1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 13 #include "llvm/ADT/ScopeExit.h" 14 #include "llvm/Support/ScopedPrinter.h" 15 #include "llvm/Support/Threading.h" 16 17 #include "lldb/Breakpoint/BreakpointLocation.h" 18 #include "lldb/Breakpoint/StoppointCallbackContext.h" 19 #include "lldb/Core/Debugger.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/ModuleSpec.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/StreamFile.h" 24 #include "lldb/Expression/DiagnosticManager.h" 25 #include "lldb/Expression/DynamicCheckerFunctions.h" 26 #include "lldb/Expression/UserExpression.h" 27 #include "lldb/Expression/UtilityFunction.h" 28 #include "lldb/Host/ConnectionFileDescriptor.h" 29 #include "lldb/Host/FileSystem.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/HostInfo.h" 32 #include "lldb/Host/OptionParser.h" 33 #include "lldb/Host/Pipe.h" 34 #include "lldb/Host/Terminal.h" 35 #include "lldb/Host/ThreadLauncher.h" 36 #include "lldb/Interpreter/CommandInterpreter.h" 37 #include "lldb/Interpreter/OptionArgParser.h" 38 #include "lldb/Interpreter/OptionValueProperties.h" 39 #include "lldb/Symbol/Function.h" 40 #include "lldb/Symbol/Symbol.h" 41 #include "lldb/Target/ABI.h" 42 #include "lldb/Target/AssertFrameRecognizer.h" 43 #include "lldb/Target/DynamicLoader.h" 44 #include "lldb/Target/InstrumentationRuntime.h" 45 #include "lldb/Target/JITLoader.h" 46 #include "lldb/Target/JITLoaderList.h" 47 #include "lldb/Target/Language.h" 48 #include "lldb/Target/LanguageRuntime.h" 49 #include "lldb/Target/MemoryHistory.h" 50 #include "lldb/Target/MemoryRegionInfo.h" 51 #include "lldb/Target/OperatingSystem.h" 52 #include "lldb/Target/Platform.h" 53 #include "lldb/Target/Process.h" 54 #include "lldb/Target/RegisterContext.h" 55 #include "lldb/Target/StopInfo.h" 56 #include "lldb/Target/StructuredDataPlugin.h" 57 #include "lldb/Target/SystemRuntime.h" 58 #include "lldb/Target/Target.h" 59 #include "lldb/Target/TargetList.h" 60 #include "lldb/Target/Thread.h" 61 #include "lldb/Target/ThreadPlan.h" 62 #include "lldb/Target/ThreadPlanBase.h" 63 #include "lldb/Target/ThreadPlanCallFunction.h" 64 #include "lldb/Target/ThreadPlanStack.h" 65 #include "lldb/Target/UnixSignals.h" 66 #include "lldb/Utility/Event.h" 67 #include "lldb/Utility/LLDBLog.h" 68 #include "lldb/Utility/Log.h" 69 #include "lldb/Utility/NameMatches.h" 70 #include "lldb/Utility/ProcessInfo.h" 71 #include "lldb/Utility/SelectHelper.h" 72 #include "lldb/Utility/State.h" 73 #include "lldb/Utility/Timer.h" 74 75 using namespace lldb; 76 using namespace lldb_private; 77 using namespace std::chrono; 78 79 // Comment out line below to disable memory caching, overriding the process 80 // setting target.process.disable-memory-cache 81 #define ENABLE_MEMORY_CACHING 82 83 #ifdef ENABLE_MEMORY_CACHING 84 #define DISABLE_MEM_CACHE_DEFAULT false 85 #else 86 #define DISABLE_MEM_CACHE_DEFAULT true 87 #endif 88 89 class ProcessOptionValueProperties 90 : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> { 91 public: 92 ProcessOptionValueProperties(ConstString name) : Cloneable(name) {} 93 94 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 95 bool will_modify, 96 uint32_t idx) const override { 97 // When getting the value for a key from the process options, we will 98 // always try and grab the setting from the current process if there is 99 // one. Else we just use the one from this instance. 100 if (exe_ctx) { 101 Process *process = exe_ctx->GetProcessPtr(); 102 if (process) { 103 ProcessOptionValueProperties *instance_properties = 104 static_cast<ProcessOptionValueProperties *>( 105 process->GetValueProperties().get()); 106 if (this != instance_properties) 107 return instance_properties->ProtectedGetPropertyAtIndex(idx); 108 } 109 } 110 return ProtectedGetPropertyAtIndex(idx); 111 } 112 }; 113 114 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = { 115 { 116 eFollowParent, 117 "parent", 118 "Continue tracing the parent process and detach the child.", 119 }, 120 { 121 eFollowChild, 122 "child", 123 "Trace the child process and detach the parent.", 124 }, 125 }; 126 127 #define LLDB_PROPERTIES_process 128 #include "TargetProperties.inc" 129 130 enum { 131 #define LLDB_PROPERTIES_process 132 #include "TargetPropertiesEnum.inc" 133 ePropertyExperimental, 134 }; 135 136 #define LLDB_PROPERTIES_process_experimental 137 #include "TargetProperties.inc" 138 139 enum { 140 #define LLDB_PROPERTIES_process_experimental 141 #include "TargetPropertiesEnum.inc" 142 }; 143 144 class ProcessExperimentalOptionValueProperties 145 : public Cloneable<ProcessExperimentalOptionValueProperties, 146 OptionValueProperties> { 147 public: 148 ProcessExperimentalOptionValueProperties() 149 : Cloneable( 150 ConstString(Properties::GetExperimentalSettingsName())) {} 151 }; 152 153 ProcessExperimentalProperties::ProcessExperimentalProperties() 154 : Properties(OptionValuePropertiesSP( 155 new ProcessExperimentalOptionValueProperties())) { 156 m_collection_sp->Initialize(g_process_experimental_properties); 157 } 158 159 ProcessProperties::ProcessProperties(lldb_private::Process *process) 160 : Properties(), 161 m_process(process) // Can be nullptr for global ProcessProperties 162 { 163 if (process == nullptr) { 164 // Global process properties, set them up one time 165 m_collection_sp = 166 std::make_shared<ProcessOptionValueProperties>(ConstString("process")); 167 m_collection_sp->Initialize(g_process_properties); 168 m_collection_sp->AppendProperty( 169 ConstString("thread"), ConstString("Settings specific to threads."), 170 true, Thread::GetGlobalProperties().GetValueProperties()); 171 } else { 172 m_collection_sp = 173 OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties()); 174 m_collection_sp->SetValueChangedCallback( 175 ePropertyPythonOSPluginPath, 176 [this] { m_process->LoadOperatingSystemPlugin(true); }); 177 } 178 179 m_experimental_properties_up = 180 std::make_unique<ProcessExperimentalProperties>(); 181 m_collection_sp->AppendProperty( 182 ConstString(Properties::GetExperimentalSettingsName()), 183 ConstString("Experimental settings - setting these won't produce " 184 "errors if the setting is not present."), 185 true, m_experimental_properties_up->GetValueProperties()); 186 } 187 188 ProcessProperties::~ProcessProperties() = default; 189 190 bool ProcessProperties::GetDisableMemoryCache() const { 191 const uint32_t idx = ePropertyDisableMemCache; 192 return m_collection_sp->GetPropertyAtIndexAsBoolean( 193 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 194 } 195 196 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 197 const uint32_t idx = ePropertyMemCacheLineSize; 198 return m_collection_sp->GetPropertyAtIndexAsUInt64( 199 nullptr, idx, g_process_properties[idx].default_uint_value); 200 } 201 202 Args ProcessProperties::GetExtraStartupCommands() const { 203 Args args; 204 const uint32_t idx = ePropertyExtraStartCommand; 205 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 206 return args; 207 } 208 209 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 210 const uint32_t idx = ePropertyExtraStartCommand; 211 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 212 } 213 214 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 215 const uint32_t idx = ePropertyPythonOSPluginPath; 216 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 217 } 218 219 uint32_t ProcessProperties::GetVirtualAddressableBits() const { 220 const uint32_t idx = ePropertyVirtualAddressableBits; 221 return m_collection_sp->GetPropertyAtIndexAsUInt64( 222 nullptr, idx, g_process_properties[idx].default_uint_value); 223 } 224 225 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) { 226 const uint32_t idx = ePropertyVirtualAddressableBits; 227 m_collection_sp->SetPropertyAtIndexAsUInt64(nullptr, idx, bits); 228 } 229 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 230 const uint32_t idx = ePropertyPythonOSPluginPath; 231 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 232 } 233 234 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 235 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 236 return m_collection_sp->GetPropertyAtIndexAsBoolean( 237 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 238 } 239 240 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 241 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 242 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 243 } 244 245 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 246 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 247 return m_collection_sp->GetPropertyAtIndexAsBoolean( 248 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 249 } 250 251 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 252 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 253 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 254 } 255 256 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 257 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 258 return m_collection_sp->GetPropertyAtIndexAsBoolean( 259 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 260 } 261 262 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 263 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 264 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 265 } 266 267 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const { 268 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 269 return m_collection_sp->GetPropertyAtIndexAsBoolean( 270 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 271 } 272 273 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) { 274 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 275 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, disable); 276 m_process->Flush(); 277 } 278 279 bool ProcessProperties::GetDetachKeepsStopped() const { 280 const uint32_t idx = ePropertyDetachKeepsStopped; 281 return m_collection_sp->GetPropertyAtIndexAsBoolean( 282 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 283 } 284 285 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 286 const uint32_t idx = ePropertyDetachKeepsStopped; 287 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 288 } 289 290 bool ProcessProperties::GetWarningsOptimization() const { 291 const uint32_t idx = ePropertyWarningOptimization; 292 return m_collection_sp->GetPropertyAtIndexAsBoolean( 293 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 294 } 295 296 bool ProcessProperties::GetWarningsUnsupportedLanguage() const { 297 const uint32_t idx = ePropertyWarningUnsupportedLanguage; 298 return m_collection_sp->GetPropertyAtIndexAsBoolean( 299 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 300 } 301 302 bool ProcessProperties::GetStopOnExec() const { 303 const uint32_t idx = ePropertyStopOnExec; 304 return m_collection_sp->GetPropertyAtIndexAsBoolean( 305 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 306 } 307 308 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 309 const uint32_t idx = ePropertyUtilityExpressionTimeout; 310 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 311 nullptr, idx, g_process_properties[idx].default_uint_value); 312 return std::chrono::seconds(value); 313 } 314 315 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const { 316 const uint32_t idx = ePropertyInterruptTimeout; 317 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 318 nullptr, idx, g_process_properties[idx].default_uint_value); 319 return std::chrono::seconds(value); 320 } 321 322 bool ProcessProperties::GetSteppingRunsAllThreads() const { 323 const uint32_t idx = ePropertySteppingRunsAllThreads; 324 return m_collection_sp->GetPropertyAtIndexAsBoolean( 325 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 326 } 327 328 bool ProcessProperties::GetOSPluginReportsAllThreads() const { 329 const bool fail_value = true; 330 const Property *exp_property = 331 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 332 OptionValueProperties *exp_values = 333 exp_property->GetValue()->GetAsProperties(); 334 if (!exp_values) 335 return fail_value; 336 337 return exp_values->GetPropertyAtIndexAsBoolean( 338 nullptr, ePropertyOSPluginReportsAllThreads, fail_value); 339 } 340 341 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { 342 const Property *exp_property = 343 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 344 OptionValueProperties *exp_values = 345 exp_property->GetValue()->GetAsProperties(); 346 if (exp_values) 347 exp_values->SetPropertyAtIndexAsBoolean( 348 nullptr, ePropertyOSPluginReportsAllThreads, does_report); 349 } 350 351 FollowForkMode ProcessProperties::GetFollowForkMode() const { 352 const uint32_t idx = ePropertyFollowForkMode; 353 return (FollowForkMode)m_collection_sp->GetPropertyAtIndexAsEnumeration( 354 nullptr, idx, g_process_properties[idx].default_uint_value); 355 } 356 357 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 358 llvm::StringRef plugin_name, 359 ListenerSP listener_sp, 360 const FileSpec *crash_file_path, 361 bool can_connect) { 362 static uint32_t g_process_unique_id = 0; 363 364 ProcessSP process_sp; 365 ProcessCreateInstance create_callback = nullptr; 366 if (!plugin_name.empty()) { 367 create_callback = 368 PluginManager::GetProcessCreateCallbackForPluginName(plugin_name); 369 if (create_callback) { 370 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 371 can_connect); 372 if (process_sp) { 373 if (process_sp->CanDebug(target_sp, true)) { 374 process_sp->m_process_unique_id = ++g_process_unique_id; 375 } else 376 process_sp.reset(); 377 } 378 } 379 } else { 380 for (uint32_t idx = 0; 381 (create_callback = 382 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 383 ++idx) { 384 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 385 can_connect); 386 if (process_sp) { 387 if (process_sp->CanDebug(target_sp, false)) { 388 process_sp->m_process_unique_id = ++g_process_unique_id; 389 break; 390 } else 391 process_sp.reset(); 392 } 393 } 394 } 395 return process_sp; 396 } 397 398 ConstString &Process::GetStaticBroadcasterClass() { 399 static ConstString class_name("lldb.process"); 400 return class_name; 401 } 402 403 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 404 : Process(target_sp, listener_sp, 405 UnixSignals::Create(HostInfo::GetArchitecture())) { 406 // This constructor just delegates to the full Process constructor, 407 // defaulting to using the Host's UnixSignals. 408 } 409 410 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 411 const UnixSignalsSP &unix_signals_sp) 412 : ProcessProperties(this), 413 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 414 Process::GetStaticBroadcasterClass().AsCString()), 415 m_target_wp(target_sp), m_public_state(eStateUnloaded), 416 m_private_state(eStateUnloaded), 417 m_private_state_broadcaster(nullptr, 418 "lldb.process.internal_state_broadcaster"), 419 m_private_state_control_broadcaster( 420 nullptr, "lldb.process.internal_state_control_broadcaster"), 421 m_private_state_listener_sp( 422 Listener::MakeListener("lldb.process.internal_state_listener")), 423 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 424 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 425 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 426 m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this), 427 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 428 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 429 m_breakpoint_site_list(), m_dynamic_checkers_up(), 430 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 431 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 432 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 433 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 434 m_memory_cache(*this), m_allocated_memory_cache(*this), 435 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 436 m_private_run_lock(), m_finalizing(false), 437 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 438 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 439 m_can_interpret_function_calls(false), m_run_thread_plan_lock(), 440 m_can_jit(eCanJITDontKnow) { 441 CheckInWithManager(); 442 443 Log *log = GetLog(LLDBLog::Object); 444 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 445 446 if (!m_unix_signals_sp) 447 m_unix_signals_sp = std::make_shared<UnixSignals>(); 448 449 SetEventName(eBroadcastBitStateChanged, "state-changed"); 450 SetEventName(eBroadcastBitInterrupt, "interrupt"); 451 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 452 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 453 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 454 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 455 456 m_private_state_control_broadcaster.SetEventName( 457 eBroadcastInternalStateControlStop, "control-stop"); 458 m_private_state_control_broadcaster.SetEventName( 459 eBroadcastInternalStateControlPause, "control-pause"); 460 m_private_state_control_broadcaster.SetEventName( 461 eBroadcastInternalStateControlResume, "control-resume"); 462 463 m_listener_sp->StartListeningForEvents( 464 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 465 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 466 eBroadcastBitProfileData | eBroadcastBitStructuredData); 467 468 m_private_state_listener_sp->StartListeningForEvents( 469 &m_private_state_broadcaster, 470 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 471 472 m_private_state_listener_sp->StartListeningForEvents( 473 &m_private_state_control_broadcaster, 474 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 475 eBroadcastInternalStateControlResume); 476 // We need something valid here, even if just the default UnixSignalsSP. 477 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 478 479 // Allow the platform to override the default cache line size 480 OptionValueSP value_sp = 481 m_collection_sp 482 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 483 ->GetValue(); 484 uint32_t platform_cache_line_size = 485 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 486 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 487 value_sp->SetUInt64Value(platform_cache_line_size); 488 489 RegisterAssertFrameRecognizer(this); 490 } 491 492 Process::~Process() { 493 Log *log = GetLog(LLDBLog::Object); 494 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 495 StopPrivateStateThread(); 496 497 // ThreadList::Clear() will try to acquire this process's mutex, so 498 // explicitly clear the thread list here to ensure that the mutex is not 499 // destroyed before the thread list. 500 m_thread_list.Clear(); 501 } 502 503 ProcessProperties &Process::GetGlobalProperties() { 504 // NOTE: intentional leak so we don't crash if global destructor chain gets 505 // called as other threads still use the result of this function 506 static ProcessProperties *g_settings_ptr = 507 new ProcessProperties(nullptr); 508 return *g_settings_ptr; 509 } 510 511 void Process::Finalize() { 512 if (m_finalizing.exchange(true)) 513 return; 514 515 // Destroy the process. This will call the virtual function DoDestroy under 516 // the hood, giving our derived class a chance to do the ncessary tear down. 517 DestroyImpl(false); 518 519 // Clear our broadcaster before we proceed with destroying 520 Broadcaster::Clear(); 521 522 // Do any cleanup needed prior to being destructed... Subclasses that 523 // override this method should call this superclass method as well. 524 525 // We need to destroy the loader before the derived Process class gets 526 // destroyed since it is very likely that undoing the loader will require 527 // access to the real process. 528 m_dynamic_checkers_up.reset(); 529 m_abi_sp.reset(); 530 m_os_up.reset(); 531 m_system_runtime_up.reset(); 532 m_dyld_up.reset(); 533 m_jit_loaders_up.reset(); 534 m_thread_plans.Clear(); 535 m_thread_list_real.Destroy(); 536 m_thread_list.Destroy(); 537 m_extended_thread_list.Destroy(); 538 m_queue_list.Clear(); 539 m_queue_list_stop_id = 0; 540 std::vector<Notifications> empty_notifications; 541 m_notifications.swap(empty_notifications); 542 m_image_tokens.clear(); 543 m_memory_cache.Clear(); 544 m_allocated_memory_cache.Clear(); 545 { 546 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 547 m_language_runtimes.clear(); 548 } 549 m_instrumentation_runtimes.clear(); 550 m_next_event_action_up.reset(); 551 // Clear the last natural stop ID since it has a strong reference to this 552 // process 553 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 554 //#ifdef LLDB_CONFIGURATION_DEBUG 555 // StreamFile s(stdout, false); 556 // EventSP event_sp; 557 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 558 // { 559 // event_sp->Dump (&s); 560 // s.EOL(); 561 // } 562 //#endif 563 // We have to be very careful here as the m_private_state_listener might 564 // contain events that have ProcessSP values in them which can keep this 565 // process around forever. These events need to be cleared out. 566 m_private_state_listener_sp->Clear(); 567 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 568 m_public_run_lock.SetStopped(); 569 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 570 m_private_run_lock.SetStopped(); 571 m_structured_data_plugin_map.clear(); 572 } 573 574 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 575 m_notifications.push_back(callbacks); 576 if (callbacks.initialize != nullptr) 577 callbacks.initialize(callbacks.baton, this); 578 } 579 580 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 581 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 582 for (pos = m_notifications.begin(); pos != end; ++pos) { 583 if (pos->baton == callbacks.baton && 584 pos->initialize == callbacks.initialize && 585 pos->process_state_changed == callbacks.process_state_changed) { 586 m_notifications.erase(pos); 587 return true; 588 } 589 } 590 return false; 591 } 592 593 void Process::SynchronouslyNotifyStateChanged(StateType state) { 594 std::vector<Notifications>::iterator notification_pos, 595 notification_end = m_notifications.end(); 596 for (notification_pos = m_notifications.begin(); 597 notification_pos != notification_end; ++notification_pos) { 598 if (notification_pos->process_state_changed) 599 notification_pos->process_state_changed(notification_pos->baton, this, 600 state); 601 } 602 } 603 604 // FIXME: We need to do some work on events before the general Listener sees 605 // them. 606 // For instance if we are continuing from a breakpoint, we need to ensure that 607 // we do the little "insert real insn, step & stop" trick. But we can't do 608 // that when the event is delivered by the broadcaster - since that is done on 609 // the thread that is waiting for new events, so if we needed more than one 610 // event for our handling, we would stall. So instead we do it when we fetch 611 // the event off of the queue. 612 // 613 614 StateType Process::GetNextEvent(EventSP &event_sp) { 615 StateType state = eStateInvalid; 616 617 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 618 std::chrono::seconds(0)) && 619 event_sp) 620 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 621 622 return state; 623 } 624 625 void Process::SyncIOHandler(uint32_t iohandler_id, 626 const Timeout<std::micro> &timeout) { 627 // don't sync (potentially context switch) in case where there is no process 628 // IO 629 if (!m_process_input_reader) 630 return; 631 632 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 633 634 Log *log = GetLog(LLDBLog::Process); 635 if (Result) { 636 LLDB_LOG( 637 log, 638 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 639 iohandler_id, *Result); 640 } else { 641 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 642 iohandler_id); 643 } 644 } 645 646 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 647 EventSP *event_sp_ptr, bool wait_always, 648 ListenerSP hijack_listener_sp, 649 Stream *stream, bool use_run_lock) { 650 // We can't just wait for a "stopped" event, because the stopped event may 651 // have restarted the target. We have to actually check each event, and in 652 // the case of a stopped event check the restarted flag on the event. 653 if (event_sp_ptr) 654 event_sp_ptr->reset(); 655 StateType state = GetState(); 656 // If we are exited or detached, we won't ever get back to any other valid 657 // state... 658 if (state == eStateDetached || state == eStateExited) 659 return state; 660 661 Log *log = GetLog(LLDBLog::Process); 662 LLDB_LOG(log, "timeout = {0}", timeout); 663 664 if (!wait_always && StateIsStoppedState(state, true) && 665 StateIsStoppedState(GetPrivateState(), true)) { 666 LLDB_LOGF(log, 667 "Process::%s returning without waiting for events; process " 668 "private and public states are already 'stopped'.", 669 __FUNCTION__); 670 // We need to toggle the run lock as this won't get done in 671 // SetPublicState() if the process is hijacked. 672 if (hijack_listener_sp && use_run_lock) 673 m_public_run_lock.SetStopped(); 674 return state; 675 } 676 677 while (state != eStateInvalid) { 678 EventSP event_sp; 679 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 680 if (event_sp_ptr && event_sp) 681 *event_sp_ptr = event_sp; 682 683 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 684 Process::HandleProcessStateChangedEvent(event_sp, stream, 685 pop_process_io_handler); 686 687 switch (state) { 688 case eStateCrashed: 689 case eStateDetached: 690 case eStateExited: 691 case eStateUnloaded: 692 // We need to toggle the run lock as this won't get done in 693 // SetPublicState() if the process is hijacked. 694 if (hijack_listener_sp && use_run_lock) 695 m_public_run_lock.SetStopped(); 696 return state; 697 case eStateStopped: 698 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 699 continue; 700 else { 701 // We need to toggle the run lock as this won't get done in 702 // SetPublicState() if the process is hijacked. 703 if (hijack_listener_sp && use_run_lock) 704 m_public_run_lock.SetStopped(); 705 return state; 706 } 707 default: 708 continue; 709 } 710 } 711 return state; 712 } 713 714 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 715 Stream *stream, 716 bool &pop_process_io_handler) { 717 const bool handle_pop = pop_process_io_handler; 718 719 pop_process_io_handler = false; 720 ProcessSP process_sp = 721 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 722 723 if (!process_sp) 724 return false; 725 726 StateType event_state = 727 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 728 if (event_state == eStateInvalid) 729 return false; 730 731 switch (event_state) { 732 case eStateInvalid: 733 case eStateUnloaded: 734 case eStateAttaching: 735 case eStateLaunching: 736 case eStateStepping: 737 case eStateDetached: 738 if (stream) 739 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 740 StateAsCString(event_state)); 741 if (event_state == eStateDetached) 742 pop_process_io_handler = true; 743 break; 744 745 case eStateConnected: 746 case eStateRunning: 747 // Don't be chatty when we run... 748 break; 749 750 case eStateExited: 751 if (stream) 752 process_sp->GetStatus(*stream); 753 pop_process_io_handler = true; 754 break; 755 756 case eStateStopped: 757 case eStateCrashed: 758 case eStateSuspended: 759 // Make sure the program hasn't been auto-restarted: 760 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 761 if (stream) { 762 size_t num_reasons = 763 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 764 if (num_reasons > 0) { 765 // FIXME: Do we want to report this, or would that just be annoyingly 766 // chatty? 767 if (num_reasons == 1) { 768 const char *reason = 769 Process::ProcessEventData::GetRestartedReasonAtIndex( 770 event_sp.get(), 0); 771 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 772 process_sp->GetID(), 773 reason ? reason : "<UNKNOWN REASON>"); 774 } else { 775 stream->Printf("Process %" PRIu64 776 " stopped and restarted, reasons:\n", 777 process_sp->GetID()); 778 779 for (size_t i = 0; i < num_reasons; i++) { 780 const char *reason = 781 Process::ProcessEventData::GetRestartedReasonAtIndex( 782 event_sp.get(), i); 783 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 784 } 785 } 786 } 787 } 788 } else { 789 StopInfoSP curr_thread_stop_info_sp; 790 // Lock the thread list so it doesn't change on us, this is the scope for 791 // the locker: 792 { 793 ThreadList &thread_list = process_sp->GetThreadList(); 794 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 795 796 ThreadSP curr_thread(thread_list.GetSelectedThread()); 797 ThreadSP thread; 798 StopReason curr_thread_stop_reason = eStopReasonInvalid; 799 bool prefer_curr_thread = false; 800 if (curr_thread && curr_thread->IsValid()) { 801 curr_thread_stop_reason = curr_thread->GetStopReason(); 802 switch (curr_thread_stop_reason) { 803 case eStopReasonNone: 804 case eStopReasonInvalid: 805 // Don't prefer the current thread if it didn't stop for a reason. 806 break; 807 case eStopReasonSignal: { 808 // We need to do the same computation we do for other threads 809 // below in case the current thread happens to be the one that 810 // stopped for the no-stop signal. 811 uint64_t signo = curr_thread->GetStopInfo()->GetValue(); 812 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) 813 prefer_curr_thread = true; 814 } break; 815 default: 816 prefer_curr_thread = true; 817 break; 818 } 819 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 820 } 821 822 if (!prefer_curr_thread) { 823 // Prefer a thread that has just completed its plan over another 824 // thread as current thread. 825 ThreadSP plan_thread; 826 ThreadSP other_thread; 827 828 const size_t num_threads = thread_list.GetSize(); 829 size_t i; 830 for (i = 0; i < num_threads; ++i) { 831 thread = thread_list.GetThreadAtIndex(i); 832 StopReason thread_stop_reason = thread->GetStopReason(); 833 switch (thread_stop_reason) { 834 case eStopReasonInvalid: 835 case eStopReasonNone: 836 break; 837 838 case eStopReasonSignal: { 839 // Don't select a signal thread if we weren't going to stop at 840 // that signal. We have to have had another reason for stopping 841 // here, and the user doesn't want to see this thread. 842 uint64_t signo = thread->GetStopInfo()->GetValue(); 843 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 844 if (!other_thread) 845 other_thread = thread; 846 } 847 break; 848 } 849 case eStopReasonTrace: 850 case eStopReasonBreakpoint: 851 case eStopReasonWatchpoint: 852 case eStopReasonException: 853 case eStopReasonExec: 854 case eStopReasonFork: 855 case eStopReasonVFork: 856 case eStopReasonVForkDone: 857 case eStopReasonThreadExiting: 858 case eStopReasonInstrumentation: 859 case eStopReasonProcessorTrace: 860 if (!other_thread) 861 other_thread = thread; 862 break; 863 case eStopReasonPlanComplete: 864 if (!plan_thread) 865 plan_thread = thread; 866 break; 867 } 868 } 869 if (plan_thread) 870 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 871 else if (other_thread) 872 thread_list.SetSelectedThreadByID(other_thread->GetID()); 873 else { 874 if (curr_thread && curr_thread->IsValid()) 875 thread = curr_thread; 876 else 877 thread = thread_list.GetThreadAtIndex(0); 878 879 if (thread) 880 thread_list.SetSelectedThreadByID(thread->GetID()); 881 } 882 } 883 } 884 // Drop the ThreadList mutex by here, since GetThreadStatus below might 885 // have to run code, e.g. for Data formatters, and if we hold the 886 // ThreadList mutex, then the process is going to have a hard time 887 // restarting the process. 888 if (stream) { 889 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 890 if (debugger.GetTargetList().GetSelectedTarget().get() == 891 &process_sp->GetTarget()) { 892 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); 893 894 if (!thread_sp || !thread_sp->IsValid()) 895 return false; 896 897 const bool only_threads_with_stop_reason = true; 898 const uint32_t start_frame = thread_sp->GetSelectedFrameIndex(); 899 const uint32_t num_frames = 1; 900 const uint32_t num_frames_with_source = 1; 901 const bool stop_format = true; 902 903 process_sp->GetStatus(*stream); 904 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 905 start_frame, num_frames, 906 num_frames_with_source, 907 stop_format); 908 if (curr_thread_stop_info_sp) { 909 lldb::addr_t crashing_address; 910 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 911 curr_thread_stop_info_sp, &crashing_address); 912 if (valobj_sp) { 913 const ValueObject::GetExpressionPathFormat format = 914 ValueObject::GetExpressionPathFormat:: 915 eGetExpressionPathFormatHonorPointers; 916 stream->PutCString("Likely cause: "); 917 valobj_sp->GetExpressionPath(*stream, format); 918 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 919 } 920 } 921 } else { 922 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 923 process_sp->GetTarget().shared_from_this()); 924 if (target_idx != UINT32_MAX) 925 stream->Printf("Target %d: (", target_idx); 926 else 927 stream->Printf("Target <unknown index>: ("); 928 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 929 stream->Printf(") stopped.\n"); 930 } 931 } 932 933 // Pop the process IO handler 934 pop_process_io_handler = true; 935 } 936 break; 937 } 938 939 if (handle_pop && pop_process_io_handler) 940 process_sp->PopProcessIOHandler(); 941 942 return true; 943 } 944 945 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 946 if (listener_sp) { 947 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 948 eBroadcastBitInterrupt); 949 } else 950 return false; 951 } 952 953 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 954 955 StateType Process::GetStateChangedEvents(EventSP &event_sp, 956 const Timeout<std::micro> &timeout, 957 ListenerSP hijack_listener_sp) { 958 Log *log = GetLog(LLDBLog::Process); 959 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 960 961 ListenerSP listener_sp = hijack_listener_sp; 962 if (!listener_sp) 963 listener_sp = m_listener_sp; 964 965 StateType state = eStateInvalid; 966 if (listener_sp->GetEventForBroadcasterWithType( 967 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 968 timeout)) { 969 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 970 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 971 else 972 LLDB_LOG(log, "got no event or was interrupted."); 973 } 974 975 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 976 return state; 977 } 978 979 Event *Process::PeekAtStateChangedEvents() { 980 Log *log = GetLog(LLDBLog::Process); 981 982 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 983 984 Event *event_ptr; 985 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 986 this, eBroadcastBitStateChanged); 987 if (log) { 988 if (event_ptr) { 989 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 990 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 991 } else { 992 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 993 } 994 } 995 return event_ptr; 996 } 997 998 StateType 999 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1000 const Timeout<std::micro> &timeout) { 1001 Log *log = GetLog(LLDBLog::Process); 1002 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1003 1004 StateType state = eStateInvalid; 1005 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1006 &m_private_state_broadcaster, 1007 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1008 timeout)) 1009 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1010 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1011 1012 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1013 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1014 return state; 1015 } 1016 1017 bool Process::GetEventsPrivate(EventSP &event_sp, 1018 const Timeout<std::micro> &timeout, 1019 bool control_only) { 1020 Log *log = GetLog(LLDBLog::Process); 1021 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1022 1023 if (control_only) 1024 return m_private_state_listener_sp->GetEventForBroadcaster( 1025 &m_private_state_control_broadcaster, event_sp, timeout); 1026 else 1027 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1028 } 1029 1030 bool Process::IsRunning() const { 1031 return StateIsRunningState(m_public_state.GetValue()); 1032 } 1033 1034 int Process::GetExitStatus() { 1035 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1036 1037 if (m_public_state.GetValue() == eStateExited) 1038 return m_exit_status; 1039 return -1; 1040 } 1041 1042 const char *Process::GetExitDescription() { 1043 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1044 1045 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1046 return m_exit_string.c_str(); 1047 return nullptr; 1048 } 1049 1050 bool Process::SetExitStatus(int status, const char *cstr) { 1051 // Use a mutex to protect setting the exit status. 1052 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1053 1054 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1055 LLDB_LOGF( 1056 log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1057 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : ""); 1058 1059 // We were already in the exited state 1060 if (m_private_state.GetValue() == eStateExited) { 1061 LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because " 1062 "state was already set to eStateExited"); 1063 return false; 1064 } 1065 1066 m_exit_status = status; 1067 if (cstr) 1068 m_exit_string = cstr; 1069 else 1070 m_exit_string.clear(); 1071 1072 // Clear the last natural stop ID since it has a strong reference to this 1073 // process 1074 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1075 1076 SetPrivateState(eStateExited); 1077 1078 // Allow subclasses to do some cleanup 1079 DidExit(); 1080 1081 return true; 1082 } 1083 1084 bool Process::IsAlive() { 1085 switch (m_private_state.GetValue()) { 1086 case eStateConnected: 1087 case eStateAttaching: 1088 case eStateLaunching: 1089 case eStateStopped: 1090 case eStateRunning: 1091 case eStateStepping: 1092 case eStateCrashed: 1093 case eStateSuspended: 1094 return true; 1095 default: 1096 return false; 1097 } 1098 } 1099 1100 // This static callback can be used to watch for local child processes on the 1101 // current host. The child process exits, the process will be found in the 1102 // global target list (we want to be completely sure that the 1103 // lldb_private::Process doesn't go away before we can deliver the signal. 1104 bool Process::SetProcessExitStatus( 1105 lldb::pid_t pid, bool exited, 1106 int signo, // Zero for no signal 1107 int exit_status // Exit value of process if signal is zero 1108 ) { 1109 Log *log = GetLog(LLDBLog::Process); 1110 LLDB_LOGF(log, 1111 "Process::SetProcessExitStatus (pid=%" PRIu64 1112 ", exited=%i, signal=%i, exit_status=%i)\n", 1113 pid, exited, signo, exit_status); 1114 1115 if (exited) { 1116 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1117 if (target_sp) { 1118 ProcessSP process_sp(target_sp->GetProcessSP()); 1119 if (process_sp) { 1120 const char *signal_cstr = nullptr; 1121 if (signo) 1122 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1123 1124 process_sp->SetExitStatus(exit_status, signal_cstr); 1125 } 1126 } 1127 return true; 1128 } 1129 return false; 1130 } 1131 1132 bool Process::UpdateThreadList(ThreadList &old_thread_list, 1133 ThreadList &new_thread_list) { 1134 m_thread_plans.ClearThreadCache(); 1135 return DoUpdateThreadList(old_thread_list, new_thread_list); 1136 } 1137 1138 void Process::UpdateThreadListIfNeeded() { 1139 const uint32_t stop_id = GetStopID(); 1140 if (m_thread_list.GetSize(false) == 0 || 1141 stop_id != m_thread_list.GetStopID()) { 1142 bool clear_unused_threads = true; 1143 const StateType state = GetPrivateState(); 1144 if (StateIsStoppedState(state, true)) { 1145 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1146 m_thread_list.SetStopID(stop_id); 1147 1148 // m_thread_list does have its own mutex, but we need to hold onto the 1149 // mutex between the call to UpdateThreadList(...) and the 1150 // os->UpdateThreadList(...) so it doesn't change on us 1151 ThreadList &old_thread_list = m_thread_list; 1152 ThreadList real_thread_list(this); 1153 ThreadList new_thread_list(this); 1154 // Always update the thread list with the protocol specific thread list, 1155 // but only update if "true" is returned 1156 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1157 // Don't call into the OperatingSystem to update the thread list if we 1158 // are shutting down, since that may call back into the SBAPI's, 1159 // requiring the API lock which is already held by whoever is shutting 1160 // us down, causing a deadlock. 1161 OperatingSystem *os = GetOperatingSystem(); 1162 if (os && !m_destroy_in_process) { 1163 // Clear any old backing threads where memory threads might have been 1164 // backed by actual threads from the lldb_private::Process subclass 1165 size_t num_old_threads = old_thread_list.GetSize(false); 1166 for (size_t i = 0; i < num_old_threads; ++i) 1167 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1168 // See if the OS plugin reports all threads. If it does, then 1169 // it is safe to clear unseen thread's plans here. Otherwise we 1170 // should preserve them in case they show up again: 1171 clear_unused_threads = GetOSPluginReportsAllThreads(); 1172 1173 // Turn off dynamic types to ensure we don't run any expressions. 1174 // Objective-C can run an expression to determine if a SBValue is a 1175 // dynamic type or not and we need to avoid this. OperatingSystem 1176 // plug-ins can't run expressions that require running code... 1177 1178 Target &target = GetTarget(); 1179 const lldb::DynamicValueType saved_prefer_dynamic = 1180 target.GetPreferDynamicValue(); 1181 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1182 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1183 1184 // Now let the OperatingSystem plug-in update the thread list 1185 1186 os->UpdateThreadList( 1187 old_thread_list, // Old list full of threads created by OS plug-in 1188 real_thread_list, // The actual thread list full of threads 1189 // created by each lldb_private::Process 1190 // subclass 1191 new_thread_list); // The new thread list that we will show to the 1192 // user that gets filled in 1193 1194 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1195 target.SetPreferDynamicValue(saved_prefer_dynamic); 1196 } else { 1197 // No OS plug-in, the new thread list is the same as the real thread 1198 // list. 1199 new_thread_list = real_thread_list; 1200 } 1201 1202 m_thread_list_real.Update(real_thread_list); 1203 m_thread_list.Update(new_thread_list); 1204 m_thread_list.SetStopID(stop_id); 1205 1206 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1207 // Clear any extended threads that we may have accumulated previously 1208 m_extended_thread_list.Clear(); 1209 m_extended_thread_stop_id = GetLastNaturalStopID(); 1210 1211 m_queue_list.Clear(); 1212 m_queue_list_stop_id = GetLastNaturalStopID(); 1213 } 1214 } 1215 // Now update the plan stack map. 1216 // If we do have an OS plugin, any absent real threads in the 1217 // m_thread_list have already been removed from the ThreadPlanStackMap. 1218 // So any remaining threads are OS Plugin threads, and those we want to 1219 // preserve in case they show up again. 1220 m_thread_plans.Update(m_thread_list, clear_unused_threads); 1221 } 1222 } 1223 } 1224 1225 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { 1226 return m_thread_plans.Find(tid); 1227 } 1228 1229 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { 1230 return m_thread_plans.PrunePlansForTID(tid); 1231 } 1232 1233 void Process::PruneThreadPlans() { 1234 m_thread_plans.Update(GetThreadList(), true, false); 1235 } 1236 1237 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, 1238 lldb::DescriptionLevel desc_level, 1239 bool internal, bool condense_trivial, 1240 bool skip_unreported_plans) { 1241 return m_thread_plans.DumpPlansForTID( 1242 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); 1243 } 1244 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, 1245 bool internal, bool condense_trivial, 1246 bool skip_unreported_plans) { 1247 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, 1248 skip_unreported_plans); 1249 } 1250 1251 void Process::UpdateQueueListIfNeeded() { 1252 if (m_system_runtime_up) { 1253 if (m_queue_list.GetSize() == 0 || 1254 m_queue_list_stop_id != GetLastNaturalStopID()) { 1255 const StateType state = GetPrivateState(); 1256 if (StateIsStoppedState(state, true)) { 1257 m_system_runtime_up->PopulateQueueList(m_queue_list); 1258 m_queue_list_stop_id = GetLastNaturalStopID(); 1259 } 1260 } 1261 } 1262 } 1263 1264 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1265 OperatingSystem *os = GetOperatingSystem(); 1266 if (os) 1267 return os->CreateThread(tid, context); 1268 return ThreadSP(); 1269 } 1270 1271 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1272 return AssignIndexIDToThread(thread_id); 1273 } 1274 1275 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1276 return (m_thread_id_to_index_id_map.find(thread_id) != 1277 m_thread_id_to_index_id_map.end()); 1278 } 1279 1280 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1281 uint32_t result = 0; 1282 std::map<uint64_t, uint32_t>::iterator iterator = 1283 m_thread_id_to_index_id_map.find(thread_id); 1284 if (iterator == m_thread_id_to_index_id_map.end()) { 1285 result = ++m_thread_index_id; 1286 m_thread_id_to_index_id_map[thread_id] = result; 1287 } else { 1288 result = iterator->second; 1289 } 1290 1291 return result; 1292 } 1293 1294 StateType Process::GetState() { 1295 return m_public_state.GetValue(); 1296 } 1297 1298 void Process::SetPublicState(StateType new_state, bool restarted) { 1299 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1300 if (new_state_is_stopped) { 1301 // This will only set the time if the public stop time has no value, so 1302 // it is ok to call this multiple times. With a public stop we can't look 1303 // at the stop ID because many private stops might have happened, so we 1304 // can't check for a stop ID of zero. This allows the "statistics" command 1305 // to dump the time it takes to reach somewhere in your code, like a 1306 // breakpoint you set. 1307 GetTarget().GetStatistics().SetFirstPublicStopTime(); 1308 } 1309 1310 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1311 LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)", 1312 StateAsCString(new_state), restarted); 1313 const StateType old_state = m_public_state.GetValue(); 1314 m_public_state.SetValue(new_state); 1315 1316 // On the transition from Run to Stopped, we unlock the writer end of the run 1317 // lock. The lock gets locked in Resume, which is the public API to tell the 1318 // program to run. 1319 if (!StateChangedIsExternallyHijacked()) { 1320 if (new_state == eStateDetached) { 1321 LLDB_LOGF(log, 1322 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1323 StateAsCString(new_state)); 1324 m_public_run_lock.SetStopped(); 1325 } else { 1326 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1327 if ((old_state_is_stopped != new_state_is_stopped)) { 1328 if (new_state_is_stopped && !restarted) { 1329 LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock", 1330 StateAsCString(new_state)); 1331 m_public_run_lock.SetStopped(); 1332 } 1333 } 1334 } 1335 } 1336 } 1337 1338 Status Process::Resume() { 1339 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1340 LLDB_LOGF(log, "Process::Resume -- locking run lock"); 1341 if (!m_public_run_lock.TrySetRunning()) { 1342 Status error("Resume request failed - process still running."); 1343 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1344 return error; 1345 } 1346 Status error = PrivateResume(); 1347 if (!error.Success()) { 1348 // Undo running state change 1349 m_public_run_lock.SetStopped(); 1350 } 1351 return error; 1352 } 1353 1354 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack"; 1355 1356 Status Process::ResumeSynchronous(Stream *stream) { 1357 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1358 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1359 if (!m_public_run_lock.TrySetRunning()) { 1360 Status error("Resume request failed - process still running."); 1361 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1362 return error; 1363 } 1364 1365 ListenerSP listener_sp( 1366 Listener::MakeListener(g_resume_sync_name)); 1367 HijackProcessEvents(listener_sp); 1368 1369 Status error = PrivateResume(); 1370 if (error.Success()) { 1371 StateType state = WaitForProcessToStop(llvm::None, nullptr, true, 1372 listener_sp, stream); 1373 const bool must_be_alive = 1374 false; // eStateExited is ok, so this must be false 1375 if (!StateIsStoppedState(state, must_be_alive)) 1376 error.SetErrorStringWithFormat( 1377 "process not in stopped state after synchronous resume: %s", 1378 StateAsCString(state)); 1379 } else { 1380 // Undo running state change 1381 m_public_run_lock.SetStopped(); 1382 } 1383 1384 // Undo the hijacking of process events... 1385 RestoreProcessEvents(); 1386 1387 return error; 1388 } 1389 1390 bool Process::StateChangedIsExternallyHijacked() { 1391 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1392 const char *hijacking_name = GetHijackingListenerName(); 1393 if (hijacking_name && 1394 strcmp(hijacking_name, g_resume_sync_name)) 1395 return true; 1396 } 1397 return false; 1398 } 1399 1400 bool Process::StateChangedIsHijackedForSynchronousResume() { 1401 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1402 const char *hijacking_name = GetHijackingListenerName(); 1403 if (hijacking_name && 1404 strcmp(hijacking_name, g_resume_sync_name) == 0) 1405 return true; 1406 } 1407 return false; 1408 } 1409 1410 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1411 1412 void Process::SetPrivateState(StateType new_state) { 1413 if (m_finalizing) 1414 return; 1415 1416 Log *log(GetLog(LLDBLog::State | LLDBLog::Process | LLDBLog::Unwind)); 1417 bool state_changed = false; 1418 1419 LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state)); 1420 1421 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1422 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1423 1424 const StateType old_state = m_private_state.GetValueNoLock(); 1425 state_changed = old_state != new_state; 1426 1427 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1428 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1429 if (old_state_is_stopped != new_state_is_stopped) { 1430 if (new_state_is_stopped) 1431 m_private_run_lock.SetStopped(); 1432 else 1433 m_private_run_lock.SetRunning(); 1434 } 1435 1436 if (state_changed) { 1437 m_private_state.SetValueNoLock(new_state); 1438 EventSP event_sp( 1439 new Event(eBroadcastBitStateChanged, 1440 new ProcessEventData(shared_from_this(), new_state))); 1441 if (StateIsStoppedState(new_state, false)) { 1442 // Note, this currently assumes that all threads in the list stop when 1443 // the process stops. In the future we will want to support a debugging 1444 // model where some threads continue to run while others are stopped. 1445 // When that happens we will either need a way for the thread list to 1446 // identify which threads are stopping or create a special thread list 1447 // containing only threads which actually stopped. 1448 // 1449 // The process plugin is responsible for managing the actual behavior of 1450 // the threads and should have stopped any threads that are going to stop 1451 // before we get here. 1452 m_thread_list.DidStop(); 1453 1454 if (m_mod_id.BumpStopID() == 0) 1455 GetTarget().GetStatistics().SetFirstPrivateStopTime(); 1456 1457 if (!m_mod_id.IsLastResumeForUserExpression()) 1458 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1459 m_memory_cache.Clear(); 1460 LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u", 1461 StateAsCString(new_state), m_mod_id.GetStopID()); 1462 } 1463 1464 m_private_state_broadcaster.BroadcastEvent(event_sp); 1465 } else { 1466 LLDB_LOGF(log, 1467 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1468 StateAsCString(new_state)); 1469 } 1470 } 1471 1472 void Process::SetRunningUserExpression(bool on) { 1473 m_mod_id.SetRunningUserExpression(on); 1474 } 1475 1476 void Process::SetRunningUtilityFunction(bool on) { 1477 m_mod_id.SetRunningUtilityFunction(on); 1478 } 1479 1480 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1481 1482 const lldb::ABISP &Process::GetABI() { 1483 if (!m_abi_sp) 1484 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1485 return m_abi_sp; 1486 } 1487 1488 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1489 std::vector<LanguageRuntime *> language_runtimes; 1490 1491 if (m_finalizing) 1492 return language_runtimes; 1493 1494 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1495 // Before we pass off a copy of the language runtimes, we must make sure that 1496 // our collection is properly populated. It's possible that some of the 1497 // language runtimes were not loaded yet, either because nobody requested it 1498 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1499 // hadn't been loaded). 1500 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1501 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1502 language_runtimes.emplace_back(runtime); 1503 } 1504 1505 return language_runtimes; 1506 } 1507 1508 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1509 if (m_finalizing) 1510 return nullptr; 1511 1512 LanguageRuntime *runtime = nullptr; 1513 1514 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1515 LanguageRuntimeCollection::iterator pos; 1516 pos = m_language_runtimes.find(language); 1517 if (pos == m_language_runtimes.end() || !pos->second) { 1518 lldb::LanguageRuntimeSP runtime_sp( 1519 LanguageRuntime::FindPlugin(this, language)); 1520 1521 m_language_runtimes[language] = runtime_sp; 1522 runtime = runtime_sp.get(); 1523 } else 1524 runtime = pos->second.get(); 1525 1526 if (runtime) 1527 // It's possible that a language runtime can support multiple LanguageTypes, 1528 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1529 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1530 // primary language type and make sure that our runtime supports it. 1531 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1532 1533 return runtime; 1534 } 1535 1536 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1537 if (m_finalizing) 1538 return false; 1539 1540 if (in_value.IsDynamic()) 1541 return false; 1542 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1543 1544 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1545 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1546 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1547 } 1548 1549 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1550 if (runtime->CouldHaveDynamicValue(in_value)) 1551 return true; 1552 } 1553 1554 return false; 1555 } 1556 1557 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1558 m_dynamic_checkers_up.reset(dynamic_checkers); 1559 } 1560 1561 BreakpointSiteList &Process::GetBreakpointSiteList() { 1562 return m_breakpoint_site_list; 1563 } 1564 1565 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1566 return m_breakpoint_site_list; 1567 } 1568 1569 void Process::DisableAllBreakpointSites() { 1570 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1571 // bp_site->SetEnabled(true); 1572 DisableBreakpointSite(bp_site); 1573 }); 1574 } 1575 1576 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1577 Status error(DisableBreakpointSiteByID(break_id)); 1578 1579 if (error.Success()) 1580 m_breakpoint_site_list.Remove(break_id); 1581 1582 return error; 1583 } 1584 1585 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1586 Status error; 1587 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1588 if (bp_site_sp) { 1589 if (bp_site_sp->IsEnabled()) 1590 error = DisableBreakpointSite(bp_site_sp.get()); 1591 } else { 1592 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1593 break_id); 1594 } 1595 1596 return error; 1597 } 1598 1599 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1600 Status error; 1601 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1602 if (bp_site_sp) { 1603 if (!bp_site_sp->IsEnabled()) 1604 error = EnableBreakpointSite(bp_site_sp.get()); 1605 } else { 1606 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1607 break_id); 1608 } 1609 return error; 1610 } 1611 1612 lldb::break_id_t 1613 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1614 bool use_hardware) { 1615 addr_t load_addr = LLDB_INVALID_ADDRESS; 1616 1617 bool show_error = true; 1618 switch (GetState()) { 1619 case eStateInvalid: 1620 case eStateUnloaded: 1621 case eStateConnected: 1622 case eStateAttaching: 1623 case eStateLaunching: 1624 case eStateDetached: 1625 case eStateExited: 1626 show_error = false; 1627 break; 1628 1629 case eStateStopped: 1630 case eStateRunning: 1631 case eStateStepping: 1632 case eStateCrashed: 1633 case eStateSuspended: 1634 show_error = IsAlive(); 1635 break; 1636 } 1637 1638 // Reset the IsIndirect flag here, in case the location changes from pointing 1639 // to a indirect symbol to a regular symbol. 1640 owner->SetIsIndirect(false); 1641 1642 if (owner->ShouldResolveIndirectFunctions()) { 1643 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1644 if (symbol && symbol->IsIndirect()) { 1645 Status error; 1646 Address symbol_address = symbol->GetAddress(); 1647 load_addr = ResolveIndirectFunction(&symbol_address, error); 1648 if (!error.Success() && show_error) { 1649 GetTarget().GetDebugger().GetErrorStream().Printf( 1650 "warning: failed to resolve indirect function at 0x%" PRIx64 1651 " for breakpoint %i.%i: %s\n", 1652 symbol->GetLoadAddress(&GetTarget()), 1653 owner->GetBreakpoint().GetID(), owner->GetID(), 1654 error.AsCString() ? error.AsCString() : "unknown error"); 1655 return LLDB_INVALID_BREAK_ID; 1656 } 1657 Address resolved_address(load_addr); 1658 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1659 owner->SetIsIndirect(true); 1660 } else 1661 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1662 } else 1663 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1664 1665 if (load_addr != LLDB_INVALID_ADDRESS) { 1666 BreakpointSiteSP bp_site_sp; 1667 1668 // Look up this breakpoint site. If it exists, then add this new owner, 1669 // otherwise create a new breakpoint site and add it. 1670 1671 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1672 1673 if (bp_site_sp) { 1674 bp_site_sp->AddOwner(owner); 1675 owner->SetBreakpointSite(bp_site_sp); 1676 return bp_site_sp->GetID(); 1677 } else { 1678 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1679 load_addr, use_hardware)); 1680 if (bp_site_sp) { 1681 Status error = EnableBreakpointSite(bp_site_sp.get()); 1682 if (error.Success()) { 1683 owner->SetBreakpointSite(bp_site_sp); 1684 return m_breakpoint_site_list.Add(bp_site_sp); 1685 } else { 1686 if (show_error || use_hardware) { 1687 // Report error for setting breakpoint... 1688 GetTarget().GetDebugger().GetErrorStream().Printf( 1689 "warning: failed to set breakpoint site at 0x%" PRIx64 1690 " for breakpoint %i.%i: %s\n", 1691 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1692 error.AsCString() ? error.AsCString() : "unknown error"); 1693 } 1694 } 1695 } 1696 } 1697 } 1698 // We failed to enable the breakpoint 1699 return LLDB_INVALID_BREAK_ID; 1700 } 1701 1702 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1703 lldb::user_id_t owner_loc_id, 1704 BreakpointSiteSP &bp_site_sp) { 1705 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1706 if (num_owners == 0) { 1707 // Don't try to disable the site if we don't have a live process anymore. 1708 if (IsAlive()) 1709 DisableBreakpointSite(bp_site_sp.get()); 1710 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1711 } 1712 } 1713 1714 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1715 uint8_t *buf) const { 1716 size_t bytes_removed = 0; 1717 BreakpointSiteList bp_sites_in_range; 1718 1719 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1720 bp_sites_in_range)) { 1721 bp_sites_in_range.ForEach([bp_addr, size, 1722 buf](BreakpointSite *bp_site) -> void { 1723 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1724 addr_t intersect_addr; 1725 size_t intersect_size; 1726 size_t opcode_offset; 1727 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1728 &intersect_size, &opcode_offset)) { 1729 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1730 assert(bp_addr < intersect_addr + intersect_size && 1731 intersect_addr + intersect_size <= bp_addr + size); 1732 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1733 size_t buf_offset = intersect_addr - bp_addr; 1734 ::memcpy(buf + buf_offset, 1735 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1736 intersect_size); 1737 } 1738 } 1739 }); 1740 } 1741 return bytes_removed; 1742 } 1743 1744 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1745 PlatformSP platform_sp(GetTarget().GetPlatform()); 1746 if (platform_sp) 1747 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1748 return 0; 1749 } 1750 1751 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1752 Status error; 1753 assert(bp_site != nullptr); 1754 Log *log = GetLog(LLDBLog::Breakpoints); 1755 const addr_t bp_addr = bp_site->GetLoadAddress(); 1756 LLDB_LOGF( 1757 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1758 bp_site->GetID(), (uint64_t)bp_addr); 1759 if (bp_site->IsEnabled()) { 1760 LLDB_LOGF( 1761 log, 1762 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1763 " -- already enabled", 1764 bp_site->GetID(), (uint64_t)bp_addr); 1765 return error; 1766 } 1767 1768 if (bp_addr == LLDB_INVALID_ADDRESS) { 1769 error.SetErrorString("BreakpointSite contains an invalid load address."); 1770 return error; 1771 } 1772 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1773 // trap for the breakpoint site 1774 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1775 1776 if (bp_opcode_size == 0) { 1777 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1778 "returned zero, unable to get breakpoint " 1779 "trap for address 0x%" PRIx64, 1780 bp_addr); 1781 } else { 1782 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1783 1784 if (bp_opcode_bytes == nullptr) { 1785 error.SetErrorString( 1786 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1787 return error; 1788 } 1789 1790 // Save the original opcode by reading it 1791 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1792 error) == bp_opcode_size) { 1793 // Write a software breakpoint in place of the original opcode 1794 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1795 bp_opcode_size) { 1796 uint8_t verify_bp_opcode_bytes[64]; 1797 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1798 error) == bp_opcode_size) { 1799 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1800 bp_opcode_size) == 0) { 1801 bp_site->SetEnabled(true); 1802 bp_site->SetType(BreakpointSite::eSoftware); 1803 LLDB_LOGF(log, 1804 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1805 "addr = 0x%" PRIx64 " -- SUCCESS", 1806 bp_site->GetID(), (uint64_t)bp_addr); 1807 } else 1808 error.SetErrorString( 1809 "failed to verify the breakpoint trap in memory."); 1810 } else 1811 error.SetErrorString( 1812 "Unable to read memory to verify breakpoint trap."); 1813 } else 1814 error.SetErrorString("Unable to write breakpoint trap to memory."); 1815 } else 1816 error.SetErrorString("Unable to read memory at breakpoint address."); 1817 } 1818 if (log && error.Fail()) 1819 LLDB_LOGF( 1820 log, 1821 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1822 " -- FAILED: %s", 1823 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1824 return error; 1825 } 1826 1827 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1828 Status error; 1829 assert(bp_site != nullptr); 1830 Log *log = GetLog(LLDBLog::Breakpoints); 1831 addr_t bp_addr = bp_site->GetLoadAddress(); 1832 lldb::user_id_t breakID = bp_site->GetID(); 1833 LLDB_LOGF(log, 1834 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1835 ") addr = 0x%" PRIx64, 1836 breakID, (uint64_t)bp_addr); 1837 1838 if (bp_site->IsHardware()) { 1839 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1840 } else if (bp_site->IsEnabled()) { 1841 const size_t break_op_size = bp_site->GetByteSize(); 1842 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1843 if (break_op_size > 0) { 1844 // Clear a software breakpoint instruction 1845 uint8_t curr_break_op[8]; 1846 assert(break_op_size <= sizeof(curr_break_op)); 1847 bool break_op_found = false; 1848 1849 // Read the breakpoint opcode 1850 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1851 break_op_size) { 1852 bool verify = false; 1853 // Make sure the breakpoint opcode exists at this address 1854 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1855 break_op_found = true; 1856 // We found a valid breakpoint opcode at this address, now restore 1857 // the saved opcode. 1858 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1859 break_op_size, error) == break_op_size) { 1860 verify = true; 1861 } else 1862 error.SetErrorString( 1863 "Memory write failed when restoring original opcode."); 1864 } else { 1865 error.SetErrorString( 1866 "Original breakpoint trap is no longer in memory."); 1867 // Set verify to true and so we can check if the original opcode has 1868 // already been restored 1869 verify = true; 1870 } 1871 1872 if (verify) { 1873 uint8_t verify_opcode[8]; 1874 assert(break_op_size < sizeof(verify_opcode)); 1875 // Verify that our original opcode made it back to the inferior 1876 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1877 break_op_size) { 1878 // compare the memory we just read with the original opcode 1879 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1880 break_op_size) == 0) { 1881 // SUCCESS 1882 bp_site->SetEnabled(false); 1883 LLDB_LOGF(log, 1884 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1885 "addr = 0x%" PRIx64 " -- SUCCESS", 1886 bp_site->GetID(), (uint64_t)bp_addr); 1887 return error; 1888 } else { 1889 if (break_op_found) 1890 error.SetErrorString("Failed to restore original opcode."); 1891 } 1892 } else 1893 error.SetErrorString("Failed to read memory to verify that " 1894 "breakpoint trap was restored."); 1895 } 1896 } else 1897 error.SetErrorString( 1898 "Unable to read memory that should contain the breakpoint trap."); 1899 } 1900 } else { 1901 LLDB_LOGF( 1902 log, 1903 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1904 " -- already disabled", 1905 bp_site->GetID(), (uint64_t)bp_addr); 1906 return error; 1907 } 1908 1909 LLDB_LOGF( 1910 log, 1911 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1912 " -- FAILED: %s", 1913 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1914 return error; 1915 } 1916 1917 // Uncomment to verify memory caching works after making changes to caching 1918 // code 1919 //#define VERIFY_MEMORY_READS 1920 1921 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 1922 if (ABISP abi_sp = GetABI()) 1923 addr = abi_sp->FixAnyAddress(addr); 1924 1925 error.Clear(); 1926 if (!GetDisableMemoryCache()) { 1927 #if defined(VERIFY_MEMORY_READS) 1928 // Memory caching is enabled, with debug verification 1929 1930 if (buf && size) { 1931 // Uncomment the line below to make sure memory caching is working. 1932 // I ran this through the test suite and got no assertions, so I am 1933 // pretty confident this is working well. If any changes are made to 1934 // memory caching, uncomment the line below and test your changes! 1935 1936 // Verify all memory reads by using the cache first, then redundantly 1937 // reading the same memory from the inferior and comparing to make sure 1938 // everything is exactly the same. 1939 std::string verify_buf(size, '\0'); 1940 assert(verify_buf.size() == size); 1941 const size_t cache_bytes_read = 1942 m_memory_cache.Read(this, addr, buf, size, error); 1943 Status verify_error; 1944 const size_t verify_bytes_read = 1945 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 1946 verify_buf.size(), verify_error); 1947 assert(cache_bytes_read == verify_bytes_read); 1948 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 1949 assert(verify_error.Success() == error.Success()); 1950 return cache_bytes_read; 1951 } 1952 return 0; 1953 #else // !defined(VERIFY_MEMORY_READS) 1954 // Memory caching is enabled, without debug verification 1955 1956 return m_memory_cache.Read(addr, buf, size, error); 1957 #endif // defined (VERIFY_MEMORY_READS) 1958 } else { 1959 // Memory caching is disabled 1960 1961 return ReadMemoryFromInferior(addr, buf, size, error); 1962 } 1963 } 1964 1965 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 1966 Status &error) { 1967 char buf[256]; 1968 out_str.clear(); 1969 addr_t curr_addr = addr; 1970 while (true) { 1971 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 1972 if (length == 0) 1973 break; 1974 out_str.append(buf, length); 1975 // If we got "length - 1" bytes, we didn't get the whole C string, we need 1976 // to read some more characters 1977 if (length == sizeof(buf) - 1) 1978 curr_addr += length; 1979 else 1980 break; 1981 } 1982 return out_str.size(); 1983 } 1984 1985 // Deprecated in favor of ReadStringFromMemory which has wchar support and 1986 // correct code to find null terminators. 1987 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 1988 size_t dst_max_len, 1989 Status &result_error) { 1990 size_t total_cstr_len = 0; 1991 if (dst && dst_max_len) { 1992 result_error.Clear(); 1993 // NULL out everything just to be safe 1994 memset(dst, 0, dst_max_len); 1995 Status error; 1996 addr_t curr_addr = addr; 1997 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 1998 size_t bytes_left = dst_max_len - 1; 1999 char *curr_dst = dst; 2000 2001 while (bytes_left > 0) { 2002 addr_t cache_line_bytes_left = 2003 cache_line_size - (curr_addr % cache_line_size); 2004 addr_t bytes_to_read = 2005 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2006 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2007 2008 if (bytes_read == 0) { 2009 result_error = error; 2010 dst[total_cstr_len] = '\0'; 2011 break; 2012 } 2013 const size_t len = strlen(curr_dst); 2014 2015 total_cstr_len += len; 2016 2017 if (len < bytes_to_read) 2018 break; 2019 2020 curr_dst += bytes_read; 2021 curr_addr += bytes_read; 2022 bytes_left -= bytes_read; 2023 } 2024 } else { 2025 if (dst == nullptr) 2026 result_error.SetErrorString("invalid arguments"); 2027 else 2028 result_error.Clear(); 2029 } 2030 return total_cstr_len; 2031 } 2032 2033 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2034 Status &error) { 2035 LLDB_SCOPED_TIMER(); 2036 2037 if (ABISP abi_sp = GetABI()) 2038 addr = abi_sp->FixAnyAddress(addr); 2039 2040 if (buf == nullptr || size == 0) 2041 return 0; 2042 2043 size_t bytes_read = 0; 2044 uint8_t *bytes = (uint8_t *)buf; 2045 2046 while (bytes_read < size) { 2047 const size_t curr_size = size - bytes_read; 2048 const size_t curr_bytes_read = 2049 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2050 bytes_read += curr_bytes_read; 2051 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2052 break; 2053 } 2054 2055 // Replace any software breakpoint opcodes that fall into this range back 2056 // into "buf" before we return 2057 if (bytes_read > 0) 2058 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2059 return bytes_read; 2060 } 2061 2062 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2063 size_t integer_byte_size, 2064 uint64_t fail_value, 2065 Status &error) { 2066 Scalar scalar; 2067 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2068 error)) 2069 return scalar.ULongLong(fail_value); 2070 return fail_value; 2071 } 2072 2073 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2074 size_t integer_byte_size, 2075 int64_t fail_value, 2076 Status &error) { 2077 Scalar scalar; 2078 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2079 error)) 2080 return scalar.SLongLong(fail_value); 2081 return fail_value; 2082 } 2083 2084 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2085 Scalar scalar; 2086 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2087 error)) 2088 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2089 return LLDB_INVALID_ADDRESS; 2090 } 2091 2092 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2093 Status &error) { 2094 Scalar scalar; 2095 const uint32_t addr_byte_size = GetAddressByteSize(); 2096 if (addr_byte_size <= 4) 2097 scalar = (uint32_t)ptr_value; 2098 else 2099 scalar = ptr_value; 2100 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2101 addr_byte_size; 2102 } 2103 2104 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2105 Status &error) { 2106 size_t bytes_written = 0; 2107 const uint8_t *bytes = (const uint8_t *)buf; 2108 2109 while (bytes_written < size) { 2110 const size_t curr_size = size - bytes_written; 2111 const size_t curr_bytes_written = DoWriteMemory( 2112 addr + bytes_written, bytes + bytes_written, curr_size, error); 2113 bytes_written += curr_bytes_written; 2114 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2115 break; 2116 } 2117 return bytes_written; 2118 } 2119 2120 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2121 Status &error) { 2122 if (ABISP abi_sp = GetABI()) 2123 addr = abi_sp->FixAnyAddress(addr); 2124 2125 #if defined(ENABLE_MEMORY_CACHING) 2126 m_memory_cache.Flush(addr, size); 2127 #endif 2128 2129 if (buf == nullptr || size == 0) 2130 return 0; 2131 2132 m_mod_id.BumpMemoryID(); 2133 2134 // We need to write any data that would go where any current software traps 2135 // (enabled software breakpoints) any software traps (breakpoints) that we 2136 // may have placed in our tasks memory. 2137 2138 BreakpointSiteList bp_sites_in_range; 2139 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2140 return WriteMemoryPrivate(addr, buf, size, error); 2141 2142 // No breakpoint sites overlap 2143 if (bp_sites_in_range.IsEmpty()) 2144 return WriteMemoryPrivate(addr, buf, size, error); 2145 2146 const uint8_t *ubuf = (const uint8_t *)buf; 2147 uint64_t bytes_written = 0; 2148 2149 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2150 &error](BreakpointSite *bp) -> void { 2151 if (error.Fail()) 2152 return; 2153 2154 if (bp->GetType() != BreakpointSite::eSoftware) 2155 return; 2156 2157 addr_t intersect_addr; 2158 size_t intersect_size; 2159 size_t opcode_offset; 2160 const bool intersects = bp->IntersectsRange( 2161 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2162 UNUSED_IF_ASSERT_DISABLED(intersects); 2163 assert(intersects); 2164 assert(addr <= intersect_addr && intersect_addr < addr + size); 2165 assert(addr < intersect_addr + intersect_size && 2166 intersect_addr + intersect_size <= addr + size); 2167 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2168 2169 // Check for bytes before this breakpoint 2170 const addr_t curr_addr = addr + bytes_written; 2171 if (intersect_addr > curr_addr) { 2172 // There are some bytes before this breakpoint that we need to just 2173 // write to memory 2174 size_t curr_size = intersect_addr - curr_addr; 2175 size_t curr_bytes_written = 2176 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2177 bytes_written += curr_bytes_written; 2178 if (curr_bytes_written != curr_size) { 2179 // We weren't able to write all of the requested bytes, we are 2180 // done looping and will return the number of bytes that we have 2181 // written so far. 2182 if (error.Success()) 2183 error.SetErrorToGenericError(); 2184 } 2185 } 2186 // Now write any bytes that would cover up any software breakpoints 2187 // directly into the breakpoint opcode buffer 2188 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2189 intersect_size); 2190 bytes_written += intersect_size; 2191 }); 2192 2193 // Write any remaining bytes after the last breakpoint if we have any left 2194 if (bytes_written < size) 2195 bytes_written += 2196 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2197 size - bytes_written, error); 2198 2199 return bytes_written; 2200 } 2201 2202 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2203 size_t byte_size, Status &error) { 2204 if (byte_size == UINT32_MAX) 2205 byte_size = scalar.GetByteSize(); 2206 if (byte_size > 0) { 2207 uint8_t buf[32]; 2208 const size_t mem_size = 2209 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2210 if (mem_size > 0) 2211 return WriteMemory(addr, buf, mem_size, error); 2212 else 2213 error.SetErrorString("failed to get scalar as memory data"); 2214 } else { 2215 error.SetErrorString("invalid scalar value"); 2216 } 2217 return 0; 2218 } 2219 2220 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2221 bool is_signed, Scalar &scalar, 2222 Status &error) { 2223 uint64_t uval = 0; 2224 if (byte_size == 0) { 2225 error.SetErrorString("byte size is zero"); 2226 } else if (byte_size & (byte_size - 1)) { 2227 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2228 byte_size); 2229 } else if (byte_size <= sizeof(uval)) { 2230 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2231 if (bytes_read == byte_size) { 2232 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2233 GetAddressByteSize()); 2234 lldb::offset_t offset = 0; 2235 if (byte_size <= 4) 2236 scalar = data.GetMaxU32(&offset, byte_size); 2237 else 2238 scalar = data.GetMaxU64(&offset, byte_size); 2239 if (is_signed) 2240 scalar.SignExtend(byte_size * 8); 2241 return bytes_read; 2242 } 2243 } else { 2244 error.SetErrorStringWithFormat( 2245 "byte size of %u is too large for integer scalar type", byte_size); 2246 } 2247 return 0; 2248 } 2249 2250 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2251 Status error; 2252 for (const auto &Entry : entries) { 2253 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2254 error); 2255 if (!error.Success()) 2256 break; 2257 } 2258 return error; 2259 } 2260 2261 #define USE_ALLOCATE_MEMORY_CACHE 1 2262 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2263 Status &error) { 2264 if (GetPrivateState() != eStateStopped) { 2265 error.SetErrorToGenericError(); 2266 return LLDB_INVALID_ADDRESS; 2267 } 2268 2269 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2270 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2271 #else 2272 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2273 Log *log = GetLog(LLDBLog::Process); 2274 LLDB_LOGF(log, 2275 "Process::AllocateMemory(size=%" PRIu64 2276 ", permissions=%s) => 0x%16.16" PRIx64 2277 " (m_stop_id = %u m_memory_id = %u)", 2278 (uint64_t)size, GetPermissionsAsCString(permissions), 2279 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2280 m_mod_id.GetMemoryID()); 2281 return allocated_addr; 2282 #endif 2283 } 2284 2285 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2286 Status &error) { 2287 addr_t return_addr = AllocateMemory(size, permissions, error); 2288 if (error.Success()) { 2289 std::string buffer(size, 0); 2290 WriteMemory(return_addr, buffer.c_str(), size, error); 2291 } 2292 return return_addr; 2293 } 2294 2295 bool Process::CanJIT() { 2296 if (m_can_jit == eCanJITDontKnow) { 2297 Log *log = GetLog(LLDBLog::Process); 2298 Status err; 2299 2300 uint64_t allocated_memory = AllocateMemory( 2301 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2302 err); 2303 2304 if (err.Success()) { 2305 m_can_jit = eCanJITYes; 2306 LLDB_LOGF(log, 2307 "Process::%s pid %" PRIu64 2308 " allocation test passed, CanJIT () is true", 2309 __FUNCTION__, GetID()); 2310 } else { 2311 m_can_jit = eCanJITNo; 2312 LLDB_LOGF(log, 2313 "Process::%s pid %" PRIu64 2314 " allocation test failed, CanJIT () is false: %s", 2315 __FUNCTION__, GetID(), err.AsCString()); 2316 } 2317 2318 DeallocateMemory(allocated_memory); 2319 } 2320 2321 return m_can_jit == eCanJITYes; 2322 } 2323 2324 void Process::SetCanJIT(bool can_jit) { 2325 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2326 } 2327 2328 void Process::SetCanRunCode(bool can_run_code) { 2329 SetCanJIT(can_run_code); 2330 m_can_interpret_function_calls = can_run_code; 2331 } 2332 2333 Status Process::DeallocateMemory(addr_t ptr) { 2334 Status error; 2335 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2336 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2337 error.SetErrorStringWithFormat( 2338 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2339 } 2340 #else 2341 error = DoDeallocateMemory(ptr); 2342 2343 Log *log = GetLog(LLDBLog::Process); 2344 LLDB_LOGF(log, 2345 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2346 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2347 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2348 m_mod_id.GetMemoryID()); 2349 #endif 2350 return error; 2351 } 2352 2353 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2354 lldb::addr_t header_addr, 2355 size_t size_to_read) { 2356 Log *log = GetLog(LLDBLog::Host); 2357 if (log) { 2358 LLDB_LOGF(log, 2359 "Process::ReadModuleFromMemory reading %s binary from memory", 2360 file_spec.GetPath().c_str()); 2361 } 2362 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2363 if (module_sp) { 2364 Status error; 2365 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2366 shared_from_this(), header_addr, error, size_to_read); 2367 if (objfile) 2368 return module_sp; 2369 } 2370 return ModuleSP(); 2371 } 2372 2373 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2374 uint32_t &permissions) { 2375 MemoryRegionInfo range_info; 2376 permissions = 0; 2377 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2378 if (!error.Success()) 2379 return false; 2380 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2381 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2382 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2383 return false; 2384 } 2385 2386 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2387 permissions |= lldb::ePermissionsReadable; 2388 2389 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2390 permissions |= lldb::ePermissionsWritable; 2391 2392 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2393 permissions |= lldb::ePermissionsExecutable; 2394 2395 return true; 2396 } 2397 2398 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2399 Status error; 2400 error.SetErrorString("watchpoints are not supported"); 2401 return error; 2402 } 2403 2404 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2405 Status error; 2406 error.SetErrorString("watchpoints are not supported"); 2407 return error; 2408 } 2409 2410 StateType 2411 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2412 const Timeout<std::micro> &timeout) { 2413 StateType state; 2414 2415 while (true) { 2416 event_sp.reset(); 2417 state = GetStateChangedEventsPrivate(event_sp, timeout); 2418 2419 if (StateIsStoppedState(state, false)) 2420 break; 2421 2422 // If state is invalid, then we timed out 2423 if (state == eStateInvalid) 2424 break; 2425 2426 if (event_sp) 2427 HandlePrivateEvent(event_sp); 2428 } 2429 return state; 2430 } 2431 2432 void Process::LoadOperatingSystemPlugin(bool flush) { 2433 if (flush) 2434 m_thread_list.Clear(); 2435 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2436 if (flush) 2437 Flush(); 2438 } 2439 2440 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2441 StateType state_after_launch = eStateInvalid; 2442 EventSP first_stop_event_sp; 2443 Status status = 2444 LaunchPrivate(launch_info, state_after_launch, first_stop_event_sp); 2445 if (status.Fail()) 2446 return status; 2447 2448 if (state_after_launch != eStateStopped && 2449 state_after_launch != eStateCrashed) 2450 return Status(); 2451 2452 // Note, the stop event was consumed above, but not handled. This 2453 // was done to give DidLaunch a chance to run. The target is either 2454 // stopped or crashed. Directly set the state. This is done to 2455 // prevent a stop message with a bunch of spurious output on thread 2456 // status, as well as not pop a ProcessIOHandler. 2457 SetPublicState(state_after_launch, false); 2458 2459 if (PrivateStateThreadIsValid()) 2460 ResumePrivateStateThread(); 2461 else 2462 StartPrivateStateThread(); 2463 2464 // Target was stopped at entry as was intended. Need to notify the 2465 // listeners about it. 2466 if (launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2467 HandlePrivateEvent(first_stop_event_sp); 2468 2469 return Status(); 2470 } 2471 2472 Status Process::LaunchPrivate(ProcessLaunchInfo &launch_info, StateType &state, 2473 EventSP &event_sp) { 2474 Status error; 2475 m_abi_sp.reset(); 2476 m_dyld_up.reset(); 2477 m_jit_loaders_up.reset(); 2478 m_system_runtime_up.reset(); 2479 m_os_up.reset(); 2480 m_process_input_reader.reset(); 2481 2482 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2483 2484 // The "remote executable path" is hooked up to the local Executable 2485 // module. But we should be able to debug a remote process even if the 2486 // executable module only exists on the remote. However, there needs to 2487 // be a way to express this path, without actually having a module. 2488 // The way to do that is to set the ExecutableFile in the LaunchInfo. 2489 // Figure that out here: 2490 2491 FileSpec exe_spec_to_use; 2492 if (!exe_module) { 2493 if (!launch_info.GetExecutableFile()) { 2494 error.SetErrorString("executable module does not exist"); 2495 return error; 2496 } 2497 exe_spec_to_use = launch_info.GetExecutableFile(); 2498 } else 2499 exe_spec_to_use = exe_module->GetFileSpec(); 2500 2501 if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2502 // Install anything that might need to be installed prior to launching. 2503 // For host systems, this will do nothing, but if we are connected to a 2504 // remote platform it will install any needed binaries 2505 error = GetTarget().Install(&launch_info); 2506 if (error.Fail()) 2507 return error; 2508 } 2509 2510 // Listen and queue events that are broadcasted during the process launch. 2511 ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack")); 2512 HijackProcessEvents(listener_sp); 2513 auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); }); 2514 2515 if (PrivateStateThreadIsValid()) 2516 PausePrivateStateThread(); 2517 2518 error = WillLaunch(exe_module); 2519 if (error.Fail()) { 2520 std::string local_exec_file_path = exe_spec_to_use.GetPath(); 2521 return Status("file doesn't exist: '%s'", local_exec_file_path.c_str()); 2522 } 2523 2524 const bool restarted = false; 2525 SetPublicState(eStateLaunching, restarted); 2526 m_should_detach = false; 2527 2528 if (m_public_run_lock.TrySetRunning()) { 2529 // Now launch using these arguments. 2530 error = DoLaunch(exe_module, launch_info); 2531 } else { 2532 // This shouldn't happen 2533 error.SetErrorString("failed to acquire process run lock"); 2534 } 2535 2536 if (error.Fail()) { 2537 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2538 SetID(LLDB_INVALID_PROCESS_ID); 2539 const char *error_string = error.AsCString(); 2540 if (error_string == nullptr) 2541 error_string = "launch failed"; 2542 SetExitStatus(-1, error_string); 2543 } 2544 return error; 2545 } 2546 2547 // Now wait for the process to launch and return control to us, and then 2548 // call DidLaunch: 2549 state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2550 2551 if (state == eStateInvalid || !event_sp) { 2552 // We were able to launch the process, but we failed to catch the 2553 // initial stop. 2554 error.SetErrorString("failed to catch stop after launch"); 2555 SetExitStatus(0, error.AsCString()); 2556 Destroy(false); 2557 return error; 2558 } 2559 2560 if (state == eStateExited) { 2561 // We exited while trying to launch somehow. Don't call DidLaunch 2562 // as that's not likely to work, and return an invalid pid. 2563 HandlePrivateEvent(event_sp); 2564 return Status(); 2565 } 2566 2567 if (state == eStateStopped || state == eStateCrashed) { 2568 DidLaunch(); 2569 2570 // Now that we know the process type, update its signal responses from the 2571 // ones stored in the Target: 2572 if (m_unix_signals_sp) { 2573 StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream(); 2574 GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm); 2575 } 2576 2577 DynamicLoader *dyld = GetDynamicLoader(); 2578 if (dyld) 2579 dyld->DidLaunch(); 2580 2581 GetJITLoaders().DidLaunch(); 2582 2583 SystemRuntime *system_runtime = GetSystemRuntime(); 2584 if (system_runtime) 2585 system_runtime->DidLaunch(); 2586 2587 if (!m_os_up) 2588 LoadOperatingSystemPlugin(false); 2589 2590 // We successfully launched the process and stopped, now it the 2591 // right time to set up signal filters before resuming. 2592 UpdateAutomaticSignalFiltering(); 2593 return Status(); 2594 } 2595 2596 return Status("Unexpected process state after the launch: %s, expected %s, " 2597 "%s, %s or %s", 2598 StateAsCString(state), StateAsCString(eStateInvalid), 2599 StateAsCString(eStateExited), StateAsCString(eStateStopped), 2600 StateAsCString(eStateCrashed)); 2601 } 2602 2603 Status Process::LoadCore() { 2604 Status error = DoLoadCore(); 2605 if (error.Success()) { 2606 ListenerSP listener_sp( 2607 Listener::MakeListener("lldb.process.load_core_listener")); 2608 HijackProcessEvents(listener_sp); 2609 2610 if (PrivateStateThreadIsValid()) 2611 ResumePrivateStateThread(); 2612 else 2613 StartPrivateStateThread(); 2614 2615 DynamicLoader *dyld = GetDynamicLoader(); 2616 if (dyld) 2617 dyld->DidAttach(); 2618 2619 GetJITLoaders().DidAttach(); 2620 2621 SystemRuntime *system_runtime = GetSystemRuntime(); 2622 if (system_runtime) 2623 system_runtime->DidAttach(); 2624 2625 if (!m_os_up) 2626 LoadOperatingSystemPlugin(false); 2627 2628 // We successfully loaded a core file, now pretend we stopped so we can 2629 // show all of the threads in the core file and explore the crashed state. 2630 SetPrivateState(eStateStopped); 2631 2632 // Wait for a stopped event since we just posted one above... 2633 lldb::EventSP event_sp; 2634 StateType state = 2635 WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp); 2636 2637 if (!StateIsStoppedState(state, false)) { 2638 Log *log = GetLog(LLDBLog::Process); 2639 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2640 StateAsCString(state)); 2641 error.SetErrorString( 2642 "Did not get stopped event after loading the core file."); 2643 } 2644 RestoreProcessEvents(); 2645 } 2646 return error; 2647 } 2648 2649 DynamicLoader *Process::GetDynamicLoader() { 2650 if (!m_dyld_up) 2651 m_dyld_up.reset(DynamicLoader::FindPlugin(this, "")); 2652 return m_dyld_up.get(); 2653 } 2654 2655 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2656 2657 llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) { 2658 return false; 2659 } 2660 2661 JITLoaderList &Process::GetJITLoaders() { 2662 if (!m_jit_loaders_up) { 2663 m_jit_loaders_up = std::make_unique<JITLoaderList>(); 2664 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2665 } 2666 return *m_jit_loaders_up; 2667 } 2668 2669 SystemRuntime *Process::GetSystemRuntime() { 2670 if (!m_system_runtime_up) 2671 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2672 return m_system_runtime_up.get(); 2673 } 2674 2675 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2676 uint32_t exec_count) 2677 : NextEventAction(process), m_exec_count(exec_count) { 2678 Log *log = GetLog(LLDBLog::Process); 2679 LLDB_LOGF( 2680 log, 2681 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2682 __FUNCTION__, static_cast<void *>(process), exec_count); 2683 } 2684 2685 Process::NextEventAction::EventActionResult 2686 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2687 Log *log = GetLog(LLDBLog::Process); 2688 2689 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2690 LLDB_LOGF(log, 2691 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2692 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2693 2694 switch (state) { 2695 case eStateAttaching: 2696 return eEventActionSuccess; 2697 2698 case eStateRunning: 2699 case eStateConnected: 2700 return eEventActionRetry; 2701 2702 case eStateStopped: 2703 case eStateCrashed: 2704 // During attach, prior to sending the eStateStopped event, 2705 // lldb_private::Process subclasses must set the new process ID. 2706 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2707 // We don't want these events to be reported, so go set the 2708 // ShouldReportStop here: 2709 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2710 2711 if (m_exec_count > 0) { 2712 --m_exec_count; 2713 2714 LLDB_LOGF(log, 2715 "Process::AttachCompletionHandler::%s state %s: reduced " 2716 "remaining exec count to %" PRIu32 ", requesting resume", 2717 __FUNCTION__, StateAsCString(state), m_exec_count); 2718 2719 RequestResume(); 2720 return eEventActionRetry; 2721 } else { 2722 LLDB_LOGF(log, 2723 "Process::AttachCompletionHandler::%s state %s: no more " 2724 "execs expected to start, continuing with attach", 2725 __FUNCTION__, StateAsCString(state)); 2726 2727 m_process->CompleteAttach(); 2728 return eEventActionSuccess; 2729 } 2730 break; 2731 2732 default: 2733 case eStateExited: 2734 case eStateInvalid: 2735 break; 2736 } 2737 2738 m_exit_string.assign("No valid Process"); 2739 return eEventActionExit; 2740 } 2741 2742 Process::NextEventAction::EventActionResult 2743 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2744 return eEventActionSuccess; 2745 } 2746 2747 const char *Process::AttachCompletionHandler::GetExitString() { 2748 return m_exit_string.c_str(); 2749 } 2750 2751 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2752 if (m_listener_sp) 2753 return m_listener_sp; 2754 else 2755 return debugger.GetListener(); 2756 } 2757 2758 Status Process::Attach(ProcessAttachInfo &attach_info) { 2759 m_abi_sp.reset(); 2760 m_process_input_reader.reset(); 2761 m_dyld_up.reset(); 2762 m_jit_loaders_up.reset(); 2763 m_system_runtime_up.reset(); 2764 m_os_up.reset(); 2765 2766 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2767 Status error; 2768 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2769 char process_name[PATH_MAX]; 2770 2771 if (attach_info.GetExecutableFile().GetPath(process_name, 2772 sizeof(process_name))) { 2773 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2774 2775 if (wait_for_launch) { 2776 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2777 if (error.Success()) { 2778 if (m_public_run_lock.TrySetRunning()) { 2779 m_should_detach = true; 2780 const bool restarted = false; 2781 SetPublicState(eStateAttaching, restarted); 2782 // Now attach using these arguments. 2783 error = DoAttachToProcessWithName(process_name, attach_info); 2784 } else { 2785 // This shouldn't happen 2786 error.SetErrorString("failed to acquire process run lock"); 2787 } 2788 2789 if (error.Fail()) { 2790 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2791 SetID(LLDB_INVALID_PROCESS_ID); 2792 if (error.AsCString() == nullptr) 2793 error.SetErrorString("attach failed"); 2794 2795 SetExitStatus(-1, error.AsCString()); 2796 } 2797 } else { 2798 SetNextEventAction(new Process::AttachCompletionHandler( 2799 this, attach_info.GetResumeCount())); 2800 StartPrivateStateThread(); 2801 } 2802 return error; 2803 } 2804 } else { 2805 ProcessInstanceInfoList process_infos; 2806 PlatformSP platform_sp(GetTarget().GetPlatform()); 2807 2808 if (platform_sp) { 2809 ProcessInstanceInfoMatch match_info; 2810 match_info.GetProcessInfo() = attach_info; 2811 match_info.SetNameMatchType(NameMatch::Equals); 2812 platform_sp->FindProcesses(match_info, process_infos); 2813 const uint32_t num_matches = process_infos.size(); 2814 if (num_matches == 1) { 2815 attach_pid = process_infos[0].GetProcessID(); 2816 // Fall through and attach using the above process ID 2817 } else { 2818 match_info.GetProcessInfo().GetExecutableFile().GetPath( 2819 process_name, sizeof(process_name)); 2820 if (num_matches > 1) { 2821 StreamString s; 2822 ProcessInstanceInfo::DumpTableHeader(s, true, false); 2823 for (size_t i = 0; i < num_matches; i++) { 2824 process_infos[i].DumpAsTableRow( 2825 s, platform_sp->GetUserIDResolver(), true, false); 2826 } 2827 error.SetErrorStringWithFormat( 2828 "more than one process named %s:\n%s", process_name, 2829 s.GetData()); 2830 } else 2831 error.SetErrorStringWithFormat( 2832 "could not find a process named %s", process_name); 2833 } 2834 } else { 2835 error.SetErrorString( 2836 "invalid platform, can't find processes by name"); 2837 return error; 2838 } 2839 } 2840 } else { 2841 error.SetErrorString("invalid process name"); 2842 } 2843 } 2844 2845 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 2846 error = WillAttachToProcessWithID(attach_pid); 2847 if (error.Success()) { 2848 2849 if (m_public_run_lock.TrySetRunning()) { 2850 // Now attach using these arguments. 2851 m_should_detach = true; 2852 const bool restarted = false; 2853 SetPublicState(eStateAttaching, restarted); 2854 error = DoAttachToProcessWithID(attach_pid, attach_info); 2855 } else { 2856 // This shouldn't happen 2857 error.SetErrorString("failed to acquire process run lock"); 2858 } 2859 2860 if (error.Success()) { 2861 SetNextEventAction(new Process::AttachCompletionHandler( 2862 this, attach_info.GetResumeCount())); 2863 StartPrivateStateThread(); 2864 } else { 2865 if (GetID() != LLDB_INVALID_PROCESS_ID) 2866 SetID(LLDB_INVALID_PROCESS_ID); 2867 2868 const char *error_string = error.AsCString(); 2869 if (error_string == nullptr) 2870 error_string = "attach failed"; 2871 2872 SetExitStatus(-1, error_string); 2873 } 2874 } 2875 } 2876 return error; 2877 } 2878 2879 void Process::CompleteAttach() { 2880 Log *log(GetLog(LLDBLog::Process | LLDBLog::Target)); 2881 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 2882 2883 // Let the process subclass figure out at much as it can about the process 2884 // before we go looking for a dynamic loader plug-in. 2885 ArchSpec process_arch; 2886 DidAttach(process_arch); 2887 2888 if (process_arch.IsValid()) { 2889 GetTarget().SetArchitecture(process_arch); 2890 if (log) { 2891 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 2892 LLDB_LOGF(log, 2893 "Process::%s replacing process architecture with DidAttach() " 2894 "architecture: %s", 2895 __FUNCTION__, triple_str ? triple_str : "<null>"); 2896 } 2897 } 2898 2899 // We just attached. If we have a platform, ask it for the process 2900 // architecture, and if it isn't the same as the one we've already set, 2901 // switch architectures. 2902 PlatformSP platform_sp(GetTarget().GetPlatform()); 2903 assert(platform_sp); 2904 ArchSpec process_host_arch = GetSystemArchitecture(); 2905 if (platform_sp) { 2906 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2907 if (target_arch.IsValid() && 2908 !platform_sp->IsCompatibleArchitecture(target_arch, process_host_arch, 2909 false, nullptr)) { 2910 ArchSpec platform_arch; 2911 platform_sp = GetTarget().GetDebugger().GetPlatformList().GetOrCreate( 2912 target_arch, process_host_arch, &platform_arch); 2913 if (platform_sp) { 2914 GetTarget().SetPlatform(platform_sp); 2915 GetTarget().SetArchitecture(platform_arch); 2916 LLDB_LOG(log, 2917 "switching platform to {0} and architecture to {1} based on " 2918 "info from attach", 2919 platform_sp->GetName(), platform_arch.GetTriple().getTriple()); 2920 } 2921 } else if (!process_arch.IsValid()) { 2922 ProcessInstanceInfo process_info; 2923 GetProcessInfo(process_info); 2924 const ArchSpec &process_arch = process_info.GetArchitecture(); 2925 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2926 if (process_arch.IsValid() && 2927 target_arch.IsCompatibleMatch(process_arch) && 2928 !target_arch.IsExactMatch(process_arch)) { 2929 GetTarget().SetArchitecture(process_arch); 2930 LLDB_LOGF(log, 2931 "Process::%s switching architecture to %s based on info " 2932 "the platform retrieved for pid %" PRIu64, 2933 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 2934 GetID()); 2935 } 2936 } 2937 } 2938 // Now that we know the process type, update its signal responses from the 2939 // ones stored in the Target: 2940 if (m_unix_signals_sp) { 2941 StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream(); 2942 GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm); 2943 } 2944 2945 // We have completed the attach, now it is time to find the dynamic loader 2946 // plug-in 2947 DynamicLoader *dyld = GetDynamicLoader(); 2948 if (dyld) { 2949 dyld->DidAttach(); 2950 if (log) { 2951 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2952 LLDB_LOG(log, 2953 "after DynamicLoader::DidAttach(), target " 2954 "executable is {0} (using {1} plugin)", 2955 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), 2956 dyld->GetPluginName()); 2957 } 2958 } 2959 2960 GetJITLoaders().DidAttach(); 2961 2962 SystemRuntime *system_runtime = GetSystemRuntime(); 2963 if (system_runtime) { 2964 system_runtime->DidAttach(); 2965 if (log) { 2966 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2967 LLDB_LOG(log, 2968 "after SystemRuntime::DidAttach(), target " 2969 "executable is {0} (using {1} plugin)", 2970 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), 2971 system_runtime->GetPluginName()); 2972 } 2973 } 2974 2975 if (!m_os_up) { 2976 LoadOperatingSystemPlugin(false); 2977 if (m_os_up) { 2978 // Somebody might have gotten threads before now, but we need to force the 2979 // update after we've loaded the OperatingSystem plugin or it won't get a 2980 // chance to process the threads. 2981 m_thread_list.Clear(); 2982 UpdateThreadListIfNeeded(); 2983 } 2984 } 2985 // Figure out which one is the executable, and set that in our target: 2986 ModuleSP new_executable_module_sp; 2987 for (ModuleSP module_sp : GetTarget().GetImages().Modules()) { 2988 if (module_sp && module_sp->IsExecutable()) { 2989 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 2990 new_executable_module_sp = module_sp; 2991 break; 2992 } 2993 } 2994 if (new_executable_module_sp) { 2995 GetTarget().SetExecutableModule(new_executable_module_sp, 2996 eLoadDependentsNo); 2997 if (log) { 2998 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2999 LLDB_LOGF( 3000 log, 3001 "Process::%s after looping through modules, target executable is %s", 3002 __FUNCTION__, 3003 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3004 : "<none>"); 3005 } 3006 } 3007 } 3008 3009 Status Process::ConnectRemote(llvm::StringRef remote_url) { 3010 m_abi_sp.reset(); 3011 m_process_input_reader.reset(); 3012 3013 // Find the process and its architecture. Make sure it matches the 3014 // architecture of the current Target, and if not adjust it. 3015 3016 Status error(DoConnectRemote(remote_url)); 3017 if (error.Success()) { 3018 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3019 EventSP event_sp; 3020 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3021 3022 if (state == eStateStopped || state == eStateCrashed) { 3023 // If we attached and actually have a process on the other end, then 3024 // this ended up being the equivalent of an attach. 3025 CompleteAttach(); 3026 3027 // This delays passing the stopped event to listeners till 3028 // CompleteAttach gets a chance to complete... 3029 HandlePrivateEvent(event_sp); 3030 } 3031 } 3032 3033 if (PrivateStateThreadIsValid()) 3034 ResumePrivateStateThread(); 3035 else 3036 StartPrivateStateThread(); 3037 } 3038 return error; 3039 } 3040 3041 Status Process::PrivateResume() { 3042 Log *log(GetLog(LLDBLog::Process | LLDBLog::Step)); 3043 LLDB_LOGF(log, 3044 "Process::PrivateResume() m_stop_id = %u, public state: %s " 3045 "private state: %s", 3046 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3047 StateAsCString(m_private_state.GetValue())); 3048 3049 // If signals handing status changed we might want to update our signal 3050 // filters before resuming. 3051 UpdateAutomaticSignalFiltering(); 3052 3053 Status error(WillResume()); 3054 // Tell the process it is about to resume before the thread list 3055 if (error.Success()) { 3056 // Now let the thread list know we are about to resume so it can let all of 3057 // our threads know that they are about to be resumed. Threads will each be 3058 // called with Thread::WillResume(StateType) where StateType contains the 3059 // state that they are supposed to have when the process is resumed 3060 // (suspended/running/stepping). Threads should also check their resume 3061 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3062 // start back up with a signal. 3063 if (m_thread_list.WillResume()) { 3064 // Last thing, do the PreResumeActions. 3065 if (!RunPreResumeActions()) { 3066 error.SetErrorString( 3067 "Process::PrivateResume PreResumeActions failed, not resuming."); 3068 } else { 3069 m_mod_id.BumpResumeID(); 3070 error = DoResume(); 3071 if (error.Success()) { 3072 DidResume(); 3073 m_thread_list.DidResume(); 3074 LLDB_LOGF(log, "Process thinks the process has resumed."); 3075 } else { 3076 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3077 return error; 3078 } 3079 } 3080 } else { 3081 // Somebody wanted to run without running (e.g. we were faking a step 3082 // from one frame of a set of inlined frames that share the same PC to 3083 // another.) So generate a continue & a stopped event, and let the world 3084 // handle them. 3085 LLDB_LOGF(log, 3086 "Process::PrivateResume() asked to simulate a start & stop."); 3087 3088 SetPrivateState(eStateRunning); 3089 SetPrivateState(eStateStopped); 3090 } 3091 } else 3092 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3093 error.AsCString("<unknown error>")); 3094 return error; 3095 } 3096 3097 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3098 if (!StateIsRunningState(m_public_state.GetValue())) 3099 return Status("Process is not running."); 3100 3101 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3102 // case it was already set and some thread plan logic calls halt on its own. 3103 m_clear_thread_plans_on_stop |= clear_thread_plans; 3104 3105 ListenerSP halt_listener_sp( 3106 Listener::MakeListener("lldb.process.halt_listener")); 3107 HijackProcessEvents(halt_listener_sp); 3108 3109 EventSP event_sp; 3110 3111 SendAsyncInterrupt(); 3112 3113 if (m_public_state.GetValue() == eStateAttaching) { 3114 // Don't hijack and eat the eStateExited as the code that was doing the 3115 // attach will be waiting for this event... 3116 RestoreProcessEvents(); 3117 SetExitStatus(SIGKILL, "Cancelled async attach."); 3118 Destroy(false); 3119 return Status(); 3120 } 3121 3122 // Wait for the process halt timeout seconds for the process to stop. 3123 StateType state = 3124 WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true, 3125 halt_listener_sp, nullptr, use_run_lock); 3126 RestoreProcessEvents(); 3127 3128 if (state == eStateInvalid || !event_sp) { 3129 // We timed out and didn't get a stop event... 3130 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3131 } 3132 3133 BroadcastEvent(event_sp); 3134 3135 return Status(); 3136 } 3137 3138 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3139 Status error; 3140 3141 // Check both the public & private states here. If we're hung evaluating an 3142 // expression, for instance, then the public state will be stopped, but we 3143 // still need to interrupt. 3144 if (m_public_state.GetValue() == eStateRunning || 3145 m_private_state.GetValue() == eStateRunning) { 3146 Log *log = GetLog(LLDBLog::Process); 3147 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3148 3149 ListenerSP listener_sp( 3150 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3151 HijackProcessEvents(listener_sp); 3152 3153 SendAsyncInterrupt(); 3154 3155 // Consume the interrupt event. 3156 StateType state = WaitForProcessToStop(GetInterruptTimeout(), 3157 &exit_event_sp, true, listener_sp); 3158 3159 RestoreProcessEvents(); 3160 3161 // If the process exited while we were waiting for it to stop, put the 3162 // exited event into the shared pointer passed in and return. Our caller 3163 // doesn't need to do anything else, since they don't have a process 3164 // anymore... 3165 3166 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3167 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3168 __FUNCTION__); 3169 return error; 3170 } else 3171 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3172 3173 if (state != eStateStopped) { 3174 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3175 StateAsCString(state)); 3176 // If we really couldn't stop the process then we should just error out 3177 // here, but if the lower levels just bobbled sending the event and we 3178 // really are stopped, then continue on. 3179 StateType private_state = m_private_state.GetValue(); 3180 if (private_state != eStateStopped) { 3181 return Status( 3182 "Attempt to stop the target in order to detach timed out. " 3183 "State = %s", 3184 StateAsCString(GetState())); 3185 } 3186 } 3187 } 3188 return error; 3189 } 3190 3191 Status Process::Detach(bool keep_stopped) { 3192 EventSP exit_event_sp; 3193 Status error; 3194 m_destroy_in_process = true; 3195 3196 error = WillDetach(); 3197 3198 if (error.Success()) { 3199 if (DetachRequiresHalt()) { 3200 error = StopForDestroyOrDetach(exit_event_sp); 3201 if (!error.Success()) { 3202 m_destroy_in_process = false; 3203 return error; 3204 } else if (exit_event_sp) { 3205 // We shouldn't need to do anything else here. There's no process left 3206 // to detach from... 3207 StopPrivateStateThread(); 3208 m_destroy_in_process = false; 3209 return error; 3210 } 3211 } 3212 3213 m_thread_list.DiscardThreadPlans(); 3214 DisableAllBreakpointSites(); 3215 3216 error = DoDetach(keep_stopped); 3217 if (error.Success()) { 3218 DidDetach(); 3219 StopPrivateStateThread(); 3220 } else { 3221 return error; 3222 } 3223 } 3224 m_destroy_in_process = false; 3225 3226 // If we exited when we were waiting for a process to stop, then forward the 3227 // event here so we don't lose the event 3228 if (exit_event_sp) { 3229 // Directly broadcast our exited event because we shut down our private 3230 // state thread above 3231 BroadcastEvent(exit_event_sp); 3232 } 3233 3234 // If we have been interrupted (to kill us) in the middle of running, we may 3235 // not end up propagating the last events through the event system, in which 3236 // case we might strand the write lock. Unlock it here so when we do to tear 3237 // down the process we don't get an error destroying the lock. 3238 3239 m_public_run_lock.SetStopped(); 3240 return error; 3241 } 3242 3243 Status Process::Destroy(bool force_kill) { 3244 // If we've already called Process::Finalize then there's nothing useful to 3245 // be done here. Finalize has actually called Destroy already. 3246 if (m_finalizing) 3247 return {}; 3248 return DestroyImpl(force_kill); 3249 } 3250 3251 Status Process::DestroyImpl(bool force_kill) { 3252 // Tell ourselves we are in the process of destroying the process, so that we 3253 // don't do any unnecessary work that might hinder the destruction. Remember 3254 // to set this back to false when we are done. That way if the attempt 3255 // failed and the process stays around for some reason it won't be in a 3256 // confused state. 3257 3258 if (force_kill) 3259 m_should_detach = false; 3260 3261 if (GetShouldDetach()) { 3262 // FIXME: This will have to be a process setting: 3263 bool keep_stopped = false; 3264 Detach(keep_stopped); 3265 } 3266 3267 m_destroy_in_process = true; 3268 3269 Status error(WillDestroy()); 3270 if (error.Success()) { 3271 EventSP exit_event_sp; 3272 if (DestroyRequiresHalt()) { 3273 error = StopForDestroyOrDetach(exit_event_sp); 3274 } 3275 3276 if (m_public_state.GetValue() == eStateStopped) { 3277 // Ditch all thread plans, and remove all our breakpoints: in case we 3278 // have to restart the target to kill it, we don't want it hitting a 3279 // breakpoint... Only do this if we've stopped, however, since if we 3280 // didn't manage to halt it above, then we're not going to have much luck 3281 // doing this now. 3282 m_thread_list.DiscardThreadPlans(); 3283 DisableAllBreakpointSites(); 3284 } 3285 3286 error = DoDestroy(); 3287 if (error.Success()) { 3288 DidDestroy(); 3289 StopPrivateStateThread(); 3290 } 3291 m_stdio_communication.StopReadThread(); 3292 m_stdio_communication.Disconnect(); 3293 m_stdin_forward = false; 3294 3295 if (m_process_input_reader) { 3296 m_process_input_reader->SetIsDone(true); 3297 m_process_input_reader->Cancel(); 3298 m_process_input_reader.reset(); 3299 } 3300 3301 // If we exited when we were waiting for a process to stop, then forward 3302 // the event here so we don't lose the event 3303 if (exit_event_sp) { 3304 // Directly broadcast our exited event because we shut down our private 3305 // state thread above 3306 BroadcastEvent(exit_event_sp); 3307 } 3308 3309 // If we have been interrupted (to kill us) in the middle of running, we 3310 // may not end up propagating the last events through the event system, in 3311 // which case we might strand the write lock. Unlock it here so when we do 3312 // to tear down the process we don't get an error destroying the lock. 3313 m_public_run_lock.SetStopped(); 3314 } 3315 3316 m_destroy_in_process = false; 3317 3318 return error; 3319 } 3320 3321 Status Process::Signal(int signal) { 3322 Status error(WillSignal()); 3323 if (error.Success()) { 3324 error = DoSignal(signal); 3325 if (error.Success()) 3326 DidSignal(); 3327 } 3328 return error; 3329 } 3330 3331 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3332 assert(signals_sp && "null signals_sp"); 3333 m_unix_signals_sp = signals_sp; 3334 } 3335 3336 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3337 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3338 return m_unix_signals_sp; 3339 } 3340 3341 lldb::ByteOrder Process::GetByteOrder() const { 3342 return GetTarget().GetArchitecture().GetByteOrder(); 3343 } 3344 3345 uint32_t Process::GetAddressByteSize() const { 3346 return GetTarget().GetArchitecture().GetAddressByteSize(); 3347 } 3348 3349 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3350 const StateType state = 3351 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3352 bool return_value = true; 3353 Log *log(GetLog(LLDBLog::Events | LLDBLog::Process)); 3354 3355 switch (state) { 3356 case eStateDetached: 3357 case eStateExited: 3358 case eStateUnloaded: 3359 m_stdio_communication.SynchronizeWithReadThread(); 3360 m_stdio_communication.StopReadThread(); 3361 m_stdio_communication.Disconnect(); 3362 m_stdin_forward = false; 3363 3364 LLVM_FALLTHROUGH; 3365 case eStateConnected: 3366 case eStateAttaching: 3367 case eStateLaunching: 3368 // These events indicate changes in the state of the debugging session, 3369 // always report them. 3370 return_value = true; 3371 break; 3372 case eStateInvalid: 3373 // We stopped for no apparent reason, don't report it. 3374 return_value = false; 3375 break; 3376 case eStateRunning: 3377 case eStateStepping: 3378 // If we've started the target running, we handle the cases where we are 3379 // already running and where there is a transition from stopped to running 3380 // differently. running -> running: Automatically suppress extra running 3381 // events stopped -> running: Report except when there is one or more no 3382 // votes 3383 // and no yes votes. 3384 SynchronouslyNotifyStateChanged(state); 3385 if (m_force_next_event_delivery) 3386 return_value = true; 3387 else { 3388 switch (m_last_broadcast_state) { 3389 case eStateRunning: 3390 case eStateStepping: 3391 // We always suppress multiple runnings with no PUBLIC stop in between. 3392 return_value = false; 3393 break; 3394 default: 3395 // TODO: make this work correctly. For now always report 3396 // run if we aren't running so we don't miss any running events. If I 3397 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3398 // and hit the breakpoints on multiple threads, then somehow during the 3399 // stepping over of all breakpoints no run gets reported. 3400 3401 // This is a transition from stop to run. 3402 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3403 case eVoteYes: 3404 case eVoteNoOpinion: 3405 return_value = true; 3406 break; 3407 case eVoteNo: 3408 return_value = false; 3409 break; 3410 } 3411 break; 3412 } 3413 } 3414 break; 3415 case eStateStopped: 3416 case eStateCrashed: 3417 case eStateSuspended: 3418 // We've stopped. First see if we're going to restart the target. If we 3419 // are going to stop, then we always broadcast the event. If we aren't 3420 // going to stop, let the thread plans decide if we're going to report this 3421 // event. If no thread has an opinion, we don't report it. 3422 3423 m_stdio_communication.SynchronizeWithReadThread(); 3424 RefreshStateAfterStop(); 3425 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3426 LLDB_LOGF(log, 3427 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3428 "interrupt, state: %s", 3429 static_cast<void *>(event_ptr), StateAsCString(state)); 3430 // Even though we know we are going to stop, we should let the threads 3431 // have a look at the stop, so they can properly set their state. 3432 m_thread_list.ShouldStop(event_ptr); 3433 return_value = true; 3434 } else { 3435 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3436 bool should_resume = false; 3437 3438 // It makes no sense to ask "ShouldStop" if we've already been 3439 // restarted... Asking the thread list is also not likely to go well, 3440 // since we are running again. So in that case just report the event. 3441 3442 if (!was_restarted) 3443 should_resume = !m_thread_list.ShouldStop(event_ptr); 3444 3445 if (was_restarted || should_resume || m_resume_requested) { 3446 Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3447 LLDB_LOGF(log, 3448 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3449 "%s was_restarted: %i report_stop_vote: %d.", 3450 should_resume, StateAsCString(state), was_restarted, 3451 report_stop_vote); 3452 3453 switch (report_stop_vote) { 3454 case eVoteYes: 3455 return_value = true; 3456 break; 3457 case eVoteNoOpinion: 3458 case eVoteNo: 3459 return_value = false; 3460 break; 3461 } 3462 3463 if (!was_restarted) { 3464 LLDB_LOGF(log, 3465 "Process::ShouldBroadcastEvent (%p) Restarting process " 3466 "from state: %s", 3467 static_cast<void *>(event_ptr), StateAsCString(state)); 3468 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3469 PrivateResume(); 3470 } 3471 } else { 3472 return_value = true; 3473 SynchronouslyNotifyStateChanged(state); 3474 } 3475 } 3476 break; 3477 } 3478 3479 // Forcing the next event delivery is a one shot deal. So reset it here. 3480 m_force_next_event_delivery = false; 3481 3482 // We do some coalescing of events (for instance two consecutive running 3483 // events get coalesced.) But we only coalesce against events we actually 3484 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3485 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3486 // done, because the PublicState reflects the last event pulled off the 3487 // queue, and there may be several events stacked up on the queue unserviced. 3488 // So the PublicState may not reflect the last broadcasted event yet. 3489 // m_last_broadcast_state gets updated here. 3490 3491 if (return_value) 3492 m_last_broadcast_state = state; 3493 3494 LLDB_LOGF(log, 3495 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3496 "broadcast state: %s - %s", 3497 static_cast<void *>(event_ptr), StateAsCString(state), 3498 StateAsCString(m_last_broadcast_state), 3499 return_value ? "YES" : "NO"); 3500 return return_value; 3501 } 3502 3503 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3504 Log *log = GetLog(LLDBLog::Events); 3505 3506 bool already_running = PrivateStateThreadIsValid(); 3507 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3508 already_running ? " already running" 3509 : " starting private state thread"); 3510 3511 if (!is_secondary_thread && already_running) 3512 return true; 3513 3514 // Create a thread that watches our internal state and controls which events 3515 // make it to clients (into the DCProcess event queue). 3516 char thread_name[1024]; 3517 uint32_t max_len = llvm::get_max_thread_name_length(); 3518 if (max_len > 0 && max_len <= 30) { 3519 // On platforms with abbreviated thread name lengths, choose thread names 3520 // that fit within the limit. 3521 if (already_running) 3522 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3523 else 3524 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3525 } else { 3526 if (already_running) 3527 snprintf(thread_name, sizeof(thread_name), 3528 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3529 GetID()); 3530 else 3531 snprintf(thread_name, sizeof(thread_name), 3532 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3533 } 3534 3535 llvm::Expected<HostThread> private_state_thread = 3536 ThreadLauncher::LaunchThread( 3537 thread_name, 3538 [this, is_secondary_thread] { 3539 return RunPrivateStateThread(is_secondary_thread); 3540 }, 3541 8 * 1024 * 1024); 3542 if (!private_state_thread) { 3543 LLDB_LOG(GetLog(LLDBLog::Host), "failed to launch host thread: {}", 3544 llvm::toString(private_state_thread.takeError())); 3545 return false; 3546 } 3547 3548 assert(private_state_thread->IsJoinable()); 3549 m_private_state_thread = *private_state_thread; 3550 ResumePrivateStateThread(); 3551 return true; 3552 } 3553 3554 void Process::PausePrivateStateThread() { 3555 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3556 } 3557 3558 void Process::ResumePrivateStateThread() { 3559 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3560 } 3561 3562 void Process::StopPrivateStateThread() { 3563 if (m_private_state_thread.IsJoinable()) 3564 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3565 else { 3566 Log *log = GetLog(LLDBLog::Process); 3567 LLDB_LOGF( 3568 log, 3569 "Went to stop the private state thread, but it was already invalid."); 3570 } 3571 } 3572 3573 void Process::ControlPrivateStateThread(uint32_t signal) { 3574 Log *log = GetLog(LLDBLog::Process); 3575 3576 assert(signal == eBroadcastInternalStateControlStop || 3577 signal == eBroadcastInternalStateControlPause || 3578 signal == eBroadcastInternalStateControlResume); 3579 3580 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3581 3582 // Signal the private state thread 3583 if (m_private_state_thread.IsJoinable()) { 3584 // Broadcast the event. 3585 // It is important to do this outside of the if below, because it's 3586 // possible that the thread state is invalid but that the thread is waiting 3587 // on a control event instead of simply being on its way out (this should 3588 // not happen, but it apparently can). 3589 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3590 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3591 m_private_state_control_broadcaster.BroadcastEvent(signal, 3592 event_receipt_sp); 3593 3594 // Wait for the event receipt or for the private state thread to exit 3595 bool receipt_received = false; 3596 if (PrivateStateThreadIsValid()) { 3597 while (!receipt_received) { 3598 // Check for a receipt for n seconds and then check if the private 3599 // state thread is still around. 3600 receipt_received = 3601 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3602 if (!receipt_received) { 3603 // Check if the private state thread is still around. If it isn't 3604 // then we are done waiting 3605 if (!PrivateStateThreadIsValid()) 3606 break; // Private state thread exited or is exiting, we are done 3607 } 3608 } 3609 } 3610 3611 if (signal == eBroadcastInternalStateControlStop) { 3612 thread_result_t result = {}; 3613 m_private_state_thread.Join(&result); 3614 m_private_state_thread.Reset(); 3615 } 3616 } else { 3617 LLDB_LOGF( 3618 log, 3619 "Private state thread already dead, no need to signal it to stop."); 3620 } 3621 } 3622 3623 void Process::SendAsyncInterrupt() { 3624 if (PrivateStateThreadIsValid()) 3625 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3626 nullptr); 3627 else 3628 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3629 } 3630 3631 void Process::HandlePrivateEvent(EventSP &event_sp) { 3632 Log *log = GetLog(LLDBLog::Process); 3633 m_resume_requested = false; 3634 3635 const StateType new_state = 3636 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3637 3638 // First check to see if anybody wants a shot at this event: 3639 if (m_next_event_action_up) { 3640 NextEventAction::EventActionResult action_result = 3641 m_next_event_action_up->PerformAction(event_sp); 3642 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3643 3644 switch (action_result) { 3645 case NextEventAction::eEventActionSuccess: 3646 SetNextEventAction(nullptr); 3647 break; 3648 3649 case NextEventAction::eEventActionRetry: 3650 break; 3651 3652 case NextEventAction::eEventActionExit: 3653 // Handle Exiting Here. If we already got an exited event, we should 3654 // just propagate it. Otherwise, swallow this event, and set our state 3655 // to exit so the next event will kill us. 3656 if (new_state != eStateExited) { 3657 // FIXME: should cons up an exited event, and discard this one. 3658 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3659 SetNextEventAction(nullptr); 3660 return; 3661 } 3662 SetNextEventAction(nullptr); 3663 break; 3664 } 3665 } 3666 3667 // See if we should broadcast this state to external clients? 3668 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3669 3670 if (should_broadcast) { 3671 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3672 if (log) { 3673 LLDB_LOGF(log, 3674 "Process::%s (pid = %" PRIu64 3675 ") broadcasting new state %s (old state %s) to %s", 3676 __FUNCTION__, GetID(), StateAsCString(new_state), 3677 StateAsCString(GetState()), 3678 is_hijacked ? "hijacked" : "public"); 3679 } 3680 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3681 if (StateIsRunningState(new_state)) { 3682 // Only push the input handler if we aren't fowarding events, as this 3683 // means the curses GUI is in use... Or don't push it if we are launching 3684 // since it will come up stopped. 3685 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3686 new_state != eStateLaunching && new_state != eStateAttaching) { 3687 PushProcessIOHandler(); 3688 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3689 eBroadcastAlways); 3690 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3691 __FUNCTION__, m_iohandler_sync.GetValue()); 3692 } 3693 } else if (StateIsStoppedState(new_state, false)) { 3694 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3695 // If the lldb_private::Debugger is handling the events, we don't want 3696 // to pop the process IOHandler here, we want to do it when we receive 3697 // the stopped event so we can carefully control when the process 3698 // IOHandler is popped because when we stop we want to display some 3699 // text stating how and why we stopped, then maybe some 3700 // process/thread/frame info, and then we want the "(lldb) " prompt to 3701 // show up. If we pop the process IOHandler here, then we will cause 3702 // the command interpreter to become the top IOHandler after the 3703 // process pops off and it will update its prompt right away... See the 3704 // Debugger.cpp file where it calls the function as 3705 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3706 // Otherwise we end up getting overlapping "(lldb) " prompts and 3707 // garbled output. 3708 // 3709 // If we aren't handling the events in the debugger (which is indicated 3710 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3711 // we are hijacked, then we always pop the process IO handler manually. 3712 // Hijacking happens when the internal process state thread is running 3713 // thread plans, or when commands want to run in synchronous mode and 3714 // they call "process->WaitForProcessToStop()". An example of something 3715 // that will hijack the events is a simple expression: 3716 // 3717 // (lldb) expr (int)puts("hello") 3718 // 3719 // This will cause the internal process state thread to resume and halt 3720 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3721 // events) and we do need the IO handler to be pushed and popped 3722 // correctly. 3723 3724 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3725 PopProcessIOHandler(); 3726 } 3727 } 3728 3729 BroadcastEvent(event_sp); 3730 } else { 3731 if (log) { 3732 LLDB_LOGF( 3733 log, 3734 "Process::%s (pid = %" PRIu64 3735 ") suppressing state %s (old state %s): should_broadcast == false", 3736 __FUNCTION__, GetID(), StateAsCString(new_state), 3737 StateAsCString(GetState())); 3738 } 3739 } 3740 } 3741 3742 Status Process::HaltPrivate() { 3743 EventSP event_sp; 3744 Status error(WillHalt()); 3745 if (error.Fail()) 3746 return error; 3747 3748 // Ask the process subclass to actually halt our process 3749 bool caused_stop; 3750 error = DoHalt(caused_stop); 3751 3752 DidHalt(); 3753 return error; 3754 } 3755 3756 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3757 bool control_only = true; 3758 3759 Log *log = GetLog(LLDBLog::Process); 3760 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3761 __FUNCTION__, static_cast<void *>(this), GetID()); 3762 3763 bool exit_now = false; 3764 bool interrupt_requested = false; 3765 while (!exit_now) { 3766 EventSP event_sp; 3767 GetEventsPrivate(event_sp, llvm::None, control_only); 3768 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3769 LLDB_LOGF(log, 3770 "Process::%s (arg = %p, pid = %" PRIu64 3771 ") got a control event: %d", 3772 __FUNCTION__, static_cast<void *>(this), GetID(), 3773 event_sp->GetType()); 3774 3775 switch (event_sp->GetType()) { 3776 case eBroadcastInternalStateControlStop: 3777 exit_now = true; 3778 break; // doing any internal state management below 3779 3780 case eBroadcastInternalStateControlPause: 3781 control_only = true; 3782 break; 3783 3784 case eBroadcastInternalStateControlResume: 3785 control_only = false; 3786 break; 3787 } 3788 3789 continue; 3790 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 3791 if (m_public_state.GetValue() == eStateAttaching) { 3792 LLDB_LOGF(log, 3793 "Process::%s (arg = %p, pid = %" PRIu64 3794 ") woke up with an interrupt while attaching - " 3795 "forwarding interrupt.", 3796 __FUNCTION__, static_cast<void *>(this), GetID()); 3797 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 3798 } else if (StateIsRunningState(m_last_broadcast_state)) { 3799 LLDB_LOGF(log, 3800 "Process::%s (arg = %p, pid = %" PRIu64 3801 ") woke up with an interrupt - Halting.", 3802 __FUNCTION__, static_cast<void *>(this), GetID()); 3803 Status error = HaltPrivate(); 3804 if (error.Fail() && log) 3805 LLDB_LOGF(log, 3806 "Process::%s (arg = %p, pid = %" PRIu64 3807 ") failed to halt the process: %s", 3808 __FUNCTION__, static_cast<void *>(this), GetID(), 3809 error.AsCString()); 3810 // Halt should generate a stopped event. Make a note of the fact that 3811 // we were doing the interrupt, so we can set the interrupted flag 3812 // after we receive the event. We deliberately set this to true even if 3813 // HaltPrivate failed, so that we can interrupt on the next natural 3814 // stop. 3815 interrupt_requested = true; 3816 } else { 3817 // This can happen when someone (e.g. Process::Halt) sees that we are 3818 // running and sends an interrupt request, but the process actually 3819 // stops before we receive it. In that case, we can just ignore the 3820 // request. We use m_last_broadcast_state, because the Stopped event 3821 // may not have been popped of the event queue yet, which is when the 3822 // public state gets updated. 3823 LLDB_LOGF(log, 3824 "Process::%s ignoring interrupt as we have already stopped.", 3825 __FUNCTION__); 3826 } 3827 continue; 3828 } 3829 3830 const StateType internal_state = 3831 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3832 3833 if (internal_state != eStateInvalid) { 3834 if (m_clear_thread_plans_on_stop && 3835 StateIsStoppedState(internal_state, true)) { 3836 m_clear_thread_plans_on_stop = false; 3837 m_thread_list.DiscardThreadPlans(); 3838 } 3839 3840 if (interrupt_requested) { 3841 if (StateIsStoppedState(internal_state, true)) { 3842 // We requested the interrupt, so mark this as such in the stop event 3843 // so clients can tell an interrupted process from a natural stop 3844 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 3845 interrupt_requested = false; 3846 } else if (log) { 3847 LLDB_LOGF(log, 3848 "Process::%s interrupt_requested, but a non-stopped " 3849 "state '%s' received.", 3850 __FUNCTION__, StateAsCString(internal_state)); 3851 } 3852 } 3853 3854 HandlePrivateEvent(event_sp); 3855 } 3856 3857 if (internal_state == eStateInvalid || internal_state == eStateExited || 3858 internal_state == eStateDetached) { 3859 LLDB_LOGF(log, 3860 "Process::%s (arg = %p, pid = %" PRIu64 3861 ") about to exit with internal state %s...", 3862 __FUNCTION__, static_cast<void *>(this), GetID(), 3863 StateAsCString(internal_state)); 3864 3865 break; 3866 } 3867 } 3868 3869 // Verify log is still enabled before attempting to write to it... 3870 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 3871 __FUNCTION__, static_cast<void *>(this), GetID()); 3872 3873 // If we are a secondary thread, then the primary thread we are working for 3874 // will have already acquired the public_run_lock, and isn't done with what 3875 // it was doing yet, so don't try to change it on the way out. 3876 if (!is_secondary_thread) 3877 m_public_run_lock.SetStopped(); 3878 return {}; 3879 } 3880 3881 // Process Event Data 3882 3883 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {} 3884 3885 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 3886 StateType state) 3887 : EventData(), m_process_wp(), m_state(state) { 3888 if (process_sp) 3889 m_process_wp = process_sp; 3890 } 3891 3892 Process::ProcessEventData::~ProcessEventData() = default; 3893 3894 ConstString Process::ProcessEventData::GetFlavorString() { 3895 static ConstString g_flavor("Process::ProcessEventData"); 3896 return g_flavor; 3897 } 3898 3899 ConstString Process::ProcessEventData::GetFlavor() const { 3900 return ProcessEventData::GetFlavorString(); 3901 } 3902 3903 bool Process::ProcessEventData::ShouldStop(Event *event_ptr, 3904 bool &found_valid_stopinfo) { 3905 found_valid_stopinfo = false; 3906 3907 ProcessSP process_sp(m_process_wp.lock()); 3908 if (!process_sp) 3909 return false; 3910 3911 ThreadList &curr_thread_list = process_sp->GetThreadList(); 3912 uint32_t num_threads = curr_thread_list.GetSize(); 3913 uint32_t idx; 3914 3915 // The actions might change one of the thread's stop_info's opinions about 3916 // whether we should stop the process, so we need to query that as we go. 3917 3918 // One other complication here, is that we try to catch any case where the 3919 // target has run (except for expressions) and immediately exit, but if we 3920 // get that wrong (which is possible) then the thread list might have 3921 // changed, and that would cause our iteration here to crash. We could 3922 // make a copy of the thread list, but we'd really like to also know if it 3923 // has changed at all, so we make up a vector of the thread ID's and check 3924 // what we get back against this list & bag out if anything differs. 3925 ThreadList not_suspended_thread_list(process_sp.get()); 3926 std::vector<uint32_t> thread_index_array(num_threads); 3927 uint32_t not_suspended_idx = 0; 3928 for (idx = 0; idx < num_threads; ++idx) { 3929 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 3930 3931 /* 3932 Filter out all suspended threads, they could not be the reason 3933 of stop and no need to perform any actions on them. 3934 */ 3935 if (thread_sp->GetResumeState() != eStateSuspended) { 3936 not_suspended_thread_list.AddThread(thread_sp); 3937 thread_index_array[not_suspended_idx] = thread_sp->GetIndexID(); 3938 not_suspended_idx++; 3939 } 3940 } 3941 3942 // Use this to track whether we should continue from here. We will only 3943 // continue the target running if no thread says we should stop. Of course 3944 // if some thread's PerformAction actually sets the target running, then it 3945 // doesn't matter what the other threads say... 3946 3947 bool still_should_stop = false; 3948 3949 // Sometimes - for instance if we have a bug in the stub we are talking to, 3950 // we stop but no thread has a valid stop reason. In that case we should 3951 // just stop, because we have no way of telling what the right thing to do 3952 // is, and it's better to let the user decide than continue behind their 3953 // backs. 3954 3955 for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) { 3956 curr_thread_list = process_sp->GetThreadList(); 3957 if (curr_thread_list.GetSize() != num_threads) { 3958 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); 3959 LLDB_LOGF( 3960 log, 3961 "Number of threads changed from %u to %u while processing event.", 3962 num_threads, curr_thread_list.GetSize()); 3963 break; 3964 } 3965 3966 lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx); 3967 3968 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 3969 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); 3970 LLDB_LOGF(log, 3971 "The thread at position %u changed from %u to %u while " 3972 "processing event.", 3973 idx, thread_index_array[idx], thread_sp->GetIndexID()); 3974 break; 3975 } 3976 3977 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 3978 if (stop_info_sp && stop_info_sp->IsValid()) { 3979 found_valid_stopinfo = true; 3980 bool this_thread_wants_to_stop; 3981 if (stop_info_sp->GetOverrideShouldStop()) { 3982 this_thread_wants_to_stop = 3983 stop_info_sp->GetOverriddenShouldStopValue(); 3984 } else { 3985 stop_info_sp->PerformAction(event_ptr); 3986 // The stop action might restart the target. If it does, then we 3987 // want to mark that in the event so that whoever is receiving it 3988 // will know to wait for the running event and reflect that state 3989 // appropriately. We also need to stop processing actions, since they 3990 // aren't expecting the target to be running. 3991 3992 // FIXME: we might have run. 3993 if (stop_info_sp->HasTargetRunSinceMe()) { 3994 SetRestarted(true); 3995 break; 3996 } 3997 3998 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 3999 } 4000 4001 if (!still_should_stop) 4002 still_should_stop = this_thread_wants_to_stop; 4003 } 4004 } 4005 4006 return still_should_stop; 4007 } 4008 4009 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 4010 ProcessSP process_sp(m_process_wp.lock()); 4011 4012 if (!process_sp) 4013 return; 4014 4015 // This function gets called twice for each event, once when the event gets 4016 // pulled off of the private process event queue, and then any number of 4017 // times, first when it gets pulled off of the public event queue, then other 4018 // times when we're pretending that this is where we stopped at the end of 4019 // expression evaluation. m_update_state is used to distinguish these three 4020 // cases; it is 0 when we're just pulling it off for private handling, and > 4021 // 1 for expression evaluation, and we don't want to do the breakpoint 4022 // command handling then. 4023 if (m_update_state != 1) 4024 return; 4025 4026 process_sp->SetPublicState( 4027 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4028 4029 if (m_state == eStateStopped && !m_restarted) { 4030 // Let process subclasses know we are about to do a public stop and do 4031 // anything they might need to in order to speed up register and memory 4032 // accesses. 4033 process_sp->WillPublicStop(); 4034 } 4035 4036 // If this is a halt event, even if the halt stopped with some reason other 4037 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4038 // the halt request came through) don't do the StopInfo actions, as they may 4039 // end up restarting the process. 4040 if (m_interrupted) 4041 return; 4042 4043 // If we're not stopped or have restarted, then skip the StopInfo actions: 4044 if (m_state != eStateStopped || m_restarted) { 4045 return; 4046 } 4047 4048 bool does_anybody_have_an_opinion = false; 4049 bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion); 4050 4051 if (GetRestarted()) { 4052 return; 4053 } 4054 4055 if (!still_should_stop && does_anybody_have_an_opinion) { 4056 // We've been asked to continue, so do that here. 4057 SetRestarted(true); 4058 // Use the public resume method here, since this is just extending a 4059 // public resume. 4060 process_sp->PrivateResume(); 4061 } else { 4062 bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4063 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4064 4065 if (!hijacked) { 4066 // If we didn't restart, run the Stop Hooks here. 4067 // Don't do that if state changed events aren't hooked up to the 4068 // public (or SyncResume) broadcasters. StopHooks are just for 4069 // real public stops. They might also restart the target, 4070 // so watch for that. 4071 if (process_sp->GetTarget().RunStopHooks()) 4072 SetRestarted(true); 4073 } 4074 } 4075 } 4076 4077 void Process::ProcessEventData::Dump(Stream *s) const { 4078 ProcessSP process_sp(m_process_wp.lock()); 4079 4080 if (process_sp) 4081 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4082 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4083 else 4084 s->PutCString(" process = NULL, "); 4085 4086 s->Printf("state = %s", StateAsCString(GetState())); 4087 } 4088 4089 const Process::ProcessEventData * 4090 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4091 if (event_ptr) { 4092 const EventData *event_data = event_ptr->GetData(); 4093 if (event_data && 4094 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4095 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4096 } 4097 return nullptr; 4098 } 4099 4100 ProcessSP 4101 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4102 ProcessSP process_sp; 4103 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4104 if (data) 4105 process_sp = data->GetProcessSP(); 4106 return process_sp; 4107 } 4108 4109 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4110 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4111 if (data == nullptr) 4112 return eStateInvalid; 4113 else 4114 return data->GetState(); 4115 } 4116 4117 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4118 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4119 if (data == nullptr) 4120 return false; 4121 else 4122 return data->GetRestarted(); 4123 } 4124 4125 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4126 bool new_value) { 4127 ProcessEventData *data = 4128 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4129 if (data != nullptr) 4130 data->SetRestarted(new_value); 4131 } 4132 4133 size_t 4134 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4135 ProcessEventData *data = 4136 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4137 if (data != nullptr) 4138 return data->GetNumRestartedReasons(); 4139 else 4140 return 0; 4141 } 4142 4143 const char * 4144 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4145 size_t idx) { 4146 ProcessEventData *data = 4147 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4148 if (data != nullptr) 4149 return data->GetRestartedReasonAtIndex(idx); 4150 else 4151 return nullptr; 4152 } 4153 4154 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4155 const char *reason) { 4156 ProcessEventData *data = 4157 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4158 if (data != nullptr) 4159 data->AddRestartedReason(reason); 4160 } 4161 4162 bool Process::ProcessEventData::GetInterruptedFromEvent( 4163 const Event *event_ptr) { 4164 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4165 if (data == nullptr) 4166 return false; 4167 else 4168 return data->GetInterrupted(); 4169 } 4170 4171 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4172 bool new_value) { 4173 ProcessEventData *data = 4174 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4175 if (data != nullptr) 4176 data->SetInterrupted(new_value); 4177 } 4178 4179 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4180 ProcessEventData *data = 4181 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4182 if (data) { 4183 data->SetUpdateStateOnRemoval(); 4184 return true; 4185 } 4186 return false; 4187 } 4188 4189 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4190 4191 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4192 exe_ctx.SetTargetPtr(&GetTarget()); 4193 exe_ctx.SetProcessPtr(this); 4194 exe_ctx.SetThreadPtr(nullptr); 4195 exe_ctx.SetFramePtr(nullptr); 4196 } 4197 4198 // uint32_t 4199 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4200 // std::vector<lldb::pid_t> &pids) 4201 //{ 4202 // return 0; 4203 //} 4204 // 4205 // ArchSpec 4206 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4207 //{ 4208 // return Host::GetArchSpecForExistingProcess (pid); 4209 //} 4210 // 4211 // ArchSpec 4212 // Process::GetArchSpecForExistingProcess (const char *process_name) 4213 //{ 4214 // return Host::GetArchSpecForExistingProcess (process_name); 4215 //} 4216 4217 void Process::AppendSTDOUT(const char *s, size_t len) { 4218 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4219 m_stdout_data.append(s, len); 4220 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4221 new ProcessEventData(shared_from_this(), GetState())); 4222 } 4223 4224 void Process::AppendSTDERR(const char *s, size_t len) { 4225 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4226 m_stderr_data.append(s, len); 4227 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4228 new ProcessEventData(shared_from_this(), GetState())); 4229 } 4230 4231 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4232 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4233 m_profile_data.push_back(one_profile_data); 4234 BroadcastEventIfUnique(eBroadcastBitProfileData, 4235 new ProcessEventData(shared_from_this(), GetState())); 4236 } 4237 4238 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4239 const StructuredDataPluginSP &plugin_sp) { 4240 BroadcastEvent( 4241 eBroadcastBitStructuredData, 4242 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4243 } 4244 4245 StructuredDataPluginSP 4246 Process::GetStructuredDataPlugin(ConstString type_name) const { 4247 auto find_it = m_structured_data_plugin_map.find(type_name); 4248 if (find_it != m_structured_data_plugin_map.end()) 4249 return find_it->second; 4250 else 4251 return StructuredDataPluginSP(); 4252 } 4253 4254 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4255 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4256 if (m_profile_data.empty()) 4257 return 0; 4258 4259 std::string &one_profile_data = m_profile_data.front(); 4260 size_t bytes_available = one_profile_data.size(); 4261 if (bytes_available > 0) { 4262 Log *log = GetLog(LLDBLog::Process); 4263 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4264 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4265 if (bytes_available > buf_size) { 4266 memcpy(buf, one_profile_data.c_str(), buf_size); 4267 one_profile_data.erase(0, buf_size); 4268 bytes_available = buf_size; 4269 } else { 4270 memcpy(buf, one_profile_data.c_str(), bytes_available); 4271 m_profile_data.erase(m_profile_data.begin()); 4272 } 4273 } 4274 return bytes_available; 4275 } 4276 4277 // Process STDIO 4278 4279 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4280 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4281 size_t bytes_available = m_stdout_data.size(); 4282 if (bytes_available > 0) { 4283 Log *log = GetLog(LLDBLog::Process); 4284 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4285 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4286 if (bytes_available > buf_size) { 4287 memcpy(buf, m_stdout_data.c_str(), buf_size); 4288 m_stdout_data.erase(0, buf_size); 4289 bytes_available = buf_size; 4290 } else { 4291 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4292 m_stdout_data.clear(); 4293 } 4294 } 4295 return bytes_available; 4296 } 4297 4298 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4299 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4300 size_t bytes_available = m_stderr_data.size(); 4301 if (bytes_available > 0) { 4302 Log *log = GetLog(LLDBLog::Process); 4303 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4304 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4305 if (bytes_available > buf_size) { 4306 memcpy(buf, m_stderr_data.c_str(), buf_size); 4307 m_stderr_data.erase(0, buf_size); 4308 bytes_available = buf_size; 4309 } else { 4310 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4311 m_stderr_data.clear(); 4312 } 4313 } 4314 return bytes_available; 4315 } 4316 4317 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4318 size_t src_len) { 4319 Process *process = (Process *)baton; 4320 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4321 } 4322 4323 class IOHandlerProcessSTDIO : public IOHandler { 4324 public: 4325 IOHandlerProcessSTDIO(Process *process, int write_fd) 4326 : IOHandler(process->GetTarget().GetDebugger(), 4327 IOHandler::Type::ProcessIO), 4328 m_process(process), 4329 m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false), 4330 m_write_file(write_fd, File::eOpenOptionWriteOnly, false) { 4331 m_pipe.CreateNew(false); 4332 } 4333 4334 ~IOHandlerProcessSTDIO() override = default; 4335 4336 void SetIsRunning(bool running) { 4337 std::lock_guard<std::mutex> guard(m_mutex); 4338 SetIsDone(!running); 4339 m_is_running = running; 4340 } 4341 4342 // Each IOHandler gets to run until it is done. It should read data from the 4343 // "in" and place output into "out" and "err and return when done. 4344 void Run() override { 4345 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4346 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4347 SetIsDone(true); 4348 return; 4349 } 4350 4351 SetIsDone(false); 4352 const int read_fd = m_read_file.GetDescriptor(); 4353 Terminal terminal(read_fd); 4354 TerminalState terminal_state(terminal, false); 4355 // FIXME: error handling? 4356 llvm::consumeError(terminal.SetCanonical(false)); 4357 llvm::consumeError(terminal.SetEcho(false)); 4358 // FD_ZERO, FD_SET are not supported on windows 4359 #ifndef _WIN32 4360 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4361 SetIsRunning(true); 4362 while (true) { 4363 { 4364 std::lock_guard<std::mutex> guard(m_mutex); 4365 if (GetIsDone()) 4366 break; 4367 } 4368 4369 SelectHelper select_helper; 4370 select_helper.FDSetRead(read_fd); 4371 select_helper.FDSetRead(pipe_read_fd); 4372 Status error = select_helper.Select(); 4373 4374 if (error.Fail()) 4375 break; 4376 4377 char ch = 0; 4378 size_t n; 4379 if (select_helper.FDIsSetRead(read_fd)) { 4380 n = 1; 4381 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4382 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4383 break; 4384 } else 4385 break; 4386 } 4387 4388 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4389 size_t bytes_read; 4390 // Consume the interrupt byte 4391 Status error = m_pipe.Read(&ch, 1, bytes_read); 4392 if (error.Success()) { 4393 if (ch == 'q') 4394 break; 4395 if (ch == 'i') 4396 if (StateIsRunningState(m_process->GetState())) 4397 m_process->SendAsyncInterrupt(); 4398 } 4399 } 4400 } 4401 SetIsRunning(false); 4402 #endif 4403 } 4404 4405 void Cancel() override { 4406 std::lock_guard<std::mutex> guard(m_mutex); 4407 SetIsDone(true); 4408 // Only write to our pipe to cancel if we are in 4409 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4410 // is being run from the command interpreter: 4411 // 4412 // (lldb) step_process_thousands_of_times 4413 // 4414 // In this case the command interpreter will be in the middle of handling 4415 // the command and if the process pushes and pops the IOHandler thousands 4416 // of times, we can end up writing to m_pipe without ever consuming the 4417 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4418 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4419 if (m_is_running) { 4420 char ch = 'q'; // Send 'q' for quit 4421 size_t bytes_written = 0; 4422 m_pipe.Write(&ch, 1, bytes_written); 4423 } 4424 } 4425 4426 bool Interrupt() override { 4427 // Do only things that are safe to do in an interrupt context (like in a 4428 // SIGINT handler), like write 1 byte to a file descriptor. This will 4429 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4430 // that was written to the pipe and then call 4431 // m_process->SendAsyncInterrupt() from a much safer location in code. 4432 if (m_active) { 4433 char ch = 'i'; // Send 'i' for interrupt 4434 size_t bytes_written = 0; 4435 Status result = m_pipe.Write(&ch, 1, bytes_written); 4436 return result.Success(); 4437 } else { 4438 // This IOHandler might be pushed on the stack, but not being run 4439 // currently so do the right thing if we aren't actively watching for 4440 // STDIN by sending the interrupt to the process. Otherwise the write to 4441 // the pipe above would do nothing. This can happen when the command 4442 // interpreter is running and gets a "expression ...". It will be on the 4443 // IOHandler thread and sending the input is complete to the delegate 4444 // which will cause the expression to run, which will push the process IO 4445 // handler, but not run it. 4446 4447 if (StateIsRunningState(m_process->GetState())) { 4448 m_process->SendAsyncInterrupt(); 4449 return true; 4450 } 4451 } 4452 return false; 4453 } 4454 4455 void GotEOF() override {} 4456 4457 protected: 4458 Process *m_process; 4459 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4460 NativeFile m_write_file; // Write to this file (usually the primary pty for 4461 // getting io to debuggee) 4462 Pipe m_pipe; 4463 std::mutex m_mutex; 4464 bool m_is_running = false; 4465 }; 4466 4467 void Process::SetSTDIOFileDescriptor(int fd) { 4468 // First set up the Read Thread for reading/handling process I/O 4469 m_stdio_communication.SetConnection( 4470 std::make_unique<ConnectionFileDescriptor>(fd, true)); 4471 if (m_stdio_communication.IsConnected()) { 4472 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4473 STDIOReadThreadBytesReceived, this); 4474 m_stdio_communication.StartReadThread(); 4475 4476 // Now read thread is set up, set up input reader. 4477 4478 if (!m_process_input_reader) 4479 m_process_input_reader = 4480 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4481 } 4482 } 4483 4484 bool Process::ProcessIOHandlerIsActive() { 4485 IOHandlerSP io_handler_sp(m_process_input_reader); 4486 if (io_handler_sp) 4487 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4488 return false; 4489 } 4490 bool Process::PushProcessIOHandler() { 4491 IOHandlerSP io_handler_sp(m_process_input_reader); 4492 if (io_handler_sp) { 4493 Log *log = GetLog(LLDBLog::Process); 4494 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4495 4496 io_handler_sp->SetIsDone(false); 4497 // If we evaluate an utility function, then we don't cancel the current 4498 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4499 // existing IOHandler that potentially provides the user interface (e.g. 4500 // the IOHandler for Editline). 4501 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4502 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4503 cancel_top_handler); 4504 return true; 4505 } 4506 return false; 4507 } 4508 4509 bool Process::PopProcessIOHandler() { 4510 IOHandlerSP io_handler_sp(m_process_input_reader); 4511 if (io_handler_sp) 4512 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4513 return false; 4514 } 4515 4516 // The process needs to know about installed plug-ins 4517 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4518 4519 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4520 4521 namespace { 4522 // RestorePlanState is used to record the "is private", "is controlling" and 4523 // "okay 4524 // to discard" fields of the plan we are running, and reset it on Clean or on 4525 // destruction. It will only reset the state once, so you can call Clean and 4526 // then monkey with the state and it won't get reset on you again. 4527 4528 class RestorePlanState { 4529 public: 4530 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4531 : m_thread_plan_sp(thread_plan_sp) { 4532 if (m_thread_plan_sp) { 4533 m_private = m_thread_plan_sp->GetPrivate(); 4534 m_is_controlling = m_thread_plan_sp->IsControllingPlan(); 4535 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4536 } 4537 } 4538 4539 ~RestorePlanState() { Clean(); } 4540 4541 void Clean() { 4542 if (!m_already_reset && m_thread_plan_sp) { 4543 m_already_reset = true; 4544 m_thread_plan_sp->SetPrivate(m_private); 4545 m_thread_plan_sp->SetIsControllingPlan(m_is_controlling); 4546 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4547 } 4548 } 4549 4550 private: 4551 lldb::ThreadPlanSP m_thread_plan_sp; 4552 bool m_already_reset = false; 4553 bool m_private; 4554 bool m_is_controlling; 4555 bool m_okay_to_discard; 4556 }; 4557 } // anonymous namespace 4558 4559 static microseconds 4560 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4561 const milliseconds default_one_thread_timeout(250); 4562 4563 // If the overall wait is forever, then we don't need to worry about it. 4564 if (!options.GetTimeout()) { 4565 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4566 : default_one_thread_timeout; 4567 } 4568 4569 // If the one thread timeout is set, use it. 4570 if (options.GetOneThreadTimeout()) 4571 return *options.GetOneThreadTimeout(); 4572 4573 // Otherwise use half the total timeout, bounded by the 4574 // default_one_thread_timeout. 4575 return std::min<microseconds>(default_one_thread_timeout, 4576 *options.GetTimeout() / 2); 4577 } 4578 4579 static Timeout<std::micro> 4580 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4581 bool before_first_timeout) { 4582 // If we are going to run all threads the whole time, or if we are only going 4583 // to run one thread, we can just return the overall timeout. 4584 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4585 return options.GetTimeout(); 4586 4587 if (before_first_timeout) 4588 return GetOneThreadExpressionTimeout(options); 4589 4590 if (!options.GetTimeout()) 4591 return llvm::None; 4592 else 4593 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4594 } 4595 4596 static llvm::Optional<ExpressionResults> 4597 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, 4598 RestorePlanState &restorer, const EventSP &event_sp, 4599 EventSP &event_to_broadcast_sp, 4600 const EvaluateExpressionOptions &options, 4601 bool handle_interrupts) { 4602 Log *log = GetLog(LLDBLog::Step | LLDBLog::Process); 4603 4604 ThreadSP thread_sp = thread_plan_sp->GetTarget() 4605 .GetProcessSP() 4606 ->GetThreadList() 4607 .FindThreadByID(thread_id); 4608 if (!thread_sp) { 4609 LLDB_LOG(log, 4610 "The thread on which we were running the " 4611 "expression: tid = {0}, exited while " 4612 "the expression was running.", 4613 thread_id); 4614 return eExpressionThreadVanished; 4615 } 4616 4617 ThreadPlanSP plan = thread_sp->GetCompletedPlan(); 4618 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4619 LLDB_LOG(log, "execution completed successfully"); 4620 4621 // Restore the plan state so it will get reported as intended when we are 4622 // done. 4623 restorer.Clean(); 4624 return eExpressionCompleted; 4625 } 4626 4627 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4628 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4629 stop_info_sp->ShouldNotify(event_sp.get())) { 4630 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4631 if (!options.DoesIgnoreBreakpoints()) { 4632 // Restore the plan state and then force Private to false. We are going 4633 // to stop because of this plan so we need it to become a public plan or 4634 // it won't report correctly when we continue to its termination later 4635 // on. 4636 restorer.Clean(); 4637 thread_plan_sp->SetPrivate(false); 4638 event_to_broadcast_sp = event_sp; 4639 } 4640 return eExpressionHitBreakpoint; 4641 } 4642 4643 if (!handle_interrupts && 4644 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4645 return llvm::None; 4646 4647 LLDB_LOG(log, "thread plan did not successfully complete"); 4648 if (!options.DoesUnwindOnError()) 4649 event_to_broadcast_sp = event_sp; 4650 return eExpressionInterrupted; 4651 } 4652 4653 ExpressionResults 4654 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4655 lldb::ThreadPlanSP &thread_plan_sp, 4656 const EvaluateExpressionOptions &options, 4657 DiagnosticManager &diagnostic_manager) { 4658 ExpressionResults return_value = eExpressionSetupError; 4659 4660 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4661 4662 if (!thread_plan_sp) { 4663 diagnostic_manager.PutString( 4664 eDiagnosticSeverityError, 4665 "RunThreadPlan called with empty thread plan."); 4666 return eExpressionSetupError; 4667 } 4668 4669 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4670 diagnostic_manager.PutString( 4671 eDiagnosticSeverityError, 4672 "RunThreadPlan called with an invalid thread plan."); 4673 return eExpressionSetupError; 4674 } 4675 4676 if (exe_ctx.GetProcessPtr() != this) { 4677 diagnostic_manager.PutString(eDiagnosticSeverityError, 4678 "RunThreadPlan called on wrong process."); 4679 return eExpressionSetupError; 4680 } 4681 4682 Thread *thread = exe_ctx.GetThreadPtr(); 4683 if (thread == nullptr) { 4684 diagnostic_manager.PutString(eDiagnosticSeverityError, 4685 "RunThreadPlan called with invalid thread."); 4686 return eExpressionSetupError; 4687 } 4688 4689 // Record the thread's id so we can tell when a thread we were using 4690 // to run the expression exits during the expression evaluation. 4691 lldb::tid_t expr_thread_id = thread->GetID(); 4692 4693 // We need to change some of the thread plan attributes for the thread plan 4694 // runner. This will restore them when we are done: 4695 4696 RestorePlanState thread_plan_restorer(thread_plan_sp); 4697 4698 // We rely on the thread plan we are running returning "PlanCompleted" if 4699 // when it successfully completes. For that to be true the plan can't be 4700 // private - since private plans suppress themselves in the GetCompletedPlan 4701 // call. 4702 4703 thread_plan_sp->SetPrivate(false); 4704 4705 // The plans run with RunThreadPlan also need to be terminal controlling plans 4706 // or when they are done we will end up asking the plan above us whether we 4707 // should stop, which may give the wrong answer. 4708 4709 thread_plan_sp->SetIsControllingPlan(true); 4710 thread_plan_sp->SetOkayToDiscard(false); 4711 4712 // If we are running some utility expression for LLDB, we now have to mark 4713 // this in the ProcesModID of this process. This RAII takes care of marking 4714 // and reverting the mark it once we are done running the expression. 4715 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4716 4717 if (m_private_state.GetValue() != eStateStopped) { 4718 diagnostic_manager.PutString( 4719 eDiagnosticSeverityError, 4720 "RunThreadPlan called while the private state was not stopped."); 4721 return eExpressionSetupError; 4722 } 4723 4724 // Save the thread & frame from the exe_ctx for restoration after we run 4725 const uint32_t thread_idx_id = thread->GetIndexID(); 4726 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4727 if (!selected_frame_sp) { 4728 thread->SetSelectedFrame(nullptr); 4729 selected_frame_sp = thread->GetSelectedFrame(); 4730 if (!selected_frame_sp) { 4731 diagnostic_manager.Printf( 4732 eDiagnosticSeverityError, 4733 "RunThreadPlan called without a selected frame on thread %d", 4734 thread_idx_id); 4735 return eExpressionSetupError; 4736 } 4737 } 4738 4739 // Make sure the timeout values make sense. The one thread timeout needs to 4740 // be smaller than the overall timeout. 4741 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4742 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4743 diagnostic_manager.PutString(eDiagnosticSeverityError, 4744 "RunThreadPlan called with one thread " 4745 "timeout greater than total timeout"); 4746 return eExpressionSetupError; 4747 } 4748 4749 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4750 4751 // N.B. Running the target may unset the currently selected thread and frame. 4752 // We don't want to do that either, so we should arrange to reset them as 4753 // well. 4754 4755 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4756 4757 uint32_t selected_tid; 4758 StackID selected_stack_id; 4759 if (selected_thread_sp) { 4760 selected_tid = selected_thread_sp->GetIndexID(); 4761 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4762 } else { 4763 selected_tid = LLDB_INVALID_THREAD_ID; 4764 } 4765 4766 HostThread backup_private_state_thread; 4767 lldb::StateType old_state = eStateInvalid; 4768 lldb::ThreadPlanSP stopper_base_plan_sp; 4769 4770 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); 4771 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4772 // Yikes, we are running on the private state thread! So we can't wait for 4773 // public events on this thread, since we are the thread that is generating 4774 // public events. The simplest thing to do is to spin up a temporary thread 4775 // to handle private state thread events while we are fielding public 4776 // events here. 4777 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 4778 "another state thread to handle the events."); 4779 4780 backup_private_state_thread = m_private_state_thread; 4781 4782 // One other bit of business: we want to run just this thread plan and 4783 // anything it pushes, and then stop, returning control here. But in the 4784 // normal course of things, the plan above us on the stack would be given a 4785 // shot at the stop event before deciding to stop, and we don't want that. 4786 // So we insert a "stopper" base plan on the stack before the plan we want 4787 // to run. Since base plans always stop and return control to the user, 4788 // that will do just what we want. 4789 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4790 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4791 // Have to make sure our public state is stopped, since otherwise the 4792 // reporting logic below doesn't work correctly. 4793 old_state = m_public_state.GetValue(); 4794 m_public_state.SetValueNoLock(eStateStopped); 4795 4796 // Now spin up the private state thread: 4797 StartPrivateStateThread(true); 4798 } 4799 4800 thread->QueueThreadPlan( 4801 thread_plan_sp, false); // This used to pass "true" does that make sense? 4802 4803 if (options.GetDebug()) { 4804 // In this case, we aren't actually going to run, we just want to stop 4805 // right away. Flush this thread so we will refetch the stacks and show the 4806 // correct backtrace. 4807 // FIXME: To make this prettier we should invent some stop reason for this, 4808 // but that 4809 // is only cosmetic, and this functionality is only of use to lldb 4810 // developers who can live with not pretty... 4811 thread->Flush(); 4812 return eExpressionStoppedForDebug; 4813 } 4814 4815 ListenerSP listener_sp( 4816 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4817 4818 lldb::EventSP event_to_broadcast_sp; 4819 4820 { 4821 // This process event hijacker Hijacks the Public events and its destructor 4822 // makes sure that the process events get restored on exit to the function. 4823 // 4824 // If the event needs to propagate beyond the hijacker (e.g., the process 4825 // exits during execution), then the event is put into 4826 // event_to_broadcast_sp for rebroadcasting. 4827 4828 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4829 4830 if (log) { 4831 StreamString s; 4832 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4833 LLDB_LOGF(log, 4834 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4835 " to run thread plan \"%s\".", 4836 thread_idx_id, expr_thread_id, s.GetData()); 4837 } 4838 4839 bool got_event; 4840 lldb::EventSP event_sp; 4841 lldb::StateType stop_state = lldb::eStateInvalid; 4842 4843 bool before_first_timeout = true; // This is set to false the first time 4844 // that we have to halt the target. 4845 bool do_resume = true; 4846 bool handle_running_event = true; 4847 4848 // This is just for accounting: 4849 uint32_t num_resumes = 0; 4850 4851 // If we are going to run all threads the whole time, or if we are only 4852 // going to run one thread, then we don't need the first timeout. So we 4853 // pretend we are after the first timeout already. 4854 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4855 before_first_timeout = false; 4856 4857 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 4858 options.GetStopOthers(), options.GetTryAllThreads(), 4859 before_first_timeout); 4860 4861 // This isn't going to work if there are unfetched events on the queue. Are 4862 // there cases where we might want to run the remaining events here, and 4863 // then try to call the function? That's probably being too tricky for our 4864 // own good. 4865 4866 Event *other_events = listener_sp->PeekAtNextEvent(); 4867 if (other_events != nullptr) { 4868 diagnostic_manager.PutString( 4869 eDiagnosticSeverityError, 4870 "RunThreadPlan called with pending events on the queue."); 4871 return eExpressionSetupError; 4872 } 4873 4874 // We also need to make sure that the next event is delivered. We might be 4875 // calling a function as part of a thread plan, in which case the last 4876 // delivered event could be the running event, and we don't want event 4877 // coalescing to cause us to lose OUR running event... 4878 ForceNextEventDelivery(); 4879 4880 // This while loop must exit out the bottom, there's cleanup that we need to do 4881 // when we are done. So don't call return anywhere within it. 4882 4883 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4884 // It's pretty much impossible to write test cases for things like: One 4885 // thread timeout expires, I go to halt, but the process already stopped on 4886 // the function call stop breakpoint. Turning on this define will make us 4887 // not fetch the first event till after the halt. So if you run a quick 4888 // function, it will have completed, and the completion event will be 4889 // waiting, when you interrupt for halt. The expression evaluation should 4890 // still succeed. 4891 bool miss_first_event = true; 4892 #endif 4893 while (true) { 4894 // We usually want to resume the process if we get to the top of the 4895 // loop. The only exception is if we get two running events with no 4896 // intervening stop, which can happen, we will just wait for then next 4897 // stop event. 4898 LLDB_LOGF(log, 4899 "Top of while loop: do_resume: %i handle_running_event: %i " 4900 "before_first_timeout: %i.", 4901 do_resume, handle_running_event, before_first_timeout); 4902 4903 if (do_resume || handle_running_event) { 4904 // Do the initial resume and wait for the running event before going 4905 // further. 4906 4907 if (do_resume) { 4908 num_resumes++; 4909 Status resume_error = PrivateResume(); 4910 if (!resume_error.Success()) { 4911 diagnostic_manager.Printf( 4912 eDiagnosticSeverityError, 4913 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 4914 resume_error.AsCString()); 4915 return_value = eExpressionSetupError; 4916 break; 4917 } 4918 } 4919 4920 got_event = 4921 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 4922 if (!got_event) { 4923 LLDB_LOGF(log, 4924 "Process::RunThreadPlan(): didn't get any event after " 4925 "resume %" PRIu32 ", exiting.", 4926 num_resumes); 4927 4928 diagnostic_manager.Printf(eDiagnosticSeverityError, 4929 "didn't get any event after resume %" PRIu32 4930 ", exiting.", 4931 num_resumes); 4932 return_value = eExpressionSetupError; 4933 break; 4934 } 4935 4936 stop_state = 4937 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4938 4939 if (stop_state != eStateRunning) { 4940 bool restarted = false; 4941 4942 if (stop_state == eStateStopped) { 4943 restarted = Process::ProcessEventData::GetRestartedFromEvent( 4944 event_sp.get()); 4945 LLDB_LOGF( 4946 log, 4947 "Process::RunThreadPlan(): didn't get running event after " 4948 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 4949 "handle_running_event: %i).", 4950 num_resumes, StateAsCString(stop_state), restarted, do_resume, 4951 handle_running_event); 4952 } 4953 4954 if (restarted) { 4955 // This is probably an overabundance of caution, I don't think I 4956 // should ever get a stopped & restarted event here. But if I do, 4957 // the best thing is to Halt and then get out of here. 4958 const bool clear_thread_plans = false; 4959 const bool use_run_lock = false; 4960 Halt(clear_thread_plans, use_run_lock); 4961 } 4962 4963 diagnostic_manager.Printf( 4964 eDiagnosticSeverityError, 4965 "didn't get running event after initial resume, got %s instead.", 4966 StateAsCString(stop_state)); 4967 return_value = eExpressionSetupError; 4968 break; 4969 } 4970 4971 if (log) 4972 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 4973 // We need to call the function synchronously, so spin waiting for it 4974 // to return. If we get interrupted while executing, we're going to 4975 // lose our context, and won't be able to gather the result at this 4976 // point. We set the timeout AFTER the resume, since the resume takes 4977 // some time and we don't want to charge that to the timeout. 4978 } else { 4979 if (log) 4980 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 4981 } 4982 4983 do_resume = true; 4984 handle_running_event = true; 4985 4986 // Now wait for the process to stop again: 4987 event_sp.reset(); 4988 4989 Timeout<std::micro> timeout = 4990 GetExpressionTimeout(options, before_first_timeout); 4991 if (log) { 4992 if (timeout) { 4993 auto now = system_clock::now(); 4994 LLDB_LOGF(log, 4995 "Process::RunThreadPlan(): about to wait - now is %s - " 4996 "endpoint is %s", 4997 llvm::to_string(now).c_str(), 4998 llvm::to_string(now + *timeout).c_str()); 4999 } else { 5000 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 5001 } 5002 } 5003 5004 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5005 // See comment above... 5006 if (miss_first_event) { 5007 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 5008 miss_first_event = false; 5009 got_event = false; 5010 } else 5011 #endif 5012 got_event = listener_sp->GetEvent(event_sp, timeout); 5013 5014 if (got_event) { 5015 if (event_sp) { 5016 bool keep_going = false; 5017 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5018 const bool clear_thread_plans = false; 5019 const bool use_run_lock = false; 5020 Halt(clear_thread_plans, use_run_lock); 5021 return_value = eExpressionInterrupted; 5022 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 5023 "execution halted by user interrupt."); 5024 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 5025 "eBroadcastBitInterrupted, exiting."); 5026 break; 5027 } else { 5028 stop_state = 5029 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5030 LLDB_LOGF(log, 5031 "Process::RunThreadPlan(): in while loop, got event: %s.", 5032 StateAsCString(stop_state)); 5033 5034 switch (stop_state) { 5035 case lldb::eStateStopped: { 5036 if (Process::ProcessEventData::GetRestartedFromEvent( 5037 event_sp.get())) { 5038 // If we were restarted, we just need to go back up to fetch 5039 // another event. 5040 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 5041 "restart, so we'll continue waiting."); 5042 keep_going = true; 5043 do_resume = false; 5044 handle_running_event = true; 5045 } else { 5046 const bool handle_interrupts = true; 5047 return_value = *HandleStoppedEvent( 5048 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5049 event_sp, event_to_broadcast_sp, options, 5050 handle_interrupts); 5051 if (return_value == eExpressionThreadVanished) 5052 keep_going = false; 5053 } 5054 } break; 5055 5056 case lldb::eStateRunning: 5057 // This shouldn't really happen, but sometimes we do get two 5058 // running events without an intervening stop, and in that case 5059 // we should just go back to waiting for the stop. 5060 do_resume = false; 5061 keep_going = true; 5062 handle_running_event = false; 5063 break; 5064 5065 default: 5066 LLDB_LOGF(log, 5067 "Process::RunThreadPlan(): execution stopped with " 5068 "unexpected state: %s.", 5069 StateAsCString(stop_state)); 5070 5071 if (stop_state == eStateExited) 5072 event_to_broadcast_sp = event_sp; 5073 5074 diagnostic_manager.PutString( 5075 eDiagnosticSeverityError, 5076 "execution stopped with unexpected state."); 5077 return_value = eExpressionInterrupted; 5078 break; 5079 } 5080 } 5081 5082 if (keep_going) 5083 continue; 5084 else 5085 break; 5086 } else { 5087 if (log) 5088 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5089 "the event pointer was null. How odd..."); 5090 return_value = eExpressionInterrupted; 5091 break; 5092 } 5093 } else { 5094 // If we didn't get an event that means we've timed out... We will 5095 // interrupt the process here. Depending on what we were asked to do 5096 // we will either exit, or try with all threads running for the same 5097 // timeout. 5098 5099 if (log) { 5100 if (options.GetTryAllThreads()) { 5101 if (before_first_timeout) { 5102 LLDB_LOG(log, 5103 "Running function with one thread timeout timed out."); 5104 } else 5105 LLDB_LOG(log, "Restarting function with all threads enabled and " 5106 "timeout: {0} timed out, abandoning execution.", 5107 timeout); 5108 } else 5109 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5110 "abandoning execution.", 5111 timeout); 5112 } 5113 5114 // It is possible that between the time we issued the Halt, and we get 5115 // around to calling Halt the target could have stopped. That's fine, 5116 // Halt will figure that out and send the appropriate Stopped event. 5117 // BUT it is also possible that we stopped & restarted (e.g. hit a 5118 // signal with "stop" set to false.) In 5119 // that case, we'll get the stopped & restarted event, and we should go 5120 // back to waiting for the Halt's stopped event. That's what this 5121 // while loop does. 5122 5123 bool back_to_top = true; 5124 uint32_t try_halt_again = 0; 5125 bool do_halt = true; 5126 const uint32_t num_retries = 5; 5127 while (try_halt_again < num_retries) { 5128 Status halt_error; 5129 if (do_halt) { 5130 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5131 const bool clear_thread_plans = false; 5132 const bool use_run_lock = false; 5133 Halt(clear_thread_plans, use_run_lock); 5134 } 5135 if (halt_error.Success()) { 5136 if (log) 5137 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5138 5139 got_event = 5140 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5141 5142 if (got_event) { 5143 stop_state = 5144 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5145 if (log) { 5146 LLDB_LOGF(log, 5147 "Process::RunThreadPlan(): Stopped with event: %s", 5148 StateAsCString(stop_state)); 5149 if (stop_state == lldb::eStateStopped && 5150 Process::ProcessEventData::GetInterruptedFromEvent( 5151 event_sp.get())) 5152 log->PutCString(" Event was the Halt interruption event."); 5153 } 5154 5155 if (stop_state == lldb::eStateStopped) { 5156 if (Process::ProcessEventData::GetRestartedFromEvent( 5157 event_sp.get())) { 5158 if (log) 5159 log->PutCString("Process::RunThreadPlan(): Went to halt " 5160 "but got a restarted event, there must be " 5161 "an un-restarted stopped event so try " 5162 "again... " 5163 "Exiting wait loop."); 5164 try_halt_again++; 5165 do_halt = false; 5166 continue; 5167 } 5168 5169 // Between the time we initiated the Halt and the time we 5170 // delivered it, the process could have already finished its 5171 // job. Check that here: 5172 const bool handle_interrupts = false; 5173 if (auto result = HandleStoppedEvent( 5174 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5175 event_sp, event_to_broadcast_sp, options, 5176 handle_interrupts)) { 5177 return_value = *result; 5178 back_to_top = false; 5179 break; 5180 } 5181 5182 if (!options.GetTryAllThreads()) { 5183 if (log) 5184 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5185 "was false, we stopped so now we're " 5186 "quitting."); 5187 return_value = eExpressionInterrupted; 5188 back_to_top = false; 5189 break; 5190 } 5191 5192 if (before_first_timeout) { 5193 // Set all the other threads to run, and return to the top of 5194 // the loop, which will continue; 5195 before_first_timeout = false; 5196 thread_plan_sp->SetStopOthers(false); 5197 if (log) 5198 log->PutCString( 5199 "Process::RunThreadPlan(): about to resume."); 5200 5201 back_to_top = true; 5202 break; 5203 } else { 5204 // Running all threads failed, so return Interrupted. 5205 if (log) 5206 log->PutCString("Process::RunThreadPlan(): running all " 5207 "threads timed out."); 5208 return_value = eExpressionInterrupted; 5209 back_to_top = false; 5210 break; 5211 } 5212 } 5213 } else { 5214 if (log) 5215 log->PutCString("Process::RunThreadPlan(): halt said it " 5216 "succeeded, but I got no event. " 5217 "I'm getting out of here passing Interrupted."); 5218 return_value = eExpressionInterrupted; 5219 back_to_top = false; 5220 break; 5221 } 5222 } else { 5223 try_halt_again++; 5224 continue; 5225 } 5226 } 5227 5228 if (!back_to_top || try_halt_again > num_retries) 5229 break; 5230 else 5231 continue; 5232 } 5233 } // END WAIT LOOP 5234 5235 // If we had to start up a temporary private state thread to run this 5236 // thread plan, shut it down now. 5237 if (backup_private_state_thread.IsJoinable()) { 5238 StopPrivateStateThread(); 5239 Status error; 5240 m_private_state_thread = backup_private_state_thread; 5241 if (stopper_base_plan_sp) { 5242 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5243 } 5244 if (old_state != eStateInvalid) 5245 m_public_state.SetValueNoLock(old_state); 5246 } 5247 5248 // If our thread went away on us, we need to get out of here without 5249 // doing any more work. We don't have to clean up the thread plan, that 5250 // will have happened when the Thread was destroyed. 5251 if (return_value == eExpressionThreadVanished) { 5252 return return_value; 5253 } 5254 5255 if (return_value != eExpressionCompleted && log) { 5256 // Print a backtrace into the log so we can figure out where we are: 5257 StreamString s; 5258 s.PutCString("Thread state after unsuccessful completion: \n"); 5259 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5260 log->PutString(s.GetString()); 5261 } 5262 // Restore the thread state if we are going to discard the plan execution. 5263 // There are three cases where this could happen: 1) The execution 5264 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5265 // was true 3) We got some other error, and discard_on_error was true 5266 bool should_unwind = (return_value == eExpressionInterrupted && 5267 options.DoesUnwindOnError()) || 5268 (return_value == eExpressionHitBreakpoint && 5269 options.DoesIgnoreBreakpoints()); 5270 5271 if (return_value == eExpressionCompleted || should_unwind) { 5272 thread_plan_sp->RestoreThreadState(); 5273 } 5274 5275 // Now do some processing on the results of the run: 5276 if (return_value == eExpressionInterrupted || 5277 return_value == eExpressionHitBreakpoint) { 5278 if (log) { 5279 StreamString s; 5280 if (event_sp) 5281 event_sp->Dump(&s); 5282 else { 5283 log->PutCString("Process::RunThreadPlan(): Stop event that " 5284 "interrupted us is NULL."); 5285 } 5286 5287 StreamString ts; 5288 5289 const char *event_explanation = nullptr; 5290 5291 do { 5292 if (!event_sp) { 5293 event_explanation = "<no event>"; 5294 break; 5295 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5296 event_explanation = "<user interrupt>"; 5297 break; 5298 } else { 5299 const Process::ProcessEventData *event_data = 5300 Process::ProcessEventData::GetEventDataFromEvent( 5301 event_sp.get()); 5302 5303 if (!event_data) { 5304 event_explanation = "<no event data>"; 5305 break; 5306 } 5307 5308 Process *process = event_data->GetProcessSP().get(); 5309 5310 if (!process) { 5311 event_explanation = "<no process>"; 5312 break; 5313 } 5314 5315 ThreadList &thread_list = process->GetThreadList(); 5316 5317 uint32_t num_threads = thread_list.GetSize(); 5318 uint32_t thread_index; 5319 5320 ts.Printf("<%u threads> ", num_threads); 5321 5322 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5323 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5324 5325 if (!thread) { 5326 ts.Printf("<?> "); 5327 continue; 5328 } 5329 5330 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5331 RegisterContext *register_context = 5332 thread->GetRegisterContext().get(); 5333 5334 if (register_context) 5335 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5336 else 5337 ts.Printf("[ip unknown] "); 5338 5339 // Show the private stop info here, the public stop info will be 5340 // from the last natural stop. 5341 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5342 if (stop_info_sp) { 5343 const char *stop_desc = stop_info_sp->GetDescription(); 5344 if (stop_desc) 5345 ts.PutCString(stop_desc); 5346 } 5347 ts.Printf(">"); 5348 } 5349 5350 event_explanation = ts.GetData(); 5351 } 5352 } while (false); 5353 5354 if (event_explanation) 5355 LLDB_LOGF(log, 5356 "Process::RunThreadPlan(): execution interrupted: %s %s", 5357 s.GetData(), event_explanation); 5358 else 5359 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5360 s.GetData()); 5361 } 5362 5363 if (should_unwind) { 5364 LLDB_LOGF(log, 5365 "Process::RunThreadPlan: ExecutionInterrupted - " 5366 "discarding thread plans up to %p.", 5367 static_cast<void *>(thread_plan_sp.get())); 5368 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5369 } else { 5370 LLDB_LOGF(log, 5371 "Process::RunThreadPlan: ExecutionInterrupted - for " 5372 "plan: %p not discarding.", 5373 static_cast<void *>(thread_plan_sp.get())); 5374 } 5375 } else if (return_value == eExpressionSetupError) { 5376 if (log) 5377 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5378 5379 if (options.DoesUnwindOnError()) { 5380 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5381 } 5382 } else { 5383 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5384 if (log) 5385 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5386 return_value = eExpressionCompleted; 5387 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5388 if (log) 5389 log->PutCString( 5390 "Process::RunThreadPlan(): thread plan was discarded"); 5391 return_value = eExpressionDiscarded; 5392 } else { 5393 if (log) 5394 log->PutCString( 5395 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5396 if (options.DoesUnwindOnError() && thread_plan_sp) { 5397 if (log) 5398 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5399 "'cause unwind_on_error is set."); 5400 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5401 } 5402 } 5403 } 5404 5405 // Thread we ran the function in may have gone away because we ran the 5406 // target Check that it's still there, and if it is put it back in the 5407 // context. Also restore the frame in the context if it is still present. 5408 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5409 if (thread) { 5410 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5411 } 5412 5413 // Also restore the current process'es selected frame & thread, since this 5414 // function calling may be done behind the user's back. 5415 5416 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5417 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5418 selected_stack_id.IsValid()) { 5419 // We were able to restore the selected thread, now restore the frame: 5420 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5421 StackFrameSP old_frame_sp = 5422 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5423 selected_stack_id); 5424 if (old_frame_sp) 5425 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5426 old_frame_sp.get()); 5427 } 5428 } 5429 } 5430 5431 // If the process exited during the run of the thread plan, notify everyone. 5432 5433 if (event_to_broadcast_sp) { 5434 if (log) 5435 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5436 BroadcastEvent(event_to_broadcast_sp); 5437 } 5438 5439 return return_value; 5440 } 5441 5442 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5443 const char *result_name = "<unknown>"; 5444 5445 switch (result) { 5446 case eExpressionCompleted: 5447 result_name = "eExpressionCompleted"; 5448 break; 5449 case eExpressionDiscarded: 5450 result_name = "eExpressionDiscarded"; 5451 break; 5452 case eExpressionInterrupted: 5453 result_name = "eExpressionInterrupted"; 5454 break; 5455 case eExpressionHitBreakpoint: 5456 result_name = "eExpressionHitBreakpoint"; 5457 break; 5458 case eExpressionSetupError: 5459 result_name = "eExpressionSetupError"; 5460 break; 5461 case eExpressionParseError: 5462 result_name = "eExpressionParseError"; 5463 break; 5464 case eExpressionResultUnavailable: 5465 result_name = "eExpressionResultUnavailable"; 5466 break; 5467 case eExpressionTimedOut: 5468 result_name = "eExpressionTimedOut"; 5469 break; 5470 case eExpressionStoppedForDebug: 5471 result_name = "eExpressionStoppedForDebug"; 5472 break; 5473 case eExpressionThreadVanished: 5474 result_name = "eExpressionThreadVanished"; 5475 } 5476 return result_name; 5477 } 5478 5479 void Process::GetStatus(Stream &strm) { 5480 const StateType state = GetState(); 5481 if (StateIsStoppedState(state, false)) { 5482 if (state == eStateExited) { 5483 int exit_status = GetExitStatus(); 5484 const char *exit_description = GetExitDescription(); 5485 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5486 GetID(), exit_status, exit_status, 5487 exit_description ? exit_description : ""); 5488 } else { 5489 if (state == eStateConnected) 5490 strm.Printf("Connected to remote target.\n"); 5491 else 5492 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5493 } 5494 } else { 5495 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5496 } 5497 } 5498 5499 size_t Process::GetThreadStatus(Stream &strm, 5500 bool only_threads_with_stop_reason, 5501 uint32_t start_frame, uint32_t num_frames, 5502 uint32_t num_frames_with_source, 5503 bool stop_format) { 5504 size_t num_thread_infos_dumped = 0; 5505 5506 // You can't hold the thread list lock while calling Thread::GetStatus. That 5507 // very well might run code (e.g. if we need it to get return values or 5508 // arguments.) For that to work the process has to be able to acquire it. 5509 // So instead copy the thread ID's, and look them up one by one: 5510 5511 uint32_t num_threads; 5512 std::vector<lldb::tid_t> thread_id_array; 5513 // Scope for thread list locker; 5514 { 5515 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5516 ThreadList &curr_thread_list = GetThreadList(); 5517 num_threads = curr_thread_list.GetSize(); 5518 uint32_t idx; 5519 thread_id_array.resize(num_threads); 5520 for (idx = 0; idx < num_threads; ++idx) 5521 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5522 } 5523 5524 for (uint32_t i = 0; i < num_threads; i++) { 5525 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5526 if (thread_sp) { 5527 if (only_threads_with_stop_reason) { 5528 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5529 if (!stop_info_sp || !stop_info_sp->IsValid()) 5530 continue; 5531 } 5532 thread_sp->GetStatus(strm, start_frame, num_frames, 5533 num_frames_with_source, 5534 stop_format); 5535 ++num_thread_infos_dumped; 5536 } else { 5537 Log *log = GetLog(LLDBLog::Process); 5538 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5539 " vanished while running Thread::GetStatus."); 5540 } 5541 } 5542 return num_thread_infos_dumped; 5543 } 5544 5545 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5546 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5547 } 5548 5549 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5550 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5551 region.GetByteSize()); 5552 } 5553 5554 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5555 void *baton) { 5556 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5557 } 5558 5559 bool Process::RunPreResumeActions() { 5560 bool result = true; 5561 while (!m_pre_resume_actions.empty()) { 5562 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5563 m_pre_resume_actions.pop_back(); 5564 bool this_result = action.callback(action.baton); 5565 if (result) 5566 result = this_result; 5567 } 5568 return result; 5569 } 5570 5571 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5572 5573 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5574 { 5575 PreResumeCallbackAndBaton element(callback, baton); 5576 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5577 if (found_iter != m_pre_resume_actions.end()) 5578 { 5579 m_pre_resume_actions.erase(found_iter); 5580 } 5581 } 5582 5583 ProcessRunLock &Process::GetRunLock() { 5584 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5585 return m_private_run_lock; 5586 else 5587 return m_public_run_lock; 5588 } 5589 5590 bool Process::CurrentThreadIsPrivateStateThread() 5591 { 5592 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5593 } 5594 5595 5596 void Process::Flush() { 5597 m_thread_list.Flush(); 5598 m_extended_thread_list.Flush(); 5599 m_extended_thread_stop_id = 0; 5600 m_queue_list.Clear(); 5601 m_queue_list_stop_id = 0; 5602 } 5603 5604 lldb::addr_t Process::GetCodeAddressMask() { 5605 if (m_code_address_mask == 0) { 5606 if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) { 5607 lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1); 5608 SetCodeAddressMask(address_mask); 5609 } 5610 } 5611 return m_code_address_mask; 5612 } 5613 5614 lldb::addr_t Process::GetDataAddressMask() { 5615 if (m_data_address_mask == 0) { 5616 if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) { 5617 lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1); 5618 SetDataAddressMask(address_mask); 5619 } 5620 } 5621 return m_data_address_mask; 5622 } 5623 5624 void Process::DidExec() { 5625 Log *log = GetLog(LLDBLog::Process); 5626 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5627 5628 Target &target = GetTarget(); 5629 target.CleanupProcess(); 5630 target.ClearModules(false); 5631 m_dynamic_checkers_up.reset(); 5632 m_abi_sp.reset(); 5633 m_system_runtime_up.reset(); 5634 m_os_up.reset(); 5635 m_dyld_up.reset(); 5636 m_jit_loaders_up.reset(); 5637 m_image_tokens.clear(); 5638 m_allocated_memory_cache.Clear(); 5639 { 5640 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5641 m_language_runtimes.clear(); 5642 } 5643 m_instrumentation_runtimes.clear(); 5644 m_thread_list.DiscardThreadPlans(); 5645 m_memory_cache.Clear(true); 5646 DoDidExec(); 5647 CompleteAttach(); 5648 // Flush the process (threads and all stack frames) after running 5649 // CompleteAttach() in case the dynamic loader loaded things in new 5650 // locations. 5651 Flush(); 5652 5653 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5654 // let the target know so it can do any cleanup it needs to. 5655 target.DidExec(); 5656 } 5657 5658 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5659 if (address == nullptr) { 5660 error.SetErrorString("Invalid address argument"); 5661 return LLDB_INVALID_ADDRESS; 5662 } 5663 5664 addr_t function_addr = LLDB_INVALID_ADDRESS; 5665 5666 addr_t addr = address->GetLoadAddress(&GetTarget()); 5667 std::map<addr_t, addr_t>::const_iterator iter = 5668 m_resolved_indirect_addresses.find(addr); 5669 if (iter != m_resolved_indirect_addresses.end()) { 5670 function_addr = (*iter).second; 5671 } else { 5672 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 5673 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5674 error.SetErrorStringWithFormat( 5675 "Unable to call resolver for indirect function %s", 5676 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5677 function_addr = LLDB_INVALID_ADDRESS; 5678 } else { 5679 if (ABISP abi_sp = GetABI()) 5680 function_addr = abi_sp->FixCodeAddress(function_addr); 5681 m_resolved_indirect_addresses.insert( 5682 std::pair<addr_t, addr_t>(addr, function_addr)); 5683 } 5684 } 5685 return function_addr; 5686 } 5687 5688 void Process::ModulesDidLoad(ModuleList &module_list) { 5689 // Inform the system runtime of the modified modules. 5690 SystemRuntime *sys_runtime = GetSystemRuntime(); 5691 if (sys_runtime) 5692 sys_runtime->ModulesDidLoad(module_list); 5693 5694 GetJITLoaders().ModulesDidLoad(module_list); 5695 5696 // Give the instrumentation runtimes a chance to be created before informing 5697 // them of the modified modules. 5698 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5699 m_instrumentation_runtimes); 5700 for (auto &runtime : m_instrumentation_runtimes) 5701 runtime.second->ModulesDidLoad(module_list); 5702 5703 // Give the language runtimes a chance to be created before informing them of 5704 // the modified modules. 5705 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 5706 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 5707 runtime->ModulesDidLoad(module_list); 5708 } 5709 5710 // If we don't have an operating system plug-in, try to load one since 5711 // loading shared libraries might cause a new one to try and load 5712 if (!m_os_up) 5713 LoadOperatingSystemPlugin(false); 5714 5715 // Inform the structured-data plugins of the modified modules. 5716 for (auto pair : m_structured_data_plugin_map) { 5717 if (pair.second) 5718 pair.second->ModulesDidLoad(*this, module_list); 5719 } 5720 } 5721 5722 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5723 if (!GetWarningsOptimization()) 5724 return; 5725 if (!sc.module_sp || !sc.function || !sc.function->GetIsOptimized()) 5726 return; 5727 sc.module_sp->ReportWarningOptimization(GetTarget().GetDebugger().GetID()); 5728 } 5729 5730 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { 5731 if (!GetWarningsUnsupportedLanguage()) 5732 return; 5733 if (!sc.module_sp) 5734 return; 5735 LanguageType language = sc.GetLanguage(); 5736 if (language == eLanguageTypeUnknown) 5737 return; 5738 LanguageSet plugins = 5739 PluginManager::GetAllTypeSystemSupportedLanguagesForTypes(); 5740 if (plugins[language]) 5741 return; 5742 sc.module_sp->ReportWarningUnsupportedLanguage( 5743 language, GetTarget().GetDebugger().GetID()); 5744 } 5745 5746 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5747 info.Clear(); 5748 5749 PlatformSP platform_sp = GetTarget().GetPlatform(); 5750 if (!platform_sp) 5751 return false; 5752 5753 return platform_sp->GetProcessInfo(GetID(), info); 5754 } 5755 5756 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5757 ThreadCollectionSP threads; 5758 5759 const MemoryHistorySP &memory_history = 5760 MemoryHistory::FindPlugin(shared_from_this()); 5761 5762 if (!memory_history) { 5763 return threads; 5764 } 5765 5766 threads = std::make_shared<ThreadCollection>( 5767 memory_history->GetHistoryThreads(addr)); 5768 5769 return threads; 5770 } 5771 5772 InstrumentationRuntimeSP 5773 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5774 InstrumentationRuntimeCollection::iterator pos; 5775 pos = m_instrumentation_runtimes.find(type); 5776 if (pos == m_instrumentation_runtimes.end()) { 5777 return InstrumentationRuntimeSP(); 5778 } else 5779 return (*pos).second; 5780 } 5781 5782 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5783 const ArchSpec &arch, ModuleSpec &module_spec) { 5784 module_spec.Clear(); 5785 return false; 5786 } 5787 5788 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5789 m_image_tokens.push_back(image_ptr); 5790 return m_image_tokens.size() - 1; 5791 } 5792 5793 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5794 if (token < m_image_tokens.size()) 5795 return m_image_tokens[token]; 5796 return LLDB_INVALID_ADDRESS; 5797 } 5798 5799 void Process::ResetImageToken(size_t token) { 5800 if (token < m_image_tokens.size()) 5801 m_image_tokens[token] = LLDB_INVALID_ADDRESS; 5802 } 5803 5804 Address 5805 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5806 AddressRange range_bounds) { 5807 Target &target = GetTarget(); 5808 DisassemblerSP disassembler_sp; 5809 InstructionList *insn_list = nullptr; 5810 5811 Address retval = default_stop_addr; 5812 5813 if (!target.GetUseFastStepping()) 5814 return retval; 5815 if (!default_stop_addr.IsValid()) 5816 return retval; 5817 5818 const char *plugin_name = nullptr; 5819 const char *flavor = nullptr; 5820 disassembler_sp = Disassembler::DisassembleRange( 5821 target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds); 5822 if (disassembler_sp) 5823 insn_list = &disassembler_sp->GetInstructionList(); 5824 5825 if (insn_list == nullptr) { 5826 return retval; 5827 } 5828 5829 size_t insn_offset = 5830 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5831 if (insn_offset == UINT32_MAX) { 5832 return retval; 5833 } 5834 5835 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( 5836 insn_offset, false /* ignore_calls*/, nullptr); 5837 if (branch_index == UINT32_MAX) { 5838 return retval; 5839 } 5840 5841 if (branch_index > insn_offset) { 5842 Address next_branch_insn_address = 5843 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 5844 if (next_branch_insn_address.IsValid() && 5845 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 5846 retval = next_branch_insn_address; 5847 } 5848 } 5849 5850 return retval; 5851 } 5852 5853 Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr, 5854 MemoryRegionInfo &range_info) { 5855 if (const lldb::ABISP &abi = GetABI()) 5856 load_addr = abi->FixAnyAddress(load_addr); 5857 return DoGetMemoryRegionInfo(load_addr, range_info); 5858 } 5859 5860 Status Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 5861 Status error; 5862 5863 lldb::addr_t range_end = 0; 5864 const lldb::ABISP &abi = GetABI(); 5865 5866 region_list.clear(); 5867 do { 5868 lldb_private::MemoryRegionInfo region_info; 5869 error = GetMemoryRegionInfo(range_end, region_info); 5870 // GetMemoryRegionInfo should only return an error if it is unimplemented. 5871 if (error.Fail()) { 5872 region_list.clear(); 5873 break; 5874 } 5875 5876 // We only check the end address, not start and end, because we assume that 5877 // the start will not have non-address bits until the first unmappable 5878 // region. We will have exited the loop by that point because the previous 5879 // region, the last mappable region, will have non-address bits in its end 5880 // address. 5881 range_end = region_info.GetRange().GetRangeEnd(); 5882 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 5883 region_list.push_back(std::move(region_info)); 5884 } 5885 } while ( 5886 // For a process with no non-address bits, all address bits 5887 // set means the end of memory. 5888 range_end != LLDB_INVALID_ADDRESS && 5889 // If we have non-address bits and some are set then the end 5890 // is at or beyond the end of mappable memory. 5891 !(abi && (abi->FixAnyAddress(range_end) != range_end))); 5892 5893 return error; 5894 } 5895 5896 Status 5897 Process::ConfigureStructuredData(ConstString type_name, 5898 const StructuredData::ObjectSP &config_sp) { 5899 // If you get this, the Process-derived class needs to implement a method to 5900 // enable an already-reported asynchronous structured data feature. See 5901 // ProcessGDBRemote for an example implementation over gdb-remote. 5902 return Status("unimplemented"); 5903 } 5904 5905 void Process::MapSupportedStructuredDataPlugins( 5906 const StructuredData::Array &supported_type_names) { 5907 Log *log = GetLog(LLDBLog::Process); 5908 5909 // Bail out early if there are no type names to map. 5910 if (supported_type_names.GetSize() == 0) { 5911 LLDB_LOGF(log, "Process::%s(): no structured data types supported", 5912 __FUNCTION__); 5913 return; 5914 } 5915 5916 // Convert StructuredData type names to ConstString instances. 5917 std::set<ConstString> const_type_names; 5918 5919 LLDB_LOGF(log, 5920 "Process::%s(): the process supports the following async " 5921 "structured data types:", 5922 __FUNCTION__); 5923 5924 supported_type_names.ForEach( 5925 [&const_type_names, &log](StructuredData::Object *object) { 5926 if (!object) { 5927 // Invalid - shouldn't be null objects in the array. 5928 return false; 5929 } 5930 5931 auto type_name = object->GetAsString(); 5932 if (!type_name) { 5933 // Invalid format - all type names should be strings. 5934 return false; 5935 } 5936 5937 const_type_names.insert(ConstString(type_name->GetValue())); 5938 LLDB_LOG(log, "- {0}", type_name->GetValue()); 5939 return true; 5940 }); 5941 5942 // For each StructuredDataPlugin, if the plugin handles any of the types in 5943 // the supported_type_names, map that type name to that plugin. Stop when 5944 // we've consumed all the type names. 5945 // FIXME: should we return an error if there are type names nobody 5946 // supports? 5947 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 5948 auto create_instance = 5949 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 5950 plugin_index); 5951 if (!create_instance) 5952 break; 5953 5954 // Create the plugin. 5955 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 5956 if (!plugin_sp) { 5957 // This plugin doesn't think it can work with the process. Move on to the 5958 // next. 5959 continue; 5960 } 5961 5962 // For any of the remaining type names, map any that this plugin supports. 5963 std::vector<ConstString> names_to_remove; 5964 for (auto &type_name : const_type_names) { 5965 if (plugin_sp->SupportsStructuredDataType(type_name)) { 5966 m_structured_data_plugin_map.insert( 5967 std::make_pair(type_name, plugin_sp)); 5968 names_to_remove.push_back(type_name); 5969 LLDB_LOG(log, "using plugin {0} for type name {1}", 5970 plugin_sp->GetPluginName(), type_name); 5971 } 5972 } 5973 5974 // Remove the type names that were consumed by this plugin. 5975 for (auto &type_name : names_to_remove) 5976 const_type_names.erase(type_name); 5977 } 5978 } 5979 5980 bool Process::RouteAsyncStructuredData( 5981 const StructuredData::ObjectSP object_sp) { 5982 // Nothing to do if there's no data. 5983 if (!object_sp) 5984 return false; 5985 5986 // The contract is this must be a dictionary, so we can look up the routing 5987 // key via the top-level 'type' string value within the dictionary. 5988 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 5989 if (!dictionary) 5990 return false; 5991 5992 // Grab the async structured type name (i.e. the feature/plugin name). 5993 ConstString type_name; 5994 if (!dictionary->GetValueForKeyAsString("type", type_name)) 5995 return false; 5996 5997 // Check if there's a plugin registered for this type name. 5998 auto find_it = m_structured_data_plugin_map.find(type_name); 5999 if (find_it == m_structured_data_plugin_map.end()) { 6000 // We don't have a mapping for this structured data type. 6001 return false; 6002 } 6003 6004 // Route the structured data to the plugin. 6005 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6006 return true; 6007 } 6008 6009 Status Process::UpdateAutomaticSignalFiltering() { 6010 // Default implementation does nothign. 6011 // No automatic signal filtering to speak of. 6012 return Status(); 6013 } 6014 6015 UtilityFunction *Process::GetLoadImageUtilityFunction( 6016 Platform *platform, 6017 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 6018 if (platform != GetTarget().GetPlatform().get()) 6019 return nullptr; 6020 llvm::call_once(m_dlopen_utility_func_flag_once, 6021 [&] { m_dlopen_utility_func_up = factory(); }); 6022 return m_dlopen_utility_func_up.get(); 6023 } 6024 6025 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() { 6026 if (!IsLiveDebugSession()) 6027 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6028 "Can't trace a non-live process."); 6029 return llvm::make_error<UnimplementedError>(); 6030 } 6031 6032 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 6033 addr_t &returned_func, 6034 bool trap_exceptions) { 6035 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 6036 if (thread == nullptr || address == nullptr) 6037 return false; 6038 6039 EvaluateExpressionOptions options; 6040 options.SetStopOthers(true); 6041 options.SetUnwindOnError(true); 6042 options.SetIgnoreBreakpoints(true); 6043 options.SetTryAllThreads(true); 6044 options.SetDebug(false); 6045 options.SetTimeout(GetUtilityExpressionTimeout()); 6046 options.SetTrapExceptions(trap_exceptions); 6047 6048 auto type_system_or_err = 6049 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 6050 if (!type_system_or_err) { 6051 llvm::consumeError(type_system_or_err.takeError()); 6052 return false; 6053 } 6054 CompilerType void_ptr_type = 6055 type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 6056 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 6057 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 6058 if (call_plan_sp) { 6059 DiagnosticManager diagnostics; 6060 6061 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6062 if (frame) { 6063 ExecutionContext exe_ctx; 6064 frame->CalculateExecutionContext(exe_ctx); 6065 ExpressionResults result = 6066 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6067 if (result == eExpressionCompleted) { 6068 returned_func = 6069 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6070 LLDB_INVALID_ADDRESS); 6071 6072 if (GetAddressByteSize() == 4) { 6073 if (returned_func == UINT32_MAX) 6074 return false; 6075 } else if (GetAddressByteSize() == 8) { 6076 if (returned_func == UINT64_MAX) 6077 return false; 6078 } 6079 return true; 6080 } 6081 } 6082 } 6083 6084 return false; 6085 } 6086 6087 llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() { 6088 Architecture *arch = GetTarget().GetArchitecturePlugin(); 6089 const MemoryTagManager *tag_manager = 6090 arch ? arch->GetMemoryTagManager() : nullptr; 6091 if (!arch || !tag_manager) { 6092 return llvm::createStringError( 6093 llvm::inconvertibleErrorCode(), 6094 "This architecture does not support memory tagging"); 6095 } 6096 6097 if (!SupportsMemoryTagging()) { 6098 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6099 "Process does not support memory tagging"); 6100 } 6101 6102 return tag_manager; 6103 } 6104 6105 llvm::Expected<std::vector<lldb::addr_t>> 6106 Process::ReadMemoryTags(lldb::addr_t addr, size_t len) { 6107 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6108 GetMemoryTagManager(); 6109 if (!tag_manager_or_err) 6110 return tag_manager_or_err.takeError(); 6111 6112 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6113 llvm::Expected<std::vector<uint8_t>> tag_data = 6114 DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType()); 6115 if (!tag_data) 6116 return tag_data.takeError(); 6117 6118 return tag_manager->UnpackTagsData(*tag_data, 6119 len / tag_manager->GetGranuleSize()); 6120 } 6121 6122 Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len, 6123 const std::vector<lldb::addr_t> &tags) { 6124 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6125 GetMemoryTagManager(); 6126 if (!tag_manager_or_err) 6127 return Status(tag_manager_or_err.takeError()); 6128 6129 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6130 llvm::Expected<std::vector<uint8_t>> packed_tags = 6131 tag_manager->PackTags(tags); 6132 if (!packed_tags) { 6133 return Status(packed_tags.takeError()); 6134 } 6135 6136 return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(), 6137 *packed_tags); 6138 } 6139