xref: /freebsd-src/contrib/llvm-project/lldb/source/Symbol/DWARFCallFrameInfo.cpp (revision 2eb4d8dc723da3cf7d735a3226ae49da4c8c5dbc)
1 //===-- DWARFCallFrameInfo.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "lldb/Symbol/DWARFCallFrameInfo.h"
10 #include "lldb/Core/Module.h"
11 #include "lldb/Core/Section.h"
12 #include "lldb/Core/dwarf.h"
13 #include "lldb/Host/Host.h"
14 #include "lldb/Symbol/ObjectFile.h"
15 #include "lldb/Symbol/UnwindPlan.h"
16 #include "lldb/Target/RegisterContext.h"
17 #include "lldb/Target/Thread.h"
18 #include "lldb/Utility/ArchSpec.h"
19 #include "lldb/Utility/Log.h"
20 #include "lldb/Utility/Timer.h"
21 #include <list>
22 #include <cstring>
23 
24 using namespace lldb;
25 using namespace lldb_private;
26 
27 // GetDwarfEHPtr
28 //
29 // Used for calls when the value type is specified by a DWARF EH Frame pointer
30 // encoding.
31 static uint64_t
32 GetGNUEHPointer(const DataExtractor &DE, offset_t *offset_ptr,
33                 uint32_t eh_ptr_enc, addr_t pc_rel_addr, addr_t text_addr,
34                 addr_t data_addr) //, BSDRelocs *data_relocs) const
35 {
36   if (eh_ptr_enc == DW_EH_PE_omit)
37     return ULLONG_MAX; // Value isn't in the buffer...
38 
39   uint64_t baseAddress = 0;
40   uint64_t addressValue = 0;
41   const uint32_t addr_size = DE.GetAddressByteSize();
42   assert(addr_size == 4 || addr_size == 8);
43 
44   bool signExtendValue = false;
45   // Decode the base part or adjust our offset
46   switch (eh_ptr_enc & 0x70) {
47   case DW_EH_PE_pcrel:
48     signExtendValue = true;
49     baseAddress = *offset_ptr;
50     if (pc_rel_addr != LLDB_INVALID_ADDRESS)
51       baseAddress += pc_rel_addr;
52     //      else
53     //          Log::GlobalWarning ("PC relative pointer encoding found with
54     //          invalid pc relative address.");
55     break;
56 
57   case DW_EH_PE_textrel:
58     signExtendValue = true;
59     if (text_addr != LLDB_INVALID_ADDRESS)
60       baseAddress = text_addr;
61     //      else
62     //          Log::GlobalWarning ("text relative pointer encoding being
63     //          decoded with invalid text section address, setting base address
64     //          to zero.");
65     break;
66 
67   case DW_EH_PE_datarel:
68     signExtendValue = true;
69     if (data_addr != LLDB_INVALID_ADDRESS)
70       baseAddress = data_addr;
71     //      else
72     //          Log::GlobalWarning ("data relative pointer encoding being
73     //          decoded with invalid data section address, setting base address
74     //          to zero.");
75     break;
76 
77   case DW_EH_PE_funcrel:
78     signExtendValue = true;
79     break;
80 
81   case DW_EH_PE_aligned: {
82     // SetPointerSize should be called prior to extracting these so the pointer
83     // size is cached
84     assert(addr_size != 0);
85     if (addr_size) {
86       // Align to a address size boundary first
87       uint32_t alignOffset = *offset_ptr % addr_size;
88       if (alignOffset)
89         offset_ptr += addr_size - alignOffset;
90     }
91   } break;
92 
93   default:
94     break;
95   }
96 
97   // Decode the value part
98   switch (eh_ptr_enc & DW_EH_PE_MASK_ENCODING) {
99   case DW_EH_PE_absptr: {
100     addressValue = DE.GetAddress(offset_ptr);
101     //          if (data_relocs)
102     //              addressValue = data_relocs->Relocate(*offset_ptr -
103     //              addr_size, *this, addressValue);
104   } break;
105   case DW_EH_PE_uleb128:
106     addressValue = DE.GetULEB128(offset_ptr);
107     break;
108   case DW_EH_PE_udata2:
109     addressValue = DE.GetU16(offset_ptr);
110     break;
111   case DW_EH_PE_udata4:
112     addressValue = DE.GetU32(offset_ptr);
113     break;
114   case DW_EH_PE_udata8:
115     addressValue = DE.GetU64(offset_ptr);
116     break;
117   case DW_EH_PE_sleb128:
118     addressValue = DE.GetSLEB128(offset_ptr);
119     break;
120   case DW_EH_PE_sdata2:
121     addressValue = (int16_t)DE.GetU16(offset_ptr);
122     break;
123   case DW_EH_PE_sdata4:
124     addressValue = (int32_t)DE.GetU32(offset_ptr);
125     break;
126   case DW_EH_PE_sdata8:
127     addressValue = (int64_t)DE.GetU64(offset_ptr);
128     break;
129   default:
130     // Unhandled encoding type
131     assert(eh_ptr_enc);
132     break;
133   }
134 
135   // Since we promote everything to 64 bit, we may need to sign extend
136   if (signExtendValue && addr_size < sizeof(baseAddress)) {
137     uint64_t sign_bit = 1ull << ((addr_size * 8ull) - 1ull);
138     if (sign_bit & addressValue) {
139       uint64_t mask = ~sign_bit + 1;
140       addressValue |= mask;
141     }
142   }
143   return baseAddress + addressValue;
144 }
145 
146 DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile &objfile,
147                                        SectionSP &section_sp, Type type)
148     : m_objfile(objfile), m_section_sp(section_sp), m_type(type) {}
149 
150 bool DWARFCallFrameInfo::GetUnwindPlan(const Address &addr,
151                                        UnwindPlan &unwind_plan) {
152   return GetUnwindPlan(AddressRange(addr, 1), unwind_plan);
153 }
154 
155 bool DWARFCallFrameInfo::GetUnwindPlan(const AddressRange &range,
156                                        UnwindPlan &unwind_plan) {
157   FDEEntryMap::Entry fde_entry;
158   Address addr = range.GetBaseAddress();
159 
160   // Make sure that the Address we're searching for is the same object file as
161   // this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
162   ModuleSP module_sp = addr.GetModule();
163   if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr ||
164       module_sp->GetObjectFile() != &m_objfile)
165     return false;
166 
167   if (llvm::Optional<FDEEntryMap::Entry> entry = GetFirstFDEEntryInRange(range))
168     return FDEToUnwindPlan(entry->data, addr, unwind_plan);
169   return false;
170 }
171 
172 bool DWARFCallFrameInfo::GetAddressRange(Address addr, AddressRange &range) {
173 
174   // Make sure that the Address we're searching for is the same object file as
175   // this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
176   ModuleSP module_sp = addr.GetModule();
177   if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr ||
178       module_sp->GetObjectFile() != &m_objfile)
179     return false;
180 
181   if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
182     return false;
183   GetFDEIndex();
184   FDEEntryMap::Entry *fde_entry =
185       m_fde_index.FindEntryThatContains(addr.GetFileAddress());
186   if (!fde_entry)
187     return false;
188 
189   range = AddressRange(fde_entry->base, fde_entry->size,
190                        m_objfile.GetSectionList());
191   return true;
192 }
193 
194 llvm::Optional<DWARFCallFrameInfo::FDEEntryMap::Entry>
195 DWARFCallFrameInfo::GetFirstFDEEntryInRange(const AddressRange &range) {
196   if (!m_section_sp || m_section_sp->IsEncrypted())
197     return llvm::None;
198 
199   GetFDEIndex();
200 
201   addr_t start_file_addr = range.GetBaseAddress().GetFileAddress();
202   const FDEEntryMap::Entry *fde =
203       m_fde_index.FindEntryThatContainsOrFollows(start_file_addr);
204   if (fde && fde->DoesIntersect(
205                  FDEEntryMap::Range(start_file_addr, range.GetByteSize())))
206     return *fde;
207 
208   return llvm::None;
209 }
210 
211 void DWARFCallFrameInfo::GetFunctionAddressAndSizeVector(
212     FunctionAddressAndSizeVector &function_info) {
213   GetFDEIndex();
214   const size_t count = m_fde_index.GetSize();
215   function_info.Clear();
216   if (count > 0)
217     function_info.Reserve(count);
218   for (size_t i = 0; i < count; ++i) {
219     const FDEEntryMap::Entry *func_offset_data_entry =
220         m_fde_index.GetEntryAtIndex(i);
221     if (func_offset_data_entry) {
222       FunctionAddressAndSizeVector::Entry function_offset_entry(
223           func_offset_data_entry->base, func_offset_data_entry->size);
224       function_info.Append(function_offset_entry);
225     }
226   }
227 }
228 
229 const DWARFCallFrameInfo::CIE *
230 DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset) {
231   cie_map_t::iterator pos = m_cie_map.find(cie_offset);
232 
233   if (pos != m_cie_map.end()) {
234     // Parse and cache the CIE
235     if (pos->second == nullptr)
236       pos->second = ParseCIE(cie_offset);
237 
238     return pos->second.get();
239   }
240   return nullptr;
241 }
242 
243 DWARFCallFrameInfo::CIESP
244 DWARFCallFrameInfo::ParseCIE(const dw_offset_t cie_offset) {
245   CIESP cie_sp(new CIE(cie_offset));
246   lldb::offset_t offset = cie_offset;
247   if (!m_cfi_data_initialized)
248     GetCFIData();
249   uint32_t length = m_cfi_data.GetU32(&offset);
250   dw_offset_t cie_id, end_offset;
251   bool is_64bit = (length == UINT32_MAX);
252   if (is_64bit) {
253     length = m_cfi_data.GetU64(&offset);
254     cie_id = m_cfi_data.GetU64(&offset);
255     end_offset = cie_offset + length + 12;
256   } else {
257     cie_id = m_cfi_data.GetU32(&offset);
258     end_offset = cie_offset + length + 4;
259   }
260   if (length > 0 && ((m_type == DWARF && cie_id == UINT32_MAX) ||
261                      (m_type == EH && cie_id == 0ul))) {
262     size_t i;
263     //    cie.offset = cie_offset;
264     //    cie.length = length;
265     //    cie.cieID = cieID;
266     cie_sp->ptr_encoding = DW_EH_PE_absptr; // default
267     cie_sp->version = m_cfi_data.GetU8(&offset);
268     if (cie_sp->version > CFI_VERSION4) {
269       Host::SystemLog(Host::eSystemLogError,
270                       "CIE parse error: CFI version %d is not supported\n",
271                       cie_sp->version);
272       return nullptr;
273     }
274 
275     for (i = 0; i < CFI_AUG_MAX_SIZE; ++i) {
276       cie_sp->augmentation[i] = m_cfi_data.GetU8(&offset);
277       if (cie_sp->augmentation[i] == '\0') {
278         // Zero out remaining bytes in augmentation string
279         for (size_t j = i + 1; j < CFI_AUG_MAX_SIZE; ++j)
280           cie_sp->augmentation[j] = '\0';
281 
282         break;
283       }
284     }
285 
286     if (i == CFI_AUG_MAX_SIZE &&
287         cie_sp->augmentation[CFI_AUG_MAX_SIZE - 1] != '\0') {
288       Host::SystemLog(Host::eSystemLogError,
289                       "CIE parse error: CIE augmentation string was too large "
290                       "for the fixed sized buffer of %d bytes.\n",
291                       CFI_AUG_MAX_SIZE);
292       return nullptr;
293     }
294 
295     // m_cfi_data uses address size from target architecture of the process may
296     // ignore these fields?
297     if (m_type == DWARF && cie_sp->version >= CFI_VERSION4) {
298       cie_sp->address_size = m_cfi_data.GetU8(&offset);
299       cie_sp->segment_size = m_cfi_data.GetU8(&offset);
300     }
301 
302     cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(&offset);
303     cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(&offset);
304 
305     cie_sp->return_addr_reg_num =
306         m_type == DWARF && cie_sp->version >= CFI_VERSION3
307             ? static_cast<uint32_t>(m_cfi_data.GetULEB128(&offset))
308             : m_cfi_data.GetU8(&offset);
309 
310     if (cie_sp->augmentation[0]) {
311       // Get the length of the eh_frame augmentation data which starts with a
312       // ULEB128 length in bytes
313       const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(&offset);
314       const size_t aug_data_end = offset + aug_data_len;
315       const size_t aug_str_len = strlen(cie_sp->augmentation);
316       // A 'z' may be present as the first character of the string.
317       // If present, the Augmentation Data field shall be present. The contents
318       // of the Augmentation Data shall be interpreted according to other
319       // characters in the Augmentation String.
320       if (cie_sp->augmentation[0] == 'z') {
321         // Extract the Augmentation Data
322         size_t aug_str_idx = 0;
323         for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++) {
324           char aug = cie_sp->augmentation[aug_str_idx];
325           switch (aug) {
326           case 'L':
327             // Indicates the presence of one argument in the Augmentation Data
328             // of the CIE, and a corresponding argument in the Augmentation
329             // Data of the FDE. The argument in the Augmentation Data of the
330             // CIE is 1-byte and represents the pointer encoding used for the
331             // argument in the Augmentation Data of the FDE, which is the
332             // address of a language-specific data area (LSDA). The size of the
333             // LSDA pointer is specified by the pointer encoding used.
334             cie_sp->lsda_addr_encoding = m_cfi_data.GetU8(&offset);
335             break;
336 
337           case 'P':
338             // Indicates the presence of two arguments in the Augmentation Data
339             // of the CIE. The first argument is 1-byte and represents the
340             // pointer encoding used for the second argument, which is the
341             // address of a personality routine handler. The size of the
342             // personality routine pointer is specified by the pointer encoding
343             // used.
344             //
345             // The address of the personality function will be stored at this
346             // location.  Pre-execution, it will be all zero's so don't read it
347             // until we're trying to do an unwind & the reloc has been
348             // resolved.
349             {
350               uint8_t arg_ptr_encoding = m_cfi_data.GetU8(&offset);
351               const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
352               cie_sp->personality_loc = GetGNUEHPointer(
353                   m_cfi_data, &offset, arg_ptr_encoding, pc_rel_addr,
354                   LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS);
355             }
356             break;
357 
358           case 'R':
359             // A 'R' may be present at any position after the
360             // first character of the string. The Augmentation Data shall
361             // include a 1 byte argument that represents the pointer encoding
362             // for the address pointers used in the FDE. Example: 0x1B ==
363             // DW_EH_PE_pcrel | DW_EH_PE_sdata4
364             cie_sp->ptr_encoding = m_cfi_data.GetU8(&offset);
365             break;
366           }
367         }
368       } else if (strcmp(cie_sp->augmentation, "eh") == 0) {
369         // If the Augmentation string has the value "eh", then the EH Data
370         // field shall be present
371       }
372 
373       // Set the offset to be the end of the augmentation data just in case we
374       // didn't understand any of the data.
375       offset = (uint32_t)aug_data_end;
376     }
377 
378     if (end_offset > offset) {
379       cie_sp->inst_offset = offset;
380       cie_sp->inst_length = end_offset - offset;
381     }
382     while (offset < end_offset) {
383       uint8_t inst = m_cfi_data.GetU8(&offset);
384       uint8_t primary_opcode = inst & 0xC0;
385       uint8_t extended_opcode = inst & 0x3F;
386 
387       if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode,
388                                    cie_sp->data_align, offset,
389                                    cie_sp->initial_row))
390         break; // Stop if we hit an unrecognized opcode
391     }
392   }
393 
394   return cie_sp;
395 }
396 
397 void DWARFCallFrameInfo::GetCFIData() {
398   if (!m_cfi_data_initialized) {
399     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND));
400     if (log)
401       m_objfile.GetModule()->LogMessage(log, "Reading EH frame info");
402     m_objfile.ReadSectionData(m_section_sp.get(), m_cfi_data);
403     m_cfi_data_initialized = true;
404   }
405 }
406 // Scan through the eh_frame or debug_frame section looking for FDEs and noting
407 // the start/end addresses of the functions and a pointer back to the
408 // function's FDE for later expansion. Internalize CIEs as we come across them.
409 
410 void DWARFCallFrameInfo::GetFDEIndex() {
411   if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
412     return;
413 
414   if (m_fde_index_initialized)
415     return;
416 
417   std::lock_guard<std::mutex> guard(m_fde_index_mutex);
418 
419   if (m_fde_index_initialized) // if two threads hit the locker
420     return;
421 
422   LLDB_SCOPED_TIMERF("%s - %s", LLVM_PRETTY_FUNCTION,
423                      m_objfile.GetFileSpec().GetFilename().AsCString(""));
424 
425   bool clear_address_zeroth_bit = false;
426   if (ArchSpec arch = m_objfile.GetArchitecture()) {
427     if (arch.GetTriple().getArch() == llvm::Triple::arm ||
428         arch.GetTriple().getArch() == llvm::Triple::thumb)
429       clear_address_zeroth_bit = true;
430   }
431 
432   lldb::offset_t offset = 0;
433   if (!m_cfi_data_initialized)
434     GetCFIData();
435   while (m_cfi_data.ValidOffsetForDataOfSize(offset, 8)) {
436     const dw_offset_t current_entry = offset;
437     dw_offset_t cie_id, next_entry, cie_offset;
438     uint32_t len = m_cfi_data.GetU32(&offset);
439     bool is_64bit = (len == UINT32_MAX);
440     if (is_64bit) {
441       len = m_cfi_data.GetU64(&offset);
442       cie_id = m_cfi_data.GetU64(&offset);
443       next_entry = current_entry + len + 12;
444       cie_offset = current_entry + 12 - cie_id;
445     } else {
446       cie_id = m_cfi_data.GetU32(&offset);
447       next_entry = current_entry + len + 4;
448       cie_offset = current_entry + 4 - cie_id;
449     }
450 
451     if (next_entry > m_cfi_data.GetByteSize() + 1) {
452       Host::SystemLog(Host::eSystemLogError, "error: Invalid fde/cie next "
453                                              "entry offset of 0x%x found in "
454                                              "cie/fde at 0x%x\n",
455                       next_entry, current_entry);
456       // Don't trust anything in this eh_frame section if we find blatantly
457       // invalid data.
458       m_fde_index.Clear();
459       m_fde_index_initialized = true;
460       return;
461     }
462 
463     // An FDE entry contains CIE_pointer in debug_frame in same place as cie_id
464     // in eh_frame. CIE_pointer is an offset into the .debug_frame section. So,
465     // variable cie_offset should be equal to cie_id for debug_frame.
466     // FDE entries with cie_id == 0 shouldn't be ignored for it.
467     if ((cie_id == 0 && m_type == EH) || cie_id == UINT32_MAX || len == 0) {
468       auto cie_sp = ParseCIE(current_entry);
469       if (!cie_sp) {
470         // Cannot parse, the reason is already logged
471         m_fde_index.Clear();
472         m_fde_index_initialized = true;
473         return;
474       }
475 
476       m_cie_map[current_entry] = std::move(cie_sp);
477       offset = next_entry;
478       continue;
479     }
480 
481     if (m_type == DWARF)
482       cie_offset = cie_id;
483 
484     if (cie_offset > m_cfi_data.GetByteSize()) {
485       Host::SystemLog(Host::eSystemLogError,
486                       "error: Invalid cie offset of 0x%x "
487                       "found in cie/fde at 0x%x\n",
488                       cie_offset, current_entry);
489       // Don't trust anything in this eh_frame section if we find blatantly
490       // invalid data.
491       m_fde_index.Clear();
492       m_fde_index_initialized = true;
493       return;
494     }
495 
496     const CIE *cie = GetCIE(cie_offset);
497     if (cie) {
498       const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
499       const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
500       const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
501 
502       lldb::addr_t addr =
503           GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr,
504                           text_addr, data_addr);
505       if (clear_address_zeroth_bit)
506         addr &= ~1ull;
507 
508       lldb::addr_t length = GetGNUEHPointer(
509           m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING,
510           pc_rel_addr, text_addr, data_addr);
511       FDEEntryMap::Entry fde(addr, length, current_entry);
512       m_fde_index.Append(fde);
513     } else {
514       Host::SystemLog(Host::eSystemLogError, "error: unable to find CIE at "
515                                              "0x%8.8x for cie_id = 0x%8.8x for "
516                                              "entry at 0x%8.8x.\n",
517                       cie_offset, cie_id, current_entry);
518     }
519     offset = next_entry;
520   }
521   m_fde_index.Sort();
522   m_fde_index_initialized = true;
523 }
524 
525 bool DWARFCallFrameInfo::FDEToUnwindPlan(dw_offset_t dwarf_offset,
526                                          Address startaddr,
527                                          UnwindPlan &unwind_plan) {
528   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND);
529   lldb::offset_t offset = dwarf_offset;
530   lldb::offset_t current_entry = offset;
531 
532   if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
533     return false;
534 
535   if (!m_cfi_data_initialized)
536     GetCFIData();
537 
538   uint32_t length = m_cfi_data.GetU32(&offset);
539   dw_offset_t cie_offset;
540   bool is_64bit = (length == UINT32_MAX);
541   if (is_64bit) {
542     length = m_cfi_data.GetU64(&offset);
543     cie_offset = m_cfi_data.GetU64(&offset);
544   } else {
545     cie_offset = m_cfi_data.GetU32(&offset);
546   }
547 
548   // FDE entries with zeroth cie_offset may occur for debug_frame.
549   assert(!(m_type == EH && 0 == cie_offset) && cie_offset != UINT32_MAX);
550 
551   // Translate the CIE_id from the eh_frame format, which is relative to the
552   // FDE offset, into a __eh_frame section offset
553   if (m_type == EH) {
554     unwind_plan.SetSourceName("eh_frame CFI");
555     cie_offset = current_entry + (is_64bit ? 12 : 4) - cie_offset;
556     unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
557   } else {
558     unwind_plan.SetSourceName("DWARF CFI");
559     // In theory the debug_frame info should be valid at all call sites
560     // ("asynchronous unwind info" as it is sometimes called) but in practice
561     // gcc et al all emit call frame info for the prologue and call sites, but
562     // not for the epilogue or all the other locations during the function
563     // reliably.
564     unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
565   }
566   unwind_plan.SetSourcedFromCompiler(eLazyBoolYes);
567 
568   const CIE *cie = GetCIE(cie_offset);
569   assert(cie != nullptr);
570 
571   const dw_offset_t end_offset = current_entry + length + (is_64bit ? 12 : 4);
572 
573   const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
574   const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
575   const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
576   lldb::addr_t range_base =
577       GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr,
578                       text_addr, data_addr);
579   lldb::addr_t range_len = GetGNUEHPointer(
580       m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING,
581       pc_rel_addr, text_addr, data_addr);
582   AddressRange range(range_base, m_objfile.GetAddressByteSize(),
583                      m_objfile.GetSectionList());
584   range.SetByteSize(range_len);
585 
586   addr_t lsda_data_file_address = LLDB_INVALID_ADDRESS;
587 
588   if (cie->augmentation[0] == 'z') {
589     uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
590     if (aug_data_len != 0 && cie->lsda_addr_encoding != DW_EH_PE_omit) {
591       offset_t saved_offset = offset;
592       lsda_data_file_address =
593           GetGNUEHPointer(m_cfi_data, &offset, cie->lsda_addr_encoding,
594                           pc_rel_addr, text_addr, data_addr);
595       if (offset - saved_offset != aug_data_len) {
596         // There is more in the augmentation region than we know how to process;
597         // don't read anything.
598         lsda_data_file_address = LLDB_INVALID_ADDRESS;
599       }
600       offset = saved_offset;
601     }
602     offset += aug_data_len;
603   }
604   unwind_plan.SetUnwindPlanForSignalTrap(
605     strchr(cie->augmentation, 'S') ? eLazyBoolYes : eLazyBoolNo);
606 
607   Address lsda_data;
608   Address personality_function_ptr;
609 
610   if (lsda_data_file_address != LLDB_INVALID_ADDRESS &&
611       cie->personality_loc != LLDB_INVALID_ADDRESS) {
612     m_objfile.GetModule()->ResolveFileAddress(lsda_data_file_address,
613                                               lsda_data);
614     m_objfile.GetModule()->ResolveFileAddress(cie->personality_loc,
615                                               personality_function_ptr);
616   }
617 
618   if (lsda_data.IsValid() && personality_function_ptr.IsValid()) {
619     unwind_plan.SetLSDAAddress(lsda_data);
620     unwind_plan.SetPersonalityFunctionPtr(personality_function_ptr);
621   }
622 
623   uint32_t code_align = cie->code_align;
624   int32_t data_align = cie->data_align;
625 
626   unwind_plan.SetPlanValidAddressRange(range);
627   UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row;
628   *cie_initial_row = cie->initial_row;
629   UnwindPlan::RowSP row(cie_initial_row);
630 
631   unwind_plan.SetRegisterKind(GetRegisterKind());
632   unwind_plan.SetReturnAddressRegister(cie->return_addr_reg_num);
633 
634   std::vector<UnwindPlan::RowSP> stack;
635 
636   UnwindPlan::Row::RegisterLocation reg_location;
637   while (m_cfi_data.ValidOffset(offset) && offset < end_offset) {
638     uint8_t inst = m_cfi_data.GetU8(&offset);
639     uint8_t primary_opcode = inst & 0xC0;
640     uint8_t extended_opcode = inst & 0x3F;
641 
642     if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode, data_align,
643                                  offset, *row)) {
644       if (primary_opcode) {
645         switch (primary_opcode) {
646         case DW_CFA_advance_loc: // (Row Creation Instruction)
647         { // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
648           // takes a single argument that represents a constant delta. The
649           // required action is to create a new table row with a location value
650           // that is computed by taking the current entry's location value and
651           // adding (delta * code_align). All other values in the new row are
652           // initially identical to the current row.
653           unwind_plan.AppendRow(row);
654           UnwindPlan::Row *newrow = new UnwindPlan::Row;
655           *newrow = *row.get();
656           row.reset(newrow);
657           row->SlideOffset(extended_opcode * code_align);
658           break;
659         }
660 
661         case DW_CFA_restore: { // 0xC0 - high 2 bits are 0x3, lower 6 bits are
662                                // register
663           // takes a single argument that represents a register number. The
664           // required action is to change the rule for the indicated register
665           // to the rule assigned it by the initial_instructions in the CIE.
666           uint32_t reg_num = extended_opcode;
667           // We only keep enough register locations around to unwind what is in
668           // our thread, and these are organized by the register index in that
669           // state, so we need to convert our eh_frame register number from the
670           // EH frame info, to a register index
671 
672           if (unwind_plan.IsValidRowIndex(0) &&
673               unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num,
674                                                             reg_location))
675             row->SetRegisterInfo(reg_num, reg_location);
676           break;
677         }
678         }
679       } else {
680         switch (extended_opcode) {
681         case DW_CFA_set_loc: // 0x1 (Row Creation Instruction)
682         {
683           // DW_CFA_set_loc takes a single argument that represents an address.
684           // The required action is to create a new table row using the
685           // specified address as the location. All other values in the new row
686           // are initially identical to the current row. The new location value
687           // should always be greater than the current one.
688           unwind_plan.AppendRow(row);
689           UnwindPlan::Row *newrow = new UnwindPlan::Row;
690           *newrow = *row.get();
691           row.reset(newrow);
692           row->SetOffset(m_cfi_data.GetAddress(&offset) -
693                          startaddr.GetFileAddress());
694           break;
695         }
696 
697         case DW_CFA_advance_loc1: // 0x2 (Row Creation Instruction)
698         {
699           // takes a single uword argument that represents a constant delta.
700           // This instruction is identical to DW_CFA_advance_loc except for the
701           // encoding and size of the delta argument.
702           unwind_plan.AppendRow(row);
703           UnwindPlan::Row *newrow = new UnwindPlan::Row;
704           *newrow = *row.get();
705           row.reset(newrow);
706           row->SlideOffset(m_cfi_data.GetU8(&offset) * code_align);
707           break;
708         }
709 
710         case DW_CFA_advance_loc2: // 0x3 (Row Creation Instruction)
711         {
712           // takes a single uword argument that represents a constant delta.
713           // This instruction is identical to DW_CFA_advance_loc except for the
714           // encoding and size of the delta argument.
715           unwind_plan.AppendRow(row);
716           UnwindPlan::Row *newrow = new UnwindPlan::Row;
717           *newrow = *row.get();
718           row.reset(newrow);
719           row->SlideOffset(m_cfi_data.GetU16(&offset) * code_align);
720           break;
721         }
722 
723         case DW_CFA_advance_loc4: // 0x4 (Row Creation Instruction)
724         {
725           // takes a single uword argument that represents a constant delta.
726           // This instruction is identical to DW_CFA_advance_loc except for the
727           // encoding and size of the delta argument.
728           unwind_plan.AppendRow(row);
729           UnwindPlan::Row *newrow = new UnwindPlan::Row;
730           *newrow = *row.get();
731           row.reset(newrow);
732           row->SlideOffset(m_cfi_data.GetU32(&offset) * code_align);
733           break;
734         }
735 
736         case DW_CFA_restore_extended: // 0x6
737         {
738           // takes a single unsigned LEB128 argument that represents a register
739           // number. This instruction is identical to DW_CFA_restore except for
740           // the encoding and size of the register argument.
741           uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
742           if (unwind_plan.IsValidRowIndex(0) &&
743               unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num,
744                                                             reg_location))
745             row->SetRegisterInfo(reg_num, reg_location);
746           break;
747         }
748 
749         case DW_CFA_remember_state: // 0xA
750         {
751           // These instructions define a stack of information. Encountering the
752           // DW_CFA_remember_state instruction means to save the rules for
753           // every register on the current row on the stack. Encountering the
754           // DW_CFA_restore_state instruction means to pop the set of rules off
755           // the stack and place them in the current row. (This operation is
756           // useful for compilers that move epilogue code into the body of a
757           // function.)
758           stack.push_back(row);
759           UnwindPlan::Row *newrow = new UnwindPlan::Row;
760           *newrow = *row.get();
761           row.reset(newrow);
762           break;
763         }
764 
765         case DW_CFA_restore_state: // 0xB
766         {
767           // These instructions define a stack of information. Encountering the
768           // DW_CFA_remember_state instruction means to save the rules for
769           // every register on the current row on the stack. Encountering the
770           // DW_CFA_restore_state instruction means to pop the set of rules off
771           // the stack and place them in the current row. (This operation is
772           // useful for compilers that move epilogue code into the body of a
773           // function.)
774           if (stack.empty()) {
775             LLDB_LOGF(log,
776                       "DWARFCallFrameInfo::%s(dwarf_offset: %" PRIx32
777                       ", startaddr: %" PRIx64
778                       " encountered DW_CFA_restore_state but state stack "
779                       "is empty. Corrupt unwind info?",
780                       __FUNCTION__, dwarf_offset, startaddr.GetFileAddress());
781             break;
782           }
783           lldb::addr_t offset = row->GetOffset();
784           row = stack.back();
785           stack.pop_back();
786           row->SetOffset(offset);
787           break;
788         }
789 
790         case DW_CFA_GNU_args_size: // 0x2e
791         {
792           // The DW_CFA_GNU_args_size instruction takes an unsigned LEB128
793           // operand representing an argument size. This instruction specifies
794           // the total of the size of the arguments which have been pushed onto
795           // the stack.
796 
797           // TODO: Figure out how we should handle this.
798           m_cfi_data.GetULEB128(&offset);
799           break;
800         }
801 
802         case DW_CFA_val_offset:    // 0x14
803         case DW_CFA_val_offset_sf: // 0x15
804         default:
805           break;
806         }
807       }
808     }
809   }
810   unwind_plan.AppendRow(row);
811 
812   return true;
813 }
814 
815 bool DWARFCallFrameInfo::HandleCommonDwarfOpcode(uint8_t primary_opcode,
816                                                  uint8_t extended_opcode,
817                                                  int32_t data_align,
818                                                  lldb::offset_t &offset,
819                                                  UnwindPlan::Row &row) {
820   UnwindPlan::Row::RegisterLocation reg_location;
821 
822   if (primary_opcode) {
823     switch (primary_opcode) {
824     case DW_CFA_offset: { // 0x80 - high 2 bits are 0x2, lower 6 bits are
825                           // register
826       // takes two arguments: an unsigned LEB128 constant representing a
827       // factored offset and a register number. The required action is to
828       // change the rule for the register indicated by the register number to
829       // be an offset(N) rule with a value of (N = factored offset *
830       // data_align).
831       uint8_t reg_num = extended_opcode;
832       int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
833       reg_location.SetAtCFAPlusOffset(op_offset);
834       row.SetRegisterInfo(reg_num, reg_location);
835       return true;
836     }
837     }
838   } else {
839     switch (extended_opcode) {
840     case DW_CFA_nop: // 0x0
841       return true;
842 
843     case DW_CFA_offset_extended: // 0x5
844     {
845       // takes two unsigned LEB128 arguments representing a register number and
846       // a factored offset. This instruction is identical to DW_CFA_offset
847       // except for the encoding and size of the register argument.
848       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
849       int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
850       UnwindPlan::Row::RegisterLocation reg_location;
851       reg_location.SetAtCFAPlusOffset(op_offset);
852       row.SetRegisterInfo(reg_num, reg_location);
853       return true;
854     }
855 
856     case DW_CFA_undefined: // 0x7
857     {
858       // takes a single unsigned LEB128 argument that represents a register
859       // number. The required action is to set the rule for the specified
860       // register to undefined.
861       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
862       UnwindPlan::Row::RegisterLocation reg_location;
863       reg_location.SetUndefined();
864       row.SetRegisterInfo(reg_num, reg_location);
865       return true;
866     }
867 
868     case DW_CFA_same_value: // 0x8
869     {
870       // takes a single unsigned LEB128 argument that represents a register
871       // number. The required action is to set the rule for the specified
872       // register to same value.
873       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
874       UnwindPlan::Row::RegisterLocation reg_location;
875       reg_location.SetSame();
876       row.SetRegisterInfo(reg_num, reg_location);
877       return true;
878     }
879 
880     case DW_CFA_register: // 0x9
881     {
882       // takes two unsigned LEB128 arguments representing register numbers. The
883       // required action is to set the rule for the first register to be the
884       // second register.
885       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
886       uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
887       UnwindPlan::Row::RegisterLocation reg_location;
888       reg_location.SetInRegister(other_reg_num);
889       row.SetRegisterInfo(reg_num, reg_location);
890       return true;
891     }
892 
893     case DW_CFA_def_cfa: // 0xC    (CFA Definition Instruction)
894     {
895       // Takes two unsigned LEB128 operands representing a register number and
896       // a (non-factored) offset. The required action is to define the current
897       // CFA rule to use the provided register and offset.
898       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
899       int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
900       row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset);
901       return true;
902     }
903 
904     case DW_CFA_def_cfa_register: // 0xD    (CFA Definition Instruction)
905     {
906       // takes a single unsigned LEB128 argument representing a register
907       // number. The required action is to define the current CFA rule to use
908       // the provided register (but to keep the old offset).
909       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
910       row.GetCFAValue().SetIsRegisterPlusOffset(reg_num,
911                                                 row.GetCFAValue().GetOffset());
912       return true;
913     }
914 
915     case DW_CFA_def_cfa_offset: // 0xE    (CFA Definition Instruction)
916     {
917       // Takes a single unsigned LEB128 operand representing a (non-factored)
918       // offset. The required action is to define the current CFA rule to use
919       // the provided offset (but to keep the old register).
920       int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
921       row.GetCFAValue().SetIsRegisterPlusOffset(
922           row.GetCFAValue().GetRegisterNumber(), op_offset);
923       return true;
924     }
925 
926     case DW_CFA_def_cfa_expression: // 0xF    (CFA Definition Instruction)
927     {
928       size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset);
929       const uint8_t *block_data =
930           static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len));
931       row.GetCFAValue().SetIsDWARFExpression(block_data, block_len);
932       return true;
933     }
934 
935     case DW_CFA_expression: // 0x10
936     {
937       // Takes two operands: an unsigned LEB128 value representing a register
938       // number, and a DW_FORM_block value representing a DWARF expression. The
939       // required action is to change the rule for the register indicated by
940       // the register number to be an expression(E) rule where E is the DWARF
941       // expression. That is, the DWARF expression computes the address. The
942       // value of the CFA is pushed on the DWARF evaluation stack prior to
943       // execution of the DWARF expression.
944       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
945       uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
946       const uint8_t *block_data =
947           static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len));
948       UnwindPlan::Row::RegisterLocation reg_location;
949       reg_location.SetAtDWARFExpression(block_data, block_len);
950       row.SetRegisterInfo(reg_num, reg_location);
951       return true;
952     }
953 
954     case DW_CFA_offset_extended_sf: // 0x11
955     {
956       // takes two operands: an unsigned LEB128 value representing a register
957       // number and a signed LEB128 factored offset. This instruction is
958       // identical to DW_CFA_offset_extended except that the second operand is
959       // signed and factored.
960       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
961       int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
962       UnwindPlan::Row::RegisterLocation reg_location;
963       reg_location.SetAtCFAPlusOffset(op_offset);
964       row.SetRegisterInfo(reg_num, reg_location);
965       return true;
966     }
967 
968     case DW_CFA_def_cfa_sf: // 0x12   (CFA Definition Instruction)
969     {
970       // Takes two operands: an unsigned LEB128 value representing a register
971       // number and a signed LEB128 factored offset. This instruction is
972       // identical to DW_CFA_def_cfa except that the second operand is signed
973       // and factored.
974       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
975       int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
976       row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset);
977       return true;
978     }
979 
980     case DW_CFA_def_cfa_offset_sf: // 0x13   (CFA Definition Instruction)
981     {
982       // takes a signed LEB128 operand representing a factored offset. This
983       // instruction is identical to  DW_CFA_def_cfa_offset except that the
984       // operand is signed and factored.
985       int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
986       uint32_t cfa_regnum = row.GetCFAValue().GetRegisterNumber();
987       row.GetCFAValue().SetIsRegisterPlusOffset(cfa_regnum, op_offset);
988       return true;
989     }
990 
991     case DW_CFA_val_expression: // 0x16
992     {
993       // takes two operands: an unsigned LEB128 value representing a register
994       // number, and a DW_FORM_block value representing a DWARF expression. The
995       // required action is to change the rule for the register indicated by
996       // the register number to be a val_expression(E) rule where E is the
997       // DWARF expression. That is, the DWARF expression computes the value of
998       // the given register. The value of the CFA is pushed on the DWARF
999       // evaluation stack prior to execution of the DWARF expression.
1000       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
1001       uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
1002       const uint8_t *block_data =
1003           (const uint8_t *)m_cfi_data.GetData(&offset, block_len);
1004       reg_location.SetIsDWARFExpression(block_data, block_len);
1005       row.SetRegisterInfo(reg_num, reg_location);
1006       return true;
1007     }
1008     }
1009   }
1010   return false;
1011 }
1012 
1013 void DWARFCallFrameInfo::ForEachFDEEntries(
1014     const std::function<bool(lldb::addr_t, uint32_t, dw_offset_t)> &callback) {
1015   GetFDEIndex();
1016 
1017   for (size_t i = 0, c = m_fde_index.GetSize(); i < c; ++i) {
1018     const FDEEntryMap::Entry &entry = m_fde_index.GetEntryRef(i);
1019     if (!callback(entry.base, entry.size, entry.data))
1020       break;
1021   }
1022 }
1023