAddress(); 1760 LLDB_LOGF( 1761 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1762 bp_site->GetID(), (uint64_t)bp_addr); 1763 if (bp_site->IsEnabled()) { 1764 LLDB_LOGF( 1765 log, 1766 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1767 " -- already enabled", 1768 bp_site->GetID(), (uint64_t)bp_addr); 1769 return error; 1770 } 1771 1772 if (bp_addr == LLDB_INVALID_ADDRESS) { 1773 error.SetErrorString("BreakpointSite contains an invalid load address."); 1774 return error; 1775 } 1776 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1777 // trap for the breakpoint site 1778 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1779 1780 if (bp_opcode_size == 0) { 1781 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1782 "returned zero, unable to get breakpoint " 1783 "trap for address 0x%" PRIx64, 1784 bp_addr); 1785 } else { 1786 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1787 1788 if (bp_opcode_bytes == nullptr) { 1789 error.SetErrorString( 1790 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1791 return error; 1792 } 1793 1794 // Save the original opcode by reading it 1795 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1796 error) == bp_opcode_size) { 1797 // Write a software breakpoint in place of the original opcode 1798 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1799 bp_opcode_size) { 1800 uint8_t verify_bp_opcode_bytes[64]; 1801 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1802 error) == bp_opcode_size) { 1803 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1804 bp_opcode_size) == 0) { 1805 bp_site->SetEnabled(true); 1806 bp_site->SetType(BreakpointSite::eSoftware); 1807 LLDB_LOGF(log, 1808 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1809 "addr = 0x%" PRIx64 " -- SUCCESS", 1810 bp_site->GetID(), (uint64_t)bp_addr); 1811 } else 1812 error.SetErrorString( 1813 "failed to verify the breakpoint trap in memory."); 1814 } else 1815 error.SetErrorString( 1816 "Unable to read memory to verify breakpoint trap."); 1817 } else 1818 error.SetErrorString("Unable to write breakpoint trap to memory."); 1819 } else 1820 error.SetErrorString("Unable to read memory at breakpoint address."); 1821 } 1822 if (log && error.Fail()) 1823 LLDB_LOGF( 1824 log, 1825 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1826 " -- FAILED: %s", 1827 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1828 return error; 1829 } 1830 1831 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1832 Status error; 1833 assert(bp_site != nullptr); 1834 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1835 addr_t bp_addr = bp_site->GetLoadAddress(); 1836 lldb::user_id_t breakID = bp_site->GetID(); 1837 LLDB_LOGF(log, 1838 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1839 ") addr = 0x%" PRIx64, 1840 breakID, (uint64_t)bp_addr); 1841 1842 if (bp_site->IsHardware()) { 1843 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1844 } else if (bp_site->IsEnabled()) { 1845 const size_t break_op_size = bp_site->GetByteSize(); 1846 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1847 if (break_op_size > 0) { 1848 // Clear a software breakpoint instruction 1849 uint8_t curr_break_op[8]; 1850 assert(break_op_size <= sizeof(curr_break_op)); 1851 bool break_op_found = false; 1852 1853 // Read the breakpoint opcode 1854 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1855 break_op_size) { 1856 bool verify = false; 1857 // Make sure the breakpoint opcode exists at this address 1858 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1859 break_op_found = true; 1860 // We found a valid breakpoint opcode at this address, now restore 1861 // the saved opcode. 1862 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1863 break_op_size, error) == break_op_size) { 1864 verify = true; 1865 } else 1866 error.SetErrorString( 1867 "Memory write failed when restoring original opcode."); 1868 } else { 1869 error.SetErrorString( 1870 "Original breakpoint trap is no longer in memory."); 1871 // Set verify to true and so we can check if the original opcode has 1872 // already been restored 1873 verify = true; 1874 } 1875 1876 if (verify) { 1877 uint8_t verify_opcode[8]; 1878 assert(break_op_size < sizeof(verify_opcode)); 1879 // Verify that our original opcode made it back to the inferior 1880 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1881 break_op_size) { 1882 // compare the memory we just read with the original opcode 1883 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1884 break_op_size) == 0) { 1885 // SUCCESS 1886 bp_site->SetEnabled(false); 1887 LLDB_LOGF(log, 1888 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1889 "addr = 0x%" PRIx64 " -- SUCCESS", 1890 bp_site->GetID(), (uint64_t)bp_addr); 1891 return error; 1892 } else { 1893 if (break_op_found) 1894 error.SetErrorString("Failed to restore original opcode."); 1895 } 1896 } else 1897 error.SetErrorString("Failed to read memory to verify that " 1898 "breakpoint trap was restored."); 1899 } 1900 } else 1901 error.SetErrorString( 1902 "Unable to read memory that should contain the breakpoint trap."); 1903 } 1904 } else { 1905 LLDB_LOGF( 1906 log, 1907 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1908 " -- already disabled", 1909 bp_site->GetID(), (uint64_t)bp_addr); 1910 return error; 1911 } 1912 1913 LLDB_LOGF( 1914 log, 1915 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1916 " -- FAILED: %s", 1917 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1918 return error; 1919 } 1920 1921 // Uncomment to verify memory caching works after making changes to caching 1922 // code 1923 //#define VERIFY_MEMORY_READS 1924 1925 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 1926 error.Clear(); 1927 if (!GetDisableMemoryCache()) { 1928 #if defined(VERIFY_MEMORY_READS) 1929 // Memory caching is enabled, with debug verification 1930 1931 if (buf && size) { 1932 // Uncomment the line below to make sure memory caching is working. 1933 // I ran this through the test suite and got no assertions, so I am 1934 // pretty confident this is working well. If any changes are made to 1935 // memory caching, uncomment the line below and test your changes! 1936 1937 // Verify all memory reads by using the cache first, then redundantly 1938 // reading the same memory from the inferior and comparing to make sure 1939 // everything is exactly the same. 1940 std::string verify_buf(size, '\0'); 1941 assert(verify_buf.size() == size); 1942 const size_t cache_bytes_read = 1943 m_memory_cache.Read(this, addr, buf, size, error); 1944 Status verify_error; 1945 const size_t verify_bytes_read = 1946 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 1947 verify_buf.size(), verify_error); 1948 assert(cache_bytes_read == verify_bytes_read); 1949 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 1950 assert(verify_error.Success() == error.Success()); 1951 return cache_bytes_read; 1952 } 1953 return 0; 1954 #else // !defined(VERIFY_MEMORY_READS) 1955 // Memory caching is enabled, without debug verification 1956 1957 return m_memory_cache.Read(addr, buf, size, error); 1958 #endif // defined (VERIFY_MEMORY_READS) 1959 } else { 1960 // Memory caching is disabled 1961 1962 return ReadMemoryFromInferior(addr, buf, size, error); 1963 } 1964 } 1965 1966 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 1967 Status &error) { 1968 char buf[256]; 1969 out_str.clear(); 1970 addr_t curr_addr = addr; 1971 while (true) { 1972 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 1973 if (length == 0) 1974 break; 1975 out_str.append(buf, length); 1976 // If we got "length - 1" bytes, we didn't get the whole C string, we need 1977 // to read some more characters 1978 if (length == sizeof(buf) - 1) 1979 curr_addr += length; 1980 else 1981 break; 1982 } 1983 return out_str.size(); 1984 } 1985 1986 // Deprecated in favor of ReadStringFromMemory which has wchar support and 1987 // correct code to find null terminators. 1988 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 1989 size_t dst_max_len, 1990 Status &result_error) { 1991 size_t total_cstr_len = 0; 1992 if (dst && dst_max_len) { 1993 result_error.Clear(); 1994 // NULL out everything just to be safe 1995 memset(dst, 0, dst_max_len); 1996 Status error; 1997 addr_t curr_addr = addr; 1998 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 1999 size_t bytes_left = dst_max_len - 1; 2000 char *curr_dst = dst; 2001 2002 while (bytes_left > 0) { 2003 addr_t cache_line_bytes_left = 2004 cache_line_size - (curr_addr % cache_line_size); 2005 addr_t bytes_to_read = 2006 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2007 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2008 2009 if (bytes_read == 0) { 2010 result_error = error; 2011 dst[total_cstr_len] = '\0'; 2012 break; 2013 } 2014 const size_t len = strlen(curr_dst); 2015 2016 total_cstr_len += len; 2017 2018 if (len < bytes_to_read) 2019 break; 2020 2021 curr_dst += bytes_read; 2022 curr_addr += bytes_read; 2023 bytes_left -= bytes_read; 2024 } 2025 } else { 2026 if (dst == nullptr) 2027 result_error.SetErrorString("invalid arguments"); 2028 else 2029 result_error.Clear(); 2030 } 2031 return total_cstr_len; 2032 } 2033 2034 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2035 Status &error) { 2036 LLDB_SCOPED_TIMER(); 2037 2038 if (buf == nullptr || size == 0) 2039 return 0; 2040 2041 size_t bytes_read = 0; 2042 uint8_t *bytes = (uint8_t *)buf; 2043 2044 while (bytes_read < size) { 2045 const size_t curr_size = size - bytes_read; 2046 const size_t curr_bytes_read = 2047 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2048 bytes_read += curr_bytes_read; 2049 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2050 break; 2051 } 2052 2053 // Replace any software breakpoint opcodes that fall into this range back 2054 // into "buf" before we return 2055 if (bytes_read > 0) 2056 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2057 return bytes_read; 2058 } 2059 2060 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2061 size_t integer_byte_size, 2062 uint64_t fail_value, 2063 Status &error) { 2064 Scalar scalar; 2065 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2066 error)) 2067 return scalar.ULongLong(fail_value); 2068 return fail_value; 2069 } 2070 2071 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2072 size_t integer_byte_size, 2073 int64_t fail_value, 2074 Status &error) { 2075 Scalar scalar; 2076 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2077 error)) 2078 return scalar.SLongLong(fail_value); 2079 return fail_value; 2080 } 2081 2082 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2083 Scalar scalar; 2084 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2085 error)) 2086 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2087 return LLDB_INVALID_ADDRESS; 2088 } 2089 2090 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2091 Status &error) { 2092 Scalar scalar; 2093 const uint32_t addr_byte_size = GetAddressByteSize(); 2094 if (addr_byte_size <= 4) 2095 scalar = (uint32_t)ptr_value; 2096 else 2097 scalar = ptr_value; 2098 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2099 addr_byte_size; 2100 } 2101 2102 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2103 Status &error) { 2104 size_t bytes_written = 0; 2105 const uint8_t *bytes = (const uint8_t *)buf; 2106 2107 while (bytes_written < size) { 2108 const size_t curr_size = size - bytes_written; 2109 const size_t curr_bytes_written = DoWriteMemory( 2110 addr + bytes_written, bytes + bytes_written, curr_size, error); 2111 bytes_written += curr_bytes_written; 2112 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2113 break; 2114 } 2115 return bytes_written; 2116 } 2117 2118 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2119 Status &error) { 2120 #if defined(ENABLE_MEMORY_CACHING) 2121 m_memory_cache.Flush(addr, size); 2122 #endif 2123 2124 if (buf == nullptr || size == 0) 2125 return 0; 2126 2127 m_mod_id.BumpMemoryID(); 2128 2129 // We need to write any data that would go where any current software traps 2130 // (enabled software breakpoints) any software traps (breakpoints) that we 2131 // may have placed in our tasks memory. 2132 2133 BreakpointSiteList bp_sites_in_range; 2134 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2135 return WriteMemoryPrivate(addr, buf, size, error); 2136 2137 // No breakpoint sites overlap 2138 if (bp_sites_in_range.IsEmpty()) 2139 return WriteMemoryPrivate(addr, buf, size, error); 2140 2141 const uint8_t *ubuf = (const uint8_t *)buf; 2142 uint64_t bytes_written = 0; 2143 2144 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2145 &error](BreakpointSite *bp) -> void { 2146 if (error.Fail()) 2147 return; 2148 2149 if (bp->GetType() != BreakpointSite::eSoftware) 2150 return; 2151 2152 addr_t intersect_addr; 2153 size_t intersect_size; 2154 size_t opcode_offset; 2155 const bool intersects = bp->IntersectsRange( 2156 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2157 UNUSED_IF_ASSERT_DISABLED(intersects); 2158 assert(intersects); 2159 assert(addr <= intersect_addr && intersect_addr < addr + size); 2160 assert(addr < intersect_addr + intersect_size && 2161 intersect_addr + intersect_size <= addr + size); 2162 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2163 2164 // Check for bytes before this breakpoint 2165 const addr_t curr_addr = addr + bytes_written; 2166 if (intersect_addr > curr_addr) { 2167 // There are some bytes before this breakpoint that we need to just 2168 // write to memory 2169 size_t curr_size = intersect_addr - curr_addr; 2170 size_t curr_bytes_written = 2171 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2172 bytes_written += curr_bytes_written; 2173 if (curr_bytes_written != curr_size) { 2174 // We weren't able to write all of the requested bytes, we are 2175 // done looping and will return the number of bytes that we have 2176 // written so far. 2177 if (error.Success()) 2178 error.SetErrorToGenericError(); 2179 } 2180 } 2181 // Now write any bytes that would cover up any software breakpoints 2182 // directly into the breakpoint opcode buffer 2183 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2184 intersect_size); 2185 bytes_written += intersect_size; 2186 }); 2187 2188 // Write any remaining bytes after the last breakpoint if we have any left 2189 if (bytes_written < size) 2190 bytes_written += 2191 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2192 size - bytes_written, error); 2193 2194 return bytes_written; 2195 } 2196 2197 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2198 size_t byte_size, Status &error) { 2199 if (byte_size == UINT32_MAX) 2200 byte_size = scalar.GetByteSize(); 2201 if (byte_size > 0) { 2202 uint8_t buf[32]; 2203 const size_t mem_size = 2204 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2205 if (mem_size > 0) 2206 return WriteMemory(addr, buf, mem_size, error); 2207 else 2208 error.SetErrorString("failed to get scalar as memory data"); 2209 } else { 2210 error.SetErrorString("invalid scalar value"); 2211 } 2212 return 0; 2213 } 2214 2215 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2216 bool is_signed, Scalar &scalar, 2217 Status &error) { 2218 uint64_t uval = 0; 2219 if (byte_size == 0) { 2220 error.SetErrorString("byte size is zero"); 2221 } else if (byte_size & (byte_size - 1)) { 2222 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2223 byte_size); 2224 } else if (byte_size <= sizeof(uval)) { 2225 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2226 if (bytes_read == byte_size) { 2227 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2228 GetAddressByteSize()); 2229 lldb::offset_t offset = 0; 2230 if (byte_size <= 4) 2231 scalar = data.GetMaxU32(&offset, byte_size); 2232 else 2233 scalar = data.GetMaxU64(&offset, byte_size); 2234 if (is_signed) 2235 scalar.SignExtend(byte_size * 8); 2236 return bytes_read; 2237 } 2238 } else { 2239 error.SetErrorStringWithFormat( 2240 "byte size of %u is too large for integer scalar type", byte_size); 2241 } 2242 return 0; 2243 } 2244 2245 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2246 Status error; 2247 for (const auto &Entry : entries) { 2248 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2249 error); 2250 if (!error.Success()) 2251 break; 2252 } 2253 return error; 2254 } 2255 2256 #define USE_ALLOCATE_MEMORY_CACHE 1 2257 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2258 Status &error) { 2259 if (GetPrivateState() != eStateStopped) { 2260 error.SetErrorToGenericError(); 2261 return LLDB_INVALID_ADDRESS; 2262 } 2263 2264 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2265 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2266 #else 2267 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2268 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2269 LLDB_LOGF(log, 2270 "Process::AllocateMemory(size=%" PRIu64 2271 ", permissions=%s) => 0x%16.16" PRIx64 2272 " (m_stop_id = %u m_memory_id = %u)", 2273 (uint64_t)size, GetPermissionsAsCString(permissions), 2274 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2275 m_mod_id.GetMemoryID()); 2276 return allocated_addr; 2277 #endif 2278 } 2279 2280 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2281 Status &error) { 2282 addr_t return_addr = AllocateMemory(size, permissions, error); 2283 if (error.Success()) { 2284 std::string buffer(size, 0); 2285 WriteMemory(return_addr, buffer.c_str(), size, error); 2286 } 2287 return return_addr; 2288 } 2289 2290 bool Process::CanJIT() { 2291 if (m_can_jit == eCanJITDontKnow) { 2292 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2293 Status err; 2294 2295 uint64_t allocated_memory = AllocateMemory( 2296 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2297 err); 2298 2299 if (err.Success()) { 2300 m_can_jit = eCanJITYes; 2301 LLDB_LOGF(log, 2302 "Process::%s pid %" PRIu64 2303 " allocation test passed, CanJIT () is true", 2304 __FUNCTION__, GetID()); 2305 } else { 2306 m_can_jit = eCanJITNo; 2307 LLDB_LOGF(log, 2308 "Process::%s pid %" PRIu64 2309 " allocation test failed, CanJIT () is false: %s", 2310 __FUNCTION__, GetID(), err.AsCString()); 2311 } 2312 2313 DeallocateMemory(allocated_memory); 2314 } 2315 2316 return m_can_jit == eCanJITYes; 2317 } 2318 2319 void Process::SetCanJIT(bool can_jit) { 2320 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2321 } 2322 2323 void Process::SetCanRunCode(bool can_run_code) { 2324 SetCanJIT(can_run_code); 2325 m_can_interpret_function_calls = can_run_code; 2326 } 2327 2328 Status Process::DeallocateMemory(addr_t ptr) { 2329 Status error; 2330 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2331 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2332 error.SetErrorStringWithFormat( 2333 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2334 } 2335 #else 2336 error = DoDeallocateMemory(ptr); 2337 2338 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2339 LLDB_LOGF(log, 2340 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2341 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2342 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2343 m_mod_id.GetMemoryID()); 2344 #endif 2345 return error; 2346 } 2347 2348 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2349 lldb::addr_t header_addr, 2350 size_t size_to_read) { 2351 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2352 if (log) { 2353 LLDB_LOGF(log, 2354 "Process::ReadModuleFromMemory reading %s binary from memory", 2355 file_spec.GetPath().c_str()); 2356 } 2357 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2358 if (module_sp) { 2359 Status error; 2360 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2361 shared_from_this(), header_addr, error, size_to_read); 2362 if (objfile) 2363 return module_sp; 2364 } 2365 return ModuleSP(); 2366 } 2367 2368 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2369 uint32_t &permissions) { 2370 MemoryRegionInfo range_info; 2371 permissions = 0; 2372 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2373 if (!error.Success()) 2374 return false; 2375 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2376 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2377 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2378 return false; 2379 } 2380 2381 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2382 permissions |= lldb::ePermissionsReadable; 2383 2384 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2385 permissions |= lldb::ePermissionsWritable; 2386 2387 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2388 permissions |= lldb::ePermissionsExecutable; 2389 2390 return true; 2391 } 2392 2393 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2394 Status error; 2395 error.SetErrorString("watchpoints are not supported"); 2396 return error; 2397 } 2398 2399 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2400 Status error; 2401 error.SetErrorString("watchpoints are not supported"); 2402 return error; 2403 } 2404 2405 StateType 2406 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2407 const Timeout<std::micro> &timeout) { 2408 StateType state; 2409 2410 while (true) { 2411 event_sp.reset(); 2412 state = GetStateChangedEventsPrivate(event_sp, timeout); 2413 2414 if (StateIsStoppedState(state, false)) 2415 break; 2416 2417 // If state is invalid, then we timed out 2418 if (state == eStateInvalid) 2419 break; 2420 2421 if (event_sp) 2422 HandlePrivateEvent(event_sp); 2423 } 2424 return state; 2425 } 2426 2427 void Process::LoadOperatingSystemPlugin(bool flush) { 2428 if (flush) 2429 m_thread_list.Clear(); 2430 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2431 if (flush) 2432 Flush(); 2433 } 2434 2435 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2436 Status error; 2437 m_abi_sp.reset(); 2438 m_dyld_up.reset(); 2439 m_jit_loaders_up.reset(); 2440 m_system_runtime_up.reset(); 2441 m_os_up.reset(); 2442 m_process_input_reader.reset(); 2443 2444 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2445 2446 // The "remote executable path" is hooked up to the local Executable 2447 // module. But we should be able to debug a remote process even if the 2448 // executable module only exists on the remote. However, there needs to 2449 // be a way to express this path, without actually having a module. 2450 // The way to do that is to set the ExecutableFile in the LaunchInfo. 2451 // Figure that out here: 2452 2453 FileSpec exe_spec_to_use; 2454 if (!exe_module) { 2455 if (!launch_info.GetExecutableFile()) { 2456 error.SetErrorString("executable module does not exist"); 2457 return error; 2458 } 2459 exe_spec_to_use = launch_info.GetExecutableFile(); 2460 } else 2461 exe_spec_to_use = exe_module->GetFileSpec(); 2462 2463 if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2464 // Install anything that might need to be installed prior to launching. 2465 // For host systems, this will do nothing, but if we are connected to a 2466 // remote platform it will install any needed binaries 2467 error = GetTarget().Install(&launch_info); 2468 if (error.Fail()) 2469 return error; 2470 } 2471 // Listen and queue events that are broadcasted during the process launch. 2472 ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack")); 2473 HijackProcessEvents(listener_sp); 2474 auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); }); 2475 2476 if (PrivateStateThreadIsValid()) 2477 PausePrivateStateThread(); 2478 2479 error = WillLaunch(exe_module); 2480 if (error.Success()) { 2481 const bool restarted = false; 2482 SetPublicState(eStateLaunching, restarted); 2483 m_should_detach = false; 2484 2485 if (m_public_run_lock.TrySetRunning()) { 2486 // Now launch using these arguments. 2487 error = DoLaunch(exe_module, launch_info); 2488 } else { 2489 // This shouldn't happen 2490 error.SetErrorString("failed to acquire process run lock"); 2491 } 2492 2493 if (error.Fail()) { 2494 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2495 SetID(LLDB_INVALID_PROCESS_ID); 2496 const char *error_string = error.AsCString(); 2497 if (error_string == nullptr) 2498 error_string = "launch failed"; 2499 SetExitStatus(-1, error_string); 2500 } 2501 } else { 2502 EventSP event_sp; 2503 2504 // Now wait for the process to launch and return control to us, and then 2505 // call DidLaunch: 2506 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2507 2508 if (state == eStateInvalid || !event_sp) { 2509 // We were able to launch the process, but we failed to catch the 2510 // initial stop. 2511 error.SetErrorString("failed to catch stop after launch"); 2512 SetExitStatus(0, "failed to catch stop after launch"); 2513 Destroy(false); 2514 } else if (state == eStateStopped || state == eStateCrashed) { 2515 DidLaunch(); 2516 2517 DynamicLoader *dyld = GetDynamicLoader(); 2518 if (dyld) 2519 dyld->DidLaunch(); 2520 2521 GetJITLoaders().DidLaunch(); 2522 2523 SystemRuntime *system_runtime = GetSystemRuntime(); 2524 if (system_runtime) 2525 system_runtime->DidLaunch(); 2526 2527 if (!m_os_up) 2528 LoadOperatingSystemPlugin(false); 2529 2530 // We successfully launched the process and stopped, now it the 2531 // right time to set up signal filters before resuming. 2532 UpdateAutomaticSignalFiltering(); 2533 2534 // Note, the stop event was consumed above, but not handled. This 2535 // was done to give DidLaunch a chance to run. The target is either 2536 // stopped or crashed. Directly set the state. This is done to 2537 // prevent a stop message with a bunch of spurious output on thread 2538 // status, as well as not pop a ProcessIOHandler. 2539 // We are done with the launch hijack listener, and this stop should 2540 // go to the public state listener: 2541 RestoreProcessEvents(); 2542 SetPublicState(state, false); 2543 2544 if (PrivateStateThreadIsValid()) 2545 ResumePrivateStateThread(); 2546 else 2547 StartPrivateStateThread(); 2548 2549 // Target was stopped at entry as was intended. Need to notify the 2550 // listeners about it. 2551 if (state == eStateStopped && 2552 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2553 HandlePrivateEvent(event_sp); 2554 } else if (state == eStateExited) { 2555 // We exited while trying to launch somehow. Don't call DidLaunch 2556 // as that's not likely to work, and return an invalid pid. 2557 HandlePrivateEvent(event_sp); 2558 } 2559 } 2560 } else { 2561 std::string local_exec_file_path = exe_spec_to_use.GetPath(); 2562 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2563 local_exec_file_path.c_str()); 2564 } 2565 2566 return error; 2567 } 2568 2569 Status Process::LoadCore() { 2570 Status error = DoLoadCore(); 2571 if (error.Success()) { 2572 ListenerSP listener_sp( 2573 Listener::MakeListener("lldb.process.load_core_listener")); 2574 HijackProcessEvents(listener_sp); 2575 2576 if (PrivateStateThreadIsValid()) 2577 ResumePrivateStateThread(); 2578 else 2579 StartPrivateStateThread(); 2580 2581 DynamicLoader *dyld = GetDynamicLoader(); 2582 if (dyld) 2583 dyld->DidAttach(); 2584 2585 GetJITLoaders().DidAttach(); 2586 2587 SystemRuntime *system_runtime = GetSystemRuntime(); 2588 if (system_runtime) 2589 system_runtime->DidAttach(); 2590 2591 if (!m_os_up) 2592 LoadOperatingSystemPlugin(false); 2593 2594 // We successfully loaded a core file, now pretend we stopped so we can 2595 // show all of the threads in the core file and explore the crashed state. 2596 SetPrivateState(eStateStopped); 2597 2598 // Wait for a stopped event since we just posted one above... 2599 lldb::EventSP event_sp; 2600 StateType state = 2601 WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp); 2602 2603 if (!StateIsStoppedState(state, false)) { 2604 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2605 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2606 StateAsCString(state)); 2607 error.SetErrorString( 2608 "Did not get stopped event after loading the core file."); 2609 } 2610 RestoreProcessEvents(); 2611 } 2612 return error; 2613 } 2614 2615 DynamicLoader *Process::GetDynamicLoader() { 2616 if (!m_dyld_up) 2617 m_dyld_up.reset(DynamicLoader::FindPlugin(this, "")); 2618 return m_dyld_up.get(); 2619 } 2620 2621 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2622 2623 llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) { 2624 return false; 2625 } 2626 2627 JITLoaderList &Process::GetJITLoaders() { 2628 if (!m_jit_loaders_up) { 2629 m_jit_loaders_up = std::make_unique<JITLoaderList>(); 2630 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2631 } 2632 return *m_jit_loaders_up; 2633 } 2634 2635 SystemRuntime *Process::GetSystemRuntime() { 2636 if (!m_system_runtime_up) 2637 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2638 return m_system_runtime_up.get(); 2639 } 2640 2641 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2642 uint32_t exec_count) 2643 : NextEventAction(process), m_exec_count(exec_count) { 2644 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2645 LLDB_LOGF( 2646 log, 2647 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2648 __FUNCTION__, static_cast<void *>(process), exec_count); 2649 } 2650 2651 Process::NextEventAction::EventActionResult 2652 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2653 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2654 2655 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2656 LLDB_LOGF(log, 2657 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2658 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2659 2660 switch (state) { 2661 case eStateAttaching: 2662 return eEventActionSuccess; 2663 2664 case eStateRunning: 2665 case eStateConnected: 2666 return eEventActionRetry; 2667 2668 case eStateStopped: 2669 case eStateCrashed: 2670 // During attach, prior to sending the eStateStopped event, 2671 // lldb_private::Process subclasses must set the new process ID. 2672 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2673 // We don't want these events to be reported, so go set the 2674 // ShouldReportStop here: 2675 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2676 2677 if (m_exec_count > 0) { 2678 --m_exec_count; 2679 2680 LLDB_LOGF(log, 2681 "Process::AttachCompletionHandler::%s state %s: reduced " 2682 "remaining exec count to %" PRIu32 ", requesting resume", 2683 __FUNCTION__, StateAsCString(state), m_exec_count); 2684 2685 RequestResume(); 2686 return eEventActionRetry; 2687 } else { 2688 LLDB_LOGF(log, 2689 "Process::AttachCompletionHandler::%s state %s: no more " 2690 "execs expected to start, continuing with attach", 2691 __FUNCTION__, StateAsCString(state)); 2692 2693 m_process->CompleteAttach(); 2694 return eEventActionSuccess; 2695 } 2696 break; 2697 2698 default: 2699 case eStateExited: 2700 case eStateInvalid: 2701 break; 2702 } 2703 2704 m_exit_string.assign("No valid Process"); 2705 return eEventActionExit; 2706 } 2707 2708 Process::NextEventAction::EventActionResult 2709 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2710 return eEventActionSuccess; 2711 } 2712 2713 const char *Process::AttachCompletionHandler::GetExitString() { 2714 return m_exit_string.c_str(); 2715 } 2716 2717 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2718 if (m_listener_sp) 2719 return m_listener_sp; 2720 else 2721 return debugger.GetListener(); 2722 } 2723 2724 Status Process::Attach(ProcessAttachInfo &attach_info) { 2725 m_abi_sp.reset(); 2726 m_process_input_reader.reset(); 2727 m_dyld_up.reset(); 2728 m_jit_loaders_up.reset(); 2729 m_system_runtime_up.reset(); 2730 m_os_up.reset(); 2731 2732 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2733 Status error; 2734 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2735 char process_name[PATH_MAX]; 2736 2737 if (attach_info.GetExecutableFile().GetPath(process_name, 2738 sizeof(process_name))) { 2739 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2740 2741 if (wait_for_launch) { 2742 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2743 if (error.Success()) { 2744 if (m_public_run_lock.TrySetRunning()) { 2745 m_should_detach = true; 2746 const bool restarted = false; 2747 SetPublicState(eStateAttaching, restarted); 2748 // Now attach using these arguments. 2749 error = DoAttachToProcessWithName(process_name, attach_info); 2750 } else { 2751 // This shouldn't happen 2752 error.SetErrorString("failed to acquire process run lock"); 2753 } 2754 2755 if (error.Fail()) { 2756 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2757 SetID(LLDB_INVALID_PROCESS_ID); 2758 if (error.AsCString() == nullptr) 2759 error.SetErrorString("attach failed"); 2760 2761 SetExitStatus(-1, error.AsCString()); 2762 } 2763 } else { 2764 SetNextEventAction(new Process::AttachCompletionHandler( 2765 this, attach_info.GetResumeCount())); 2766 StartPrivateStateThread(); 2767 } 2768 return error; 2769 } 2770 } else { 2771 ProcessInstanceInfoList process_infos; 2772 PlatformSP platform_sp(GetTarget().GetPlatform()); 2773 2774 if (platform_sp) { 2775 ProcessInstanceInfoMatch match_info; 2776 match_info.GetProcessInfo() = attach_info; 2777 match_info.SetNameMatchType(NameMatch::Equals); 2778 platform_sp->FindProcesses(match_info, process_infos); 2779 const uint32_t num_matches = process_infos.size(); 2780 if (num_matches == 1) { 2781 attach_pid = process_infos[0].GetProcessID(); 2782 // Fall through and attach using the above process ID 2783 } else { 2784 match_info.GetProcessInfo().GetExecutableFile().GetPath( 2785 process_name, sizeof(process_name)); 2786 if (num_matches > 1) { 2787 StreamString s; 2788 ProcessInstanceInfo::DumpTableHeader(s, true, false); 2789 for (size_t i = 0; i < num_matches; i++) { 2790 process_infos[i].DumpAsTableRow( 2791 s, platform_sp->GetUserIDResolver(), true, false); 2792 } 2793 error.SetErrorStringWithFormat( 2794 "more than one process named %s:\n%s", process_name, 2795 s.GetData()); 2796 } else 2797 error.SetErrorStringWithFormat( 2798 "could not find a process named %s", process_name); 2799 } 2800 } else { 2801 error.SetErrorString( 2802 "invalid platform, can't find processes by name"); 2803 return error; 2804 } 2805 } 2806 } else { 2807 error.SetErrorString("invalid process name"); 2808 } 2809 } 2810 2811 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 2812 error = WillAttachToProcessWithID(attach_pid); 2813 if (error.Success()) { 2814 2815 if (m_public_run_lock.TrySetRunning()) { 2816 // Now attach using these arguments. 2817 m_should_detach = true; 2818 const bool restarted = false; 2819 SetPublicState(eStateAttaching, restarted); 2820 error = DoAttachToProcessWithID(attach_pid, attach_info); 2821 } else { 2822 // This shouldn't happen 2823 error.SetErrorString("failed to acquire process run lock"); 2824 } 2825 2826 if (error.Success()) { 2827 SetNextEventAction(new Process::AttachCompletionHandler( 2828 this, attach_info.GetResumeCount())); 2829 StartPrivateStateThread(); 2830 } else { 2831 if (GetID() != LLDB_INVALID_PROCESS_ID) 2832 SetID(LLDB_INVALID_PROCESS_ID); 2833 2834 const char *error_string = error.AsCString(); 2835 if (error_string == nullptr) 2836 error_string = "attach failed"; 2837 2838 SetExitStatus(-1, error_string); 2839 } 2840 } 2841 } 2842 return error; 2843 } 2844 2845 void Process::CompleteAttach() { 2846 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 2847 LIBLLDB_LOG_TARGET)); 2848 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 2849 2850 // Let the process subclass figure out at much as it can about the process 2851 // before we go looking for a dynamic loader plug-in. 2852 ArchSpec process_arch; 2853 DidAttach(process_arch); 2854 2855 if (process_arch.IsValid()) { 2856 GetTarget().SetArchitecture(process_arch); 2857 if (log) { 2858 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 2859 LLDB_LOGF(log, 2860 "Process::%s replacing process architecture with DidAttach() " 2861 "architecture: %s", 2862 __FUNCTION__, triple_str ? triple_str : "<null>"); 2863 } 2864 } 2865 2866 // We just attached. If we have a platform, ask it for the process 2867 // architecture, and if it isn't the same as the one we've already set, 2868 // switch architectures. 2869 PlatformSP platform_sp(GetTarget().GetPlatform()); 2870 assert(platform_sp); 2871 if (platform_sp) { 2872 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2873 if (target_arch.IsValid() && 2874 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 2875 ArchSpec platform_arch; 2876 platform_sp = 2877 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 2878 if (platform_sp) { 2879 GetTarget().SetPlatform(platform_sp); 2880 GetTarget().SetArchitecture(platform_arch); 2881 LLDB_LOGF(log, 2882 "Process::%s switching platform to %s and architecture " 2883 "to %s based on info from attach", 2884 __FUNCTION__, platform_sp->GetName().AsCString(""), 2885 platform_arch.GetTriple().getTriple().c_str()); 2886 } 2887 } else if (!process_arch.IsValid()) { 2888 ProcessInstanceInfo process_info; 2889 GetProcessInfo(process_info); 2890 const ArchSpec &process_arch = process_info.GetArchitecture(); 2891 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2892 if (process_arch.IsValid() && 2893 target_arch.IsCompatibleMatch(process_arch) && 2894 !target_arch.IsExactMatch(process_arch)) { 2895 GetTarget().SetArchitecture(process_arch); 2896 LLDB_LOGF(log, 2897 "Process::%s switching architecture to %s based on info " 2898 "the platform retrieved for pid %" PRIu64, 2899 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 2900 GetID()); 2901 } 2902 } 2903 } 2904 2905 // We have completed the attach, now it is time to find the dynamic loader 2906 // plug-in 2907 DynamicLoader *dyld = GetDynamicLoader(); 2908 if (dyld) { 2909 dyld->DidAttach(); 2910 if (log) { 2911 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2912 LLDB_LOG(log, 2913 "after DynamicLoader::DidAttach(), target " 2914 "executable is {0} (using {1} plugin)", 2915 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), 2916 dyld->GetPluginName()); 2917 } 2918 } 2919 2920 GetJITLoaders().DidAttach(); 2921 2922 SystemRuntime *system_runtime = GetSystemRuntime(); 2923 if (system_runtime) { 2924 system_runtime->DidAttach(); 2925 if (log) { 2926 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2927 LLDB_LOG(log, 2928 "after SystemRuntime::DidAttach(), target " 2929 "executable is {0} (using {1} plugin)", 2930 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), 2931 system_runtime->GetPluginName()); 2932 } 2933 } 2934 2935 if (!m_os_up) { 2936 LoadOperatingSystemPlugin(false); 2937 if (m_os_up) { 2938 // Somebody might have gotten threads before now, but we need to force the 2939 // update after we've loaded the OperatingSystem plugin or it won't get a 2940 // chance to process the threads. 2941 m_thread_list.Clear(); 2942 UpdateThreadListIfNeeded(); 2943 } 2944 } 2945 // Figure out which one is the executable, and set that in our target: 2946 ModuleSP new_executable_module_sp; 2947 for (ModuleSP module_sp : GetTarget().GetImages().Modules()) { 2948 if (module_sp && module_sp->IsExecutable()) { 2949 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 2950 new_executable_module_sp = module_sp; 2951 break; 2952 } 2953 } 2954 if (new_executable_module_sp) { 2955 GetTarget().SetExecutableModule(new_executable_module_sp, 2956 eLoadDependentsNo); 2957 if (log) { 2958 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2959 LLDB_LOGF( 2960 log, 2961 "Process::%s after looping through modules, target executable is %s", 2962 __FUNCTION__, 2963 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2964 : "<none>"); 2965 } 2966 } 2967 } 2968 2969 Status Process::ConnectRemote(llvm::StringRef remote_url) { 2970 m_abi_sp.reset(); 2971 m_process_input_reader.reset(); 2972 2973 // Find the process and its architecture. Make sure it matches the 2974 // architecture of the current Target, and if not adjust it. 2975 2976 Status error(DoConnectRemote(remote_url)); 2977 if (error.Success()) { 2978 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2979 EventSP event_sp; 2980 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 2981 2982 if (state == eStateStopped || state == eStateCrashed) { 2983 // If we attached and actually have a process on the other end, then 2984 // this ended up being the equivalent of an attach. 2985 CompleteAttach(); 2986 2987 // This delays passing the stopped event to listeners till 2988 // CompleteAttach gets a chance to complete... 2989 HandlePrivateEvent(event_sp); 2990 } 2991 } 2992 2993 if (PrivateStateThreadIsValid()) 2994 ResumePrivateStateThread(); 2995 else 2996 StartPrivateStateThread(); 2997 } 2998 return error; 2999 } 3000 3001 Status Process::PrivateResume() { 3002 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3003 LIBLLDB_LOG_STEP)); 3004 LLDB_LOGF(log, 3005 "Process::PrivateResume() m_stop_id = %u, public state: %s " 3006 "private state: %s", 3007 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3008 StateAsCString(m_private_state.GetValue())); 3009 3010 // If signals handing status changed we might want to update our signal 3011 // filters before resuming. 3012 UpdateAutomaticSignalFiltering(); 3013 3014 Status error(WillResume()); 3015 // Tell the process it is about to resume before the thread list 3016 if (error.Success()) { 3017 // Now let the thread list know we are about to resume so it can let all of 3018 // our threads know that they are about to be resumed. Threads will each be 3019 // called with Thread::WillResume(StateType) where StateType contains the 3020 // state that they are supposed to have when the process is resumed 3021 // (suspended/running/stepping). Threads should also check their resume 3022 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3023 // start back up with a signal. 3024 if (m_thread_list.WillResume()) { 3025 // Last thing, do the PreResumeActions. 3026 if (!RunPreResumeActions()) { 3027 error.SetErrorString( 3028 "Process::PrivateResume PreResumeActions failed, not resuming."); 3029 } else { 3030 m_mod_id.BumpResumeID(); 3031 error = DoResume(); 3032 if (error.Success()) { 3033 DidResume(); 3034 m_thread_list.DidResume(); 3035 LLDB_LOGF(log, "Process thinks the process has resumed."); 3036 } else { 3037 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3038 return error; 3039 } 3040 } 3041 } else { 3042 // Somebody wanted to run without running (e.g. we were faking a step 3043 // from one frame of a set of inlined frames that share the same PC to 3044 // another.) So generate a continue & a stopped event, and let the world 3045 // handle them. 3046 LLDB_LOGF(log, 3047 "Process::PrivateResume() asked to simulate a start & stop."); 3048 3049 SetPrivateState(eStateRunning); 3050 SetPrivateState(eStateStopped); 3051 } 3052 } else 3053 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3054 error.AsCString("<unknown error>")); 3055 return error; 3056 } 3057 3058 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3059 if (!StateIsRunningState(m_public_state.GetValue())) 3060 return Status("Process is not running."); 3061 3062 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3063 // case it was already set and some thread plan logic calls halt on its own. 3064 m_clear_thread_plans_on_stop |= clear_thread_plans; 3065 3066 ListenerSP halt_listener_sp( 3067 Listener::MakeListener("lldb.process.halt_listener")); 3068 HijackProcessEvents(halt_listener_sp); 3069 3070 EventSP event_sp; 3071 3072 SendAsyncInterrupt(); 3073 3074 if (m_public_state.GetValue() == eStateAttaching) { 3075 // Don't hijack and eat the eStateExited as the code that was doing the 3076 // attach will be waiting for this event... 3077 RestoreProcessEvents(); 3078 SetExitStatus(SIGKILL, "Cancelled async attach."); 3079 Destroy(false); 3080 return Status(); 3081 } 3082 3083 // Wait for the process halt timeout seconds for the process to stop. 3084 StateType state = 3085 WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true, 3086 halt_listener_sp, nullptr, use_run_lock); 3087 RestoreProcessEvents(); 3088 3089 if (state == eStateInvalid || !event_sp) { 3090 // We timed out and didn't get a stop event... 3091 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3092 } 3093 3094 BroadcastEvent(event_sp); 3095 3096 return Status(); 3097 } 3098 3099 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3100 Status error; 3101 3102 // Check both the public & private states here. If we're hung evaluating an 3103 // expression, for instance, then the public state will be stopped, but we 3104 // still need to interrupt. 3105 if (m_public_state.GetValue() == eStateRunning || 3106 m_private_state.GetValue() == eStateRunning) { 3107 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3108 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3109 3110 ListenerSP listener_sp( 3111 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3112 HijackProcessEvents(listener_sp); 3113 3114 SendAsyncInterrupt(); 3115 3116 // Consume the interrupt event. 3117 StateType state = WaitForProcessToStop(GetInterruptTimeout(), 3118 &exit_event_sp, true, listener_sp); 3119 3120 RestoreProcessEvents(); 3121 3122 // If the process exited while we were waiting for it to stop, put the 3123 // exited event into the shared pointer passed in and return. Our caller 3124 // doesn't need to do anything else, since they don't have a process 3125 // anymore... 3126 3127 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3128 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3129 __FUNCTION__); 3130 return error; 3131 } else 3132 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3133 3134 if (state != eStateStopped) { 3135 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3136 StateAsCString(state)); 3137 // If we really couldn't stop the process then we should just error out 3138 // here, but if the lower levels just bobbled sending the event and we 3139 // really are stopped, then continue on. 3140 StateType private_state = m_private_state.GetValue(); 3141 if (private_state != eStateStopped) { 3142 return Status( 3143 "Attempt to stop the target in order to detach timed out. " 3144 "State = %s", 3145 StateAsCString(GetState())); 3146 } 3147 } 3148 } 3149 return error; 3150 } 3151 3152 Status Process::Detach(bool keep_stopped) { 3153 EventSP exit_event_sp; 3154 Status error; 3155 m_destroy_in_process = true; 3156 3157 error = WillDetach(); 3158 3159 if (error.Success()) { 3160 if (DetachRequiresHalt()) { 3161 error = StopForDestroyOrDetach(exit_event_sp); 3162 if (!error.Success()) { 3163 m_destroy_in_process = false; 3164 return error; 3165 } else if (exit_event_sp) { 3166 // We shouldn't need to do anything else here. There's no process left 3167 // to detach from... 3168 StopPrivateStateThread(); 3169 m_destroy_in_process = false; 3170 return error; 3171 } 3172 } 3173 3174 m_thread_list.DiscardThreadPlans(); 3175 DisableAllBreakpointSites(); 3176 3177 error = DoDetach(keep_stopped); 3178 if (error.Success()) { 3179 DidDetach(); 3180 StopPrivateStateThread(); 3181 } else { 3182 return error; 3183 } 3184 } 3185 m_destroy_in_process = false; 3186 3187 // If we exited when we were waiting for a process to stop, then forward the 3188 // event here so we don't lose the event 3189 if (exit_event_sp) { 3190 // Directly broadcast our exited event because we shut down our private 3191 // state thread above 3192 BroadcastEvent(exit_event_sp); 3193 } 3194 3195 // If we have been interrupted (to kill us) in the middle of running, we may 3196 // not end up propagating the last events through the event system, in which 3197 // case we might strand the write lock. Unlock it here so when we do to tear 3198 // down the process we don't get an error destroying the lock. 3199 3200 m_public_run_lock.SetStopped(); 3201 return error; 3202 } 3203 3204 Status Process::Destroy(bool force_kill) { 3205 // If we've already called Process::Finalize then there's nothing useful to 3206 // be done here. Finalize has actually called Destroy already. 3207 if (m_finalizing) 3208 return {}; 3209 return DestroyImpl(force_kill); 3210 } 3211 3212 Status Process::DestroyImpl(bool force_kill) { 3213 // Tell ourselves we are in the process of destroying the process, so that we 3214 // don't do any unnecessary work that might hinder the destruction. Remember 3215 // to set this back to false when we are done. That way if the attempt 3216 // failed and the process stays around for some reason it won't be in a 3217 // confused state. 3218 3219 if (force_kill) 3220 m_should_detach = false; 3221 3222 if (GetShouldDetach()) { 3223 // FIXME: This will have to be a process setting: 3224 bool keep_stopped = false; 3225 Detach(keep_stopped); 3226 } 3227 3228 m_destroy_in_process = true; 3229 3230 Status error(WillDestroy()); 3231 if (error.Success()) { 3232 EventSP exit_event_sp; 3233 if (DestroyRequiresHalt()) { 3234 error = StopForDestroyOrDetach(exit_event_sp); 3235 } 3236 3237 if (m_public_state.GetValue() == eStateStopped) { 3238 // Ditch all thread plans, and remove all our breakpoints: in case we 3239 // have to restart the target to kill it, we don't want it hitting a 3240 // breakpoint... Only do this if we've stopped, however, since if we 3241 // didn't manage to halt it above, then we're not going to have much luck 3242 // doing this now. 3243 m_thread_list.DiscardThreadPlans(); 3244 DisableAllBreakpointSites(); 3245 } 3246 3247 error = DoDestroy(); 3248 if (error.Success()) { 3249 DidDestroy(); 3250 StopPrivateStateThread(); 3251 } 3252 m_stdio_communication.StopReadThread(); 3253 m_stdio_communication.Disconnect(); 3254 m_stdin_forward = false; 3255 3256 if (m_process_input_reader) { 3257 m_process_input_reader->SetIsDone(true); 3258 m_process_input_reader->Cancel(); 3259 m_process_input_reader.reset(); 3260 } 3261 3262 // If we exited when we were waiting for a process to stop, then forward 3263 // the event here so we don't lose the event 3264 if (exit_event_sp) { 3265 // Directly broadcast our exited event because we shut down our private 3266 // state thread above 3267 BroadcastEvent(exit_event_sp); 3268 } 3269 3270 // If we have been interrupted (to kill us) in the middle of running, we 3271 // may not end up propagating the last events through the event system, in 3272 // which case we might strand the write lock. Unlock it here so when we do 3273 // to tear down the process we don't get an error destroying the lock. 3274 m_public_run_lock.SetStopped(); 3275 } 3276 3277 m_destroy_in_process = false; 3278 3279 return error; 3280 } 3281 3282 Status Process::Signal(int signal) { 3283 Status error(WillSignal()); 3284 if (error.Success()) { 3285 error = DoSignal(signal); 3286 if (error.Success()) 3287 DidSignal(); 3288 } 3289 return error; 3290 } 3291 3292 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3293 assert(signals_sp && "null signals_sp"); 3294 m_unix_signals_sp = signals_sp; 3295 } 3296 3297 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3298 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3299 return m_unix_signals_sp; 3300 } 3301 3302 lldb::ByteOrder Process::GetByteOrder() const { 3303 return GetTarget().GetArchitecture().GetByteOrder(); 3304 } 3305 3306 uint32_t Process::GetAddressByteSize() const { 3307 return GetTarget().GetArchitecture().GetAddressByteSize(); 3308 } 3309 3310 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3311 const StateType state = 3312 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3313 bool return_value = true; 3314 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3315 LIBLLDB_LOG_PROCESS)); 3316 3317 switch (state) { 3318 case eStateDetached: 3319 case eStateExited: 3320 case eStateUnloaded: 3321 m_stdio_communication.SynchronizeWithReadThread(); 3322 m_stdio_communication.StopReadThread(); 3323 m_stdio_communication.Disconnect(); 3324 m_stdin_forward = false; 3325 3326 LLVM_FALLTHROUGH; 3327 case eStateConnected: 3328 case eStateAttaching: 3329 case eStateLaunching: 3330 // These events indicate changes in the state of the debugging session, 3331 // always report them. 3332 return_value = true; 3333 break; 3334 case eStateInvalid: 3335 // We stopped for no apparent reason, don't report it. 3336 return_value = false; 3337 break; 3338 case eStateRunning: 3339 case eStateStepping: 3340 // If we've started the target running, we handle the cases where we are 3341 // already running and where there is a transition from stopped to running 3342 // differently. running -> running: Automatically suppress extra running 3343 // events stopped -> running: Report except when there is one or more no 3344 // votes 3345 // and no yes votes. 3346 SynchronouslyNotifyStateChanged(state); 3347 if (m_force_next_event_delivery) 3348 return_value = true; 3349 else { 3350 switch (m_last_broadcast_state) { 3351 case eStateRunning: 3352 case eStateStepping: 3353 // We always suppress multiple runnings with no PUBLIC stop in between. 3354 return_value = false; 3355 break; 3356 default: 3357 // TODO: make this work correctly. For now always report 3358 // run if we aren't running so we don't miss any running events. If I 3359 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3360 // and hit the breakpoints on multiple threads, then somehow during the 3361 // stepping over of all breakpoints no run gets reported. 3362 3363 // This is a transition from stop to run. 3364 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3365 case eVoteYes: 3366 case eVoteNoOpinion: 3367 return_value = true; 3368 break; 3369 case eVoteNo: 3370 return_value = false; 3371 break; 3372 } 3373 break; 3374 } 3375 } 3376 break; 3377 case eStateStopped: 3378 case eStateCrashed: 3379 case eStateSuspended: 3380 // We've stopped. First see if we're going to restart the target. If we 3381 // are going to stop, then we always broadcast the event. If we aren't 3382 // going to stop, let the thread plans decide if we're going to report this 3383 // event. If no thread has an opinion, we don't report it. 3384 3385 m_stdio_communication.SynchronizeWithReadThread(); 3386 RefreshStateAfterStop(); 3387 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3388 LLDB_LOGF(log, 3389 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3390 "interrupt, state: %s", 3391 static_cast<void *>(event_ptr), StateAsCString(state)); 3392 // Even though we know we are going to stop, we should let the threads 3393 // have a look at the stop, so they can properly set their state. 3394 m_thread_list.ShouldStop(event_ptr); 3395 return_value = true; 3396 } else { 3397 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3398 bool should_resume = false; 3399 3400 // It makes no sense to ask "ShouldStop" if we've already been 3401 // restarted... Asking the thread list is also not likely to go well, 3402 // since we are running again. So in that case just report the event. 3403 3404 if (!was_restarted) 3405 should_resume = !m_thread_list.ShouldStop(event_ptr); 3406 3407 if (was_restarted || should_resume || m_resume_requested) { 3408 Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3409 LLDB_LOGF(log, 3410 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3411 "%s was_restarted: %i report_stop_vote: %d.", 3412 should_resume, StateAsCString(state), was_restarted, 3413 report_stop_vote); 3414 3415 switch (report_stop_vote) { 3416 case eVoteYes: 3417 return_value = true; 3418 break; 3419 case eVoteNoOpinion: 3420 case eVoteNo: 3421 return_value = false; 3422 break; 3423 } 3424 3425 if (!was_restarted) { 3426 LLDB_LOGF(log, 3427 "Process::ShouldBroadcastEvent (%p) Restarting process " 3428 "from state: %s", 3429 static_cast<void *>(event_ptr), StateAsCString(state)); 3430 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3431 PrivateResume(); 3432 } 3433 } else { 3434 return_value = true; 3435 SynchronouslyNotifyStateChanged(state); 3436 } 3437 } 3438 break; 3439 } 3440 3441 // Forcing the next event delivery is a one shot deal. So reset it here. 3442 m_force_next_event_delivery = false; 3443 3444 // We do some coalescing of events (for instance two consecutive running 3445 // events get coalesced.) But we only coalesce against events we actually 3446 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3447 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3448 // done, because the PublicState reflects the last event pulled off the 3449 // queue, and there may be several events stacked up on the queue unserviced. 3450 // So the PublicState may not reflect the last broadcasted event yet. 3451 // m_last_broadcast_state gets updated here. 3452 3453 if (return_value) 3454 m_last_broadcast_state = state; 3455 3456 LLDB_LOGF(log, 3457 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3458 "broadcast state: %s - %s", 3459 static_cast<void *>(event_ptr), StateAsCString(state), 3460 StateAsCString(m_last_broadcast_state), 3461 return_value ? "YES" : "NO"); 3462 return return_value; 3463 } 3464 3465 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3466 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3467 3468 bool already_running = PrivateStateThreadIsValid(); 3469 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3470 already_running ? " already running" 3471 : " starting private state thread"); 3472 3473 if (!is_secondary_thread && already_running) 3474 return true; 3475 3476 // Create a thread that watches our internal state and controls which events 3477 // make it to clients (into the DCProcess event queue). 3478 char thread_name[1024]; 3479 uint32_t max_len = llvm::get_max_thread_name_length(); 3480 if (max_len > 0 && max_len <= 30) { 3481 // On platforms with abbreviated thread name lengths, choose thread names 3482 // that fit within the limit. 3483 if (already_running) 3484 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3485 else 3486 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3487 } else { 3488 if (already_running) 3489 snprintf(thread_name, sizeof(thread_name), 3490 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3491 GetID()); 3492 else 3493 snprintf(thread_name, sizeof(thread_name), 3494 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3495 } 3496 3497 // Create the private state thread, and start it running. 3498 PrivateStateThreadArgs *args_ptr = 3499 new PrivateStateThreadArgs(this, is_secondary_thread); 3500 llvm::Expected<HostThread> private_state_thread = 3501 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3502 (void *)args_ptr, 8 * 1024 * 1024); 3503 if (!private_state_thread) { 3504 LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST), 3505 "failed to launch host thread: {}", 3506 llvm::toString(private_state_thread.takeError())); 3507 return false; 3508 } 3509 3510 assert(private_state_thread->IsJoinable()); 3511 m_private_state_thread = *private_state_thread; 3512 ResumePrivateStateThread(); 3513 return true; 3514 } 3515 3516 void Process::PausePrivateStateThread() { 3517 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3518 } 3519 3520 void Process::ResumePrivateStateThread() { 3521 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3522 } 3523 3524 void Process::StopPrivateStateThread() { 3525 if (m_private_state_thread.IsJoinable()) 3526 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3527 else { 3528 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3529 LLDB_LOGF( 3530 log, 3531 "Went to stop the private state thread, but it was already invalid."); 3532 } 3533 } 3534 3535 void Process::ControlPrivateStateThread(uint32_t signal) { 3536 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3537 3538 assert(signal == eBroadcastInternalStateControlStop || 3539 signal == eBroadcastInternalStateControlPause || 3540 signal == eBroadcastInternalStateControlResume); 3541 3542 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3543 3544 // Signal the private state thread 3545 if (m_private_state_thread.IsJoinable()) { 3546 // Broadcast the event. 3547 // It is important to do this outside of the if below, because it's 3548 // possible that the thread state is invalid but that the thread is waiting 3549 // on a control event instead of simply being on its way out (this should 3550 // not happen, but it apparently can). 3551 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3552 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3553 m_private_state_control_broadcaster.BroadcastEvent(signal, 3554 event_receipt_sp); 3555 3556 // Wait for the event receipt or for the private state thread to exit 3557 bool receipt_received = false; 3558 if (PrivateStateThreadIsValid()) { 3559 while (!receipt_received) { 3560 // Check for a receipt for n seconds and then check if the private 3561 // state thread is still around. 3562 receipt_received = 3563 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3564 if (!receipt_received) { 3565 // Check if the private state thread is still around. If it isn't 3566 // then we are done waiting 3567 if (!PrivateStateThreadIsValid()) 3568 break; // Private state thread exited or is exiting, we are done 3569 } 3570 } 3571 } 3572 3573 if (signal == eBroadcastInternalStateControlStop) { 3574 thread_result_t result = {}; 3575 m_private_state_thread.Join(&result); 3576 m_private_state_thread.Reset(); 3577 } 3578 } else { 3579 LLDB_LOGF( 3580 log, 3581 "Private state thread already dead, no need to signal it to stop."); 3582 } 3583 } 3584 3585 void Process::SendAsyncInterrupt() { 3586 if (PrivateStateThreadIsValid()) 3587 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3588 nullptr); 3589 else 3590 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3591 } 3592 3593 void Process::HandlePrivateEvent(EventSP &event_sp) { 3594 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3595 m_resume_requested = false; 3596 3597 const StateType new_state = 3598 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3599 3600 // First check to see if anybody wants a shot at this event: 3601 if (m_next_event_action_up) { 3602 NextEventAction::EventActionResult action_result = 3603 m_next_event_action_up->PerformAction(event_sp); 3604 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3605 3606 switch (action_result) { 3607 case NextEventAction::eEventActionSuccess: 3608 SetNextEventAction(nullptr); 3609 break; 3610 3611 case NextEventAction::eEventActionRetry: 3612 break; 3613 3614 case NextEventAction::eEventActionExit: 3615 // Handle Exiting Here. If we already got an exited event, we should 3616 // just propagate it. Otherwise, swallow this event, and set our state 3617 // to exit so the next event will kill us. 3618 if (new_state != eStateExited) { 3619 // FIXME: should cons up an exited event, and discard this one. 3620 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3621 SetNextEventAction(nullptr); 3622 return; 3623 } 3624 SetNextEventAction(nullptr); 3625 break; 3626 } 3627 } 3628 3629 // See if we should broadcast this state to external clients? 3630 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3631 3632 if (should_broadcast) { 3633 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3634 if (log) { 3635 LLDB_LOGF(log, 3636 "Process::%s (pid = %" PRIu64 3637 ") broadcasting new state %s (old state %s) to %s", 3638 __FUNCTION__, GetID(), StateAsCString(new_state), 3639 StateAsCString(GetState()), 3640 is_hijacked ? "hijacked" : "public"); 3641 } 3642 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3643 if (StateIsRunningState(new_state)) { 3644 // Only push the input handler if we aren't fowarding events, as this 3645 // means the curses GUI is in use... Or don't push it if we are launching 3646 // since it will come up stopped. 3647 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3648 new_state != eStateLaunching && new_state != eStateAttaching) { 3649 PushProcessIOHandler(); 3650 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3651 eBroadcastAlways); 3652 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3653 __FUNCTION__, m_iohandler_sync.GetValue()); 3654 } 3655 } else if (StateIsStoppedState(new_state, false)) { 3656 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3657 // If the lldb_private::Debugger is handling the events, we don't want 3658 // to pop the process IOHandler here, we want to do it when we receive 3659 // the stopped event so we can carefully control when the process 3660 // IOHandler is popped because when we stop we want to display some 3661 // text stating how and why we stopped, then maybe some 3662 // process/thread/frame info, and then we want the "(lldb) " prompt to 3663 // show up. If we pop the process IOHandler here, then we will cause 3664 // the command interpreter to become the top IOHandler after the 3665 // process pops off and it will update its prompt right away... See the 3666 // Debugger.cpp file where it calls the function as 3667 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3668 // Otherwise we end up getting overlapping "(lldb) " prompts and 3669 // garbled output. 3670 // 3671 // If we aren't handling the events in the debugger (which is indicated 3672 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3673 // we are hijacked, then we always pop the process IO handler manually. 3674 // Hijacking happens when the internal process state thread is running 3675 // thread plans, or when commands want to run in synchronous mode and 3676 // they call "process->WaitForProcessToStop()". An example of something 3677 // that will hijack the events is a simple expression: 3678 // 3679 // (lldb) expr (int)puts("hello") 3680 // 3681 // This will cause the internal process state thread to resume and halt 3682 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3683 // events) and we do need the IO handler to be pushed and popped 3684 // correctly. 3685 3686 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3687 PopProcessIOHandler(); 3688 } 3689 } 3690 3691 BroadcastEvent(event_sp); 3692 } else { 3693 if (log) { 3694 LLDB_LOGF( 3695 log, 3696 "Process::%s (pid = %" PRIu64 3697 ") suppressing state %s (old state %s): should_broadcast == false", 3698 __FUNCTION__, GetID(), StateAsCString(new_state), 3699 StateAsCString(GetState())); 3700 } 3701 } 3702 } 3703 3704 Status Process::HaltPrivate() { 3705 EventSP event_sp; 3706 Status error(WillHalt()); 3707 if (error.Fail()) 3708 return error; 3709 3710 // Ask the process subclass to actually halt our process 3711 bool caused_stop; 3712 error = DoHalt(caused_stop); 3713 3714 DidHalt(); 3715 return error; 3716 } 3717 3718 thread_result_t Process::PrivateStateThread(void *arg) { 3719 std::unique_ptr<PrivateStateThreadArgs> args_up( 3720 static_cast<PrivateStateThreadArgs *>(arg)); 3721 thread_result_t result = 3722 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3723 return result; 3724 } 3725 3726 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3727 bool control_only = true; 3728 3729 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3730 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3731 __FUNCTION__, static_cast<void *>(this), GetID()); 3732 3733 bool exit_now = false; 3734 bool interrupt_requested = false; 3735 while (!exit_now) { 3736 EventSP event_sp; 3737 GetEventsPrivate(event_sp, llvm::None, control_only); 3738 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3739 LLDB_LOGF(log, 3740 "Process::%s (arg = %p, pid = %" PRIu64 3741 ") got a control event: %d", 3742 __FUNCTION__, static_cast<void *>(this), GetID(), 3743 event_sp->GetType()); 3744 3745 switch (event_sp->GetType()) { 3746 case eBroadcastInternalStateControlStop: 3747 exit_now = true; 3748 break; // doing any internal state management below 3749 3750 case eBroadcastInternalStateControlPause: 3751 control_only = true; 3752 break; 3753 3754 case eBroadcastInternalStateControlResume: 3755 control_only = false; 3756 break; 3757 } 3758 3759 continue; 3760 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 3761 if (m_public_state.GetValue() == eStateAttaching) { 3762 LLDB_LOGF(log, 3763 "Process::%s (arg = %p, pid = %" PRIu64 3764 ") woke up with an interrupt while attaching - " 3765 "forwarding interrupt.", 3766 __FUNCTION__, static_cast<void *>(this), GetID()); 3767 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 3768 } else if (StateIsRunningState(m_last_broadcast_state)) { 3769 LLDB_LOGF(log, 3770 "Process::%s (arg = %p, pid = %" PRIu64 3771 ") woke up with an interrupt - Halting.", 3772 __FUNCTION__, static_cast<void *>(this), GetID()); 3773 Status error = HaltPrivate(); 3774 if (error.Fail() && log) 3775 LLDB_LOGF(log, 3776 "Process::%s (arg = %p, pid = %" PRIu64 3777 ") failed to halt the process: %s", 3778 __FUNCTION__, static_cast<void *>(this), GetID(), 3779 error.AsCString()); 3780 // Halt should generate a stopped event. Make a note of the fact that 3781 // we were doing the interrupt, so we can set the interrupted flag 3782 // after we receive the event. We deliberately set this to true even if 3783 // HaltPrivate failed, so that we can interrupt on the next natural 3784 // stop. 3785 interrupt_requested = true; 3786 } else { 3787 // This can happen when someone (e.g. Process::Halt) sees that we are 3788 // running and sends an interrupt request, but the process actually 3789 // stops before we receive it. In that case, we can just ignore the 3790 // request. We use m_last_broadcast_state, because the Stopped event 3791 // may not have been popped of the event queue yet, which is when the 3792 // public state gets updated. 3793 LLDB_LOGF(log, 3794 "Process::%s ignoring interrupt as we have already stopped.", 3795 __FUNCTION__); 3796 } 3797 continue; 3798 } 3799 3800 const StateType internal_state = 3801 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3802 3803 if (internal_state != eStateInvalid) { 3804 if (m_clear_thread_plans_on_stop && 3805 StateIsStoppedState(internal_state, true)) { 3806 m_clear_thread_plans_on_stop = false; 3807 m_thread_list.DiscardThreadPlans(); 3808 } 3809 3810 if (interrupt_requested) { 3811 if (StateIsStoppedState(internal_state, true)) { 3812 // We requested the interrupt, so mark this as such in the stop event 3813 // so clients can tell an interrupted process from a natural stop 3814 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 3815 interrupt_requested = false; 3816 } else if (log) { 3817 LLDB_LOGF(log, 3818 "Process::%s interrupt_requested, but a non-stopped " 3819 "state '%s' received.", 3820 __FUNCTION__, StateAsCString(internal_state)); 3821 } 3822 } 3823 3824 HandlePrivateEvent(event_sp); 3825 } 3826 3827 if (internal_state == eStateInvalid || internal_state == eStateExited || 3828 internal_state == eStateDetached) { 3829 LLDB_LOGF(log, 3830 "Process::%s (arg = %p, pid = %" PRIu64 3831 ") about to exit with internal state %s...", 3832 __FUNCTION__, static_cast<void *>(this), GetID(), 3833 StateAsCString(internal_state)); 3834 3835 break; 3836 } 3837 } 3838 3839 // Verify log is still enabled before attempting to write to it... 3840 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 3841 __FUNCTION__, static_cast<void *>(this), GetID()); 3842 3843 // If we are a secondary thread, then the primary thread we are working for 3844 // will have already acquired the public_run_lock, and isn't done with what 3845 // it was doing yet, so don't try to change it on the way out. 3846 if (!is_secondary_thread) 3847 m_public_run_lock.SetStopped(); 3848 return {}; 3849 } 3850 3851 // Process Event Data 3852 3853 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {} 3854 3855 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 3856 StateType state) 3857 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 3858 m_update_state(0), m_interrupted(false) { 3859 if (process_sp) 3860 m_process_wp = process_sp; 3861 } 3862 3863 Process::ProcessEventData::~ProcessEventData() = default; 3864 3865 ConstString Process::ProcessEventData::GetFlavorString() { 3866 static ConstString g_flavor("Process::ProcessEventData"); 3867 return g_flavor; 3868 } 3869 3870 ConstString Process::ProcessEventData::GetFlavor() const { 3871 return ProcessEventData::GetFlavorString(); 3872 } 3873 3874 bool Process::ProcessEventData::ShouldStop(Event *event_ptr, 3875 bool &found_valid_stopinfo) { 3876 found_valid_stopinfo = false; 3877 3878 ProcessSP process_sp(m_process_wp.lock()); 3879 if (!process_sp) 3880 return false; 3881 3882 ThreadList &curr_thread_list = process_sp->GetThreadList(); 3883 uint32_t num_threads = curr_thread_list.GetSize(); 3884 uint32_t idx; 3885 3886 // The actions might change one of the thread's stop_info's opinions about 3887 // whether we should stop the process, so we need to query that as we go. 3888 3889 // One other complication here, is that we try to catch any case where the 3890 // target has run (except for expressions) and immediately exit, but if we 3891 // get that wrong (which is possible) then the thread list might have 3892 // changed, and that would cause our iteration here to crash. We could 3893 // make a copy of the thread list, but we'd really like to also know if it 3894 // has changed at all, so we make up a vector of the thread ID's and check 3895 // what we get back against this list & bag out if anything differs. 3896 ThreadList not_suspended_thread_list(process_sp.get()); 3897 std::vector<uint32_t> thread_index_array(num_threads); 3898 uint32_t not_suspended_idx = 0; 3899 for (idx = 0; idx < num_threads; ++idx) { 3900 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 3901 3902 /* 3903 Filter out all suspended threads, they could not be the reason 3904 of stop and no need to perform any actions on them. 3905 */ 3906 if (thread_sp->GetResumeState() != eStateSuspended) { 3907 not_suspended_thread_list.AddThread(thread_sp); 3908 thread_index_array[not_suspended_idx] = thread_sp->GetIndexID(); 3909 not_suspended_idx++; 3910 } 3911 } 3912 3913 // Use this to track whether we should continue from here. We will only 3914 // continue the target running if no thread says we should stop. Of course 3915 // if some thread's PerformAction actually sets the target running, then it 3916 // doesn't matter what the other threads say... 3917 3918 bool still_should_stop = false; 3919 3920 // Sometimes - for instance if we have a bug in the stub we are talking to, 3921 // we stop but no thread has a valid stop reason. In that case we should 3922 // just stop, because we have no way of telling what the right thing to do 3923 // is, and it's better to let the user decide than continue behind their 3924 // backs. 3925 3926 for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) { 3927 curr_thread_list = process_sp->GetThreadList(); 3928 if (curr_thread_list.GetSize() != num_threads) { 3929 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3930 LIBLLDB_LOG_PROCESS)); 3931 LLDB_LOGF( 3932 log, 3933 "Number of threads changed from %u to %u while processing event.", 3934 num_threads, curr_thread_list.GetSize()); 3935 break; 3936 } 3937 3938 lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx); 3939 3940 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 3941 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3942 LIBLLDB_LOG_PROCESS)); 3943 LLDB_LOGF(log, 3944 "The thread at position %u changed from %u to %u while " 3945 "processing event.", 3946 idx, thread_index_array[idx], thread_sp->GetIndexID()); 3947 break; 3948 } 3949 3950 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 3951 if (stop_info_sp && stop_info_sp->IsValid()) { 3952 found_valid_stopinfo = true; 3953 bool this_thread_wants_to_stop; 3954 if (stop_info_sp->GetOverrideShouldStop()) { 3955 this_thread_wants_to_stop = 3956 stop_info_sp->GetOverriddenShouldStopValue(); 3957 } else { 3958 stop_info_sp->PerformAction(event_ptr); 3959 // The stop action might restart the target. If it does, then we 3960 // want to mark that in the event so that whoever is receiving it 3961 // will know to wait for the running event and reflect that state 3962 // appropriately. We also need to stop processing actions, since they 3963 // aren't expecting the target to be running. 3964 3965 // FIXME: we might have run. 3966 if (stop_info_sp->HasTargetRunSinceMe()) { 3967 SetRestarted(true); 3968 break; 3969 } 3970 3971 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 3972 } 3973 3974 if (!still_should_stop) 3975 still_should_stop = this_thread_wants_to_stop; 3976 } 3977 } 3978 3979 return still_should_stop; 3980 } 3981 3982 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 3983 ProcessSP process_sp(m_process_wp.lock()); 3984 3985 if (!process_sp) 3986 return; 3987 3988 // This function gets called twice for each event, once when the event gets 3989 // pulled off of the private process event queue, and then any number of 3990 // times, first when it gets pulled off of the public event queue, then other 3991 // times when we're pretending that this is where we stopped at the end of 3992 // expression evaluation. m_update_state is used to distinguish these three 3993 // cases; it is 0 when we're just pulling it off for private handling, and > 3994 // 1 for expression evaluation, and we don't want to do the breakpoint 3995 // command handling then. 3996 if (m_update_state != 1) 3997 return; 3998 3999 process_sp->SetPublicState( 4000 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4001 4002 if (m_state == eStateStopped && !m_restarted) { 4003 // Let process subclasses know we are about to do a public stop and do 4004 // anything they might need to in order to speed up register and memory 4005 // accesses. 4006 process_sp->WillPublicStop(); 4007 } 4008 4009 // If this is a halt event, even if the halt stopped with some reason other 4010 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4011 // the halt request came through) don't do the StopInfo actions, as they may 4012 // end up restarting the process. 4013 if (m_interrupted) 4014 return; 4015 4016 // If we're not stopped or have restarted, then skip the StopInfo actions: 4017 if (m_state != eStateStopped || m_restarted) { 4018 return; 4019 } 4020 4021 bool does_anybody_have_an_opinion = false; 4022 bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion); 4023 4024 if (GetRestarted()) { 4025 return; 4026 } 4027 4028 if (!still_should_stop && does_anybody_have_an_opinion) { 4029 // We've been asked to continue, so do that here. 4030 SetRestarted(true); 4031 // Use the public resume method here, since this is just extending a 4032 // public resume. 4033 process_sp->PrivateResume(); 4034 } else { 4035 bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4036 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4037 4038 if (!hijacked) { 4039 // If we didn't restart, run the Stop Hooks here. 4040 // Don't do that if state changed events aren't hooked up to the 4041 // public (or SyncResume) broadcasters. StopHooks are just for 4042 // real public stops. They might also restart the target, 4043 // so watch for that. 4044 if (process_sp->GetTarget().RunStopHooks()) 4045 SetRestarted(true); 4046 } 4047 } 4048 } 4049 4050 void Process::ProcessEventData::Dump(Stream *s) const { 4051 ProcessSP process_sp(m_process_wp.lock()); 4052 4053 if (process_sp) 4054 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4055 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4056 else 4057 s->PutCString(" process = NULL, "); 4058 4059 s->Printf("state = %s", StateAsCString(GetState())); 4060 } 4061 4062 const Process::ProcessEventData * 4063 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4064 if (event_ptr) { 4065 const EventData *event_data = event_ptr->GetData(); 4066 if (event_data && 4067 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4068 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4069 } 4070 return nullptr; 4071 } 4072 4073 ProcessSP 4074 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4075 ProcessSP process_sp; 4076 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4077 if (data) 4078 process_sp = data->GetProcessSP(); 4079 return process_sp; 4080 } 4081 4082 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4083 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4084 if (data == nullptr) 4085 return eStateInvalid; 4086 else 4087 return data->GetState(); 4088 } 4089 4090 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4091 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4092 if (data == nullptr) 4093 return false; 4094 else 4095 return data->GetRestarted(); 4096 } 4097 4098 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4099 bool new_value) { 4100 ProcessEventData *data = 4101 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4102 if (data != nullptr) 4103 data->SetRestarted(new_value); 4104 } 4105 4106 size_t 4107 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4108 ProcessEventData *data = 4109 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4110 if (data != nullptr) 4111 return data->GetNumRestartedReasons(); 4112 else 4113 return 0; 4114 } 4115 4116 const char * 4117 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4118 size_t idx) { 4119 ProcessEventData *data = 4120 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4121 if (data != nullptr) 4122 return data->GetRestartedReasonAtIndex(idx); 4123 else 4124 return nullptr; 4125 } 4126 4127 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4128 const char *reason) { 4129 ProcessEventData *data = 4130 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4131 if (data != nullptr) 4132 data->AddRestartedReason(reason); 4133 } 4134 4135 bool Process::ProcessEventData::GetInterruptedFromEvent( 4136 const Event *event_ptr) { 4137 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4138 if (data == nullptr) 4139 return false; 4140 else 4141 return data->GetInterrupted(); 4142 } 4143 4144 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4145 bool new_value) { 4146 ProcessEventData *data = 4147 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4148 if (data != nullptr) 4149 data->SetInterrupted(new_value); 4150 } 4151 4152 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4153 ProcessEventData *data = 4154 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4155 if (data) { 4156 data->SetUpdateStateOnRemoval(); 4157 return true; 4158 } 4159 return false; 4160 } 4161 4162 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4163 4164 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4165 exe_ctx.SetTargetPtr(&GetTarget()); 4166 exe_ctx.SetProcessPtr(this); 4167 exe_ctx.SetThreadPtr(nullptr); 4168 exe_ctx.SetFramePtr(nullptr); 4169 } 4170 4171 // uint32_t 4172 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4173 // std::vector<lldb::pid_t> &pids) 4174 //{ 4175 // return 0; 4176 //} 4177 // 4178 // ArchSpec 4179 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4180 //{ 4181 // return Host::GetArchSpecForExistingProcess (pid); 4182 //} 4183 // 4184 // ArchSpec 4185 // Process::GetArchSpecForExistingProcess (const char *process_name) 4186 //{ 4187 // return Host::GetArchSpecForExistingProcess (process_name); 4188 //} 4189 4190 void Process::AppendSTDOUT(const char *s, size_t len) { 4191 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4192 m_stdout_data.append(s, len); 4193 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4194 new ProcessEventData(shared_from_this(), GetState())); 4195 } 4196 4197 void Process::AppendSTDERR(const char *s, size_t len) { 4198 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4199 m_stderr_data.append(s, len); 4200 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4201 new ProcessEventData(shared_from_this(), GetState())); 4202 } 4203 4204 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4205 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4206 m_profile_data.push_back(one_profile_data); 4207 BroadcastEventIfUnique(eBroadcastBitProfileData, 4208 new ProcessEventData(shared_from_this(), GetState())); 4209 } 4210 4211 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4212 const StructuredDataPluginSP &plugin_sp) { 4213 BroadcastEvent( 4214 eBroadcastBitStructuredData, 4215 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4216 } 4217 4218 StructuredDataPluginSP 4219 Process::GetStructuredDataPlugin(ConstString type_name) const { 4220 auto find_it = m_structured_data_plugin_map.find(type_name); 4221 if (find_it != m_structured_data_plugin_map.end()) 4222 return find_it->second; 4223 else 4224 return StructuredDataPluginSP(); 4225 } 4226 4227 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4228 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4229 if (m_profile_data.empty()) 4230 return 0; 4231 4232 std::string &one_profile_data = m_profile_data.front(); 4233 size_t bytes_available = one_profile_data.size(); 4234 if (bytes_available > 0) { 4235 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4236 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4237 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4238 if (bytes_available > buf_size) { 4239 memcpy(buf, one_profile_data.c_str(), buf_size); 4240 one_profile_data.erase(0, buf_size); 4241 bytes_available = buf_size; 4242 } else { 4243 memcpy(buf, one_profile_data.c_str(), bytes_available); 4244 m_profile_data.erase(m_profile_data.begin()); 4245 } 4246 } 4247 return bytes_available; 4248 } 4249 4250 // Process STDIO 4251 4252 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4253 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4254 size_t bytes_available = m_stdout_data.size(); 4255 if (bytes_available > 0) { 4256 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4257 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4258 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4259 if (bytes_available > buf_size) { 4260 memcpy(buf, m_stdout_data.c_str(), buf_size); 4261 m_stdout_data.erase(0, buf_size); 4262 bytes_available = buf_size; 4263 } else { 4264 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4265 m_stdout_data.clear(); 4266 } 4267 } 4268 return bytes_available; 4269 } 4270 4271 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4272 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4273 size_t bytes_available = m_stderr_data.size(); 4274 if (bytes_available > 0) { 4275 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4276 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4277 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4278 if (bytes_available > buf_size) { 4279 memcpy(buf, m_stderr_data.c_str(), buf_size); 4280 m_stderr_data.erase(0, buf_size); 4281 bytes_available = buf_size; 4282 } else { 4283 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4284 m_stderr_data.clear(); 4285 } 4286 } 4287 return bytes_available; 4288 } 4289 4290 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4291 size_t src_len) { 4292 Process *process = (Process *)baton; 4293 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4294 } 4295 4296 class IOHandlerProcessSTDIO : public IOHandler { 4297 public: 4298 IOHandlerProcessSTDIO(Process *process, int write_fd) 4299 : IOHandler(process->GetTarget().GetDebugger(), 4300 IOHandler::Type::ProcessIO), 4301 m_process(process), 4302 m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false), 4303 m_write_file(write_fd, File::eOpenOptionWriteOnly, false) { 4304 m_pipe.CreateNew(false); 4305 } 4306 4307 ~IOHandlerProcessSTDIO() override = default; 4308 4309 // Each IOHandler gets to run until it is done. It should read data from the 4310 // "in" and place output into "out" and "err and return when done. 4311 void Run() override { 4312 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4313 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4314 SetIsDone(true); 4315 return; 4316 } 4317 4318 SetIsDone(false); 4319 const int read_fd = m_read_file.GetDescriptor(); 4320 Terminal terminal(read_fd); 4321 TerminalState terminal_state(terminal, false); 4322 // FIXME: error handling? 4323 llvm::consumeError(terminal.SetCanonical(false)); 4324 llvm::consumeError(terminal.SetEcho(false)); 4325 // FD_ZERO, FD_SET are not supported on windows 4326 #ifndef _WIN32 4327 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4328 m_is_running = true; 4329 while (!GetIsDone()) { 4330 SelectHelper select_helper; 4331 select_helper.FDSetRead(read_fd); 4332 select_helper.FDSetRead(pipe_read_fd); 4333 Status error = select_helper.Select(); 4334 4335 if (error.Fail()) { 4336 SetIsDone(true); 4337 } else { 4338 char ch = 0; 4339 size_t n; 4340 if (select_helper.FDIsSetRead(read_fd)) { 4341 n = 1; 4342 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4343 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4344 SetIsDone(true); 4345 } else 4346 SetIsDone(true); 4347 } 4348 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4349 size_t bytes_read; 4350 // Consume the interrupt byte 4351 Status error = m_pipe.Read(&ch, 1, bytes_read); 4352 if (error.Success()) { 4353 switch (ch) { 4354 case 'q': 4355 SetIsDone(true); 4356 break; 4357 case 'i': 4358 if (StateIsRunningState(m_process->GetState())) 4359 m_process->SendAsyncInterrupt(); 4360 break; 4361 } 4362 } 4363 } 4364 } 4365 } 4366 m_is_running = false; 4367 #endif 4368 } 4369 4370 void Cancel() override { 4371 SetIsDone(true); 4372 // Only write to our pipe to cancel if we are in 4373 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4374 // is being run from the command interpreter: 4375 // 4376 // (lldb) step_process_thousands_of_times 4377 // 4378 // In this case the command interpreter will be in the middle of handling 4379 // the command and if the process pushes and pops the IOHandler thousands 4380 // of times, we can end up writing to m_pipe without ever consuming the 4381 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4382 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4383 if (m_is_running) { 4384 char ch = 'q'; // Send 'q' for quit 4385 size_t bytes_written = 0; 4386 m_pipe.Write(&ch, 1, bytes_written); 4387 } 4388 } 4389 4390 bool Interrupt() override { 4391 // Do only things that are safe to do in an interrupt context (like in a 4392 // SIGINT handler), like write 1 byte to a file descriptor. This will 4393 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4394 // that was written to the pipe and then call 4395 // m_process->SendAsyncInterrupt() from a much safer location in code. 4396 if (m_active) { 4397 char ch = 'i'; // Send 'i' for interrupt 4398 size_t bytes_written = 0; 4399 Status result = m_pipe.Write(&ch, 1, bytes_written); 4400 return result.Success(); 4401 } else { 4402 // This IOHandler might be pushed on the stack, but not being run 4403 // currently so do the right thing if we aren't actively watching for 4404 // STDIN by sending the interrupt to the process. Otherwise the write to 4405 // the pipe above would do nothing. This can happen when the command 4406 // interpreter is running and gets a "expression ...". It will be on the 4407 // IOHandler thread and sending the input is complete to the delegate 4408 // which will cause the expression to run, which will push the process IO 4409 // handler, but not run it. 4410 4411 if (StateIsRunningState(m_process->GetState())) { 4412 m_process->SendAsyncInterrupt(); 4413 return true; 4414 } 4415 } 4416 return false; 4417 } 4418 4419 void GotEOF() override {} 4420 4421 protected: 4422 Process *m_process; 4423 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4424 NativeFile m_write_file; // Write to this file (usually the primary pty for 4425 // getting io to debuggee) 4426 Pipe m_pipe; 4427 std::atomic<bool> m_is_running{false}; 4428 }; 4429 4430 void Process::SetSTDIOFileDescriptor(int fd) { 4431 // First set up the Read Thread for reading/handling process I/O 4432 m_stdio_communication.SetConnection( 4433 std::make_unique<ConnectionFileDescriptor>(fd, true)); 4434 if (m_stdio_communication.IsConnected()) { 4435 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4436 STDIOReadThreadBytesReceived, this); 4437 m_stdio_communication.StartReadThread(); 4438 4439 // Now read thread is set up, set up input reader. 4440 4441 if (!m_process_input_reader) 4442 m_process_input_reader = 4443 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4444 } 4445 } 4446 4447 bool Process::ProcessIOHandlerIsActive() { 4448 IOHandlerSP io_handler_sp(m_process_input_reader); 4449 if (io_handler_sp) 4450 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4451 return false; 4452 } 4453 bool Process::PushProcessIOHandler() { 4454 IOHandlerSP io_handler_sp(m_process_input_reader); 4455 if (io_handler_sp) { 4456 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4457 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4458 4459 io_handler_sp->SetIsDone(false); 4460 // If we evaluate an utility function, then we don't cancel the current 4461 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4462 // existing IOHandler that potentially provides the user interface (e.g. 4463 // the IOHandler for Editline). 4464 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4465 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4466 cancel_top_handler); 4467 return true; 4468 } 4469 return false; 4470 } 4471 4472 bool Process::PopProcessIOHandler() { 4473 IOHandlerSP io_handler_sp(m_process_input_reader); 4474 if (io_handler_sp) 4475 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4476 return false; 4477 } 4478 4479 // The process needs to know about installed plug-ins 4480 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4481 4482 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4483 4484 namespace { 4485 // RestorePlanState is used to record the "is private", "is controlling" and 4486 // "okay 4487 // to discard" fields of the plan we are running, and reset it on Clean or on 4488 // destruction. It will only reset the state once, so you can call Clean and 4489 // then monkey with the state and it won't get reset on you again. 4490 4491 class RestorePlanState { 4492 public: 4493 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4494 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4495 if (m_thread_plan_sp) { 4496 m_private = m_thread_plan_sp->GetPrivate(); 4497 m_is_controlling = m_thread_plan_sp->IsControllingPlan(); 4498 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4499 } 4500 } 4501 4502 ~RestorePlanState() { Clean(); } 4503 4504 void Clean() { 4505 if (!m_already_reset && m_thread_plan_sp) { 4506 m_already_reset = true; 4507 m_thread_plan_sp->SetPrivate(m_private); 4508 m_thread_plan_sp->SetIsControllingPlan(m_is_controlling); 4509 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4510 } 4511 } 4512 4513 private: 4514 lldb::ThreadPlanSP m_thread_plan_sp; 4515 bool m_already_reset; 4516 bool m_private; 4517 bool m_is_controlling; 4518 bool m_okay_to_discard; 4519 }; 4520 } // anonymous namespace 4521 4522 static microseconds 4523 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4524 const milliseconds default_one_thread_timeout(250); 4525 4526 // If the overall wait is forever, then we don't need to worry about it. 4527 if (!options.GetTimeout()) { 4528 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4529 : default_one_thread_timeout; 4530 } 4531 4532 // If the one thread timeout is set, use it. 4533 if (options.GetOneThreadTimeout()) 4534 return *options.GetOneThreadTimeout(); 4535 4536 // Otherwise use half the total timeout, bounded by the 4537 // default_one_thread_timeout. 4538 return std::min<microseconds>(default_one_thread_timeout, 4539 *options.GetTimeout() / 2); 4540 } 4541 4542 static Timeout<std::micro> 4543 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4544 bool before_first_timeout) { 4545 // If we are going to run all threads the whole time, or if we are only going 4546 // to run one thread, we can just return the overall timeout. 4547 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4548 return options.GetTimeout(); 4549 4550 if (before_first_timeout) 4551 return GetOneThreadExpressionTimeout(options); 4552 4553 if (!options.GetTimeout()) 4554 return llvm::None; 4555 else 4556 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4557 } 4558 4559 static llvm::Optional<ExpressionResults> 4560 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, 4561 RestorePlanState &restorer, const EventSP &event_sp, 4562 EventSP &event_to_broadcast_sp, 4563 const EvaluateExpressionOptions &options, 4564 bool handle_interrupts) { 4565 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4566 4567 ThreadSP thread_sp = thread_plan_sp->GetTarget() 4568 .GetProcessSP() 4569 ->GetThreadList() 4570 .FindThreadByID(thread_id); 4571 if (!thread_sp) { 4572 LLDB_LOG(log, 4573 "The thread on which we were running the " 4574 "expression: tid = {0}, exited while " 4575 "the expression was running.", 4576 thread_id); 4577 return eExpressionThreadVanished; 4578 } 4579 4580 ThreadPlanSP plan = thread_sp->GetCompletedPlan(); 4581 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4582 LLDB_LOG(log, "execution completed successfully"); 4583 4584 // Restore the plan state so it will get reported as intended when we are 4585 // done. 4586 restorer.Clean(); 4587 return eExpressionCompleted; 4588 } 4589 4590 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4591 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4592 stop_info_sp->ShouldNotify(event_sp.get())) { 4593 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4594 if (!options.DoesIgnoreBreakpoints()) { 4595 // Restore the plan state and then force Private to false. We are going 4596 // to stop because of this plan so we need it to become a public plan or 4597 // it won't report correctly when we continue to its termination later 4598 // on. 4599 restorer.Clean(); 4600 thread_plan_sp->SetPrivate(false); 4601 event_to_broadcast_sp = event_sp; 4602 } 4603 return eExpressionHitBreakpoint; 4604 } 4605 4606 if (!handle_interrupts && 4607 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4608 return llvm::None; 4609 4610 LLDB_LOG(log, "thread plan did not successfully complete"); 4611 if (!options.DoesUnwindOnError()) 4612 event_to_broadcast_sp = event_sp; 4613 return eExpressionInterrupted; 4614 } 4615 4616 ExpressionResults 4617 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4618 lldb::ThreadPlanSP &thread_plan_sp, 4619 const EvaluateExpressionOptions &options, 4620 DiagnosticManager &diagnostic_manager) { 4621 ExpressionResults return_value = eExpressionSetupError; 4622 4623 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4624 4625 if (!thread_plan_sp) { 4626 diagnostic_manager.PutString( 4627 eDiagnosticSeverityError, 4628 "RunThreadPlan called with empty thread plan."); 4629 return eExpressionSetupError; 4630 } 4631 4632 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4633 diagnostic_manager.PutString( 4634 eDiagnosticSeverityError, 4635 "RunThreadPlan called with an invalid thread plan."); 4636 return eExpressionSetupError; 4637 } 4638 4639 if (exe_ctx.GetProcessPtr() != this) { 4640 diagnostic_manager.PutString(eDiagnosticSeverityError, 4641 "RunThreadPlan called on wrong process."); 4642 return eExpressionSetupError; 4643 } 4644 4645 Thread *thread = exe_ctx.GetThreadPtr(); 4646 if (thread == nullptr) { 4647 diagnostic_manager.PutString(eDiagnosticSeverityError, 4648 "RunThreadPlan called with invalid thread."); 4649 return eExpressionSetupError; 4650 } 4651 4652 // Record the thread's id so we can tell when a thread we were using 4653 // to run the expression exits during the expression evaluation. 4654 lldb::tid_t expr_thread_id = thread->GetID(); 4655 4656 // We need to change some of the thread plan attributes for the thread plan 4657 // runner. This will restore them when we are done: 4658 4659 RestorePlanState thread_plan_restorer(thread_plan_sp); 4660 4661 // We rely on the thread plan we are running returning "PlanCompleted" if 4662 // when it successfully completes. For that to be true the plan can't be 4663 // private - since private plans suppress themselves in the GetCompletedPlan 4664 // call. 4665 4666 thread_plan_sp->SetPrivate(false); 4667 4668 // The plans run with RunThreadPlan also need to be terminal controlling plans 4669 // or when they are done we will end up asking the plan above us whether we 4670 // should stop, which may give the wrong answer. 4671 4672 thread_plan_sp->SetIsControllingPlan(true); 4673 thread_plan_sp->SetOkayToDiscard(false); 4674 4675 // If we are running some utility expression for LLDB, we now have to mark 4676 // this in the ProcesModID of this process. This RAII takes care of marking 4677 // and reverting the mark it once we are done running the expression. 4678 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4679 4680 if (m_private_state.GetValue() != eStateStopped) { 4681 diagnostic_manager.PutString( 4682 eDiagnosticSeverityError, 4683 "RunThreadPlan called while the private state was not stopped."); 4684 return eExpressionSetupError; 4685 } 4686 4687 // Save the thread & frame from the exe_ctx for restoration after we run 4688 const uint32_t thread_idx_id = thread->GetIndexID(); 4689 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4690 if (!selected_frame_sp) { 4691 thread->SetSelectedFrame(nullptr); 4692 selected_frame_sp = thread->GetSelectedFrame(); 4693 if (!selected_frame_sp) { 4694 diagnostic_manager.Printf( 4695 eDiagnosticSeverityError, 4696 "RunThreadPlan called without a selected frame on thread %d", 4697 thread_idx_id); 4698 return eExpressionSetupError; 4699 } 4700 } 4701 4702 // Make sure the timeout values make sense. The one thread timeout needs to 4703 // be smaller than the overall timeout. 4704 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4705 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4706 diagnostic_manager.PutString(eDiagnosticSeverityError, 4707 "RunThreadPlan called with one thread " 4708 "timeout greater than total timeout"); 4709 return eExpressionSetupError; 4710 } 4711 4712 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4713 4714 // N.B. Running the target may unset the currently selected thread and frame. 4715 // We don't want to do that either, so we should arrange to reset them as 4716 // well. 4717 4718 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4719 4720 uint32_t selected_tid; 4721 StackID selected_stack_id; 4722 if (selected_thread_sp) { 4723 selected_tid = selected_thread_sp->GetIndexID(); 4724 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4725 } else { 4726 selected_tid = LLDB_INVALID_THREAD_ID; 4727 } 4728 4729 HostThread backup_private_state_thread; 4730 lldb::StateType old_state = eStateInvalid; 4731 lldb::ThreadPlanSP stopper_base_plan_sp; 4732 4733 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4734 LIBLLDB_LOG_PROCESS)); 4735 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4736 // Yikes, we are running on the private state thread! So we can't wait for 4737 // public events on this thread, since we are the thread that is generating 4738 // public events. The simplest thing to do is to spin up a temporary thread 4739 // to handle private state thread events while we are fielding public 4740 // events here. 4741 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 4742 "another state thread to handle the events."); 4743 4744 backup_private_state_thread = m_private_state_thread; 4745 4746 // One other bit of business: we want to run just this thread plan and 4747 // anything it pushes, and then stop, returning control here. But in the 4748 // normal course of things, the plan above us on the stack would be given a 4749 // shot at the stop event before deciding to stop, and we don't want that. 4750 // So we insert a "stopper" base plan on the stack before the plan we want 4751 // to run. Since base plans always stop and return control to the user, 4752 // that will do just what we want. 4753 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4754 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4755 // Have to make sure our public state is stopped, since otherwise the 4756 // reporting logic below doesn't work correctly. 4757 old_state = m_public_state.GetValue(); 4758 m_public_state.SetValueNoLock(eStateStopped); 4759 4760 // Now spin up the private state thread: 4761 StartPrivateStateThread(true); 4762 } 4763 4764 thread->QueueThreadPlan( 4765 thread_plan_sp, false); // This used to pass "true" does that make sense? 4766 4767 if (options.GetDebug()) { 4768 // In this case, we aren't actually going to run, we just want to stop 4769 // right away. Flush this thread so we will refetch the stacks and show the 4770 // correct backtrace. 4771 // FIXME: To make this prettier we should invent some stop reason for this, 4772 // but that 4773 // is only cosmetic, and this functionality is only of use to lldb 4774 // developers who can live with not pretty... 4775 thread->Flush(); 4776 return eExpressionStoppedForDebug; 4777 } 4778 4779 ListenerSP listener_sp( 4780 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4781 4782 lldb::EventSP event_to_broadcast_sp; 4783 4784 { 4785 // This process event hijacker Hijacks the Public events and its destructor 4786 // makes sure that the process events get restored on exit to the function. 4787 // 4788 // If the event needs to propagate beyond the hijacker (e.g., the process 4789 // exits during execution), then the event is put into 4790 // event_to_broadcast_sp for rebroadcasting. 4791 4792 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4793 4794 if (log) { 4795 StreamString s; 4796 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4797 LLDB_LOGF(log, 4798 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4799 " to run thread plan \"%s\".", 4800 thread_idx_id, expr_thread_id, s.GetData()); 4801 } 4802 4803 bool got_event; 4804 lldb::EventSP event_sp; 4805 lldb::StateType stop_state = lldb::eStateInvalid; 4806 4807 bool before_first_timeout = true; // This is set to false the first time 4808 // that we have to halt the target. 4809 bool do_resume = true; 4810 bool handle_running_event = true; 4811 4812 // This is just for accounting: 4813 uint32_t num_resumes = 0; 4814 4815 // If we are going to run all threads the whole time, or if we are only 4816 // going to run one thread, then we don't need the first timeout. So we 4817 // pretend we are after the first timeout already. 4818 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4819 before_first_timeout = false; 4820 4821 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 4822 options.GetStopOthers(), options.GetTryAllThreads(), 4823 before_first_timeout); 4824 4825 // This isn't going to work if there are unfetched events on the queue. Are 4826 // there cases where we might want to run the remaining events here, and 4827 // then try to call the function? That's probably being too tricky for our 4828 // own good. 4829 4830 Event *other_events = listener_sp->PeekAtNextEvent(); 4831 if (other_events != nullptr) { 4832 diagnostic_manager.PutString( 4833 eDiagnosticSeverityError, 4834 "RunThreadPlan called with pending events on the queue."); 4835 return eExpressionSetupError; 4836 } 4837 4838 // We also need to make sure that the next event is delivered. We might be 4839 // calling a function as part of a thread plan, in which case the last 4840 // delivered event could be the running event, and we don't want event 4841 // coalescing to cause us to lose OUR running event... 4842 ForceNextEventDelivery(); 4843 4844 // This while loop must exit out the bottom, there's cleanup that we need to do 4845 // when we are done. So don't call return anywhere within it. 4846 4847 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4848 // It's pretty much impossible to write test cases for things like: One 4849 // thread timeout expires, I go to halt, but the process already stopped on 4850 // the function call stop breakpoint. Turning on this define will make us 4851 // not fetch the first event till after the halt. So if you run a quick 4852 // function, it will have completed, and the completion event will be 4853 // waiting, when you interrupt for halt. The expression evaluation should 4854 // still succeed. 4855 bool miss_first_event = true; 4856 #endif 4857 while (true) { 4858 // We usually want to resume the process if we get to the top of the 4859 // loop. The only exception is if we get two running events with no 4860 // intervening stop, which can happen, we will just wait for then next 4861 // stop event. 4862 LLDB_LOGF(log, 4863 "Top of while loop: do_resume: %i handle_running_event: %i " 4864 "before_first_timeout: %i.", 4865 do_resume, handle_running_event, before_first_timeout); 4866 4867 if (do_resume || handle_running_event) { 4868 // Do the initial resume and wait for the running event before going 4869 // further. 4870 4871 if (do_resume) { 4872 num_resumes++; 4873 Status resume_error = PrivateResume(); 4874 if (!resume_error.Success()) { 4875 diagnostic_manager.Printf( 4876 eDiagnosticSeverityError, 4877 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 4878 resume_error.AsCString()); 4879 return_value = eExpressionSetupError; 4880 break; 4881 } 4882 } 4883 4884 got_event = 4885 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 4886 if (!got_event) { 4887 LLDB_LOGF(log, 4888 "Process::RunThreadPlan(): didn't get any event after " 4889 "resume %" PRIu32 ", exiting.", 4890 num_resumes); 4891 4892 diagnostic_manager.Printf(eDiagnosticSeverityError, 4893 "didn't get any event after resume %" PRIu32 4894 ", exiting.", 4895 num_resumes); 4896 return_value = eExpressionSetupError; 4897 break; 4898 } 4899 4900 stop_state = 4901 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4902 4903 if (stop_state != eStateRunning) { 4904 bool restarted = false; 4905 4906 if (stop_state == eStateStopped) { 4907 restarted = Process::ProcessEventData::GetRestartedFromEvent( 4908 event_sp.get()); 4909 LLDB_LOGF( 4910 log, 4911 "Process::RunThreadPlan(): didn't get running event after " 4912 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 4913 "handle_running_event: %i).", 4914 num_resumes, StateAsCString(stop_state), restarted, do_resume, 4915 handle_running_event); 4916 } 4917 4918 if (restarted) { 4919 // This is probably an overabundance of caution, I don't think I 4920 // should ever get a stopped & restarted event here. But if I do, 4921 // the best thing is to Halt and then get out of here. 4922 const bool clear_thread_plans = false; 4923 const bool use_run_lock = false; 4924 Halt(clear_thread_plans, use_run_lock); 4925 } 4926 4927 diagnostic_manager.Printf( 4928 eDiagnosticSeverityError, 4929 "didn't get running event after initial resume, got %s instead.", 4930 StateAsCString(stop_state)); 4931 return_value = eExpressionSetupError; 4932 break; 4933 } 4934 4935 if (log) 4936 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 4937 // We need to call the function synchronously, so spin waiting for it 4938 // to return. If we get interrupted while executing, we're going to 4939 // lose our context, and won't be able to gather the result at this 4940 // point. We set the timeout AFTER the resume, since the resume takes 4941 // some time and we don't want to charge that to the timeout. 4942 } else { 4943 if (log) 4944 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 4945 } 4946 4947 do_resume = true; 4948 handle_running_event = true; 4949 4950 // Now wait for the process to stop again: 4951 event_sp.reset(); 4952 4953 Timeout<std::micro> timeout = 4954 GetExpressionTimeout(options, before_first_timeout); 4955 if (log) { 4956 if (timeout) { 4957 auto now = system_clock::now(); 4958 LLDB_LOGF(log, 4959 "Process::RunThreadPlan(): about to wait - now is %s - " 4960 "endpoint is %s", 4961 llvm::to_string(now).c_str(), 4962 llvm::to_string(now + *timeout).c_str()); 4963 } else { 4964 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 4965 } 4966 } 4967 4968 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4969 // See comment above... 4970 if (miss_first_event) { 4971 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 4972 miss_first_event = false; 4973 got_event = false; 4974 } else 4975 #endif 4976 got_event = listener_sp->GetEvent(event_sp, timeout); 4977 4978 if (got_event) { 4979 if (event_sp) { 4980 bool keep_going = false; 4981 if (event_sp->GetType() == eBroadcastBitInterrupt) { 4982 const bool clear_thread_plans = false; 4983 const bool use_run_lock = false; 4984 Halt(clear_thread_plans, use_run_lock); 4985 return_value = eExpressionInterrupted; 4986 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 4987 "execution halted by user interrupt."); 4988 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 4989 "eBroadcastBitInterrupted, exiting."); 4990 break; 4991 } else { 4992 stop_state = 4993 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4994 LLDB_LOGF(log, 4995 "Process::RunThreadPlan(): in while loop, got event: %s.", 4996 StateAsCString(stop_state)); 4997 4998 switch (stop_state) { 4999 case lldb::eStateStopped: { 5000 if (Process::ProcessEventData::GetRestartedFromEvent( 5001 event_sp.get())) { 5002 // If we were restarted, we just need to go back up to fetch 5003 // another event. 5004 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 5005 "restart, so we'll continue waiting."); 5006 keep_going = true; 5007 do_resume = false; 5008 handle_running_event = true; 5009 } else { 5010 const bool handle_interrupts = true; 5011 return_value = *HandleStoppedEvent( 5012 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5013 event_sp, event_to_broadcast_sp, options, 5014 handle_interrupts); 5015 if (return_value == eExpressionThreadVanished) 5016 keep_going = false; 5017 } 5018 } break; 5019 5020 case lldb::eStateRunning: 5021 // This shouldn't really happen, but sometimes we do get two 5022 // running events without an intervening stop, and in that case 5023 // we should just go back to waiting for the stop. 5024 do_resume = false; 5025 keep_going = true; 5026 handle_running_event = false; 5027 break; 5028 5029 default: 5030 LLDB_LOGF(log, 5031 "Process::RunThreadPlan(): execution stopped with " 5032 "unexpected state: %s.", 5033 StateAsCString(stop_state)); 5034 5035 if (stop_state == eStateExited) 5036 event_to_broadcast_sp = event_sp; 5037 5038 diagnostic_manager.PutString( 5039 eDiagnosticSeverityError, 5040 "execution stopped with unexpected state."); 5041 return_value = eExpressionInterrupted; 5042 break; 5043 } 5044 } 5045 5046 if (keep_going) 5047 continue; 5048 else 5049 break; 5050 } else { 5051 if (log) 5052 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5053 "the event pointer was null. How odd..."); 5054 return_value = eExpressionInterrupted; 5055 break; 5056 } 5057 } else { 5058 // If we didn't get an event that means we've timed out... We will 5059 // interrupt the process here. Depending on what we were asked to do 5060 // we will either exit, or try with all threads running for the same 5061 // timeout. 5062 5063 if (log) { 5064 if (options.GetTryAllThreads()) { 5065 if (before_first_timeout) { 5066 LLDB_LOG(log, 5067 "Running function with one thread timeout timed out."); 5068 } else 5069 LLDB_LOG(log, "Restarting function with all threads enabled and " 5070 "timeout: {0} timed out, abandoning execution.", 5071 timeout); 5072 } else 5073 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5074 "abandoning execution.", 5075 timeout); 5076 } 5077 5078 // It is possible that between the time we issued the Halt, and we get 5079 // around to calling Halt the target could have stopped. That's fine, 5080 // Halt will figure that out and send the appropriate Stopped event. 5081 // BUT it is also possible that we stopped & restarted (e.g. hit a 5082 // signal with "stop" set to false.) In 5083 // that case, we'll get the stopped & restarted event, and we should go 5084 // back to waiting for the Halt's stopped event. That's what this 5085 // while loop does. 5086 5087 bool back_to_top = true; 5088 uint32_t try_halt_again = 0; 5089 bool do_halt = true; 5090 const uint32_t num_retries = 5; 5091 while (try_halt_again < num_retries) { 5092 Status halt_error; 5093 if (do_halt) { 5094 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5095 const bool clear_thread_plans = false; 5096 const bool use_run_lock = false; 5097 Halt(clear_thread_plans, use_run_lock); 5098 } 5099 if (halt_error.Success()) { 5100 if (log) 5101 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5102 5103 got_event = 5104 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5105 5106 if (got_event) { 5107 stop_state = 5108 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5109 if (log) { 5110 LLDB_LOGF(log, 5111 "Process::RunThreadPlan(): Stopped with event: %s", 5112 StateAsCString(stop_state)); 5113 if (stop_state == lldb::eStateStopped && 5114 Process::ProcessEventData::GetInterruptedFromEvent( 5115 event_sp.get())) 5116 log->PutCString(" Event was the Halt interruption event."); 5117 } 5118 5119 if (stop_state == lldb::eStateStopped) { 5120 if (Process::ProcessEventData::GetRestartedFromEvent( 5121 event_sp.get())) { 5122 if (log) 5123 log->PutCString("Process::RunThreadPlan(): Went to halt " 5124 "but got a restarted event, there must be " 5125 "an un-restarted stopped event so try " 5126 "again... " 5127 "Exiting wait loop."); 5128 try_halt_again++; 5129 do_halt = false; 5130 continue; 5131 } 5132 5133 // Between the time we initiated the Halt and the time we 5134 // delivered it, the process could have already finished its 5135 // job. Check that here: 5136 const bool handle_interrupts = false; 5137 if (auto result = HandleStoppedEvent( 5138 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5139 event_sp, event_to_broadcast_sp, options, 5140 handle_interrupts)) { 5141 return_value = *result; 5142 back_to_top = false; 5143 break; 5144 } 5145 5146 if (!options.GetTryAllThreads()) { 5147 if (log) 5148 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5149 "was false, we stopped so now we're " 5150 "quitting."); 5151 return_value = eExpressionInterrupted; 5152 back_to_top = false; 5153 break; 5154 } 5155 5156 if (before_first_timeout) { 5157 // Set all the other threads to run, and return to the top of 5158 // the loop, which will continue; 5159 before_first_timeout = false; 5160 thread_plan_sp->SetStopOthers(false); 5161 if (log) 5162 log->PutCString( 5163 "Process::RunThreadPlan(): about to resume."); 5164 5165 back_to_top = true; 5166 break; 5167 } else { 5168 // Running all threads failed, so return Interrupted. 5169 if (log) 5170 log->PutCString("Process::RunThreadPlan(): running all " 5171 "threads timed out."); 5172 return_value = eExpressionInterrupted; 5173 back_to_top = false; 5174 break; 5175 } 5176 } 5177 } else { 5178 if (log) 5179 log->PutCString("Process::RunThreadPlan(): halt said it " 5180 "succeeded, but I got no event. " 5181 "I'm getting out of here passing Interrupted."); 5182 return_value = eExpressionInterrupted; 5183 back_to_top = false; 5184 break; 5185 } 5186 } else { 5187 try_halt_again++; 5188 continue; 5189 } 5190 } 5191 5192 if (!back_to_top || try_halt_again > num_retries) 5193 break; 5194 else 5195 continue; 5196 } 5197 } // END WAIT LOOP 5198 5199 // If we had to start up a temporary private state thread to run this 5200 // thread plan, shut it down now. 5201 if (backup_private_state_thread.IsJoinable()) { 5202 StopPrivateStateThread(); 5203 Status error; 5204 m_private_state_thread = backup_private_state_thread; 5205 if (stopper_base_plan_sp) { 5206 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5207 } 5208 if (old_state != eStateInvalid) 5209 m_public_state.SetValueNoLock(old_state); 5210 } 5211 5212 // If our thread went away on us, we need to get out of here without 5213 // doing any more work. We don't have to clean up the thread plan, that 5214 // will have happened when the Thread was destroyed. 5215 if (return_value == eExpressionThreadVanished) { 5216 return return_value; 5217 } 5218 5219 if (return_value != eExpressionCompleted && log) { 5220 // Print a backtrace into the log so we can figure out where we are: 5221 StreamString s; 5222 s.PutCString("Thread state after unsuccessful completion: \n"); 5223 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5224 log->PutString(s.GetString()); 5225 } 5226 // Restore the thread state if we are going to discard the plan execution. 5227 // There are three cases where this could happen: 1) The execution 5228 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5229 // was true 3) We got some other error, and discard_on_error was true 5230 bool should_unwind = (return_value == eExpressionInterrupted && 5231 options.DoesUnwindOnError()) || 5232 (return_value == eExpressionHitBreakpoint && 5233 options.DoesIgnoreBreakpoints()); 5234 5235 if (return_value == eExpressionCompleted || should_unwind) { 5236 thread_plan_sp->RestoreThreadState(); 5237 } 5238 5239 // Now do some processing on the results of the run: 5240 if (return_value == eExpressionInterrupted || 5241 return_value == eExpressionHitBreakpoint) { 5242 if (log) { 5243 StreamString s; 5244 if (event_sp) 5245 event_sp->Dump(&s); 5246 else { 5247 log->PutCString("Process::RunThreadPlan(): Stop event that " 5248 "interrupted us is NULL."); 5249 } 5250 5251 StreamString ts; 5252 5253 const char *event_explanation = nullptr; 5254 5255 do { 5256 if (!event_sp) { 5257 event_explanation = "<no event>"; 5258 break; 5259 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5260 event_explanation = "<user interrupt>"; 5261 break; 5262 } else { 5263 const Process::ProcessEventData *event_data = 5264 Process::ProcessEventData::GetEventDataFromEvent( 5265 event_sp.get()); 5266 5267 if (!event_data) { 5268 event_explanation = "<no event data>"; 5269 break; 5270 } 5271 5272 Process *process = event_data->GetProcessSP().get(); 5273 5274 if (!process) { 5275 event_explanation = "<no process>"; 5276 break; 5277 } 5278 5279 ThreadList &thread_list = process->GetThreadList(); 5280 5281 uint32_t num_threads = thread_list.GetSize(); 5282 uint32_t thread_index; 5283 5284 ts.Printf("<%u threads> ", num_threads); 5285 5286 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5287 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5288 5289 if (!thread) { 5290 ts.Printf("<?> "); 5291 continue; 5292 } 5293 5294 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5295 RegisterContext *register_context = 5296 thread->GetRegisterContext().get(); 5297 5298 if (register_context) 5299 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5300 else 5301 ts.Printf("[ip unknown] "); 5302 5303 // Show the private stop info here, the public stop info will be 5304 // from the last natural stop. 5305 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5306 if (stop_info_sp) { 5307 const char *stop_desc = stop_info_sp->GetDescription(); 5308 if (stop_desc) 5309 ts.PutCString(stop_desc); 5310 } 5311 ts.Printf(">"); 5312 } 5313 5314 event_explanation = ts.GetData(); 5315 } 5316 } while (false); 5317 5318 if (event_explanation) 5319 LLDB_LOGF(log, 5320 "Process::RunThreadPlan(): execution interrupted: %s %s", 5321 s.GetData(), event_explanation); 5322 else 5323 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5324 s.GetData()); 5325 } 5326 5327 if (should_unwind) { 5328 LLDB_LOGF(log, 5329 "Process::RunThreadPlan: ExecutionInterrupted - " 5330 "discarding thread plans up to %p.", 5331 static_cast<void *>(thread_plan_sp.get())); 5332 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5333 } else { 5334 LLDB_LOGF(log, 5335 "Process::RunThreadPlan: ExecutionInterrupted - for " 5336 "plan: %p not discarding.", 5337 static_cast<void *>(thread_plan_sp.get())); 5338 } 5339 } else if (return_value == eExpressionSetupError) { 5340 if (log) 5341 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5342 5343 if (options.DoesUnwindOnError()) { 5344 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5345 } 5346 } else { 5347 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5348 if (log) 5349 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5350 return_value = eExpressionCompleted; 5351 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5352 if (log) 5353 log->PutCString( 5354 "Process::RunThreadPlan(): thread plan was discarded"); 5355 return_value = eExpressionDiscarded; 5356 } else { 5357 if (log) 5358 log->PutCString( 5359 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5360 if (options.DoesUnwindOnError() && thread_plan_sp) { 5361 if (log) 5362 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5363 "'cause unwind_on_error is set."); 5364 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5365 } 5366 } 5367 } 5368 5369 // Thread we ran the function in may have gone away because we ran the 5370 // target Check that it's still there, and if it is put it back in the 5371 // context. Also restore the frame in the context if it is still present. 5372 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5373 if (thread) { 5374 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5375 } 5376 5377 // Also restore the current process'es selected frame & thread, since this 5378 // function calling may be done behind the user's back. 5379 5380 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5381 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5382 selected_stack_id.IsValid()) { 5383 // We were able to restore the selected thread, now restore the frame: 5384 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5385 StackFrameSP old_frame_sp = 5386 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5387 selected_stack_id); 5388 if (old_frame_sp) 5389 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5390 old_frame_sp.get()); 5391 } 5392 } 5393 } 5394 5395 // If the process exited during the run of the thread plan, notify everyone. 5396 5397 if (event_to_broadcast_sp) { 5398 if (log) 5399 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5400 BroadcastEvent(event_to_broadcast_sp); 5401 } 5402 5403 return return_value; 5404 } 5405 5406 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5407 const char *result_name = "<unknown>"; 5408 5409 switch (result) { 5410 case eExpressionCompleted: 5411 result_name = "eExpressionCompleted"; 5412 break; 5413 case eExpressionDiscarded: 5414 result_name = "eExpressionDiscarded"; 5415 break; 5416 case eExpressionInterrupted: 5417 result_name = "eExpressionInterrupted"; 5418 break; 5419 case eExpressionHitBreakpoint: 5420 result_name = "eExpressionHitBreakpoint"; 5421 break; 5422 case eExpressionSetupError: 5423 result_name = "eExpressionSetupError"; 5424 break; 5425 case eExpressionParseError: 5426 result_name = "eExpressionParseError"; 5427 break; 5428 case eExpressionResultUnavailable: 5429 result_name = "eExpressionResultUnavailable"; 5430 break; 5431 case eExpressionTimedOut: 5432 result_name = "eExpressionTimedOut"; 5433 break; 5434 case eExpressionStoppedForDebug: 5435 result_name = "eExpressionStoppedForDebug"; 5436 break; 5437 case eExpressionThreadVanished: 5438 result_name = "eExpressionThreadVanished"; 5439 } 5440 return result_name; 5441 } 5442 5443 void Process::GetStatus(Stream &strm) { 5444 const StateType state = GetState(); 5445 if (StateIsStoppedState(state, false)) { 5446 if (state == eStateExited) { 5447 int exit_status = GetExitStatus(); 5448 const char *exit_description = GetExitDescription(); 5449 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5450 GetID(), exit_status, exit_status, 5451 exit_description ? exit_description : ""); 5452 } else { 5453 if (state == eStateConnected) 5454 strm.Printf("Connected to remote target.\n"); 5455 else 5456 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5457 } 5458 } else { 5459 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5460 } 5461 } 5462 5463 size_t Process::GetThreadStatus(Stream &strm, 5464 bool only_threads_with_stop_reason, 5465 uint32_t start_frame, uint32_t num_frames, 5466 uint32_t num_frames_with_source, 5467 bool stop_format) { 5468 size_t num_thread_infos_dumped = 0; 5469 5470 // You can't hold the thread list lock while calling Thread::GetStatus. That 5471 // very well might run code (e.g. if we need it to get return values or 5472 // arguments.) For that to work the process has to be able to acquire it. 5473 // So instead copy the thread ID's, and look them up one by one: 5474 5475 uint32_t num_threads; 5476 std::vector<lldb::tid_t> thread_id_array; 5477 // Scope for thread list locker; 5478 { 5479 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5480 ThreadList &curr_thread_list = GetThreadList(); 5481 num_threads = curr_thread_list.GetSize(); 5482 uint32_t idx; 5483 thread_id_array.resize(num_threads); 5484 for (idx = 0; idx < num_threads; ++idx) 5485 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5486 } 5487 5488 for (uint32_t i = 0; i < num_threads; i++) { 5489 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5490 if (thread_sp) { 5491 if (only_threads_with_stop_reason) { 5492 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5493 if (!stop_info_sp || !stop_info_sp->IsValid()) 5494 continue; 5495 } 5496 thread_sp->GetStatus(strm, start_frame, num_frames, 5497 num_frames_with_source, 5498 stop_format); 5499 ++num_thread_infos_dumped; 5500 } else { 5501 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5502 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5503 " vanished while running Thread::GetStatus."); 5504 } 5505 } 5506 return num_thread_infos_dumped; 5507 } 5508 5509 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5510 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5511 } 5512 5513 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5514 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5515 region.GetByteSize()); 5516 } 5517 5518 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5519 void *baton) { 5520 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5521 } 5522 5523 bool Process::RunPreResumeActions() { 5524 bool result = true; 5525 while (!m_pre_resume_actions.empty()) { 5526 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5527 m_pre_resume_actions.pop_back(); 5528 bool this_result = action.callback(action.baton); 5529 if (result) 5530 result = this_result; 5531 } 5532 return result; 5533 } 5534 5535 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5536 5537 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5538 { 5539 PreResumeCallbackAndBaton element(callback, baton); 5540 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5541 if (found_iter != m_pre_resume_actions.end()) 5542 { 5543 m_pre_resume_actions.erase(found_iter); 5544 } 5545 } 5546 5547 ProcessRunLock &Process::GetRunLock() { 5548 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5549 return m_private_run_lock; 5550 else 5551 return m_public_run_lock; 5552 } 5553 5554 bool Process::CurrentThreadIsPrivateStateThread() 5555 { 5556 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5557 } 5558 5559 5560 void Process::Flush() { 5561 m_thread_list.Flush(); 5562 m_extended_thread_list.Flush(); 5563 m_extended_thread_stop_id = 0; 5564 m_queue_list.Clear(); 5565 m_queue_list_stop_id = 0; 5566 } 5567 5568 lldb::addr_t Process::GetCodeAddressMask() { 5569 if (m_code_address_mask == 0) { 5570 if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) { 5571 lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1); 5572 SetCodeAddressMask(address_mask); 5573 } 5574 } 5575 return m_code_address_mask; 5576 } 5577 5578 lldb::addr_t Process::GetDataAddressMask() { 5579 if (m_data_address_mask == 0) { 5580 if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) { 5581 lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1); 5582 SetDataAddressMask(address_mask); 5583 } 5584 } 5585 return m_data_address_mask; 5586 } 5587 5588 void Process::DidExec() { 5589 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5590 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5591 5592 Target &target = GetTarget(); 5593 target.CleanupProcess(); 5594 target.ClearModules(false); 5595 m_dynamic_checkers_up.reset(); 5596 m_abi_sp.reset(); 5597 m_system_runtime_up.reset(); 5598 m_os_up.reset(); 5599 m_dyld_up.reset(); 5600 m_jit_loaders_up.reset(); 5601 m_image_tokens.clear(); 5602 m_allocated_memory_cache.Clear(); 5603 { 5604 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5605 m_language_runtimes.clear(); 5606 } 5607 m_instrumentation_runtimes.clear(); 5608 m_thread_list.DiscardThreadPlans(); 5609 m_memory_cache.Clear(true); 5610 DoDidExec(); 5611 CompleteAttach(); 5612 // Flush the process (threads and all stack frames) after running 5613 // CompleteAttach() in case the dynamic loader loaded things in new 5614 // locations. 5615 Flush(); 5616 5617 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5618 // let the target know so it can do any cleanup it needs to. 5619 target.DidExec(); 5620 } 5621 5622 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5623 if (address == nullptr) { 5624 error.SetErrorString("Invalid address argument"); 5625 return LLDB_INVALID_ADDRESS; 5626 } 5627 5628 addr_t function_addr = LLDB_INVALID_ADDRESS; 5629 5630 addr_t addr = address->GetLoadAddress(&GetTarget()); 5631 std::map<addr_t, addr_t>::const_iterator iter = 5632 m_resolved_indirect_addresses.find(addr); 5633 if (iter != m_resolved_indirect_addresses.end()) { 5634 function_addr = (*iter).second; 5635 } else { 5636 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 5637 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5638 error.SetErrorStringWithFormat( 5639 "Unable to call resolver for indirect function %s", 5640 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5641 function_addr = LLDB_INVALID_ADDRESS; 5642 } else { 5643 if (ABISP abi_sp = GetABI()) 5644 function_addr = abi_sp->FixCodeAddress(function_addr); 5645 m_resolved_indirect_addresses.insert( 5646 std::pair<addr_t, addr_t>(addr, function_addr)); 5647 } 5648 } 5649 return function_addr; 5650 } 5651 5652 void Process::ModulesDidLoad(ModuleList &module_list) { 5653 // Inform the system runtime of the modified modules. 5654 SystemRuntime *sys_runtime = GetSystemRuntime(); 5655 if (sys_runtime) 5656 sys_runtime->ModulesDidLoad(module_list); 5657 5658 GetJITLoaders().ModulesDidLoad(module_list); 5659 5660 // Give the instrumentation runtimes a chance to be created before informing 5661 // them of the modified modules. 5662 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5663 m_instrumentation_runtimes); 5664 for (auto &runtime : m_instrumentation_runtimes) 5665 runtime.second->ModulesDidLoad(module_list); 5666 5667 // Give the language runtimes a chance to be created before informing them of 5668 // the modified modules. 5669 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 5670 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 5671 runtime->ModulesDidLoad(module_list); 5672 } 5673 5674 // If we don't have an operating system plug-in, try to load one since 5675 // loading shared libraries might cause a new one to try and load 5676 if (!m_os_up) 5677 LoadOperatingSystemPlugin(false); 5678 5679 // Inform the structured-data plugins of the modified modules. 5680 for (auto pair : m_structured_data_plugin_map) { 5681 if (pair.second) 5682 pair.second->ModulesDidLoad(*this, module_list); 5683 } 5684 } 5685 5686 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5687 const char *fmt, ...) { 5688 bool print_warning = true; 5689 5690 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5691 if (!stream_sp) 5692 return; 5693 5694 if (repeat_key != nullptr) { 5695 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5696 if (it == m_warnings_issued.end()) { 5697 m_warnings_issued[warning_type] = WarningsPointerSet(); 5698 m_warnings_issued[warning_type].insert(repeat_key); 5699 } else { 5700 if (it->second.find(repeat_key) != it->second.end()) { 5701 print_warning = false; 5702 } else { 5703 it->second.insert(repeat_key); 5704 } 5705 } 5706 } 5707 5708 if (print_warning) { 5709 va_list args; 5710 va_start(args, fmt); 5711 stream_sp->PrintfVarArg(fmt, args); 5712 va_end(args); 5713 } 5714 } 5715 5716 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5717 if (!GetWarningsOptimization()) 5718 return; 5719 if (!sc.module_sp) 5720 return; 5721 if (!sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5722 sc.function->GetIsOptimized()) { 5723 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5724 "%s was compiled with optimization - stepping may behave " 5725 "oddly; variables may not be available.\n", 5726 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5727 } 5728 } 5729 5730 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { 5731 if (!GetWarningsUnsupportedLanguage()) 5732 return; 5733 if (!sc.module_sp) 5734 return; 5735 LanguageType language = sc.GetLanguage(); 5736 if (language == eLanguageTypeUnknown) 5737 return; 5738 LanguageSet plugins = 5739 PluginManager::GetAllTypeSystemSupportedLanguagesForTypes(); 5740 if (!plugins[language]) { 5741 PrintWarning(Process::Warnings::eWarningsUnsupportedLanguage, 5742 sc.module_sp.get(), 5743 "This version of LLDB has no plugin for the language \"%s\". " 5744 "Inspection of frame variables will be limited.\n", 5745 Language::GetNameForLanguageType(language)); 5746 } 5747 } 5748 5749 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5750 info.Clear(); 5751 5752 PlatformSP platform_sp = GetTarget().GetPlatform(); 5753 if (!platform_sp) 5754 return false; 5755 5756 return platform_sp->GetProcessInfo(GetID(), info); 5757 } 5758 5759 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5760 ThreadCollectionSP threads; 5761 5762 const MemoryHistorySP &memory_history = 5763 MemoryHistory::FindPlugin(shared_from_this()); 5764 5765 if (!memory_history) { 5766 return threads; 5767 } 5768 5769 threads = std::make_shared<ThreadCollection>( 5770 memory_history->GetHistoryThreads(addr)); 5771 5772 return threads; 5773 } 5774 5775 InstrumentationRuntimeSP 5776 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5777 InstrumentationRuntimeCollection::iterator pos; 5778 pos = m_instrumentation_runtimes.find(type); 5779 if (pos == m_instrumentation_runtimes.end()) { 5780 return InstrumentationRuntimeSP(); 5781 } else 5782 return (*pos).second; 5783 } 5784 5785 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5786 const ArchSpec &arch, ModuleSpec &module_spec) { 5787 module_spec.Clear(); 5788 return false; 5789 } 5790 5791 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5792 m_image_tokens.push_back(image_ptr); 5793 return m_image_tokens.size() - 1; 5794 } 5795 5796 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5797 if (token < m_image_tokens.size()) 5798 return m_image_tokens[token]; 5799 return LLDB_INVALID_ADDRESS; 5800 } 5801 5802 void Process::ResetImageToken(size_t token) { 5803 if (token < m_image_tokens.size()) 5804 m_image_tokens[token] = LLDB_INVALID_ADDRESS; 5805 } 5806 5807 Address 5808 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5809 AddressRange range_bounds) { 5810 Target &target = GetTarget(); 5811 DisassemblerSP disassembler_sp; 5812 InstructionList *insn_list = nullptr; 5813 5814 Address retval = default_stop_addr; 5815 5816 if (!target.GetUseFastStepping()) 5817 return retval; 5818 if (!default_stop_addr.IsValid()) 5819 return retval; 5820 5821 const char *plugin_name = nullptr; 5822 const char *flavor = nullptr; 5823 disassembler_sp = Disassembler::DisassembleRange( 5824 target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds); 5825 if (disassembler_sp) 5826 insn_list = &disassembler_sp->GetInstructionList(); 5827 5828 if (insn_list == nullptr) { 5829 return retval; 5830 } 5831 5832 size_t insn_offset = 5833 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5834 if (insn_offset == UINT32_MAX) { 5835 return retval; 5836 } 5837 5838 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( 5839 insn_offset, false /* ignore_calls*/, nullptr); 5840 if (branch_index == UINT32_MAX) { 5841 return retval; 5842 } 5843 5844 if (branch_index > insn_offset) { 5845 Address next_branch_insn_address = 5846 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 5847 if (next_branch_insn_address.IsValid() && 5848 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 5849 retval = next_branch_insn_address; 5850 } 5851 } 5852 5853 return retval; 5854 } 5855 5856 Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr, 5857 MemoryRegionInfo &range_info) { 5858 if (const lldb::ABISP &abi = GetABI()) 5859 load_addr = abi->FixDataAddress(load_addr); 5860 return DoGetMemoryRegionInfo(load_addr, range_info); 5861 } 5862 5863 Status Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 5864 Status error; 5865 5866 lldb::addr_t range_end = 0; 5867 const lldb::ABISP &abi = GetABI(); 5868 5869 region_list.clear(); 5870 do { 5871 lldb_private::MemoryRegionInfo region_info; 5872 error = GetMemoryRegionInfo(range_end, region_info); 5873 // GetMemoryRegionInfo should only return an error if it is unimplemented. 5874 if (error.Fail()) { 5875 region_list.clear(); 5876 break; 5877 } 5878 5879 // We only check the end address, not start and end, because we assume that 5880 // the start will not have non-address bits until the first unmappable 5881 // region. We will have exited the loop by that point because the previous 5882 // region, the last mappable region, will have non-address bits in its end 5883 // address. 5884 range_end = region_info.GetRange().GetRangeEnd(); 5885 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 5886 region_list.push_back(std::move(region_info)); 5887 } 5888 } while ( 5889 // For a process with no non-address bits, all address bits 5890 // set means the end of memory. 5891 range_end != LLDB_INVALID_ADDRESS && 5892 // If we have non-address bits and some are set then the end 5893 // is at or beyond the end of mappable memory. 5894 !(abi && (abi->FixDataAddress(range_end) != range_end))); 5895 5896 return error; 5897 } 5898 5899 Status 5900 Process::ConfigureStructuredData(ConstString type_name, 5901 const StructuredData::ObjectSP &config_sp) { 5902 // If you get this, the Process-derived class needs to implement a method to 5903 // enable an already-reported asynchronous structured data feature. See 5904 // ProcessGDBRemote for an example implementation over gdb-remote. 5905 return Status("unimplemented"); 5906 } 5907 5908 void Process::MapSupportedStructuredDataPlugins( 5909 const StructuredData::Array &supported_type_names) { 5910 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5911 5912 // Bail out early if there are no type names to map. 5913 if (supported_type_names.GetSize() == 0) { 5914 LLDB_LOGF(log, "Process::%s(): no structured data types supported", 5915 __FUNCTION__); 5916 return; 5917 } 5918 5919 // Convert StructuredData type names to ConstString instances. 5920 std::set<ConstString> const_type_names; 5921 5922 LLDB_LOGF(log, 5923 "Process::%s(): the process supports the following async " 5924 "structured data types:", 5925 __FUNCTION__); 5926 5927 supported_type_names.ForEach( 5928 [&const_type_names, &log](StructuredData::Object *object) { 5929 if (!object) { 5930 // Invalid - shouldn't be null objects in the array. 5931 return false; 5932 } 5933 5934 auto type_name = object->GetAsString(); 5935 if (!type_name) { 5936 // Invalid format - all type names should be strings. 5937 return false; 5938 } 5939 5940 const_type_names.insert(ConstString(type_name->GetValue())); 5941 LLDB_LOG(log, "- {0}", type_name->GetValue()); 5942 return true; 5943 }); 5944 5945 // For each StructuredDataPlugin, if the plugin handles any of the types in 5946 // the supported_type_names, map that type name to that plugin. Stop when 5947 // we've consumed all the type names. 5948 // FIXME: should we return an error if there are type names nobody 5949 // supports? 5950 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 5951 auto create_instance = 5952 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 5953 plugin_index); 5954 if (!create_instance) 5955 break; 5956 5957 // Create the plugin. 5958 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 5959 if (!plugin_sp) { 5960 // This plugin doesn't think it can work with the process. Move on to the 5961 // next. 5962 continue; 5963 } 5964 5965 // For any of the remaining type names, map any that this plugin supports. 5966 std::vector<ConstString> names_to_remove; 5967 for (auto &type_name : const_type_names) { 5968 if (plugin_sp->SupportsStructuredDataType(type_name)) { 5969 m_structured_data_plugin_map.insert( 5970 std::make_pair(type_name, plugin_sp)); 5971 names_to_remove.push_back(type_name); 5972 LLDB_LOG(log, "using plugin {0} for type name {1}", 5973 plugin_sp->GetPluginName(), type_name); 5974 } 5975 } 5976 5977 // Remove the type names that were consumed by this plugin. 5978 for (auto &type_name : names_to_remove) 5979 const_type_names.erase(type_name); 5980 } 5981 } 5982 5983 bool Process::RouteAsyncStructuredData( 5984 const StructuredData::ObjectSP object_sp) { 5985 // Nothing to do if there's no data. 5986 if (!object_sp) 5987 return false; 5988 5989 // The contract is this must be a dictionary, so we can look up the routing 5990 // key via the top-level 'type' string value within the dictionary. 5991 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 5992 if (!dictionary) 5993 return false; 5994 5995 // Grab the async structured type name (i.e. the feature/plugin name). 5996 ConstString type_name; 5997 if (!dictionary->GetValueForKeyAsString("type", type_name)) 5998 return false; 5999 6000 // Check if there's a plugin registered for this type name. 6001 auto find_it = m_structured_data_plugin_map.find(type_name); 6002 if (find_it == m_structured_data_plugin_map.end()) { 6003 // We don't have a mapping for this structured data type. 6004 return false; 6005 } 6006 6007 // Route the structured data to the plugin. 6008 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6009 return true; 6010 } 6011 6012 Status Process::UpdateAutomaticSignalFiltering() { 6013 // Default implementation does nothign. 6014 // No automatic signal filtering to speak of. 6015 return Status(); 6016 } 6017 6018 UtilityFunction *Process::GetLoadImageUtilityFunction( 6019 Platform *platform, 6020 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 6021 if (platform != GetTarget().GetPlatform().get()) 6022 return nullptr; 6023 llvm::call_once(m_dlopen_utility_func_flag_once, 6024 [&] { m_dlopen_utility_func_up = factory(); }); 6025 return m_dlopen_utility_func_up.get(); 6026 } 6027 6028 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() { 6029 if (!IsLiveDebugSession()) 6030 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6031 "Can't trace a non-live process."); 6032 return llvm::make_error<UnimplementedError>(); 6033 } 6034 6035 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 6036 addr_t &returned_func, 6037 bool trap_exceptions) { 6038 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 6039 if (thread == nullptr || address == nullptr) 6040 return false; 6041 6042 EvaluateExpressionOptions options; 6043 options.SetStopOthers(true); 6044 options.SetUnwindOnError(true); 6045 options.SetIgnoreBreakpoints(true); 6046 options.SetTryAllThreads(true); 6047 options.SetDebug(false); 6048 options.SetTimeout(GetUtilityExpressionTimeout()); 6049 options.SetTrapExceptions(trap_exceptions); 6050 6051 auto type_system_or_err = 6052 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 6053 if (!type_system_or_err) { 6054 llvm::consumeError(type_system_or_err.takeError()); 6055 return false; 6056 } 6057 CompilerType void_ptr_type = 6058 type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 6059 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 6060 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 6061 if (call_plan_sp) { 6062 DiagnosticManager diagnostics; 6063 6064 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6065 if (frame) { 6066 ExecutionContext exe_ctx; 6067 frame->CalculateExecutionContext(exe_ctx); 6068 ExpressionResults result = 6069 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6070 if (result == eExpressionCompleted) { 6071 returned_func = 6072 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6073 LLDB_INVALID_ADDRESS); 6074 6075 if (GetAddressByteSize() == 4) { 6076 if (returned_func == UINT32_MAX) 6077 return false; 6078 } else if (GetAddressByteSize() == 8) { 6079 if (returned_func == UINT64_MAX) 6080 return false; 6081 } 6082 return true; 6083 } 6084 } 6085 } 6086 6087 return false; 6088 } 6089 6090 llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() { 6091 Architecture *arch = GetTarget().GetArchitecturePlugin(); 6092 const MemoryTagManager *tag_manager = 6093 arch ? arch->GetMemoryTagManager() : nullptr; 6094 if (!arch || !tag_manager) { 6095 return llvm::createStringError( 6096 llvm::inconvertibleErrorCode(), 6097 "This architecture does not support memory tagging"); 6098 } 6099 6100 if (!SupportsMemoryTagging()) { 6101 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6102 "Process does not support memory tagging"); 6103 } 6104 6105 return tag_manager; 6106 } 6107 6108 llvm::Expected<std::vector<lldb::addr_t>> 6109 Process::ReadMemoryTags(lldb::addr_t addr, size_t len) { 6110 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6111 GetMemoryTagManager(); 6112 if (!tag_manager_or_err) 6113 return tag_manager_or_err.takeError(); 6114 6115 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6116 llvm::Expected<std::vector<uint8_t>> tag_data = 6117 DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType()); 6118 if (!tag_data) 6119 return tag_data.takeError(); 6120 6121 return tag_manager->UnpackTagsData(*tag_data, 6122 len / tag_manager->GetGranuleSize()); 6123 } 6124 6125 Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len, 6126 const std::vector<lldb::addr_t> &tags) { 6127 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6128 GetMemoryTagManager(); 6129 if (!tag_manager_or_err) 6130 return Status(tag_manager_or_err.takeError()); 6131 6132 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6133 llvm::Expected<std::vector<uint8_t>> packed_tags = 6134 tag_manager->PackTags(tags); 6135 if (!packed_tags) { 6136 return Status(packed_tags.takeError()); 6137 } 6138 6139 return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(), 6140 *packed_tags); 6141 } 6142