xref: /freebsd-src/contrib/llvm-project/lldb/source/Target/Process.cpp (revision 8cc087a1eee9ec1ca9f7ac1e63ad51bdb5a682eb)
1 //===-- Process.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <atomic>
10 #include <memory>
11 #include <mutex>
12 
13 #include "llvm/ADT/ScopeExit.h"
14 #include "llvm/Support/ScopedPrinter.h"
15 #include "llvm/Support/Threading.h"
16 
17 #include "lldb/Breakpoint/BreakpointLocation.h"
18 #include "lldb/Breakpoint/StoppointCallbackContext.h"
19 #include "lldb/Core/Debugger.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/StreamFile.h"
24 #include "lldb/Expression/DiagnosticManager.h"
25 #include "lldb/Expression/DynamicCheckerFunctions.h"
26 #include "lldb/Expression/UserExpression.h"
27 #include "lldb/Expression/UtilityFunction.h"
28 #include "lldb/Host/ConnectionFileDescriptor.h"
29 #include "lldb/Host/FileSystem.h"
30 #include "lldb/Host/Host.h"
31 #include "lldb/Host/HostInfo.h"
32 #include "lldb/Host/OptionParser.h"
33 #include "lldb/Host/Pipe.h"
34 #include "lldb/Host/Terminal.h"
35 #include "lldb/Host/ThreadLauncher.h"
36 #include "lldb/Interpreter/CommandInterpreter.h"
37 #include "lldb/Interpreter/OptionArgParser.h"
38 #include "lldb/Interpreter/OptionValueProperties.h"
39 #include "lldb/Symbol/Function.h"
40 #include "lldb/Symbol/Symbol.h"
41 #include "lldb/Target/ABI.h"
42 #include "lldb/Target/AssertFrameRecognizer.h"
43 #include "lldb/Target/DynamicLoader.h"
44 #include "lldb/Target/InstrumentationRuntime.h"
45 #include "lldb/Target/JITLoader.h"
46 #include "lldb/Target/JITLoaderList.h"
47 #include "lldb/Target/Language.h"
48 #include "lldb/Target/LanguageRuntime.h"
49 #include "lldb/Target/MemoryHistory.h"
50 #include "lldb/Target/MemoryRegionInfo.h"
51 #include "lldb/Target/OperatingSystem.h"
52 #include "lldb/Target/Platform.h"
53 #include "lldb/Target/Process.h"
54 #include "lldb/Target/RegisterContext.h"
55 #include "lldb/Target/StopInfo.h"
56 #include "lldb/Target/StructuredDataPlugin.h"
57 #include "lldb/Target/SystemRuntime.h"
58 #include "lldb/Target/Target.h"
59 #include "lldb/Target/TargetList.h"
60 #include "lldb/Target/Thread.h"
61 #include "lldb/Target/ThreadPlan.h"
62 #include "lldb/Target/ThreadPlanBase.h"
63 #include "lldb/Target/ThreadPlanCallFunction.h"
64 #include "lldb/Target/ThreadPlanStack.h"
65 #include "lldb/Target/UnixSignals.h"
66 #include "lldb/Utility/Event.h"
67 #include "lldb/Utility/Log.h"
68 #include "lldb/Utility/NameMatches.h"
69 #include "lldb/Utility/ProcessInfo.h"
70 #include "lldb/Utility/SelectHelper.h"
71 #include "lldb/Utility/State.h"
72 #include "lldb/Utility/Timer.h"
73 
74 using namespace lldb;
75 using namespace lldb_private;
76 using namespace std::chrono;
77 
78 // Comment out line below to disable memory caching, overriding the process
79 // setting target.process.disable-memory-cache
80 #define ENABLE_MEMORY_CACHING
81 
82 #ifdef ENABLE_MEMORY_CACHING
83 #define DISABLE_MEM_CACHE_DEFAULT false
84 #else
85 #define DISABLE_MEM_CACHE_DEFAULT true
86 #endif
87 
88 class ProcessOptionValueProperties
89     : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> {
90 public:
91   ProcessOptionValueProperties(ConstString name) : Cloneable(name) {}
92 
93   const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx,
94                                      bool will_modify,
95                                      uint32_t idx) const override {
96     // When getting the value for a key from the process options, we will
97     // always try and grab the setting from the current process if there is
98     // one. Else we just use the one from this instance.
99     if (exe_ctx) {
100       Process *process = exe_ctx->GetProcessPtr();
101       if (process) {
102         ProcessOptionValueProperties *instance_properties =
103             static_cast<ProcessOptionValueProperties *>(
104                 process->GetValueProperties().get());
105         if (this != instance_properties)
106           return instance_properties->ProtectedGetPropertyAtIndex(idx);
107       }
108     }
109     return ProtectedGetPropertyAtIndex(idx);
110   }
111 };
112 
113 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = {
114     {
115         eFollowParent,
116         "parent",
117         "Continue tracing the parent process and detach the child.",
118     },
119     {
120         eFollowChild,
121         "child",
122         "Trace the child process and detach the parent.",
123     },
124 };
125 
126 #define LLDB_PROPERTIES_process
127 #include "TargetProperties.inc"
128 
129 enum {
130 #define LLDB_PROPERTIES_process
131 #include "TargetPropertiesEnum.inc"
132   ePropertyExperimental,
133 };
134 
135 #define LLDB_PROPERTIES_process_experimental
136 #include "TargetProperties.inc"
137 
138 enum {
139 #define LLDB_PROPERTIES_process_experimental
140 #include "TargetPropertiesEnum.inc"
141 };
142 
143 class ProcessExperimentalOptionValueProperties
144     : public Cloneable<ProcessExperimentalOptionValueProperties,
145                        OptionValueProperties> {
146 public:
147   ProcessExperimentalOptionValueProperties()
148       : Cloneable(
149             ConstString(Properties::GetExperimentalSettingsName())) {}
150 };
151 
152 ProcessExperimentalProperties::ProcessExperimentalProperties()
153     : Properties(OptionValuePropertiesSP(
154           new ProcessExperimentalOptionValueProperties())) {
155   m_collection_sp->Initialize(g_process_experimental_properties);
156 }
157 
158 ProcessProperties::ProcessProperties(lldb_private::Process *process)
159     : Properties(),
160       m_process(process) // Can be nullptr for global ProcessProperties
161 {
162   if (process == nullptr) {
163     // Global process properties, set them up one time
164     m_collection_sp =
165         std::make_shared<ProcessOptionValueProperties>(ConstString("process"));
166     m_collection_sp->Initialize(g_process_properties);
167     m_collection_sp->AppendProperty(
168         ConstString("thread"), ConstString("Settings specific to threads."),
169         true, Thread::GetGlobalProperties().GetValueProperties());
170   } else {
171     m_collection_sp =
172         OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties());
173     m_collection_sp->SetValueChangedCallback(
174         ePropertyPythonOSPluginPath,
175         [this] { m_process->LoadOperatingSystemPlugin(true); });
176   }
177 
178   m_experimental_properties_up =
179       std::make_unique<ProcessExperimentalProperties>();
180   m_collection_sp->AppendProperty(
181       ConstString(Properties::GetExperimentalSettingsName()),
182       ConstString("Experimental settings - setting these won't produce "
183                   "errors if the setting is not present."),
184       true, m_experimental_properties_up->GetValueProperties());
185 }
186 
187 ProcessProperties::~ProcessProperties() = default;
188 
189 bool ProcessProperties::GetDisableMemoryCache() const {
190   const uint32_t idx = ePropertyDisableMemCache;
191   return m_collection_sp->GetPropertyAtIndexAsBoolean(
192       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
193 }
194 
195 uint64_t ProcessProperties::GetMemoryCacheLineSize() const {
196   const uint32_t idx = ePropertyMemCacheLineSize;
197   return m_collection_sp->GetPropertyAtIndexAsUInt64(
198       nullptr, idx, g_process_properties[idx].default_uint_value);
199 }
200 
201 Args ProcessProperties::GetExtraStartupCommands() const {
202   Args args;
203   const uint32_t idx = ePropertyExtraStartCommand;
204   m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args);
205   return args;
206 }
207 
208 void ProcessProperties::SetExtraStartupCommands(const Args &args) {
209   const uint32_t idx = ePropertyExtraStartCommand;
210   m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args);
211 }
212 
213 FileSpec ProcessProperties::GetPythonOSPluginPath() const {
214   const uint32_t idx = ePropertyPythonOSPluginPath;
215   return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx);
216 }
217 
218 uint32_t ProcessProperties::GetVirtualAddressableBits() const {
219   const uint32_t idx = ePropertyVirtualAddressableBits;
220   return m_collection_sp->GetPropertyAtIndexAsUInt64(
221       nullptr, idx, g_process_properties[idx].default_uint_value);
222 }
223 
224 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) {
225   const uint32_t idx = ePropertyVirtualAddressableBits;
226   m_collection_sp->SetPropertyAtIndexAsUInt64(nullptr, idx, bits);
227 }
228 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) {
229   const uint32_t idx = ePropertyPythonOSPluginPath;
230   m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file);
231 }
232 
233 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const {
234   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
235   return m_collection_sp->GetPropertyAtIndexAsBoolean(
236       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
237 }
238 
239 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) {
240   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
241   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
242 }
243 
244 bool ProcessProperties::GetUnwindOnErrorInExpressions() const {
245   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
246   return m_collection_sp->GetPropertyAtIndexAsBoolean(
247       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
248 }
249 
250 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) {
251   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
252   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
253 }
254 
255 bool ProcessProperties::GetStopOnSharedLibraryEvents() const {
256   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
257   return m_collection_sp->GetPropertyAtIndexAsBoolean(
258       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
259 }
260 
261 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) {
262   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
263   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
264 }
265 
266 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const {
267   const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
268   return m_collection_sp->GetPropertyAtIndexAsBoolean(
269       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
270 }
271 
272 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) {
273   const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
274   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, disable);
275   m_process->Flush();
276 }
277 
278 bool ProcessProperties::GetDetachKeepsStopped() const {
279   const uint32_t idx = ePropertyDetachKeepsStopped;
280   return m_collection_sp->GetPropertyAtIndexAsBoolean(
281       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
282 }
283 
284 void ProcessProperties::SetDetachKeepsStopped(bool stop) {
285   const uint32_t idx = ePropertyDetachKeepsStopped;
286   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
287 }
288 
289 bool ProcessProperties::GetWarningsOptimization() const {
290   const uint32_t idx = ePropertyWarningOptimization;
291   return m_collection_sp->GetPropertyAtIndexAsBoolean(
292       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
293 }
294 
295 bool ProcessProperties::GetWarningsUnsupportedLanguage() const {
296   const uint32_t idx = ePropertyWarningUnsupportedLanguage;
297   return m_collection_sp->GetPropertyAtIndexAsBoolean(
298       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
299 }
300 
301 bool ProcessProperties::GetStopOnExec() const {
302   const uint32_t idx = ePropertyStopOnExec;
303   return m_collection_sp->GetPropertyAtIndexAsBoolean(
304       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
305 }
306 
307 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const {
308   const uint32_t idx = ePropertyUtilityExpressionTimeout;
309   uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64(
310       nullptr, idx, g_process_properties[idx].default_uint_value);
311   return std::chrono::seconds(value);
312 }
313 
314 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const {
315   const uint32_t idx = ePropertyInterruptTimeout;
316   uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64(
317       nullptr, idx, g_process_properties[idx].default_uint_value);
318   return std::chrono::seconds(value);
319 }
320 
321 bool ProcessProperties::GetSteppingRunsAllThreads() const {
322   const uint32_t idx = ePropertySteppingRunsAllThreads;
323   return m_collection_sp->GetPropertyAtIndexAsBoolean(
324       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
325 }
326 
327 bool ProcessProperties::GetOSPluginReportsAllThreads() const {
328   const bool fail_value = true;
329   const Property *exp_property =
330       m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
331   OptionValueProperties *exp_values =
332       exp_property->GetValue()->GetAsProperties();
333   if (!exp_values)
334     return fail_value;
335 
336   return exp_values->GetPropertyAtIndexAsBoolean(
337       nullptr, ePropertyOSPluginReportsAllThreads, fail_value);
338 }
339 
340 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) {
341   const Property *exp_property =
342       m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
343   OptionValueProperties *exp_values =
344       exp_property->GetValue()->GetAsProperties();
345   if (exp_values)
346     exp_values->SetPropertyAtIndexAsBoolean(
347         nullptr, ePropertyOSPluginReportsAllThreads, does_report);
348 }
349 
350 FollowForkMode ProcessProperties::GetFollowForkMode() const {
351   const uint32_t idx = ePropertyFollowForkMode;
352   return (FollowForkMode)m_collection_sp->GetPropertyAtIndexAsEnumeration(
353       nullptr, idx, g_process_properties[idx].default_uint_value);
354 }
355 
356 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp,
357                               llvm::StringRef plugin_name,
358                               ListenerSP listener_sp,
359                               const FileSpec *crash_file_path,
360                               bool can_connect) {
361   static uint32_t g_process_unique_id = 0;
362 
363   ProcessSP process_sp;
364   ProcessCreateInstance create_callback = nullptr;
365   if (!plugin_name.empty()) {
366     create_callback =
367         PluginManager::GetProcessCreateCallbackForPluginName(plugin_name);
368     if (create_callback) {
369       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
370                                    can_connect);
371       if (process_sp) {
372         if (process_sp->CanDebug(target_sp, true)) {
373           process_sp->m_process_unique_id = ++g_process_unique_id;
374         } else
375           process_sp.reset();
376       }
377     }
378   } else {
379     for (uint32_t idx = 0;
380          (create_callback =
381               PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr;
382          ++idx) {
383       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
384                                    can_connect);
385       if (process_sp) {
386         if (process_sp->CanDebug(target_sp, false)) {
387           process_sp->m_process_unique_id = ++g_process_unique_id;
388           break;
389         } else
390           process_sp.reset();
391       }
392     }
393   }
394   return process_sp;
395 }
396 
397 ConstString &Process::GetStaticBroadcasterClass() {
398   static ConstString class_name("lldb.process");
399   return class_name;
400 }
401 
402 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp)
403     : Process(target_sp, listener_sp,
404               UnixSignals::Create(HostInfo::GetArchitecture())) {
405   // This constructor just delegates to the full Process constructor,
406   // defaulting to using the Host's UnixSignals.
407 }
408 
409 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp,
410                  const UnixSignalsSP &unix_signals_sp)
411     : ProcessProperties(this),
412       Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()),
413                   Process::GetStaticBroadcasterClass().AsCString()),
414       m_target_wp(target_sp), m_public_state(eStateUnloaded),
415       m_private_state(eStateUnloaded),
416       m_private_state_broadcaster(nullptr,
417                                   "lldb.process.internal_state_broadcaster"),
418       m_private_state_control_broadcaster(
419           nullptr, "lldb.process.internal_state_control_broadcaster"),
420       m_private_state_listener_sp(
421           Listener::MakeListener("lldb.process.internal_state_listener")),
422       m_mod_id(), m_process_unique_id(0), m_thread_index_id(0),
423       m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(),
424       m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this),
425       m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this),
426       m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0),
427       m_notifications(), m_image_tokens(), m_listener_sp(listener_sp),
428       m_breakpoint_site_list(), m_dynamic_checkers_up(),
429       m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(),
430       m_stdio_communication("process.stdio"), m_stdio_communication_mutex(),
431       m_stdin_forward(false), m_stdout_data(), m_stderr_data(),
432       m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0),
433       m_memory_cache(*this), m_allocated_memory_cache(*this),
434       m_should_detach(false), m_next_event_action_up(), m_public_run_lock(),
435       m_private_run_lock(), m_finalizing(false),
436       m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false),
437       m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false),
438       m_can_interpret_function_calls(false), m_warnings_issued(),
439       m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) {
440   CheckInWithManager();
441 
442   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT));
443   LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this));
444 
445   if (!m_unix_signals_sp)
446     m_unix_signals_sp = std::make_shared<UnixSignals>();
447 
448   SetEventName(eBroadcastBitStateChanged, "state-changed");
449   SetEventName(eBroadcastBitInterrupt, "interrupt");
450   SetEventName(eBroadcastBitSTDOUT, "stdout-available");
451   SetEventName(eBroadcastBitSTDERR, "stderr-available");
452   SetEventName(eBroadcastBitProfileData, "profile-data-available");
453   SetEventName(eBroadcastBitStructuredData, "structured-data-available");
454 
455   m_private_state_control_broadcaster.SetEventName(
456       eBroadcastInternalStateControlStop, "control-stop");
457   m_private_state_control_broadcaster.SetEventName(
458       eBroadcastInternalStateControlPause, "control-pause");
459   m_private_state_control_broadcaster.SetEventName(
460       eBroadcastInternalStateControlResume, "control-resume");
461 
462   m_listener_sp->StartListeningForEvents(
463       this, eBroadcastBitStateChanged | eBroadcastBitInterrupt |
464                 eBroadcastBitSTDOUT | eBroadcastBitSTDERR |
465                 eBroadcastBitProfileData | eBroadcastBitStructuredData);
466 
467   m_private_state_listener_sp->StartListeningForEvents(
468       &m_private_state_broadcaster,
469       eBroadcastBitStateChanged | eBroadcastBitInterrupt);
470 
471   m_private_state_listener_sp->StartListeningForEvents(
472       &m_private_state_control_broadcaster,
473       eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause |
474           eBroadcastInternalStateControlResume);
475   // We need something valid here, even if just the default UnixSignalsSP.
476   assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization");
477 
478   // Allow the platform to override the default cache line size
479   OptionValueSP value_sp =
480       m_collection_sp
481           ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize)
482           ->GetValue();
483   uint32_t platform_cache_line_size =
484       target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize();
485   if (!value_sp->OptionWasSet() && platform_cache_line_size != 0)
486     value_sp->SetUInt64Value(platform_cache_line_size);
487 
488   RegisterAssertFrameRecognizer(this);
489 }
490 
491 Process::~Process() {
492   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT));
493   LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this));
494   StopPrivateStateThread();
495 
496   // ThreadList::Clear() will try to acquire this process's mutex, so
497   // explicitly clear the thread list here to ensure that the mutex is not
498   // destroyed before the thread list.
499   m_thread_list.Clear();
500 }
501 
502 ProcessProperties &Process::GetGlobalProperties() {
503   // NOTE: intentional leak so we don't crash if global destructor chain gets
504   // called as other threads still use the result of this function
505   static ProcessProperties *g_settings_ptr =
506       new ProcessProperties(nullptr);
507   return *g_settings_ptr;
508 }
509 
510 void Process::Finalize() {
511   if (m_finalizing.exchange(true))
512     return;
513 
514   // Destroy the process. This will call the virtual function DoDestroy under
515   // the hood, giving our derived class a chance to do the ncessary tear down.
516   DestroyImpl(false);
517 
518   // Clear our broadcaster before we proceed with destroying
519   Broadcaster::Clear();
520 
521   // Do any cleanup needed prior to being destructed... Subclasses that
522   // override this method should call this superclass method as well.
523 
524   // We need to destroy the loader before the derived Process class gets
525   // destroyed since it is very likely that undoing the loader will require
526   // access to the real process.
527   m_dynamic_checkers_up.reset();
528   m_abi_sp.reset();
529   m_os_up.reset();
530   m_system_runtime_up.reset();
531   m_dyld_up.reset();
532   m_jit_loaders_up.reset();
533   m_thread_plans.Clear();
534   m_thread_list_real.Destroy();
535   m_thread_list.Destroy();
536   m_extended_thread_list.Destroy();
537   m_queue_list.Clear();
538   m_queue_list_stop_id = 0;
539   std::vector<Notifications> empty_notifications;
540   m_notifications.swap(empty_notifications);
541   m_image_tokens.clear();
542   m_memory_cache.Clear();
543   m_allocated_memory_cache.Clear();
544   {
545     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
546     m_language_runtimes.clear();
547   }
548   m_instrumentation_runtimes.clear();
549   m_next_event_action_up.reset();
550   // Clear the last natural stop ID since it has a strong reference to this
551   // process
552   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
553   //#ifdef LLDB_CONFIGURATION_DEBUG
554   //    StreamFile s(stdout, false);
555   //    EventSP event_sp;
556   //    while (m_private_state_listener_sp->GetNextEvent(event_sp))
557   //    {
558   //        event_sp->Dump (&s);
559   //        s.EOL();
560   //    }
561   //#endif
562   // We have to be very careful here as the m_private_state_listener might
563   // contain events that have ProcessSP values in them which can keep this
564   // process around forever. These events need to be cleared out.
565   m_private_state_listener_sp->Clear();
566   m_public_run_lock.TrySetRunning(); // This will do nothing if already locked
567   m_public_run_lock.SetStopped();
568   m_private_run_lock.TrySetRunning(); // This will do nothing if already locked
569   m_private_run_lock.SetStopped();
570   m_structured_data_plugin_map.clear();
571 }
572 
573 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) {
574   m_notifications.push_back(callbacks);
575   if (callbacks.initialize != nullptr)
576     callbacks.initialize(callbacks.baton, this);
577 }
578 
579 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) {
580   std::vector<Notifications>::iterator pos, end = m_notifications.end();
581   for (pos = m_notifications.begin(); pos != end; ++pos) {
582     if (pos->baton == callbacks.baton &&
583         pos->initialize == callbacks.initialize &&
584         pos->process_state_changed == callbacks.process_state_changed) {
585       m_notifications.erase(pos);
586       return true;
587     }
588   }
589   return false;
590 }
591 
592 void Process::SynchronouslyNotifyStateChanged(StateType state) {
593   std::vector<Notifications>::iterator notification_pos,
594       notification_end = m_notifications.end();
595   for (notification_pos = m_notifications.begin();
596        notification_pos != notification_end; ++notification_pos) {
597     if (notification_pos->process_state_changed)
598       notification_pos->process_state_changed(notification_pos->baton, this,
599                                               state);
600   }
601 }
602 
603 // FIXME: We need to do some work on events before the general Listener sees
604 // them.
605 // For instance if we are continuing from a breakpoint, we need to ensure that
606 // we do the little "insert real insn, step & stop" trick.  But we can't do
607 // that when the event is delivered by the broadcaster - since that is done on
608 // the thread that is waiting for new events, so if we needed more than one
609 // event for our handling, we would stall.  So instead we do it when we fetch
610 // the event off of the queue.
611 //
612 
613 StateType Process::GetNextEvent(EventSP &event_sp) {
614   StateType state = eStateInvalid;
615 
616   if (m_listener_sp->GetEventForBroadcaster(this, event_sp,
617                                             std::chrono::seconds(0)) &&
618       event_sp)
619     state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
620 
621   return state;
622 }
623 
624 void Process::SyncIOHandler(uint32_t iohandler_id,
625                             const Timeout<std::micro> &timeout) {
626   // don't sync (potentially context switch) in case where there is no process
627   // IO
628   if (!m_process_input_reader)
629     return;
630 
631   auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout);
632 
633   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
634   if (Result) {
635     LLDB_LOG(
636         log,
637         "waited from m_iohandler_sync to change from {0}. New value is {1}.",
638         iohandler_id, *Result);
639   } else {
640     LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.",
641              iohandler_id);
642   }
643 }
644 
645 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout,
646                                         EventSP *event_sp_ptr, bool wait_always,
647                                         ListenerSP hijack_listener_sp,
648                                         Stream *stream, bool use_run_lock) {
649   // We can't just wait for a "stopped" event, because the stopped event may
650   // have restarted the target. We have to actually check each event, and in
651   // the case of a stopped event check the restarted flag on the event.
652   if (event_sp_ptr)
653     event_sp_ptr->reset();
654   StateType state = GetState();
655   // If we are exited or detached, we won't ever get back to any other valid
656   // state...
657   if (state == eStateDetached || state == eStateExited)
658     return state;
659 
660   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
661   LLDB_LOG(log, "timeout = {0}", timeout);
662 
663   if (!wait_always && StateIsStoppedState(state, true) &&
664       StateIsStoppedState(GetPrivateState(), true)) {
665     LLDB_LOGF(log,
666               "Process::%s returning without waiting for events; process "
667               "private and public states are already 'stopped'.",
668               __FUNCTION__);
669     // We need to toggle the run lock as this won't get done in
670     // SetPublicState() if the process is hijacked.
671     if (hijack_listener_sp && use_run_lock)
672       m_public_run_lock.SetStopped();
673     return state;
674   }
675 
676   while (state != eStateInvalid) {
677     EventSP event_sp;
678     state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp);
679     if (event_sp_ptr && event_sp)
680       *event_sp_ptr = event_sp;
681 
682     bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr);
683     Process::HandleProcessStateChangedEvent(event_sp, stream,
684                                             pop_process_io_handler);
685 
686     switch (state) {
687     case eStateCrashed:
688     case eStateDetached:
689     case eStateExited:
690     case eStateUnloaded:
691       // We need to toggle the run lock as this won't get done in
692       // SetPublicState() if the process is hijacked.
693       if (hijack_listener_sp && use_run_lock)
694         m_public_run_lock.SetStopped();
695       return state;
696     case eStateStopped:
697       if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()))
698         continue;
699       else {
700         // We need to toggle the run lock as this won't get done in
701         // SetPublicState() if the process is hijacked.
702         if (hijack_listener_sp && use_run_lock)
703           m_public_run_lock.SetStopped();
704         return state;
705       }
706     default:
707       continue;
708     }
709   }
710   return state;
711 }
712 
713 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp,
714                                              Stream *stream,
715                                              bool &pop_process_io_handler) {
716   const bool handle_pop = pop_process_io_handler;
717 
718   pop_process_io_handler = false;
719   ProcessSP process_sp =
720       Process::ProcessEventData::GetProcessFromEvent(event_sp.get());
721 
722   if (!process_sp)
723     return false;
724 
725   StateType event_state =
726       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
727   if (event_state == eStateInvalid)
728     return false;
729 
730   switch (event_state) {
731   case eStateInvalid:
732   case eStateUnloaded:
733   case eStateAttaching:
734   case eStateLaunching:
735   case eStateStepping:
736   case eStateDetached:
737     if (stream)
738       stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(),
739                      StateAsCString(event_state));
740     if (event_state == eStateDetached)
741       pop_process_io_handler = true;
742     break;
743 
744   case eStateConnected:
745   case eStateRunning:
746     // Don't be chatty when we run...
747     break;
748 
749   case eStateExited:
750     if (stream)
751       process_sp->GetStatus(*stream);
752     pop_process_io_handler = true;
753     break;
754 
755   case eStateStopped:
756   case eStateCrashed:
757   case eStateSuspended:
758     // Make sure the program hasn't been auto-restarted:
759     if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
760       if (stream) {
761         size_t num_reasons =
762             Process::ProcessEventData::GetNumRestartedReasons(event_sp.get());
763         if (num_reasons > 0) {
764           // FIXME: Do we want to report this, or would that just be annoyingly
765           // chatty?
766           if (num_reasons == 1) {
767             const char *reason =
768                 Process::ProcessEventData::GetRestartedReasonAtIndex(
769                     event_sp.get(), 0);
770             stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n",
771                            process_sp->GetID(),
772                            reason ? reason : "<UNKNOWN REASON>");
773           } else {
774             stream->Printf("Process %" PRIu64
775                            " stopped and restarted, reasons:\n",
776                            process_sp->GetID());
777 
778             for (size_t i = 0; i < num_reasons; i++) {
779               const char *reason =
780                   Process::ProcessEventData::GetRestartedReasonAtIndex(
781                       event_sp.get(), i);
782               stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>");
783             }
784           }
785         }
786       }
787     } else {
788       StopInfoSP curr_thread_stop_info_sp;
789       // Lock the thread list so it doesn't change on us, this is the scope for
790       // the locker:
791       {
792         ThreadList &thread_list = process_sp->GetThreadList();
793         std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex());
794 
795         ThreadSP curr_thread(thread_list.GetSelectedThread());
796         ThreadSP thread;
797         StopReason curr_thread_stop_reason = eStopReasonInvalid;
798         bool prefer_curr_thread = false;
799         if (curr_thread && curr_thread->IsValid()) {
800           curr_thread_stop_reason = curr_thread->GetStopReason();
801           switch (curr_thread_stop_reason) {
802           case eStopReasonNone:
803           case eStopReasonInvalid:
804             // Don't prefer the current thread if it didn't stop for a reason.
805             break;
806           case eStopReasonSignal: {
807             // We need to do the same computation we do for other threads
808             // below in case the current thread happens to be the one that
809             // stopped for the no-stop signal.
810             uint64_t signo = curr_thread->GetStopInfo()->GetValue();
811             if (process_sp->GetUnixSignals()->GetShouldStop(signo))
812               prefer_curr_thread = true;
813           } break;
814           default:
815             prefer_curr_thread = true;
816             break;
817           }
818           curr_thread_stop_info_sp = curr_thread->GetStopInfo();
819         }
820 
821         if (!prefer_curr_thread) {
822           // Prefer a thread that has just completed its plan over another
823           // thread as current thread.
824           ThreadSP plan_thread;
825           ThreadSP other_thread;
826 
827           const size_t num_threads = thread_list.GetSize();
828           size_t i;
829           for (i = 0; i < num_threads; ++i) {
830             thread = thread_list.GetThreadAtIndex(i);
831             StopReason thread_stop_reason = thread->GetStopReason();
832             switch (thread_stop_reason) {
833             case eStopReasonInvalid:
834             case eStopReasonNone:
835               break;
836 
837             case eStopReasonSignal: {
838               // Don't select a signal thread if we weren't going to stop at
839               // that signal.  We have to have had another reason for stopping
840               // here, and the user doesn't want to see this thread.
841               uint64_t signo = thread->GetStopInfo()->GetValue();
842               if (process_sp->GetUnixSignals()->GetShouldStop(signo)) {
843                 if (!other_thread)
844                   other_thread = thread;
845               }
846               break;
847             }
848             case eStopReasonTrace:
849             case eStopReasonBreakpoint:
850             case eStopReasonWatchpoint:
851             case eStopReasonException:
852             case eStopReasonExec:
853             case eStopReasonFork:
854             case eStopReasonVFork:
855             case eStopReasonVForkDone:
856             case eStopReasonThreadExiting:
857             case eStopReasonInstrumentation:
858             case eStopReasonProcessorTrace:
859               if (!other_thread)
860                 other_thread = thread;
861               break;
862             case eStopReasonPlanComplete:
863               if (!plan_thread)
864                 plan_thread = thread;
865               break;
866             }
867           }
868           if (plan_thread)
869             thread_list.SetSelectedThreadByID(plan_thread->GetID());
870           else if (other_thread)
871             thread_list.SetSelectedThreadByID(other_thread->GetID());
872           else {
873             if (curr_thread && curr_thread->IsValid())
874               thread = curr_thread;
875             else
876               thread = thread_list.GetThreadAtIndex(0);
877 
878             if (thread)
879               thread_list.SetSelectedThreadByID(thread->GetID());
880           }
881         }
882       }
883       // Drop the ThreadList mutex by here, since GetThreadStatus below might
884       // have to run code, e.g. for Data formatters, and if we hold the
885       // ThreadList mutex, then the process is going to have a hard time
886       // restarting the process.
887       if (stream) {
888         Debugger &debugger = process_sp->GetTarget().GetDebugger();
889         if (debugger.GetTargetList().GetSelectedTarget().get() ==
890             &process_sp->GetTarget()) {
891           ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread();
892 
893           if (!thread_sp || !thread_sp->IsValid())
894             return false;
895 
896           const bool only_threads_with_stop_reason = true;
897           const uint32_t start_frame = thread_sp->GetSelectedFrameIndex();
898           const uint32_t num_frames = 1;
899           const uint32_t num_frames_with_source = 1;
900           const bool stop_format = true;
901 
902           process_sp->GetStatus(*stream);
903           process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason,
904                                       start_frame, num_frames,
905                                       num_frames_with_source,
906                                       stop_format);
907           if (curr_thread_stop_info_sp) {
908             lldb::addr_t crashing_address;
909             ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference(
910                 curr_thread_stop_info_sp, &crashing_address);
911             if (valobj_sp) {
912               const ValueObject::GetExpressionPathFormat format =
913                   ValueObject::GetExpressionPathFormat::
914                       eGetExpressionPathFormatHonorPointers;
915               stream->PutCString("Likely cause: ");
916               valobj_sp->GetExpressionPath(*stream, format);
917               stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address);
918             }
919           }
920         } else {
921           uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(
922               process_sp->GetTarget().shared_from_this());
923           if (target_idx != UINT32_MAX)
924             stream->Printf("Target %d: (", target_idx);
925           else
926             stream->Printf("Target <unknown index>: (");
927           process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief);
928           stream->Printf(") stopped.\n");
929         }
930       }
931 
932       // Pop the process IO handler
933       pop_process_io_handler = true;
934     }
935     break;
936   }
937 
938   if (handle_pop && pop_process_io_handler)
939     process_sp->PopProcessIOHandler();
940 
941   return true;
942 }
943 
944 bool Process::HijackProcessEvents(ListenerSP listener_sp) {
945   if (listener_sp) {
946     return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged |
947                                               eBroadcastBitInterrupt);
948   } else
949     return false;
950 }
951 
952 void Process::RestoreProcessEvents() { RestoreBroadcaster(); }
953 
954 StateType Process::GetStateChangedEvents(EventSP &event_sp,
955                                          const Timeout<std::micro> &timeout,
956                                          ListenerSP hijack_listener_sp) {
957   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
958   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
959 
960   ListenerSP listener_sp = hijack_listener_sp;
961   if (!listener_sp)
962     listener_sp = m_listener_sp;
963 
964   StateType state = eStateInvalid;
965   if (listener_sp->GetEventForBroadcasterWithType(
966           this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
967           timeout)) {
968     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
969       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
970     else
971       LLDB_LOG(log, "got no event or was interrupted.");
972   }
973 
974   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state);
975   return state;
976 }
977 
978 Event *Process::PeekAtStateChangedEvents() {
979   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
980 
981   LLDB_LOGF(log, "Process::%s...", __FUNCTION__);
982 
983   Event *event_ptr;
984   event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType(
985       this, eBroadcastBitStateChanged);
986   if (log) {
987     if (event_ptr) {
988       LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__,
989                 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr)));
990     } else {
991       LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__);
992     }
993   }
994   return event_ptr;
995 }
996 
997 StateType
998 Process::GetStateChangedEventsPrivate(EventSP &event_sp,
999                                       const Timeout<std::micro> &timeout) {
1000   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1001   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1002 
1003   StateType state = eStateInvalid;
1004   if (m_private_state_listener_sp->GetEventForBroadcasterWithType(
1005           &m_private_state_broadcaster,
1006           eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
1007           timeout))
1008     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
1009       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
1010 
1011   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout,
1012            state == eStateInvalid ? "TIMEOUT" : StateAsCString(state));
1013   return state;
1014 }
1015 
1016 bool Process::GetEventsPrivate(EventSP &event_sp,
1017                                const Timeout<std::micro> &timeout,
1018                                bool control_only) {
1019   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1020   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1021 
1022   if (control_only)
1023     return m_private_state_listener_sp->GetEventForBroadcaster(
1024         &m_private_state_control_broadcaster, event_sp, timeout);
1025   else
1026     return m_private_state_listener_sp->GetEvent(event_sp, timeout);
1027 }
1028 
1029 bool Process::IsRunning() const {
1030   return StateIsRunningState(m_public_state.GetValue());
1031 }
1032 
1033 int Process::GetExitStatus() {
1034   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1035 
1036   if (m_public_state.GetValue() == eStateExited)
1037     return m_exit_status;
1038   return -1;
1039 }
1040 
1041 const char *Process::GetExitDescription() {
1042   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1043 
1044   if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty())
1045     return m_exit_string.c_str();
1046   return nullptr;
1047 }
1048 
1049 bool Process::SetExitStatus(int status, const char *cstr) {
1050   // Use a mutex to protect setting the exit status.
1051   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1052 
1053   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1054                                                   LIBLLDB_LOG_PROCESS));
1055   LLDB_LOGF(
1056       log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)",
1057       status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : "");
1058 
1059   // We were already in the exited state
1060   if (m_private_state.GetValue() == eStateExited) {
1061     LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because "
1062                    "state was already set to eStateExited");
1063     return false;
1064   }
1065 
1066   m_exit_status = status;
1067   if (cstr)
1068     m_exit_string = cstr;
1069   else
1070     m_exit_string.clear();
1071 
1072   // Clear the last natural stop ID since it has a strong reference to this
1073   // process
1074   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
1075 
1076   SetPrivateState(eStateExited);
1077 
1078   // Allow subclasses to do some cleanup
1079   DidExit();
1080 
1081   return true;
1082 }
1083 
1084 bool Process::IsAlive() {
1085   switch (m_private_state.GetValue()) {
1086   case eStateConnected:
1087   case eStateAttaching:
1088   case eStateLaunching:
1089   case eStateStopped:
1090   case eStateRunning:
1091   case eStateStepping:
1092   case eStateCrashed:
1093   case eStateSuspended:
1094     return true;
1095   default:
1096     return false;
1097   }
1098 }
1099 
1100 // This static callback can be used to watch for local child processes on the
1101 // current host. The child process exits, the process will be found in the
1102 // global target list (we want to be completely sure that the
1103 // lldb_private::Process doesn't go away before we can deliver the signal.
1104 bool Process::SetProcessExitStatus(
1105     lldb::pid_t pid, bool exited,
1106     int signo,      // Zero for no signal
1107     int exit_status // Exit value of process if signal is zero
1108     ) {
1109   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
1110   LLDB_LOGF(log,
1111             "Process::SetProcessExitStatus (pid=%" PRIu64
1112             ", exited=%i, signal=%i, exit_status=%i)\n",
1113             pid, exited, signo, exit_status);
1114 
1115   if (exited) {
1116     TargetSP target_sp(Debugger::FindTargetWithProcessID(pid));
1117     if (target_sp) {
1118       ProcessSP process_sp(target_sp->GetProcessSP());
1119       if (process_sp) {
1120         const char *signal_cstr = nullptr;
1121         if (signo)
1122           signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo);
1123 
1124         process_sp->SetExitStatus(exit_status, signal_cstr);
1125       }
1126     }
1127     return true;
1128   }
1129   return false;
1130 }
1131 
1132 bool Process::UpdateThreadList(ThreadList &old_thread_list,
1133                                ThreadList &new_thread_list) {
1134   m_thread_plans.ClearThreadCache();
1135   return DoUpdateThreadList(old_thread_list, new_thread_list);
1136 }
1137 
1138 void Process::UpdateThreadListIfNeeded() {
1139   const uint32_t stop_id = GetStopID();
1140   if (m_thread_list.GetSize(false) == 0 ||
1141       stop_id != m_thread_list.GetStopID()) {
1142     bool clear_unused_threads = true;
1143     const StateType state = GetPrivateState();
1144     if (StateIsStoppedState(state, true)) {
1145       std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex());
1146       m_thread_list.SetStopID(stop_id);
1147 
1148       // m_thread_list does have its own mutex, but we need to hold onto the
1149       // mutex between the call to UpdateThreadList(...) and the
1150       // os->UpdateThreadList(...) so it doesn't change on us
1151       ThreadList &old_thread_list = m_thread_list;
1152       ThreadList real_thread_list(this);
1153       ThreadList new_thread_list(this);
1154       // Always update the thread list with the protocol specific thread list,
1155       // but only update if "true" is returned
1156       if (UpdateThreadList(m_thread_list_real, real_thread_list)) {
1157         // Don't call into the OperatingSystem to update the thread list if we
1158         // are shutting down, since that may call back into the SBAPI's,
1159         // requiring the API lock which is already held by whoever is shutting
1160         // us down, causing a deadlock.
1161         OperatingSystem *os = GetOperatingSystem();
1162         if (os && !m_destroy_in_process) {
1163           // Clear any old backing threads where memory threads might have been
1164           // backed by actual threads from the lldb_private::Process subclass
1165           size_t num_old_threads = old_thread_list.GetSize(false);
1166           for (size_t i = 0; i < num_old_threads; ++i)
1167             old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread();
1168           // See if the OS plugin reports all threads.  If it does, then
1169           // it is safe to clear unseen thread's plans here.  Otherwise we
1170           // should preserve them in case they show up again:
1171           clear_unused_threads = GetOSPluginReportsAllThreads();
1172 
1173           // Turn off dynamic types to ensure we don't run any expressions.
1174           // Objective-C can run an expression to determine if a SBValue is a
1175           // dynamic type or not and we need to avoid this. OperatingSystem
1176           // plug-ins can't run expressions that require running code...
1177 
1178           Target &target = GetTarget();
1179           const lldb::DynamicValueType saved_prefer_dynamic =
1180               target.GetPreferDynamicValue();
1181           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1182             target.SetPreferDynamicValue(lldb::eNoDynamicValues);
1183 
1184           // Now let the OperatingSystem plug-in update the thread list
1185 
1186           os->UpdateThreadList(
1187               old_thread_list, // Old list full of threads created by OS plug-in
1188               real_thread_list, // The actual thread list full of threads
1189                                 // created by each lldb_private::Process
1190                                 // subclass
1191               new_thread_list); // The new thread list that we will show to the
1192                                 // user that gets filled in
1193 
1194           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1195             target.SetPreferDynamicValue(saved_prefer_dynamic);
1196         } else {
1197           // No OS plug-in, the new thread list is the same as the real thread
1198           // list.
1199           new_thread_list = real_thread_list;
1200         }
1201 
1202         m_thread_list_real.Update(real_thread_list);
1203         m_thread_list.Update(new_thread_list);
1204         m_thread_list.SetStopID(stop_id);
1205 
1206         if (GetLastNaturalStopID() != m_extended_thread_stop_id) {
1207           // Clear any extended threads that we may have accumulated previously
1208           m_extended_thread_list.Clear();
1209           m_extended_thread_stop_id = GetLastNaturalStopID();
1210 
1211           m_queue_list.Clear();
1212           m_queue_list_stop_id = GetLastNaturalStopID();
1213         }
1214       }
1215       // Now update the plan stack map.
1216       // If we do have an OS plugin, any absent real threads in the
1217       // m_thread_list have already been removed from the ThreadPlanStackMap.
1218       // So any remaining threads are OS Plugin threads, and those we want to
1219       // preserve in case they show up again.
1220       m_thread_plans.Update(m_thread_list, clear_unused_threads);
1221     }
1222   }
1223 }
1224 
1225 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) {
1226   return m_thread_plans.Find(tid);
1227 }
1228 
1229 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) {
1230   return m_thread_plans.PrunePlansForTID(tid);
1231 }
1232 
1233 void Process::PruneThreadPlans() {
1234   m_thread_plans.Update(GetThreadList(), true, false);
1235 }
1236 
1237 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid,
1238                                     lldb::DescriptionLevel desc_level,
1239                                     bool internal, bool condense_trivial,
1240                                     bool skip_unreported_plans) {
1241   return m_thread_plans.DumpPlansForTID(
1242       strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans);
1243 }
1244 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level,
1245                               bool internal, bool condense_trivial,
1246                               bool skip_unreported_plans) {
1247   m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial,
1248                            skip_unreported_plans);
1249 }
1250 
1251 void Process::UpdateQueueListIfNeeded() {
1252   if (m_system_runtime_up) {
1253     if (m_queue_list.GetSize() == 0 ||
1254         m_queue_list_stop_id != GetLastNaturalStopID()) {
1255       const StateType state = GetPrivateState();
1256       if (StateIsStoppedState(state, true)) {
1257         m_system_runtime_up->PopulateQueueList(m_queue_list);
1258         m_queue_list_stop_id = GetLastNaturalStopID();
1259       }
1260     }
1261   }
1262 }
1263 
1264 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) {
1265   OperatingSystem *os = GetOperatingSystem();
1266   if (os)
1267     return os->CreateThread(tid, context);
1268   return ThreadSP();
1269 }
1270 
1271 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) {
1272   return AssignIndexIDToThread(thread_id);
1273 }
1274 
1275 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) {
1276   return (m_thread_id_to_index_id_map.find(thread_id) !=
1277           m_thread_id_to_index_id_map.end());
1278 }
1279 
1280 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) {
1281   uint32_t result = 0;
1282   std::map<uint64_t, uint32_t>::iterator iterator =
1283       m_thread_id_to_index_id_map.find(thread_id);
1284   if (iterator == m_thread_id_to_index_id_map.end()) {
1285     result = ++m_thread_index_id;
1286     m_thread_id_to_index_id_map[thread_id] = result;
1287   } else {
1288     result = iterator->second;
1289   }
1290 
1291   return result;
1292 }
1293 
1294 StateType Process::GetState() {
1295   return m_public_state.GetValue();
1296 }
1297 
1298 void Process::SetPublicState(StateType new_state, bool restarted) {
1299   const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1300   if (new_state_is_stopped) {
1301     // This will only set the time if the public stop time has no value, so
1302     // it is ok to call this multiple times. With a public stop we can't look
1303     // at the stop ID because many private stops might have happened, so we
1304     // can't check for a stop ID of zero. This allows the "statistics" command
1305     // to dump the time it takes to reach somewhere in your code, like a
1306     // breakpoint you set.
1307     GetTarget().GetStatistics().SetFirstPublicStopTime();
1308   }
1309 
1310   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1311                                                   LIBLLDB_LOG_PROCESS));
1312   LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)",
1313             StateAsCString(new_state), restarted);
1314   const StateType old_state = m_public_state.GetValue();
1315   m_public_state.SetValue(new_state);
1316 
1317   // On the transition from Run to Stopped, we unlock the writer end of the run
1318   // lock.  The lock gets locked in Resume, which is the public API to tell the
1319   // program to run.
1320   if (!StateChangedIsExternallyHijacked()) {
1321     if (new_state == eStateDetached) {
1322       LLDB_LOGF(log,
1323                 "Process::SetPublicState (%s) -- unlocking run lock for detach",
1324                 StateAsCString(new_state));
1325       m_public_run_lock.SetStopped();
1326     } else {
1327       const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1328       if ((old_state_is_stopped != new_state_is_stopped)) {
1329         if (new_state_is_stopped && !restarted) {
1330           LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock",
1331                     StateAsCString(new_state));
1332           m_public_run_lock.SetStopped();
1333         }
1334       }
1335     }
1336   }
1337 }
1338 
1339 Status Process::Resume() {
1340   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1341                                                   LIBLLDB_LOG_PROCESS));
1342   LLDB_LOGF(log, "Process::Resume -- locking run lock");
1343   if (!m_public_run_lock.TrySetRunning()) {
1344     Status error("Resume request failed - process still running.");
1345     LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1346     return error;
1347   }
1348   Status error = PrivateResume();
1349   if (!error.Success()) {
1350     // Undo running state change
1351     m_public_run_lock.SetStopped();
1352   }
1353   return error;
1354 }
1355 
1356 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack";
1357 
1358 Status Process::ResumeSynchronous(Stream *stream) {
1359   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1360                                                   LIBLLDB_LOG_PROCESS));
1361   LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock");
1362   if (!m_public_run_lock.TrySetRunning()) {
1363     Status error("Resume request failed - process still running.");
1364     LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1365     return error;
1366   }
1367 
1368   ListenerSP listener_sp(
1369       Listener::MakeListener(g_resume_sync_name));
1370   HijackProcessEvents(listener_sp);
1371 
1372   Status error = PrivateResume();
1373   if (error.Success()) {
1374     StateType state = WaitForProcessToStop(llvm::None, nullptr, true,
1375                                            listener_sp, stream);
1376     const bool must_be_alive =
1377         false; // eStateExited is ok, so this must be false
1378     if (!StateIsStoppedState(state, must_be_alive))
1379       error.SetErrorStringWithFormat(
1380           "process not in stopped state after synchronous resume: %s",
1381           StateAsCString(state));
1382   } else {
1383     // Undo running state change
1384     m_public_run_lock.SetStopped();
1385   }
1386 
1387   // Undo the hijacking of process events...
1388   RestoreProcessEvents();
1389 
1390   return error;
1391 }
1392 
1393 bool Process::StateChangedIsExternallyHijacked() {
1394   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1395     const char *hijacking_name = GetHijackingListenerName();
1396     if (hijacking_name &&
1397         strcmp(hijacking_name, g_resume_sync_name))
1398       return true;
1399   }
1400   return false;
1401 }
1402 
1403 bool Process::StateChangedIsHijackedForSynchronousResume() {
1404   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1405     const char *hijacking_name = GetHijackingListenerName();
1406     if (hijacking_name &&
1407         strcmp(hijacking_name, g_resume_sync_name) == 0)
1408       return true;
1409   }
1410   return false;
1411 }
1412 
1413 StateType Process::GetPrivateState() { return m_private_state.GetValue(); }
1414 
1415 void Process::SetPrivateState(StateType new_state) {
1416   if (m_finalizing)
1417     return;
1418 
1419   Log *log(lldb_private::GetLogIfAnyCategoriesSet(
1420       LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_UNWIND));
1421   bool state_changed = false;
1422 
1423   LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state));
1424 
1425   std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex());
1426   std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex());
1427 
1428   const StateType old_state = m_private_state.GetValueNoLock();
1429   state_changed = old_state != new_state;
1430 
1431   const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1432   const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1433   if (old_state_is_stopped != new_state_is_stopped) {
1434     if (new_state_is_stopped)
1435       m_private_run_lock.SetStopped();
1436     else
1437       m_private_run_lock.SetRunning();
1438   }
1439 
1440   if (state_changed) {
1441     m_private_state.SetValueNoLock(new_state);
1442     EventSP event_sp(
1443         new Event(eBroadcastBitStateChanged,
1444                   new ProcessEventData(shared_from_this(), new_state)));
1445     if (StateIsStoppedState(new_state, false)) {
1446       // Note, this currently assumes that all threads in the list stop when
1447       // the process stops.  In the future we will want to support a debugging
1448       // model where some threads continue to run while others are stopped.
1449       // When that happens we will either need a way for the thread list to
1450       // identify which threads are stopping or create a special thread list
1451       // containing only threads which actually stopped.
1452       //
1453       // The process plugin is responsible for managing the actual behavior of
1454       // the threads and should have stopped any threads that are going to stop
1455       // before we get here.
1456       m_thread_list.DidStop();
1457 
1458       if (m_mod_id.BumpStopID() == 0)
1459         GetTarget().GetStatistics().SetFirstPrivateStopTime();
1460 
1461       if (!m_mod_id.IsLastResumeForUserExpression())
1462         m_mod_id.SetStopEventForLastNaturalStopID(event_sp);
1463       m_memory_cache.Clear();
1464       LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u",
1465                 StateAsCString(new_state), m_mod_id.GetStopID());
1466     }
1467 
1468     m_private_state_broadcaster.BroadcastEvent(event_sp);
1469   } else {
1470     LLDB_LOGF(log,
1471               "Process::SetPrivateState (%s) state didn't change. Ignoring...",
1472               StateAsCString(new_state));
1473   }
1474 }
1475 
1476 void Process::SetRunningUserExpression(bool on) {
1477   m_mod_id.SetRunningUserExpression(on);
1478 }
1479 
1480 void Process::SetRunningUtilityFunction(bool on) {
1481   m_mod_id.SetRunningUtilityFunction(on);
1482 }
1483 
1484 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; }
1485 
1486 const lldb::ABISP &Process::GetABI() {
1487   if (!m_abi_sp)
1488     m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture());
1489   return m_abi_sp;
1490 }
1491 
1492 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() {
1493   std::vector<LanguageRuntime *> language_runtimes;
1494 
1495   if (m_finalizing)
1496     return language_runtimes;
1497 
1498   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1499   // Before we pass off a copy of the language runtimes, we must make sure that
1500   // our collection is properly populated. It's possible that some of the
1501   // language runtimes were not loaded yet, either because nobody requested it
1502   // yet or the proper condition for loading wasn't yet met (e.g. libc++.so
1503   // hadn't been loaded).
1504   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
1505     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
1506       language_runtimes.emplace_back(runtime);
1507   }
1508 
1509   return language_runtimes;
1510 }
1511 
1512 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) {
1513   if (m_finalizing)
1514     return nullptr;
1515 
1516   LanguageRuntime *runtime = nullptr;
1517 
1518   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1519   LanguageRuntimeCollection::iterator pos;
1520   pos = m_language_runtimes.find(language);
1521   if (pos == m_language_runtimes.end() || !pos->second) {
1522     lldb::LanguageRuntimeSP runtime_sp(
1523         LanguageRuntime::FindPlugin(this, language));
1524 
1525     m_language_runtimes[language] = runtime_sp;
1526     runtime = runtime_sp.get();
1527   } else
1528     runtime = pos->second.get();
1529 
1530   if (runtime)
1531     // It's possible that a language runtime can support multiple LanguageTypes,
1532     // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus,
1533     // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the
1534     // primary language type and make sure that our runtime supports it.
1535     assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language));
1536 
1537   return runtime;
1538 }
1539 
1540 bool Process::IsPossibleDynamicValue(ValueObject &in_value) {
1541   if (m_finalizing)
1542     return false;
1543 
1544   if (in_value.IsDynamic())
1545     return false;
1546   LanguageType known_type = in_value.GetObjectRuntimeLanguage();
1547 
1548   if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) {
1549     LanguageRuntime *runtime = GetLanguageRuntime(known_type);
1550     return runtime ? runtime->CouldHaveDynamicValue(in_value) : false;
1551   }
1552 
1553   for (LanguageRuntime *runtime : GetLanguageRuntimes()) {
1554     if (runtime->CouldHaveDynamicValue(in_value))
1555       return true;
1556   }
1557 
1558   return false;
1559 }
1560 
1561 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) {
1562   m_dynamic_checkers_up.reset(dynamic_checkers);
1563 }
1564 
1565 BreakpointSiteList &Process::GetBreakpointSiteList() {
1566   return m_breakpoint_site_list;
1567 }
1568 
1569 const BreakpointSiteList &Process::GetBreakpointSiteList() const {
1570   return m_breakpoint_site_list;
1571 }
1572 
1573 void Process::DisableAllBreakpointSites() {
1574   m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void {
1575     //        bp_site->SetEnabled(true);
1576     DisableBreakpointSite(bp_site);
1577   });
1578 }
1579 
1580 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) {
1581   Status error(DisableBreakpointSiteByID(break_id));
1582 
1583   if (error.Success())
1584     m_breakpoint_site_list.Remove(break_id);
1585 
1586   return error;
1587 }
1588 
1589 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) {
1590   Status error;
1591   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1592   if (bp_site_sp) {
1593     if (bp_site_sp->IsEnabled())
1594       error = DisableBreakpointSite(bp_site_sp.get());
1595   } else {
1596     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1597                                    break_id);
1598   }
1599 
1600   return error;
1601 }
1602 
1603 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) {
1604   Status error;
1605   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1606   if (bp_site_sp) {
1607     if (!bp_site_sp->IsEnabled())
1608       error = EnableBreakpointSite(bp_site_sp.get());
1609   } else {
1610     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1611                                    break_id);
1612   }
1613   return error;
1614 }
1615 
1616 lldb::break_id_t
1617 Process::CreateBreakpointSite(const BreakpointLocationSP &owner,
1618                               bool use_hardware) {
1619   addr_t load_addr = LLDB_INVALID_ADDRESS;
1620 
1621   bool show_error = true;
1622   switch (GetState()) {
1623   case eStateInvalid:
1624   case eStateUnloaded:
1625   case eStateConnected:
1626   case eStateAttaching:
1627   case eStateLaunching:
1628   case eStateDetached:
1629   case eStateExited:
1630     show_error = false;
1631     break;
1632 
1633   case eStateStopped:
1634   case eStateRunning:
1635   case eStateStepping:
1636   case eStateCrashed:
1637   case eStateSuspended:
1638     show_error = IsAlive();
1639     break;
1640   }
1641 
1642   // Reset the IsIndirect flag here, in case the location changes from pointing
1643   // to a indirect symbol to a regular symbol.
1644   owner->SetIsIndirect(false);
1645 
1646   if (owner->ShouldResolveIndirectFunctions()) {
1647     Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol();
1648     if (symbol && symbol->IsIndirect()) {
1649       Status error;
1650       Address symbol_address = symbol->GetAddress();
1651       load_addr = ResolveIndirectFunction(&symbol_address, error);
1652       if (!error.Success() && show_error) {
1653         GetTarget().GetDebugger().GetErrorStream().Printf(
1654             "warning: failed to resolve indirect function at 0x%" PRIx64
1655             " for breakpoint %i.%i: %s\n",
1656             symbol->GetLoadAddress(&GetTarget()),
1657             owner->GetBreakpoint().GetID(), owner->GetID(),
1658             error.AsCString() ? error.AsCString() : "unknown error");
1659         return LLDB_INVALID_BREAK_ID;
1660       }
1661       Address resolved_address(load_addr);
1662       load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget());
1663       owner->SetIsIndirect(true);
1664     } else
1665       load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1666   } else
1667     load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1668 
1669   if (load_addr != LLDB_INVALID_ADDRESS) {
1670     BreakpointSiteSP bp_site_sp;
1671 
1672     // Look up this breakpoint site.  If it exists, then add this new owner,
1673     // otherwise create a new breakpoint site and add it.
1674 
1675     bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr);
1676 
1677     if (bp_site_sp) {
1678       bp_site_sp->AddOwner(owner);
1679       owner->SetBreakpointSite(bp_site_sp);
1680       return bp_site_sp->GetID();
1681     } else {
1682       bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner,
1683                                           load_addr, use_hardware));
1684       if (bp_site_sp) {
1685         Status error = EnableBreakpointSite(bp_site_sp.get());
1686         if (error.Success()) {
1687           owner->SetBreakpointSite(bp_site_sp);
1688           return m_breakpoint_site_list.Add(bp_site_sp);
1689         } else {
1690           if (show_error || use_hardware) {
1691             // Report error for setting breakpoint...
1692             GetTarget().GetDebugger().GetErrorStream().Printf(
1693                 "warning: failed to set breakpoint site at 0x%" PRIx64
1694                 " for breakpoint %i.%i: %s\n",
1695                 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(),
1696                 error.AsCString() ? error.AsCString() : "unknown error");
1697           }
1698         }
1699       }
1700     }
1701   }
1702   // We failed to enable the breakpoint
1703   return LLDB_INVALID_BREAK_ID;
1704 }
1705 
1706 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id,
1707                                             lldb::user_id_t owner_loc_id,
1708                                             BreakpointSiteSP &bp_site_sp) {
1709   uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id);
1710   if (num_owners == 0) {
1711     // Don't try to disable the site if we don't have a live process anymore.
1712     if (IsAlive())
1713       DisableBreakpointSite(bp_site_sp.get());
1714     m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress());
1715   }
1716 }
1717 
1718 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size,
1719                                                   uint8_t *buf) const {
1720   size_t bytes_removed = 0;
1721   BreakpointSiteList bp_sites_in_range;
1722 
1723   if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size,
1724                                          bp_sites_in_range)) {
1725     bp_sites_in_range.ForEach([bp_addr, size,
1726                                buf](BreakpointSite *bp_site) -> void {
1727       if (bp_site->GetType() == BreakpointSite::eSoftware) {
1728         addr_t intersect_addr;
1729         size_t intersect_size;
1730         size_t opcode_offset;
1731         if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr,
1732                                      &intersect_size, &opcode_offset)) {
1733           assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size);
1734           assert(bp_addr < intersect_addr + intersect_size &&
1735                  intersect_addr + intersect_size <= bp_addr + size);
1736           assert(opcode_offset + intersect_size <= bp_site->GetByteSize());
1737           size_t buf_offset = intersect_addr - bp_addr;
1738           ::memcpy(buf + buf_offset,
1739                    bp_site->GetSavedOpcodeBytes() + opcode_offset,
1740                    intersect_size);
1741         }
1742       }
1743     });
1744   }
1745   return bytes_removed;
1746 }
1747 
1748 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) {
1749   PlatformSP platform_sp(GetTarget().GetPlatform());
1750   if (platform_sp)
1751     return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site);
1752   return 0;
1753 }
1754 
1755 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) {
1756   Status error;
1757   assert(bp_site != nullptr);
1758   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
1759   const addr_t bp_addr = bp_site->GetLoadAddress();
1760   LLDB_LOGF(
1761       log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64,
1762       bp_site->GetID(), (uint64_t)bp_addr);
1763   if (bp_site->IsEnabled()) {
1764     LLDB_LOGF(
1765         log,
1766         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1767         " -- already enabled",
1768         bp_site->GetID(), (uint64_t)bp_addr);
1769     return error;
1770   }
1771 
1772   if (bp_addr == LLDB_INVALID_ADDRESS) {
1773     error.SetErrorString("BreakpointSite contains an invalid load address.");
1774     return error;
1775   }
1776   // Ask the lldb::Process subclass to fill in the correct software breakpoint
1777   // trap for the breakpoint site
1778   const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site);
1779 
1780   if (bp_opcode_size == 0) {
1781     error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() "
1782                                    "returned zero, unable to get breakpoint "
1783                                    "trap for address 0x%" PRIx64,
1784                                    bp_addr);
1785   } else {
1786     const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes();
1787 
1788     if (bp_opcode_bytes == nullptr) {
1789       error.SetErrorString(
1790           "BreakpointSite doesn't contain a valid breakpoint trap opcode.");
1791       return error;
1792     }
1793 
1794     // Save the original opcode by reading it
1795     if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size,
1796                      error) == bp_opcode_size) {
1797       // Write a software breakpoint in place of the original opcode
1798       if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) ==
1799           bp_opcode_size) {
1800         uint8_t verify_bp_opcode_bytes[64];
1801         if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size,
1802                          error) == bp_opcode_size) {
1803           if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes,
1804                        bp_opcode_size) == 0) {
1805             bp_site->SetEnabled(true);
1806             bp_site->SetType(BreakpointSite::eSoftware);
1807             LLDB_LOGF(log,
1808                       "Process::EnableSoftwareBreakpoint (site_id = %d) "
1809                       "addr = 0x%" PRIx64 " -- SUCCESS",
1810                       bp_site->GetID(), (uint64_t)bp_addr);
1811           } else
1812             error.SetErrorString(
1813                 "failed to verify the breakpoint trap in memory.");
1814         } else
1815           error.SetErrorString(
1816               "Unable to read memory to verify breakpoint trap.");
1817       } else
1818         error.SetErrorString("Unable to write breakpoint trap to memory.");
1819     } else
1820       error.SetErrorString("Unable to read memory at breakpoint address.");
1821   }
1822   if (log && error.Fail())
1823     LLDB_LOGF(
1824         log,
1825         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1826         " -- FAILED: %s",
1827         bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1828   return error;
1829 }
1830 
1831 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) {
1832   Status error;
1833   assert(bp_site != nullptr);
1834   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
1835   addr_t bp_addr = bp_site->GetLoadAddress();
1836   lldb::user_id_t breakID = bp_site->GetID();
1837   LLDB_LOGF(log,
1838             "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64
1839             ") addr = 0x%" PRIx64,
1840             breakID, (uint64_t)bp_addr);
1841 
1842   if (bp_site->IsHardware()) {
1843     error.SetErrorString("Breakpoint site is a hardware breakpoint.");
1844   } else if (bp_site->IsEnabled()) {
1845     const size_t break_op_size = bp_site->GetByteSize();
1846     const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes();
1847     if (break_op_size > 0) {
1848       // Clear a software breakpoint instruction
1849       uint8_t curr_break_op[8];
1850       assert(break_op_size <= sizeof(curr_break_op));
1851       bool break_op_found = false;
1852 
1853       // Read the breakpoint opcode
1854       if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) ==
1855           break_op_size) {
1856         bool verify = false;
1857         // Make sure the breakpoint opcode exists at this address
1858         if (::memcmp(curr_break_op, break_op, break_op_size) == 0) {
1859           break_op_found = true;
1860           // We found a valid breakpoint opcode at this address, now restore
1861           // the saved opcode.
1862           if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(),
1863                             break_op_size, error) == break_op_size) {
1864             verify = true;
1865           } else
1866             error.SetErrorString(
1867                 "Memory write failed when restoring original opcode.");
1868         } else {
1869           error.SetErrorString(
1870               "Original breakpoint trap is no longer in memory.");
1871           // Set verify to true and so we can check if the original opcode has
1872           // already been restored
1873           verify = true;
1874         }
1875 
1876         if (verify) {
1877           uint8_t verify_opcode[8];
1878           assert(break_op_size < sizeof(verify_opcode));
1879           // Verify that our original opcode made it back to the inferior
1880           if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) ==
1881               break_op_size) {
1882             // compare the memory we just read with the original opcode
1883             if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode,
1884                          break_op_size) == 0) {
1885               // SUCCESS
1886               bp_site->SetEnabled(false);
1887               LLDB_LOGF(log,
1888                         "Process::DisableSoftwareBreakpoint (site_id = %d) "
1889                         "addr = 0x%" PRIx64 " -- SUCCESS",
1890                         bp_site->GetID(), (uint64_t)bp_addr);
1891               return error;
1892             } else {
1893               if (break_op_found)
1894                 error.SetErrorString("Failed to restore original opcode.");
1895             }
1896           } else
1897             error.SetErrorString("Failed to read memory to verify that "
1898                                  "breakpoint trap was restored.");
1899         }
1900       } else
1901         error.SetErrorString(
1902             "Unable to read memory that should contain the breakpoint trap.");
1903     }
1904   } else {
1905     LLDB_LOGF(
1906         log,
1907         "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1908         " -- already disabled",
1909         bp_site->GetID(), (uint64_t)bp_addr);
1910     return error;
1911   }
1912 
1913   LLDB_LOGF(
1914       log,
1915       "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1916       " -- FAILED: %s",
1917       bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1918   return error;
1919 }
1920 
1921 // Uncomment to verify memory caching works after making changes to caching
1922 // code
1923 //#define VERIFY_MEMORY_READS
1924 
1925 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) {
1926   error.Clear();
1927   if (!GetDisableMemoryCache()) {
1928 #if defined(VERIFY_MEMORY_READS)
1929     // Memory caching is enabled, with debug verification
1930 
1931     if (buf && size) {
1932       // Uncomment the line below to make sure memory caching is working.
1933       // I ran this through the test suite and got no assertions, so I am
1934       // pretty confident this is working well. If any changes are made to
1935       // memory caching, uncomment the line below and test your changes!
1936 
1937       // Verify all memory reads by using the cache first, then redundantly
1938       // reading the same memory from the inferior and comparing to make sure
1939       // everything is exactly the same.
1940       std::string verify_buf(size, '\0');
1941       assert(verify_buf.size() == size);
1942       const size_t cache_bytes_read =
1943           m_memory_cache.Read(this, addr, buf, size, error);
1944       Status verify_error;
1945       const size_t verify_bytes_read =
1946           ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()),
1947                                  verify_buf.size(), verify_error);
1948       assert(cache_bytes_read == verify_bytes_read);
1949       assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0);
1950       assert(verify_error.Success() == error.Success());
1951       return cache_bytes_read;
1952     }
1953     return 0;
1954 #else  // !defined(VERIFY_MEMORY_READS)
1955     // Memory caching is enabled, without debug verification
1956 
1957     return m_memory_cache.Read(addr, buf, size, error);
1958 #endif // defined (VERIFY_MEMORY_READS)
1959   } else {
1960     // Memory caching is disabled
1961 
1962     return ReadMemoryFromInferior(addr, buf, size, error);
1963   }
1964 }
1965 
1966 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str,
1967                                       Status &error) {
1968   char buf[256];
1969   out_str.clear();
1970   addr_t curr_addr = addr;
1971   while (true) {
1972     size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error);
1973     if (length == 0)
1974       break;
1975     out_str.append(buf, length);
1976     // If we got "length - 1" bytes, we didn't get the whole C string, we need
1977     // to read some more characters
1978     if (length == sizeof(buf) - 1)
1979       curr_addr += length;
1980     else
1981       break;
1982   }
1983   return out_str.size();
1984 }
1985 
1986 // Deprecated in favor of ReadStringFromMemory which has wchar support and
1987 // correct code to find null terminators.
1988 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst,
1989                                       size_t dst_max_len,
1990                                       Status &result_error) {
1991   size_t total_cstr_len = 0;
1992   if (dst && dst_max_len) {
1993     result_error.Clear();
1994     // NULL out everything just to be safe
1995     memset(dst, 0, dst_max_len);
1996     Status error;
1997     addr_t curr_addr = addr;
1998     const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
1999     size_t bytes_left = dst_max_len - 1;
2000     char *curr_dst = dst;
2001 
2002     while (bytes_left > 0) {
2003       addr_t cache_line_bytes_left =
2004           cache_line_size - (curr_addr % cache_line_size);
2005       addr_t bytes_to_read =
2006           std::min<addr_t>(bytes_left, cache_line_bytes_left);
2007       size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
2008 
2009       if (bytes_read == 0) {
2010         result_error = error;
2011         dst[total_cstr_len] = '\0';
2012         break;
2013       }
2014       const size_t len = strlen(curr_dst);
2015 
2016       total_cstr_len += len;
2017 
2018       if (len < bytes_to_read)
2019         break;
2020 
2021       curr_dst += bytes_read;
2022       curr_addr += bytes_read;
2023       bytes_left -= bytes_read;
2024     }
2025   } else {
2026     if (dst == nullptr)
2027       result_error.SetErrorString("invalid arguments");
2028     else
2029       result_error.Clear();
2030   }
2031   return total_cstr_len;
2032 }
2033 
2034 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size,
2035                                        Status &error) {
2036   LLDB_SCOPED_TIMER();
2037 
2038   if (buf == nullptr || size == 0)
2039     return 0;
2040 
2041   size_t bytes_read = 0;
2042   uint8_t *bytes = (uint8_t *)buf;
2043 
2044   while (bytes_read < size) {
2045     const size_t curr_size = size - bytes_read;
2046     const size_t curr_bytes_read =
2047         DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error);
2048     bytes_read += curr_bytes_read;
2049     if (curr_bytes_read == curr_size || curr_bytes_read == 0)
2050       break;
2051   }
2052 
2053   // Replace any software breakpoint opcodes that fall into this range back
2054   // into "buf" before we return
2055   if (bytes_read > 0)
2056     RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf);
2057   return bytes_read;
2058 }
2059 
2060 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr,
2061                                                 size_t integer_byte_size,
2062                                                 uint64_t fail_value,
2063                                                 Status &error) {
2064   Scalar scalar;
2065   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar,
2066                                   error))
2067     return scalar.ULongLong(fail_value);
2068   return fail_value;
2069 }
2070 
2071 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr,
2072                                              size_t integer_byte_size,
2073                                              int64_t fail_value,
2074                                              Status &error) {
2075   Scalar scalar;
2076   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar,
2077                                   error))
2078     return scalar.SLongLong(fail_value);
2079   return fail_value;
2080 }
2081 
2082 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) {
2083   Scalar scalar;
2084   if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar,
2085                                   error))
2086     return scalar.ULongLong(LLDB_INVALID_ADDRESS);
2087   return LLDB_INVALID_ADDRESS;
2088 }
2089 
2090 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value,
2091                                    Status &error) {
2092   Scalar scalar;
2093   const uint32_t addr_byte_size = GetAddressByteSize();
2094   if (addr_byte_size <= 4)
2095     scalar = (uint32_t)ptr_value;
2096   else
2097     scalar = ptr_value;
2098   return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) ==
2099          addr_byte_size;
2100 }
2101 
2102 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size,
2103                                    Status &error) {
2104   size_t bytes_written = 0;
2105   const uint8_t *bytes = (const uint8_t *)buf;
2106 
2107   while (bytes_written < size) {
2108     const size_t curr_size = size - bytes_written;
2109     const size_t curr_bytes_written = DoWriteMemory(
2110         addr + bytes_written, bytes + bytes_written, curr_size, error);
2111     bytes_written += curr_bytes_written;
2112     if (curr_bytes_written == curr_size || curr_bytes_written == 0)
2113       break;
2114   }
2115   return bytes_written;
2116 }
2117 
2118 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size,
2119                             Status &error) {
2120 #if defined(ENABLE_MEMORY_CACHING)
2121   m_memory_cache.Flush(addr, size);
2122 #endif
2123 
2124   if (buf == nullptr || size == 0)
2125     return 0;
2126 
2127   m_mod_id.BumpMemoryID();
2128 
2129   // We need to write any data that would go where any current software traps
2130   // (enabled software breakpoints) any software traps (breakpoints) that we
2131   // may have placed in our tasks memory.
2132 
2133   BreakpointSiteList bp_sites_in_range;
2134   if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range))
2135     return WriteMemoryPrivate(addr, buf, size, error);
2136 
2137   // No breakpoint sites overlap
2138   if (bp_sites_in_range.IsEmpty())
2139     return WriteMemoryPrivate(addr, buf, size, error);
2140 
2141   const uint8_t *ubuf = (const uint8_t *)buf;
2142   uint64_t bytes_written = 0;
2143 
2144   bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf,
2145                              &error](BreakpointSite *bp) -> void {
2146     if (error.Fail())
2147       return;
2148 
2149     if (bp->GetType() != BreakpointSite::eSoftware)
2150       return;
2151 
2152     addr_t intersect_addr;
2153     size_t intersect_size;
2154     size_t opcode_offset;
2155     const bool intersects = bp->IntersectsRange(
2156         addr, size, &intersect_addr, &intersect_size, &opcode_offset);
2157     UNUSED_IF_ASSERT_DISABLED(intersects);
2158     assert(intersects);
2159     assert(addr <= intersect_addr && intersect_addr < addr + size);
2160     assert(addr < intersect_addr + intersect_size &&
2161            intersect_addr + intersect_size <= addr + size);
2162     assert(opcode_offset + intersect_size <= bp->GetByteSize());
2163 
2164     // Check for bytes before this breakpoint
2165     const addr_t curr_addr = addr + bytes_written;
2166     if (intersect_addr > curr_addr) {
2167       // There are some bytes before this breakpoint that we need to just
2168       // write to memory
2169       size_t curr_size = intersect_addr - curr_addr;
2170       size_t curr_bytes_written =
2171           WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error);
2172       bytes_written += curr_bytes_written;
2173       if (curr_bytes_written != curr_size) {
2174         // We weren't able to write all of the requested bytes, we are
2175         // done looping and will return the number of bytes that we have
2176         // written so far.
2177         if (error.Success())
2178           error.SetErrorToGenericError();
2179       }
2180     }
2181     // Now write any bytes that would cover up any software breakpoints
2182     // directly into the breakpoint opcode buffer
2183     ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written,
2184              intersect_size);
2185     bytes_written += intersect_size;
2186   });
2187 
2188   // Write any remaining bytes after the last breakpoint if we have any left
2189   if (bytes_written < size)
2190     bytes_written +=
2191         WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written,
2192                            size - bytes_written, error);
2193 
2194   return bytes_written;
2195 }
2196 
2197 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar,
2198                                     size_t byte_size, Status &error) {
2199   if (byte_size == UINT32_MAX)
2200     byte_size = scalar.GetByteSize();
2201   if (byte_size > 0) {
2202     uint8_t buf[32];
2203     const size_t mem_size =
2204         scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error);
2205     if (mem_size > 0)
2206       return WriteMemory(addr, buf, mem_size, error);
2207     else
2208       error.SetErrorString("failed to get scalar as memory data");
2209   } else {
2210     error.SetErrorString("invalid scalar value");
2211   }
2212   return 0;
2213 }
2214 
2215 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size,
2216                                             bool is_signed, Scalar &scalar,
2217                                             Status &error) {
2218   uint64_t uval = 0;
2219   if (byte_size == 0) {
2220     error.SetErrorString("byte size is zero");
2221   } else if (byte_size & (byte_size - 1)) {
2222     error.SetErrorStringWithFormat("byte size %u is not a power of 2",
2223                                    byte_size);
2224   } else if (byte_size <= sizeof(uval)) {
2225     const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error);
2226     if (bytes_read == byte_size) {
2227       DataExtractor data(&uval, sizeof(uval), GetByteOrder(),
2228                          GetAddressByteSize());
2229       lldb::offset_t offset = 0;
2230       if (byte_size <= 4)
2231         scalar = data.GetMaxU32(&offset, byte_size);
2232       else
2233         scalar = data.GetMaxU64(&offset, byte_size);
2234       if (is_signed)
2235         scalar.SignExtend(byte_size * 8);
2236       return bytes_read;
2237     }
2238   } else {
2239     error.SetErrorStringWithFormat(
2240         "byte size of %u is too large for integer scalar type", byte_size);
2241   }
2242   return 0;
2243 }
2244 
2245 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) {
2246   Status error;
2247   for (const auto &Entry : entries) {
2248     WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(),
2249                 error);
2250     if (!error.Success())
2251       break;
2252   }
2253   return error;
2254 }
2255 
2256 #define USE_ALLOCATE_MEMORY_CACHE 1
2257 addr_t Process::AllocateMemory(size_t size, uint32_t permissions,
2258                                Status &error) {
2259   if (GetPrivateState() != eStateStopped) {
2260     error.SetErrorToGenericError();
2261     return LLDB_INVALID_ADDRESS;
2262   }
2263 
2264 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2265   return m_allocated_memory_cache.AllocateMemory(size, permissions, error);
2266 #else
2267   addr_t allocated_addr = DoAllocateMemory(size, permissions, error);
2268   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2269   LLDB_LOGF(log,
2270             "Process::AllocateMemory(size=%" PRIu64
2271             ", permissions=%s) => 0x%16.16" PRIx64
2272             " (m_stop_id = %u m_memory_id = %u)",
2273             (uint64_t)size, GetPermissionsAsCString(permissions),
2274             (uint64_t)allocated_addr, m_mod_id.GetStopID(),
2275             m_mod_id.GetMemoryID());
2276   return allocated_addr;
2277 #endif
2278 }
2279 
2280 addr_t Process::CallocateMemory(size_t size, uint32_t permissions,
2281                                 Status &error) {
2282   addr_t return_addr = AllocateMemory(size, permissions, error);
2283   if (error.Success()) {
2284     std::string buffer(size, 0);
2285     WriteMemory(return_addr, buffer.c_str(), size, error);
2286   }
2287   return return_addr;
2288 }
2289 
2290 bool Process::CanJIT() {
2291   if (m_can_jit == eCanJITDontKnow) {
2292     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2293     Status err;
2294 
2295     uint64_t allocated_memory = AllocateMemory(
2296         8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable,
2297         err);
2298 
2299     if (err.Success()) {
2300       m_can_jit = eCanJITYes;
2301       LLDB_LOGF(log,
2302                 "Process::%s pid %" PRIu64
2303                 " allocation test passed, CanJIT () is true",
2304                 __FUNCTION__, GetID());
2305     } else {
2306       m_can_jit = eCanJITNo;
2307       LLDB_LOGF(log,
2308                 "Process::%s pid %" PRIu64
2309                 " allocation test failed, CanJIT () is false: %s",
2310                 __FUNCTION__, GetID(), err.AsCString());
2311     }
2312 
2313     DeallocateMemory(allocated_memory);
2314   }
2315 
2316   return m_can_jit == eCanJITYes;
2317 }
2318 
2319 void Process::SetCanJIT(bool can_jit) {
2320   m_can_jit = (can_jit ? eCanJITYes : eCanJITNo);
2321 }
2322 
2323 void Process::SetCanRunCode(bool can_run_code) {
2324   SetCanJIT(can_run_code);
2325   m_can_interpret_function_calls = can_run_code;
2326 }
2327 
2328 Status Process::DeallocateMemory(addr_t ptr) {
2329   Status error;
2330 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2331   if (!m_allocated_memory_cache.DeallocateMemory(ptr)) {
2332     error.SetErrorStringWithFormat(
2333         "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr);
2334   }
2335 #else
2336   error = DoDeallocateMemory(ptr);
2337 
2338   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2339   LLDB_LOGF(log,
2340             "Process::DeallocateMemory(addr=0x%16.16" PRIx64
2341             ") => err = %s (m_stop_id = %u, m_memory_id = %u)",
2342             ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(),
2343             m_mod_id.GetMemoryID());
2344 #endif
2345   return error;
2346 }
2347 
2348 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec,
2349                                        lldb::addr_t header_addr,
2350                                        size_t size_to_read) {
2351   Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST);
2352   if (log) {
2353     LLDB_LOGF(log,
2354               "Process::ReadModuleFromMemory reading %s binary from memory",
2355               file_spec.GetPath().c_str());
2356   }
2357   ModuleSP module_sp(new Module(file_spec, ArchSpec()));
2358   if (module_sp) {
2359     Status error;
2360     ObjectFile *objfile = module_sp->GetMemoryObjectFile(
2361         shared_from_this(), header_addr, error, size_to_read);
2362     if (objfile)
2363       return module_sp;
2364   }
2365   return ModuleSP();
2366 }
2367 
2368 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr,
2369                                         uint32_t &permissions) {
2370   MemoryRegionInfo range_info;
2371   permissions = 0;
2372   Status error(GetMemoryRegionInfo(load_addr, range_info));
2373   if (!error.Success())
2374     return false;
2375   if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow ||
2376       range_info.GetWritable() == MemoryRegionInfo::eDontKnow ||
2377       range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) {
2378     return false;
2379   }
2380 
2381   if (range_info.GetReadable() == MemoryRegionInfo::eYes)
2382     permissions |= lldb::ePermissionsReadable;
2383 
2384   if (range_info.GetWritable() == MemoryRegionInfo::eYes)
2385     permissions |= lldb::ePermissionsWritable;
2386 
2387   if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
2388     permissions |= lldb::ePermissionsExecutable;
2389 
2390   return true;
2391 }
2392 
2393 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) {
2394   Status error;
2395   error.SetErrorString("watchpoints are not supported");
2396   return error;
2397 }
2398 
2399 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) {
2400   Status error;
2401   error.SetErrorString("watchpoints are not supported");
2402   return error;
2403 }
2404 
2405 StateType
2406 Process::WaitForProcessStopPrivate(EventSP &event_sp,
2407                                    const Timeout<std::micro> &timeout) {
2408   StateType state;
2409 
2410   while (true) {
2411     event_sp.reset();
2412     state = GetStateChangedEventsPrivate(event_sp, timeout);
2413 
2414     if (StateIsStoppedState(state, false))
2415       break;
2416 
2417     // If state is invalid, then we timed out
2418     if (state == eStateInvalid)
2419       break;
2420 
2421     if (event_sp)
2422       HandlePrivateEvent(event_sp);
2423   }
2424   return state;
2425 }
2426 
2427 void Process::LoadOperatingSystemPlugin(bool flush) {
2428   if (flush)
2429     m_thread_list.Clear();
2430   m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr));
2431   if (flush)
2432     Flush();
2433 }
2434 
2435 Status Process::Launch(ProcessLaunchInfo &launch_info) {
2436   Status error;
2437   m_abi_sp.reset();
2438   m_dyld_up.reset();
2439   m_jit_loaders_up.reset();
2440   m_system_runtime_up.reset();
2441   m_os_up.reset();
2442   m_process_input_reader.reset();
2443 
2444   Module *exe_module = GetTarget().GetExecutableModulePointer();
2445 
2446   // The "remote executable path" is hooked up to the local Executable
2447   // module.  But we should be able to debug a remote process even if the
2448   // executable module only exists on the remote.  However, there needs to
2449   // be a way to express this path, without actually having a module.
2450   // The way to do that is to set the ExecutableFile in the LaunchInfo.
2451   // Figure that out here:
2452 
2453   FileSpec exe_spec_to_use;
2454   if (!exe_module) {
2455     if (!launch_info.GetExecutableFile()) {
2456       error.SetErrorString("executable module does not exist");
2457       return error;
2458     }
2459     exe_spec_to_use = launch_info.GetExecutableFile();
2460   } else
2461     exe_spec_to_use = exe_module->GetFileSpec();
2462 
2463   if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) {
2464     // Install anything that might need to be installed prior to launching.
2465     // For host systems, this will do nothing, but if we are connected to a
2466     // remote platform it will install any needed binaries
2467     error = GetTarget().Install(&launch_info);
2468     if (error.Fail())
2469       return error;
2470   }
2471   // Listen and queue events that are broadcasted during the process launch.
2472   ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack"));
2473   HijackProcessEvents(listener_sp);
2474   auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); });
2475 
2476   if (PrivateStateThreadIsValid())
2477     PausePrivateStateThread();
2478 
2479   error = WillLaunch(exe_module);
2480   if (error.Success()) {
2481     const bool restarted = false;
2482     SetPublicState(eStateLaunching, restarted);
2483     m_should_detach = false;
2484 
2485     if (m_public_run_lock.TrySetRunning()) {
2486       // Now launch using these arguments.
2487       error = DoLaunch(exe_module, launch_info);
2488     } else {
2489       // This shouldn't happen
2490       error.SetErrorString("failed to acquire process run lock");
2491     }
2492 
2493     if (error.Fail()) {
2494       if (GetID() != LLDB_INVALID_PROCESS_ID) {
2495         SetID(LLDB_INVALID_PROCESS_ID);
2496         const char *error_string = error.AsCString();
2497         if (error_string == nullptr)
2498           error_string = "launch failed";
2499         SetExitStatus(-1, error_string);
2500       }
2501     } else {
2502       EventSP event_sp;
2503 
2504       // Now wait for the process to launch and return control to us, and then
2505       // call DidLaunch:
2506       StateType state = WaitForProcessStopPrivate(event_sp, seconds(10));
2507 
2508       if (state == eStateInvalid || !event_sp) {
2509         // We were able to launch the process, but we failed to catch the
2510         // initial stop.
2511         error.SetErrorString("failed to catch stop after launch");
2512         SetExitStatus(0, "failed to catch stop after launch");
2513         Destroy(false);
2514       } else if (state == eStateStopped || state == eStateCrashed) {
2515         DidLaunch();
2516 
2517         DynamicLoader *dyld = GetDynamicLoader();
2518         if (dyld)
2519           dyld->DidLaunch();
2520 
2521         GetJITLoaders().DidLaunch();
2522 
2523         SystemRuntime *system_runtime = GetSystemRuntime();
2524         if (system_runtime)
2525           system_runtime->DidLaunch();
2526 
2527         if (!m_os_up)
2528           LoadOperatingSystemPlugin(false);
2529 
2530         // We successfully launched the process and stopped, now it the
2531         // right time to set up signal filters before resuming.
2532         UpdateAutomaticSignalFiltering();
2533 
2534         // Note, the stop event was consumed above, but not handled. This
2535         // was done to give DidLaunch a chance to run. The target is either
2536         // stopped or crashed. Directly set the state.  This is done to
2537         // prevent a stop message with a bunch of spurious output on thread
2538         // status, as well as not pop a ProcessIOHandler.
2539         // We are done with the launch hijack listener, and this stop should
2540         // go to the public state listener:
2541         RestoreProcessEvents();
2542         SetPublicState(state, false);
2543 
2544         if (PrivateStateThreadIsValid())
2545           ResumePrivateStateThread();
2546         else
2547           StartPrivateStateThread();
2548 
2549         // Target was stopped at entry as was intended. Need to notify the
2550         // listeners about it.
2551         if (state == eStateStopped &&
2552             launch_info.GetFlags().Test(eLaunchFlagStopAtEntry))
2553           HandlePrivateEvent(event_sp);
2554       } else if (state == eStateExited) {
2555         // We exited while trying to launch somehow.  Don't call DidLaunch
2556         // as that's not likely to work, and return an invalid pid.
2557         HandlePrivateEvent(event_sp);
2558       }
2559     }
2560   } else {
2561     std::string local_exec_file_path = exe_spec_to_use.GetPath();
2562     error.SetErrorStringWithFormat("file doesn't exist: '%s'",
2563                                    local_exec_file_path.c_str());
2564   }
2565 
2566   return error;
2567 }
2568 
2569 Status Process::LoadCore() {
2570   Status error = DoLoadCore();
2571   if (error.Success()) {
2572     ListenerSP listener_sp(
2573         Listener::MakeListener("lldb.process.load_core_listener"));
2574     HijackProcessEvents(listener_sp);
2575 
2576     if (PrivateStateThreadIsValid())
2577       ResumePrivateStateThread();
2578     else
2579       StartPrivateStateThread();
2580 
2581     DynamicLoader *dyld = GetDynamicLoader();
2582     if (dyld)
2583       dyld->DidAttach();
2584 
2585     GetJITLoaders().DidAttach();
2586 
2587     SystemRuntime *system_runtime = GetSystemRuntime();
2588     if (system_runtime)
2589       system_runtime->DidAttach();
2590 
2591     if (!m_os_up)
2592       LoadOperatingSystemPlugin(false);
2593 
2594     // We successfully loaded a core file, now pretend we stopped so we can
2595     // show all of the threads in the core file and explore the crashed state.
2596     SetPrivateState(eStateStopped);
2597 
2598     // Wait for a stopped event since we just posted one above...
2599     lldb::EventSP event_sp;
2600     StateType state =
2601         WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp);
2602 
2603     if (!StateIsStoppedState(state, false)) {
2604       Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2605       LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s",
2606                 StateAsCString(state));
2607       error.SetErrorString(
2608           "Did not get stopped event after loading the core file.");
2609     }
2610     RestoreProcessEvents();
2611   }
2612   return error;
2613 }
2614 
2615 DynamicLoader *Process::GetDynamicLoader() {
2616   if (!m_dyld_up)
2617     m_dyld_up.reset(DynamicLoader::FindPlugin(this, ""));
2618   return m_dyld_up.get();
2619 }
2620 
2621 DataExtractor Process::GetAuxvData() { return DataExtractor(); }
2622 
2623 llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) {
2624   return false;
2625 }
2626 
2627 JITLoaderList &Process::GetJITLoaders() {
2628   if (!m_jit_loaders_up) {
2629     m_jit_loaders_up = std::make_unique<JITLoaderList>();
2630     JITLoader::LoadPlugins(this, *m_jit_loaders_up);
2631   }
2632   return *m_jit_loaders_up;
2633 }
2634 
2635 SystemRuntime *Process::GetSystemRuntime() {
2636   if (!m_system_runtime_up)
2637     m_system_runtime_up.reset(SystemRuntime::FindPlugin(this));
2638   return m_system_runtime_up.get();
2639 }
2640 
2641 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process,
2642                                                           uint32_t exec_count)
2643     : NextEventAction(process), m_exec_count(exec_count) {
2644   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2645   LLDB_LOGF(
2646       log,
2647       "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32,
2648       __FUNCTION__, static_cast<void *>(process), exec_count);
2649 }
2650 
2651 Process::NextEventAction::EventActionResult
2652 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) {
2653   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2654 
2655   StateType state = ProcessEventData::GetStateFromEvent(event_sp.get());
2656   LLDB_LOGF(log,
2657             "Process::AttachCompletionHandler::%s called with state %s (%d)",
2658             __FUNCTION__, StateAsCString(state), static_cast<int>(state));
2659 
2660   switch (state) {
2661   case eStateAttaching:
2662     return eEventActionSuccess;
2663 
2664   case eStateRunning:
2665   case eStateConnected:
2666     return eEventActionRetry;
2667 
2668   case eStateStopped:
2669   case eStateCrashed:
2670     // During attach, prior to sending the eStateStopped event,
2671     // lldb_private::Process subclasses must set the new process ID.
2672     assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID);
2673     // We don't want these events to be reported, so go set the
2674     // ShouldReportStop here:
2675     m_process->GetThreadList().SetShouldReportStop(eVoteNo);
2676 
2677     if (m_exec_count > 0) {
2678       --m_exec_count;
2679 
2680       LLDB_LOGF(log,
2681                 "Process::AttachCompletionHandler::%s state %s: reduced "
2682                 "remaining exec count to %" PRIu32 ", requesting resume",
2683                 __FUNCTION__, StateAsCString(state), m_exec_count);
2684 
2685       RequestResume();
2686       return eEventActionRetry;
2687     } else {
2688       LLDB_LOGF(log,
2689                 "Process::AttachCompletionHandler::%s state %s: no more "
2690                 "execs expected to start, continuing with attach",
2691                 __FUNCTION__, StateAsCString(state));
2692 
2693       m_process->CompleteAttach();
2694       return eEventActionSuccess;
2695     }
2696     break;
2697 
2698   default:
2699   case eStateExited:
2700   case eStateInvalid:
2701     break;
2702   }
2703 
2704   m_exit_string.assign("No valid Process");
2705   return eEventActionExit;
2706 }
2707 
2708 Process::NextEventAction::EventActionResult
2709 Process::AttachCompletionHandler::HandleBeingInterrupted() {
2710   return eEventActionSuccess;
2711 }
2712 
2713 const char *Process::AttachCompletionHandler::GetExitString() {
2714   return m_exit_string.c_str();
2715 }
2716 
2717 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) {
2718   if (m_listener_sp)
2719     return m_listener_sp;
2720   else
2721     return debugger.GetListener();
2722 }
2723 
2724 Status Process::Attach(ProcessAttachInfo &attach_info) {
2725   m_abi_sp.reset();
2726   m_process_input_reader.reset();
2727   m_dyld_up.reset();
2728   m_jit_loaders_up.reset();
2729   m_system_runtime_up.reset();
2730   m_os_up.reset();
2731 
2732   lldb::pid_t attach_pid = attach_info.GetProcessID();
2733   Status error;
2734   if (attach_pid == LLDB_INVALID_PROCESS_ID) {
2735     char process_name[PATH_MAX];
2736 
2737     if (attach_info.GetExecutableFile().GetPath(process_name,
2738                                                 sizeof(process_name))) {
2739       const bool wait_for_launch = attach_info.GetWaitForLaunch();
2740 
2741       if (wait_for_launch) {
2742         error = WillAttachToProcessWithName(process_name, wait_for_launch);
2743         if (error.Success()) {
2744           if (m_public_run_lock.TrySetRunning()) {
2745             m_should_detach = true;
2746             const bool restarted = false;
2747             SetPublicState(eStateAttaching, restarted);
2748             // Now attach using these arguments.
2749             error = DoAttachToProcessWithName(process_name, attach_info);
2750           } else {
2751             // This shouldn't happen
2752             error.SetErrorString("failed to acquire process run lock");
2753           }
2754 
2755           if (error.Fail()) {
2756             if (GetID() != LLDB_INVALID_PROCESS_ID) {
2757               SetID(LLDB_INVALID_PROCESS_ID);
2758               if (error.AsCString() == nullptr)
2759                 error.SetErrorString("attach failed");
2760 
2761               SetExitStatus(-1, error.AsCString());
2762             }
2763           } else {
2764             SetNextEventAction(new Process::AttachCompletionHandler(
2765                 this, attach_info.GetResumeCount()));
2766             StartPrivateStateThread();
2767           }
2768           return error;
2769         }
2770       } else {
2771         ProcessInstanceInfoList process_infos;
2772         PlatformSP platform_sp(GetTarget().GetPlatform());
2773 
2774         if (platform_sp) {
2775           ProcessInstanceInfoMatch match_info;
2776           match_info.GetProcessInfo() = attach_info;
2777           match_info.SetNameMatchType(NameMatch::Equals);
2778           platform_sp->FindProcesses(match_info, process_infos);
2779           const uint32_t num_matches = process_infos.size();
2780           if (num_matches == 1) {
2781             attach_pid = process_infos[0].GetProcessID();
2782             // Fall through and attach using the above process ID
2783           } else {
2784             match_info.GetProcessInfo().GetExecutableFile().GetPath(
2785                 process_name, sizeof(process_name));
2786             if (num_matches > 1) {
2787               StreamString s;
2788               ProcessInstanceInfo::DumpTableHeader(s, true, false);
2789               for (size_t i = 0; i < num_matches; i++) {
2790                 process_infos[i].DumpAsTableRow(
2791                     s, platform_sp->GetUserIDResolver(), true, false);
2792               }
2793               error.SetErrorStringWithFormat(
2794                   "more than one process named %s:\n%s", process_name,
2795                   s.GetData());
2796             } else
2797               error.SetErrorStringWithFormat(
2798                   "could not find a process named %s", process_name);
2799           }
2800         } else {
2801           error.SetErrorString(
2802               "invalid platform, can't find processes by name");
2803           return error;
2804         }
2805       }
2806     } else {
2807       error.SetErrorString("invalid process name");
2808     }
2809   }
2810 
2811   if (attach_pid != LLDB_INVALID_PROCESS_ID) {
2812     error = WillAttachToProcessWithID(attach_pid);
2813     if (error.Success()) {
2814 
2815       if (m_public_run_lock.TrySetRunning()) {
2816         // Now attach using these arguments.
2817         m_should_detach = true;
2818         const bool restarted = false;
2819         SetPublicState(eStateAttaching, restarted);
2820         error = DoAttachToProcessWithID(attach_pid, attach_info);
2821       } else {
2822         // This shouldn't happen
2823         error.SetErrorString("failed to acquire process run lock");
2824       }
2825 
2826       if (error.Success()) {
2827         SetNextEventAction(new Process::AttachCompletionHandler(
2828             this, attach_info.GetResumeCount()));
2829         StartPrivateStateThread();
2830       } else {
2831         if (GetID() != LLDB_INVALID_PROCESS_ID)
2832           SetID(LLDB_INVALID_PROCESS_ID);
2833 
2834         const char *error_string = error.AsCString();
2835         if (error_string == nullptr)
2836           error_string = "attach failed";
2837 
2838         SetExitStatus(-1, error_string);
2839       }
2840     }
2841   }
2842   return error;
2843 }
2844 
2845 void Process::CompleteAttach() {
2846   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS |
2847                                                   LIBLLDB_LOG_TARGET));
2848   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
2849 
2850   // Let the process subclass figure out at much as it can about the process
2851   // before we go looking for a dynamic loader plug-in.
2852   ArchSpec process_arch;
2853   DidAttach(process_arch);
2854 
2855   if (process_arch.IsValid()) {
2856     GetTarget().SetArchitecture(process_arch);
2857     if (log) {
2858       const char *triple_str = process_arch.GetTriple().getTriple().c_str();
2859       LLDB_LOGF(log,
2860                 "Process::%s replacing process architecture with DidAttach() "
2861                 "architecture: %s",
2862                 __FUNCTION__, triple_str ? triple_str : "<null>");
2863     }
2864   }
2865 
2866   // We just attached.  If we have a platform, ask it for the process
2867   // architecture, and if it isn't the same as the one we've already set,
2868   // switch architectures.
2869   PlatformSP platform_sp(GetTarget().GetPlatform());
2870   assert(platform_sp);
2871   if (platform_sp) {
2872     const ArchSpec &target_arch = GetTarget().GetArchitecture();
2873     if (target_arch.IsValid() &&
2874         !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) {
2875       ArchSpec platform_arch;
2876       platform_sp =
2877           platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch);
2878       if (platform_sp) {
2879         GetTarget().SetPlatform(platform_sp);
2880         GetTarget().SetArchitecture(platform_arch);
2881         LLDB_LOGF(log,
2882                   "Process::%s switching platform to %s and architecture "
2883                   "to %s based on info from attach",
2884                   __FUNCTION__, platform_sp->GetName().AsCString(""),
2885                   platform_arch.GetTriple().getTriple().c_str());
2886       }
2887     } else if (!process_arch.IsValid()) {
2888       ProcessInstanceInfo process_info;
2889       GetProcessInfo(process_info);
2890       const ArchSpec &process_arch = process_info.GetArchitecture();
2891       const ArchSpec &target_arch = GetTarget().GetArchitecture();
2892       if (process_arch.IsValid() &&
2893           target_arch.IsCompatibleMatch(process_arch) &&
2894           !target_arch.IsExactMatch(process_arch)) {
2895         GetTarget().SetArchitecture(process_arch);
2896         LLDB_LOGF(log,
2897                   "Process::%s switching architecture to %s based on info "
2898                   "the platform retrieved for pid %" PRIu64,
2899                   __FUNCTION__, process_arch.GetTriple().getTriple().c_str(),
2900                   GetID());
2901       }
2902     }
2903   }
2904 
2905   // We have completed the attach, now it is time to find the dynamic loader
2906   // plug-in
2907   DynamicLoader *dyld = GetDynamicLoader();
2908   if (dyld) {
2909     dyld->DidAttach();
2910     if (log) {
2911       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2912       LLDB_LOG(log,
2913                "after DynamicLoader::DidAttach(), target "
2914                "executable is {0} (using {1} plugin)",
2915                exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
2916                dyld->GetPluginName());
2917     }
2918   }
2919 
2920   GetJITLoaders().DidAttach();
2921 
2922   SystemRuntime *system_runtime = GetSystemRuntime();
2923   if (system_runtime) {
2924     system_runtime->DidAttach();
2925     if (log) {
2926       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2927       LLDB_LOG(log,
2928                "after SystemRuntime::DidAttach(), target "
2929                "executable is {0} (using {1} plugin)",
2930                exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
2931                system_runtime->GetPluginName());
2932     }
2933   }
2934 
2935   if (!m_os_up) {
2936     LoadOperatingSystemPlugin(false);
2937     if (m_os_up) {
2938       // Somebody might have gotten threads before now, but we need to force the
2939       // update after we've loaded the OperatingSystem plugin or it won't get a
2940       // chance to process the threads.
2941       m_thread_list.Clear();
2942       UpdateThreadListIfNeeded();
2943     }
2944   }
2945   // Figure out which one is the executable, and set that in our target:
2946   ModuleSP new_executable_module_sp;
2947   for (ModuleSP module_sp : GetTarget().GetImages().Modules()) {
2948     if (module_sp && module_sp->IsExecutable()) {
2949       if (GetTarget().GetExecutableModulePointer() != module_sp.get())
2950         new_executable_module_sp = module_sp;
2951       break;
2952     }
2953   }
2954   if (new_executable_module_sp) {
2955     GetTarget().SetExecutableModule(new_executable_module_sp,
2956                                     eLoadDependentsNo);
2957     if (log) {
2958       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2959       LLDB_LOGF(
2960           log,
2961           "Process::%s after looping through modules, target executable is %s",
2962           __FUNCTION__,
2963           exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
2964                         : "<none>");
2965     }
2966   }
2967 }
2968 
2969 Status Process::ConnectRemote(llvm::StringRef remote_url) {
2970   m_abi_sp.reset();
2971   m_process_input_reader.reset();
2972 
2973   // Find the process and its architecture.  Make sure it matches the
2974   // architecture of the current Target, and if not adjust it.
2975 
2976   Status error(DoConnectRemote(remote_url));
2977   if (error.Success()) {
2978     if (GetID() != LLDB_INVALID_PROCESS_ID) {
2979       EventSP event_sp;
2980       StateType state = WaitForProcessStopPrivate(event_sp, llvm::None);
2981 
2982       if (state == eStateStopped || state == eStateCrashed) {
2983         // If we attached and actually have a process on the other end, then
2984         // this ended up being the equivalent of an attach.
2985         CompleteAttach();
2986 
2987         // This delays passing the stopped event to listeners till
2988         // CompleteAttach gets a chance to complete...
2989         HandlePrivateEvent(event_sp);
2990       }
2991     }
2992 
2993     if (PrivateStateThreadIsValid())
2994       ResumePrivateStateThread();
2995     else
2996       StartPrivateStateThread();
2997   }
2998   return error;
2999 }
3000 
3001 Status Process::PrivateResume() {
3002   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS |
3003                                                   LIBLLDB_LOG_STEP));
3004   LLDB_LOGF(log,
3005             "Process::PrivateResume() m_stop_id = %u, public state: %s "
3006             "private state: %s",
3007             m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()),
3008             StateAsCString(m_private_state.GetValue()));
3009 
3010   // If signals handing status changed we might want to update our signal
3011   // filters before resuming.
3012   UpdateAutomaticSignalFiltering();
3013 
3014   Status error(WillResume());
3015   // Tell the process it is about to resume before the thread list
3016   if (error.Success()) {
3017     // Now let the thread list know we are about to resume so it can let all of
3018     // our threads know that they are about to be resumed. Threads will each be
3019     // called with Thread::WillResume(StateType) where StateType contains the
3020     // state that they are supposed to have when the process is resumed
3021     // (suspended/running/stepping). Threads should also check their resume
3022     // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to
3023     // start back up with a signal.
3024     if (m_thread_list.WillResume()) {
3025       // Last thing, do the PreResumeActions.
3026       if (!RunPreResumeActions()) {
3027         error.SetErrorString(
3028             "Process::PrivateResume PreResumeActions failed, not resuming.");
3029       } else {
3030         m_mod_id.BumpResumeID();
3031         error = DoResume();
3032         if (error.Success()) {
3033           DidResume();
3034           m_thread_list.DidResume();
3035           LLDB_LOGF(log, "Process thinks the process has resumed.");
3036         } else {
3037           LLDB_LOGF(log, "Process::PrivateResume() DoResume failed.");
3038           return error;
3039         }
3040       }
3041     } else {
3042       // Somebody wanted to run without running (e.g. we were faking a step
3043       // from one frame of a set of inlined frames that share the same PC to
3044       // another.)  So generate a continue & a stopped event, and let the world
3045       // handle them.
3046       LLDB_LOGF(log,
3047                 "Process::PrivateResume() asked to simulate a start & stop.");
3048 
3049       SetPrivateState(eStateRunning);
3050       SetPrivateState(eStateStopped);
3051     }
3052   } else
3053     LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".",
3054               error.AsCString("<unknown error>"));
3055   return error;
3056 }
3057 
3058 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) {
3059   if (!StateIsRunningState(m_public_state.GetValue()))
3060     return Status("Process is not running.");
3061 
3062   // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in
3063   // case it was already set and some thread plan logic calls halt on its own.
3064   m_clear_thread_plans_on_stop |= clear_thread_plans;
3065 
3066   ListenerSP halt_listener_sp(
3067       Listener::MakeListener("lldb.process.halt_listener"));
3068   HijackProcessEvents(halt_listener_sp);
3069 
3070   EventSP event_sp;
3071 
3072   SendAsyncInterrupt();
3073 
3074   if (m_public_state.GetValue() == eStateAttaching) {
3075     // Don't hijack and eat the eStateExited as the code that was doing the
3076     // attach will be waiting for this event...
3077     RestoreProcessEvents();
3078     SetExitStatus(SIGKILL, "Cancelled async attach.");
3079     Destroy(false);
3080     return Status();
3081   }
3082 
3083   // Wait for the process halt timeout seconds for the process to stop.
3084   StateType state =
3085       WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true,
3086                            halt_listener_sp, nullptr, use_run_lock);
3087   RestoreProcessEvents();
3088 
3089   if (state == eStateInvalid || !event_sp) {
3090     // We timed out and didn't get a stop event...
3091     return Status("Halt timed out. State = %s", StateAsCString(GetState()));
3092   }
3093 
3094   BroadcastEvent(event_sp);
3095 
3096   return Status();
3097 }
3098 
3099 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) {
3100   Status error;
3101 
3102   // Check both the public & private states here.  If we're hung evaluating an
3103   // expression, for instance, then the public state will be stopped, but we
3104   // still need to interrupt.
3105   if (m_public_state.GetValue() == eStateRunning ||
3106       m_private_state.GetValue() == eStateRunning) {
3107     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3108     LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__);
3109 
3110     ListenerSP listener_sp(
3111         Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack"));
3112     HijackProcessEvents(listener_sp);
3113 
3114     SendAsyncInterrupt();
3115 
3116     // Consume the interrupt event.
3117     StateType state = WaitForProcessToStop(GetInterruptTimeout(),
3118                                            &exit_event_sp, true, listener_sp);
3119 
3120     RestoreProcessEvents();
3121 
3122     // If the process exited while we were waiting for it to stop, put the
3123     // exited event into the shared pointer passed in and return.  Our caller
3124     // doesn't need to do anything else, since they don't have a process
3125     // anymore...
3126 
3127     if (state == eStateExited || m_private_state.GetValue() == eStateExited) {
3128       LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.",
3129                 __FUNCTION__);
3130       return error;
3131     } else
3132       exit_event_sp.reset(); // It is ok to consume any non-exit stop events
3133 
3134     if (state != eStateStopped) {
3135       LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__,
3136                 StateAsCString(state));
3137       // If we really couldn't stop the process then we should just error out
3138       // here, but if the lower levels just bobbled sending the event and we
3139       // really are stopped, then continue on.
3140       StateType private_state = m_private_state.GetValue();
3141       if (private_state != eStateStopped) {
3142         return Status(
3143             "Attempt to stop the target in order to detach timed out. "
3144             "State = %s",
3145             StateAsCString(GetState()));
3146       }
3147     }
3148   }
3149   return error;
3150 }
3151 
3152 Status Process::Detach(bool keep_stopped) {
3153   EventSP exit_event_sp;
3154   Status error;
3155   m_destroy_in_process = true;
3156 
3157   error = WillDetach();
3158 
3159   if (error.Success()) {
3160     if (DetachRequiresHalt()) {
3161       error = StopForDestroyOrDetach(exit_event_sp);
3162       if (!error.Success()) {
3163         m_destroy_in_process = false;
3164         return error;
3165       } else if (exit_event_sp) {
3166         // We shouldn't need to do anything else here.  There's no process left
3167         // to detach from...
3168         StopPrivateStateThread();
3169         m_destroy_in_process = false;
3170         return error;
3171       }
3172     }
3173 
3174     m_thread_list.DiscardThreadPlans();
3175     DisableAllBreakpointSites();
3176 
3177     error = DoDetach(keep_stopped);
3178     if (error.Success()) {
3179       DidDetach();
3180       StopPrivateStateThread();
3181     } else {
3182       return error;
3183     }
3184   }
3185   m_destroy_in_process = false;
3186 
3187   // If we exited when we were waiting for a process to stop, then forward the
3188   // event here so we don't lose the event
3189   if (exit_event_sp) {
3190     // Directly broadcast our exited event because we shut down our private
3191     // state thread above
3192     BroadcastEvent(exit_event_sp);
3193   }
3194 
3195   // If we have been interrupted (to kill us) in the middle of running, we may
3196   // not end up propagating the last events through the event system, in which
3197   // case we might strand the write lock.  Unlock it here so when we do to tear
3198   // down the process we don't get an error destroying the lock.
3199 
3200   m_public_run_lock.SetStopped();
3201   return error;
3202 }
3203 
3204 Status Process::Destroy(bool force_kill) {
3205   // If we've already called Process::Finalize then there's nothing useful to
3206   // be done here.  Finalize has actually called Destroy already.
3207   if (m_finalizing)
3208     return {};
3209   return DestroyImpl(force_kill);
3210 }
3211 
3212 Status Process::DestroyImpl(bool force_kill) {
3213   // Tell ourselves we are in the process of destroying the process, so that we
3214   // don't do any unnecessary work that might hinder the destruction.  Remember
3215   // to set this back to false when we are done.  That way if the attempt
3216   // failed and the process stays around for some reason it won't be in a
3217   // confused state.
3218 
3219   if (force_kill)
3220     m_should_detach = false;
3221 
3222   if (GetShouldDetach()) {
3223     // FIXME: This will have to be a process setting:
3224     bool keep_stopped = false;
3225     Detach(keep_stopped);
3226   }
3227 
3228   m_destroy_in_process = true;
3229 
3230   Status error(WillDestroy());
3231   if (error.Success()) {
3232     EventSP exit_event_sp;
3233     if (DestroyRequiresHalt()) {
3234       error = StopForDestroyOrDetach(exit_event_sp);
3235     }
3236 
3237     if (m_public_state.GetValue() == eStateStopped) {
3238       // Ditch all thread plans, and remove all our breakpoints: in case we
3239       // have to restart the target to kill it, we don't want it hitting a
3240       // breakpoint... Only do this if we've stopped, however, since if we
3241       // didn't manage to halt it above, then we're not going to have much luck
3242       // doing this now.
3243       m_thread_list.DiscardThreadPlans();
3244       DisableAllBreakpointSites();
3245     }
3246 
3247     error = DoDestroy();
3248     if (error.Success()) {
3249       DidDestroy();
3250       StopPrivateStateThread();
3251     }
3252     m_stdio_communication.StopReadThread();
3253     m_stdio_communication.Disconnect();
3254     m_stdin_forward = false;
3255 
3256     if (m_process_input_reader) {
3257       m_process_input_reader->SetIsDone(true);
3258       m_process_input_reader->Cancel();
3259       m_process_input_reader.reset();
3260     }
3261 
3262     // If we exited when we were waiting for a process to stop, then forward
3263     // the event here so we don't lose the event
3264     if (exit_event_sp) {
3265       // Directly broadcast our exited event because we shut down our private
3266       // state thread above
3267       BroadcastEvent(exit_event_sp);
3268     }
3269 
3270     // If we have been interrupted (to kill us) in the middle of running, we
3271     // may not end up propagating the last events through the event system, in
3272     // which case we might strand the write lock.  Unlock it here so when we do
3273     // to tear down the process we don't get an error destroying the lock.
3274     m_public_run_lock.SetStopped();
3275   }
3276 
3277   m_destroy_in_process = false;
3278 
3279   return error;
3280 }
3281 
3282 Status Process::Signal(int signal) {
3283   Status error(WillSignal());
3284   if (error.Success()) {
3285     error = DoSignal(signal);
3286     if (error.Success())
3287       DidSignal();
3288   }
3289   return error;
3290 }
3291 
3292 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) {
3293   assert(signals_sp && "null signals_sp");
3294   m_unix_signals_sp = signals_sp;
3295 }
3296 
3297 const lldb::UnixSignalsSP &Process::GetUnixSignals() {
3298   assert(m_unix_signals_sp && "null m_unix_signals_sp");
3299   return m_unix_signals_sp;
3300 }
3301 
3302 lldb::ByteOrder Process::GetByteOrder() const {
3303   return GetTarget().GetArchitecture().GetByteOrder();
3304 }
3305 
3306 uint32_t Process::GetAddressByteSize() const {
3307   return GetTarget().GetArchitecture().GetAddressByteSize();
3308 }
3309 
3310 bool Process::ShouldBroadcastEvent(Event *event_ptr) {
3311   const StateType state =
3312       Process::ProcessEventData::GetStateFromEvent(event_ptr);
3313   bool return_value = true;
3314   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS |
3315                                                   LIBLLDB_LOG_PROCESS));
3316 
3317   switch (state) {
3318   case eStateDetached:
3319   case eStateExited:
3320   case eStateUnloaded:
3321     m_stdio_communication.SynchronizeWithReadThread();
3322     m_stdio_communication.StopReadThread();
3323     m_stdio_communication.Disconnect();
3324     m_stdin_forward = false;
3325 
3326     LLVM_FALLTHROUGH;
3327   case eStateConnected:
3328   case eStateAttaching:
3329   case eStateLaunching:
3330     // These events indicate changes in the state of the debugging session,
3331     // always report them.
3332     return_value = true;
3333     break;
3334   case eStateInvalid:
3335     // We stopped for no apparent reason, don't report it.
3336     return_value = false;
3337     break;
3338   case eStateRunning:
3339   case eStateStepping:
3340     // If we've started the target running, we handle the cases where we are
3341     // already running and where there is a transition from stopped to running
3342     // differently. running -> running: Automatically suppress extra running
3343     // events stopped -> running: Report except when there is one or more no
3344     // votes
3345     //     and no yes votes.
3346     SynchronouslyNotifyStateChanged(state);
3347     if (m_force_next_event_delivery)
3348       return_value = true;
3349     else {
3350       switch (m_last_broadcast_state) {
3351       case eStateRunning:
3352       case eStateStepping:
3353         // We always suppress multiple runnings with no PUBLIC stop in between.
3354         return_value = false;
3355         break;
3356       default:
3357         // TODO: make this work correctly. For now always report
3358         // run if we aren't running so we don't miss any running events. If I
3359         // run the lldb/test/thread/a.out file and break at main.cpp:58, run
3360         // and hit the breakpoints on multiple threads, then somehow during the
3361         // stepping over of all breakpoints no run gets reported.
3362 
3363         // This is a transition from stop to run.
3364         switch (m_thread_list.ShouldReportRun(event_ptr)) {
3365         case eVoteYes:
3366         case eVoteNoOpinion:
3367           return_value = true;
3368           break;
3369         case eVoteNo:
3370           return_value = false;
3371           break;
3372         }
3373         break;
3374       }
3375     }
3376     break;
3377   case eStateStopped:
3378   case eStateCrashed:
3379   case eStateSuspended:
3380     // We've stopped.  First see if we're going to restart the target. If we
3381     // are going to stop, then we always broadcast the event. If we aren't
3382     // going to stop, let the thread plans decide if we're going to report this
3383     // event. If no thread has an opinion, we don't report it.
3384 
3385     m_stdio_communication.SynchronizeWithReadThread();
3386     RefreshStateAfterStop();
3387     if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) {
3388       LLDB_LOGF(log,
3389                 "Process::ShouldBroadcastEvent (%p) stopped due to an "
3390                 "interrupt, state: %s",
3391                 static_cast<void *>(event_ptr), StateAsCString(state));
3392       // Even though we know we are going to stop, we should let the threads
3393       // have a look at the stop, so they can properly set their state.
3394       m_thread_list.ShouldStop(event_ptr);
3395       return_value = true;
3396     } else {
3397       bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr);
3398       bool should_resume = false;
3399 
3400       // It makes no sense to ask "ShouldStop" if we've already been
3401       // restarted... Asking the thread list is also not likely to go well,
3402       // since we are running again. So in that case just report the event.
3403 
3404       if (!was_restarted)
3405         should_resume = !m_thread_list.ShouldStop(event_ptr);
3406 
3407       if (was_restarted || should_resume || m_resume_requested) {
3408         Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr);
3409         LLDB_LOGF(log,
3410                   "Process::ShouldBroadcastEvent: should_resume: %i state: "
3411                   "%s was_restarted: %i report_stop_vote: %d.",
3412                   should_resume, StateAsCString(state), was_restarted,
3413                   report_stop_vote);
3414 
3415         switch (report_stop_vote) {
3416         case eVoteYes:
3417           return_value = true;
3418           break;
3419         case eVoteNoOpinion:
3420         case eVoteNo:
3421           return_value = false;
3422           break;
3423         }
3424 
3425         if (!was_restarted) {
3426           LLDB_LOGF(log,
3427                     "Process::ShouldBroadcastEvent (%p) Restarting process "
3428                     "from state: %s",
3429                     static_cast<void *>(event_ptr), StateAsCString(state));
3430           ProcessEventData::SetRestartedInEvent(event_ptr, true);
3431           PrivateResume();
3432         }
3433       } else {
3434         return_value = true;
3435         SynchronouslyNotifyStateChanged(state);
3436       }
3437     }
3438     break;
3439   }
3440 
3441   // Forcing the next event delivery is a one shot deal.  So reset it here.
3442   m_force_next_event_delivery = false;
3443 
3444   // We do some coalescing of events (for instance two consecutive running
3445   // events get coalesced.) But we only coalesce against events we actually
3446   // broadcast.  So we use m_last_broadcast_state to track that.  NB - you
3447   // can't use "m_public_state.GetValue()" for that purpose, as was originally
3448   // done, because the PublicState reflects the last event pulled off the
3449   // queue, and there may be several events stacked up on the queue unserviced.
3450   // So the PublicState may not reflect the last broadcasted event yet.
3451   // m_last_broadcast_state gets updated here.
3452 
3453   if (return_value)
3454     m_last_broadcast_state = state;
3455 
3456   LLDB_LOGF(log,
3457             "Process::ShouldBroadcastEvent (%p) => new state: %s, last "
3458             "broadcast state: %s - %s",
3459             static_cast<void *>(event_ptr), StateAsCString(state),
3460             StateAsCString(m_last_broadcast_state),
3461             return_value ? "YES" : "NO");
3462   return return_value;
3463 }
3464 
3465 bool Process::StartPrivateStateThread(bool is_secondary_thread) {
3466   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS));
3467 
3468   bool already_running = PrivateStateThreadIsValid();
3469   LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__,
3470             already_running ? " already running"
3471                             : " starting private state thread");
3472 
3473   if (!is_secondary_thread && already_running)
3474     return true;
3475 
3476   // Create a thread that watches our internal state and controls which events
3477   // make it to clients (into the DCProcess event queue).
3478   char thread_name[1024];
3479   uint32_t max_len = llvm::get_max_thread_name_length();
3480   if (max_len > 0 && max_len <= 30) {
3481     // On platforms with abbreviated thread name lengths, choose thread names
3482     // that fit within the limit.
3483     if (already_running)
3484       snprintf(thread_name, sizeof(thread_name), "intern-state-OV");
3485     else
3486       snprintf(thread_name, sizeof(thread_name), "intern-state");
3487   } else {
3488     if (already_running)
3489       snprintf(thread_name, sizeof(thread_name),
3490                "<lldb.process.internal-state-override(pid=%" PRIu64 ")>",
3491                GetID());
3492     else
3493       snprintf(thread_name, sizeof(thread_name),
3494                "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID());
3495   }
3496 
3497   // Create the private state thread, and start it running.
3498   PrivateStateThreadArgs *args_ptr =
3499       new PrivateStateThreadArgs(this, is_secondary_thread);
3500   llvm::Expected<HostThread> private_state_thread =
3501       ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread,
3502                                    (void *)args_ptr, 8 * 1024 * 1024);
3503   if (!private_state_thread) {
3504     LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST),
3505              "failed to launch host thread: {}",
3506              llvm::toString(private_state_thread.takeError()));
3507     return false;
3508   }
3509 
3510   assert(private_state_thread->IsJoinable());
3511   m_private_state_thread = *private_state_thread;
3512   ResumePrivateStateThread();
3513   return true;
3514 }
3515 
3516 void Process::PausePrivateStateThread() {
3517   ControlPrivateStateThread(eBroadcastInternalStateControlPause);
3518 }
3519 
3520 void Process::ResumePrivateStateThread() {
3521   ControlPrivateStateThread(eBroadcastInternalStateControlResume);
3522 }
3523 
3524 void Process::StopPrivateStateThread() {
3525   if (m_private_state_thread.IsJoinable())
3526     ControlPrivateStateThread(eBroadcastInternalStateControlStop);
3527   else {
3528     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3529     LLDB_LOGF(
3530         log,
3531         "Went to stop the private state thread, but it was already invalid.");
3532   }
3533 }
3534 
3535 void Process::ControlPrivateStateThread(uint32_t signal) {
3536   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3537 
3538   assert(signal == eBroadcastInternalStateControlStop ||
3539          signal == eBroadcastInternalStateControlPause ||
3540          signal == eBroadcastInternalStateControlResume);
3541 
3542   LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal);
3543 
3544   // Signal the private state thread
3545   if (m_private_state_thread.IsJoinable()) {
3546     // Broadcast the event.
3547     // It is important to do this outside of the if below, because it's
3548     // possible that the thread state is invalid but that the thread is waiting
3549     // on a control event instead of simply being on its way out (this should
3550     // not happen, but it apparently can).
3551     LLDB_LOGF(log, "Sending control event of type: %d.", signal);
3552     std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt());
3553     m_private_state_control_broadcaster.BroadcastEvent(signal,
3554                                                        event_receipt_sp);
3555 
3556     // Wait for the event receipt or for the private state thread to exit
3557     bool receipt_received = false;
3558     if (PrivateStateThreadIsValid()) {
3559       while (!receipt_received) {
3560         // Check for a receipt for n seconds and then check if the private
3561         // state thread is still around.
3562         receipt_received =
3563           event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout());
3564         if (!receipt_received) {
3565           // Check if the private state thread is still around. If it isn't
3566           // then we are done waiting
3567           if (!PrivateStateThreadIsValid())
3568             break; // Private state thread exited or is exiting, we are done
3569         }
3570       }
3571     }
3572 
3573     if (signal == eBroadcastInternalStateControlStop) {
3574       thread_result_t result = {};
3575       m_private_state_thread.Join(&result);
3576       m_private_state_thread.Reset();
3577     }
3578   } else {
3579     LLDB_LOGF(
3580         log,
3581         "Private state thread already dead, no need to signal it to stop.");
3582   }
3583 }
3584 
3585 void Process::SendAsyncInterrupt() {
3586   if (PrivateStateThreadIsValid())
3587     m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt,
3588                                                nullptr);
3589   else
3590     BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr);
3591 }
3592 
3593 void Process::HandlePrivateEvent(EventSP &event_sp) {
3594   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3595   m_resume_requested = false;
3596 
3597   const StateType new_state =
3598       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3599 
3600   // First check to see if anybody wants a shot at this event:
3601   if (m_next_event_action_up) {
3602     NextEventAction::EventActionResult action_result =
3603         m_next_event_action_up->PerformAction(event_sp);
3604     LLDB_LOGF(log, "Ran next event action, result was %d.", action_result);
3605 
3606     switch (action_result) {
3607     case NextEventAction::eEventActionSuccess:
3608       SetNextEventAction(nullptr);
3609       break;
3610 
3611     case NextEventAction::eEventActionRetry:
3612       break;
3613 
3614     case NextEventAction::eEventActionExit:
3615       // Handle Exiting Here.  If we already got an exited event, we should
3616       // just propagate it.  Otherwise, swallow this event, and set our state
3617       // to exit so the next event will kill us.
3618       if (new_state != eStateExited) {
3619         // FIXME: should cons up an exited event, and discard this one.
3620         SetExitStatus(0, m_next_event_action_up->GetExitString());
3621         SetNextEventAction(nullptr);
3622         return;
3623       }
3624       SetNextEventAction(nullptr);
3625       break;
3626     }
3627   }
3628 
3629   // See if we should broadcast this state to external clients?
3630   const bool should_broadcast = ShouldBroadcastEvent(event_sp.get());
3631 
3632   if (should_broadcast) {
3633     const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged);
3634     if (log) {
3635       LLDB_LOGF(log,
3636                 "Process::%s (pid = %" PRIu64
3637                 ") broadcasting new state %s (old state %s) to %s",
3638                 __FUNCTION__, GetID(), StateAsCString(new_state),
3639                 StateAsCString(GetState()),
3640                 is_hijacked ? "hijacked" : "public");
3641     }
3642     Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get());
3643     if (StateIsRunningState(new_state)) {
3644       // Only push the input handler if we aren't fowarding events, as this
3645       // means the curses GUI is in use... Or don't push it if we are launching
3646       // since it will come up stopped.
3647       if (!GetTarget().GetDebugger().IsForwardingEvents() &&
3648           new_state != eStateLaunching && new_state != eStateAttaching) {
3649         PushProcessIOHandler();
3650         m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1,
3651                                   eBroadcastAlways);
3652         LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d",
3653                   __FUNCTION__, m_iohandler_sync.GetValue());
3654       }
3655     } else if (StateIsStoppedState(new_state, false)) {
3656       if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
3657         // If the lldb_private::Debugger is handling the events, we don't want
3658         // to pop the process IOHandler here, we want to do it when we receive
3659         // the stopped event so we can carefully control when the process
3660         // IOHandler is popped because when we stop we want to display some
3661         // text stating how and why we stopped, then maybe some
3662         // process/thread/frame info, and then we want the "(lldb) " prompt to
3663         // show up. If we pop the process IOHandler here, then we will cause
3664         // the command interpreter to become the top IOHandler after the
3665         // process pops off and it will update its prompt right away... See the
3666         // Debugger.cpp file where it calls the function as
3667         // "process_sp->PopProcessIOHandler()" to see where I am talking about.
3668         // Otherwise we end up getting overlapping "(lldb) " prompts and
3669         // garbled output.
3670         //
3671         // If we aren't handling the events in the debugger (which is indicated
3672         // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or
3673         // we are hijacked, then we always pop the process IO handler manually.
3674         // Hijacking happens when the internal process state thread is running
3675         // thread plans, or when commands want to run in synchronous mode and
3676         // they call "process->WaitForProcessToStop()". An example of something
3677         // that will hijack the events is a simple expression:
3678         //
3679         //  (lldb) expr (int)puts("hello")
3680         //
3681         // This will cause the internal process state thread to resume and halt
3682         // the process (and _it_ will hijack the eBroadcastBitStateChanged
3683         // events) and we do need the IO handler to be pushed and popped
3684         // correctly.
3685 
3686         if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents())
3687           PopProcessIOHandler();
3688       }
3689     }
3690 
3691     BroadcastEvent(event_sp);
3692   } else {
3693     if (log) {
3694       LLDB_LOGF(
3695           log,
3696           "Process::%s (pid = %" PRIu64
3697           ") suppressing state %s (old state %s): should_broadcast == false",
3698           __FUNCTION__, GetID(), StateAsCString(new_state),
3699           StateAsCString(GetState()));
3700     }
3701   }
3702 }
3703 
3704 Status Process::HaltPrivate() {
3705   EventSP event_sp;
3706   Status error(WillHalt());
3707   if (error.Fail())
3708     return error;
3709 
3710   // Ask the process subclass to actually halt our process
3711   bool caused_stop;
3712   error = DoHalt(caused_stop);
3713 
3714   DidHalt();
3715   return error;
3716 }
3717 
3718 thread_result_t Process::PrivateStateThread(void *arg) {
3719   std::unique_ptr<PrivateStateThreadArgs> args_up(
3720       static_cast<PrivateStateThreadArgs *>(arg));
3721   thread_result_t result =
3722       args_up->process->RunPrivateStateThread(args_up->is_secondary_thread);
3723   return result;
3724 }
3725 
3726 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) {
3727   bool control_only = true;
3728 
3729   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3730   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...",
3731             __FUNCTION__, static_cast<void *>(this), GetID());
3732 
3733   bool exit_now = false;
3734   bool interrupt_requested = false;
3735   while (!exit_now) {
3736     EventSP event_sp;
3737     GetEventsPrivate(event_sp, llvm::None, control_only);
3738     if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) {
3739       LLDB_LOGF(log,
3740                 "Process::%s (arg = %p, pid = %" PRIu64
3741                 ") got a control event: %d",
3742                 __FUNCTION__, static_cast<void *>(this), GetID(),
3743                 event_sp->GetType());
3744 
3745       switch (event_sp->GetType()) {
3746       case eBroadcastInternalStateControlStop:
3747         exit_now = true;
3748         break; // doing any internal state management below
3749 
3750       case eBroadcastInternalStateControlPause:
3751         control_only = true;
3752         break;
3753 
3754       case eBroadcastInternalStateControlResume:
3755         control_only = false;
3756         break;
3757       }
3758 
3759       continue;
3760     } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
3761       if (m_public_state.GetValue() == eStateAttaching) {
3762         LLDB_LOGF(log,
3763                   "Process::%s (arg = %p, pid = %" PRIu64
3764                   ") woke up with an interrupt while attaching - "
3765                   "forwarding interrupt.",
3766                   __FUNCTION__, static_cast<void *>(this), GetID());
3767         BroadcastEvent(eBroadcastBitInterrupt, nullptr);
3768       } else if (StateIsRunningState(m_last_broadcast_state)) {
3769         LLDB_LOGF(log,
3770                   "Process::%s (arg = %p, pid = %" PRIu64
3771                   ") woke up with an interrupt - Halting.",
3772                   __FUNCTION__, static_cast<void *>(this), GetID());
3773         Status error = HaltPrivate();
3774         if (error.Fail() && log)
3775           LLDB_LOGF(log,
3776                     "Process::%s (arg = %p, pid = %" PRIu64
3777                     ") failed to halt the process: %s",
3778                     __FUNCTION__, static_cast<void *>(this), GetID(),
3779                     error.AsCString());
3780         // Halt should generate a stopped event. Make a note of the fact that
3781         // we were doing the interrupt, so we can set the interrupted flag
3782         // after we receive the event. We deliberately set this to true even if
3783         // HaltPrivate failed, so that we can interrupt on the next natural
3784         // stop.
3785         interrupt_requested = true;
3786       } else {
3787         // This can happen when someone (e.g. Process::Halt) sees that we are
3788         // running and sends an interrupt request, but the process actually
3789         // stops before we receive it. In that case, we can just ignore the
3790         // request. We use m_last_broadcast_state, because the Stopped event
3791         // may not have been popped of the event queue yet, which is when the
3792         // public state gets updated.
3793         LLDB_LOGF(log,
3794                   "Process::%s ignoring interrupt as we have already stopped.",
3795                   __FUNCTION__);
3796       }
3797       continue;
3798     }
3799 
3800     const StateType internal_state =
3801         Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3802 
3803     if (internal_state != eStateInvalid) {
3804       if (m_clear_thread_plans_on_stop &&
3805           StateIsStoppedState(internal_state, true)) {
3806         m_clear_thread_plans_on_stop = false;
3807         m_thread_list.DiscardThreadPlans();
3808       }
3809 
3810       if (interrupt_requested) {
3811         if (StateIsStoppedState(internal_state, true)) {
3812           // We requested the interrupt, so mark this as such in the stop event
3813           // so clients can tell an interrupted process from a natural stop
3814           ProcessEventData::SetInterruptedInEvent(event_sp.get(), true);
3815           interrupt_requested = false;
3816         } else if (log) {
3817           LLDB_LOGF(log,
3818                     "Process::%s interrupt_requested, but a non-stopped "
3819                     "state '%s' received.",
3820                     __FUNCTION__, StateAsCString(internal_state));
3821         }
3822       }
3823 
3824       HandlePrivateEvent(event_sp);
3825     }
3826 
3827     if (internal_state == eStateInvalid || internal_state == eStateExited ||
3828         internal_state == eStateDetached) {
3829       LLDB_LOGF(log,
3830                 "Process::%s (arg = %p, pid = %" PRIu64
3831                 ") about to exit with internal state %s...",
3832                 __FUNCTION__, static_cast<void *>(this), GetID(),
3833                 StateAsCString(internal_state));
3834 
3835       break;
3836     }
3837   }
3838 
3839   // Verify log is still enabled before attempting to write to it...
3840   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...",
3841             __FUNCTION__, static_cast<void *>(this), GetID());
3842 
3843   // If we are a secondary thread, then the primary thread we are working for
3844   // will have already acquired the public_run_lock, and isn't done with what
3845   // it was doing yet, so don't try to change it on the way out.
3846   if (!is_secondary_thread)
3847     m_public_run_lock.SetStopped();
3848   return {};
3849 }
3850 
3851 // Process Event Data
3852 
3853 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {}
3854 
3855 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp,
3856                                             StateType state)
3857     : EventData(), m_process_wp(), m_state(state), m_restarted(false),
3858       m_update_state(0), m_interrupted(false) {
3859   if (process_sp)
3860     m_process_wp = process_sp;
3861 }
3862 
3863 Process::ProcessEventData::~ProcessEventData() = default;
3864 
3865 ConstString Process::ProcessEventData::GetFlavorString() {
3866   static ConstString g_flavor("Process::ProcessEventData");
3867   return g_flavor;
3868 }
3869 
3870 ConstString Process::ProcessEventData::GetFlavor() const {
3871   return ProcessEventData::GetFlavorString();
3872 }
3873 
3874 bool Process::ProcessEventData::ShouldStop(Event *event_ptr,
3875                                            bool &found_valid_stopinfo) {
3876   found_valid_stopinfo = false;
3877 
3878   ProcessSP process_sp(m_process_wp.lock());
3879   if (!process_sp)
3880     return false;
3881 
3882   ThreadList &curr_thread_list = process_sp->GetThreadList();
3883   uint32_t num_threads = curr_thread_list.GetSize();
3884   uint32_t idx;
3885 
3886   // The actions might change one of the thread's stop_info's opinions about
3887   // whether we should stop the process, so we need to query that as we go.
3888 
3889   // One other complication here, is that we try to catch any case where the
3890   // target has run (except for expressions) and immediately exit, but if we
3891   // get that wrong (which is possible) then the thread list might have
3892   // changed, and that would cause our iteration here to crash.  We could
3893   // make a copy of the thread list, but we'd really like to also know if it
3894   // has changed at all, so we make up a vector of the thread ID's and check
3895   // what we get back against this list & bag out if anything differs.
3896   ThreadList not_suspended_thread_list(process_sp.get());
3897   std::vector<uint32_t> thread_index_array(num_threads);
3898   uint32_t not_suspended_idx = 0;
3899   for (idx = 0; idx < num_threads; ++idx) {
3900     lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx);
3901 
3902     /*
3903      Filter out all suspended threads, they could not be the reason
3904      of stop and no need to perform any actions on them.
3905      */
3906     if (thread_sp->GetResumeState() != eStateSuspended) {
3907       not_suspended_thread_list.AddThread(thread_sp);
3908       thread_index_array[not_suspended_idx] = thread_sp->GetIndexID();
3909       not_suspended_idx++;
3910     }
3911   }
3912 
3913   // Use this to track whether we should continue from here.  We will only
3914   // continue the target running if no thread says we should stop.  Of course
3915   // if some thread's PerformAction actually sets the target running, then it
3916   // doesn't matter what the other threads say...
3917 
3918   bool still_should_stop = false;
3919 
3920   // Sometimes - for instance if we have a bug in the stub we are talking to,
3921   // we stop but no thread has a valid stop reason.  In that case we should
3922   // just stop, because we have no way of telling what the right thing to do
3923   // is, and it's better to let the user decide than continue behind their
3924   // backs.
3925 
3926   for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) {
3927     curr_thread_list = process_sp->GetThreadList();
3928     if (curr_thread_list.GetSize() != num_threads) {
3929       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP |
3930                                                       LIBLLDB_LOG_PROCESS));
3931       LLDB_LOGF(
3932           log,
3933           "Number of threads changed from %u to %u while processing event.",
3934           num_threads, curr_thread_list.GetSize());
3935       break;
3936     }
3937 
3938     lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx);
3939 
3940     if (thread_sp->GetIndexID() != thread_index_array[idx]) {
3941       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP |
3942                                                       LIBLLDB_LOG_PROCESS));
3943       LLDB_LOGF(log,
3944                 "The thread at position %u changed from %u to %u while "
3945                 "processing event.",
3946                 idx, thread_index_array[idx], thread_sp->GetIndexID());
3947       break;
3948     }
3949 
3950     StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
3951     if (stop_info_sp && stop_info_sp->IsValid()) {
3952       found_valid_stopinfo = true;
3953       bool this_thread_wants_to_stop;
3954       if (stop_info_sp->GetOverrideShouldStop()) {
3955         this_thread_wants_to_stop =
3956             stop_info_sp->GetOverriddenShouldStopValue();
3957       } else {
3958         stop_info_sp->PerformAction(event_ptr);
3959         // The stop action might restart the target.  If it does, then we
3960         // want to mark that in the event so that whoever is receiving it
3961         // will know to wait for the running event and reflect that state
3962         // appropriately. We also need to stop processing actions, since they
3963         // aren't expecting the target to be running.
3964 
3965         // FIXME: we might have run.
3966         if (stop_info_sp->HasTargetRunSinceMe()) {
3967           SetRestarted(true);
3968           break;
3969         }
3970 
3971         this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr);
3972       }
3973 
3974       if (!still_should_stop)
3975         still_should_stop = this_thread_wants_to_stop;
3976     }
3977   }
3978 
3979   return still_should_stop;
3980 }
3981 
3982 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) {
3983   ProcessSP process_sp(m_process_wp.lock());
3984 
3985   if (!process_sp)
3986     return;
3987 
3988   // This function gets called twice for each event, once when the event gets
3989   // pulled off of the private process event queue, and then any number of
3990   // times, first when it gets pulled off of the public event queue, then other
3991   // times when we're pretending that this is where we stopped at the end of
3992   // expression evaluation.  m_update_state is used to distinguish these three
3993   // cases; it is 0 when we're just pulling it off for private handling, and >
3994   // 1 for expression evaluation, and we don't want to do the breakpoint
3995   // command handling then.
3996   if (m_update_state != 1)
3997     return;
3998 
3999   process_sp->SetPublicState(
4000       m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr));
4001 
4002   if (m_state == eStateStopped && !m_restarted) {
4003     // Let process subclasses know we are about to do a public stop and do
4004     // anything they might need to in order to speed up register and memory
4005     // accesses.
4006     process_sp->WillPublicStop();
4007   }
4008 
4009   // If this is a halt event, even if the halt stopped with some reason other
4010   // than a plain interrupt (e.g. we had already stopped for a breakpoint when
4011   // the halt request came through) don't do the StopInfo actions, as they may
4012   // end up restarting the process.
4013   if (m_interrupted)
4014     return;
4015 
4016   // If we're not stopped or have restarted, then skip the StopInfo actions:
4017   if (m_state != eStateStopped || m_restarted) {
4018     return;
4019   }
4020 
4021   bool does_anybody_have_an_opinion = false;
4022   bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion);
4023 
4024   if (GetRestarted()) {
4025     return;
4026   }
4027 
4028   if (!still_should_stop && does_anybody_have_an_opinion) {
4029     // We've been asked to continue, so do that here.
4030     SetRestarted(true);
4031     // Use the public resume method here, since this is just extending a
4032     // public resume.
4033     process_sp->PrivateResume();
4034   } else {
4035     bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) &&
4036                     !process_sp->StateChangedIsHijackedForSynchronousResume();
4037 
4038     if (!hijacked) {
4039       // If we didn't restart, run the Stop Hooks here.
4040       // Don't do that if state changed events aren't hooked up to the
4041       // public (or SyncResume) broadcasters.  StopHooks are just for
4042       // real public stops.  They might also restart the target,
4043       // so watch for that.
4044       if (process_sp->GetTarget().RunStopHooks())
4045         SetRestarted(true);
4046     }
4047   }
4048 }
4049 
4050 void Process::ProcessEventData::Dump(Stream *s) const {
4051   ProcessSP process_sp(m_process_wp.lock());
4052 
4053   if (process_sp)
4054     s->Printf(" process = %p (pid = %" PRIu64 "), ",
4055               static_cast<void *>(process_sp.get()), process_sp->GetID());
4056   else
4057     s->PutCString(" process = NULL, ");
4058 
4059   s->Printf("state = %s", StateAsCString(GetState()));
4060 }
4061 
4062 const Process::ProcessEventData *
4063 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) {
4064   if (event_ptr) {
4065     const EventData *event_data = event_ptr->GetData();
4066     if (event_data &&
4067         event_data->GetFlavor() == ProcessEventData::GetFlavorString())
4068       return static_cast<const ProcessEventData *>(event_ptr->GetData());
4069   }
4070   return nullptr;
4071 }
4072 
4073 ProcessSP
4074 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) {
4075   ProcessSP process_sp;
4076   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4077   if (data)
4078     process_sp = data->GetProcessSP();
4079   return process_sp;
4080 }
4081 
4082 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) {
4083   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4084   if (data == nullptr)
4085     return eStateInvalid;
4086   else
4087     return data->GetState();
4088 }
4089 
4090 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) {
4091   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4092   if (data == nullptr)
4093     return false;
4094   else
4095     return data->GetRestarted();
4096 }
4097 
4098 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr,
4099                                                     bool new_value) {
4100   ProcessEventData *data =
4101       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4102   if (data != nullptr)
4103     data->SetRestarted(new_value);
4104 }
4105 
4106 size_t
4107 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) {
4108   ProcessEventData *data =
4109       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4110   if (data != nullptr)
4111     return data->GetNumRestartedReasons();
4112   else
4113     return 0;
4114 }
4115 
4116 const char *
4117 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr,
4118                                                      size_t idx) {
4119   ProcessEventData *data =
4120       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4121   if (data != nullptr)
4122     return data->GetRestartedReasonAtIndex(idx);
4123   else
4124     return nullptr;
4125 }
4126 
4127 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr,
4128                                                    const char *reason) {
4129   ProcessEventData *data =
4130       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4131   if (data != nullptr)
4132     data->AddRestartedReason(reason);
4133 }
4134 
4135 bool Process::ProcessEventData::GetInterruptedFromEvent(
4136     const Event *event_ptr) {
4137   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4138   if (data == nullptr)
4139     return false;
4140   else
4141     return data->GetInterrupted();
4142 }
4143 
4144 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr,
4145                                                       bool new_value) {
4146   ProcessEventData *data =
4147       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4148   if (data != nullptr)
4149     data->SetInterrupted(new_value);
4150 }
4151 
4152 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) {
4153   ProcessEventData *data =
4154       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4155   if (data) {
4156     data->SetUpdateStateOnRemoval();
4157     return true;
4158   }
4159   return false;
4160 }
4161 
4162 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); }
4163 
4164 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) {
4165   exe_ctx.SetTargetPtr(&GetTarget());
4166   exe_ctx.SetProcessPtr(this);
4167   exe_ctx.SetThreadPtr(nullptr);
4168   exe_ctx.SetFramePtr(nullptr);
4169 }
4170 
4171 // uint32_t
4172 // Process::ListProcessesMatchingName (const char *name, StringList &matches,
4173 // std::vector<lldb::pid_t> &pids)
4174 //{
4175 //    return 0;
4176 //}
4177 //
4178 // ArchSpec
4179 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid)
4180 //{
4181 //    return Host::GetArchSpecForExistingProcess (pid);
4182 //}
4183 //
4184 // ArchSpec
4185 // Process::GetArchSpecForExistingProcess (const char *process_name)
4186 //{
4187 //    return Host::GetArchSpecForExistingProcess (process_name);
4188 //}
4189 
4190 void Process::AppendSTDOUT(const char *s, size_t len) {
4191   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4192   m_stdout_data.append(s, len);
4193   BroadcastEventIfUnique(eBroadcastBitSTDOUT,
4194                          new ProcessEventData(shared_from_this(), GetState()));
4195 }
4196 
4197 void Process::AppendSTDERR(const char *s, size_t len) {
4198   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4199   m_stderr_data.append(s, len);
4200   BroadcastEventIfUnique(eBroadcastBitSTDERR,
4201                          new ProcessEventData(shared_from_this(), GetState()));
4202 }
4203 
4204 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) {
4205   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4206   m_profile_data.push_back(one_profile_data);
4207   BroadcastEventIfUnique(eBroadcastBitProfileData,
4208                          new ProcessEventData(shared_from_this(), GetState()));
4209 }
4210 
4211 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp,
4212                                       const StructuredDataPluginSP &plugin_sp) {
4213   BroadcastEvent(
4214       eBroadcastBitStructuredData,
4215       new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp));
4216 }
4217 
4218 StructuredDataPluginSP
4219 Process::GetStructuredDataPlugin(ConstString type_name) const {
4220   auto find_it = m_structured_data_plugin_map.find(type_name);
4221   if (find_it != m_structured_data_plugin_map.end())
4222     return find_it->second;
4223   else
4224     return StructuredDataPluginSP();
4225 }
4226 
4227 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) {
4228   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4229   if (m_profile_data.empty())
4230     return 0;
4231 
4232   std::string &one_profile_data = m_profile_data.front();
4233   size_t bytes_available = one_profile_data.size();
4234   if (bytes_available > 0) {
4235     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4236     LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")",
4237               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4238     if (bytes_available > buf_size) {
4239       memcpy(buf, one_profile_data.c_str(), buf_size);
4240       one_profile_data.erase(0, buf_size);
4241       bytes_available = buf_size;
4242     } else {
4243       memcpy(buf, one_profile_data.c_str(), bytes_available);
4244       m_profile_data.erase(m_profile_data.begin());
4245     }
4246   }
4247   return bytes_available;
4248 }
4249 
4250 // Process STDIO
4251 
4252 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) {
4253   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4254   size_t bytes_available = m_stdout_data.size();
4255   if (bytes_available > 0) {
4256     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4257     LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")",
4258               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4259     if (bytes_available > buf_size) {
4260       memcpy(buf, m_stdout_data.c_str(), buf_size);
4261       m_stdout_data.erase(0, buf_size);
4262       bytes_available = buf_size;
4263     } else {
4264       memcpy(buf, m_stdout_data.c_str(), bytes_available);
4265       m_stdout_data.clear();
4266     }
4267   }
4268   return bytes_available;
4269 }
4270 
4271 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) {
4272   std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex);
4273   size_t bytes_available = m_stderr_data.size();
4274   if (bytes_available > 0) {
4275     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4276     LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")",
4277               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4278     if (bytes_available > buf_size) {
4279       memcpy(buf, m_stderr_data.c_str(), buf_size);
4280       m_stderr_data.erase(0, buf_size);
4281       bytes_available = buf_size;
4282     } else {
4283       memcpy(buf, m_stderr_data.c_str(), bytes_available);
4284       m_stderr_data.clear();
4285     }
4286   }
4287   return bytes_available;
4288 }
4289 
4290 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src,
4291                                            size_t src_len) {
4292   Process *process = (Process *)baton;
4293   process->AppendSTDOUT(static_cast<const char *>(src), src_len);
4294 }
4295 
4296 class IOHandlerProcessSTDIO : public IOHandler {
4297 public:
4298   IOHandlerProcessSTDIO(Process *process, int write_fd)
4299       : IOHandler(process->GetTarget().GetDebugger(),
4300                   IOHandler::Type::ProcessIO),
4301         m_process(process),
4302         m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false),
4303         m_write_file(write_fd, File::eOpenOptionWriteOnly, false) {
4304     m_pipe.CreateNew(false);
4305   }
4306 
4307   ~IOHandlerProcessSTDIO() override = default;
4308 
4309   // Each IOHandler gets to run until it is done. It should read data from the
4310   // "in" and place output into "out" and "err and return when done.
4311   void Run() override {
4312     if (!m_read_file.IsValid() || !m_write_file.IsValid() ||
4313         !m_pipe.CanRead() || !m_pipe.CanWrite()) {
4314       SetIsDone(true);
4315       return;
4316     }
4317 
4318     SetIsDone(false);
4319     const int read_fd = m_read_file.GetDescriptor();
4320     Terminal terminal(read_fd);
4321     TerminalState terminal_state(terminal, false);
4322     // FIXME: error handling?
4323     llvm::consumeError(terminal.SetCanonical(false));
4324     llvm::consumeError(terminal.SetEcho(false));
4325 // FD_ZERO, FD_SET are not supported on windows
4326 #ifndef _WIN32
4327     const int pipe_read_fd = m_pipe.GetReadFileDescriptor();
4328     m_is_running = true;
4329     while (!GetIsDone()) {
4330       SelectHelper select_helper;
4331       select_helper.FDSetRead(read_fd);
4332       select_helper.FDSetRead(pipe_read_fd);
4333       Status error = select_helper.Select();
4334 
4335       if (error.Fail()) {
4336         SetIsDone(true);
4337       } else {
4338         char ch = 0;
4339         size_t n;
4340         if (select_helper.FDIsSetRead(read_fd)) {
4341           n = 1;
4342           if (m_read_file.Read(&ch, n).Success() && n == 1) {
4343             if (m_write_file.Write(&ch, n).Fail() || n != 1)
4344               SetIsDone(true);
4345           } else
4346             SetIsDone(true);
4347         }
4348         if (select_helper.FDIsSetRead(pipe_read_fd)) {
4349           size_t bytes_read;
4350           // Consume the interrupt byte
4351           Status error = m_pipe.Read(&ch, 1, bytes_read);
4352           if (error.Success()) {
4353             switch (ch) {
4354             case 'q':
4355               SetIsDone(true);
4356               break;
4357             case 'i':
4358               if (StateIsRunningState(m_process->GetState()))
4359                 m_process->SendAsyncInterrupt();
4360               break;
4361             }
4362           }
4363         }
4364       }
4365     }
4366     m_is_running = false;
4367 #endif
4368   }
4369 
4370   void Cancel() override {
4371     SetIsDone(true);
4372     // Only write to our pipe to cancel if we are in
4373     // IOHandlerProcessSTDIO::Run(). We can end up with a python command that
4374     // is being run from the command interpreter:
4375     //
4376     // (lldb) step_process_thousands_of_times
4377     //
4378     // In this case the command interpreter will be in the middle of handling
4379     // the command and if the process pushes and pops the IOHandler thousands
4380     // of times, we can end up writing to m_pipe without ever consuming the
4381     // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up
4382     // deadlocking when the pipe gets fed up and blocks until data is consumed.
4383     if (m_is_running) {
4384       char ch = 'q'; // Send 'q' for quit
4385       size_t bytes_written = 0;
4386       m_pipe.Write(&ch, 1, bytes_written);
4387     }
4388   }
4389 
4390   bool Interrupt() override {
4391     // Do only things that are safe to do in an interrupt context (like in a
4392     // SIGINT handler), like write 1 byte to a file descriptor. This will
4393     // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte
4394     // that was written to the pipe and then call
4395     // m_process->SendAsyncInterrupt() from a much safer location in code.
4396     if (m_active) {
4397       char ch = 'i'; // Send 'i' for interrupt
4398       size_t bytes_written = 0;
4399       Status result = m_pipe.Write(&ch, 1, bytes_written);
4400       return result.Success();
4401     } else {
4402       // This IOHandler might be pushed on the stack, but not being run
4403       // currently so do the right thing if we aren't actively watching for
4404       // STDIN by sending the interrupt to the process. Otherwise the write to
4405       // the pipe above would do nothing. This can happen when the command
4406       // interpreter is running and gets a "expression ...". It will be on the
4407       // IOHandler thread and sending the input is complete to the delegate
4408       // which will cause the expression to run, which will push the process IO
4409       // handler, but not run it.
4410 
4411       if (StateIsRunningState(m_process->GetState())) {
4412         m_process->SendAsyncInterrupt();
4413         return true;
4414       }
4415     }
4416     return false;
4417   }
4418 
4419   void GotEOF() override {}
4420 
4421 protected:
4422   Process *m_process;
4423   NativeFile m_read_file;  // Read from this file (usually actual STDIN for LLDB
4424   NativeFile m_write_file; // Write to this file (usually the primary pty for
4425                            // getting io to debuggee)
4426   Pipe m_pipe;
4427   std::atomic<bool> m_is_running{false};
4428 };
4429 
4430 void Process::SetSTDIOFileDescriptor(int fd) {
4431   // First set up the Read Thread for reading/handling process I/O
4432   m_stdio_communication.SetConnection(
4433       std::make_unique<ConnectionFileDescriptor>(fd, true));
4434   if (m_stdio_communication.IsConnected()) {
4435     m_stdio_communication.SetReadThreadBytesReceivedCallback(
4436         STDIOReadThreadBytesReceived, this);
4437     m_stdio_communication.StartReadThread();
4438 
4439     // Now read thread is set up, set up input reader.
4440 
4441     if (!m_process_input_reader)
4442       m_process_input_reader =
4443           std::make_shared<IOHandlerProcessSTDIO>(this, fd);
4444   }
4445 }
4446 
4447 bool Process::ProcessIOHandlerIsActive() {
4448   IOHandlerSP io_handler_sp(m_process_input_reader);
4449   if (io_handler_sp)
4450     return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp);
4451   return false;
4452 }
4453 bool Process::PushProcessIOHandler() {
4454   IOHandlerSP io_handler_sp(m_process_input_reader);
4455   if (io_handler_sp) {
4456     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4457     LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__);
4458 
4459     io_handler_sp->SetIsDone(false);
4460     // If we evaluate an utility function, then we don't cancel the current
4461     // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the
4462     // existing IOHandler that potentially provides the user interface (e.g.
4463     // the IOHandler for Editline).
4464     bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction();
4465     GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp,
4466                                                 cancel_top_handler);
4467     return true;
4468   }
4469   return false;
4470 }
4471 
4472 bool Process::PopProcessIOHandler() {
4473   IOHandlerSP io_handler_sp(m_process_input_reader);
4474   if (io_handler_sp)
4475     return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp);
4476   return false;
4477 }
4478 
4479 // The process needs to know about installed plug-ins
4480 void Process::SettingsInitialize() { Thread::SettingsInitialize(); }
4481 
4482 void Process::SettingsTerminate() { Thread::SettingsTerminate(); }
4483 
4484 namespace {
4485 // RestorePlanState is used to record the "is private", "is controlling" and
4486 // "okay
4487 // to discard" fields of the plan we are running, and reset it on Clean or on
4488 // destruction. It will only reset the state once, so you can call Clean and
4489 // then monkey with the state and it won't get reset on you again.
4490 
4491 class RestorePlanState {
4492 public:
4493   RestorePlanState(lldb::ThreadPlanSP thread_plan_sp)
4494       : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) {
4495     if (m_thread_plan_sp) {
4496       m_private = m_thread_plan_sp->GetPrivate();
4497       m_is_controlling = m_thread_plan_sp->IsControllingPlan();
4498       m_okay_to_discard = m_thread_plan_sp->OkayToDiscard();
4499     }
4500   }
4501 
4502   ~RestorePlanState() { Clean(); }
4503 
4504   void Clean() {
4505     if (!m_already_reset && m_thread_plan_sp) {
4506       m_already_reset = true;
4507       m_thread_plan_sp->SetPrivate(m_private);
4508       m_thread_plan_sp->SetIsControllingPlan(m_is_controlling);
4509       m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard);
4510     }
4511   }
4512 
4513 private:
4514   lldb::ThreadPlanSP m_thread_plan_sp;
4515   bool m_already_reset;
4516   bool m_private;
4517   bool m_is_controlling;
4518   bool m_okay_to_discard;
4519 };
4520 } // anonymous namespace
4521 
4522 static microseconds
4523 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) {
4524   const milliseconds default_one_thread_timeout(250);
4525 
4526   // If the overall wait is forever, then we don't need to worry about it.
4527   if (!options.GetTimeout()) {
4528     return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout()
4529                                          : default_one_thread_timeout;
4530   }
4531 
4532   // If the one thread timeout is set, use it.
4533   if (options.GetOneThreadTimeout())
4534     return *options.GetOneThreadTimeout();
4535 
4536   // Otherwise use half the total timeout, bounded by the
4537   // default_one_thread_timeout.
4538   return std::min<microseconds>(default_one_thread_timeout,
4539                                 *options.GetTimeout() / 2);
4540 }
4541 
4542 static Timeout<std::micro>
4543 GetExpressionTimeout(const EvaluateExpressionOptions &options,
4544                      bool before_first_timeout) {
4545   // If we are going to run all threads the whole time, or if we are only going
4546   // to run one thread, we can just return the overall timeout.
4547   if (!options.GetStopOthers() || !options.GetTryAllThreads())
4548     return options.GetTimeout();
4549 
4550   if (before_first_timeout)
4551     return GetOneThreadExpressionTimeout(options);
4552 
4553   if (!options.GetTimeout())
4554     return llvm::None;
4555   else
4556     return *options.GetTimeout() - GetOneThreadExpressionTimeout(options);
4557 }
4558 
4559 static llvm::Optional<ExpressionResults>
4560 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp,
4561                    RestorePlanState &restorer, const EventSP &event_sp,
4562                    EventSP &event_to_broadcast_sp,
4563                    const EvaluateExpressionOptions &options,
4564                    bool handle_interrupts) {
4565   Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS);
4566 
4567   ThreadSP thread_sp = thread_plan_sp->GetTarget()
4568                            .GetProcessSP()
4569                            ->GetThreadList()
4570                            .FindThreadByID(thread_id);
4571   if (!thread_sp) {
4572     LLDB_LOG(log,
4573              "The thread on which we were running the "
4574              "expression: tid = {0}, exited while "
4575              "the expression was running.",
4576              thread_id);
4577     return eExpressionThreadVanished;
4578   }
4579 
4580   ThreadPlanSP plan = thread_sp->GetCompletedPlan();
4581   if (plan == thread_plan_sp && plan->PlanSucceeded()) {
4582     LLDB_LOG(log, "execution completed successfully");
4583 
4584     // Restore the plan state so it will get reported as intended when we are
4585     // done.
4586     restorer.Clean();
4587     return eExpressionCompleted;
4588   }
4589 
4590   StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4591   if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint &&
4592       stop_info_sp->ShouldNotify(event_sp.get())) {
4593     LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription());
4594     if (!options.DoesIgnoreBreakpoints()) {
4595       // Restore the plan state and then force Private to false.  We are going
4596       // to stop because of this plan so we need it to become a public plan or
4597       // it won't report correctly when we continue to its termination later
4598       // on.
4599       restorer.Clean();
4600       thread_plan_sp->SetPrivate(false);
4601       event_to_broadcast_sp = event_sp;
4602     }
4603     return eExpressionHitBreakpoint;
4604   }
4605 
4606   if (!handle_interrupts &&
4607       Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get()))
4608     return llvm::None;
4609 
4610   LLDB_LOG(log, "thread plan did not successfully complete");
4611   if (!options.DoesUnwindOnError())
4612     event_to_broadcast_sp = event_sp;
4613   return eExpressionInterrupted;
4614 }
4615 
4616 ExpressionResults
4617 Process::RunThreadPlan(ExecutionContext &exe_ctx,
4618                        lldb::ThreadPlanSP &thread_plan_sp,
4619                        const EvaluateExpressionOptions &options,
4620                        DiagnosticManager &diagnostic_manager) {
4621   ExpressionResults return_value = eExpressionSetupError;
4622 
4623   std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock);
4624 
4625   if (!thread_plan_sp) {
4626     diagnostic_manager.PutString(
4627         eDiagnosticSeverityError,
4628         "RunThreadPlan called with empty thread plan.");
4629     return eExpressionSetupError;
4630   }
4631 
4632   if (!thread_plan_sp->ValidatePlan(nullptr)) {
4633     diagnostic_manager.PutString(
4634         eDiagnosticSeverityError,
4635         "RunThreadPlan called with an invalid thread plan.");
4636     return eExpressionSetupError;
4637   }
4638 
4639   if (exe_ctx.GetProcessPtr() != this) {
4640     diagnostic_manager.PutString(eDiagnosticSeverityError,
4641                                  "RunThreadPlan called on wrong process.");
4642     return eExpressionSetupError;
4643   }
4644 
4645   Thread *thread = exe_ctx.GetThreadPtr();
4646   if (thread == nullptr) {
4647     diagnostic_manager.PutString(eDiagnosticSeverityError,
4648                                  "RunThreadPlan called with invalid thread.");
4649     return eExpressionSetupError;
4650   }
4651 
4652   // Record the thread's id so we can tell when a thread we were using
4653   // to run the expression exits during the expression evaluation.
4654   lldb::tid_t expr_thread_id = thread->GetID();
4655 
4656   // We need to change some of the thread plan attributes for the thread plan
4657   // runner.  This will restore them when we are done:
4658 
4659   RestorePlanState thread_plan_restorer(thread_plan_sp);
4660 
4661   // We rely on the thread plan we are running returning "PlanCompleted" if
4662   // when it successfully completes. For that to be true the plan can't be
4663   // private - since private plans suppress themselves in the GetCompletedPlan
4664   // call.
4665 
4666   thread_plan_sp->SetPrivate(false);
4667 
4668   // The plans run with RunThreadPlan also need to be terminal controlling plans
4669   // or when they are done we will end up asking the plan above us whether we
4670   // should stop, which may give the wrong answer.
4671 
4672   thread_plan_sp->SetIsControllingPlan(true);
4673   thread_plan_sp->SetOkayToDiscard(false);
4674 
4675   // If we are running some utility expression for LLDB, we now have to mark
4676   // this in the ProcesModID of this process. This RAII takes care of marking
4677   // and reverting the mark it once we are done running the expression.
4678   UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr);
4679 
4680   if (m_private_state.GetValue() != eStateStopped) {
4681     diagnostic_manager.PutString(
4682         eDiagnosticSeverityError,
4683         "RunThreadPlan called while the private state was not stopped.");
4684     return eExpressionSetupError;
4685   }
4686 
4687   // Save the thread & frame from the exe_ctx for restoration after we run
4688   const uint32_t thread_idx_id = thread->GetIndexID();
4689   StackFrameSP selected_frame_sp = thread->GetSelectedFrame();
4690   if (!selected_frame_sp) {
4691     thread->SetSelectedFrame(nullptr);
4692     selected_frame_sp = thread->GetSelectedFrame();
4693     if (!selected_frame_sp) {
4694       diagnostic_manager.Printf(
4695           eDiagnosticSeverityError,
4696           "RunThreadPlan called without a selected frame on thread %d",
4697           thread_idx_id);
4698       return eExpressionSetupError;
4699     }
4700   }
4701 
4702   // Make sure the timeout values make sense. The one thread timeout needs to
4703   // be smaller than the overall timeout.
4704   if (options.GetOneThreadTimeout() && options.GetTimeout() &&
4705       *options.GetTimeout() < *options.GetOneThreadTimeout()) {
4706     diagnostic_manager.PutString(eDiagnosticSeverityError,
4707                                  "RunThreadPlan called with one thread "
4708                                  "timeout greater than total timeout");
4709     return eExpressionSetupError;
4710   }
4711 
4712   StackID ctx_frame_id = selected_frame_sp->GetStackID();
4713 
4714   // N.B. Running the target may unset the currently selected thread and frame.
4715   // We don't want to do that either, so we should arrange to reset them as
4716   // well.
4717 
4718   lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread();
4719 
4720   uint32_t selected_tid;
4721   StackID selected_stack_id;
4722   if (selected_thread_sp) {
4723     selected_tid = selected_thread_sp->GetIndexID();
4724     selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID();
4725   } else {
4726     selected_tid = LLDB_INVALID_THREAD_ID;
4727   }
4728 
4729   HostThread backup_private_state_thread;
4730   lldb::StateType old_state = eStateInvalid;
4731   lldb::ThreadPlanSP stopper_base_plan_sp;
4732 
4733   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP |
4734                                                   LIBLLDB_LOG_PROCESS));
4735   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) {
4736     // Yikes, we are running on the private state thread!  So we can't wait for
4737     // public events on this thread, since we are the thread that is generating
4738     // public events. The simplest thing to do is to spin up a temporary thread
4739     // to handle private state thread events while we are fielding public
4740     // events here.
4741     LLDB_LOGF(log, "Running thread plan on private state thread, spinning up "
4742                    "another state thread to handle the events.");
4743 
4744     backup_private_state_thread = m_private_state_thread;
4745 
4746     // One other bit of business: we want to run just this thread plan and
4747     // anything it pushes, and then stop, returning control here. But in the
4748     // normal course of things, the plan above us on the stack would be given a
4749     // shot at the stop event before deciding to stop, and we don't want that.
4750     // So we insert a "stopper" base plan on the stack before the plan we want
4751     // to run.  Since base plans always stop and return control to the user,
4752     // that will do just what we want.
4753     stopper_base_plan_sp.reset(new ThreadPlanBase(*thread));
4754     thread->QueueThreadPlan(stopper_base_plan_sp, false);
4755     // Have to make sure our public state is stopped, since otherwise the
4756     // reporting logic below doesn't work correctly.
4757     old_state = m_public_state.GetValue();
4758     m_public_state.SetValueNoLock(eStateStopped);
4759 
4760     // Now spin up the private state thread:
4761     StartPrivateStateThread(true);
4762   }
4763 
4764   thread->QueueThreadPlan(
4765       thread_plan_sp, false); // This used to pass "true" does that make sense?
4766 
4767   if (options.GetDebug()) {
4768     // In this case, we aren't actually going to run, we just want to stop
4769     // right away. Flush this thread so we will refetch the stacks and show the
4770     // correct backtrace.
4771     // FIXME: To make this prettier we should invent some stop reason for this,
4772     // but that
4773     // is only cosmetic, and this functionality is only of use to lldb
4774     // developers who can live with not pretty...
4775     thread->Flush();
4776     return eExpressionStoppedForDebug;
4777   }
4778 
4779   ListenerSP listener_sp(
4780       Listener::MakeListener("lldb.process.listener.run-thread-plan"));
4781 
4782   lldb::EventSP event_to_broadcast_sp;
4783 
4784   {
4785     // This process event hijacker Hijacks the Public events and its destructor
4786     // makes sure that the process events get restored on exit to the function.
4787     //
4788     // If the event needs to propagate beyond the hijacker (e.g., the process
4789     // exits during execution), then the event is put into
4790     // event_to_broadcast_sp for rebroadcasting.
4791 
4792     ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp);
4793 
4794     if (log) {
4795       StreamString s;
4796       thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose);
4797       LLDB_LOGF(log,
4798                 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64
4799                 " to run thread plan \"%s\".",
4800                 thread_idx_id, expr_thread_id, s.GetData());
4801     }
4802 
4803     bool got_event;
4804     lldb::EventSP event_sp;
4805     lldb::StateType stop_state = lldb::eStateInvalid;
4806 
4807     bool before_first_timeout = true; // This is set to false the first time
4808                                       // that we have to halt the target.
4809     bool do_resume = true;
4810     bool handle_running_event = true;
4811 
4812     // This is just for accounting:
4813     uint32_t num_resumes = 0;
4814 
4815     // If we are going to run all threads the whole time, or if we are only
4816     // going to run one thread, then we don't need the first timeout.  So we
4817     // pretend we are after the first timeout already.
4818     if (!options.GetStopOthers() || !options.GetTryAllThreads())
4819       before_first_timeout = false;
4820 
4821     LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n",
4822               options.GetStopOthers(), options.GetTryAllThreads(),
4823               before_first_timeout);
4824 
4825     // This isn't going to work if there are unfetched events on the queue. Are
4826     // there cases where we might want to run the remaining events here, and
4827     // then try to call the function?  That's probably being too tricky for our
4828     // own good.
4829 
4830     Event *other_events = listener_sp->PeekAtNextEvent();
4831     if (other_events != nullptr) {
4832       diagnostic_manager.PutString(
4833           eDiagnosticSeverityError,
4834           "RunThreadPlan called with pending events on the queue.");
4835       return eExpressionSetupError;
4836     }
4837 
4838     // We also need to make sure that the next event is delivered.  We might be
4839     // calling a function as part of a thread plan, in which case the last
4840     // delivered event could be the running event, and we don't want event
4841     // coalescing to cause us to lose OUR running event...
4842     ForceNextEventDelivery();
4843 
4844 // This while loop must exit out the bottom, there's cleanup that we need to do
4845 // when we are done. So don't call return anywhere within it.
4846 
4847 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
4848     // It's pretty much impossible to write test cases for things like: One
4849     // thread timeout expires, I go to halt, but the process already stopped on
4850     // the function call stop breakpoint.  Turning on this define will make us
4851     // not fetch the first event till after the halt.  So if you run a quick
4852     // function, it will have completed, and the completion event will be
4853     // waiting, when you interrupt for halt. The expression evaluation should
4854     // still succeed.
4855     bool miss_first_event = true;
4856 #endif
4857     while (true) {
4858       // We usually want to resume the process if we get to the top of the
4859       // loop. The only exception is if we get two running events with no
4860       // intervening stop, which can happen, we will just wait for then next
4861       // stop event.
4862       LLDB_LOGF(log,
4863                 "Top of while loop: do_resume: %i handle_running_event: %i "
4864                 "before_first_timeout: %i.",
4865                 do_resume, handle_running_event, before_first_timeout);
4866 
4867       if (do_resume || handle_running_event) {
4868         // Do the initial resume and wait for the running event before going
4869         // further.
4870 
4871         if (do_resume) {
4872           num_resumes++;
4873           Status resume_error = PrivateResume();
4874           if (!resume_error.Success()) {
4875             diagnostic_manager.Printf(
4876                 eDiagnosticSeverityError,
4877                 "couldn't resume inferior the %d time: \"%s\".", num_resumes,
4878                 resume_error.AsCString());
4879             return_value = eExpressionSetupError;
4880             break;
4881           }
4882         }
4883 
4884         got_event =
4885             listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
4886         if (!got_event) {
4887           LLDB_LOGF(log,
4888                     "Process::RunThreadPlan(): didn't get any event after "
4889                     "resume %" PRIu32 ", exiting.",
4890                     num_resumes);
4891 
4892           diagnostic_manager.Printf(eDiagnosticSeverityError,
4893                                     "didn't get any event after resume %" PRIu32
4894                                     ", exiting.",
4895                                     num_resumes);
4896           return_value = eExpressionSetupError;
4897           break;
4898         }
4899 
4900         stop_state =
4901             Process::ProcessEventData::GetStateFromEvent(event_sp.get());
4902 
4903         if (stop_state != eStateRunning) {
4904           bool restarted = false;
4905 
4906           if (stop_state == eStateStopped) {
4907             restarted = Process::ProcessEventData::GetRestartedFromEvent(
4908                 event_sp.get());
4909             LLDB_LOGF(
4910                 log,
4911                 "Process::RunThreadPlan(): didn't get running event after "
4912                 "resume %d, got %s instead (restarted: %i, do_resume: %i, "
4913                 "handle_running_event: %i).",
4914                 num_resumes, StateAsCString(stop_state), restarted, do_resume,
4915                 handle_running_event);
4916           }
4917 
4918           if (restarted) {
4919             // This is probably an overabundance of caution, I don't think I
4920             // should ever get a stopped & restarted event here.  But if I do,
4921             // the best thing is to Halt and then get out of here.
4922             const bool clear_thread_plans = false;
4923             const bool use_run_lock = false;
4924             Halt(clear_thread_plans, use_run_lock);
4925           }
4926 
4927           diagnostic_manager.Printf(
4928               eDiagnosticSeverityError,
4929               "didn't get running event after initial resume, got %s instead.",
4930               StateAsCString(stop_state));
4931           return_value = eExpressionSetupError;
4932           break;
4933         }
4934 
4935         if (log)
4936           log->PutCString("Process::RunThreadPlan(): resuming succeeded.");
4937         // We need to call the function synchronously, so spin waiting for it
4938         // to return. If we get interrupted while executing, we're going to
4939         // lose our context, and won't be able to gather the result at this
4940         // point. We set the timeout AFTER the resume, since the resume takes
4941         // some time and we don't want to charge that to the timeout.
4942       } else {
4943         if (log)
4944           log->PutCString("Process::RunThreadPlan(): waiting for next event.");
4945       }
4946 
4947       do_resume = true;
4948       handle_running_event = true;
4949 
4950       // Now wait for the process to stop again:
4951       event_sp.reset();
4952 
4953       Timeout<std::micro> timeout =
4954           GetExpressionTimeout(options, before_first_timeout);
4955       if (log) {
4956         if (timeout) {
4957           auto now = system_clock::now();
4958           LLDB_LOGF(log,
4959                     "Process::RunThreadPlan(): about to wait - now is %s - "
4960                     "endpoint is %s",
4961                     llvm::to_string(now).c_str(),
4962                     llvm::to_string(now + *timeout).c_str());
4963         } else {
4964           LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever.");
4965         }
4966       }
4967 
4968 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
4969       // See comment above...
4970       if (miss_first_event) {
4971         std::this_thread::sleep_for(std::chrono::milliseconds(1));
4972         miss_first_event = false;
4973         got_event = false;
4974       } else
4975 #endif
4976         got_event = listener_sp->GetEvent(event_sp, timeout);
4977 
4978       if (got_event) {
4979         if (event_sp) {
4980           bool keep_going = false;
4981           if (event_sp->GetType() == eBroadcastBitInterrupt) {
4982             const bool clear_thread_plans = false;
4983             const bool use_run_lock = false;
4984             Halt(clear_thread_plans, use_run_lock);
4985             return_value = eExpressionInterrupted;
4986             diagnostic_manager.PutString(eDiagnosticSeverityRemark,
4987                                          "execution halted by user interrupt.");
4988             LLDB_LOGF(log, "Process::RunThreadPlan(): Got  interrupted by "
4989                            "eBroadcastBitInterrupted, exiting.");
4990             break;
4991           } else {
4992             stop_state =
4993                 Process::ProcessEventData::GetStateFromEvent(event_sp.get());
4994             LLDB_LOGF(log,
4995                       "Process::RunThreadPlan(): in while loop, got event: %s.",
4996                       StateAsCString(stop_state));
4997 
4998             switch (stop_state) {
4999             case lldb::eStateStopped: {
5000               if (Process::ProcessEventData::GetRestartedFromEvent(
5001                       event_sp.get())) {
5002                 // If we were restarted, we just need to go back up to fetch
5003                 // another event.
5004                 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and "
5005                                "restart, so we'll continue waiting.");
5006                 keep_going = true;
5007                 do_resume = false;
5008                 handle_running_event = true;
5009               } else {
5010                 const bool handle_interrupts = true;
5011                 return_value = *HandleStoppedEvent(
5012                     expr_thread_id, thread_plan_sp, thread_plan_restorer,
5013                     event_sp, event_to_broadcast_sp, options,
5014                     handle_interrupts);
5015                 if (return_value == eExpressionThreadVanished)
5016                   keep_going = false;
5017               }
5018             } break;
5019 
5020             case lldb::eStateRunning:
5021               // This shouldn't really happen, but sometimes we do get two
5022               // running events without an intervening stop, and in that case
5023               // we should just go back to waiting for the stop.
5024               do_resume = false;
5025               keep_going = true;
5026               handle_running_event = false;
5027               break;
5028 
5029             default:
5030               LLDB_LOGF(log,
5031                         "Process::RunThreadPlan(): execution stopped with "
5032                         "unexpected state: %s.",
5033                         StateAsCString(stop_state));
5034 
5035               if (stop_state == eStateExited)
5036                 event_to_broadcast_sp = event_sp;
5037 
5038               diagnostic_manager.PutString(
5039                   eDiagnosticSeverityError,
5040                   "execution stopped with unexpected state.");
5041               return_value = eExpressionInterrupted;
5042               break;
5043             }
5044           }
5045 
5046           if (keep_going)
5047             continue;
5048           else
5049             break;
5050         } else {
5051           if (log)
5052             log->PutCString("Process::RunThreadPlan(): got_event was true, but "
5053                             "the event pointer was null.  How odd...");
5054           return_value = eExpressionInterrupted;
5055           break;
5056         }
5057       } else {
5058         // If we didn't get an event that means we've timed out... We will
5059         // interrupt the process here.  Depending on what we were asked to do
5060         // we will either exit, or try with all threads running for the same
5061         // timeout.
5062 
5063         if (log) {
5064           if (options.GetTryAllThreads()) {
5065             if (before_first_timeout) {
5066               LLDB_LOG(log,
5067                        "Running function with one thread timeout timed out.");
5068             } else
5069               LLDB_LOG(log, "Restarting function with all threads enabled and "
5070                             "timeout: {0} timed out, abandoning execution.",
5071                        timeout);
5072           } else
5073             LLDB_LOG(log, "Running function with timeout: {0} timed out, "
5074                           "abandoning execution.",
5075                      timeout);
5076         }
5077 
5078         // It is possible that between the time we issued the Halt, and we get
5079         // around to calling Halt the target could have stopped.  That's fine,
5080         // Halt will figure that out and send the appropriate Stopped event.
5081         // BUT it is also possible that we stopped & restarted (e.g. hit a
5082         // signal with "stop" set to false.)  In
5083         // that case, we'll get the stopped & restarted event, and we should go
5084         // back to waiting for the Halt's stopped event.  That's what this
5085         // while loop does.
5086 
5087         bool back_to_top = true;
5088         uint32_t try_halt_again = 0;
5089         bool do_halt = true;
5090         const uint32_t num_retries = 5;
5091         while (try_halt_again < num_retries) {
5092           Status halt_error;
5093           if (do_halt) {
5094             LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt.");
5095             const bool clear_thread_plans = false;
5096             const bool use_run_lock = false;
5097             Halt(clear_thread_plans, use_run_lock);
5098           }
5099           if (halt_error.Success()) {
5100             if (log)
5101               log->PutCString("Process::RunThreadPlan(): Halt succeeded.");
5102 
5103             got_event =
5104                 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
5105 
5106             if (got_event) {
5107               stop_state =
5108                   Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5109               if (log) {
5110                 LLDB_LOGF(log,
5111                           "Process::RunThreadPlan(): Stopped with event: %s",
5112                           StateAsCString(stop_state));
5113                 if (stop_state == lldb::eStateStopped &&
5114                     Process::ProcessEventData::GetInterruptedFromEvent(
5115                         event_sp.get()))
5116                   log->PutCString("    Event was the Halt interruption event.");
5117               }
5118 
5119               if (stop_state == lldb::eStateStopped) {
5120                 if (Process::ProcessEventData::GetRestartedFromEvent(
5121                         event_sp.get())) {
5122                   if (log)
5123                     log->PutCString("Process::RunThreadPlan(): Went to halt "
5124                                     "but got a restarted event, there must be "
5125                                     "an un-restarted stopped event so try "
5126                                     "again...  "
5127                                     "Exiting wait loop.");
5128                   try_halt_again++;
5129                   do_halt = false;
5130                   continue;
5131                 }
5132 
5133                 // Between the time we initiated the Halt and the time we
5134                 // delivered it, the process could have already finished its
5135                 // job.  Check that here:
5136                 const bool handle_interrupts = false;
5137                 if (auto result = HandleStoppedEvent(
5138                         expr_thread_id, thread_plan_sp, thread_plan_restorer,
5139                         event_sp, event_to_broadcast_sp, options,
5140                         handle_interrupts)) {
5141                   return_value = *result;
5142                   back_to_top = false;
5143                   break;
5144                 }
5145 
5146                 if (!options.GetTryAllThreads()) {
5147                   if (log)
5148                     log->PutCString("Process::RunThreadPlan(): try_all_threads "
5149                                     "was false, we stopped so now we're "
5150                                     "quitting.");
5151                   return_value = eExpressionInterrupted;
5152                   back_to_top = false;
5153                   break;
5154                 }
5155 
5156                 if (before_first_timeout) {
5157                   // Set all the other threads to run, and return to the top of
5158                   // the loop, which will continue;
5159                   before_first_timeout = false;
5160                   thread_plan_sp->SetStopOthers(false);
5161                   if (log)
5162                     log->PutCString(
5163                         "Process::RunThreadPlan(): about to resume.");
5164 
5165                   back_to_top = true;
5166                   break;
5167                 } else {
5168                   // Running all threads failed, so return Interrupted.
5169                   if (log)
5170                     log->PutCString("Process::RunThreadPlan(): running all "
5171                                     "threads timed out.");
5172                   return_value = eExpressionInterrupted;
5173                   back_to_top = false;
5174                   break;
5175                 }
5176               }
5177             } else {
5178               if (log)
5179                 log->PutCString("Process::RunThreadPlan(): halt said it "
5180                                 "succeeded, but I got no event.  "
5181                                 "I'm getting out of here passing Interrupted.");
5182               return_value = eExpressionInterrupted;
5183               back_to_top = false;
5184               break;
5185             }
5186           } else {
5187             try_halt_again++;
5188             continue;
5189           }
5190         }
5191 
5192         if (!back_to_top || try_halt_again > num_retries)
5193           break;
5194         else
5195           continue;
5196       }
5197     } // END WAIT LOOP
5198 
5199     // If we had to start up a temporary private state thread to run this
5200     // thread plan, shut it down now.
5201     if (backup_private_state_thread.IsJoinable()) {
5202       StopPrivateStateThread();
5203       Status error;
5204       m_private_state_thread = backup_private_state_thread;
5205       if (stopper_base_plan_sp) {
5206         thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp);
5207       }
5208       if (old_state != eStateInvalid)
5209         m_public_state.SetValueNoLock(old_state);
5210     }
5211 
5212     // If our thread went away on us, we need to get out of here without
5213     // doing any more work.  We don't have to clean up the thread plan, that
5214     // will have happened when the Thread was destroyed.
5215     if (return_value == eExpressionThreadVanished) {
5216       return return_value;
5217     }
5218 
5219     if (return_value != eExpressionCompleted && log) {
5220       // Print a backtrace into the log so we can figure out where we are:
5221       StreamString s;
5222       s.PutCString("Thread state after unsuccessful completion: \n");
5223       thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX);
5224       log->PutString(s.GetString());
5225     }
5226     // Restore the thread state if we are going to discard the plan execution.
5227     // There are three cases where this could happen: 1) The execution
5228     // successfully completed 2) We hit a breakpoint, and ignore_breakpoints
5229     // was true 3) We got some other error, and discard_on_error was true
5230     bool should_unwind = (return_value == eExpressionInterrupted &&
5231                           options.DoesUnwindOnError()) ||
5232                          (return_value == eExpressionHitBreakpoint &&
5233                           options.DoesIgnoreBreakpoints());
5234 
5235     if (return_value == eExpressionCompleted || should_unwind) {
5236       thread_plan_sp->RestoreThreadState();
5237     }
5238 
5239     // Now do some processing on the results of the run:
5240     if (return_value == eExpressionInterrupted ||
5241         return_value == eExpressionHitBreakpoint) {
5242       if (log) {
5243         StreamString s;
5244         if (event_sp)
5245           event_sp->Dump(&s);
5246         else {
5247           log->PutCString("Process::RunThreadPlan(): Stop event that "
5248                           "interrupted us is NULL.");
5249         }
5250 
5251         StreamString ts;
5252 
5253         const char *event_explanation = nullptr;
5254 
5255         do {
5256           if (!event_sp) {
5257             event_explanation = "<no event>";
5258             break;
5259           } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
5260             event_explanation = "<user interrupt>";
5261             break;
5262           } else {
5263             const Process::ProcessEventData *event_data =
5264                 Process::ProcessEventData::GetEventDataFromEvent(
5265                     event_sp.get());
5266 
5267             if (!event_data) {
5268               event_explanation = "<no event data>";
5269               break;
5270             }
5271 
5272             Process *process = event_data->GetProcessSP().get();
5273 
5274             if (!process) {
5275               event_explanation = "<no process>";
5276               break;
5277             }
5278 
5279             ThreadList &thread_list = process->GetThreadList();
5280 
5281             uint32_t num_threads = thread_list.GetSize();
5282             uint32_t thread_index;
5283 
5284             ts.Printf("<%u threads> ", num_threads);
5285 
5286             for (thread_index = 0; thread_index < num_threads; ++thread_index) {
5287               Thread *thread = thread_list.GetThreadAtIndex(thread_index).get();
5288 
5289               if (!thread) {
5290                 ts.Printf("<?> ");
5291                 continue;
5292               }
5293 
5294               ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID());
5295               RegisterContext *register_context =
5296                   thread->GetRegisterContext().get();
5297 
5298               if (register_context)
5299                 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC());
5300               else
5301                 ts.Printf("[ip unknown] ");
5302 
5303               // Show the private stop info here, the public stop info will be
5304               // from the last natural stop.
5305               lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo();
5306               if (stop_info_sp) {
5307                 const char *stop_desc = stop_info_sp->GetDescription();
5308                 if (stop_desc)
5309                   ts.PutCString(stop_desc);
5310               }
5311               ts.Printf(">");
5312             }
5313 
5314             event_explanation = ts.GetData();
5315           }
5316         } while (false);
5317 
5318         if (event_explanation)
5319           LLDB_LOGF(log,
5320                     "Process::RunThreadPlan(): execution interrupted: %s %s",
5321                     s.GetData(), event_explanation);
5322         else
5323           LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s",
5324                     s.GetData());
5325       }
5326 
5327       if (should_unwind) {
5328         LLDB_LOGF(log,
5329                   "Process::RunThreadPlan: ExecutionInterrupted - "
5330                   "discarding thread plans up to %p.",
5331                   static_cast<void *>(thread_plan_sp.get()));
5332         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5333       } else {
5334         LLDB_LOGF(log,
5335                   "Process::RunThreadPlan: ExecutionInterrupted - for "
5336                   "plan: %p not discarding.",
5337                   static_cast<void *>(thread_plan_sp.get()));
5338       }
5339     } else if (return_value == eExpressionSetupError) {
5340       if (log)
5341         log->PutCString("Process::RunThreadPlan(): execution set up error.");
5342 
5343       if (options.DoesUnwindOnError()) {
5344         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5345       }
5346     } else {
5347       if (thread->IsThreadPlanDone(thread_plan_sp.get())) {
5348         if (log)
5349           log->PutCString("Process::RunThreadPlan(): thread plan is done");
5350         return_value = eExpressionCompleted;
5351       } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) {
5352         if (log)
5353           log->PutCString(
5354               "Process::RunThreadPlan(): thread plan was discarded");
5355         return_value = eExpressionDiscarded;
5356       } else {
5357         if (log)
5358           log->PutCString(
5359               "Process::RunThreadPlan(): thread plan stopped in mid course");
5360         if (options.DoesUnwindOnError() && thread_plan_sp) {
5361           if (log)
5362             log->PutCString("Process::RunThreadPlan(): discarding thread plan "
5363                             "'cause unwind_on_error is set.");
5364           thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5365         }
5366       }
5367     }
5368 
5369     // Thread we ran the function in may have gone away because we ran the
5370     // target Check that it's still there, and if it is put it back in the
5371     // context. Also restore the frame in the context if it is still present.
5372     thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get();
5373     if (thread) {
5374       exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id));
5375     }
5376 
5377     // Also restore the current process'es selected frame & thread, since this
5378     // function calling may be done behind the user's back.
5379 
5380     if (selected_tid != LLDB_INVALID_THREAD_ID) {
5381       if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) &&
5382           selected_stack_id.IsValid()) {
5383         // We were able to restore the selected thread, now restore the frame:
5384         std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5385         StackFrameSP old_frame_sp =
5386             GetThreadList().GetSelectedThread()->GetFrameWithStackID(
5387                 selected_stack_id);
5388         if (old_frame_sp)
5389           GetThreadList().GetSelectedThread()->SetSelectedFrame(
5390               old_frame_sp.get());
5391       }
5392     }
5393   }
5394 
5395   // If the process exited during the run of the thread plan, notify everyone.
5396 
5397   if (event_to_broadcast_sp) {
5398     if (log)
5399       log->PutCString("Process::RunThreadPlan(): rebroadcasting event.");
5400     BroadcastEvent(event_to_broadcast_sp);
5401   }
5402 
5403   return return_value;
5404 }
5405 
5406 const char *Process::ExecutionResultAsCString(ExpressionResults result) {
5407   const char *result_name = "<unknown>";
5408 
5409   switch (result) {
5410   case eExpressionCompleted:
5411     result_name = "eExpressionCompleted";
5412     break;
5413   case eExpressionDiscarded:
5414     result_name = "eExpressionDiscarded";
5415     break;
5416   case eExpressionInterrupted:
5417     result_name = "eExpressionInterrupted";
5418     break;
5419   case eExpressionHitBreakpoint:
5420     result_name = "eExpressionHitBreakpoint";
5421     break;
5422   case eExpressionSetupError:
5423     result_name = "eExpressionSetupError";
5424     break;
5425   case eExpressionParseError:
5426     result_name = "eExpressionParseError";
5427     break;
5428   case eExpressionResultUnavailable:
5429     result_name = "eExpressionResultUnavailable";
5430     break;
5431   case eExpressionTimedOut:
5432     result_name = "eExpressionTimedOut";
5433     break;
5434   case eExpressionStoppedForDebug:
5435     result_name = "eExpressionStoppedForDebug";
5436     break;
5437   case eExpressionThreadVanished:
5438     result_name = "eExpressionThreadVanished";
5439   }
5440   return result_name;
5441 }
5442 
5443 void Process::GetStatus(Stream &strm) {
5444   const StateType state = GetState();
5445   if (StateIsStoppedState(state, false)) {
5446     if (state == eStateExited) {
5447       int exit_status = GetExitStatus();
5448       const char *exit_description = GetExitDescription();
5449       strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n",
5450                   GetID(), exit_status, exit_status,
5451                   exit_description ? exit_description : "");
5452     } else {
5453       if (state == eStateConnected)
5454         strm.Printf("Connected to remote target.\n");
5455       else
5456         strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state));
5457     }
5458   } else {
5459     strm.Printf("Process %" PRIu64 " is running.\n", GetID());
5460   }
5461 }
5462 
5463 size_t Process::GetThreadStatus(Stream &strm,
5464                                 bool only_threads_with_stop_reason,
5465                                 uint32_t start_frame, uint32_t num_frames,
5466                                 uint32_t num_frames_with_source,
5467                                 bool stop_format) {
5468   size_t num_thread_infos_dumped = 0;
5469 
5470   // You can't hold the thread list lock while calling Thread::GetStatus.  That
5471   // very well might run code (e.g. if we need it to get return values or
5472   // arguments.)  For that to work the process has to be able to acquire it.
5473   // So instead copy the thread ID's, and look them up one by one:
5474 
5475   uint32_t num_threads;
5476   std::vector<lldb::tid_t> thread_id_array;
5477   // Scope for thread list locker;
5478   {
5479     std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5480     ThreadList &curr_thread_list = GetThreadList();
5481     num_threads = curr_thread_list.GetSize();
5482     uint32_t idx;
5483     thread_id_array.resize(num_threads);
5484     for (idx = 0; idx < num_threads; ++idx)
5485       thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID();
5486   }
5487 
5488   for (uint32_t i = 0; i < num_threads; i++) {
5489     ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i]));
5490     if (thread_sp) {
5491       if (only_threads_with_stop_reason) {
5492         StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
5493         if (!stop_info_sp || !stop_info_sp->IsValid())
5494           continue;
5495       }
5496       thread_sp->GetStatus(strm, start_frame, num_frames,
5497                            num_frames_with_source,
5498                            stop_format);
5499       ++num_thread_infos_dumped;
5500     } else {
5501       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
5502       LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64
5503                      " vanished while running Thread::GetStatus.");
5504     }
5505   }
5506   return num_thread_infos_dumped;
5507 }
5508 
5509 void Process::AddInvalidMemoryRegion(const LoadRange &region) {
5510   m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize());
5511 }
5512 
5513 bool Process::RemoveInvalidMemoryRange(const LoadRange &region) {
5514   return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(),
5515                                            region.GetByteSize());
5516 }
5517 
5518 void Process::AddPreResumeAction(PreResumeActionCallback callback,
5519                                  void *baton) {
5520   m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton));
5521 }
5522 
5523 bool Process::RunPreResumeActions() {
5524   bool result = true;
5525   while (!m_pre_resume_actions.empty()) {
5526     struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back();
5527     m_pre_resume_actions.pop_back();
5528     bool this_result = action.callback(action.baton);
5529     if (result)
5530       result = this_result;
5531   }
5532   return result;
5533 }
5534 
5535 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); }
5536 
5537 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton)
5538 {
5539     PreResumeCallbackAndBaton element(callback, baton);
5540     auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element);
5541     if (found_iter != m_pre_resume_actions.end())
5542     {
5543         m_pre_resume_actions.erase(found_iter);
5544     }
5545 }
5546 
5547 ProcessRunLock &Process::GetRunLock() {
5548   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread()))
5549     return m_private_run_lock;
5550   else
5551     return m_public_run_lock;
5552 }
5553 
5554 bool Process::CurrentThreadIsPrivateStateThread()
5555 {
5556   return m_private_state_thread.EqualsThread(Host::GetCurrentThread());
5557 }
5558 
5559 
5560 void Process::Flush() {
5561   m_thread_list.Flush();
5562   m_extended_thread_list.Flush();
5563   m_extended_thread_stop_id = 0;
5564   m_queue_list.Clear();
5565   m_queue_list_stop_id = 0;
5566 }
5567 
5568 lldb::addr_t Process::GetCodeAddressMask() {
5569   if (m_code_address_mask == 0) {
5570     if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) {
5571       lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1);
5572       SetCodeAddressMask(address_mask);
5573     }
5574   }
5575   return m_code_address_mask;
5576 }
5577 
5578 lldb::addr_t Process::GetDataAddressMask() {
5579   if (m_data_address_mask == 0) {
5580     if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) {
5581       lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1);
5582       SetDataAddressMask(address_mask);
5583     }
5584   }
5585   return m_data_address_mask;
5586 }
5587 
5588 void Process::DidExec() {
5589   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
5590   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
5591 
5592   Target &target = GetTarget();
5593   target.CleanupProcess();
5594   target.ClearModules(false);
5595   m_dynamic_checkers_up.reset();
5596   m_abi_sp.reset();
5597   m_system_runtime_up.reset();
5598   m_os_up.reset();
5599   m_dyld_up.reset();
5600   m_jit_loaders_up.reset();
5601   m_image_tokens.clear();
5602   m_allocated_memory_cache.Clear();
5603   {
5604     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
5605     m_language_runtimes.clear();
5606   }
5607   m_instrumentation_runtimes.clear();
5608   m_thread_list.DiscardThreadPlans();
5609   m_memory_cache.Clear(true);
5610   DoDidExec();
5611   CompleteAttach();
5612   // Flush the process (threads and all stack frames) after running
5613   // CompleteAttach() in case the dynamic loader loaded things in new
5614   // locations.
5615   Flush();
5616 
5617   // After we figure out what was loaded/unloaded in CompleteAttach, we need to
5618   // let the target know so it can do any cleanup it needs to.
5619   target.DidExec();
5620 }
5621 
5622 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) {
5623   if (address == nullptr) {
5624     error.SetErrorString("Invalid address argument");
5625     return LLDB_INVALID_ADDRESS;
5626   }
5627 
5628   addr_t function_addr = LLDB_INVALID_ADDRESS;
5629 
5630   addr_t addr = address->GetLoadAddress(&GetTarget());
5631   std::map<addr_t, addr_t>::const_iterator iter =
5632       m_resolved_indirect_addresses.find(addr);
5633   if (iter != m_resolved_indirect_addresses.end()) {
5634     function_addr = (*iter).second;
5635   } else {
5636     if (!CallVoidArgVoidPtrReturn(address, function_addr)) {
5637       Symbol *symbol = address->CalculateSymbolContextSymbol();
5638       error.SetErrorStringWithFormat(
5639           "Unable to call resolver for indirect function %s",
5640           symbol ? symbol->GetName().AsCString() : "<UNKNOWN>");
5641       function_addr = LLDB_INVALID_ADDRESS;
5642     } else {
5643       if (ABISP abi_sp = GetABI())
5644         function_addr = abi_sp->FixCodeAddress(function_addr);
5645       m_resolved_indirect_addresses.insert(
5646           std::pair<addr_t, addr_t>(addr, function_addr));
5647     }
5648   }
5649   return function_addr;
5650 }
5651 
5652 void Process::ModulesDidLoad(ModuleList &module_list) {
5653   // Inform the system runtime of the modified modules.
5654   SystemRuntime *sys_runtime = GetSystemRuntime();
5655   if (sys_runtime)
5656     sys_runtime->ModulesDidLoad(module_list);
5657 
5658   GetJITLoaders().ModulesDidLoad(module_list);
5659 
5660   // Give the instrumentation runtimes a chance to be created before informing
5661   // them of the modified modules.
5662   InstrumentationRuntime::ModulesDidLoad(module_list, this,
5663                                          m_instrumentation_runtimes);
5664   for (auto &runtime : m_instrumentation_runtimes)
5665     runtime.second->ModulesDidLoad(module_list);
5666 
5667   // Give the language runtimes a chance to be created before informing them of
5668   // the modified modules.
5669   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
5670     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
5671       runtime->ModulesDidLoad(module_list);
5672   }
5673 
5674   // If we don't have an operating system plug-in, try to load one since
5675   // loading shared libraries might cause a new one to try and load
5676   if (!m_os_up)
5677     LoadOperatingSystemPlugin(false);
5678 
5679   // Inform the structured-data plugins of the modified modules.
5680   for (auto pair : m_structured_data_plugin_map) {
5681     if (pair.second)
5682       pair.second->ModulesDidLoad(*this, module_list);
5683   }
5684 }
5685 
5686 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key,
5687                            const char *fmt, ...) {
5688   bool print_warning = true;
5689 
5690   StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream();
5691   if (!stream_sp)
5692     return;
5693 
5694   if (repeat_key != nullptr) {
5695     WarningsCollection::iterator it = m_warnings_issued.find(warning_type);
5696     if (it == m_warnings_issued.end()) {
5697       m_warnings_issued[warning_type] = WarningsPointerSet();
5698       m_warnings_issued[warning_type].insert(repeat_key);
5699     } else {
5700       if (it->second.find(repeat_key) != it->second.end()) {
5701         print_warning = false;
5702       } else {
5703         it->second.insert(repeat_key);
5704       }
5705     }
5706   }
5707 
5708   if (print_warning) {
5709     va_list args;
5710     va_start(args, fmt);
5711     stream_sp->PrintfVarArg(fmt, args);
5712     va_end(args);
5713   }
5714 }
5715 
5716 void Process::PrintWarningOptimization(const SymbolContext &sc) {
5717   if (!GetWarningsOptimization())
5718     return;
5719   if (!sc.module_sp)
5720     return;
5721   if (!sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function &&
5722       sc.function->GetIsOptimized()) {
5723     PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(),
5724                  "%s was compiled with optimization - stepping may behave "
5725                  "oddly; variables may not be available.\n",
5726                  sc.module_sp->GetFileSpec().GetFilename().GetCString());
5727   }
5728 }
5729 
5730 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) {
5731   if (!GetWarningsUnsupportedLanguage())
5732     return;
5733   if (!sc.module_sp)
5734     return;
5735   LanguageType language = sc.GetLanguage();
5736   if (language == eLanguageTypeUnknown)
5737     return;
5738   LanguageSet plugins =
5739       PluginManager::GetAllTypeSystemSupportedLanguagesForTypes();
5740   if (!plugins[language]) {
5741     PrintWarning(Process::Warnings::eWarningsUnsupportedLanguage,
5742                  sc.module_sp.get(),
5743                  "This version of LLDB has no plugin for the language \"%s\". "
5744                  "Inspection of frame variables will be limited.\n",
5745                  Language::GetNameForLanguageType(language));
5746   }
5747 }
5748 
5749 bool Process::GetProcessInfo(ProcessInstanceInfo &info) {
5750   info.Clear();
5751 
5752   PlatformSP platform_sp = GetTarget().GetPlatform();
5753   if (!platform_sp)
5754     return false;
5755 
5756   return platform_sp->GetProcessInfo(GetID(), info);
5757 }
5758 
5759 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) {
5760   ThreadCollectionSP threads;
5761 
5762   const MemoryHistorySP &memory_history =
5763       MemoryHistory::FindPlugin(shared_from_this());
5764 
5765   if (!memory_history) {
5766     return threads;
5767   }
5768 
5769   threads = std::make_shared<ThreadCollection>(
5770       memory_history->GetHistoryThreads(addr));
5771 
5772   return threads;
5773 }
5774 
5775 InstrumentationRuntimeSP
5776 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) {
5777   InstrumentationRuntimeCollection::iterator pos;
5778   pos = m_instrumentation_runtimes.find(type);
5779   if (pos == m_instrumentation_runtimes.end()) {
5780     return InstrumentationRuntimeSP();
5781   } else
5782     return (*pos).second;
5783 }
5784 
5785 bool Process::GetModuleSpec(const FileSpec &module_file_spec,
5786                             const ArchSpec &arch, ModuleSpec &module_spec) {
5787   module_spec.Clear();
5788   return false;
5789 }
5790 
5791 size_t Process::AddImageToken(lldb::addr_t image_ptr) {
5792   m_image_tokens.push_back(image_ptr);
5793   return m_image_tokens.size() - 1;
5794 }
5795 
5796 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const {
5797   if (token < m_image_tokens.size())
5798     return m_image_tokens[token];
5799   return LLDB_INVALID_ADDRESS;
5800 }
5801 
5802 void Process::ResetImageToken(size_t token) {
5803   if (token < m_image_tokens.size())
5804     m_image_tokens[token] = LLDB_INVALID_ADDRESS;
5805 }
5806 
5807 Address
5808 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr,
5809                                                AddressRange range_bounds) {
5810   Target &target = GetTarget();
5811   DisassemblerSP disassembler_sp;
5812   InstructionList *insn_list = nullptr;
5813 
5814   Address retval = default_stop_addr;
5815 
5816   if (!target.GetUseFastStepping())
5817     return retval;
5818   if (!default_stop_addr.IsValid())
5819     return retval;
5820 
5821   const char *plugin_name = nullptr;
5822   const char *flavor = nullptr;
5823   disassembler_sp = Disassembler::DisassembleRange(
5824       target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds);
5825   if (disassembler_sp)
5826     insn_list = &disassembler_sp->GetInstructionList();
5827 
5828   if (insn_list == nullptr) {
5829     return retval;
5830   }
5831 
5832   size_t insn_offset =
5833       insn_list->GetIndexOfInstructionAtAddress(default_stop_addr);
5834   if (insn_offset == UINT32_MAX) {
5835     return retval;
5836   }
5837 
5838   uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction(
5839       insn_offset, false /* ignore_calls*/, nullptr);
5840   if (branch_index == UINT32_MAX) {
5841     return retval;
5842   }
5843 
5844   if (branch_index > insn_offset) {
5845     Address next_branch_insn_address =
5846         insn_list->GetInstructionAtIndex(branch_index)->GetAddress();
5847     if (next_branch_insn_address.IsValid() &&
5848         range_bounds.ContainsFileAddress(next_branch_insn_address)) {
5849       retval = next_branch_insn_address;
5850     }
5851   }
5852 
5853   return retval;
5854 }
5855 
5856 Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr,
5857                                     MemoryRegionInfo &range_info) {
5858   if (const lldb::ABISP &abi = GetABI())
5859     load_addr = abi->FixDataAddress(load_addr);
5860   return DoGetMemoryRegionInfo(load_addr, range_info);
5861 }
5862 
5863 Status Process::GetMemoryRegions(lldb_private::MemoryRegionInfos &region_list) {
5864   Status error;
5865 
5866   lldb::addr_t range_end = 0;
5867   const lldb::ABISP &abi = GetABI();
5868 
5869   region_list.clear();
5870   do {
5871     lldb_private::MemoryRegionInfo region_info;
5872     error = GetMemoryRegionInfo(range_end, region_info);
5873     // GetMemoryRegionInfo should only return an error if it is unimplemented.
5874     if (error.Fail()) {
5875       region_list.clear();
5876       break;
5877     }
5878 
5879     // We only check the end address, not start and end, because we assume that
5880     // the start will not have non-address bits until the first unmappable
5881     // region. We will have exited the loop by that point because the previous
5882     // region, the last mappable region, will have non-address bits in its end
5883     // address.
5884     range_end = region_info.GetRange().GetRangeEnd();
5885     if (region_info.GetMapped() == MemoryRegionInfo::eYes) {
5886       region_list.push_back(std::move(region_info));
5887     }
5888   } while (
5889       // For a process with no non-address bits, all address bits
5890       // set means the end of memory.
5891       range_end != LLDB_INVALID_ADDRESS &&
5892       // If we have non-address bits and some are set then the end
5893       // is at or beyond the end of mappable memory.
5894       !(abi && (abi->FixDataAddress(range_end) != range_end)));
5895 
5896   return error;
5897 }
5898 
5899 Status
5900 Process::ConfigureStructuredData(ConstString type_name,
5901                                  const StructuredData::ObjectSP &config_sp) {
5902   // If you get this, the Process-derived class needs to implement a method to
5903   // enable an already-reported asynchronous structured data feature. See
5904   // ProcessGDBRemote for an example implementation over gdb-remote.
5905   return Status("unimplemented");
5906 }
5907 
5908 void Process::MapSupportedStructuredDataPlugins(
5909     const StructuredData::Array &supported_type_names) {
5910   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
5911 
5912   // Bail out early if there are no type names to map.
5913   if (supported_type_names.GetSize() == 0) {
5914     LLDB_LOGF(log, "Process::%s(): no structured data types supported",
5915               __FUNCTION__);
5916     return;
5917   }
5918 
5919   // Convert StructuredData type names to ConstString instances.
5920   std::set<ConstString> const_type_names;
5921 
5922   LLDB_LOGF(log,
5923             "Process::%s(): the process supports the following async "
5924             "structured data types:",
5925             __FUNCTION__);
5926 
5927   supported_type_names.ForEach(
5928       [&const_type_names, &log](StructuredData::Object *object) {
5929         if (!object) {
5930           // Invalid - shouldn't be null objects in the array.
5931           return false;
5932         }
5933 
5934         auto type_name = object->GetAsString();
5935         if (!type_name) {
5936           // Invalid format - all type names should be strings.
5937           return false;
5938         }
5939 
5940         const_type_names.insert(ConstString(type_name->GetValue()));
5941         LLDB_LOG(log, "- {0}", type_name->GetValue());
5942         return true;
5943       });
5944 
5945   // For each StructuredDataPlugin, if the plugin handles any of the types in
5946   // the supported_type_names, map that type name to that plugin. Stop when
5947   // we've consumed all the type names.
5948   // FIXME: should we return an error if there are type names nobody
5949   // supports?
5950   for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) {
5951     auto create_instance =
5952            PluginManager::GetStructuredDataPluginCreateCallbackAtIndex(
5953                plugin_index);
5954     if (!create_instance)
5955       break;
5956 
5957     // Create the plugin.
5958     StructuredDataPluginSP plugin_sp = (*create_instance)(*this);
5959     if (!plugin_sp) {
5960       // This plugin doesn't think it can work with the process. Move on to the
5961       // next.
5962       continue;
5963     }
5964 
5965     // For any of the remaining type names, map any that this plugin supports.
5966     std::vector<ConstString> names_to_remove;
5967     for (auto &type_name : const_type_names) {
5968       if (plugin_sp->SupportsStructuredDataType(type_name)) {
5969         m_structured_data_plugin_map.insert(
5970             std::make_pair(type_name, plugin_sp));
5971         names_to_remove.push_back(type_name);
5972         LLDB_LOG(log, "using plugin {0} for type name {1}",
5973                  plugin_sp->GetPluginName(), type_name);
5974       }
5975     }
5976 
5977     // Remove the type names that were consumed by this plugin.
5978     for (auto &type_name : names_to_remove)
5979       const_type_names.erase(type_name);
5980   }
5981 }
5982 
5983 bool Process::RouteAsyncStructuredData(
5984     const StructuredData::ObjectSP object_sp) {
5985   // Nothing to do if there's no data.
5986   if (!object_sp)
5987     return false;
5988 
5989   // The contract is this must be a dictionary, so we can look up the routing
5990   // key via the top-level 'type' string value within the dictionary.
5991   StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary();
5992   if (!dictionary)
5993     return false;
5994 
5995   // Grab the async structured type name (i.e. the feature/plugin name).
5996   ConstString type_name;
5997   if (!dictionary->GetValueForKeyAsString("type", type_name))
5998     return false;
5999 
6000   // Check if there's a plugin registered for this type name.
6001   auto find_it = m_structured_data_plugin_map.find(type_name);
6002   if (find_it == m_structured_data_plugin_map.end()) {
6003     // We don't have a mapping for this structured data type.
6004     return false;
6005   }
6006 
6007   // Route the structured data to the plugin.
6008   find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp);
6009   return true;
6010 }
6011 
6012 Status Process::UpdateAutomaticSignalFiltering() {
6013   // Default implementation does nothign.
6014   // No automatic signal filtering to speak of.
6015   return Status();
6016 }
6017 
6018 UtilityFunction *Process::GetLoadImageUtilityFunction(
6019     Platform *platform,
6020     llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) {
6021   if (platform != GetTarget().GetPlatform().get())
6022     return nullptr;
6023   llvm::call_once(m_dlopen_utility_func_flag_once,
6024                   [&] { m_dlopen_utility_func_up = factory(); });
6025   return m_dlopen_utility_func_up.get();
6026 }
6027 
6028 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() {
6029   if (!IsLiveDebugSession())
6030     return llvm::createStringError(llvm::inconvertibleErrorCode(),
6031                                    "Can't trace a non-live process.");
6032   return llvm::make_error<UnimplementedError>();
6033 }
6034 
6035 bool Process::CallVoidArgVoidPtrReturn(const Address *address,
6036                                        addr_t &returned_func,
6037                                        bool trap_exceptions) {
6038   Thread *thread = GetThreadList().GetExpressionExecutionThread().get();
6039   if (thread == nullptr || address == nullptr)
6040     return false;
6041 
6042   EvaluateExpressionOptions options;
6043   options.SetStopOthers(true);
6044   options.SetUnwindOnError(true);
6045   options.SetIgnoreBreakpoints(true);
6046   options.SetTryAllThreads(true);
6047   options.SetDebug(false);
6048   options.SetTimeout(GetUtilityExpressionTimeout());
6049   options.SetTrapExceptions(trap_exceptions);
6050 
6051   auto type_system_or_err =
6052       GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC);
6053   if (!type_system_or_err) {
6054     llvm::consumeError(type_system_or_err.takeError());
6055     return false;
6056   }
6057   CompilerType void_ptr_type =
6058       type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType();
6059   lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction(
6060       *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options));
6061   if (call_plan_sp) {
6062     DiagnosticManager diagnostics;
6063 
6064     StackFrame *frame = thread->GetStackFrameAtIndex(0).get();
6065     if (frame) {
6066       ExecutionContext exe_ctx;
6067       frame->CalculateExecutionContext(exe_ctx);
6068       ExpressionResults result =
6069           RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics);
6070       if (result == eExpressionCompleted) {
6071         returned_func =
6072             call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned(
6073                 LLDB_INVALID_ADDRESS);
6074 
6075         if (GetAddressByteSize() == 4) {
6076           if (returned_func == UINT32_MAX)
6077             return false;
6078         } else if (GetAddressByteSize() == 8) {
6079           if (returned_func == UINT64_MAX)
6080             return false;
6081         }
6082         return true;
6083       }
6084     }
6085   }
6086 
6087   return false;
6088 }
6089 
6090 llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() {
6091   Architecture *arch = GetTarget().GetArchitecturePlugin();
6092   const MemoryTagManager *tag_manager =
6093       arch ? arch->GetMemoryTagManager() : nullptr;
6094   if (!arch || !tag_manager) {
6095     return llvm::createStringError(
6096         llvm::inconvertibleErrorCode(),
6097         "This architecture does not support memory tagging");
6098   }
6099 
6100   if (!SupportsMemoryTagging()) {
6101     return llvm::createStringError(llvm::inconvertibleErrorCode(),
6102                                    "Process does not support memory tagging");
6103   }
6104 
6105   return tag_manager;
6106 }
6107 
6108 llvm::Expected<std::vector<lldb::addr_t>>
6109 Process::ReadMemoryTags(lldb::addr_t addr, size_t len) {
6110   llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6111       GetMemoryTagManager();
6112   if (!tag_manager_or_err)
6113     return tag_manager_or_err.takeError();
6114 
6115   const MemoryTagManager *tag_manager = *tag_manager_or_err;
6116   llvm::Expected<std::vector<uint8_t>> tag_data =
6117       DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType());
6118   if (!tag_data)
6119     return tag_data.takeError();
6120 
6121   return tag_manager->UnpackTagsData(*tag_data,
6122                                      len / tag_manager->GetGranuleSize());
6123 }
6124 
6125 Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len,
6126                                 const std::vector<lldb::addr_t> &tags) {
6127   llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6128       GetMemoryTagManager();
6129   if (!tag_manager_or_err)
6130     return Status(tag_manager_or_err.takeError());
6131 
6132   const MemoryTagManager *tag_manager = *tag_manager_or_err;
6133   llvm::Expected<std::vector<uint8_t>> packed_tags =
6134       tag_manager->PackTags(tags);
6135   if (!packed_tags) {
6136     return Status(packed_tags.takeError());
6137   }
6138 
6139   return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(),
6140                            *packed_tags);
6141 }
6142