xref: /freebsd-src/contrib/llvm-project/lldb/source/Target/Process.cpp (revision 753f127f3ace09432b2baeffd71a308760641a62)
1 //===-- Process.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <atomic>
10 #include <memory>
11 #include <mutex>
12 
13 #include "llvm/ADT/ScopeExit.h"
14 #include "llvm/Support/ScopedPrinter.h"
15 #include "llvm/Support/Threading.h"
16 
17 #include "lldb/Breakpoint/BreakpointLocation.h"
18 #include "lldb/Breakpoint/StoppointCallbackContext.h"
19 #include "lldb/Core/Debugger.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/StreamFile.h"
24 #include "lldb/Expression/DiagnosticManager.h"
25 #include "lldb/Expression/DynamicCheckerFunctions.h"
26 #include "lldb/Expression/UserExpression.h"
27 #include "lldb/Expression/UtilityFunction.h"
28 #include "lldb/Host/ConnectionFileDescriptor.h"
29 #include "lldb/Host/FileSystem.h"
30 #include "lldb/Host/Host.h"
31 #include "lldb/Host/HostInfo.h"
32 #include "lldb/Host/OptionParser.h"
33 #include "lldb/Host/Pipe.h"
34 #include "lldb/Host/Terminal.h"
35 #include "lldb/Host/ThreadLauncher.h"
36 #include "lldb/Interpreter/CommandInterpreter.h"
37 #include "lldb/Interpreter/OptionArgParser.h"
38 #include "lldb/Interpreter/OptionValueProperties.h"
39 #include "lldb/Symbol/Function.h"
40 #include "lldb/Symbol/Symbol.h"
41 #include "lldb/Target/ABI.h"
42 #include "lldb/Target/AssertFrameRecognizer.h"
43 #include "lldb/Target/DynamicLoader.h"
44 #include "lldb/Target/InstrumentationRuntime.h"
45 #include "lldb/Target/JITLoader.h"
46 #include "lldb/Target/JITLoaderList.h"
47 #include "lldb/Target/Language.h"
48 #include "lldb/Target/LanguageRuntime.h"
49 #include "lldb/Target/MemoryHistory.h"
50 #include "lldb/Target/MemoryRegionInfo.h"
51 #include "lldb/Target/OperatingSystem.h"
52 #include "lldb/Target/Platform.h"
53 #include "lldb/Target/Process.h"
54 #include "lldb/Target/RegisterContext.h"
55 #include "lldb/Target/StopInfo.h"
56 #include "lldb/Target/StructuredDataPlugin.h"
57 #include "lldb/Target/SystemRuntime.h"
58 #include "lldb/Target/Target.h"
59 #include "lldb/Target/TargetList.h"
60 #include "lldb/Target/Thread.h"
61 #include "lldb/Target/ThreadPlan.h"
62 #include "lldb/Target/ThreadPlanBase.h"
63 #include "lldb/Target/ThreadPlanCallFunction.h"
64 #include "lldb/Target/ThreadPlanStack.h"
65 #include "lldb/Target/UnixSignals.h"
66 #include "lldb/Utility/Event.h"
67 #include "lldb/Utility/LLDBLog.h"
68 #include "lldb/Utility/Log.h"
69 #include "lldb/Utility/NameMatches.h"
70 #include "lldb/Utility/ProcessInfo.h"
71 #include "lldb/Utility/SelectHelper.h"
72 #include "lldb/Utility/State.h"
73 #include "lldb/Utility/Timer.h"
74 
75 using namespace lldb;
76 using namespace lldb_private;
77 using namespace std::chrono;
78 
79 // Comment out line below to disable memory caching, overriding the process
80 // setting target.process.disable-memory-cache
81 #define ENABLE_MEMORY_CACHING
82 
83 #ifdef ENABLE_MEMORY_CACHING
84 #define DISABLE_MEM_CACHE_DEFAULT false
85 #else
86 #define DISABLE_MEM_CACHE_DEFAULT true
87 #endif
88 
89 class ProcessOptionValueProperties
90     : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> {
91 public:
92   ProcessOptionValueProperties(ConstString name) : Cloneable(name) {}
93 
94   const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx,
95                                      bool will_modify,
96                                      uint32_t idx) const override {
97     // When getting the value for a key from the process options, we will
98     // always try and grab the setting from the current process if there is
99     // one. Else we just use the one from this instance.
100     if (exe_ctx) {
101       Process *process = exe_ctx->GetProcessPtr();
102       if (process) {
103         ProcessOptionValueProperties *instance_properties =
104             static_cast<ProcessOptionValueProperties *>(
105                 process->GetValueProperties().get());
106         if (this != instance_properties)
107           return instance_properties->ProtectedGetPropertyAtIndex(idx);
108       }
109     }
110     return ProtectedGetPropertyAtIndex(idx);
111   }
112 };
113 
114 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = {
115     {
116         eFollowParent,
117         "parent",
118         "Continue tracing the parent process and detach the child.",
119     },
120     {
121         eFollowChild,
122         "child",
123         "Trace the child process and detach the parent.",
124     },
125 };
126 
127 #define LLDB_PROPERTIES_process
128 #include "TargetProperties.inc"
129 
130 enum {
131 #define LLDB_PROPERTIES_process
132 #include "TargetPropertiesEnum.inc"
133   ePropertyExperimental,
134 };
135 
136 #define LLDB_PROPERTIES_process_experimental
137 #include "TargetProperties.inc"
138 
139 enum {
140 #define LLDB_PROPERTIES_process_experimental
141 #include "TargetPropertiesEnum.inc"
142 };
143 
144 class ProcessExperimentalOptionValueProperties
145     : public Cloneable<ProcessExperimentalOptionValueProperties,
146                        OptionValueProperties> {
147 public:
148   ProcessExperimentalOptionValueProperties()
149       : Cloneable(
150             ConstString(Properties::GetExperimentalSettingsName())) {}
151 };
152 
153 ProcessExperimentalProperties::ProcessExperimentalProperties()
154     : Properties(OptionValuePropertiesSP(
155           new ProcessExperimentalOptionValueProperties())) {
156   m_collection_sp->Initialize(g_process_experimental_properties);
157 }
158 
159 ProcessProperties::ProcessProperties(lldb_private::Process *process)
160     : Properties(),
161       m_process(process) // Can be nullptr for global ProcessProperties
162 {
163   if (process == nullptr) {
164     // Global process properties, set them up one time
165     m_collection_sp =
166         std::make_shared<ProcessOptionValueProperties>(ConstString("process"));
167     m_collection_sp->Initialize(g_process_properties);
168     m_collection_sp->AppendProperty(
169         ConstString("thread"), ConstString("Settings specific to threads."),
170         true, Thread::GetGlobalProperties().GetValueProperties());
171   } else {
172     m_collection_sp =
173         OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties());
174     m_collection_sp->SetValueChangedCallback(
175         ePropertyPythonOSPluginPath,
176         [this] { m_process->LoadOperatingSystemPlugin(true); });
177   }
178 
179   m_experimental_properties_up =
180       std::make_unique<ProcessExperimentalProperties>();
181   m_collection_sp->AppendProperty(
182       ConstString(Properties::GetExperimentalSettingsName()),
183       ConstString("Experimental settings - setting these won't produce "
184                   "errors if the setting is not present."),
185       true, m_experimental_properties_up->GetValueProperties());
186 }
187 
188 ProcessProperties::~ProcessProperties() = default;
189 
190 bool ProcessProperties::GetDisableMemoryCache() const {
191   const uint32_t idx = ePropertyDisableMemCache;
192   return m_collection_sp->GetPropertyAtIndexAsBoolean(
193       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
194 }
195 
196 uint64_t ProcessProperties::GetMemoryCacheLineSize() const {
197   const uint32_t idx = ePropertyMemCacheLineSize;
198   return m_collection_sp->GetPropertyAtIndexAsUInt64(
199       nullptr, idx, g_process_properties[idx].default_uint_value);
200 }
201 
202 Args ProcessProperties::GetExtraStartupCommands() const {
203   Args args;
204   const uint32_t idx = ePropertyExtraStartCommand;
205   m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args);
206   return args;
207 }
208 
209 void ProcessProperties::SetExtraStartupCommands(const Args &args) {
210   const uint32_t idx = ePropertyExtraStartCommand;
211   m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args);
212 }
213 
214 FileSpec ProcessProperties::GetPythonOSPluginPath() const {
215   const uint32_t idx = ePropertyPythonOSPluginPath;
216   return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx);
217 }
218 
219 uint32_t ProcessProperties::GetVirtualAddressableBits() const {
220   const uint32_t idx = ePropertyVirtualAddressableBits;
221   return m_collection_sp->GetPropertyAtIndexAsUInt64(
222       nullptr, idx, g_process_properties[idx].default_uint_value);
223 }
224 
225 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) {
226   const uint32_t idx = ePropertyVirtualAddressableBits;
227   m_collection_sp->SetPropertyAtIndexAsUInt64(nullptr, idx, bits);
228 }
229 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) {
230   const uint32_t idx = ePropertyPythonOSPluginPath;
231   m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file);
232 }
233 
234 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const {
235   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
236   return m_collection_sp->GetPropertyAtIndexAsBoolean(
237       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
238 }
239 
240 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) {
241   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
242   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
243 }
244 
245 bool ProcessProperties::GetUnwindOnErrorInExpressions() const {
246   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
247   return m_collection_sp->GetPropertyAtIndexAsBoolean(
248       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
249 }
250 
251 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) {
252   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
253   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
254 }
255 
256 bool ProcessProperties::GetStopOnSharedLibraryEvents() const {
257   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
258   return m_collection_sp->GetPropertyAtIndexAsBoolean(
259       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
260 }
261 
262 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) {
263   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
264   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
265 }
266 
267 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const {
268   const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
269   return m_collection_sp->GetPropertyAtIndexAsBoolean(
270       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
271 }
272 
273 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) {
274   const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
275   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, disable);
276   m_process->Flush();
277 }
278 
279 bool ProcessProperties::GetDetachKeepsStopped() const {
280   const uint32_t idx = ePropertyDetachKeepsStopped;
281   return m_collection_sp->GetPropertyAtIndexAsBoolean(
282       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
283 }
284 
285 void ProcessProperties::SetDetachKeepsStopped(bool stop) {
286   const uint32_t idx = ePropertyDetachKeepsStopped;
287   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
288 }
289 
290 bool ProcessProperties::GetWarningsOptimization() const {
291   const uint32_t idx = ePropertyWarningOptimization;
292   return m_collection_sp->GetPropertyAtIndexAsBoolean(
293       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
294 }
295 
296 bool ProcessProperties::GetWarningsUnsupportedLanguage() const {
297   const uint32_t idx = ePropertyWarningUnsupportedLanguage;
298   return m_collection_sp->GetPropertyAtIndexAsBoolean(
299       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
300 }
301 
302 bool ProcessProperties::GetStopOnExec() const {
303   const uint32_t idx = ePropertyStopOnExec;
304   return m_collection_sp->GetPropertyAtIndexAsBoolean(
305       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
306 }
307 
308 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const {
309   const uint32_t idx = ePropertyUtilityExpressionTimeout;
310   uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64(
311       nullptr, idx, g_process_properties[idx].default_uint_value);
312   return std::chrono::seconds(value);
313 }
314 
315 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const {
316   const uint32_t idx = ePropertyInterruptTimeout;
317   uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64(
318       nullptr, idx, g_process_properties[idx].default_uint_value);
319   return std::chrono::seconds(value);
320 }
321 
322 bool ProcessProperties::GetSteppingRunsAllThreads() const {
323   const uint32_t idx = ePropertySteppingRunsAllThreads;
324   return m_collection_sp->GetPropertyAtIndexAsBoolean(
325       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
326 }
327 
328 bool ProcessProperties::GetOSPluginReportsAllThreads() const {
329   const bool fail_value = true;
330   const Property *exp_property =
331       m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
332   OptionValueProperties *exp_values =
333       exp_property->GetValue()->GetAsProperties();
334   if (!exp_values)
335     return fail_value;
336 
337   return exp_values->GetPropertyAtIndexAsBoolean(
338       nullptr, ePropertyOSPluginReportsAllThreads, fail_value);
339 }
340 
341 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) {
342   const Property *exp_property =
343       m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
344   OptionValueProperties *exp_values =
345       exp_property->GetValue()->GetAsProperties();
346   if (exp_values)
347     exp_values->SetPropertyAtIndexAsBoolean(
348         nullptr, ePropertyOSPluginReportsAllThreads, does_report);
349 }
350 
351 FollowForkMode ProcessProperties::GetFollowForkMode() const {
352   const uint32_t idx = ePropertyFollowForkMode;
353   return (FollowForkMode)m_collection_sp->GetPropertyAtIndexAsEnumeration(
354       nullptr, idx, g_process_properties[idx].default_uint_value);
355 }
356 
357 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp,
358                               llvm::StringRef plugin_name,
359                               ListenerSP listener_sp,
360                               const FileSpec *crash_file_path,
361                               bool can_connect) {
362   static uint32_t g_process_unique_id = 0;
363 
364   ProcessSP process_sp;
365   ProcessCreateInstance create_callback = nullptr;
366   if (!plugin_name.empty()) {
367     create_callback =
368         PluginManager::GetProcessCreateCallbackForPluginName(plugin_name);
369     if (create_callback) {
370       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
371                                    can_connect);
372       if (process_sp) {
373         if (process_sp->CanDebug(target_sp, true)) {
374           process_sp->m_process_unique_id = ++g_process_unique_id;
375         } else
376           process_sp.reset();
377       }
378     }
379   } else {
380     for (uint32_t idx = 0;
381          (create_callback =
382               PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr;
383          ++idx) {
384       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
385                                    can_connect);
386       if (process_sp) {
387         if (process_sp->CanDebug(target_sp, false)) {
388           process_sp->m_process_unique_id = ++g_process_unique_id;
389           break;
390         } else
391           process_sp.reset();
392       }
393     }
394   }
395   return process_sp;
396 }
397 
398 ConstString &Process::GetStaticBroadcasterClass() {
399   static ConstString class_name("lldb.process");
400   return class_name;
401 }
402 
403 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp)
404     : Process(target_sp, listener_sp,
405               UnixSignals::Create(HostInfo::GetArchitecture())) {
406   // This constructor just delegates to the full Process constructor,
407   // defaulting to using the Host's UnixSignals.
408 }
409 
410 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp,
411                  const UnixSignalsSP &unix_signals_sp)
412     : ProcessProperties(this),
413       Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()),
414                   Process::GetStaticBroadcasterClass().AsCString()),
415       m_target_wp(target_sp), m_public_state(eStateUnloaded),
416       m_private_state(eStateUnloaded),
417       m_private_state_broadcaster(nullptr,
418                                   "lldb.process.internal_state_broadcaster"),
419       m_private_state_control_broadcaster(
420           nullptr, "lldb.process.internal_state_control_broadcaster"),
421       m_private_state_listener_sp(
422           Listener::MakeListener("lldb.process.internal_state_listener")),
423       m_mod_id(), m_process_unique_id(0), m_thread_index_id(0),
424       m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(),
425       m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this),
426       m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this),
427       m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0),
428       m_notifications(), m_image_tokens(), m_listener_sp(listener_sp),
429       m_breakpoint_site_list(), m_dynamic_checkers_up(),
430       m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(),
431       m_stdio_communication("process.stdio"), m_stdio_communication_mutex(),
432       m_stdin_forward(false), m_stdout_data(), m_stderr_data(),
433       m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0),
434       m_memory_cache(*this), m_allocated_memory_cache(*this),
435       m_should_detach(false), m_next_event_action_up(), m_public_run_lock(),
436       m_private_run_lock(), m_finalizing(false),
437       m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false),
438       m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false),
439       m_can_interpret_function_calls(false), m_run_thread_plan_lock(),
440       m_can_jit(eCanJITDontKnow) {
441   CheckInWithManager();
442 
443   Log *log = GetLog(LLDBLog::Object);
444   LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this));
445 
446   if (!m_unix_signals_sp)
447     m_unix_signals_sp = std::make_shared<UnixSignals>();
448 
449   SetEventName(eBroadcastBitStateChanged, "state-changed");
450   SetEventName(eBroadcastBitInterrupt, "interrupt");
451   SetEventName(eBroadcastBitSTDOUT, "stdout-available");
452   SetEventName(eBroadcastBitSTDERR, "stderr-available");
453   SetEventName(eBroadcastBitProfileData, "profile-data-available");
454   SetEventName(eBroadcastBitStructuredData, "structured-data-available");
455 
456   m_private_state_control_broadcaster.SetEventName(
457       eBroadcastInternalStateControlStop, "control-stop");
458   m_private_state_control_broadcaster.SetEventName(
459       eBroadcastInternalStateControlPause, "control-pause");
460   m_private_state_control_broadcaster.SetEventName(
461       eBroadcastInternalStateControlResume, "control-resume");
462 
463   m_listener_sp->StartListeningForEvents(
464       this, eBroadcastBitStateChanged | eBroadcastBitInterrupt |
465                 eBroadcastBitSTDOUT | eBroadcastBitSTDERR |
466                 eBroadcastBitProfileData | eBroadcastBitStructuredData);
467 
468   m_private_state_listener_sp->StartListeningForEvents(
469       &m_private_state_broadcaster,
470       eBroadcastBitStateChanged | eBroadcastBitInterrupt);
471 
472   m_private_state_listener_sp->StartListeningForEvents(
473       &m_private_state_control_broadcaster,
474       eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause |
475           eBroadcastInternalStateControlResume);
476   // We need something valid here, even if just the default UnixSignalsSP.
477   assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization");
478 
479   // Allow the platform to override the default cache line size
480   OptionValueSP value_sp =
481       m_collection_sp
482           ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize)
483           ->GetValue();
484   uint32_t platform_cache_line_size =
485       target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize();
486   if (!value_sp->OptionWasSet() && platform_cache_line_size != 0)
487     value_sp->SetUInt64Value(platform_cache_line_size);
488 
489   RegisterAssertFrameRecognizer(this);
490 }
491 
492 Process::~Process() {
493   Log *log = GetLog(LLDBLog::Object);
494   LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this));
495   StopPrivateStateThread();
496 
497   // ThreadList::Clear() will try to acquire this process's mutex, so
498   // explicitly clear the thread list here to ensure that the mutex is not
499   // destroyed before the thread list.
500   m_thread_list.Clear();
501 }
502 
503 ProcessProperties &Process::GetGlobalProperties() {
504   // NOTE: intentional leak so we don't crash if global destructor chain gets
505   // called as other threads still use the result of this function
506   static ProcessProperties *g_settings_ptr =
507       new ProcessProperties(nullptr);
508   return *g_settings_ptr;
509 }
510 
511 void Process::Finalize() {
512   if (m_finalizing.exchange(true))
513     return;
514 
515   // Destroy the process. This will call the virtual function DoDestroy under
516   // the hood, giving our derived class a chance to do the ncessary tear down.
517   DestroyImpl(false);
518 
519   // Clear our broadcaster before we proceed with destroying
520   Broadcaster::Clear();
521 
522   // Do any cleanup needed prior to being destructed... Subclasses that
523   // override this method should call this superclass method as well.
524 
525   // We need to destroy the loader before the derived Process class gets
526   // destroyed since it is very likely that undoing the loader will require
527   // access to the real process.
528   m_dynamic_checkers_up.reset();
529   m_abi_sp.reset();
530   m_os_up.reset();
531   m_system_runtime_up.reset();
532   m_dyld_up.reset();
533   m_jit_loaders_up.reset();
534   m_thread_plans.Clear();
535   m_thread_list_real.Destroy();
536   m_thread_list.Destroy();
537   m_extended_thread_list.Destroy();
538   m_queue_list.Clear();
539   m_queue_list_stop_id = 0;
540   std::vector<Notifications> empty_notifications;
541   m_notifications.swap(empty_notifications);
542   m_image_tokens.clear();
543   m_memory_cache.Clear();
544   m_allocated_memory_cache.Clear();
545   {
546     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
547     m_language_runtimes.clear();
548   }
549   m_instrumentation_runtimes.clear();
550   m_next_event_action_up.reset();
551   // Clear the last natural stop ID since it has a strong reference to this
552   // process
553   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
554   //#ifdef LLDB_CONFIGURATION_DEBUG
555   //    StreamFile s(stdout, false);
556   //    EventSP event_sp;
557   //    while (m_private_state_listener_sp->GetNextEvent(event_sp))
558   //    {
559   //        event_sp->Dump (&s);
560   //        s.EOL();
561   //    }
562   //#endif
563   // We have to be very careful here as the m_private_state_listener might
564   // contain events that have ProcessSP values in them which can keep this
565   // process around forever. These events need to be cleared out.
566   m_private_state_listener_sp->Clear();
567   m_public_run_lock.TrySetRunning(); // This will do nothing if already locked
568   m_public_run_lock.SetStopped();
569   m_private_run_lock.TrySetRunning(); // This will do nothing if already locked
570   m_private_run_lock.SetStopped();
571   m_structured_data_plugin_map.clear();
572 }
573 
574 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) {
575   m_notifications.push_back(callbacks);
576   if (callbacks.initialize != nullptr)
577     callbacks.initialize(callbacks.baton, this);
578 }
579 
580 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) {
581   std::vector<Notifications>::iterator pos, end = m_notifications.end();
582   for (pos = m_notifications.begin(); pos != end; ++pos) {
583     if (pos->baton == callbacks.baton &&
584         pos->initialize == callbacks.initialize &&
585         pos->process_state_changed == callbacks.process_state_changed) {
586       m_notifications.erase(pos);
587       return true;
588     }
589   }
590   return false;
591 }
592 
593 void Process::SynchronouslyNotifyStateChanged(StateType state) {
594   std::vector<Notifications>::iterator notification_pos,
595       notification_end = m_notifications.end();
596   for (notification_pos = m_notifications.begin();
597        notification_pos != notification_end; ++notification_pos) {
598     if (notification_pos->process_state_changed)
599       notification_pos->process_state_changed(notification_pos->baton, this,
600                                               state);
601   }
602 }
603 
604 // FIXME: We need to do some work on events before the general Listener sees
605 // them.
606 // For instance if we are continuing from a breakpoint, we need to ensure that
607 // we do the little "insert real insn, step & stop" trick.  But we can't do
608 // that when the event is delivered by the broadcaster - since that is done on
609 // the thread that is waiting for new events, so if we needed more than one
610 // event for our handling, we would stall.  So instead we do it when we fetch
611 // the event off of the queue.
612 //
613 
614 StateType Process::GetNextEvent(EventSP &event_sp) {
615   StateType state = eStateInvalid;
616 
617   if (m_listener_sp->GetEventForBroadcaster(this, event_sp,
618                                             std::chrono::seconds(0)) &&
619       event_sp)
620     state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
621 
622   return state;
623 }
624 
625 void Process::SyncIOHandler(uint32_t iohandler_id,
626                             const Timeout<std::micro> &timeout) {
627   // don't sync (potentially context switch) in case where there is no process
628   // IO
629   if (!m_process_input_reader)
630     return;
631 
632   auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout);
633 
634   Log *log = GetLog(LLDBLog::Process);
635   if (Result) {
636     LLDB_LOG(
637         log,
638         "waited from m_iohandler_sync to change from {0}. New value is {1}.",
639         iohandler_id, *Result);
640   } else {
641     LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.",
642              iohandler_id);
643   }
644 }
645 
646 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout,
647                                         EventSP *event_sp_ptr, bool wait_always,
648                                         ListenerSP hijack_listener_sp,
649                                         Stream *stream, bool use_run_lock) {
650   // We can't just wait for a "stopped" event, because the stopped event may
651   // have restarted the target. We have to actually check each event, and in
652   // the case of a stopped event check the restarted flag on the event.
653   if (event_sp_ptr)
654     event_sp_ptr->reset();
655   StateType state = GetState();
656   // If we are exited or detached, we won't ever get back to any other valid
657   // state...
658   if (state == eStateDetached || state == eStateExited)
659     return state;
660 
661   Log *log = GetLog(LLDBLog::Process);
662   LLDB_LOG(log, "timeout = {0}", timeout);
663 
664   if (!wait_always && StateIsStoppedState(state, true) &&
665       StateIsStoppedState(GetPrivateState(), true)) {
666     LLDB_LOGF(log,
667               "Process::%s returning without waiting for events; process "
668               "private and public states are already 'stopped'.",
669               __FUNCTION__);
670     // We need to toggle the run lock as this won't get done in
671     // SetPublicState() if the process is hijacked.
672     if (hijack_listener_sp && use_run_lock)
673       m_public_run_lock.SetStopped();
674     return state;
675   }
676 
677   while (state != eStateInvalid) {
678     EventSP event_sp;
679     state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp);
680     if (event_sp_ptr && event_sp)
681       *event_sp_ptr = event_sp;
682 
683     bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr);
684     Process::HandleProcessStateChangedEvent(event_sp, stream,
685                                             pop_process_io_handler);
686 
687     switch (state) {
688     case eStateCrashed:
689     case eStateDetached:
690     case eStateExited:
691     case eStateUnloaded:
692       // We need to toggle the run lock as this won't get done in
693       // SetPublicState() if the process is hijacked.
694       if (hijack_listener_sp && use_run_lock)
695         m_public_run_lock.SetStopped();
696       return state;
697     case eStateStopped:
698       if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()))
699         continue;
700       else {
701         // We need to toggle the run lock as this won't get done in
702         // SetPublicState() if the process is hijacked.
703         if (hijack_listener_sp && use_run_lock)
704           m_public_run_lock.SetStopped();
705         return state;
706       }
707     default:
708       continue;
709     }
710   }
711   return state;
712 }
713 
714 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp,
715                                              Stream *stream,
716                                              bool &pop_process_io_handler) {
717   const bool handle_pop = pop_process_io_handler;
718 
719   pop_process_io_handler = false;
720   ProcessSP process_sp =
721       Process::ProcessEventData::GetProcessFromEvent(event_sp.get());
722 
723   if (!process_sp)
724     return false;
725 
726   StateType event_state =
727       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
728   if (event_state == eStateInvalid)
729     return false;
730 
731   switch (event_state) {
732   case eStateInvalid:
733   case eStateUnloaded:
734   case eStateAttaching:
735   case eStateLaunching:
736   case eStateStepping:
737   case eStateDetached:
738     if (stream)
739       stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(),
740                      StateAsCString(event_state));
741     if (event_state == eStateDetached)
742       pop_process_io_handler = true;
743     break;
744 
745   case eStateConnected:
746   case eStateRunning:
747     // Don't be chatty when we run...
748     break;
749 
750   case eStateExited:
751     if (stream)
752       process_sp->GetStatus(*stream);
753     pop_process_io_handler = true;
754     break;
755 
756   case eStateStopped:
757   case eStateCrashed:
758   case eStateSuspended:
759     // Make sure the program hasn't been auto-restarted:
760     if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
761       if (stream) {
762         size_t num_reasons =
763             Process::ProcessEventData::GetNumRestartedReasons(event_sp.get());
764         if (num_reasons > 0) {
765           // FIXME: Do we want to report this, or would that just be annoyingly
766           // chatty?
767           if (num_reasons == 1) {
768             const char *reason =
769                 Process::ProcessEventData::GetRestartedReasonAtIndex(
770                     event_sp.get(), 0);
771             stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n",
772                            process_sp->GetID(),
773                            reason ? reason : "<UNKNOWN REASON>");
774           } else {
775             stream->Printf("Process %" PRIu64
776                            " stopped and restarted, reasons:\n",
777                            process_sp->GetID());
778 
779             for (size_t i = 0; i < num_reasons; i++) {
780               const char *reason =
781                   Process::ProcessEventData::GetRestartedReasonAtIndex(
782                       event_sp.get(), i);
783               stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>");
784             }
785           }
786         }
787       }
788     } else {
789       StopInfoSP curr_thread_stop_info_sp;
790       // Lock the thread list so it doesn't change on us, this is the scope for
791       // the locker:
792       {
793         ThreadList &thread_list = process_sp->GetThreadList();
794         std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex());
795 
796         ThreadSP curr_thread(thread_list.GetSelectedThread());
797         ThreadSP thread;
798         StopReason curr_thread_stop_reason = eStopReasonInvalid;
799         bool prefer_curr_thread = false;
800         if (curr_thread && curr_thread->IsValid()) {
801           curr_thread_stop_reason = curr_thread->GetStopReason();
802           switch (curr_thread_stop_reason) {
803           case eStopReasonNone:
804           case eStopReasonInvalid:
805             // Don't prefer the current thread if it didn't stop for a reason.
806             break;
807           case eStopReasonSignal: {
808             // We need to do the same computation we do for other threads
809             // below in case the current thread happens to be the one that
810             // stopped for the no-stop signal.
811             uint64_t signo = curr_thread->GetStopInfo()->GetValue();
812             if (process_sp->GetUnixSignals()->GetShouldStop(signo))
813               prefer_curr_thread = true;
814           } break;
815           default:
816             prefer_curr_thread = true;
817             break;
818           }
819           curr_thread_stop_info_sp = curr_thread->GetStopInfo();
820         }
821 
822         if (!prefer_curr_thread) {
823           // Prefer a thread that has just completed its plan over another
824           // thread as current thread.
825           ThreadSP plan_thread;
826           ThreadSP other_thread;
827 
828           const size_t num_threads = thread_list.GetSize();
829           size_t i;
830           for (i = 0; i < num_threads; ++i) {
831             thread = thread_list.GetThreadAtIndex(i);
832             StopReason thread_stop_reason = thread->GetStopReason();
833             switch (thread_stop_reason) {
834             case eStopReasonInvalid:
835             case eStopReasonNone:
836               break;
837 
838             case eStopReasonSignal: {
839               // Don't select a signal thread if we weren't going to stop at
840               // that signal.  We have to have had another reason for stopping
841               // here, and the user doesn't want to see this thread.
842               uint64_t signo = thread->GetStopInfo()->GetValue();
843               if (process_sp->GetUnixSignals()->GetShouldStop(signo)) {
844                 if (!other_thread)
845                   other_thread = thread;
846               }
847               break;
848             }
849             case eStopReasonTrace:
850             case eStopReasonBreakpoint:
851             case eStopReasonWatchpoint:
852             case eStopReasonException:
853             case eStopReasonExec:
854             case eStopReasonFork:
855             case eStopReasonVFork:
856             case eStopReasonVForkDone:
857             case eStopReasonThreadExiting:
858             case eStopReasonInstrumentation:
859             case eStopReasonProcessorTrace:
860               if (!other_thread)
861                 other_thread = thread;
862               break;
863             case eStopReasonPlanComplete:
864               if (!plan_thread)
865                 plan_thread = thread;
866               break;
867             }
868           }
869           if (plan_thread)
870             thread_list.SetSelectedThreadByID(plan_thread->GetID());
871           else if (other_thread)
872             thread_list.SetSelectedThreadByID(other_thread->GetID());
873           else {
874             if (curr_thread && curr_thread->IsValid())
875               thread = curr_thread;
876             else
877               thread = thread_list.GetThreadAtIndex(0);
878 
879             if (thread)
880               thread_list.SetSelectedThreadByID(thread->GetID());
881           }
882         }
883       }
884       // Drop the ThreadList mutex by here, since GetThreadStatus below might
885       // have to run code, e.g. for Data formatters, and if we hold the
886       // ThreadList mutex, then the process is going to have a hard time
887       // restarting the process.
888       if (stream) {
889         Debugger &debugger = process_sp->GetTarget().GetDebugger();
890         if (debugger.GetTargetList().GetSelectedTarget().get() ==
891             &process_sp->GetTarget()) {
892           ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread();
893 
894           if (!thread_sp || !thread_sp->IsValid())
895             return false;
896 
897           const bool only_threads_with_stop_reason = true;
898           const uint32_t start_frame = thread_sp->GetSelectedFrameIndex();
899           const uint32_t num_frames = 1;
900           const uint32_t num_frames_with_source = 1;
901           const bool stop_format = true;
902 
903           process_sp->GetStatus(*stream);
904           process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason,
905                                       start_frame, num_frames,
906                                       num_frames_with_source,
907                                       stop_format);
908           if (curr_thread_stop_info_sp) {
909             lldb::addr_t crashing_address;
910             ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference(
911                 curr_thread_stop_info_sp, &crashing_address);
912             if (valobj_sp) {
913               const ValueObject::GetExpressionPathFormat format =
914                   ValueObject::GetExpressionPathFormat::
915                       eGetExpressionPathFormatHonorPointers;
916               stream->PutCString("Likely cause: ");
917               valobj_sp->GetExpressionPath(*stream, format);
918               stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address);
919             }
920           }
921         } else {
922           uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(
923               process_sp->GetTarget().shared_from_this());
924           if (target_idx != UINT32_MAX)
925             stream->Printf("Target %d: (", target_idx);
926           else
927             stream->Printf("Target <unknown index>: (");
928           process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief);
929           stream->Printf(") stopped.\n");
930         }
931       }
932 
933       // Pop the process IO handler
934       pop_process_io_handler = true;
935     }
936     break;
937   }
938 
939   if (handle_pop && pop_process_io_handler)
940     process_sp->PopProcessIOHandler();
941 
942   return true;
943 }
944 
945 bool Process::HijackProcessEvents(ListenerSP listener_sp) {
946   if (listener_sp) {
947     return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged |
948                                               eBroadcastBitInterrupt);
949   } else
950     return false;
951 }
952 
953 void Process::RestoreProcessEvents() { RestoreBroadcaster(); }
954 
955 StateType Process::GetStateChangedEvents(EventSP &event_sp,
956                                          const Timeout<std::micro> &timeout,
957                                          ListenerSP hijack_listener_sp) {
958   Log *log = GetLog(LLDBLog::Process);
959   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
960 
961   ListenerSP listener_sp = hijack_listener_sp;
962   if (!listener_sp)
963     listener_sp = m_listener_sp;
964 
965   StateType state = eStateInvalid;
966   if (listener_sp->GetEventForBroadcasterWithType(
967           this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
968           timeout)) {
969     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
970       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
971     else
972       LLDB_LOG(log, "got no event or was interrupted.");
973   }
974 
975   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state);
976   return state;
977 }
978 
979 Event *Process::PeekAtStateChangedEvents() {
980   Log *log = GetLog(LLDBLog::Process);
981 
982   LLDB_LOGF(log, "Process::%s...", __FUNCTION__);
983 
984   Event *event_ptr;
985   event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType(
986       this, eBroadcastBitStateChanged);
987   if (log) {
988     if (event_ptr) {
989       LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__,
990                 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr)));
991     } else {
992       LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__);
993     }
994   }
995   return event_ptr;
996 }
997 
998 StateType
999 Process::GetStateChangedEventsPrivate(EventSP &event_sp,
1000                                       const Timeout<std::micro> &timeout) {
1001   Log *log = GetLog(LLDBLog::Process);
1002   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1003 
1004   StateType state = eStateInvalid;
1005   if (m_private_state_listener_sp->GetEventForBroadcasterWithType(
1006           &m_private_state_broadcaster,
1007           eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
1008           timeout))
1009     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
1010       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
1011 
1012   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout,
1013            state == eStateInvalid ? "TIMEOUT" : StateAsCString(state));
1014   return state;
1015 }
1016 
1017 bool Process::GetEventsPrivate(EventSP &event_sp,
1018                                const Timeout<std::micro> &timeout,
1019                                bool control_only) {
1020   Log *log = GetLog(LLDBLog::Process);
1021   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1022 
1023   if (control_only)
1024     return m_private_state_listener_sp->GetEventForBroadcaster(
1025         &m_private_state_control_broadcaster, event_sp, timeout);
1026   else
1027     return m_private_state_listener_sp->GetEvent(event_sp, timeout);
1028 }
1029 
1030 bool Process::IsRunning() const {
1031   return StateIsRunningState(m_public_state.GetValue());
1032 }
1033 
1034 int Process::GetExitStatus() {
1035   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1036 
1037   if (m_public_state.GetValue() == eStateExited)
1038     return m_exit_status;
1039   return -1;
1040 }
1041 
1042 const char *Process::GetExitDescription() {
1043   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1044 
1045   if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty())
1046     return m_exit_string.c_str();
1047   return nullptr;
1048 }
1049 
1050 bool Process::SetExitStatus(int status, const char *cstr) {
1051   // Use a mutex to protect setting the exit status.
1052   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1053 
1054   Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1055   LLDB_LOGF(
1056       log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)",
1057       status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : "");
1058 
1059   // We were already in the exited state
1060   if (m_private_state.GetValue() == eStateExited) {
1061     LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because "
1062                    "state was already set to eStateExited");
1063     return false;
1064   }
1065 
1066   m_exit_status = status;
1067   if (cstr)
1068     m_exit_string = cstr;
1069   else
1070     m_exit_string.clear();
1071 
1072   // Clear the last natural stop ID since it has a strong reference to this
1073   // process
1074   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
1075 
1076   SetPrivateState(eStateExited);
1077 
1078   // Allow subclasses to do some cleanup
1079   DidExit();
1080 
1081   return true;
1082 }
1083 
1084 bool Process::IsAlive() {
1085   switch (m_private_state.GetValue()) {
1086   case eStateConnected:
1087   case eStateAttaching:
1088   case eStateLaunching:
1089   case eStateStopped:
1090   case eStateRunning:
1091   case eStateStepping:
1092   case eStateCrashed:
1093   case eStateSuspended:
1094     return true;
1095   default:
1096     return false;
1097   }
1098 }
1099 
1100 // This static callback can be used to watch for local child processes on the
1101 // current host. The child process exits, the process will be found in the
1102 // global target list (we want to be completely sure that the
1103 // lldb_private::Process doesn't go away before we can deliver the signal.
1104 bool Process::SetProcessExitStatus(
1105     lldb::pid_t pid, bool exited,
1106     int signo,      // Zero for no signal
1107     int exit_status // Exit value of process if signal is zero
1108     ) {
1109   Log *log = GetLog(LLDBLog::Process);
1110   LLDB_LOGF(log,
1111             "Process::SetProcessExitStatus (pid=%" PRIu64
1112             ", exited=%i, signal=%i, exit_status=%i)\n",
1113             pid, exited, signo, exit_status);
1114 
1115   if (exited) {
1116     TargetSP target_sp(Debugger::FindTargetWithProcessID(pid));
1117     if (target_sp) {
1118       ProcessSP process_sp(target_sp->GetProcessSP());
1119       if (process_sp) {
1120         const char *signal_cstr = nullptr;
1121         if (signo)
1122           signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo);
1123 
1124         process_sp->SetExitStatus(exit_status, signal_cstr);
1125       }
1126     }
1127     return true;
1128   }
1129   return false;
1130 }
1131 
1132 bool Process::UpdateThreadList(ThreadList &old_thread_list,
1133                                ThreadList &new_thread_list) {
1134   m_thread_plans.ClearThreadCache();
1135   return DoUpdateThreadList(old_thread_list, new_thread_list);
1136 }
1137 
1138 void Process::UpdateThreadListIfNeeded() {
1139   const uint32_t stop_id = GetStopID();
1140   if (m_thread_list.GetSize(false) == 0 ||
1141       stop_id != m_thread_list.GetStopID()) {
1142     bool clear_unused_threads = true;
1143     const StateType state = GetPrivateState();
1144     if (StateIsStoppedState(state, true)) {
1145       std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex());
1146       m_thread_list.SetStopID(stop_id);
1147 
1148       // m_thread_list does have its own mutex, but we need to hold onto the
1149       // mutex between the call to UpdateThreadList(...) and the
1150       // os->UpdateThreadList(...) so it doesn't change on us
1151       ThreadList &old_thread_list = m_thread_list;
1152       ThreadList real_thread_list(this);
1153       ThreadList new_thread_list(this);
1154       // Always update the thread list with the protocol specific thread list,
1155       // but only update if "true" is returned
1156       if (UpdateThreadList(m_thread_list_real, real_thread_list)) {
1157         // Don't call into the OperatingSystem to update the thread list if we
1158         // are shutting down, since that may call back into the SBAPI's,
1159         // requiring the API lock which is already held by whoever is shutting
1160         // us down, causing a deadlock.
1161         OperatingSystem *os = GetOperatingSystem();
1162         if (os && !m_destroy_in_process) {
1163           // Clear any old backing threads where memory threads might have been
1164           // backed by actual threads from the lldb_private::Process subclass
1165           size_t num_old_threads = old_thread_list.GetSize(false);
1166           for (size_t i = 0; i < num_old_threads; ++i)
1167             old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread();
1168           // See if the OS plugin reports all threads.  If it does, then
1169           // it is safe to clear unseen thread's plans here.  Otherwise we
1170           // should preserve them in case they show up again:
1171           clear_unused_threads = GetOSPluginReportsAllThreads();
1172 
1173           // Turn off dynamic types to ensure we don't run any expressions.
1174           // Objective-C can run an expression to determine if a SBValue is a
1175           // dynamic type or not and we need to avoid this. OperatingSystem
1176           // plug-ins can't run expressions that require running code...
1177 
1178           Target &target = GetTarget();
1179           const lldb::DynamicValueType saved_prefer_dynamic =
1180               target.GetPreferDynamicValue();
1181           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1182             target.SetPreferDynamicValue(lldb::eNoDynamicValues);
1183 
1184           // Now let the OperatingSystem plug-in update the thread list
1185 
1186           os->UpdateThreadList(
1187               old_thread_list, // Old list full of threads created by OS plug-in
1188               real_thread_list, // The actual thread list full of threads
1189                                 // created by each lldb_private::Process
1190                                 // subclass
1191               new_thread_list); // The new thread list that we will show to the
1192                                 // user that gets filled in
1193 
1194           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1195             target.SetPreferDynamicValue(saved_prefer_dynamic);
1196         } else {
1197           // No OS plug-in, the new thread list is the same as the real thread
1198           // list.
1199           new_thread_list = real_thread_list;
1200         }
1201 
1202         m_thread_list_real.Update(real_thread_list);
1203         m_thread_list.Update(new_thread_list);
1204         m_thread_list.SetStopID(stop_id);
1205 
1206         if (GetLastNaturalStopID() != m_extended_thread_stop_id) {
1207           // Clear any extended threads that we may have accumulated previously
1208           m_extended_thread_list.Clear();
1209           m_extended_thread_stop_id = GetLastNaturalStopID();
1210 
1211           m_queue_list.Clear();
1212           m_queue_list_stop_id = GetLastNaturalStopID();
1213         }
1214       }
1215       // Now update the plan stack map.
1216       // If we do have an OS plugin, any absent real threads in the
1217       // m_thread_list have already been removed from the ThreadPlanStackMap.
1218       // So any remaining threads are OS Plugin threads, and those we want to
1219       // preserve in case they show up again.
1220       m_thread_plans.Update(m_thread_list, clear_unused_threads);
1221     }
1222   }
1223 }
1224 
1225 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) {
1226   return m_thread_plans.Find(tid);
1227 }
1228 
1229 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) {
1230   return m_thread_plans.PrunePlansForTID(tid);
1231 }
1232 
1233 void Process::PruneThreadPlans() {
1234   m_thread_plans.Update(GetThreadList(), true, false);
1235 }
1236 
1237 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid,
1238                                     lldb::DescriptionLevel desc_level,
1239                                     bool internal, bool condense_trivial,
1240                                     bool skip_unreported_plans) {
1241   return m_thread_plans.DumpPlansForTID(
1242       strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans);
1243 }
1244 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level,
1245                               bool internal, bool condense_trivial,
1246                               bool skip_unreported_plans) {
1247   m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial,
1248                            skip_unreported_plans);
1249 }
1250 
1251 void Process::UpdateQueueListIfNeeded() {
1252   if (m_system_runtime_up) {
1253     if (m_queue_list.GetSize() == 0 ||
1254         m_queue_list_stop_id != GetLastNaturalStopID()) {
1255       const StateType state = GetPrivateState();
1256       if (StateIsStoppedState(state, true)) {
1257         m_system_runtime_up->PopulateQueueList(m_queue_list);
1258         m_queue_list_stop_id = GetLastNaturalStopID();
1259       }
1260     }
1261   }
1262 }
1263 
1264 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) {
1265   OperatingSystem *os = GetOperatingSystem();
1266   if (os)
1267     return os->CreateThread(tid, context);
1268   return ThreadSP();
1269 }
1270 
1271 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) {
1272   return AssignIndexIDToThread(thread_id);
1273 }
1274 
1275 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) {
1276   return (m_thread_id_to_index_id_map.find(thread_id) !=
1277           m_thread_id_to_index_id_map.end());
1278 }
1279 
1280 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) {
1281   uint32_t result = 0;
1282   std::map<uint64_t, uint32_t>::iterator iterator =
1283       m_thread_id_to_index_id_map.find(thread_id);
1284   if (iterator == m_thread_id_to_index_id_map.end()) {
1285     result = ++m_thread_index_id;
1286     m_thread_id_to_index_id_map[thread_id] = result;
1287   } else {
1288     result = iterator->second;
1289   }
1290 
1291   return result;
1292 }
1293 
1294 StateType Process::GetState() {
1295   return m_public_state.GetValue();
1296 }
1297 
1298 void Process::SetPublicState(StateType new_state, bool restarted) {
1299   const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1300   if (new_state_is_stopped) {
1301     // This will only set the time if the public stop time has no value, so
1302     // it is ok to call this multiple times. With a public stop we can't look
1303     // at the stop ID because many private stops might have happened, so we
1304     // can't check for a stop ID of zero. This allows the "statistics" command
1305     // to dump the time it takes to reach somewhere in your code, like a
1306     // breakpoint you set.
1307     GetTarget().GetStatistics().SetFirstPublicStopTime();
1308   }
1309 
1310   Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1311   LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)",
1312             StateAsCString(new_state), restarted);
1313   const StateType old_state = m_public_state.GetValue();
1314   m_public_state.SetValue(new_state);
1315 
1316   // On the transition from Run to Stopped, we unlock the writer end of the run
1317   // lock.  The lock gets locked in Resume, which is the public API to tell the
1318   // program to run.
1319   if (!StateChangedIsExternallyHijacked()) {
1320     if (new_state == eStateDetached) {
1321       LLDB_LOGF(log,
1322                 "Process::SetPublicState (%s) -- unlocking run lock for detach",
1323                 StateAsCString(new_state));
1324       m_public_run_lock.SetStopped();
1325     } else {
1326       const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1327       if ((old_state_is_stopped != new_state_is_stopped)) {
1328         if (new_state_is_stopped && !restarted) {
1329           LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock",
1330                     StateAsCString(new_state));
1331           m_public_run_lock.SetStopped();
1332         }
1333       }
1334     }
1335   }
1336 }
1337 
1338 Status Process::Resume() {
1339   Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1340   LLDB_LOGF(log, "Process::Resume -- locking run lock");
1341   if (!m_public_run_lock.TrySetRunning()) {
1342     Status error("Resume request failed - process still running.");
1343     LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1344     return error;
1345   }
1346   Status error = PrivateResume();
1347   if (!error.Success()) {
1348     // Undo running state change
1349     m_public_run_lock.SetStopped();
1350   }
1351   return error;
1352 }
1353 
1354 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack";
1355 
1356 Status Process::ResumeSynchronous(Stream *stream) {
1357   Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1358   LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock");
1359   if (!m_public_run_lock.TrySetRunning()) {
1360     Status error("Resume request failed - process still running.");
1361     LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1362     return error;
1363   }
1364 
1365   ListenerSP listener_sp(
1366       Listener::MakeListener(g_resume_sync_name));
1367   HijackProcessEvents(listener_sp);
1368 
1369   Status error = PrivateResume();
1370   if (error.Success()) {
1371     StateType state = WaitForProcessToStop(llvm::None, nullptr, true,
1372                                            listener_sp, stream);
1373     const bool must_be_alive =
1374         false; // eStateExited is ok, so this must be false
1375     if (!StateIsStoppedState(state, must_be_alive))
1376       error.SetErrorStringWithFormat(
1377           "process not in stopped state after synchronous resume: %s",
1378           StateAsCString(state));
1379   } else {
1380     // Undo running state change
1381     m_public_run_lock.SetStopped();
1382   }
1383 
1384   // Undo the hijacking of process events...
1385   RestoreProcessEvents();
1386 
1387   return error;
1388 }
1389 
1390 bool Process::StateChangedIsExternallyHijacked() {
1391   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1392     const char *hijacking_name = GetHijackingListenerName();
1393     if (hijacking_name &&
1394         strcmp(hijacking_name, g_resume_sync_name))
1395       return true;
1396   }
1397   return false;
1398 }
1399 
1400 bool Process::StateChangedIsHijackedForSynchronousResume() {
1401   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1402     const char *hijacking_name = GetHijackingListenerName();
1403     if (hijacking_name &&
1404         strcmp(hijacking_name, g_resume_sync_name) == 0)
1405       return true;
1406   }
1407   return false;
1408 }
1409 
1410 StateType Process::GetPrivateState() { return m_private_state.GetValue(); }
1411 
1412 void Process::SetPrivateState(StateType new_state) {
1413   if (m_finalizing)
1414     return;
1415 
1416   Log *log(GetLog(LLDBLog::State | LLDBLog::Process | LLDBLog::Unwind));
1417   bool state_changed = false;
1418 
1419   LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state));
1420 
1421   std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex());
1422   std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex());
1423 
1424   const StateType old_state = m_private_state.GetValueNoLock();
1425   state_changed = old_state != new_state;
1426 
1427   const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1428   const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1429   if (old_state_is_stopped != new_state_is_stopped) {
1430     if (new_state_is_stopped)
1431       m_private_run_lock.SetStopped();
1432     else
1433       m_private_run_lock.SetRunning();
1434   }
1435 
1436   if (state_changed) {
1437     m_private_state.SetValueNoLock(new_state);
1438     EventSP event_sp(
1439         new Event(eBroadcastBitStateChanged,
1440                   new ProcessEventData(shared_from_this(), new_state)));
1441     if (StateIsStoppedState(new_state, false)) {
1442       // Note, this currently assumes that all threads in the list stop when
1443       // the process stops.  In the future we will want to support a debugging
1444       // model where some threads continue to run while others are stopped.
1445       // When that happens we will either need a way for the thread list to
1446       // identify which threads are stopping or create a special thread list
1447       // containing only threads which actually stopped.
1448       //
1449       // The process plugin is responsible for managing the actual behavior of
1450       // the threads and should have stopped any threads that are going to stop
1451       // before we get here.
1452       m_thread_list.DidStop();
1453 
1454       if (m_mod_id.BumpStopID() == 0)
1455         GetTarget().GetStatistics().SetFirstPrivateStopTime();
1456 
1457       if (!m_mod_id.IsLastResumeForUserExpression())
1458         m_mod_id.SetStopEventForLastNaturalStopID(event_sp);
1459       m_memory_cache.Clear();
1460       LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u",
1461                 StateAsCString(new_state), m_mod_id.GetStopID());
1462     }
1463 
1464     m_private_state_broadcaster.BroadcastEvent(event_sp);
1465   } else {
1466     LLDB_LOGF(log,
1467               "Process::SetPrivateState (%s) state didn't change. Ignoring...",
1468               StateAsCString(new_state));
1469   }
1470 }
1471 
1472 void Process::SetRunningUserExpression(bool on) {
1473   m_mod_id.SetRunningUserExpression(on);
1474 }
1475 
1476 void Process::SetRunningUtilityFunction(bool on) {
1477   m_mod_id.SetRunningUtilityFunction(on);
1478 }
1479 
1480 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; }
1481 
1482 const lldb::ABISP &Process::GetABI() {
1483   if (!m_abi_sp)
1484     m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture());
1485   return m_abi_sp;
1486 }
1487 
1488 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() {
1489   std::vector<LanguageRuntime *> language_runtimes;
1490 
1491   if (m_finalizing)
1492     return language_runtimes;
1493 
1494   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1495   // Before we pass off a copy of the language runtimes, we must make sure that
1496   // our collection is properly populated. It's possible that some of the
1497   // language runtimes were not loaded yet, either because nobody requested it
1498   // yet or the proper condition for loading wasn't yet met (e.g. libc++.so
1499   // hadn't been loaded).
1500   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
1501     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
1502       language_runtimes.emplace_back(runtime);
1503   }
1504 
1505   return language_runtimes;
1506 }
1507 
1508 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) {
1509   if (m_finalizing)
1510     return nullptr;
1511 
1512   LanguageRuntime *runtime = nullptr;
1513 
1514   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1515   LanguageRuntimeCollection::iterator pos;
1516   pos = m_language_runtimes.find(language);
1517   if (pos == m_language_runtimes.end() || !pos->second) {
1518     lldb::LanguageRuntimeSP runtime_sp(
1519         LanguageRuntime::FindPlugin(this, language));
1520 
1521     m_language_runtimes[language] = runtime_sp;
1522     runtime = runtime_sp.get();
1523   } else
1524     runtime = pos->second.get();
1525 
1526   if (runtime)
1527     // It's possible that a language runtime can support multiple LanguageTypes,
1528     // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus,
1529     // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the
1530     // primary language type and make sure that our runtime supports it.
1531     assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language));
1532 
1533   return runtime;
1534 }
1535 
1536 bool Process::IsPossibleDynamicValue(ValueObject &in_value) {
1537   if (m_finalizing)
1538     return false;
1539 
1540   if (in_value.IsDynamic())
1541     return false;
1542   LanguageType known_type = in_value.GetObjectRuntimeLanguage();
1543 
1544   if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) {
1545     LanguageRuntime *runtime = GetLanguageRuntime(known_type);
1546     return runtime ? runtime->CouldHaveDynamicValue(in_value) : false;
1547   }
1548 
1549   for (LanguageRuntime *runtime : GetLanguageRuntimes()) {
1550     if (runtime->CouldHaveDynamicValue(in_value))
1551       return true;
1552   }
1553 
1554   return false;
1555 }
1556 
1557 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) {
1558   m_dynamic_checkers_up.reset(dynamic_checkers);
1559 }
1560 
1561 BreakpointSiteList &Process::GetBreakpointSiteList() {
1562   return m_breakpoint_site_list;
1563 }
1564 
1565 const BreakpointSiteList &Process::GetBreakpointSiteList() const {
1566   return m_breakpoint_site_list;
1567 }
1568 
1569 void Process::DisableAllBreakpointSites() {
1570   m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void {
1571     //        bp_site->SetEnabled(true);
1572     DisableBreakpointSite(bp_site);
1573   });
1574 }
1575 
1576 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) {
1577   Status error(DisableBreakpointSiteByID(break_id));
1578 
1579   if (error.Success())
1580     m_breakpoint_site_list.Remove(break_id);
1581 
1582   return error;
1583 }
1584 
1585 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) {
1586   Status error;
1587   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1588   if (bp_site_sp) {
1589     if (bp_site_sp->IsEnabled())
1590       error = DisableBreakpointSite(bp_site_sp.get());
1591   } else {
1592     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1593                                    break_id);
1594   }
1595 
1596   return error;
1597 }
1598 
1599 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) {
1600   Status error;
1601   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1602   if (bp_site_sp) {
1603     if (!bp_site_sp->IsEnabled())
1604       error = EnableBreakpointSite(bp_site_sp.get());
1605   } else {
1606     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1607                                    break_id);
1608   }
1609   return error;
1610 }
1611 
1612 lldb::break_id_t
1613 Process::CreateBreakpointSite(const BreakpointLocationSP &owner,
1614                               bool use_hardware) {
1615   addr_t load_addr = LLDB_INVALID_ADDRESS;
1616 
1617   bool show_error = true;
1618   switch (GetState()) {
1619   case eStateInvalid:
1620   case eStateUnloaded:
1621   case eStateConnected:
1622   case eStateAttaching:
1623   case eStateLaunching:
1624   case eStateDetached:
1625   case eStateExited:
1626     show_error = false;
1627     break;
1628 
1629   case eStateStopped:
1630   case eStateRunning:
1631   case eStateStepping:
1632   case eStateCrashed:
1633   case eStateSuspended:
1634     show_error = IsAlive();
1635     break;
1636   }
1637 
1638   // Reset the IsIndirect flag here, in case the location changes from pointing
1639   // to a indirect symbol to a regular symbol.
1640   owner->SetIsIndirect(false);
1641 
1642   if (owner->ShouldResolveIndirectFunctions()) {
1643     Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol();
1644     if (symbol && symbol->IsIndirect()) {
1645       Status error;
1646       Address symbol_address = symbol->GetAddress();
1647       load_addr = ResolveIndirectFunction(&symbol_address, error);
1648       if (!error.Success() && show_error) {
1649         GetTarget().GetDebugger().GetErrorStream().Printf(
1650             "warning: failed to resolve indirect function at 0x%" PRIx64
1651             " for breakpoint %i.%i: %s\n",
1652             symbol->GetLoadAddress(&GetTarget()),
1653             owner->GetBreakpoint().GetID(), owner->GetID(),
1654             error.AsCString() ? error.AsCString() : "unknown error");
1655         return LLDB_INVALID_BREAK_ID;
1656       }
1657       Address resolved_address(load_addr);
1658       load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget());
1659       owner->SetIsIndirect(true);
1660     } else
1661       load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1662   } else
1663     load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1664 
1665   if (load_addr != LLDB_INVALID_ADDRESS) {
1666     BreakpointSiteSP bp_site_sp;
1667 
1668     // Look up this breakpoint site.  If it exists, then add this new owner,
1669     // otherwise create a new breakpoint site and add it.
1670 
1671     bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr);
1672 
1673     if (bp_site_sp) {
1674       bp_site_sp->AddOwner(owner);
1675       owner->SetBreakpointSite(bp_site_sp);
1676       return bp_site_sp->GetID();
1677     } else {
1678       bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner,
1679                                           load_addr, use_hardware));
1680       if (bp_site_sp) {
1681         Status error = EnableBreakpointSite(bp_site_sp.get());
1682         if (error.Success()) {
1683           owner->SetBreakpointSite(bp_site_sp);
1684           return m_breakpoint_site_list.Add(bp_site_sp);
1685         } else {
1686           if (show_error || use_hardware) {
1687             // Report error for setting breakpoint...
1688             GetTarget().GetDebugger().GetErrorStream().Printf(
1689                 "warning: failed to set breakpoint site at 0x%" PRIx64
1690                 " for breakpoint %i.%i: %s\n",
1691                 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(),
1692                 error.AsCString() ? error.AsCString() : "unknown error");
1693           }
1694         }
1695       }
1696     }
1697   }
1698   // We failed to enable the breakpoint
1699   return LLDB_INVALID_BREAK_ID;
1700 }
1701 
1702 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id,
1703                                             lldb::user_id_t owner_loc_id,
1704                                             BreakpointSiteSP &bp_site_sp) {
1705   uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id);
1706   if (num_owners == 0) {
1707     // Don't try to disable the site if we don't have a live process anymore.
1708     if (IsAlive())
1709       DisableBreakpointSite(bp_site_sp.get());
1710     m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress());
1711   }
1712 }
1713 
1714 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size,
1715                                                   uint8_t *buf) const {
1716   size_t bytes_removed = 0;
1717   BreakpointSiteList bp_sites_in_range;
1718 
1719   if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size,
1720                                          bp_sites_in_range)) {
1721     bp_sites_in_range.ForEach([bp_addr, size,
1722                                buf](BreakpointSite *bp_site) -> void {
1723       if (bp_site->GetType() == BreakpointSite::eSoftware) {
1724         addr_t intersect_addr;
1725         size_t intersect_size;
1726         size_t opcode_offset;
1727         if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr,
1728                                      &intersect_size, &opcode_offset)) {
1729           assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size);
1730           assert(bp_addr < intersect_addr + intersect_size &&
1731                  intersect_addr + intersect_size <= bp_addr + size);
1732           assert(opcode_offset + intersect_size <= bp_site->GetByteSize());
1733           size_t buf_offset = intersect_addr - bp_addr;
1734           ::memcpy(buf + buf_offset,
1735                    bp_site->GetSavedOpcodeBytes() + opcode_offset,
1736                    intersect_size);
1737         }
1738       }
1739     });
1740   }
1741   return bytes_removed;
1742 }
1743 
1744 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) {
1745   PlatformSP platform_sp(GetTarget().GetPlatform());
1746   if (platform_sp)
1747     return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site);
1748   return 0;
1749 }
1750 
1751 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) {
1752   Status error;
1753   assert(bp_site != nullptr);
1754   Log *log = GetLog(LLDBLog::Breakpoints);
1755   const addr_t bp_addr = bp_site->GetLoadAddress();
1756   LLDB_LOGF(
1757       log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64,
1758       bp_site->GetID(), (uint64_t)bp_addr);
1759   if (bp_site->IsEnabled()) {
1760     LLDB_LOGF(
1761         log,
1762         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1763         " -- already enabled",
1764         bp_site->GetID(), (uint64_t)bp_addr);
1765     return error;
1766   }
1767 
1768   if (bp_addr == LLDB_INVALID_ADDRESS) {
1769     error.SetErrorString("BreakpointSite contains an invalid load address.");
1770     return error;
1771   }
1772   // Ask the lldb::Process subclass to fill in the correct software breakpoint
1773   // trap for the breakpoint site
1774   const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site);
1775 
1776   if (bp_opcode_size == 0) {
1777     error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() "
1778                                    "returned zero, unable to get breakpoint "
1779                                    "trap for address 0x%" PRIx64,
1780                                    bp_addr);
1781   } else {
1782     const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes();
1783 
1784     if (bp_opcode_bytes == nullptr) {
1785       error.SetErrorString(
1786           "BreakpointSite doesn't contain a valid breakpoint trap opcode.");
1787       return error;
1788     }
1789 
1790     // Save the original opcode by reading it
1791     if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size,
1792                      error) == bp_opcode_size) {
1793       // Write a software breakpoint in place of the original opcode
1794       if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) ==
1795           bp_opcode_size) {
1796         uint8_t verify_bp_opcode_bytes[64];
1797         if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size,
1798                          error) == bp_opcode_size) {
1799           if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes,
1800                        bp_opcode_size) == 0) {
1801             bp_site->SetEnabled(true);
1802             bp_site->SetType(BreakpointSite::eSoftware);
1803             LLDB_LOGF(log,
1804                       "Process::EnableSoftwareBreakpoint (site_id = %d) "
1805                       "addr = 0x%" PRIx64 " -- SUCCESS",
1806                       bp_site->GetID(), (uint64_t)bp_addr);
1807           } else
1808             error.SetErrorString(
1809                 "failed to verify the breakpoint trap in memory.");
1810         } else
1811           error.SetErrorString(
1812               "Unable to read memory to verify breakpoint trap.");
1813       } else
1814         error.SetErrorString("Unable to write breakpoint trap to memory.");
1815     } else
1816       error.SetErrorString("Unable to read memory at breakpoint address.");
1817   }
1818   if (log && error.Fail())
1819     LLDB_LOGF(
1820         log,
1821         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1822         " -- FAILED: %s",
1823         bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1824   return error;
1825 }
1826 
1827 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) {
1828   Status error;
1829   assert(bp_site != nullptr);
1830   Log *log = GetLog(LLDBLog::Breakpoints);
1831   addr_t bp_addr = bp_site->GetLoadAddress();
1832   lldb::user_id_t breakID = bp_site->GetID();
1833   LLDB_LOGF(log,
1834             "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64
1835             ") addr = 0x%" PRIx64,
1836             breakID, (uint64_t)bp_addr);
1837 
1838   if (bp_site->IsHardware()) {
1839     error.SetErrorString("Breakpoint site is a hardware breakpoint.");
1840   } else if (bp_site->IsEnabled()) {
1841     const size_t break_op_size = bp_site->GetByteSize();
1842     const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes();
1843     if (break_op_size > 0) {
1844       // Clear a software breakpoint instruction
1845       uint8_t curr_break_op[8];
1846       assert(break_op_size <= sizeof(curr_break_op));
1847       bool break_op_found = false;
1848 
1849       // Read the breakpoint opcode
1850       if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) ==
1851           break_op_size) {
1852         bool verify = false;
1853         // Make sure the breakpoint opcode exists at this address
1854         if (::memcmp(curr_break_op, break_op, break_op_size) == 0) {
1855           break_op_found = true;
1856           // We found a valid breakpoint opcode at this address, now restore
1857           // the saved opcode.
1858           if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(),
1859                             break_op_size, error) == break_op_size) {
1860             verify = true;
1861           } else
1862             error.SetErrorString(
1863                 "Memory write failed when restoring original opcode.");
1864         } else {
1865           error.SetErrorString(
1866               "Original breakpoint trap is no longer in memory.");
1867           // Set verify to true and so we can check if the original opcode has
1868           // already been restored
1869           verify = true;
1870         }
1871 
1872         if (verify) {
1873           uint8_t verify_opcode[8];
1874           assert(break_op_size < sizeof(verify_opcode));
1875           // Verify that our original opcode made it back to the inferior
1876           if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) ==
1877               break_op_size) {
1878             // compare the memory we just read with the original opcode
1879             if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode,
1880                          break_op_size) == 0) {
1881               // SUCCESS
1882               bp_site->SetEnabled(false);
1883               LLDB_LOGF(log,
1884                         "Process::DisableSoftwareBreakpoint (site_id = %d) "
1885                         "addr = 0x%" PRIx64 " -- SUCCESS",
1886                         bp_site->GetID(), (uint64_t)bp_addr);
1887               return error;
1888             } else {
1889               if (break_op_found)
1890                 error.SetErrorString("Failed to restore original opcode.");
1891             }
1892           } else
1893             error.SetErrorString("Failed to read memory to verify that "
1894                                  "breakpoint trap was restored.");
1895         }
1896       } else
1897         error.SetErrorString(
1898             "Unable to read memory that should contain the breakpoint trap.");
1899     }
1900   } else {
1901     LLDB_LOGF(
1902         log,
1903         "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1904         " -- already disabled",
1905         bp_site->GetID(), (uint64_t)bp_addr);
1906     return error;
1907   }
1908 
1909   LLDB_LOGF(
1910       log,
1911       "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1912       " -- FAILED: %s",
1913       bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1914   return error;
1915 }
1916 
1917 // Uncomment to verify memory caching works after making changes to caching
1918 // code
1919 //#define VERIFY_MEMORY_READS
1920 
1921 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) {
1922   if (ABISP abi_sp = GetABI())
1923     addr = abi_sp->FixAnyAddress(addr);
1924 
1925   error.Clear();
1926   if (!GetDisableMemoryCache()) {
1927 #if defined(VERIFY_MEMORY_READS)
1928     // Memory caching is enabled, with debug verification
1929 
1930     if (buf && size) {
1931       // Uncomment the line below to make sure memory caching is working.
1932       // I ran this through the test suite and got no assertions, so I am
1933       // pretty confident this is working well. If any changes are made to
1934       // memory caching, uncomment the line below and test your changes!
1935 
1936       // Verify all memory reads by using the cache first, then redundantly
1937       // reading the same memory from the inferior and comparing to make sure
1938       // everything is exactly the same.
1939       std::string verify_buf(size, '\0');
1940       assert(verify_buf.size() == size);
1941       const size_t cache_bytes_read =
1942           m_memory_cache.Read(this, addr, buf, size, error);
1943       Status verify_error;
1944       const size_t verify_bytes_read =
1945           ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()),
1946                                  verify_buf.size(), verify_error);
1947       assert(cache_bytes_read == verify_bytes_read);
1948       assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0);
1949       assert(verify_error.Success() == error.Success());
1950       return cache_bytes_read;
1951     }
1952     return 0;
1953 #else  // !defined(VERIFY_MEMORY_READS)
1954     // Memory caching is enabled, without debug verification
1955 
1956     return m_memory_cache.Read(addr, buf, size, error);
1957 #endif // defined (VERIFY_MEMORY_READS)
1958   } else {
1959     // Memory caching is disabled
1960 
1961     return ReadMemoryFromInferior(addr, buf, size, error);
1962   }
1963 }
1964 
1965 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str,
1966                                       Status &error) {
1967   char buf[256];
1968   out_str.clear();
1969   addr_t curr_addr = addr;
1970   while (true) {
1971     size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error);
1972     if (length == 0)
1973       break;
1974     out_str.append(buf, length);
1975     // If we got "length - 1" bytes, we didn't get the whole C string, we need
1976     // to read some more characters
1977     if (length == sizeof(buf) - 1)
1978       curr_addr += length;
1979     else
1980       break;
1981   }
1982   return out_str.size();
1983 }
1984 
1985 // Deprecated in favor of ReadStringFromMemory which has wchar support and
1986 // correct code to find null terminators.
1987 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst,
1988                                       size_t dst_max_len,
1989                                       Status &result_error) {
1990   size_t total_cstr_len = 0;
1991   if (dst && dst_max_len) {
1992     result_error.Clear();
1993     // NULL out everything just to be safe
1994     memset(dst, 0, dst_max_len);
1995     Status error;
1996     addr_t curr_addr = addr;
1997     const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
1998     size_t bytes_left = dst_max_len - 1;
1999     char *curr_dst = dst;
2000 
2001     while (bytes_left > 0) {
2002       addr_t cache_line_bytes_left =
2003           cache_line_size - (curr_addr % cache_line_size);
2004       addr_t bytes_to_read =
2005           std::min<addr_t>(bytes_left, cache_line_bytes_left);
2006       size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
2007 
2008       if (bytes_read == 0) {
2009         result_error = error;
2010         dst[total_cstr_len] = '\0';
2011         break;
2012       }
2013       const size_t len = strlen(curr_dst);
2014 
2015       total_cstr_len += len;
2016 
2017       if (len < bytes_to_read)
2018         break;
2019 
2020       curr_dst += bytes_read;
2021       curr_addr += bytes_read;
2022       bytes_left -= bytes_read;
2023     }
2024   } else {
2025     if (dst == nullptr)
2026       result_error.SetErrorString("invalid arguments");
2027     else
2028       result_error.Clear();
2029   }
2030   return total_cstr_len;
2031 }
2032 
2033 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size,
2034                                        Status &error) {
2035   LLDB_SCOPED_TIMER();
2036 
2037   if (ABISP abi_sp = GetABI())
2038     addr = abi_sp->FixAnyAddress(addr);
2039 
2040   if (buf == nullptr || size == 0)
2041     return 0;
2042 
2043   size_t bytes_read = 0;
2044   uint8_t *bytes = (uint8_t *)buf;
2045 
2046   while (bytes_read < size) {
2047     const size_t curr_size = size - bytes_read;
2048     const size_t curr_bytes_read =
2049         DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error);
2050     bytes_read += curr_bytes_read;
2051     if (curr_bytes_read == curr_size || curr_bytes_read == 0)
2052       break;
2053   }
2054 
2055   // Replace any software breakpoint opcodes that fall into this range back
2056   // into "buf" before we return
2057   if (bytes_read > 0)
2058     RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf);
2059   return bytes_read;
2060 }
2061 
2062 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr,
2063                                                 size_t integer_byte_size,
2064                                                 uint64_t fail_value,
2065                                                 Status &error) {
2066   Scalar scalar;
2067   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar,
2068                                   error))
2069     return scalar.ULongLong(fail_value);
2070   return fail_value;
2071 }
2072 
2073 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr,
2074                                              size_t integer_byte_size,
2075                                              int64_t fail_value,
2076                                              Status &error) {
2077   Scalar scalar;
2078   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar,
2079                                   error))
2080     return scalar.SLongLong(fail_value);
2081   return fail_value;
2082 }
2083 
2084 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) {
2085   Scalar scalar;
2086   if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar,
2087                                   error))
2088     return scalar.ULongLong(LLDB_INVALID_ADDRESS);
2089   return LLDB_INVALID_ADDRESS;
2090 }
2091 
2092 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value,
2093                                    Status &error) {
2094   Scalar scalar;
2095   const uint32_t addr_byte_size = GetAddressByteSize();
2096   if (addr_byte_size <= 4)
2097     scalar = (uint32_t)ptr_value;
2098   else
2099     scalar = ptr_value;
2100   return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) ==
2101          addr_byte_size;
2102 }
2103 
2104 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size,
2105                                    Status &error) {
2106   size_t bytes_written = 0;
2107   const uint8_t *bytes = (const uint8_t *)buf;
2108 
2109   while (bytes_written < size) {
2110     const size_t curr_size = size - bytes_written;
2111     const size_t curr_bytes_written = DoWriteMemory(
2112         addr + bytes_written, bytes + bytes_written, curr_size, error);
2113     bytes_written += curr_bytes_written;
2114     if (curr_bytes_written == curr_size || curr_bytes_written == 0)
2115       break;
2116   }
2117   return bytes_written;
2118 }
2119 
2120 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size,
2121                             Status &error) {
2122   if (ABISP abi_sp = GetABI())
2123     addr = abi_sp->FixAnyAddress(addr);
2124 
2125 #if defined(ENABLE_MEMORY_CACHING)
2126   m_memory_cache.Flush(addr, size);
2127 #endif
2128 
2129   if (buf == nullptr || size == 0)
2130     return 0;
2131 
2132   m_mod_id.BumpMemoryID();
2133 
2134   // We need to write any data that would go where any current software traps
2135   // (enabled software breakpoints) any software traps (breakpoints) that we
2136   // may have placed in our tasks memory.
2137 
2138   BreakpointSiteList bp_sites_in_range;
2139   if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range))
2140     return WriteMemoryPrivate(addr, buf, size, error);
2141 
2142   // No breakpoint sites overlap
2143   if (bp_sites_in_range.IsEmpty())
2144     return WriteMemoryPrivate(addr, buf, size, error);
2145 
2146   const uint8_t *ubuf = (const uint8_t *)buf;
2147   uint64_t bytes_written = 0;
2148 
2149   bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf,
2150                              &error](BreakpointSite *bp) -> void {
2151     if (error.Fail())
2152       return;
2153 
2154     if (bp->GetType() != BreakpointSite::eSoftware)
2155       return;
2156 
2157     addr_t intersect_addr;
2158     size_t intersect_size;
2159     size_t opcode_offset;
2160     const bool intersects = bp->IntersectsRange(
2161         addr, size, &intersect_addr, &intersect_size, &opcode_offset);
2162     UNUSED_IF_ASSERT_DISABLED(intersects);
2163     assert(intersects);
2164     assert(addr <= intersect_addr && intersect_addr < addr + size);
2165     assert(addr < intersect_addr + intersect_size &&
2166            intersect_addr + intersect_size <= addr + size);
2167     assert(opcode_offset + intersect_size <= bp->GetByteSize());
2168 
2169     // Check for bytes before this breakpoint
2170     const addr_t curr_addr = addr + bytes_written;
2171     if (intersect_addr > curr_addr) {
2172       // There are some bytes before this breakpoint that we need to just
2173       // write to memory
2174       size_t curr_size = intersect_addr - curr_addr;
2175       size_t curr_bytes_written =
2176           WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error);
2177       bytes_written += curr_bytes_written;
2178       if (curr_bytes_written != curr_size) {
2179         // We weren't able to write all of the requested bytes, we are
2180         // done looping and will return the number of bytes that we have
2181         // written so far.
2182         if (error.Success())
2183           error.SetErrorToGenericError();
2184       }
2185     }
2186     // Now write any bytes that would cover up any software breakpoints
2187     // directly into the breakpoint opcode buffer
2188     ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written,
2189              intersect_size);
2190     bytes_written += intersect_size;
2191   });
2192 
2193   // Write any remaining bytes after the last breakpoint if we have any left
2194   if (bytes_written < size)
2195     bytes_written +=
2196         WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written,
2197                            size - bytes_written, error);
2198 
2199   return bytes_written;
2200 }
2201 
2202 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar,
2203                                     size_t byte_size, Status &error) {
2204   if (byte_size == UINT32_MAX)
2205     byte_size = scalar.GetByteSize();
2206   if (byte_size > 0) {
2207     uint8_t buf[32];
2208     const size_t mem_size =
2209         scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error);
2210     if (mem_size > 0)
2211       return WriteMemory(addr, buf, mem_size, error);
2212     else
2213       error.SetErrorString("failed to get scalar as memory data");
2214   } else {
2215     error.SetErrorString("invalid scalar value");
2216   }
2217   return 0;
2218 }
2219 
2220 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size,
2221                                             bool is_signed, Scalar &scalar,
2222                                             Status &error) {
2223   uint64_t uval = 0;
2224   if (byte_size == 0) {
2225     error.SetErrorString("byte size is zero");
2226   } else if (byte_size & (byte_size - 1)) {
2227     error.SetErrorStringWithFormat("byte size %u is not a power of 2",
2228                                    byte_size);
2229   } else if (byte_size <= sizeof(uval)) {
2230     const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error);
2231     if (bytes_read == byte_size) {
2232       DataExtractor data(&uval, sizeof(uval), GetByteOrder(),
2233                          GetAddressByteSize());
2234       lldb::offset_t offset = 0;
2235       if (byte_size <= 4)
2236         scalar = data.GetMaxU32(&offset, byte_size);
2237       else
2238         scalar = data.GetMaxU64(&offset, byte_size);
2239       if (is_signed)
2240         scalar.SignExtend(byte_size * 8);
2241       return bytes_read;
2242     }
2243   } else {
2244     error.SetErrorStringWithFormat(
2245         "byte size of %u is too large for integer scalar type", byte_size);
2246   }
2247   return 0;
2248 }
2249 
2250 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) {
2251   Status error;
2252   for (const auto &Entry : entries) {
2253     WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(),
2254                 error);
2255     if (!error.Success())
2256       break;
2257   }
2258   return error;
2259 }
2260 
2261 #define USE_ALLOCATE_MEMORY_CACHE 1
2262 addr_t Process::AllocateMemory(size_t size, uint32_t permissions,
2263                                Status &error) {
2264   if (GetPrivateState() != eStateStopped) {
2265     error.SetErrorToGenericError();
2266     return LLDB_INVALID_ADDRESS;
2267   }
2268 
2269 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2270   return m_allocated_memory_cache.AllocateMemory(size, permissions, error);
2271 #else
2272   addr_t allocated_addr = DoAllocateMemory(size, permissions, error);
2273   Log *log = GetLog(LLDBLog::Process);
2274   LLDB_LOGF(log,
2275             "Process::AllocateMemory(size=%" PRIu64
2276             ", permissions=%s) => 0x%16.16" PRIx64
2277             " (m_stop_id = %u m_memory_id = %u)",
2278             (uint64_t)size, GetPermissionsAsCString(permissions),
2279             (uint64_t)allocated_addr, m_mod_id.GetStopID(),
2280             m_mod_id.GetMemoryID());
2281   return allocated_addr;
2282 #endif
2283 }
2284 
2285 addr_t Process::CallocateMemory(size_t size, uint32_t permissions,
2286                                 Status &error) {
2287   addr_t return_addr = AllocateMemory(size, permissions, error);
2288   if (error.Success()) {
2289     std::string buffer(size, 0);
2290     WriteMemory(return_addr, buffer.c_str(), size, error);
2291   }
2292   return return_addr;
2293 }
2294 
2295 bool Process::CanJIT() {
2296   if (m_can_jit == eCanJITDontKnow) {
2297     Log *log = GetLog(LLDBLog::Process);
2298     Status err;
2299 
2300     uint64_t allocated_memory = AllocateMemory(
2301         8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable,
2302         err);
2303 
2304     if (err.Success()) {
2305       m_can_jit = eCanJITYes;
2306       LLDB_LOGF(log,
2307                 "Process::%s pid %" PRIu64
2308                 " allocation test passed, CanJIT () is true",
2309                 __FUNCTION__, GetID());
2310     } else {
2311       m_can_jit = eCanJITNo;
2312       LLDB_LOGF(log,
2313                 "Process::%s pid %" PRIu64
2314                 " allocation test failed, CanJIT () is false: %s",
2315                 __FUNCTION__, GetID(), err.AsCString());
2316     }
2317 
2318     DeallocateMemory(allocated_memory);
2319   }
2320 
2321   return m_can_jit == eCanJITYes;
2322 }
2323 
2324 void Process::SetCanJIT(bool can_jit) {
2325   m_can_jit = (can_jit ? eCanJITYes : eCanJITNo);
2326 }
2327 
2328 void Process::SetCanRunCode(bool can_run_code) {
2329   SetCanJIT(can_run_code);
2330   m_can_interpret_function_calls = can_run_code;
2331 }
2332 
2333 Status Process::DeallocateMemory(addr_t ptr) {
2334   Status error;
2335 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2336   if (!m_allocated_memory_cache.DeallocateMemory(ptr)) {
2337     error.SetErrorStringWithFormat(
2338         "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr);
2339   }
2340 #else
2341   error = DoDeallocateMemory(ptr);
2342 
2343   Log *log = GetLog(LLDBLog::Process);
2344   LLDB_LOGF(log,
2345             "Process::DeallocateMemory(addr=0x%16.16" PRIx64
2346             ") => err = %s (m_stop_id = %u, m_memory_id = %u)",
2347             ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(),
2348             m_mod_id.GetMemoryID());
2349 #endif
2350   return error;
2351 }
2352 
2353 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec,
2354                                        lldb::addr_t header_addr,
2355                                        size_t size_to_read) {
2356   Log *log = GetLog(LLDBLog::Host);
2357   if (log) {
2358     LLDB_LOGF(log,
2359               "Process::ReadModuleFromMemory reading %s binary from memory",
2360               file_spec.GetPath().c_str());
2361   }
2362   ModuleSP module_sp(new Module(file_spec, ArchSpec()));
2363   if (module_sp) {
2364     Status error;
2365     ObjectFile *objfile = module_sp->GetMemoryObjectFile(
2366         shared_from_this(), header_addr, error, size_to_read);
2367     if (objfile)
2368       return module_sp;
2369   }
2370   return ModuleSP();
2371 }
2372 
2373 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr,
2374                                         uint32_t &permissions) {
2375   MemoryRegionInfo range_info;
2376   permissions = 0;
2377   Status error(GetMemoryRegionInfo(load_addr, range_info));
2378   if (!error.Success())
2379     return false;
2380   if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow ||
2381       range_info.GetWritable() == MemoryRegionInfo::eDontKnow ||
2382       range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) {
2383     return false;
2384   }
2385 
2386   if (range_info.GetReadable() == MemoryRegionInfo::eYes)
2387     permissions |= lldb::ePermissionsReadable;
2388 
2389   if (range_info.GetWritable() == MemoryRegionInfo::eYes)
2390     permissions |= lldb::ePermissionsWritable;
2391 
2392   if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
2393     permissions |= lldb::ePermissionsExecutable;
2394 
2395   return true;
2396 }
2397 
2398 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) {
2399   Status error;
2400   error.SetErrorString("watchpoints are not supported");
2401   return error;
2402 }
2403 
2404 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) {
2405   Status error;
2406   error.SetErrorString("watchpoints are not supported");
2407   return error;
2408 }
2409 
2410 StateType
2411 Process::WaitForProcessStopPrivate(EventSP &event_sp,
2412                                    const Timeout<std::micro> &timeout) {
2413   StateType state;
2414 
2415   while (true) {
2416     event_sp.reset();
2417     state = GetStateChangedEventsPrivate(event_sp, timeout);
2418 
2419     if (StateIsStoppedState(state, false))
2420       break;
2421 
2422     // If state is invalid, then we timed out
2423     if (state == eStateInvalid)
2424       break;
2425 
2426     if (event_sp)
2427       HandlePrivateEvent(event_sp);
2428   }
2429   return state;
2430 }
2431 
2432 void Process::LoadOperatingSystemPlugin(bool flush) {
2433   if (flush)
2434     m_thread_list.Clear();
2435   m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr));
2436   if (flush)
2437     Flush();
2438 }
2439 
2440 Status Process::Launch(ProcessLaunchInfo &launch_info) {
2441   StateType state_after_launch = eStateInvalid;
2442   EventSP first_stop_event_sp;
2443   Status status =
2444       LaunchPrivate(launch_info, state_after_launch, first_stop_event_sp);
2445   if (status.Fail())
2446     return status;
2447 
2448   if (state_after_launch != eStateStopped &&
2449       state_after_launch != eStateCrashed)
2450     return Status();
2451 
2452   // Note, the stop event was consumed above, but not handled. This
2453   // was done to give DidLaunch a chance to run. The target is either
2454   // stopped or crashed. Directly set the state.  This is done to
2455   // prevent a stop message with a bunch of spurious output on thread
2456   // status, as well as not pop a ProcessIOHandler.
2457   SetPublicState(state_after_launch, false);
2458 
2459   if (PrivateStateThreadIsValid())
2460     ResumePrivateStateThread();
2461   else
2462     StartPrivateStateThread();
2463 
2464   // Target was stopped at entry as was intended. Need to notify the
2465   // listeners about it.
2466   if (launch_info.GetFlags().Test(eLaunchFlagStopAtEntry))
2467     HandlePrivateEvent(first_stop_event_sp);
2468 
2469   return Status();
2470 }
2471 
2472 Status Process::LaunchPrivate(ProcessLaunchInfo &launch_info, StateType &state,
2473                               EventSP &event_sp) {
2474   Status error;
2475   m_abi_sp.reset();
2476   m_dyld_up.reset();
2477   m_jit_loaders_up.reset();
2478   m_system_runtime_up.reset();
2479   m_os_up.reset();
2480   m_process_input_reader.reset();
2481 
2482   Module *exe_module = GetTarget().GetExecutableModulePointer();
2483 
2484   // The "remote executable path" is hooked up to the local Executable
2485   // module.  But we should be able to debug a remote process even if the
2486   // executable module only exists on the remote.  However, there needs to
2487   // be a way to express this path, without actually having a module.
2488   // The way to do that is to set the ExecutableFile in the LaunchInfo.
2489   // Figure that out here:
2490 
2491   FileSpec exe_spec_to_use;
2492   if (!exe_module) {
2493     if (!launch_info.GetExecutableFile()) {
2494       error.SetErrorString("executable module does not exist");
2495       return error;
2496     }
2497     exe_spec_to_use = launch_info.GetExecutableFile();
2498   } else
2499     exe_spec_to_use = exe_module->GetFileSpec();
2500 
2501   if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) {
2502     // Install anything that might need to be installed prior to launching.
2503     // For host systems, this will do nothing, but if we are connected to a
2504     // remote platform it will install any needed binaries
2505     error = GetTarget().Install(&launch_info);
2506     if (error.Fail())
2507       return error;
2508   }
2509 
2510   // Listen and queue events that are broadcasted during the process launch.
2511   ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack"));
2512   HijackProcessEvents(listener_sp);
2513   auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); });
2514 
2515   if (PrivateStateThreadIsValid())
2516     PausePrivateStateThread();
2517 
2518   error = WillLaunch(exe_module);
2519   if (error.Fail()) {
2520     std::string local_exec_file_path = exe_spec_to_use.GetPath();
2521     return Status("file doesn't exist: '%s'", local_exec_file_path.c_str());
2522   }
2523 
2524   const bool restarted = false;
2525   SetPublicState(eStateLaunching, restarted);
2526   m_should_detach = false;
2527 
2528   if (m_public_run_lock.TrySetRunning()) {
2529     // Now launch using these arguments.
2530     error = DoLaunch(exe_module, launch_info);
2531   } else {
2532     // This shouldn't happen
2533     error.SetErrorString("failed to acquire process run lock");
2534   }
2535 
2536   if (error.Fail()) {
2537     if (GetID() != LLDB_INVALID_PROCESS_ID) {
2538       SetID(LLDB_INVALID_PROCESS_ID);
2539       const char *error_string = error.AsCString();
2540       if (error_string == nullptr)
2541         error_string = "launch failed";
2542       SetExitStatus(-1, error_string);
2543     }
2544     return error;
2545   }
2546 
2547   // Now wait for the process to launch and return control to us, and then
2548   // call DidLaunch:
2549   state = WaitForProcessStopPrivate(event_sp, seconds(10));
2550 
2551   if (state == eStateInvalid || !event_sp) {
2552     // We were able to launch the process, but we failed to catch the
2553     // initial stop.
2554     error.SetErrorString("failed to catch stop after launch");
2555     SetExitStatus(0, error.AsCString());
2556     Destroy(false);
2557     return error;
2558   }
2559 
2560   if (state == eStateExited) {
2561     // We exited while trying to launch somehow.  Don't call DidLaunch
2562     // as that's not likely to work, and return an invalid pid.
2563     HandlePrivateEvent(event_sp);
2564     return Status();
2565   }
2566 
2567   if (state == eStateStopped || state == eStateCrashed) {
2568     DidLaunch();
2569 
2570     // Now that we know the process type, update its signal responses from the
2571     // ones stored in the Target:
2572     if (m_unix_signals_sp) {
2573       StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream();
2574       GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm);
2575     }
2576 
2577     DynamicLoader *dyld = GetDynamicLoader();
2578     if (dyld)
2579       dyld->DidLaunch();
2580 
2581     GetJITLoaders().DidLaunch();
2582 
2583     SystemRuntime *system_runtime = GetSystemRuntime();
2584     if (system_runtime)
2585       system_runtime->DidLaunch();
2586 
2587     if (!m_os_up)
2588       LoadOperatingSystemPlugin(false);
2589 
2590     // We successfully launched the process and stopped, now it the
2591     // right time to set up signal filters before resuming.
2592     UpdateAutomaticSignalFiltering();
2593     return Status();
2594   }
2595 
2596   return Status("Unexpected process state after the launch: %s, expected %s, "
2597                 "%s, %s or %s",
2598                 StateAsCString(state), StateAsCString(eStateInvalid),
2599                 StateAsCString(eStateExited), StateAsCString(eStateStopped),
2600                 StateAsCString(eStateCrashed));
2601 }
2602 
2603 Status Process::LoadCore() {
2604   Status error = DoLoadCore();
2605   if (error.Success()) {
2606     ListenerSP listener_sp(
2607         Listener::MakeListener("lldb.process.load_core_listener"));
2608     HijackProcessEvents(listener_sp);
2609 
2610     if (PrivateStateThreadIsValid())
2611       ResumePrivateStateThread();
2612     else
2613       StartPrivateStateThread();
2614 
2615     DynamicLoader *dyld = GetDynamicLoader();
2616     if (dyld)
2617       dyld->DidAttach();
2618 
2619     GetJITLoaders().DidAttach();
2620 
2621     SystemRuntime *system_runtime = GetSystemRuntime();
2622     if (system_runtime)
2623       system_runtime->DidAttach();
2624 
2625     if (!m_os_up)
2626       LoadOperatingSystemPlugin(false);
2627 
2628     // We successfully loaded a core file, now pretend we stopped so we can
2629     // show all of the threads in the core file and explore the crashed state.
2630     SetPrivateState(eStateStopped);
2631 
2632     // Wait for a stopped event since we just posted one above...
2633     lldb::EventSP event_sp;
2634     StateType state =
2635         WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp);
2636 
2637     if (!StateIsStoppedState(state, false)) {
2638       Log *log = GetLog(LLDBLog::Process);
2639       LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s",
2640                 StateAsCString(state));
2641       error.SetErrorString(
2642           "Did not get stopped event after loading the core file.");
2643     }
2644     RestoreProcessEvents();
2645   }
2646   return error;
2647 }
2648 
2649 DynamicLoader *Process::GetDynamicLoader() {
2650   if (!m_dyld_up)
2651     m_dyld_up.reset(DynamicLoader::FindPlugin(this, ""));
2652   return m_dyld_up.get();
2653 }
2654 
2655 DataExtractor Process::GetAuxvData() { return DataExtractor(); }
2656 
2657 llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) {
2658   return false;
2659 }
2660 
2661 JITLoaderList &Process::GetJITLoaders() {
2662   if (!m_jit_loaders_up) {
2663     m_jit_loaders_up = std::make_unique<JITLoaderList>();
2664     JITLoader::LoadPlugins(this, *m_jit_loaders_up);
2665   }
2666   return *m_jit_loaders_up;
2667 }
2668 
2669 SystemRuntime *Process::GetSystemRuntime() {
2670   if (!m_system_runtime_up)
2671     m_system_runtime_up.reset(SystemRuntime::FindPlugin(this));
2672   return m_system_runtime_up.get();
2673 }
2674 
2675 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process,
2676                                                           uint32_t exec_count)
2677     : NextEventAction(process), m_exec_count(exec_count) {
2678   Log *log = GetLog(LLDBLog::Process);
2679   LLDB_LOGF(
2680       log,
2681       "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32,
2682       __FUNCTION__, static_cast<void *>(process), exec_count);
2683 }
2684 
2685 Process::NextEventAction::EventActionResult
2686 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) {
2687   Log *log = GetLog(LLDBLog::Process);
2688 
2689   StateType state = ProcessEventData::GetStateFromEvent(event_sp.get());
2690   LLDB_LOGF(log,
2691             "Process::AttachCompletionHandler::%s called with state %s (%d)",
2692             __FUNCTION__, StateAsCString(state), static_cast<int>(state));
2693 
2694   switch (state) {
2695   case eStateAttaching:
2696     return eEventActionSuccess;
2697 
2698   case eStateRunning:
2699   case eStateConnected:
2700     return eEventActionRetry;
2701 
2702   case eStateStopped:
2703   case eStateCrashed:
2704     // During attach, prior to sending the eStateStopped event,
2705     // lldb_private::Process subclasses must set the new process ID.
2706     assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID);
2707     // We don't want these events to be reported, so go set the
2708     // ShouldReportStop here:
2709     m_process->GetThreadList().SetShouldReportStop(eVoteNo);
2710 
2711     if (m_exec_count > 0) {
2712       --m_exec_count;
2713 
2714       LLDB_LOGF(log,
2715                 "Process::AttachCompletionHandler::%s state %s: reduced "
2716                 "remaining exec count to %" PRIu32 ", requesting resume",
2717                 __FUNCTION__, StateAsCString(state), m_exec_count);
2718 
2719       RequestResume();
2720       return eEventActionRetry;
2721     } else {
2722       LLDB_LOGF(log,
2723                 "Process::AttachCompletionHandler::%s state %s: no more "
2724                 "execs expected to start, continuing with attach",
2725                 __FUNCTION__, StateAsCString(state));
2726 
2727       m_process->CompleteAttach();
2728       return eEventActionSuccess;
2729     }
2730     break;
2731 
2732   default:
2733   case eStateExited:
2734   case eStateInvalid:
2735     break;
2736   }
2737 
2738   m_exit_string.assign("No valid Process");
2739   return eEventActionExit;
2740 }
2741 
2742 Process::NextEventAction::EventActionResult
2743 Process::AttachCompletionHandler::HandleBeingInterrupted() {
2744   return eEventActionSuccess;
2745 }
2746 
2747 const char *Process::AttachCompletionHandler::GetExitString() {
2748   return m_exit_string.c_str();
2749 }
2750 
2751 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) {
2752   if (m_listener_sp)
2753     return m_listener_sp;
2754   else
2755     return debugger.GetListener();
2756 }
2757 
2758 Status Process::Attach(ProcessAttachInfo &attach_info) {
2759   m_abi_sp.reset();
2760   m_process_input_reader.reset();
2761   m_dyld_up.reset();
2762   m_jit_loaders_up.reset();
2763   m_system_runtime_up.reset();
2764   m_os_up.reset();
2765 
2766   lldb::pid_t attach_pid = attach_info.GetProcessID();
2767   Status error;
2768   if (attach_pid == LLDB_INVALID_PROCESS_ID) {
2769     char process_name[PATH_MAX];
2770 
2771     if (attach_info.GetExecutableFile().GetPath(process_name,
2772                                                 sizeof(process_name))) {
2773       const bool wait_for_launch = attach_info.GetWaitForLaunch();
2774 
2775       if (wait_for_launch) {
2776         error = WillAttachToProcessWithName(process_name, wait_for_launch);
2777         if (error.Success()) {
2778           if (m_public_run_lock.TrySetRunning()) {
2779             m_should_detach = true;
2780             const bool restarted = false;
2781             SetPublicState(eStateAttaching, restarted);
2782             // Now attach using these arguments.
2783             error = DoAttachToProcessWithName(process_name, attach_info);
2784           } else {
2785             // This shouldn't happen
2786             error.SetErrorString("failed to acquire process run lock");
2787           }
2788 
2789           if (error.Fail()) {
2790             if (GetID() != LLDB_INVALID_PROCESS_ID) {
2791               SetID(LLDB_INVALID_PROCESS_ID);
2792               if (error.AsCString() == nullptr)
2793                 error.SetErrorString("attach failed");
2794 
2795               SetExitStatus(-1, error.AsCString());
2796             }
2797           } else {
2798             SetNextEventAction(new Process::AttachCompletionHandler(
2799                 this, attach_info.GetResumeCount()));
2800             StartPrivateStateThread();
2801           }
2802           return error;
2803         }
2804       } else {
2805         ProcessInstanceInfoList process_infos;
2806         PlatformSP platform_sp(GetTarget().GetPlatform());
2807 
2808         if (platform_sp) {
2809           ProcessInstanceInfoMatch match_info;
2810           match_info.GetProcessInfo() = attach_info;
2811           match_info.SetNameMatchType(NameMatch::Equals);
2812           platform_sp->FindProcesses(match_info, process_infos);
2813           const uint32_t num_matches = process_infos.size();
2814           if (num_matches == 1) {
2815             attach_pid = process_infos[0].GetProcessID();
2816             // Fall through and attach using the above process ID
2817           } else {
2818             match_info.GetProcessInfo().GetExecutableFile().GetPath(
2819                 process_name, sizeof(process_name));
2820             if (num_matches > 1) {
2821               StreamString s;
2822               ProcessInstanceInfo::DumpTableHeader(s, true, false);
2823               for (size_t i = 0; i < num_matches; i++) {
2824                 process_infos[i].DumpAsTableRow(
2825                     s, platform_sp->GetUserIDResolver(), true, false);
2826               }
2827               error.SetErrorStringWithFormat(
2828                   "more than one process named %s:\n%s", process_name,
2829                   s.GetData());
2830             } else
2831               error.SetErrorStringWithFormat(
2832                   "could not find a process named %s", process_name);
2833           }
2834         } else {
2835           error.SetErrorString(
2836               "invalid platform, can't find processes by name");
2837           return error;
2838         }
2839       }
2840     } else {
2841       error.SetErrorString("invalid process name");
2842     }
2843   }
2844 
2845   if (attach_pid != LLDB_INVALID_PROCESS_ID) {
2846     error = WillAttachToProcessWithID(attach_pid);
2847     if (error.Success()) {
2848 
2849       if (m_public_run_lock.TrySetRunning()) {
2850         // Now attach using these arguments.
2851         m_should_detach = true;
2852         const bool restarted = false;
2853         SetPublicState(eStateAttaching, restarted);
2854         error = DoAttachToProcessWithID(attach_pid, attach_info);
2855       } else {
2856         // This shouldn't happen
2857         error.SetErrorString("failed to acquire process run lock");
2858       }
2859 
2860       if (error.Success()) {
2861         SetNextEventAction(new Process::AttachCompletionHandler(
2862             this, attach_info.GetResumeCount()));
2863         StartPrivateStateThread();
2864       } else {
2865         if (GetID() != LLDB_INVALID_PROCESS_ID)
2866           SetID(LLDB_INVALID_PROCESS_ID);
2867 
2868         const char *error_string = error.AsCString();
2869         if (error_string == nullptr)
2870           error_string = "attach failed";
2871 
2872         SetExitStatus(-1, error_string);
2873       }
2874     }
2875   }
2876   return error;
2877 }
2878 
2879 void Process::CompleteAttach() {
2880   Log *log(GetLog(LLDBLog::Process | LLDBLog::Target));
2881   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
2882 
2883   // Let the process subclass figure out at much as it can about the process
2884   // before we go looking for a dynamic loader plug-in.
2885   ArchSpec process_arch;
2886   DidAttach(process_arch);
2887 
2888   if (process_arch.IsValid()) {
2889     GetTarget().SetArchitecture(process_arch);
2890     if (log) {
2891       const char *triple_str = process_arch.GetTriple().getTriple().c_str();
2892       LLDB_LOGF(log,
2893                 "Process::%s replacing process architecture with DidAttach() "
2894                 "architecture: %s",
2895                 __FUNCTION__, triple_str ? triple_str : "<null>");
2896     }
2897   }
2898 
2899   // We just attached.  If we have a platform, ask it for the process
2900   // architecture, and if it isn't the same as the one we've already set,
2901   // switch architectures.
2902   PlatformSP platform_sp(GetTarget().GetPlatform());
2903   assert(platform_sp);
2904   ArchSpec process_host_arch = GetSystemArchitecture();
2905   if (platform_sp) {
2906     const ArchSpec &target_arch = GetTarget().GetArchitecture();
2907     if (target_arch.IsValid() &&
2908         !platform_sp->IsCompatibleArchitecture(target_arch, process_host_arch,
2909                                                false, nullptr)) {
2910       ArchSpec platform_arch;
2911       platform_sp = GetTarget().GetDebugger().GetPlatformList().GetOrCreate(
2912           target_arch, process_host_arch, &platform_arch);
2913       if (platform_sp) {
2914         GetTarget().SetPlatform(platform_sp);
2915         GetTarget().SetArchitecture(platform_arch);
2916         LLDB_LOG(log,
2917                  "switching platform to {0} and architecture to {1} based on "
2918                  "info from attach",
2919                  platform_sp->GetName(), platform_arch.GetTriple().getTriple());
2920       }
2921     } else if (!process_arch.IsValid()) {
2922       ProcessInstanceInfo process_info;
2923       GetProcessInfo(process_info);
2924       const ArchSpec &process_arch = process_info.GetArchitecture();
2925       const ArchSpec &target_arch = GetTarget().GetArchitecture();
2926       if (process_arch.IsValid() &&
2927           target_arch.IsCompatibleMatch(process_arch) &&
2928           !target_arch.IsExactMatch(process_arch)) {
2929         GetTarget().SetArchitecture(process_arch);
2930         LLDB_LOGF(log,
2931                   "Process::%s switching architecture to %s based on info "
2932                   "the platform retrieved for pid %" PRIu64,
2933                   __FUNCTION__, process_arch.GetTriple().getTriple().c_str(),
2934                   GetID());
2935       }
2936     }
2937   }
2938   // Now that we know the process type, update its signal responses from the
2939   // ones stored in the Target:
2940   if (m_unix_signals_sp) {
2941     StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream();
2942     GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm);
2943   }
2944 
2945   // We have completed the attach, now it is time to find the dynamic loader
2946   // plug-in
2947   DynamicLoader *dyld = GetDynamicLoader();
2948   if (dyld) {
2949     dyld->DidAttach();
2950     if (log) {
2951       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2952       LLDB_LOG(log,
2953                "after DynamicLoader::DidAttach(), target "
2954                "executable is {0} (using {1} plugin)",
2955                exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
2956                dyld->GetPluginName());
2957     }
2958   }
2959 
2960   GetJITLoaders().DidAttach();
2961 
2962   SystemRuntime *system_runtime = GetSystemRuntime();
2963   if (system_runtime) {
2964     system_runtime->DidAttach();
2965     if (log) {
2966       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2967       LLDB_LOG(log,
2968                "after SystemRuntime::DidAttach(), target "
2969                "executable is {0} (using {1} plugin)",
2970                exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
2971                system_runtime->GetPluginName());
2972     }
2973   }
2974 
2975   if (!m_os_up) {
2976     LoadOperatingSystemPlugin(false);
2977     if (m_os_up) {
2978       // Somebody might have gotten threads before now, but we need to force the
2979       // update after we've loaded the OperatingSystem plugin or it won't get a
2980       // chance to process the threads.
2981       m_thread_list.Clear();
2982       UpdateThreadListIfNeeded();
2983     }
2984   }
2985   // Figure out which one is the executable, and set that in our target:
2986   ModuleSP new_executable_module_sp;
2987   for (ModuleSP module_sp : GetTarget().GetImages().Modules()) {
2988     if (module_sp && module_sp->IsExecutable()) {
2989       if (GetTarget().GetExecutableModulePointer() != module_sp.get())
2990         new_executable_module_sp = module_sp;
2991       break;
2992     }
2993   }
2994   if (new_executable_module_sp) {
2995     GetTarget().SetExecutableModule(new_executable_module_sp,
2996                                     eLoadDependentsNo);
2997     if (log) {
2998       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2999       LLDB_LOGF(
3000           log,
3001           "Process::%s after looping through modules, target executable is %s",
3002           __FUNCTION__,
3003           exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
3004                         : "<none>");
3005     }
3006   }
3007 }
3008 
3009 Status Process::ConnectRemote(llvm::StringRef remote_url) {
3010   m_abi_sp.reset();
3011   m_process_input_reader.reset();
3012 
3013   // Find the process and its architecture.  Make sure it matches the
3014   // architecture of the current Target, and if not adjust it.
3015 
3016   Status error(DoConnectRemote(remote_url));
3017   if (error.Success()) {
3018     if (GetID() != LLDB_INVALID_PROCESS_ID) {
3019       EventSP event_sp;
3020       StateType state = WaitForProcessStopPrivate(event_sp, llvm::None);
3021 
3022       if (state == eStateStopped || state == eStateCrashed) {
3023         // If we attached and actually have a process on the other end, then
3024         // this ended up being the equivalent of an attach.
3025         CompleteAttach();
3026 
3027         // This delays passing the stopped event to listeners till
3028         // CompleteAttach gets a chance to complete...
3029         HandlePrivateEvent(event_sp);
3030       }
3031     }
3032 
3033     if (PrivateStateThreadIsValid())
3034       ResumePrivateStateThread();
3035     else
3036       StartPrivateStateThread();
3037   }
3038   return error;
3039 }
3040 
3041 Status Process::PrivateResume() {
3042   Log *log(GetLog(LLDBLog::Process | LLDBLog::Step));
3043   LLDB_LOGF(log,
3044             "Process::PrivateResume() m_stop_id = %u, public state: %s "
3045             "private state: %s",
3046             m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()),
3047             StateAsCString(m_private_state.GetValue()));
3048 
3049   // If signals handing status changed we might want to update our signal
3050   // filters before resuming.
3051   UpdateAutomaticSignalFiltering();
3052 
3053   Status error(WillResume());
3054   // Tell the process it is about to resume before the thread list
3055   if (error.Success()) {
3056     // Now let the thread list know we are about to resume so it can let all of
3057     // our threads know that they are about to be resumed. Threads will each be
3058     // called with Thread::WillResume(StateType) where StateType contains the
3059     // state that they are supposed to have when the process is resumed
3060     // (suspended/running/stepping). Threads should also check their resume
3061     // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to
3062     // start back up with a signal.
3063     if (m_thread_list.WillResume()) {
3064       // Last thing, do the PreResumeActions.
3065       if (!RunPreResumeActions()) {
3066         error.SetErrorString(
3067             "Process::PrivateResume PreResumeActions failed, not resuming.");
3068       } else {
3069         m_mod_id.BumpResumeID();
3070         error = DoResume();
3071         if (error.Success()) {
3072           DidResume();
3073           m_thread_list.DidResume();
3074           LLDB_LOGF(log, "Process thinks the process has resumed.");
3075         } else {
3076           LLDB_LOGF(log, "Process::PrivateResume() DoResume failed.");
3077           return error;
3078         }
3079       }
3080     } else {
3081       // Somebody wanted to run without running (e.g. we were faking a step
3082       // from one frame of a set of inlined frames that share the same PC to
3083       // another.)  So generate a continue & a stopped event, and let the world
3084       // handle them.
3085       LLDB_LOGF(log,
3086                 "Process::PrivateResume() asked to simulate a start & stop.");
3087 
3088       SetPrivateState(eStateRunning);
3089       SetPrivateState(eStateStopped);
3090     }
3091   } else
3092     LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".",
3093               error.AsCString("<unknown error>"));
3094   return error;
3095 }
3096 
3097 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) {
3098   if (!StateIsRunningState(m_public_state.GetValue()))
3099     return Status("Process is not running.");
3100 
3101   // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in
3102   // case it was already set and some thread plan logic calls halt on its own.
3103   m_clear_thread_plans_on_stop |= clear_thread_plans;
3104 
3105   ListenerSP halt_listener_sp(
3106       Listener::MakeListener("lldb.process.halt_listener"));
3107   HijackProcessEvents(halt_listener_sp);
3108 
3109   EventSP event_sp;
3110 
3111   SendAsyncInterrupt();
3112 
3113   if (m_public_state.GetValue() == eStateAttaching) {
3114     // Don't hijack and eat the eStateExited as the code that was doing the
3115     // attach will be waiting for this event...
3116     RestoreProcessEvents();
3117     SetExitStatus(SIGKILL, "Cancelled async attach.");
3118     Destroy(false);
3119     return Status();
3120   }
3121 
3122   // Wait for the process halt timeout seconds for the process to stop.
3123   StateType state =
3124       WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true,
3125                            halt_listener_sp, nullptr, use_run_lock);
3126   RestoreProcessEvents();
3127 
3128   if (state == eStateInvalid || !event_sp) {
3129     // We timed out and didn't get a stop event...
3130     return Status("Halt timed out. State = %s", StateAsCString(GetState()));
3131   }
3132 
3133   BroadcastEvent(event_sp);
3134 
3135   return Status();
3136 }
3137 
3138 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) {
3139   Status error;
3140 
3141   // Check both the public & private states here.  If we're hung evaluating an
3142   // expression, for instance, then the public state will be stopped, but we
3143   // still need to interrupt.
3144   if (m_public_state.GetValue() == eStateRunning ||
3145       m_private_state.GetValue() == eStateRunning) {
3146     Log *log = GetLog(LLDBLog::Process);
3147     LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__);
3148 
3149     ListenerSP listener_sp(
3150         Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack"));
3151     HijackProcessEvents(listener_sp);
3152 
3153     SendAsyncInterrupt();
3154 
3155     // Consume the interrupt event.
3156     StateType state = WaitForProcessToStop(GetInterruptTimeout(),
3157                                            &exit_event_sp, true, listener_sp);
3158 
3159     RestoreProcessEvents();
3160 
3161     // If the process exited while we were waiting for it to stop, put the
3162     // exited event into the shared pointer passed in and return.  Our caller
3163     // doesn't need to do anything else, since they don't have a process
3164     // anymore...
3165 
3166     if (state == eStateExited || m_private_state.GetValue() == eStateExited) {
3167       LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.",
3168                 __FUNCTION__);
3169       return error;
3170     } else
3171       exit_event_sp.reset(); // It is ok to consume any non-exit stop events
3172 
3173     if (state != eStateStopped) {
3174       LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__,
3175                 StateAsCString(state));
3176       // If we really couldn't stop the process then we should just error out
3177       // here, but if the lower levels just bobbled sending the event and we
3178       // really are stopped, then continue on.
3179       StateType private_state = m_private_state.GetValue();
3180       if (private_state != eStateStopped) {
3181         return Status(
3182             "Attempt to stop the target in order to detach timed out. "
3183             "State = %s",
3184             StateAsCString(GetState()));
3185       }
3186     }
3187   }
3188   return error;
3189 }
3190 
3191 Status Process::Detach(bool keep_stopped) {
3192   EventSP exit_event_sp;
3193   Status error;
3194   m_destroy_in_process = true;
3195 
3196   error = WillDetach();
3197 
3198   if (error.Success()) {
3199     if (DetachRequiresHalt()) {
3200       error = StopForDestroyOrDetach(exit_event_sp);
3201       if (!error.Success()) {
3202         m_destroy_in_process = false;
3203         return error;
3204       } else if (exit_event_sp) {
3205         // We shouldn't need to do anything else here.  There's no process left
3206         // to detach from...
3207         StopPrivateStateThread();
3208         m_destroy_in_process = false;
3209         return error;
3210       }
3211     }
3212 
3213     m_thread_list.DiscardThreadPlans();
3214     DisableAllBreakpointSites();
3215 
3216     error = DoDetach(keep_stopped);
3217     if (error.Success()) {
3218       DidDetach();
3219       StopPrivateStateThread();
3220     } else {
3221       return error;
3222     }
3223   }
3224   m_destroy_in_process = false;
3225 
3226   // If we exited when we were waiting for a process to stop, then forward the
3227   // event here so we don't lose the event
3228   if (exit_event_sp) {
3229     // Directly broadcast our exited event because we shut down our private
3230     // state thread above
3231     BroadcastEvent(exit_event_sp);
3232   }
3233 
3234   // If we have been interrupted (to kill us) in the middle of running, we may
3235   // not end up propagating the last events through the event system, in which
3236   // case we might strand the write lock.  Unlock it here so when we do to tear
3237   // down the process we don't get an error destroying the lock.
3238 
3239   m_public_run_lock.SetStopped();
3240   return error;
3241 }
3242 
3243 Status Process::Destroy(bool force_kill) {
3244   // If we've already called Process::Finalize then there's nothing useful to
3245   // be done here.  Finalize has actually called Destroy already.
3246   if (m_finalizing)
3247     return {};
3248   return DestroyImpl(force_kill);
3249 }
3250 
3251 Status Process::DestroyImpl(bool force_kill) {
3252   // Tell ourselves we are in the process of destroying the process, so that we
3253   // don't do any unnecessary work that might hinder the destruction.  Remember
3254   // to set this back to false when we are done.  That way if the attempt
3255   // failed and the process stays around for some reason it won't be in a
3256   // confused state.
3257 
3258   if (force_kill)
3259     m_should_detach = false;
3260 
3261   if (GetShouldDetach()) {
3262     // FIXME: This will have to be a process setting:
3263     bool keep_stopped = false;
3264     Detach(keep_stopped);
3265   }
3266 
3267   m_destroy_in_process = true;
3268 
3269   Status error(WillDestroy());
3270   if (error.Success()) {
3271     EventSP exit_event_sp;
3272     if (DestroyRequiresHalt()) {
3273       error = StopForDestroyOrDetach(exit_event_sp);
3274     }
3275 
3276     if (m_public_state.GetValue() == eStateStopped) {
3277       // Ditch all thread plans, and remove all our breakpoints: in case we
3278       // have to restart the target to kill it, we don't want it hitting a
3279       // breakpoint... Only do this if we've stopped, however, since if we
3280       // didn't manage to halt it above, then we're not going to have much luck
3281       // doing this now.
3282       m_thread_list.DiscardThreadPlans();
3283       DisableAllBreakpointSites();
3284     }
3285 
3286     error = DoDestroy();
3287     if (error.Success()) {
3288       DidDestroy();
3289       StopPrivateStateThread();
3290     }
3291     m_stdio_communication.StopReadThread();
3292     m_stdio_communication.Disconnect();
3293     m_stdin_forward = false;
3294 
3295     if (m_process_input_reader) {
3296       m_process_input_reader->SetIsDone(true);
3297       m_process_input_reader->Cancel();
3298       m_process_input_reader.reset();
3299     }
3300 
3301     // If we exited when we were waiting for a process to stop, then forward
3302     // the event here so we don't lose the event
3303     if (exit_event_sp) {
3304       // Directly broadcast our exited event because we shut down our private
3305       // state thread above
3306       BroadcastEvent(exit_event_sp);
3307     }
3308 
3309     // If we have been interrupted (to kill us) in the middle of running, we
3310     // may not end up propagating the last events through the event system, in
3311     // which case we might strand the write lock.  Unlock it here so when we do
3312     // to tear down the process we don't get an error destroying the lock.
3313     m_public_run_lock.SetStopped();
3314   }
3315 
3316   m_destroy_in_process = false;
3317 
3318   return error;
3319 }
3320 
3321 Status Process::Signal(int signal) {
3322   Status error(WillSignal());
3323   if (error.Success()) {
3324     error = DoSignal(signal);
3325     if (error.Success())
3326       DidSignal();
3327   }
3328   return error;
3329 }
3330 
3331 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) {
3332   assert(signals_sp && "null signals_sp");
3333   m_unix_signals_sp = signals_sp;
3334 }
3335 
3336 const lldb::UnixSignalsSP &Process::GetUnixSignals() {
3337   assert(m_unix_signals_sp && "null m_unix_signals_sp");
3338   return m_unix_signals_sp;
3339 }
3340 
3341 lldb::ByteOrder Process::GetByteOrder() const {
3342   return GetTarget().GetArchitecture().GetByteOrder();
3343 }
3344 
3345 uint32_t Process::GetAddressByteSize() const {
3346   return GetTarget().GetArchitecture().GetAddressByteSize();
3347 }
3348 
3349 bool Process::ShouldBroadcastEvent(Event *event_ptr) {
3350   const StateType state =
3351       Process::ProcessEventData::GetStateFromEvent(event_ptr);
3352   bool return_value = true;
3353   Log *log(GetLog(LLDBLog::Events | LLDBLog::Process));
3354 
3355   switch (state) {
3356   case eStateDetached:
3357   case eStateExited:
3358   case eStateUnloaded:
3359     m_stdio_communication.SynchronizeWithReadThread();
3360     m_stdio_communication.StopReadThread();
3361     m_stdio_communication.Disconnect();
3362     m_stdin_forward = false;
3363 
3364     LLVM_FALLTHROUGH;
3365   case eStateConnected:
3366   case eStateAttaching:
3367   case eStateLaunching:
3368     // These events indicate changes in the state of the debugging session,
3369     // always report them.
3370     return_value = true;
3371     break;
3372   case eStateInvalid:
3373     // We stopped for no apparent reason, don't report it.
3374     return_value = false;
3375     break;
3376   case eStateRunning:
3377   case eStateStepping:
3378     // If we've started the target running, we handle the cases where we are
3379     // already running and where there is a transition from stopped to running
3380     // differently. running -> running: Automatically suppress extra running
3381     // events stopped -> running: Report except when there is one or more no
3382     // votes
3383     //     and no yes votes.
3384     SynchronouslyNotifyStateChanged(state);
3385     if (m_force_next_event_delivery)
3386       return_value = true;
3387     else {
3388       switch (m_last_broadcast_state) {
3389       case eStateRunning:
3390       case eStateStepping:
3391         // We always suppress multiple runnings with no PUBLIC stop in between.
3392         return_value = false;
3393         break;
3394       default:
3395         // TODO: make this work correctly. For now always report
3396         // run if we aren't running so we don't miss any running events. If I
3397         // run the lldb/test/thread/a.out file and break at main.cpp:58, run
3398         // and hit the breakpoints on multiple threads, then somehow during the
3399         // stepping over of all breakpoints no run gets reported.
3400 
3401         // This is a transition from stop to run.
3402         switch (m_thread_list.ShouldReportRun(event_ptr)) {
3403         case eVoteYes:
3404         case eVoteNoOpinion:
3405           return_value = true;
3406           break;
3407         case eVoteNo:
3408           return_value = false;
3409           break;
3410         }
3411         break;
3412       }
3413     }
3414     break;
3415   case eStateStopped:
3416   case eStateCrashed:
3417   case eStateSuspended:
3418     // We've stopped.  First see if we're going to restart the target. If we
3419     // are going to stop, then we always broadcast the event. If we aren't
3420     // going to stop, let the thread plans decide if we're going to report this
3421     // event. If no thread has an opinion, we don't report it.
3422 
3423     m_stdio_communication.SynchronizeWithReadThread();
3424     RefreshStateAfterStop();
3425     if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) {
3426       LLDB_LOGF(log,
3427                 "Process::ShouldBroadcastEvent (%p) stopped due to an "
3428                 "interrupt, state: %s",
3429                 static_cast<void *>(event_ptr), StateAsCString(state));
3430       // Even though we know we are going to stop, we should let the threads
3431       // have a look at the stop, so they can properly set their state.
3432       m_thread_list.ShouldStop(event_ptr);
3433       return_value = true;
3434     } else {
3435       bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr);
3436       bool should_resume = false;
3437 
3438       // It makes no sense to ask "ShouldStop" if we've already been
3439       // restarted... Asking the thread list is also not likely to go well,
3440       // since we are running again. So in that case just report the event.
3441 
3442       if (!was_restarted)
3443         should_resume = !m_thread_list.ShouldStop(event_ptr);
3444 
3445       if (was_restarted || should_resume || m_resume_requested) {
3446         Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr);
3447         LLDB_LOGF(log,
3448                   "Process::ShouldBroadcastEvent: should_resume: %i state: "
3449                   "%s was_restarted: %i report_stop_vote: %d.",
3450                   should_resume, StateAsCString(state), was_restarted,
3451                   report_stop_vote);
3452 
3453         switch (report_stop_vote) {
3454         case eVoteYes:
3455           return_value = true;
3456           break;
3457         case eVoteNoOpinion:
3458         case eVoteNo:
3459           return_value = false;
3460           break;
3461         }
3462 
3463         if (!was_restarted) {
3464           LLDB_LOGF(log,
3465                     "Process::ShouldBroadcastEvent (%p) Restarting process "
3466                     "from state: %s",
3467                     static_cast<void *>(event_ptr), StateAsCString(state));
3468           ProcessEventData::SetRestartedInEvent(event_ptr, true);
3469           PrivateResume();
3470         }
3471       } else {
3472         return_value = true;
3473         SynchronouslyNotifyStateChanged(state);
3474       }
3475     }
3476     break;
3477   }
3478 
3479   // Forcing the next event delivery is a one shot deal.  So reset it here.
3480   m_force_next_event_delivery = false;
3481 
3482   // We do some coalescing of events (for instance two consecutive running
3483   // events get coalesced.) But we only coalesce against events we actually
3484   // broadcast.  So we use m_last_broadcast_state to track that.  NB - you
3485   // can't use "m_public_state.GetValue()" for that purpose, as was originally
3486   // done, because the PublicState reflects the last event pulled off the
3487   // queue, and there may be several events stacked up on the queue unserviced.
3488   // So the PublicState may not reflect the last broadcasted event yet.
3489   // m_last_broadcast_state gets updated here.
3490 
3491   if (return_value)
3492     m_last_broadcast_state = state;
3493 
3494   LLDB_LOGF(log,
3495             "Process::ShouldBroadcastEvent (%p) => new state: %s, last "
3496             "broadcast state: %s - %s",
3497             static_cast<void *>(event_ptr), StateAsCString(state),
3498             StateAsCString(m_last_broadcast_state),
3499             return_value ? "YES" : "NO");
3500   return return_value;
3501 }
3502 
3503 bool Process::StartPrivateStateThread(bool is_secondary_thread) {
3504   Log *log = GetLog(LLDBLog::Events);
3505 
3506   bool already_running = PrivateStateThreadIsValid();
3507   LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__,
3508             already_running ? " already running"
3509                             : " starting private state thread");
3510 
3511   if (!is_secondary_thread && already_running)
3512     return true;
3513 
3514   // Create a thread that watches our internal state and controls which events
3515   // make it to clients (into the DCProcess event queue).
3516   char thread_name[1024];
3517   uint32_t max_len = llvm::get_max_thread_name_length();
3518   if (max_len > 0 && max_len <= 30) {
3519     // On platforms with abbreviated thread name lengths, choose thread names
3520     // that fit within the limit.
3521     if (already_running)
3522       snprintf(thread_name, sizeof(thread_name), "intern-state-OV");
3523     else
3524       snprintf(thread_name, sizeof(thread_name), "intern-state");
3525   } else {
3526     if (already_running)
3527       snprintf(thread_name, sizeof(thread_name),
3528                "<lldb.process.internal-state-override(pid=%" PRIu64 ")>",
3529                GetID());
3530     else
3531       snprintf(thread_name, sizeof(thread_name),
3532                "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID());
3533   }
3534 
3535   llvm::Expected<HostThread> private_state_thread =
3536       ThreadLauncher::LaunchThread(
3537           thread_name,
3538           [this, is_secondary_thread] {
3539             return RunPrivateStateThread(is_secondary_thread);
3540           },
3541           8 * 1024 * 1024);
3542   if (!private_state_thread) {
3543     LLDB_LOG(GetLog(LLDBLog::Host), "failed to launch host thread: {}",
3544              llvm::toString(private_state_thread.takeError()));
3545     return false;
3546   }
3547 
3548   assert(private_state_thread->IsJoinable());
3549   m_private_state_thread = *private_state_thread;
3550   ResumePrivateStateThread();
3551   return true;
3552 }
3553 
3554 void Process::PausePrivateStateThread() {
3555   ControlPrivateStateThread(eBroadcastInternalStateControlPause);
3556 }
3557 
3558 void Process::ResumePrivateStateThread() {
3559   ControlPrivateStateThread(eBroadcastInternalStateControlResume);
3560 }
3561 
3562 void Process::StopPrivateStateThread() {
3563   if (m_private_state_thread.IsJoinable())
3564     ControlPrivateStateThread(eBroadcastInternalStateControlStop);
3565   else {
3566     Log *log = GetLog(LLDBLog::Process);
3567     LLDB_LOGF(
3568         log,
3569         "Went to stop the private state thread, but it was already invalid.");
3570   }
3571 }
3572 
3573 void Process::ControlPrivateStateThread(uint32_t signal) {
3574   Log *log = GetLog(LLDBLog::Process);
3575 
3576   assert(signal == eBroadcastInternalStateControlStop ||
3577          signal == eBroadcastInternalStateControlPause ||
3578          signal == eBroadcastInternalStateControlResume);
3579 
3580   LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal);
3581 
3582   // Signal the private state thread
3583   if (m_private_state_thread.IsJoinable()) {
3584     // Broadcast the event.
3585     // It is important to do this outside of the if below, because it's
3586     // possible that the thread state is invalid but that the thread is waiting
3587     // on a control event instead of simply being on its way out (this should
3588     // not happen, but it apparently can).
3589     LLDB_LOGF(log, "Sending control event of type: %d.", signal);
3590     std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt());
3591     m_private_state_control_broadcaster.BroadcastEvent(signal,
3592                                                        event_receipt_sp);
3593 
3594     // Wait for the event receipt or for the private state thread to exit
3595     bool receipt_received = false;
3596     if (PrivateStateThreadIsValid()) {
3597       while (!receipt_received) {
3598         // Check for a receipt for n seconds and then check if the private
3599         // state thread is still around.
3600         receipt_received =
3601           event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout());
3602         if (!receipt_received) {
3603           // Check if the private state thread is still around. If it isn't
3604           // then we are done waiting
3605           if (!PrivateStateThreadIsValid())
3606             break; // Private state thread exited or is exiting, we are done
3607         }
3608       }
3609     }
3610 
3611     if (signal == eBroadcastInternalStateControlStop) {
3612       thread_result_t result = {};
3613       m_private_state_thread.Join(&result);
3614       m_private_state_thread.Reset();
3615     }
3616   } else {
3617     LLDB_LOGF(
3618         log,
3619         "Private state thread already dead, no need to signal it to stop.");
3620   }
3621 }
3622 
3623 void Process::SendAsyncInterrupt() {
3624   if (PrivateStateThreadIsValid())
3625     m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt,
3626                                                nullptr);
3627   else
3628     BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr);
3629 }
3630 
3631 void Process::HandlePrivateEvent(EventSP &event_sp) {
3632   Log *log = GetLog(LLDBLog::Process);
3633   m_resume_requested = false;
3634 
3635   const StateType new_state =
3636       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3637 
3638   // First check to see if anybody wants a shot at this event:
3639   if (m_next_event_action_up) {
3640     NextEventAction::EventActionResult action_result =
3641         m_next_event_action_up->PerformAction(event_sp);
3642     LLDB_LOGF(log, "Ran next event action, result was %d.", action_result);
3643 
3644     switch (action_result) {
3645     case NextEventAction::eEventActionSuccess:
3646       SetNextEventAction(nullptr);
3647       break;
3648 
3649     case NextEventAction::eEventActionRetry:
3650       break;
3651 
3652     case NextEventAction::eEventActionExit:
3653       // Handle Exiting Here.  If we already got an exited event, we should
3654       // just propagate it.  Otherwise, swallow this event, and set our state
3655       // to exit so the next event will kill us.
3656       if (new_state != eStateExited) {
3657         // FIXME: should cons up an exited event, and discard this one.
3658         SetExitStatus(0, m_next_event_action_up->GetExitString());
3659         SetNextEventAction(nullptr);
3660         return;
3661       }
3662       SetNextEventAction(nullptr);
3663       break;
3664     }
3665   }
3666 
3667   // See if we should broadcast this state to external clients?
3668   const bool should_broadcast = ShouldBroadcastEvent(event_sp.get());
3669 
3670   if (should_broadcast) {
3671     const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged);
3672     if (log) {
3673       LLDB_LOGF(log,
3674                 "Process::%s (pid = %" PRIu64
3675                 ") broadcasting new state %s (old state %s) to %s",
3676                 __FUNCTION__, GetID(), StateAsCString(new_state),
3677                 StateAsCString(GetState()),
3678                 is_hijacked ? "hijacked" : "public");
3679     }
3680     Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get());
3681     if (StateIsRunningState(new_state)) {
3682       // Only push the input handler if we aren't fowarding events, as this
3683       // means the curses GUI is in use... Or don't push it if we are launching
3684       // since it will come up stopped.
3685       if (!GetTarget().GetDebugger().IsForwardingEvents() &&
3686           new_state != eStateLaunching && new_state != eStateAttaching) {
3687         PushProcessIOHandler();
3688         m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1,
3689                                   eBroadcastAlways);
3690         LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d",
3691                   __FUNCTION__, m_iohandler_sync.GetValue());
3692       }
3693     } else if (StateIsStoppedState(new_state, false)) {
3694       if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
3695         // If the lldb_private::Debugger is handling the events, we don't want
3696         // to pop the process IOHandler here, we want to do it when we receive
3697         // the stopped event so we can carefully control when the process
3698         // IOHandler is popped because when we stop we want to display some
3699         // text stating how and why we stopped, then maybe some
3700         // process/thread/frame info, and then we want the "(lldb) " prompt to
3701         // show up. If we pop the process IOHandler here, then we will cause
3702         // the command interpreter to become the top IOHandler after the
3703         // process pops off and it will update its prompt right away... See the
3704         // Debugger.cpp file where it calls the function as
3705         // "process_sp->PopProcessIOHandler()" to see where I am talking about.
3706         // Otherwise we end up getting overlapping "(lldb) " prompts and
3707         // garbled output.
3708         //
3709         // If we aren't handling the events in the debugger (which is indicated
3710         // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or
3711         // we are hijacked, then we always pop the process IO handler manually.
3712         // Hijacking happens when the internal process state thread is running
3713         // thread plans, or when commands want to run in synchronous mode and
3714         // they call "process->WaitForProcessToStop()". An example of something
3715         // that will hijack the events is a simple expression:
3716         //
3717         //  (lldb) expr (int)puts("hello")
3718         //
3719         // This will cause the internal process state thread to resume and halt
3720         // the process (and _it_ will hijack the eBroadcastBitStateChanged
3721         // events) and we do need the IO handler to be pushed and popped
3722         // correctly.
3723 
3724         if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents())
3725           PopProcessIOHandler();
3726       }
3727     }
3728 
3729     BroadcastEvent(event_sp);
3730   } else {
3731     if (log) {
3732       LLDB_LOGF(
3733           log,
3734           "Process::%s (pid = %" PRIu64
3735           ") suppressing state %s (old state %s): should_broadcast == false",
3736           __FUNCTION__, GetID(), StateAsCString(new_state),
3737           StateAsCString(GetState()));
3738     }
3739   }
3740 }
3741 
3742 Status Process::HaltPrivate() {
3743   EventSP event_sp;
3744   Status error(WillHalt());
3745   if (error.Fail())
3746     return error;
3747 
3748   // Ask the process subclass to actually halt our process
3749   bool caused_stop;
3750   error = DoHalt(caused_stop);
3751 
3752   DidHalt();
3753   return error;
3754 }
3755 
3756 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) {
3757   bool control_only = true;
3758 
3759   Log *log = GetLog(LLDBLog::Process);
3760   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...",
3761             __FUNCTION__, static_cast<void *>(this), GetID());
3762 
3763   bool exit_now = false;
3764   bool interrupt_requested = false;
3765   while (!exit_now) {
3766     EventSP event_sp;
3767     GetEventsPrivate(event_sp, llvm::None, control_only);
3768     if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) {
3769       LLDB_LOGF(log,
3770                 "Process::%s (arg = %p, pid = %" PRIu64
3771                 ") got a control event: %d",
3772                 __FUNCTION__, static_cast<void *>(this), GetID(),
3773                 event_sp->GetType());
3774 
3775       switch (event_sp->GetType()) {
3776       case eBroadcastInternalStateControlStop:
3777         exit_now = true;
3778         break; // doing any internal state management below
3779 
3780       case eBroadcastInternalStateControlPause:
3781         control_only = true;
3782         break;
3783 
3784       case eBroadcastInternalStateControlResume:
3785         control_only = false;
3786         break;
3787       }
3788 
3789       continue;
3790     } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
3791       if (m_public_state.GetValue() == eStateAttaching) {
3792         LLDB_LOGF(log,
3793                   "Process::%s (arg = %p, pid = %" PRIu64
3794                   ") woke up with an interrupt while attaching - "
3795                   "forwarding interrupt.",
3796                   __FUNCTION__, static_cast<void *>(this), GetID());
3797         BroadcastEvent(eBroadcastBitInterrupt, nullptr);
3798       } else if (StateIsRunningState(m_last_broadcast_state)) {
3799         LLDB_LOGF(log,
3800                   "Process::%s (arg = %p, pid = %" PRIu64
3801                   ") woke up with an interrupt - Halting.",
3802                   __FUNCTION__, static_cast<void *>(this), GetID());
3803         Status error = HaltPrivate();
3804         if (error.Fail() && log)
3805           LLDB_LOGF(log,
3806                     "Process::%s (arg = %p, pid = %" PRIu64
3807                     ") failed to halt the process: %s",
3808                     __FUNCTION__, static_cast<void *>(this), GetID(),
3809                     error.AsCString());
3810         // Halt should generate a stopped event. Make a note of the fact that
3811         // we were doing the interrupt, so we can set the interrupted flag
3812         // after we receive the event. We deliberately set this to true even if
3813         // HaltPrivate failed, so that we can interrupt on the next natural
3814         // stop.
3815         interrupt_requested = true;
3816       } else {
3817         // This can happen when someone (e.g. Process::Halt) sees that we are
3818         // running and sends an interrupt request, but the process actually
3819         // stops before we receive it. In that case, we can just ignore the
3820         // request. We use m_last_broadcast_state, because the Stopped event
3821         // may not have been popped of the event queue yet, which is when the
3822         // public state gets updated.
3823         LLDB_LOGF(log,
3824                   "Process::%s ignoring interrupt as we have already stopped.",
3825                   __FUNCTION__);
3826       }
3827       continue;
3828     }
3829 
3830     const StateType internal_state =
3831         Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3832 
3833     if (internal_state != eStateInvalid) {
3834       if (m_clear_thread_plans_on_stop &&
3835           StateIsStoppedState(internal_state, true)) {
3836         m_clear_thread_plans_on_stop = false;
3837         m_thread_list.DiscardThreadPlans();
3838       }
3839 
3840       if (interrupt_requested) {
3841         if (StateIsStoppedState(internal_state, true)) {
3842           // We requested the interrupt, so mark this as such in the stop event
3843           // so clients can tell an interrupted process from a natural stop
3844           ProcessEventData::SetInterruptedInEvent(event_sp.get(), true);
3845           interrupt_requested = false;
3846         } else if (log) {
3847           LLDB_LOGF(log,
3848                     "Process::%s interrupt_requested, but a non-stopped "
3849                     "state '%s' received.",
3850                     __FUNCTION__, StateAsCString(internal_state));
3851         }
3852       }
3853 
3854       HandlePrivateEvent(event_sp);
3855     }
3856 
3857     if (internal_state == eStateInvalid || internal_state == eStateExited ||
3858         internal_state == eStateDetached) {
3859       LLDB_LOGF(log,
3860                 "Process::%s (arg = %p, pid = %" PRIu64
3861                 ") about to exit with internal state %s...",
3862                 __FUNCTION__, static_cast<void *>(this), GetID(),
3863                 StateAsCString(internal_state));
3864 
3865       break;
3866     }
3867   }
3868 
3869   // Verify log is still enabled before attempting to write to it...
3870   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...",
3871             __FUNCTION__, static_cast<void *>(this), GetID());
3872 
3873   // If we are a secondary thread, then the primary thread we are working for
3874   // will have already acquired the public_run_lock, and isn't done with what
3875   // it was doing yet, so don't try to change it on the way out.
3876   if (!is_secondary_thread)
3877     m_public_run_lock.SetStopped();
3878   return {};
3879 }
3880 
3881 // Process Event Data
3882 
3883 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {}
3884 
3885 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp,
3886                                             StateType state)
3887     : EventData(), m_process_wp(), m_state(state) {
3888   if (process_sp)
3889     m_process_wp = process_sp;
3890 }
3891 
3892 Process::ProcessEventData::~ProcessEventData() = default;
3893 
3894 ConstString Process::ProcessEventData::GetFlavorString() {
3895   static ConstString g_flavor("Process::ProcessEventData");
3896   return g_flavor;
3897 }
3898 
3899 ConstString Process::ProcessEventData::GetFlavor() const {
3900   return ProcessEventData::GetFlavorString();
3901 }
3902 
3903 bool Process::ProcessEventData::ShouldStop(Event *event_ptr,
3904                                            bool &found_valid_stopinfo) {
3905   found_valid_stopinfo = false;
3906 
3907   ProcessSP process_sp(m_process_wp.lock());
3908   if (!process_sp)
3909     return false;
3910 
3911   ThreadList &curr_thread_list = process_sp->GetThreadList();
3912   uint32_t num_threads = curr_thread_list.GetSize();
3913   uint32_t idx;
3914 
3915   // The actions might change one of the thread's stop_info's opinions about
3916   // whether we should stop the process, so we need to query that as we go.
3917 
3918   // One other complication here, is that we try to catch any case where the
3919   // target has run (except for expressions) and immediately exit, but if we
3920   // get that wrong (which is possible) then the thread list might have
3921   // changed, and that would cause our iteration here to crash.  We could
3922   // make a copy of the thread list, but we'd really like to also know if it
3923   // has changed at all, so we make up a vector of the thread ID's and check
3924   // what we get back against this list & bag out if anything differs.
3925   ThreadList not_suspended_thread_list(process_sp.get());
3926   std::vector<uint32_t> thread_index_array(num_threads);
3927   uint32_t not_suspended_idx = 0;
3928   for (idx = 0; idx < num_threads; ++idx) {
3929     lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx);
3930 
3931     /*
3932      Filter out all suspended threads, they could not be the reason
3933      of stop and no need to perform any actions on them.
3934      */
3935     if (thread_sp->GetResumeState() != eStateSuspended) {
3936       not_suspended_thread_list.AddThread(thread_sp);
3937       thread_index_array[not_suspended_idx] = thread_sp->GetIndexID();
3938       not_suspended_idx++;
3939     }
3940   }
3941 
3942   // Use this to track whether we should continue from here.  We will only
3943   // continue the target running if no thread says we should stop.  Of course
3944   // if some thread's PerformAction actually sets the target running, then it
3945   // doesn't matter what the other threads say...
3946 
3947   bool still_should_stop = false;
3948 
3949   // Sometimes - for instance if we have a bug in the stub we are talking to,
3950   // we stop but no thread has a valid stop reason.  In that case we should
3951   // just stop, because we have no way of telling what the right thing to do
3952   // is, and it's better to let the user decide than continue behind their
3953   // backs.
3954 
3955   for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) {
3956     curr_thread_list = process_sp->GetThreadList();
3957     if (curr_thread_list.GetSize() != num_threads) {
3958       Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
3959       LLDB_LOGF(
3960           log,
3961           "Number of threads changed from %u to %u while processing event.",
3962           num_threads, curr_thread_list.GetSize());
3963       break;
3964     }
3965 
3966     lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx);
3967 
3968     if (thread_sp->GetIndexID() != thread_index_array[idx]) {
3969       Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
3970       LLDB_LOGF(log,
3971                 "The thread at position %u changed from %u to %u while "
3972                 "processing event.",
3973                 idx, thread_index_array[idx], thread_sp->GetIndexID());
3974       break;
3975     }
3976 
3977     StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
3978     if (stop_info_sp && stop_info_sp->IsValid()) {
3979       found_valid_stopinfo = true;
3980       bool this_thread_wants_to_stop;
3981       if (stop_info_sp->GetOverrideShouldStop()) {
3982         this_thread_wants_to_stop =
3983             stop_info_sp->GetOverriddenShouldStopValue();
3984       } else {
3985         stop_info_sp->PerformAction(event_ptr);
3986         // The stop action might restart the target.  If it does, then we
3987         // want to mark that in the event so that whoever is receiving it
3988         // will know to wait for the running event and reflect that state
3989         // appropriately. We also need to stop processing actions, since they
3990         // aren't expecting the target to be running.
3991 
3992         // FIXME: we might have run.
3993         if (stop_info_sp->HasTargetRunSinceMe()) {
3994           SetRestarted(true);
3995           break;
3996         }
3997 
3998         this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr);
3999       }
4000 
4001       if (!still_should_stop)
4002         still_should_stop = this_thread_wants_to_stop;
4003     }
4004   }
4005 
4006   return still_should_stop;
4007 }
4008 
4009 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) {
4010   ProcessSP process_sp(m_process_wp.lock());
4011 
4012   if (!process_sp)
4013     return;
4014 
4015   // This function gets called twice for each event, once when the event gets
4016   // pulled off of the private process event queue, and then any number of
4017   // times, first when it gets pulled off of the public event queue, then other
4018   // times when we're pretending that this is where we stopped at the end of
4019   // expression evaluation.  m_update_state is used to distinguish these three
4020   // cases; it is 0 when we're just pulling it off for private handling, and >
4021   // 1 for expression evaluation, and we don't want to do the breakpoint
4022   // command handling then.
4023   if (m_update_state != 1)
4024     return;
4025 
4026   process_sp->SetPublicState(
4027       m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr));
4028 
4029   if (m_state == eStateStopped && !m_restarted) {
4030     // Let process subclasses know we are about to do a public stop and do
4031     // anything they might need to in order to speed up register and memory
4032     // accesses.
4033     process_sp->WillPublicStop();
4034   }
4035 
4036   // If this is a halt event, even if the halt stopped with some reason other
4037   // than a plain interrupt (e.g. we had already stopped for a breakpoint when
4038   // the halt request came through) don't do the StopInfo actions, as they may
4039   // end up restarting the process.
4040   if (m_interrupted)
4041     return;
4042 
4043   // If we're not stopped or have restarted, then skip the StopInfo actions:
4044   if (m_state != eStateStopped || m_restarted) {
4045     return;
4046   }
4047 
4048   bool does_anybody_have_an_opinion = false;
4049   bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion);
4050 
4051   if (GetRestarted()) {
4052     return;
4053   }
4054 
4055   if (!still_should_stop && does_anybody_have_an_opinion) {
4056     // We've been asked to continue, so do that here.
4057     SetRestarted(true);
4058     // Use the public resume method here, since this is just extending a
4059     // public resume.
4060     process_sp->PrivateResume();
4061   } else {
4062     bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) &&
4063                     !process_sp->StateChangedIsHijackedForSynchronousResume();
4064 
4065     if (!hijacked) {
4066       // If we didn't restart, run the Stop Hooks here.
4067       // Don't do that if state changed events aren't hooked up to the
4068       // public (or SyncResume) broadcasters.  StopHooks are just for
4069       // real public stops.  They might also restart the target,
4070       // so watch for that.
4071       if (process_sp->GetTarget().RunStopHooks())
4072         SetRestarted(true);
4073     }
4074   }
4075 }
4076 
4077 void Process::ProcessEventData::Dump(Stream *s) const {
4078   ProcessSP process_sp(m_process_wp.lock());
4079 
4080   if (process_sp)
4081     s->Printf(" process = %p (pid = %" PRIu64 "), ",
4082               static_cast<void *>(process_sp.get()), process_sp->GetID());
4083   else
4084     s->PutCString(" process = NULL, ");
4085 
4086   s->Printf("state = %s", StateAsCString(GetState()));
4087 }
4088 
4089 const Process::ProcessEventData *
4090 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) {
4091   if (event_ptr) {
4092     const EventData *event_data = event_ptr->GetData();
4093     if (event_data &&
4094         event_data->GetFlavor() == ProcessEventData::GetFlavorString())
4095       return static_cast<const ProcessEventData *>(event_ptr->GetData());
4096   }
4097   return nullptr;
4098 }
4099 
4100 ProcessSP
4101 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) {
4102   ProcessSP process_sp;
4103   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4104   if (data)
4105     process_sp = data->GetProcessSP();
4106   return process_sp;
4107 }
4108 
4109 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) {
4110   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4111   if (data == nullptr)
4112     return eStateInvalid;
4113   else
4114     return data->GetState();
4115 }
4116 
4117 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) {
4118   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4119   if (data == nullptr)
4120     return false;
4121   else
4122     return data->GetRestarted();
4123 }
4124 
4125 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr,
4126                                                     bool new_value) {
4127   ProcessEventData *data =
4128       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4129   if (data != nullptr)
4130     data->SetRestarted(new_value);
4131 }
4132 
4133 size_t
4134 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) {
4135   ProcessEventData *data =
4136       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4137   if (data != nullptr)
4138     return data->GetNumRestartedReasons();
4139   else
4140     return 0;
4141 }
4142 
4143 const char *
4144 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr,
4145                                                      size_t idx) {
4146   ProcessEventData *data =
4147       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4148   if (data != nullptr)
4149     return data->GetRestartedReasonAtIndex(idx);
4150   else
4151     return nullptr;
4152 }
4153 
4154 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr,
4155                                                    const char *reason) {
4156   ProcessEventData *data =
4157       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4158   if (data != nullptr)
4159     data->AddRestartedReason(reason);
4160 }
4161 
4162 bool Process::ProcessEventData::GetInterruptedFromEvent(
4163     const Event *event_ptr) {
4164   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4165   if (data == nullptr)
4166     return false;
4167   else
4168     return data->GetInterrupted();
4169 }
4170 
4171 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr,
4172                                                       bool new_value) {
4173   ProcessEventData *data =
4174       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4175   if (data != nullptr)
4176     data->SetInterrupted(new_value);
4177 }
4178 
4179 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) {
4180   ProcessEventData *data =
4181       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4182   if (data) {
4183     data->SetUpdateStateOnRemoval();
4184     return true;
4185   }
4186   return false;
4187 }
4188 
4189 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); }
4190 
4191 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) {
4192   exe_ctx.SetTargetPtr(&GetTarget());
4193   exe_ctx.SetProcessPtr(this);
4194   exe_ctx.SetThreadPtr(nullptr);
4195   exe_ctx.SetFramePtr(nullptr);
4196 }
4197 
4198 // uint32_t
4199 // Process::ListProcessesMatchingName (const char *name, StringList &matches,
4200 // std::vector<lldb::pid_t> &pids)
4201 //{
4202 //    return 0;
4203 //}
4204 //
4205 // ArchSpec
4206 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid)
4207 //{
4208 //    return Host::GetArchSpecForExistingProcess (pid);
4209 //}
4210 //
4211 // ArchSpec
4212 // Process::GetArchSpecForExistingProcess (const char *process_name)
4213 //{
4214 //    return Host::GetArchSpecForExistingProcess (process_name);
4215 //}
4216 
4217 void Process::AppendSTDOUT(const char *s, size_t len) {
4218   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4219   m_stdout_data.append(s, len);
4220   BroadcastEventIfUnique(eBroadcastBitSTDOUT,
4221                          new ProcessEventData(shared_from_this(), GetState()));
4222 }
4223 
4224 void Process::AppendSTDERR(const char *s, size_t len) {
4225   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4226   m_stderr_data.append(s, len);
4227   BroadcastEventIfUnique(eBroadcastBitSTDERR,
4228                          new ProcessEventData(shared_from_this(), GetState()));
4229 }
4230 
4231 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) {
4232   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4233   m_profile_data.push_back(one_profile_data);
4234   BroadcastEventIfUnique(eBroadcastBitProfileData,
4235                          new ProcessEventData(shared_from_this(), GetState()));
4236 }
4237 
4238 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp,
4239                                       const StructuredDataPluginSP &plugin_sp) {
4240   BroadcastEvent(
4241       eBroadcastBitStructuredData,
4242       new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp));
4243 }
4244 
4245 StructuredDataPluginSP
4246 Process::GetStructuredDataPlugin(ConstString type_name) const {
4247   auto find_it = m_structured_data_plugin_map.find(type_name);
4248   if (find_it != m_structured_data_plugin_map.end())
4249     return find_it->second;
4250   else
4251     return StructuredDataPluginSP();
4252 }
4253 
4254 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) {
4255   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4256   if (m_profile_data.empty())
4257     return 0;
4258 
4259   std::string &one_profile_data = m_profile_data.front();
4260   size_t bytes_available = one_profile_data.size();
4261   if (bytes_available > 0) {
4262     Log *log = GetLog(LLDBLog::Process);
4263     LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")",
4264               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4265     if (bytes_available > buf_size) {
4266       memcpy(buf, one_profile_data.c_str(), buf_size);
4267       one_profile_data.erase(0, buf_size);
4268       bytes_available = buf_size;
4269     } else {
4270       memcpy(buf, one_profile_data.c_str(), bytes_available);
4271       m_profile_data.erase(m_profile_data.begin());
4272     }
4273   }
4274   return bytes_available;
4275 }
4276 
4277 // Process STDIO
4278 
4279 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) {
4280   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4281   size_t bytes_available = m_stdout_data.size();
4282   if (bytes_available > 0) {
4283     Log *log = GetLog(LLDBLog::Process);
4284     LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")",
4285               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4286     if (bytes_available > buf_size) {
4287       memcpy(buf, m_stdout_data.c_str(), buf_size);
4288       m_stdout_data.erase(0, buf_size);
4289       bytes_available = buf_size;
4290     } else {
4291       memcpy(buf, m_stdout_data.c_str(), bytes_available);
4292       m_stdout_data.clear();
4293     }
4294   }
4295   return bytes_available;
4296 }
4297 
4298 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) {
4299   std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex);
4300   size_t bytes_available = m_stderr_data.size();
4301   if (bytes_available > 0) {
4302     Log *log = GetLog(LLDBLog::Process);
4303     LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")",
4304               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4305     if (bytes_available > buf_size) {
4306       memcpy(buf, m_stderr_data.c_str(), buf_size);
4307       m_stderr_data.erase(0, buf_size);
4308       bytes_available = buf_size;
4309     } else {
4310       memcpy(buf, m_stderr_data.c_str(), bytes_available);
4311       m_stderr_data.clear();
4312     }
4313   }
4314   return bytes_available;
4315 }
4316 
4317 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src,
4318                                            size_t src_len) {
4319   Process *process = (Process *)baton;
4320   process->AppendSTDOUT(static_cast<const char *>(src), src_len);
4321 }
4322 
4323 class IOHandlerProcessSTDIO : public IOHandler {
4324 public:
4325   IOHandlerProcessSTDIO(Process *process, int write_fd)
4326       : IOHandler(process->GetTarget().GetDebugger(),
4327                   IOHandler::Type::ProcessIO),
4328         m_process(process),
4329         m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false),
4330         m_write_file(write_fd, File::eOpenOptionWriteOnly, false) {
4331     m_pipe.CreateNew(false);
4332   }
4333 
4334   ~IOHandlerProcessSTDIO() override = default;
4335 
4336   void SetIsRunning(bool running) {
4337     std::lock_guard<std::mutex> guard(m_mutex);
4338     SetIsDone(!running);
4339     m_is_running = running;
4340   }
4341 
4342   // Each IOHandler gets to run until it is done. It should read data from the
4343   // "in" and place output into "out" and "err and return when done.
4344   void Run() override {
4345     if (!m_read_file.IsValid() || !m_write_file.IsValid() ||
4346         !m_pipe.CanRead() || !m_pipe.CanWrite()) {
4347       SetIsDone(true);
4348       return;
4349     }
4350 
4351     SetIsDone(false);
4352     const int read_fd = m_read_file.GetDescriptor();
4353     Terminal terminal(read_fd);
4354     TerminalState terminal_state(terminal, false);
4355     // FIXME: error handling?
4356     llvm::consumeError(terminal.SetCanonical(false));
4357     llvm::consumeError(terminal.SetEcho(false));
4358 // FD_ZERO, FD_SET are not supported on windows
4359 #ifndef _WIN32
4360     const int pipe_read_fd = m_pipe.GetReadFileDescriptor();
4361     SetIsRunning(true);
4362     while (true) {
4363       {
4364         std::lock_guard<std::mutex> guard(m_mutex);
4365         if (GetIsDone())
4366           break;
4367       }
4368 
4369       SelectHelper select_helper;
4370       select_helper.FDSetRead(read_fd);
4371       select_helper.FDSetRead(pipe_read_fd);
4372       Status error = select_helper.Select();
4373 
4374       if (error.Fail())
4375         break;
4376 
4377       char ch = 0;
4378       size_t n;
4379       if (select_helper.FDIsSetRead(read_fd)) {
4380         n = 1;
4381         if (m_read_file.Read(&ch, n).Success() && n == 1) {
4382           if (m_write_file.Write(&ch, n).Fail() || n != 1)
4383             break;
4384         } else
4385           break;
4386       }
4387 
4388       if (select_helper.FDIsSetRead(pipe_read_fd)) {
4389         size_t bytes_read;
4390         // Consume the interrupt byte
4391         Status error = m_pipe.Read(&ch, 1, bytes_read);
4392         if (error.Success()) {
4393           if (ch == 'q')
4394             break;
4395           if (ch == 'i')
4396             if (StateIsRunningState(m_process->GetState()))
4397               m_process->SendAsyncInterrupt();
4398         }
4399       }
4400     }
4401     SetIsRunning(false);
4402 #endif
4403   }
4404 
4405   void Cancel() override {
4406     std::lock_guard<std::mutex> guard(m_mutex);
4407     SetIsDone(true);
4408     // Only write to our pipe to cancel if we are in
4409     // IOHandlerProcessSTDIO::Run(). We can end up with a python command that
4410     // is being run from the command interpreter:
4411     //
4412     // (lldb) step_process_thousands_of_times
4413     //
4414     // In this case the command interpreter will be in the middle of handling
4415     // the command and if the process pushes and pops the IOHandler thousands
4416     // of times, we can end up writing to m_pipe without ever consuming the
4417     // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up
4418     // deadlocking when the pipe gets fed up and blocks until data is consumed.
4419     if (m_is_running) {
4420       char ch = 'q'; // Send 'q' for quit
4421       size_t bytes_written = 0;
4422       m_pipe.Write(&ch, 1, bytes_written);
4423     }
4424   }
4425 
4426   bool Interrupt() override {
4427     // Do only things that are safe to do in an interrupt context (like in a
4428     // SIGINT handler), like write 1 byte to a file descriptor. This will
4429     // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte
4430     // that was written to the pipe and then call
4431     // m_process->SendAsyncInterrupt() from a much safer location in code.
4432     if (m_active) {
4433       char ch = 'i'; // Send 'i' for interrupt
4434       size_t bytes_written = 0;
4435       Status result = m_pipe.Write(&ch, 1, bytes_written);
4436       return result.Success();
4437     } else {
4438       // This IOHandler might be pushed on the stack, but not being run
4439       // currently so do the right thing if we aren't actively watching for
4440       // STDIN by sending the interrupt to the process. Otherwise the write to
4441       // the pipe above would do nothing. This can happen when the command
4442       // interpreter is running and gets a "expression ...". It will be on the
4443       // IOHandler thread and sending the input is complete to the delegate
4444       // which will cause the expression to run, which will push the process IO
4445       // handler, but not run it.
4446 
4447       if (StateIsRunningState(m_process->GetState())) {
4448         m_process->SendAsyncInterrupt();
4449         return true;
4450       }
4451     }
4452     return false;
4453   }
4454 
4455   void GotEOF() override {}
4456 
4457 protected:
4458   Process *m_process;
4459   NativeFile m_read_file;  // Read from this file (usually actual STDIN for LLDB
4460   NativeFile m_write_file; // Write to this file (usually the primary pty for
4461                            // getting io to debuggee)
4462   Pipe m_pipe;
4463   std::mutex m_mutex;
4464   bool m_is_running = false;
4465 };
4466 
4467 void Process::SetSTDIOFileDescriptor(int fd) {
4468   // First set up the Read Thread for reading/handling process I/O
4469   m_stdio_communication.SetConnection(
4470       std::make_unique<ConnectionFileDescriptor>(fd, true));
4471   if (m_stdio_communication.IsConnected()) {
4472     m_stdio_communication.SetReadThreadBytesReceivedCallback(
4473         STDIOReadThreadBytesReceived, this);
4474     m_stdio_communication.StartReadThread();
4475 
4476     // Now read thread is set up, set up input reader.
4477 
4478     if (!m_process_input_reader)
4479       m_process_input_reader =
4480           std::make_shared<IOHandlerProcessSTDIO>(this, fd);
4481   }
4482 }
4483 
4484 bool Process::ProcessIOHandlerIsActive() {
4485   IOHandlerSP io_handler_sp(m_process_input_reader);
4486   if (io_handler_sp)
4487     return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp);
4488   return false;
4489 }
4490 bool Process::PushProcessIOHandler() {
4491   IOHandlerSP io_handler_sp(m_process_input_reader);
4492   if (io_handler_sp) {
4493     Log *log = GetLog(LLDBLog::Process);
4494     LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__);
4495 
4496     io_handler_sp->SetIsDone(false);
4497     // If we evaluate an utility function, then we don't cancel the current
4498     // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the
4499     // existing IOHandler that potentially provides the user interface (e.g.
4500     // the IOHandler for Editline).
4501     bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction();
4502     GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp,
4503                                                 cancel_top_handler);
4504     return true;
4505   }
4506   return false;
4507 }
4508 
4509 bool Process::PopProcessIOHandler() {
4510   IOHandlerSP io_handler_sp(m_process_input_reader);
4511   if (io_handler_sp)
4512     return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp);
4513   return false;
4514 }
4515 
4516 // The process needs to know about installed plug-ins
4517 void Process::SettingsInitialize() { Thread::SettingsInitialize(); }
4518 
4519 void Process::SettingsTerminate() { Thread::SettingsTerminate(); }
4520 
4521 namespace {
4522 // RestorePlanState is used to record the "is private", "is controlling" and
4523 // "okay
4524 // to discard" fields of the plan we are running, and reset it on Clean or on
4525 // destruction. It will only reset the state once, so you can call Clean and
4526 // then monkey with the state and it won't get reset on you again.
4527 
4528 class RestorePlanState {
4529 public:
4530   RestorePlanState(lldb::ThreadPlanSP thread_plan_sp)
4531       : m_thread_plan_sp(thread_plan_sp) {
4532     if (m_thread_plan_sp) {
4533       m_private = m_thread_plan_sp->GetPrivate();
4534       m_is_controlling = m_thread_plan_sp->IsControllingPlan();
4535       m_okay_to_discard = m_thread_plan_sp->OkayToDiscard();
4536     }
4537   }
4538 
4539   ~RestorePlanState() { Clean(); }
4540 
4541   void Clean() {
4542     if (!m_already_reset && m_thread_plan_sp) {
4543       m_already_reset = true;
4544       m_thread_plan_sp->SetPrivate(m_private);
4545       m_thread_plan_sp->SetIsControllingPlan(m_is_controlling);
4546       m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard);
4547     }
4548   }
4549 
4550 private:
4551   lldb::ThreadPlanSP m_thread_plan_sp;
4552   bool m_already_reset = false;
4553   bool m_private;
4554   bool m_is_controlling;
4555   bool m_okay_to_discard;
4556 };
4557 } // anonymous namespace
4558 
4559 static microseconds
4560 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) {
4561   const milliseconds default_one_thread_timeout(250);
4562 
4563   // If the overall wait is forever, then we don't need to worry about it.
4564   if (!options.GetTimeout()) {
4565     return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout()
4566                                          : default_one_thread_timeout;
4567   }
4568 
4569   // If the one thread timeout is set, use it.
4570   if (options.GetOneThreadTimeout())
4571     return *options.GetOneThreadTimeout();
4572 
4573   // Otherwise use half the total timeout, bounded by the
4574   // default_one_thread_timeout.
4575   return std::min<microseconds>(default_one_thread_timeout,
4576                                 *options.GetTimeout() / 2);
4577 }
4578 
4579 static Timeout<std::micro>
4580 GetExpressionTimeout(const EvaluateExpressionOptions &options,
4581                      bool before_first_timeout) {
4582   // If we are going to run all threads the whole time, or if we are only going
4583   // to run one thread, we can just return the overall timeout.
4584   if (!options.GetStopOthers() || !options.GetTryAllThreads())
4585     return options.GetTimeout();
4586 
4587   if (before_first_timeout)
4588     return GetOneThreadExpressionTimeout(options);
4589 
4590   if (!options.GetTimeout())
4591     return llvm::None;
4592   else
4593     return *options.GetTimeout() - GetOneThreadExpressionTimeout(options);
4594 }
4595 
4596 static llvm::Optional<ExpressionResults>
4597 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp,
4598                    RestorePlanState &restorer, const EventSP &event_sp,
4599                    EventSP &event_to_broadcast_sp,
4600                    const EvaluateExpressionOptions &options,
4601                    bool handle_interrupts) {
4602   Log *log = GetLog(LLDBLog::Step | LLDBLog::Process);
4603 
4604   ThreadSP thread_sp = thread_plan_sp->GetTarget()
4605                            .GetProcessSP()
4606                            ->GetThreadList()
4607                            .FindThreadByID(thread_id);
4608   if (!thread_sp) {
4609     LLDB_LOG(log,
4610              "The thread on which we were running the "
4611              "expression: tid = {0}, exited while "
4612              "the expression was running.",
4613              thread_id);
4614     return eExpressionThreadVanished;
4615   }
4616 
4617   ThreadPlanSP plan = thread_sp->GetCompletedPlan();
4618   if (plan == thread_plan_sp && plan->PlanSucceeded()) {
4619     LLDB_LOG(log, "execution completed successfully");
4620 
4621     // Restore the plan state so it will get reported as intended when we are
4622     // done.
4623     restorer.Clean();
4624     return eExpressionCompleted;
4625   }
4626 
4627   StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4628   if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint &&
4629       stop_info_sp->ShouldNotify(event_sp.get())) {
4630     LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription());
4631     if (!options.DoesIgnoreBreakpoints()) {
4632       // Restore the plan state and then force Private to false.  We are going
4633       // to stop because of this plan so we need it to become a public plan or
4634       // it won't report correctly when we continue to its termination later
4635       // on.
4636       restorer.Clean();
4637       thread_plan_sp->SetPrivate(false);
4638       event_to_broadcast_sp = event_sp;
4639     }
4640     return eExpressionHitBreakpoint;
4641   }
4642 
4643   if (!handle_interrupts &&
4644       Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get()))
4645     return llvm::None;
4646 
4647   LLDB_LOG(log, "thread plan did not successfully complete");
4648   if (!options.DoesUnwindOnError())
4649     event_to_broadcast_sp = event_sp;
4650   return eExpressionInterrupted;
4651 }
4652 
4653 ExpressionResults
4654 Process::RunThreadPlan(ExecutionContext &exe_ctx,
4655                        lldb::ThreadPlanSP &thread_plan_sp,
4656                        const EvaluateExpressionOptions &options,
4657                        DiagnosticManager &diagnostic_manager) {
4658   ExpressionResults return_value = eExpressionSetupError;
4659 
4660   std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock);
4661 
4662   if (!thread_plan_sp) {
4663     diagnostic_manager.PutString(
4664         eDiagnosticSeverityError,
4665         "RunThreadPlan called with empty thread plan.");
4666     return eExpressionSetupError;
4667   }
4668 
4669   if (!thread_plan_sp->ValidatePlan(nullptr)) {
4670     diagnostic_manager.PutString(
4671         eDiagnosticSeverityError,
4672         "RunThreadPlan called with an invalid thread plan.");
4673     return eExpressionSetupError;
4674   }
4675 
4676   if (exe_ctx.GetProcessPtr() != this) {
4677     diagnostic_manager.PutString(eDiagnosticSeverityError,
4678                                  "RunThreadPlan called on wrong process.");
4679     return eExpressionSetupError;
4680   }
4681 
4682   Thread *thread = exe_ctx.GetThreadPtr();
4683   if (thread == nullptr) {
4684     diagnostic_manager.PutString(eDiagnosticSeverityError,
4685                                  "RunThreadPlan called with invalid thread.");
4686     return eExpressionSetupError;
4687   }
4688 
4689   // Record the thread's id so we can tell when a thread we were using
4690   // to run the expression exits during the expression evaluation.
4691   lldb::tid_t expr_thread_id = thread->GetID();
4692 
4693   // We need to change some of the thread plan attributes for the thread plan
4694   // runner.  This will restore them when we are done:
4695 
4696   RestorePlanState thread_plan_restorer(thread_plan_sp);
4697 
4698   // We rely on the thread plan we are running returning "PlanCompleted" if
4699   // when it successfully completes. For that to be true the plan can't be
4700   // private - since private plans suppress themselves in the GetCompletedPlan
4701   // call.
4702 
4703   thread_plan_sp->SetPrivate(false);
4704 
4705   // The plans run with RunThreadPlan also need to be terminal controlling plans
4706   // or when they are done we will end up asking the plan above us whether we
4707   // should stop, which may give the wrong answer.
4708 
4709   thread_plan_sp->SetIsControllingPlan(true);
4710   thread_plan_sp->SetOkayToDiscard(false);
4711 
4712   // If we are running some utility expression for LLDB, we now have to mark
4713   // this in the ProcesModID of this process. This RAII takes care of marking
4714   // and reverting the mark it once we are done running the expression.
4715   UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr);
4716 
4717   if (m_private_state.GetValue() != eStateStopped) {
4718     diagnostic_manager.PutString(
4719         eDiagnosticSeverityError,
4720         "RunThreadPlan called while the private state was not stopped.");
4721     return eExpressionSetupError;
4722   }
4723 
4724   // Save the thread & frame from the exe_ctx for restoration after we run
4725   const uint32_t thread_idx_id = thread->GetIndexID();
4726   StackFrameSP selected_frame_sp = thread->GetSelectedFrame();
4727   if (!selected_frame_sp) {
4728     thread->SetSelectedFrame(nullptr);
4729     selected_frame_sp = thread->GetSelectedFrame();
4730     if (!selected_frame_sp) {
4731       diagnostic_manager.Printf(
4732           eDiagnosticSeverityError,
4733           "RunThreadPlan called without a selected frame on thread %d",
4734           thread_idx_id);
4735       return eExpressionSetupError;
4736     }
4737   }
4738 
4739   // Make sure the timeout values make sense. The one thread timeout needs to
4740   // be smaller than the overall timeout.
4741   if (options.GetOneThreadTimeout() && options.GetTimeout() &&
4742       *options.GetTimeout() < *options.GetOneThreadTimeout()) {
4743     diagnostic_manager.PutString(eDiagnosticSeverityError,
4744                                  "RunThreadPlan called with one thread "
4745                                  "timeout greater than total timeout");
4746     return eExpressionSetupError;
4747   }
4748 
4749   StackID ctx_frame_id = selected_frame_sp->GetStackID();
4750 
4751   // N.B. Running the target may unset the currently selected thread and frame.
4752   // We don't want to do that either, so we should arrange to reset them as
4753   // well.
4754 
4755   lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread();
4756 
4757   uint32_t selected_tid;
4758   StackID selected_stack_id;
4759   if (selected_thread_sp) {
4760     selected_tid = selected_thread_sp->GetIndexID();
4761     selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID();
4762   } else {
4763     selected_tid = LLDB_INVALID_THREAD_ID;
4764   }
4765 
4766   HostThread backup_private_state_thread;
4767   lldb::StateType old_state = eStateInvalid;
4768   lldb::ThreadPlanSP stopper_base_plan_sp;
4769 
4770   Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
4771   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) {
4772     // Yikes, we are running on the private state thread!  So we can't wait for
4773     // public events on this thread, since we are the thread that is generating
4774     // public events. The simplest thing to do is to spin up a temporary thread
4775     // to handle private state thread events while we are fielding public
4776     // events here.
4777     LLDB_LOGF(log, "Running thread plan on private state thread, spinning up "
4778                    "another state thread to handle the events.");
4779 
4780     backup_private_state_thread = m_private_state_thread;
4781 
4782     // One other bit of business: we want to run just this thread plan and
4783     // anything it pushes, and then stop, returning control here. But in the
4784     // normal course of things, the plan above us on the stack would be given a
4785     // shot at the stop event before deciding to stop, and we don't want that.
4786     // So we insert a "stopper" base plan on the stack before the plan we want
4787     // to run.  Since base plans always stop and return control to the user,
4788     // that will do just what we want.
4789     stopper_base_plan_sp.reset(new ThreadPlanBase(*thread));
4790     thread->QueueThreadPlan(stopper_base_plan_sp, false);
4791     // Have to make sure our public state is stopped, since otherwise the
4792     // reporting logic below doesn't work correctly.
4793     old_state = m_public_state.GetValue();
4794     m_public_state.SetValueNoLock(eStateStopped);
4795 
4796     // Now spin up the private state thread:
4797     StartPrivateStateThread(true);
4798   }
4799 
4800   thread->QueueThreadPlan(
4801       thread_plan_sp, false); // This used to pass "true" does that make sense?
4802 
4803   if (options.GetDebug()) {
4804     // In this case, we aren't actually going to run, we just want to stop
4805     // right away. Flush this thread so we will refetch the stacks and show the
4806     // correct backtrace.
4807     // FIXME: To make this prettier we should invent some stop reason for this,
4808     // but that
4809     // is only cosmetic, and this functionality is only of use to lldb
4810     // developers who can live with not pretty...
4811     thread->Flush();
4812     return eExpressionStoppedForDebug;
4813   }
4814 
4815   ListenerSP listener_sp(
4816       Listener::MakeListener("lldb.process.listener.run-thread-plan"));
4817 
4818   lldb::EventSP event_to_broadcast_sp;
4819 
4820   {
4821     // This process event hijacker Hijacks the Public events and its destructor
4822     // makes sure that the process events get restored on exit to the function.
4823     //
4824     // If the event needs to propagate beyond the hijacker (e.g., the process
4825     // exits during execution), then the event is put into
4826     // event_to_broadcast_sp for rebroadcasting.
4827 
4828     ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp);
4829 
4830     if (log) {
4831       StreamString s;
4832       thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose);
4833       LLDB_LOGF(log,
4834                 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64
4835                 " to run thread plan \"%s\".",
4836                 thread_idx_id, expr_thread_id, s.GetData());
4837     }
4838 
4839     bool got_event;
4840     lldb::EventSP event_sp;
4841     lldb::StateType stop_state = lldb::eStateInvalid;
4842 
4843     bool before_first_timeout = true; // This is set to false the first time
4844                                       // that we have to halt the target.
4845     bool do_resume = true;
4846     bool handle_running_event = true;
4847 
4848     // This is just for accounting:
4849     uint32_t num_resumes = 0;
4850 
4851     // If we are going to run all threads the whole time, or if we are only
4852     // going to run one thread, then we don't need the first timeout.  So we
4853     // pretend we are after the first timeout already.
4854     if (!options.GetStopOthers() || !options.GetTryAllThreads())
4855       before_first_timeout = false;
4856 
4857     LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n",
4858               options.GetStopOthers(), options.GetTryAllThreads(),
4859               before_first_timeout);
4860 
4861     // This isn't going to work if there are unfetched events on the queue. Are
4862     // there cases where we might want to run the remaining events here, and
4863     // then try to call the function?  That's probably being too tricky for our
4864     // own good.
4865 
4866     Event *other_events = listener_sp->PeekAtNextEvent();
4867     if (other_events != nullptr) {
4868       diagnostic_manager.PutString(
4869           eDiagnosticSeverityError,
4870           "RunThreadPlan called with pending events on the queue.");
4871       return eExpressionSetupError;
4872     }
4873 
4874     // We also need to make sure that the next event is delivered.  We might be
4875     // calling a function as part of a thread plan, in which case the last
4876     // delivered event could be the running event, and we don't want event
4877     // coalescing to cause us to lose OUR running event...
4878     ForceNextEventDelivery();
4879 
4880 // This while loop must exit out the bottom, there's cleanup that we need to do
4881 // when we are done. So don't call return anywhere within it.
4882 
4883 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
4884     // It's pretty much impossible to write test cases for things like: One
4885     // thread timeout expires, I go to halt, but the process already stopped on
4886     // the function call stop breakpoint.  Turning on this define will make us
4887     // not fetch the first event till after the halt.  So if you run a quick
4888     // function, it will have completed, and the completion event will be
4889     // waiting, when you interrupt for halt. The expression evaluation should
4890     // still succeed.
4891     bool miss_first_event = true;
4892 #endif
4893     while (true) {
4894       // We usually want to resume the process if we get to the top of the
4895       // loop. The only exception is if we get two running events with no
4896       // intervening stop, which can happen, we will just wait for then next
4897       // stop event.
4898       LLDB_LOGF(log,
4899                 "Top of while loop: do_resume: %i handle_running_event: %i "
4900                 "before_first_timeout: %i.",
4901                 do_resume, handle_running_event, before_first_timeout);
4902 
4903       if (do_resume || handle_running_event) {
4904         // Do the initial resume and wait for the running event before going
4905         // further.
4906 
4907         if (do_resume) {
4908           num_resumes++;
4909           Status resume_error = PrivateResume();
4910           if (!resume_error.Success()) {
4911             diagnostic_manager.Printf(
4912                 eDiagnosticSeverityError,
4913                 "couldn't resume inferior the %d time: \"%s\".", num_resumes,
4914                 resume_error.AsCString());
4915             return_value = eExpressionSetupError;
4916             break;
4917           }
4918         }
4919 
4920         got_event =
4921             listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
4922         if (!got_event) {
4923           LLDB_LOGF(log,
4924                     "Process::RunThreadPlan(): didn't get any event after "
4925                     "resume %" PRIu32 ", exiting.",
4926                     num_resumes);
4927 
4928           diagnostic_manager.Printf(eDiagnosticSeverityError,
4929                                     "didn't get any event after resume %" PRIu32
4930                                     ", exiting.",
4931                                     num_resumes);
4932           return_value = eExpressionSetupError;
4933           break;
4934         }
4935 
4936         stop_state =
4937             Process::ProcessEventData::GetStateFromEvent(event_sp.get());
4938 
4939         if (stop_state != eStateRunning) {
4940           bool restarted = false;
4941 
4942           if (stop_state == eStateStopped) {
4943             restarted = Process::ProcessEventData::GetRestartedFromEvent(
4944                 event_sp.get());
4945             LLDB_LOGF(
4946                 log,
4947                 "Process::RunThreadPlan(): didn't get running event after "
4948                 "resume %d, got %s instead (restarted: %i, do_resume: %i, "
4949                 "handle_running_event: %i).",
4950                 num_resumes, StateAsCString(stop_state), restarted, do_resume,
4951                 handle_running_event);
4952           }
4953 
4954           if (restarted) {
4955             // This is probably an overabundance of caution, I don't think I
4956             // should ever get a stopped & restarted event here.  But if I do,
4957             // the best thing is to Halt and then get out of here.
4958             const bool clear_thread_plans = false;
4959             const bool use_run_lock = false;
4960             Halt(clear_thread_plans, use_run_lock);
4961           }
4962 
4963           diagnostic_manager.Printf(
4964               eDiagnosticSeverityError,
4965               "didn't get running event after initial resume, got %s instead.",
4966               StateAsCString(stop_state));
4967           return_value = eExpressionSetupError;
4968           break;
4969         }
4970 
4971         if (log)
4972           log->PutCString("Process::RunThreadPlan(): resuming succeeded.");
4973         // We need to call the function synchronously, so spin waiting for it
4974         // to return. If we get interrupted while executing, we're going to
4975         // lose our context, and won't be able to gather the result at this
4976         // point. We set the timeout AFTER the resume, since the resume takes
4977         // some time and we don't want to charge that to the timeout.
4978       } else {
4979         if (log)
4980           log->PutCString("Process::RunThreadPlan(): waiting for next event.");
4981       }
4982 
4983       do_resume = true;
4984       handle_running_event = true;
4985 
4986       // Now wait for the process to stop again:
4987       event_sp.reset();
4988 
4989       Timeout<std::micro> timeout =
4990           GetExpressionTimeout(options, before_first_timeout);
4991       if (log) {
4992         if (timeout) {
4993           auto now = system_clock::now();
4994           LLDB_LOGF(log,
4995                     "Process::RunThreadPlan(): about to wait - now is %s - "
4996                     "endpoint is %s",
4997                     llvm::to_string(now).c_str(),
4998                     llvm::to_string(now + *timeout).c_str());
4999         } else {
5000           LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever.");
5001         }
5002       }
5003 
5004 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
5005       // See comment above...
5006       if (miss_first_event) {
5007         std::this_thread::sleep_for(std::chrono::milliseconds(1));
5008         miss_first_event = false;
5009         got_event = false;
5010       } else
5011 #endif
5012         got_event = listener_sp->GetEvent(event_sp, timeout);
5013 
5014       if (got_event) {
5015         if (event_sp) {
5016           bool keep_going = false;
5017           if (event_sp->GetType() == eBroadcastBitInterrupt) {
5018             const bool clear_thread_plans = false;
5019             const bool use_run_lock = false;
5020             Halt(clear_thread_plans, use_run_lock);
5021             return_value = eExpressionInterrupted;
5022             diagnostic_manager.PutString(eDiagnosticSeverityRemark,
5023                                          "execution halted by user interrupt.");
5024             LLDB_LOGF(log, "Process::RunThreadPlan(): Got  interrupted by "
5025                            "eBroadcastBitInterrupted, exiting.");
5026             break;
5027           } else {
5028             stop_state =
5029                 Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5030             LLDB_LOGF(log,
5031                       "Process::RunThreadPlan(): in while loop, got event: %s.",
5032                       StateAsCString(stop_state));
5033 
5034             switch (stop_state) {
5035             case lldb::eStateStopped: {
5036               if (Process::ProcessEventData::GetRestartedFromEvent(
5037                       event_sp.get())) {
5038                 // If we were restarted, we just need to go back up to fetch
5039                 // another event.
5040                 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and "
5041                                "restart, so we'll continue waiting.");
5042                 keep_going = true;
5043                 do_resume = false;
5044                 handle_running_event = true;
5045               } else {
5046                 const bool handle_interrupts = true;
5047                 return_value = *HandleStoppedEvent(
5048                     expr_thread_id, thread_plan_sp, thread_plan_restorer,
5049                     event_sp, event_to_broadcast_sp, options,
5050                     handle_interrupts);
5051                 if (return_value == eExpressionThreadVanished)
5052                   keep_going = false;
5053               }
5054             } break;
5055 
5056             case lldb::eStateRunning:
5057               // This shouldn't really happen, but sometimes we do get two
5058               // running events without an intervening stop, and in that case
5059               // we should just go back to waiting for the stop.
5060               do_resume = false;
5061               keep_going = true;
5062               handle_running_event = false;
5063               break;
5064 
5065             default:
5066               LLDB_LOGF(log,
5067                         "Process::RunThreadPlan(): execution stopped with "
5068                         "unexpected state: %s.",
5069                         StateAsCString(stop_state));
5070 
5071               if (stop_state == eStateExited)
5072                 event_to_broadcast_sp = event_sp;
5073 
5074               diagnostic_manager.PutString(
5075                   eDiagnosticSeverityError,
5076                   "execution stopped with unexpected state.");
5077               return_value = eExpressionInterrupted;
5078               break;
5079             }
5080           }
5081 
5082           if (keep_going)
5083             continue;
5084           else
5085             break;
5086         } else {
5087           if (log)
5088             log->PutCString("Process::RunThreadPlan(): got_event was true, but "
5089                             "the event pointer was null.  How odd...");
5090           return_value = eExpressionInterrupted;
5091           break;
5092         }
5093       } else {
5094         // If we didn't get an event that means we've timed out... We will
5095         // interrupt the process here.  Depending on what we were asked to do
5096         // we will either exit, or try with all threads running for the same
5097         // timeout.
5098 
5099         if (log) {
5100           if (options.GetTryAllThreads()) {
5101             if (before_first_timeout) {
5102               LLDB_LOG(log,
5103                        "Running function with one thread timeout timed out.");
5104             } else
5105               LLDB_LOG(log, "Restarting function with all threads enabled and "
5106                             "timeout: {0} timed out, abandoning execution.",
5107                        timeout);
5108           } else
5109             LLDB_LOG(log, "Running function with timeout: {0} timed out, "
5110                           "abandoning execution.",
5111                      timeout);
5112         }
5113 
5114         // It is possible that between the time we issued the Halt, and we get
5115         // around to calling Halt the target could have stopped.  That's fine,
5116         // Halt will figure that out and send the appropriate Stopped event.
5117         // BUT it is also possible that we stopped & restarted (e.g. hit a
5118         // signal with "stop" set to false.)  In
5119         // that case, we'll get the stopped & restarted event, and we should go
5120         // back to waiting for the Halt's stopped event.  That's what this
5121         // while loop does.
5122 
5123         bool back_to_top = true;
5124         uint32_t try_halt_again = 0;
5125         bool do_halt = true;
5126         const uint32_t num_retries = 5;
5127         while (try_halt_again < num_retries) {
5128           Status halt_error;
5129           if (do_halt) {
5130             LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt.");
5131             const bool clear_thread_plans = false;
5132             const bool use_run_lock = false;
5133             Halt(clear_thread_plans, use_run_lock);
5134           }
5135           if (halt_error.Success()) {
5136             if (log)
5137               log->PutCString("Process::RunThreadPlan(): Halt succeeded.");
5138 
5139             got_event =
5140                 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
5141 
5142             if (got_event) {
5143               stop_state =
5144                   Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5145               if (log) {
5146                 LLDB_LOGF(log,
5147                           "Process::RunThreadPlan(): Stopped with event: %s",
5148                           StateAsCString(stop_state));
5149                 if (stop_state == lldb::eStateStopped &&
5150                     Process::ProcessEventData::GetInterruptedFromEvent(
5151                         event_sp.get()))
5152                   log->PutCString("    Event was the Halt interruption event.");
5153               }
5154 
5155               if (stop_state == lldb::eStateStopped) {
5156                 if (Process::ProcessEventData::GetRestartedFromEvent(
5157                         event_sp.get())) {
5158                   if (log)
5159                     log->PutCString("Process::RunThreadPlan(): Went to halt "
5160                                     "but got a restarted event, there must be "
5161                                     "an un-restarted stopped event so try "
5162                                     "again...  "
5163                                     "Exiting wait loop.");
5164                   try_halt_again++;
5165                   do_halt = false;
5166                   continue;
5167                 }
5168 
5169                 // Between the time we initiated the Halt and the time we
5170                 // delivered it, the process could have already finished its
5171                 // job.  Check that here:
5172                 const bool handle_interrupts = false;
5173                 if (auto result = HandleStoppedEvent(
5174                         expr_thread_id, thread_plan_sp, thread_plan_restorer,
5175                         event_sp, event_to_broadcast_sp, options,
5176                         handle_interrupts)) {
5177                   return_value = *result;
5178                   back_to_top = false;
5179                   break;
5180                 }
5181 
5182                 if (!options.GetTryAllThreads()) {
5183                   if (log)
5184                     log->PutCString("Process::RunThreadPlan(): try_all_threads "
5185                                     "was false, we stopped so now we're "
5186                                     "quitting.");
5187                   return_value = eExpressionInterrupted;
5188                   back_to_top = false;
5189                   break;
5190                 }
5191 
5192                 if (before_first_timeout) {
5193                   // Set all the other threads to run, and return to the top of
5194                   // the loop, which will continue;
5195                   before_first_timeout = false;
5196                   thread_plan_sp->SetStopOthers(false);
5197                   if (log)
5198                     log->PutCString(
5199                         "Process::RunThreadPlan(): about to resume.");
5200 
5201                   back_to_top = true;
5202                   break;
5203                 } else {
5204                   // Running all threads failed, so return Interrupted.
5205                   if (log)
5206                     log->PutCString("Process::RunThreadPlan(): running all "
5207                                     "threads timed out.");
5208                   return_value = eExpressionInterrupted;
5209                   back_to_top = false;
5210                   break;
5211                 }
5212               }
5213             } else {
5214               if (log)
5215                 log->PutCString("Process::RunThreadPlan(): halt said it "
5216                                 "succeeded, but I got no event.  "
5217                                 "I'm getting out of here passing Interrupted.");
5218               return_value = eExpressionInterrupted;
5219               back_to_top = false;
5220               break;
5221             }
5222           } else {
5223             try_halt_again++;
5224             continue;
5225           }
5226         }
5227 
5228         if (!back_to_top || try_halt_again > num_retries)
5229           break;
5230         else
5231           continue;
5232       }
5233     } // END WAIT LOOP
5234 
5235     // If we had to start up a temporary private state thread to run this
5236     // thread plan, shut it down now.
5237     if (backup_private_state_thread.IsJoinable()) {
5238       StopPrivateStateThread();
5239       Status error;
5240       m_private_state_thread = backup_private_state_thread;
5241       if (stopper_base_plan_sp) {
5242         thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp);
5243       }
5244       if (old_state != eStateInvalid)
5245         m_public_state.SetValueNoLock(old_state);
5246     }
5247 
5248     // If our thread went away on us, we need to get out of here without
5249     // doing any more work.  We don't have to clean up the thread plan, that
5250     // will have happened when the Thread was destroyed.
5251     if (return_value == eExpressionThreadVanished) {
5252       return return_value;
5253     }
5254 
5255     if (return_value != eExpressionCompleted && log) {
5256       // Print a backtrace into the log so we can figure out where we are:
5257       StreamString s;
5258       s.PutCString("Thread state after unsuccessful completion: \n");
5259       thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX);
5260       log->PutString(s.GetString());
5261     }
5262     // Restore the thread state if we are going to discard the plan execution.
5263     // There are three cases where this could happen: 1) The execution
5264     // successfully completed 2) We hit a breakpoint, and ignore_breakpoints
5265     // was true 3) We got some other error, and discard_on_error was true
5266     bool should_unwind = (return_value == eExpressionInterrupted &&
5267                           options.DoesUnwindOnError()) ||
5268                          (return_value == eExpressionHitBreakpoint &&
5269                           options.DoesIgnoreBreakpoints());
5270 
5271     if (return_value == eExpressionCompleted || should_unwind) {
5272       thread_plan_sp->RestoreThreadState();
5273     }
5274 
5275     // Now do some processing on the results of the run:
5276     if (return_value == eExpressionInterrupted ||
5277         return_value == eExpressionHitBreakpoint) {
5278       if (log) {
5279         StreamString s;
5280         if (event_sp)
5281           event_sp->Dump(&s);
5282         else {
5283           log->PutCString("Process::RunThreadPlan(): Stop event that "
5284                           "interrupted us is NULL.");
5285         }
5286 
5287         StreamString ts;
5288 
5289         const char *event_explanation = nullptr;
5290 
5291         do {
5292           if (!event_sp) {
5293             event_explanation = "<no event>";
5294             break;
5295           } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
5296             event_explanation = "<user interrupt>";
5297             break;
5298           } else {
5299             const Process::ProcessEventData *event_data =
5300                 Process::ProcessEventData::GetEventDataFromEvent(
5301                     event_sp.get());
5302 
5303             if (!event_data) {
5304               event_explanation = "<no event data>";
5305               break;
5306             }
5307 
5308             Process *process = event_data->GetProcessSP().get();
5309 
5310             if (!process) {
5311               event_explanation = "<no process>";
5312               break;
5313             }
5314 
5315             ThreadList &thread_list = process->GetThreadList();
5316 
5317             uint32_t num_threads = thread_list.GetSize();
5318             uint32_t thread_index;
5319 
5320             ts.Printf("<%u threads> ", num_threads);
5321 
5322             for (thread_index = 0; thread_index < num_threads; ++thread_index) {
5323               Thread *thread = thread_list.GetThreadAtIndex(thread_index).get();
5324 
5325               if (!thread) {
5326                 ts.Printf("<?> ");
5327                 continue;
5328               }
5329 
5330               ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID());
5331               RegisterContext *register_context =
5332                   thread->GetRegisterContext().get();
5333 
5334               if (register_context)
5335                 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC());
5336               else
5337                 ts.Printf("[ip unknown] ");
5338 
5339               // Show the private stop info here, the public stop info will be
5340               // from the last natural stop.
5341               lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo();
5342               if (stop_info_sp) {
5343                 const char *stop_desc = stop_info_sp->GetDescription();
5344                 if (stop_desc)
5345                   ts.PutCString(stop_desc);
5346               }
5347               ts.Printf(">");
5348             }
5349 
5350             event_explanation = ts.GetData();
5351           }
5352         } while (false);
5353 
5354         if (event_explanation)
5355           LLDB_LOGF(log,
5356                     "Process::RunThreadPlan(): execution interrupted: %s %s",
5357                     s.GetData(), event_explanation);
5358         else
5359           LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s",
5360                     s.GetData());
5361       }
5362 
5363       if (should_unwind) {
5364         LLDB_LOGF(log,
5365                   "Process::RunThreadPlan: ExecutionInterrupted - "
5366                   "discarding thread plans up to %p.",
5367                   static_cast<void *>(thread_plan_sp.get()));
5368         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5369       } else {
5370         LLDB_LOGF(log,
5371                   "Process::RunThreadPlan: ExecutionInterrupted - for "
5372                   "plan: %p not discarding.",
5373                   static_cast<void *>(thread_plan_sp.get()));
5374       }
5375     } else if (return_value == eExpressionSetupError) {
5376       if (log)
5377         log->PutCString("Process::RunThreadPlan(): execution set up error.");
5378 
5379       if (options.DoesUnwindOnError()) {
5380         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5381       }
5382     } else {
5383       if (thread->IsThreadPlanDone(thread_plan_sp.get())) {
5384         if (log)
5385           log->PutCString("Process::RunThreadPlan(): thread plan is done");
5386         return_value = eExpressionCompleted;
5387       } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) {
5388         if (log)
5389           log->PutCString(
5390               "Process::RunThreadPlan(): thread plan was discarded");
5391         return_value = eExpressionDiscarded;
5392       } else {
5393         if (log)
5394           log->PutCString(
5395               "Process::RunThreadPlan(): thread plan stopped in mid course");
5396         if (options.DoesUnwindOnError() && thread_plan_sp) {
5397           if (log)
5398             log->PutCString("Process::RunThreadPlan(): discarding thread plan "
5399                             "'cause unwind_on_error is set.");
5400           thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5401         }
5402       }
5403     }
5404 
5405     // Thread we ran the function in may have gone away because we ran the
5406     // target Check that it's still there, and if it is put it back in the
5407     // context. Also restore the frame in the context if it is still present.
5408     thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get();
5409     if (thread) {
5410       exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id));
5411     }
5412 
5413     // Also restore the current process'es selected frame & thread, since this
5414     // function calling may be done behind the user's back.
5415 
5416     if (selected_tid != LLDB_INVALID_THREAD_ID) {
5417       if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) &&
5418           selected_stack_id.IsValid()) {
5419         // We were able to restore the selected thread, now restore the frame:
5420         std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5421         StackFrameSP old_frame_sp =
5422             GetThreadList().GetSelectedThread()->GetFrameWithStackID(
5423                 selected_stack_id);
5424         if (old_frame_sp)
5425           GetThreadList().GetSelectedThread()->SetSelectedFrame(
5426               old_frame_sp.get());
5427       }
5428     }
5429   }
5430 
5431   // If the process exited during the run of the thread plan, notify everyone.
5432 
5433   if (event_to_broadcast_sp) {
5434     if (log)
5435       log->PutCString("Process::RunThreadPlan(): rebroadcasting event.");
5436     BroadcastEvent(event_to_broadcast_sp);
5437   }
5438 
5439   return return_value;
5440 }
5441 
5442 const char *Process::ExecutionResultAsCString(ExpressionResults result) {
5443   const char *result_name = "<unknown>";
5444 
5445   switch (result) {
5446   case eExpressionCompleted:
5447     result_name = "eExpressionCompleted";
5448     break;
5449   case eExpressionDiscarded:
5450     result_name = "eExpressionDiscarded";
5451     break;
5452   case eExpressionInterrupted:
5453     result_name = "eExpressionInterrupted";
5454     break;
5455   case eExpressionHitBreakpoint:
5456     result_name = "eExpressionHitBreakpoint";
5457     break;
5458   case eExpressionSetupError:
5459     result_name = "eExpressionSetupError";
5460     break;
5461   case eExpressionParseError:
5462     result_name = "eExpressionParseError";
5463     break;
5464   case eExpressionResultUnavailable:
5465     result_name = "eExpressionResultUnavailable";
5466     break;
5467   case eExpressionTimedOut:
5468     result_name = "eExpressionTimedOut";
5469     break;
5470   case eExpressionStoppedForDebug:
5471     result_name = "eExpressionStoppedForDebug";
5472     break;
5473   case eExpressionThreadVanished:
5474     result_name = "eExpressionThreadVanished";
5475   }
5476   return result_name;
5477 }
5478 
5479 void Process::GetStatus(Stream &strm) {
5480   const StateType state = GetState();
5481   if (StateIsStoppedState(state, false)) {
5482     if (state == eStateExited) {
5483       int exit_status = GetExitStatus();
5484       const char *exit_description = GetExitDescription();
5485       strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n",
5486                   GetID(), exit_status, exit_status,
5487                   exit_description ? exit_description : "");
5488     } else {
5489       if (state == eStateConnected)
5490         strm.Printf("Connected to remote target.\n");
5491       else
5492         strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state));
5493     }
5494   } else {
5495     strm.Printf("Process %" PRIu64 " is running.\n", GetID());
5496   }
5497 }
5498 
5499 size_t Process::GetThreadStatus(Stream &strm,
5500                                 bool only_threads_with_stop_reason,
5501                                 uint32_t start_frame, uint32_t num_frames,
5502                                 uint32_t num_frames_with_source,
5503                                 bool stop_format) {
5504   size_t num_thread_infos_dumped = 0;
5505 
5506   // You can't hold the thread list lock while calling Thread::GetStatus.  That
5507   // very well might run code (e.g. if we need it to get return values or
5508   // arguments.)  For that to work the process has to be able to acquire it.
5509   // So instead copy the thread ID's, and look them up one by one:
5510 
5511   uint32_t num_threads;
5512   std::vector<lldb::tid_t> thread_id_array;
5513   // Scope for thread list locker;
5514   {
5515     std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5516     ThreadList &curr_thread_list = GetThreadList();
5517     num_threads = curr_thread_list.GetSize();
5518     uint32_t idx;
5519     thread_id_array.resize(num_threads);
5520     for (idx = 0; idx < num_threads; ++idx)
5521       thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID();
5522   }
5523 
5524   for (uint32_t i = 0; i < num_threads; i++) {
5525     ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i]));
5526     if (thread_sp) {
5527       if (only_threads_with_stop_reason) {
5528         StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
5529         if (!stop_info_sp || !stop_info_sp->IsValid())
5530           continue;
5531       }
5532       thread_sp->GetStatus(strm, start_frame, num_frames,
5533                            num_frames_with_source,
5534                            stop_format);
5535       ++num_thread_infos_dumped;
5536     } else {
5537       Log *log = GetLog(LLDBLog::Process);
5538       LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64
5539                      " vanished while running Thread::GetStatus.");
5540     }
5541   }
5542   return num_thread_infos_dumped;
5543 }
5544 
5545 void Process::AddInvalidMemoryRegion(const LoadRange &region) {
5546   m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize());
5547 }
5548 
5549 bool Process::RemoveInvalidMemoryRange(const LoadRange &region) {
5550   return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(),
5551                                            region.GetByteSize());
5552 }
5553 
5554 void Process::AddPreResumeAction(PreResumeActionCallback callback,
5555                                  void *baton) {
5556   m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton));
5557 }
5558 
5559 bool Process::RunPreResumeActions() {
5560   bool result = true;
5561   while (!m_pre_resume_actions.empty()) {
5562     struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back();
5563     m_pre_resume_actions.pop_back();
5564     bool this_result = action.callback(action.baton);
5565     if (result)
5566       result = this_result;
5567   }
5568   return result;
5569 }
5570 
5571 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); }
5572 
5573 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton)
5574 {
5575     PreResumeCallbackAndBaton element(callback, baton);
5576     auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element);
5577     if (found_iter != m_pre_resume_actions.end())
5578     {
5579         m_pre_resume_actions.erase(found_iter);
5580     }
5581 }
5582 
5583 ProcessRunLock &Process::GetRunLock() {
5584   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread()))
5585     return m_private_run_lock;
5586   else
5587     return m_public_run_lock;
5588 }
5589 
5590 bool Process::CurrentThreadIsPrivateStateThread()
5591 {
5592   return m_private_state_thread.EqualsThread(Host::GetCurrentThread());
5593 }
5594 
5595 
5596 void Process::Flush() {
5597   m_thread_list.Flush();
5598   m_extended_thread_list.Flush();
5599   m_extended_thread_stop_id = 0;
5600   m_queue_list.Clear();
5601   m_queue_list_stop_id = 0;
5602 }
5603 
5604 lldb::addr_t Process::GetCodeAddressMask() {
5605   if (m_code_address_mask == 0) {
5606     if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) {
5607       lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1);
5608       SetCodeAddressMask(address_mask);
5609     }
5610   }
5611   return m_code_address_mask;
5612 }
5613 
5614 lldb::addr_t Process::GetDataAddressMask() {
5615   if (m_data_address_mask == 0) {
5616     if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) {
5617       lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1);
5618       SetDataAddressMask(address_mask);
5619     }
5620   }
5621   return m_data_address_mask;
5622 }
5623 
5624 void Process::DidExec() {
5625   Log *log = GetLog(LLDBLog::Process);
5626   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
5627 
5628   Target &target = GetTarget();
5629   target.CleanupProcess();
5630   target.ClearModules(false);
5631   m_dynamic_checkers_up.reset();
5632   m_abi_sp.reset();
5633   m_system_runtime_up.reset();
5634   m_os_up.reset();
5635   m_dyld_up.reset();
5636   m_jit_loaders_up.reset();
5637   m_image_tokens.clear();
5638   m_allocated_memory_cache.Clear();
5639   {
5640     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
5641     m_language_runtimes.clear();
5642   }
5643   m_instrumentation_runtimes.clear();
5644   m_thread_list.DiscardThreadPlans();
5645   m_memory_cache.Clear(true);
5646   DoDidExec();
5647   CompleteAttach();
5648   // Flush the process (threads and all stack frames) after running
5649   // CompleteAttach() in case the dynamic loader loaded things in new
5650   // locations.
5651   Flush();
5652 
5653   // After we figure out what was loaded/unloaded in CompleteAttach, we need to
5654   // let the target know so it can do any cleanup it needs to.
5655   target.DidExec();
5656 }
5657 
5658 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) {
5659   if (address == nullptr) {
5660     error.SetErrorString("Invalid address argument");
5661     return LLDB_INVALID_ADDRESS;
5662   }
5663 
5664   addr_t function_addr = LLDB_INVALID_ADDRESS;
5665 
5666   addr_t addr = address->GetLoadAddress(&GetTarget());
5667   std::map<addr_t, addr_t>::const_iterator iter =
5668       m_resolved_indirect_addresses.find(addr);
5669   if (iter != m_resolved_indirect_addresses.end()) {
5670     function_addr = (*iter).second;
5671   } else {
5672     if (!CallVoidArgVoidPtrReturn(address, function_addr)) {
5673       Symbol *symbol = address->CalculateSymbolContextSymbol();
5674       error.SetErrorStringWithFormat(
5675           "Unable to call resolver for indirect function %s",
5676           symbol ? symbol->GetName().AsCString() : "<UNKNOWN>");
5677       function_addr = LLDB_INVALID_ADDRESS;
5678     } else {
5679       if (ABISP abi_sp = GetABI())
5680         function_addr = abi_sp->FixCodeAddress(function_addr);
5681       m_resolved_indirect_addresses.insert(
5682           std::pair<addr_t, addr_t>(addr, function_addr));
5683     }
5684   }
5685   return function_addr;
5686 }
5687 
5688 void Process::ModulesDidLoad(ModuleList &module_list) {
5689   // Inform the system runtime of the modified modules.
5690   SystemRuntime *sys_runtime = GetSystemRuntime();
5691   if (sys_runtime)
5692     sys_runtime->ModulesDidLoad(module_list);
5693 
5694   GetJITLoaders().ModulesDidLoad(module_list);
5695 
5696   // Give the instrumentation runtimes a chance to be created before informing
5697   // them of the modified modules.
5698   InstrumentationRuntime::ModulesDidLoad(module_list, this,
5699                                          m_instrumentation_runtimes);
5700   for (auto &runtime : m_instrumentation_runtimes)
5701     runtime.second->ModulesDidLoad(module_list);
5702 
5703   // Give the language runtimes a chance to be created before informing them of
5704   // the modified modules.
5705   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
5706     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
5707       runtime->ModulesDidLoad(module_list);
5708   }
5709 
5710   // If we don't have an operating system plug-in, try to load one since
5711   // loading shared libraries might cause a new one to try and load
5712   if (!m_os_up)
5713     LoadOperatingSystemPlugin(false);
5714 
5715   // Inform the structured-data plugins of the modified modules.
5716   for (auto pair : m_structured_data_plugin_map) {
5717     if (pair.second)
5718       pair.second->ModulesDidLoad(*this, module_list);
5719   }
5720 }
5721 
5722 void Process::PrintWarningOptimization(const SymbolContext &sc) {
5723   if (!GetWarningsOptimization())
5724     return;
5725   if (!sc.module_sp || !sc.function || !sc.function->GetIsOptimized())
5726     return;
5727   sc.module_sp->ReportWarningOptimization(GetTarget().GetDebugger().GetID());
5728 }
5729 
5730 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) {
5731   if (!GetWarningsUnsupportedLanguage())
5732     return;
5733   if (!sc.module_sp)
5734     return;
5735   LanguageType language = sc.GetLanguage();
5736   if (language == eLanguageTypeUnknown)
5737     return;
5738   LanguageSet plugins =
5739       PluginManager::GetAllTypeSystemSupportedLanguagesForTypes();
5740   if (plugins[language])
5741     return;
5742   sc.module_sp->ReportWarningUnsupportedLanguage(
5743       language, GetTarget().GetDebugger().GetID());
5744 }
5745 
5746 bool Process::GetProcessInfo(ProcessInstanceInfo &info) {
5747   info.Clear();
5748 
5749   PlatformSP platform_sp = GetTarget().GetPlatform();
5750   if (!platform_sp)
5751     return false;
5752 
5753   return platform_sp->GetProcessInfo(GetID(), info);
5754 }
5755 
5756 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) {
5757   ThreadCollectionSP threads;
5758 
5759   const MemoryHistorySP &memory_history =
5760       MemoryHistory::FindPlugin(shared_from_this());
5761 
5762   if (!memory_history) {
5763     return threads;
5764   }
5765 
5766   threads = std::make_shared<ThreadCollection>(
5767       memory_history->GetHistoryThreads(addr));
5768 
5769   return threads;
5770 }
5771 
5772 InstrumentationRuntimeSP
5773 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) {
5774   InstrumentationRuntimeCollection::iterator pos;
5775   pos = m_instrumentation_runtimes.find(type);
5776   if (pos == m_instrumentation_runtimes.end()) {
5777     return InstrumentationRuntimeSP();
5778   } else
5779     return (*pos).second;
5780 }
5781 
5782 bool Process::GetModuleSpec(const FileSpec &module_file_spec,
5783                             const ArchSpec &arch, ModuleSpec &module_spec) {
5784   module_spec.Clear();
5785   return false;
5786 }
5787 
5788 size_t Process::AddImageToken(lldb::addr_t image_ptr) {
5789   m_image_tokens.push_back(image_ptr);
5790   return m_image_tokens.size() - 1;
5791 }
5792 
5793 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const {
5794   if (token < m_image_tokens.size())
5795     return m_image_tokens[token];
5796   return LLDB_INVALID_ADDRESS;
5797 }
5798 
5799 void Process::ResetImageToken(size_t token) {
5800   if (token < m_image_tokens.size())
5801     m_image_tokens[token] = LLDB_INVALID_ADDRESS;
5802 }
5803 
5804 Address
5805 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr,
5806                                                AddressRange range_bounds) {
5807   Target &target = GetTarget();
5808   DisassemblerSP disassembler_sp;
5809   InstructionList *insn_list = nullptr;
5810 
5811   Address retval = default_stop_addr;
5812 
5813   if (!target.GetUseFastStepping())
5814     return retval;
5815   if (!default_stop_addr.IsValid())
5816     return retval;
5817 
5818   const char *plugin_name = nullptr;
5819   const char *flavor = nullptr;
5820   disassembler_sp = Disassembler::DisassembleRange(
5821       target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds);
5822   if (disassembler_sp)
5823     insn_list = &disassembler_sp->GetInstructionList();
5824 
5825   if (insn_list == nullptr) {
5826     return retval;
5827   }
5828 
5829   size_t insn_offset =
5830       insn_list->GetIndexOfInstructionAtAddress(default_stop_addr);
5831   if (insn_offset == UINT32_MAX) {
5832     return retval;
5833   }
5834 
5835   uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction(
5836       insn_offset, false /* ignore_calls*/, nullptr);
5837   if (branch_index == UINT32_MAX) {
5838     return retval;
5839   }
5840 
5841   if (branch_index > insn_offset) {
5842     Address next_branch_insn_address =
5843         insn_list->GetInstructionAtIndex(branch_index)->GetAddress();
5844     if (next_branch_insn_address.IsValid() &&
5845         range_bounds.ContainsFileAddress(next_branch_insn_address)) {
5846       retval = next_branch_insn_address;
5847     }
5848   }
5849 
5850   return retval;
5851 }
5852 
5853 Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr,
5854                                     MemoryRegionInfo &range_info) {
5855   if (const lldb::ABISP &abi = GetABI())
5856     load_addr = abi->FixAnyAddress(load_addr);
5857   return DoGetMemoryRegionInfo(load_addr, range_info);
5858 }
5859 
5860 Status Process::GetMemoryRegions(lldb_private::MemoryRegionInfos &region_list) {
5861   Status error;
5862 
5863   lldb::addr_t range_end = 0;
5864   const lldb::ABISP &abi = GetABI();
5865 
5866   region_list.clear();
5867   do {
5868     lldb_private::MemoryRegionInfo region_info;
5869     error = GetMemoryRegionInfo(range_end, region_info);
5870     // GetMemoryRegionInfo should only return an error if it is unimplemented.
5871     if (error.Fail()) {
5872       region_list.clear();
5873       break;
5874     }
5875 
5876     // We only check the end address, not start and end, because we assume that
5877     // the start will not have non-address bits until the first unmappable
5878     // region. We will have exited the loop by that point because the previous
5879     // region, the last mappable region, will have non-address bits in its end
5880     // address.
5881     range_end = region_info.GetRange().GetRangeEnd();
5882     if (region_info.GetMapped() == MemoryRegionInfo::eYes) {
5883       region_list.push_back(std::move(region_info));
5884     }
5885   } while (
5886       // For a process with no non-address bits, all address bits
5887       // set means the end of memory.
5888       range_end != LLDB_INVALID_ADDRESS &&
5889       // If we have non-address bits and some are set then the end
5890       // is at or beyond the end of mappable memory.
5891       !(abi && (abi->FixAnyAddress(range_end) != range_end)));
5892 
5893   return error;
5894 }
5895 
5896 Status
5897 Process::ConfigureStructuredData(ConstString type_name,
5898                                  const StructuredData::ObjectSP &config_sp) {
5899   // If you get this, the Process-derived class needs to implement a method to
5900   // enable an already-reported asynchronous structured data feature. See
5901   // ProcessGDBRemote for an example implementation over gdb-remote.
5902   return Status("unimplemented");
5903 }
5904 
5905 void Process::MapSupportedStructuredDataPlugins(
5906     const StructuredData::Array &supported_type_names) {
5907   Log *log = GetLog(LLDBLog::Process);
5908 
5909   // Bail out early if there are no type names to map.
5910   if (supported_type_names.GetSize() == 0) {
5911     LLDB_LOGF(log, "Process::%s(): no structured data types supported",
5912               __FUNCTION__);
5913     return;
5914   }
5915 
5916   // Convert StructuredData type names to ConstString instances.
5917   std::set<ConstString> const_type_names;
5918 
5919   LLDB_LOGF(log,
5920             "Process::%s(): the process supports the following async "
5921             "structured data types:",
5922             __FUNCTION__);
5923 
5924   supported_type_names.ForEach(
5925       [&const_type_names, &log](StructuredData::Object *object) {
5926         if (!object) {
5927           // Invalid - shouldn't be null objects in the array.
5928           return false;
5929         }
5930 
5931         auto type_name = object->GetAsString();
5932         if (!type_name) {
5933           // Invalid format - all type names should be strings.
5934           return false;
5935         }
5936 
5937         const_type_names.insert(ConstString(type_name->GetValue()));
5938         LLDB_LOG(log, "- {0}", type_name->GetValue());
5939         return true;
5940       });
5941 
5942   // For each StructuredDataPlugin, if the plugin handles any of the types in
5943   // the supported_type_names, map that type name to that plugin. Stop when
5944   // we've consumed all the type names.
5945   // FIXME: should we return an error if there are type names nobody
5946   // supports?
5947   for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) {
5948     auto create_instance =
5949            PluginManager::GetStructuredDataPluginCreateCallbackAtIndex(
5950                plugin_index);
5951     if (!create_instance)
5952       break;
5953 
5954     // Create the plugin.
5955     StructuredDataPluginSP plugin_sp = (*create_instance)(*this);
5956     if (!plugin_sp) {
5957       // This plugin doesn't think it can work with the process. Move on to the
5958       // next.
5959       continue;
5960     }
5961 
5962     // For any of the remaining type names, map any that this plugin supports.
5963     std::vector<ConstString> names_to_remove;
5964     for (auto &type_name : const_type_names) {
5965       if (plugin_sp->SupportsStructuredDataType(type_name)) {
5966         m_structured_data_plugin_map.insert(
5967             std::make_pair(type_name, plugin_sp));
5968         names_to_remove.push_back(type_name);
5969         LLDB_LOG(log, "using plugin {0} for type name {1}",
5970                  plugin_sp->GetPluginName(), type_name);
5971       }
5972     }
5973 
5974     // Remove the type names that were consumed by this plugin.
5975     for (auto &type_name : names_to_remove)
5976       const_type_names.erase(type_name);
5977   }
5978 }
5979 
5980 bool Process::RouteAsyncStructuredData(
5981     const StructuredData::ObjectSP object_sp) {
5982   // Nothing to do if there's no data.
5983   if (!object_sp)
5984     return false;
5985 
5986   // The contract is this must be a dictionary, so we can look up the routing
5987   // key via the top-level 'type' string value within the dictionary.
5988   StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary();
5989   if (!dictionary)
5990     return false;
5991 
5992   // Grab the async structured type name (i.e. the feature/plugin name).
5993   ConstString type_name;
5994   if (!dictionary->GetValueForKeyAsString("type", type_name))
5995     return false;
5996 
5997   // Check if there's a plugin registered for this type name.
5998   auto find_it = m_structured_data_plugin_map.find(type_name);
5999   if (find_it == m_structured_data_plugin_map.end()) {
6000     // We don't have a mapping for this structured data type.
6001     return false;
6002   }
6003 
6004   // Route the structured data to the plugin.
6005   find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp);
6006   return true;
6007 }
6008 
6009 Status Process::UpdateAutomaticSignalFiltering() {
6010   // Default implementation does nothign.
6011   // No automatic signal filtering to speak of.
6012   return Status();
6013 }
6014 
6015 UtilityFunction *Process::GetLoadImageUtilityFunction(
6016     Platform *platform,
6017     llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) {
6018   if (platform != GetTarget().GetPlatform().get())
6019     return nullptr;
6020   llvm::call_once(m_dlopen_utility_func_flag_once,
6021                   [&] { m_dlopen_utility_func_up = factory(); });
6022   return m_dlopen_utility_func_up.get();
6023 }
6024 
6025 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() {
6026   if (!IsLiveDebugSession())
6027     return llvm::createStringError(llvm::inconvertibleErrorCode(),
6028                                    "Can't trace a non-live process.");
6029   return llvm::make_error<UnimplementedError>();
6030 }
6031 
6032 bool Process::CallVoidArgVoidPtrReturn(const Address *address,
6033                                        addr_t &returned_func,
6034                                        bool trap_exceptions) {
6035   Thread *thread = GetThreadList().GetExpressionExecutionThread().get();
6036   if (thread == nullptr || address == nullptr)
6037     return false;
6038 
6039   EvaluateExpressionOptions options;
6040   options.SetStopOthers(true);
6041   options.SetUnwindOnError(true);
6042   options.SetIgnoreBreakpoints(true);
6043   options.SetTryAllThreads(true);
6044   options.SetDebug(false);
6045   options.SetTimeout(GetUtilityExpressionTimeout());
6046   options.SetTrapExceptions(trap_exceptions);
6047 
6048   auto type_system_or_err =
6049       GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC);
6050   if (!type_system_or_err) {
6051     llvm::consumeError(type_system_or_err.takeError());
6052     return false;
6053   }
6054   CompilerType void_ptr_type =
6055       type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType();
6056   lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction(
6057       *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options));
6058   if (call_plan_sp) {
6059     DiagnosticManager diagnostics;
6060 
6061     StackFrame *frame = thread->GetStackFrameAtIndex(0).get();
6062     if (frame) {
6063       ExecutionContext exe_ctx;
6064       frame->CalculateExecutionContext(exe_ctx);
6065       ExpressionResults result =
6066           RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics);
6067       if (result == eExpressionCompleted) {
6068         returned_func =
6069             call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned(
6070                 LLDB_INVALID_ADDRESS);
6071 
6072         if (GetAddressByteSize() == 4) {
6073           if (returned_func == UINT32_MAX)
6074             return false;
6075         } else if (GetAddressByteSize() == 8) {
6076           if (returned_func == UINT64_MAX)
6077             return false;
6078         }
6079         return true;
6080       }
6081     }
6082   }
6083 
6084   return false;
6085 }
6086 
6087 llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() {
6088   Architecture *arch = GetTarget().GetArchitecturePlugin();
6089   const MemoryTagManager *tag_manager =
6090       arch ? arch->GetMemoryTagManager() : nullptr;
6091   if (!arch || !tag_manager) {
6092     return llvm::createStringError(
6093         llvm::inconvertibleErrorCode(),
6094         "This architecture does not support memory tagging");
6095   }
6096 
6097   if (!SupportsMemoryTagging()) {
6098     return llvm::createStringError(llvm::inconvertibleErrorCode(),
6099                                    "Process does not support memory tagging");
6100   }
6101 
6102   return tag_manager;
6103 }
6104 
6105 llvm::Expected<std::vector<lldb::addr_t>>
6106 Process::ReadMemoryTags(lldb::addr_t addr, size_t len) {
6107   llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6108       GetMemoryTagManager();
6109   if (!tag_manager_or_err)
6110     return tag_manager_or_err.takeError();
6111 
6112   const MemoryTagManager *tag_manager = *tag_manager_or_err;
6113   llvm::Expected<std::vector<uint8_t>> tag_data =
6114       DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType());
6115   if (!tag_data)
6116     return tag_data.takeError();
6117 
6118   return tag_manager->UnpackTagsData(*tag_data,
6119                                      len / tag_manager->GetGranuleSize());
6120 }
6121 
6122 Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len,
6123                                 const std::vector<lldb::addr_t> &tags) {
6124   llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6125       GetMemoryTagManager();
6126   if (!tag_manager_or_err)
6127     return Status(tag_manager_or_err.takeError());
6128 
6129   const MemoryTagManager *tag_manager = *tag_manager_or_err;
6130   llvm::Expected<std::vector<uint8_t>> packed_tags =
6131       tag_manager->PackTags(tags);
6132   if (!packed_tags) {
6133     return Status(packed_tags.takeError());
6134   }
6135 
6136   return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(),
6137                            *packed_tags);
6138 }
6139