1 //===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "GDBRemoteRegisterContext.h" 10 11 #include "lldb/Target/ExecutionContext.h" 12 #include "lldb/Target/Target.h" 13 #include "lldb/Utility/DataBufferHeap.h" 14 #include "lldb/Utility/DataExtractor.h" 15 #include "lldb/Utility/RegisterValue.h" 16 #include "lldb/Utility/Scalar.h" 17 #include "lldb/Utility/StreamString.h" 18 #include "ProcessGDBRemote.h" 19 #include "ProcessGDBRemoteLog.h" 20 #include "ThreadGDBRemote.h" 21 #include "Utility/ARM_DWARF_Registers.h" 22 #include "Utility/ARM_ehframe_Registers.h" 23 #include "lldb/Utility/StringExtractorGDBRemote.h" 24 25 #include <memory> 26 27 using namespace lldb; 28 using namespace lldb_private; 29 using namespace lldb_private::process_gdb_remote; 30 31 // GDBRemoteRegisterContext constructor 32 GDBRemoteRegisterContext::GDBRemoteRegisterContext( 33 ThreadGDBRemote &thread, uint32_t concrete_frame_idx, 34 GDBRemoteDynamicRegisterInfo ®_info, bool read_all_at_once) 35 : RegisterContext(thread, concrete_frame_idx), m_reg_info(reg_info), 36 m_reg_valid(), m_reg_data(), m_read_all_at_once(read_all_at_once) { 37 // Resize our vector of bools to contain one bool for every register. We will 38 // use these boolean values to know when a register value is valid in 39 // m_reg_data. 40 m_reg_valid.resize(reg_info.GetNumRegisters()); 41 42 // Make a heap based buffer that is big enough to store all registers 43 DataBufferSP reg_data_sp( 44 new DataBufferHeap(reg_info.GetRegisterDataByteSize(), 0)); 45 m_reg_data.SetData(reg_data_sp); 46 m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder()); 47 } 48 49 // Destructor 50 GDBRemoteRegisterContext::~GDBRemoteRegisterContext() {} 51 52 void GDBRemoteRegisterContext::InvalidateAllRegisters() { 53 SetAllRegisterValid(false); 54 } 55 56 void GDBRemoteRegisterContext::SetAllRegisterValid(bool b) { 57 std::vector<bool>::iterator pos, end = m_reg_valid.end(); 58 for (pos = m_reg_valid.begin(); pos != end; ++pos) 59 *pos = b; 60 } 61 62 size_t GDBRemoteRegisterContext::GetRegisterCount() { 63 return m_reg_info.GetNumRegisters(); 64 } 65 66 const RegisterInfo * 67 GDBRemoteRegisterContext::GetRegisterInfoAtIndex(size_t reg) { 68 RegisterInfo *reg_info = m_reg_info.GetRegisterInfoAtIndex(reg); 69 70 if (reg_info && reg_info->dynamic_size_dwarf_expr_bytes) { 71 const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture(); 72 uint8_t reg_size = UpdateDynamicRegisterSize(arch, reg_info); 73 reg_info->byte_size = reg_size; 74 } 75 return reg_info; 76 } 77 78 size_t GDBRemoteRegisterContext::GetRegisterSetCount() { 79 return m_reg_info.GetNumRegisterSets(); 80 } 81 82 const RegisterSet *GDBRemoteRegisterContext::GetRegisterSet(size_t reg_set) { 83 return m_reg_info.GetRegisterSet(reg_set); 84 } 85 86 bool GDBRemoteRegisterContext::ReadRegister(const RegisterInfo *reg_info, 87 RegisterValue &value) { 88 // Read the register 89 if (ReadRegisterBytes(reg_info, m_reg_data)) { 90 const bool partial_data_ok = false; 91 Status error(value.SetValueFromData( 92 reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok)); 93 return error.Success(); 94 } 95 return false; 96 } 97 98 bool GDBRemoteRegisterContext::PrivateSetRegisterValue( 99 uint32_t reg, llvm::ArrayRef<uint8_t> data) { 100 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg); 101 if (reg_info == nullptr) 102 return false; 103 104 // Invalidate if needed 105 InvalidateIfNeeded(false); 106 107 const size_t reg_byte_size = reg_info->byte_size; 108 memcpy(const_cast<uint8_t *>( 109 m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), 110 data.data(), std::min(data.size(), reg_byte_size)); 111 bool success = data.size() >= reg_byte_size; 112 if (success) { 113 SetRegisterIsValid(reg, true); 114 } else if (data.size() > 0) { 115 // Only set register is valid to false if we copied some bytes, else leave 116 // it as it was. 117 SetRegisterIsValid(reg, false); 118 } 119 return success; 120 } 121 122 bool GDBRemoteRegisterContext::PrivateSetRegisterValue(uint32_t reg, 123 uint64_t new_reg_val) { 124 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg); 125 if (reg_info == nullptr) 126 return false; 127 128 // Early in process startup, we can get a thread that has an invalid byte 129 // order because the process hasn't been completely set up yet (see the ctor 130 // where the byte order is setfrom the process). If that's the case, we 131 // can't set the value here. 132 if (m_reg_data.GetByteOrder() == eByteOrderInvalid) { 133 return false; 134 } 135 136 // Invalidate if needed 137 InvalidateIfNeeded(false); 138 139 DataBufferSP buffer_sp(new DataBufferHeap(&new_reg_val, sizeof(new_reg_val))); 140 DataExtractor data(buffer_sp, endian::InlHostByteOrder(), sizeof(void *)); 141 142 // If our register context and our register info disagree, which should never 143 // happen, don't overwrite past the end of the buffer. 144 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 145 return false; 146 147 // Grab a pointer to where we are going to put this register 148 uint8_t *dst = const_cast<uint8_t *>( 149 m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); 150 151 if (dst == nullptr) 152 return false; 153 154 if (data.CopyByteOrderedData(0, // src offset 155 reg_info->byte_size, // src length 156 dst, // dst 157 reg_info->byte_size, // dst length 158 m_reg_data.GetByteOrder())) // dst byte order 159 { 160 SetRegisterIsValid(reg, true); 161 return true; 162 } 163 return false; 164 } 165 166 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes(). 167 bool GDBRemoteRegisterContext::GetPrimordialRegister( 168 const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) { 169 const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB]; 170 const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin]; 171 172 if (DataBufferSP buffer_sp = 173 gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg)) 174 return PrivateSetRegisterValue( 175 lldb_reg, llvm::ArrayRef<uint8_t>(buffer_sp->GetBytes(), 176 buffer_sp->GetByteSize())); 177 return false; 178 } 179 180 bool GDBRemoteRegisterContext::ReadRegisterBytes(const RegisterInfo *reg_info, 181 DataExtractor &data) { 182 ExecutionContext exe_ctx(CalculateThread()); 183 184 Process *process = exe_ctx.GetProcessPtr(); 185 Thread *thread = exe_ctx.GetThreadPtr(); 186 if (process == nullptr || thread == nullptr) 187 return false; 188 189 GDBRemoteCommunicationClient &gdb_comm( 190 ((ProcessGDBRemote *)process)->GetGDBRemote()); 191 192 InvalidateIfNeeded(false); 193 194 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 195 196 if (!GetRegisterIsValid(reg)) { 197 if (m_read_all_at_once) { 198 if (DataBufferSP buffer_sp = 199 gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())) { 200 memcpy(const_cast<uint8_t *>(m_reg_data.GetDataStart()), 201 buffer_sp->GetBytes(), 202 std::min(buffer_sp->GetByteSize(), m_reg_data.GetByteSize())); 203 if (buffer_sp->GetByteSize() >= m_reg_data.GetByteSize()) { 204 SetAllRegisterValid(true); 205 return true; 206 } else { 207 Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD | 208 GDBR_LOG_PACKETS)); 209 LLDB_LOGF( 210 log, 211 "error: GDBRemoteRegisterContext::ReadRegisterBytes tried " 212 "to read the " 213 "entire register context at once, expected at least %" PRId64 214 " bytes " 215 "but only got %" PRId64 " bytes.", 216 m_reg_data.GetByteSize(), buffer_sp->GetByteSize()); 217 } 218 } 219 return false; 220 } 221 if (reg_info->value_regs) { 222 // Process this composite register request by delegating to the 223 // constituent primordial registers. 224 225 // Index of the primordial register. 226 bool success = true; 227 for (uint32_t idx = 0; success; ++idx) { 228 const uint32_t prim_reg = reg_info->value_regs[idx]; 229 if (prim_reg == LLDB_INVALID_REGNUM) 230 break; 231 // We have a valid primordial register as our constituent. Grab the 232 // corresponding register info. 233 const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg); 234 if (prim_reg_info == nullptr) 235 success = false; 236 else { 237 // Read the containing register if it hasn't already been read 238 if (!GetRegisterIsValid(prim_reg)) 239 success = GetPrimordialRegister(prim_reg_info, gdb_comm); 240 } 241 } 242 243 if (success) { 244 // If we reach this point, all primordial register requests have 245 // succeeded. Validate this composite register. 246 SetRegisterIsValid(reg_info, true); 247 } 248 } else { 249 // Get each register individually 250 GetPrimordialRegister(reg_info, gdb_comm); 251 } 252 253 // Make sure we got a valid register value after reading it 254 if (!GetRegisterIsValid(reg)) 255 return false; 256 } 257 258 if (&data != &m_reg_data) { 259 assert(m_reg_data.GetByteSize() >= 260 reg_info->byte_offset + reg_info->byte_size); 261 // If our register context and our register info disagree, which should 262 // never happen, don't read past the end of the buffer. 263 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 264 return false; 265 266 // If we aren't extracting into our own buffer (which only happens when 267 // this function is called from ReadRegisterValue(uint32_t, Scalar&)) then 268 // we transfer bytes from our buffer into the data buffer that was passed 269 // in 270 271 data.SetByteOrder(m_reg_data.GetByteOrder()); 272 data.SetData(m_reg_data, reg_info->byte_offset, reg_info->byte_size); 273 } 274 return true; 275 } 276 277 bool GDBRemoteRegisterContext::WriteRegister(const RegisterInfo *reg_info, 278 const RegisterValue &value) { 279 DataExtractor data; 280 if (value.GetData(data)) 281 return WriteRegisterBytes(reg_info, data, 0); 282 return false; 283 } 284 285 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes(). 286 bool GDBRemoteRegisterContext::SetPrimordialRegister( 287 const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) { 288 StreamString packet; 289 StringExtractorGDBRemote response; 290 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 291 // Invalidate just this register 292 SetRegisterIsValid(reg, false); 293 294 return gdb_comm.WriteRegister( 295 m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin], 296 {m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size), 297 reg_info->byte_size}); 298 } 299 300 bool GDBRemoteRegisterContext::WriteRegisterBytes(const RegisterInfo *reg_info, 301 DataExtractor &data, 302 uint32_t data_offset) { 303 ExecutionContext exe_ctx(CalculateThread()); 304 305 Process *process = exe_ctx.GetProcessPtr(); 306 Thread *thread = exe_ctx.GetThreadPtr(); 307 if (process == nullptr || thread == nullptr) 308 return false; 309 310 GDBRemoteCommunicationClient &gdb_comm( 311 ((ProcessGDBRemote *)process)->GetGDBRemote()); 312 313 assert(m_reg_data.GetByteSize() >= 314 reg_info->byte_offset + reg_info->byte_size); 315 316 // If our register context and our register info disagree, which should never 317 // happen, don't overwrite past the end of the buffer. 318 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 319 return false; 320 321 // Grab a pointer to where we are going to put this register 322 uint8_t *dst = const_cast<uint8_t *>( 323 m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); 324 325 if (dst == nullptr) 326 return false; 327 328 if (data.CopyByteOrderedData(data_offset, // src offset 329 reg_info->byte_size, // src length 330 dst, // dst 331 reg_info->byte_size, // dst length 332 m_reg_data.GetByteOrder())) // dst byte order 333 { 334 GDBRemoteClientBase::Lock lock(gdb_comm, false); 335 if (lock) { 336 if (m_read_all_at_once) { 337 // Invalidate all register values 338 InvalidateIfNeeded(true); 339 340 // Set all registers in one packet 341 if (gdb_comm.WriteAllRegisters( 342 m_thread.GetProtocolID(), 343 {m_reg_data.GetDataStart(), size_t(m_reg_data.GetByteSize())})) 344 345 { 346 SetAllRegisterValid(false); 347 return true; 348 } 349 } else { 350 bool success = true; 351 352 if (reg_info->value_regs) { 353 // This register is part of another register. In this case we read 354 // the actual register data for any "value_regs", and once all that 355 // data is read, we will have enough data in our register context 356 // bytes for the value of this register 357 358 // Invalidate this composite register first. 359 360 for (uint32_t idx = 0; success; ++idx) { 361 const uint32_t reg = reg_info->value_regs[idx]; 362 if (reg == LLDB_INVALID_REGNUM) 363 break; 364 // We have a valid primordial register as our constituent. Grab the 365 // corresponding register info. 366 const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg); 367 if (value_reg_info == nullptr) 368 success = false; 369 else 370 success = SetPrimordialRegister(value_reg_info, gdb_comm); 371 } 372 } else { 373 // This is an actual register, write it 374 success = SetPrimordialRegister(reg_info, gdb_comm); 375 } 376 377 // Check if writing this register will invalidate any other register 378 // values? If so, invalidate them 379 if (reg_info->invalidate_regs) { 380 for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0]; 381 reg != LLDB_INVALID_REGNUM; 382 reg = reg_info->invalidate_regs[++idx]) { 383 SetRegisterIsValid(reg, false); 384 } 385 } 386 387 return success; 388 } 389 } else { 390 Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD | 391 GDBR_LOG_PACKETS)); 392 if (log) { 393 if (log->GetVerbose()) { 394 StreamString strm; 395 gdb_comm.DumpHistory(strm); 396 LLDB_LOGF(log, 397 "error: failed to get packet sequence mutex, not sending " 398 "write register for \"%s\":\n%s", 399 reg_info->name, strm.GetData()); 400 } else 401 LLDB_LOGF(log, 402 "error: failed to get packet sequence mutex, not sending " 403 "write register for \"%s\"", 404 reg_info->name); 405 } 406 } 407 } 408 return false; 409 } 410 411 bool GDBRemoteRegisterContext::ReadAllRegisterValues( 412 RegisterCheckpoint ®_checkpoint) { 413 ExecutionContext exe_ctx(CalculateThread()); 414 415 Process *process = exe_ctx.GetProcessPtr(); 416 Thread *thread = exe_ctx.GetThreadPtr(); 417 if (process == nullptr || thread == nullptr) 418 return false; 419 420 GDBRemoteCommunicationClient &gdb_comm( 421 ((ProcessGDBRemote *)process)->GetGDBRemote()); 422 423 uint32_t save_id = 0; 424 if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) { 425 reg_checkpoint.SetID(save_id); 426 reg_checkpoint.GetData().reset(); 427 return true; 428 } else { 429 reg_checkpoint.SetID(0); // Invalid save ID is zero 430 return ReadAllRegisterValues(reg_checkpoint.GetData()); 431 } 432 } 433 434 bool GDBRemoteRegisterContext::WriteAllRegisterValues( 435 const RegisterCheckpoint ®_checkpoint) { 436 uint32_t save_id = reg_checkpoint.GetID(); 437 if (save_id != 0) { 438 ExecutionContext exe_ctx(CalculateThread()); 439 440 Process *process = exe_ctx.GetProcessPtr(); 441 Thread *thread = exe_ctx.GetThreadPtr(); 442 if (process == nullptr || thread == nullptr) 443 return false; 444 445 GDBRemoteCommunicationClient &gdb_comm( 446 ((ProcessGDBRemote *)process)->GetGDBRemote()); 447 448 return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id); 449 } else { 450 return WriteAllRegisterValues(reg_checkpoint.GetData()); 451 } 452 } 453 454 bool GDBRemoteRegisterContext::ReadAllRegisterValues( 455 lldb::DataBufferSP &data_sp) { 456 ExecutionContext exe_ctx(CalculateThread()); 457 458 Process *process = exe_ctx.GetProcessPtr(); 459 Thread *thread = exe_ctx.GetThreadPtr(); 460 if (process == nullptr || thread == nullptr) 461 return false; 462 463 GDBRemoteCommunicationClient &gdb_comm( 464 ((ProcessGDBRemote *)process)->GetGDBRemote()); 465 466 const bool use_g_packet = 467 !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process); 468 469 GDBRemoteClientBase::Lock lock(gdb_comm, false); 470 if (lock) { 471 if (gdb_comm.SyncThreadState(m_thread.GetProtocolID())) 472 InvalidateAllRegisters(); 473 474 if (use_g_packet && 475 (data_sp = gdb_comm.ReadAllRegisters(m_thread.GetProtocolID()))) 476 return true; 477 478 // We're going to read each register 479 // individually and store them as binary data in a buffer. 480 const RegisterInfo *reg_info; 481 482 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr; 483 i++) { 484 if (reg_info 485 ->value_regs) // skip registers that are slices of real registers 486 continue; 487 ReadRegisterBytes(reg_info, m_reg_data); 488 // ReadRegisterBytes saves the contents of the register in to the 489 // m_reg_data buffer 490 } 491 data_sp = std::make_shared<DataBufferHeap>( 492 m_reg_data.GetDataStart(), m_reg_info.GetRegisterDataByteSize()); 493 return true; 494 } else { 495 496 Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD | 497 GDBR_LOG_PACKETS)); 498 if (log) { 499 if (log->GetVerbose()) { 500 StreamString strm; 501 gdb_comm.DumpHistory(strm); 502 LLDB_LOGF(log, 503 "error: failed to get packet sequence mutex, not sending " 504 "read all registers:\n%s", 505 strm.GetData()); 506 } else 507 LLDB_LOGF(log, 508 "error: failed to get packet sequence mutex, not sending " 509 "read all registers"); 510 } 511 } 512 513 data_sp.reset(); 514 return false; 515 } 516 517 bool GDBRemoteRegisterContext::WriteAllRegisterValues( 518 const lldb::DataBufferSP &data_sp) { 519 if (!data_sp || data_sp->GetBytes() == nullptr || data_sp->GetByteSize() == 0) 520 return false; 521 522 ExecutionContext exe_ctx(CalculateThread()); 523 524 Process *process = exe_ctx.GetProcessPtr(); 525 Thread *thread = exe_ctx.GetThreadPtr(); 526 if (process == nullptr || thread == nullptr) 527 return false; 528 529 GDBRemoteCommunicationClient &gdb_comm( 530 ((ProcessGDBRemote *)process)->GetGDBRemote()); 531 532 const bool use_g_packet = 533 !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process); 534 535 GDBRemoteClientBase::Lock lock(gdb_comm, false); 536 if (lock) { 537 // The data_sp contains the G response packet. 538 if (use_g_packet) { 539 if (gdb_comm.WriteAllRegisters( 540 m_thread.GetProtocolID(), 541 {data_sp->GetBytes(), size_t(data_sp->GetByteSize())})) 542 return true; 543 544 uint32_t num_restored = 0; 545 // We need to manually go through all of the registers and restore them 546 // manually 547 DataExtractor restore_data(data_sp, m_reg_data.GetByteOrder(), 548 m_reg_data.GetAddressByteSize()); 549 550 const RegisterInfo *reg_info; 551 552 // The g packet contents may either include the slice registers 553 // (registers defined in terms of other registers, e.g. eax is a subset 554 // of rax) or not. The slice registers should NOT be in the g packet, 555 // but some implementations may incorrectly include them. 556 // 557 // If the slice registers are included in the packet, we must step over 558 // the slice registers when parsing the packet -- relying on the 559 // RegisterInfo byte_offset field would be incorrect. If the slice 560 // registers are not included, then using the byte_offset values into the 561 // data buffer is the best way to find individual register values. 562 563 uint64_t size_including_slice_registers = 0; 564 uint64_t size_not_including_slice_registers = 0; 565 uint64_t size_by_highest_offset = 0; 566 567 for (uint32_t reg_idx = 0; 568 (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr; ++reg_idx) { 569 size_including_slice_registers += reg_info->byte_size; 570 if (reg_info->value_regs == nullptr) 571 size_not_including_slice_registers += reg_info->byte_size; 572 if (reg_info->byte_offset >= size_by_highest_offset) 573 size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size; 574 } 575 576 bool use_byte_offset_into_buffer; 577 if (size_by_highest_offset == restore_data.GetByteSize()) { 578 // The size of the packet agrees with the highest offset: + size in the 579 // register file 580 use_byte_offset_into_buffer = true; 581 } else if (size_not_including_slice_registers == 582 restore_data.GetByteSize()) { 583 // The size of the packet is the same as concatenating all of the 584 // registers sequentially, skipping the slice registers 585 use_byte_offset_into_buffer = true; 586 } else if (size_including_slice_registers == restore_data.GetByteSize()) { 587 // The slice registers are present in the packet (when they shouldn't 588 // be). Don't try to use the RegisterInfo byte_offset into the 589 // restore_data, it will point to the wrong place. 590 use_byte_offset_into_buffer = false; 591 } else { 592 // None of our expected sizes match the actual g packet data we're 593 // looking at. The most conservative approach here is to use the 594 // running total byte offset. 595 use_byte_offset_into_buffer = false; 596 } 597 598 // In case our register definitions don't include the correct offsets, 599 // keep track of the size of each reg & compute offset based on that. 600 uint32_t running_byte_offset = 0; 601 for (uint32_t reg_idx = 0; 602 (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr; 603 ++reg_idx, running_byte_offset += reg_info->byte_size) { 604 // Skip composite aka slice registers (e.g. eax is a slice of rax). 605 if (reg_info->value_regs) 606 continue; 607 608 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 609 610 uint32_t register_offset; 611 if (use_byte_offset_into_buffer) { 612 register_offset = reg_info->byte_offset; 613 } else { 614 register_offset = running_byte_offset; 615 } 616 617 const uint32_t reg_byte_size = reg_info->byte_size; 618 619 const uint8_t *restore_src = 620 restore_data.PeekData(register_offset, reg_byte_size); 621 if (restore_src) { 622 SetRegisterIsValid(reg, false); 623 if (gdb_comm.WriteRegister( 624 m_thread.GetProtocolID(), 625 reg_info->kinds[eRegisterKindProcessPlugin], 626 {restore_src, reg_byte_size})) 627 ++num_restored; 628 } 629 } 630 return num_restored > 0; 631 } else { 632 // For the use_g_packet == false case, we're going to write each register 633 // individually. The data buffer is binary data in this case, instead of 634 // ascii characters. 635 636 bool arm64_debugserver = false; 637 if (m_thread.GetProcess().get()) { 638 const ArchSpec &arch = 639 m_thread.GetProcess()->GetTarget().GetArchitecture(); 640 if (arch.IsValid() && 641 (arch.GetMachine() == llvm::Triple::aarch64 || 642 arch.GetMachine() == llvm::Triple::aarch64_32) && 643 arch.GetTriple().getVendor() == llvm::Triple::Apple && 644 arch.GetTriple().getOS() == llvm::Triple::IOS) { 645 arm64_debugserver = true; 646 } 647 } 648 uint32_t num_restored = 0; 649 const RegisterInfo *reg_info; 650 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr; 651 i++) { 652 if (reg_info->value_regs) // skip registers that are slices of real 653 // registers 654 continue; 655 // Skip the fpsr and fpcr floating point status/control register 656 // writing to work around a bug in an older version of debugserver that 657 // would lead to register context corruption when writing fpsr/fpcr. 658 if (arm64_debugserver && (strcmp(reg_info->name, "fpsr") == 0 || 659 strcmp(reg_info->name, "fpcr") == 0)) { 660 continue; 661 } 662 663 SetRegisterIsValid(reg_info, false); 664 if (gdb_comm.WriteRegister(m_thread.GetProtocolID(), 665 reg_info->kinds[eRegisterKindProcessPlugin], 666 {data_sp->GetBytes() + reg_info->byte_offset, 667 reg_info->byte_size})) 668 ++num_restored; 669 } 670 return num_restored > 0; 671 } 672 } else { 673 Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD | 674 GDBR_LOG_PACKETS)); 675 if (log) { 676 if (log->GetVerbose()) { 677 StreamString strm; 678 gdb_comm.DumpHistory(strm); 679 LLDB_LOGF(log, 680 "error: failed to get packet sequence mutex, not sending " 681 "write all registers:\n%s", 682 strm.GetData()); 683 } else 684 LLDB_LOGF(log, 685 "error: failed to get packet sequence mutex, not sending " 686 "write all registers"); 687 } 688 } 689 return false; 690 } 691 692 uint32_t GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber( 693 lldb::RegisterKind kind, uint32_t num) { 694 return m_reg_info.ConvertRegisterKindToRegisterNumber(kind, num); 695 } 696 697 void GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) { 698 // For Advanced SIMD and VFP register mapping. 699 static uint32_t g_d0_regs[] = {26, 27, LLDB_INVALID_REGNUM}; // (s0, s1) 700 static uint32_t g_d1_regs[] = {28, 29, LLDB_INVALID_REGNUM}; // (s2, s3) 701 static uint32_t g_d2_regs[] = {30, 31, LLDB_INVALID_REGNUM}; // (s4, s5) 702 static uint32_t g_d3_regs[] = {32, 33, LLDB_INVALID_REGNUM}; // (s6, s7) 703 static uint32_t g_d4_regs[] = {34, 35, LLDB_INVALID_REGNUM}; // (s8, s9) 704 static uint32_t g_d5_regs[] = {36, 37, LLDB_INVALID_REGNUM}; // (s10, s11) 705 static uint32_t g_d6_regs[] = {38, 39, LLDB_INVALID_REGNUM}; // (s12, s13) 706 static uint32_t g_d7_regs[] = {40, 41, LLDB_INVALID_REGNUM}; // (s14, s15) 707 static uint32_t g_d8_regs[] = {42, 43, LLDB_INVALID_REGNUM}; // (s16, s17) 708 static uint32_t g_d9_regs[] = {44, 45, LLDB_INVALID_REGNUM}; // (s18, s19) 709 static uint32_t g_d10_regs[] = {46, 47, LLDB_INVALID_REGNUM}; // (s20, s21) 710 static uint32_t g_d11_regs[] = {48, 49, LLDB_INVALID_REGNUM}; // (s22, s23) 711 static uint32_t g_d12_regs[] = {50, 51, LLDB_INVALID_REGNUM}; // (s24, s25) 712 static uint32_t g_d13_regs[] = {52, 53, LLDB_INVALID_REGNUM}; // (s26, s27) 713 static uint32_t g_d14_regs[] = {54, 55, LLDB_INVALID_REGNUM}; // (s28, s29) 714 static uint32_t g_d15_regs[] = {56, 57, LLDB_INVALID_REGNUM}; // (s30, s31) 715 static uint32_t g_q0_regs[] = { 716 26, 27, 28, 29, LLDB_INVALID_REGNUM}; // (d0, d1) -> (s0, s1, s2, s3) 717 static uint32_t g_q1_regs[] = { 718 30, 31, 32, 33, LLDB_INVALID_REGNUM}; // (d2, d3) -> (s4, s5, s6, s7) 719 static uint32_t g_q2_regs[] = { 720 34, 35, 36, 37, LLDB_INVALID_REGNUM}; // (d4, d5) -> (s8, s9, s10, s11) 721 static uint32_t g_q3_regs[] = { 722 38, 39, 40, 41, LLDB_INVALID_REGNUM}; // (d6, d7) -> (s12, s13, s14, s15) 723 static uint32_t g_q4_regs[] = { 724 42, 43, 44, 45, LLDB_INVALID_REGNUM}; // (d8, d9) -> (s16, s17, s18, s19) 725 static uint32_t g_q5_regs[] = { 726 46, 47, 48, 49, 727 LLDB_INVALID_REGNUM}; // (d10, d11) -> (s20, s21, s22, s23) 728 static uint32_t g_q6_regs[] = { 729 50, 51, 52, 53, 730 LLDB_INVALID_REGNUM}; // (d12, d13) -> (s24, s25, s26, s27) 731 static uint32_t g_q7_regs[] = { 732 54, 55, 56, 57, 733 LLDB_INVALID_REGNUM}; // (d14, d15) -> (s28, s29, s30, s31) 734 static uint32_t g_q8_regs[] = {59, 60, LLDB_INVALID_REGNUM}; // (d16, d17) 735 static uint32_t g_q9_regs[] = {61, 62, LLDB_INVALID_REGNUM}; // (d18, d19) 736 static uint32_t g_q10_regs[] = {63, 64, LLDB_INVALID_REGNUM}; // (d20, d21) 737 static uint32_t g_q11_regs[] = {65, 66, LLDB_INVALID_REGNUM}; // (d22, d23) 738 static uint32_t g_q12_regs[] = {67, 68, LLDB_INVALID_REGNUM}; // (d24, d25) 739 static uint32_t g_q13_regs[] = {69, 70, LLDB_INVALID_REGNUM}; // (d26, d27) 740 static uint32_t g_q14_regs[] = {71, 72, LLDB_INVALID_REGNUM}; // (d28, d29) 741 static uint32_t g_q15_regs[] = {73, 74, LLDB_INVALID_REGNUM}; // (d30, d31) 742 743 // This is our array of composite registers, with each element coming from 744 // the above register mappings. 745 static uint32_t *g_composites[] = { 746 g_d0_regs, g_d1_regs, g_d2_regs, g_d3_regs, g_d4_regs, g_d5_regs, 747 g_d6_regs, g_d7_regs, g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, 748 g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, g_q0_regs, g_q1_regs, 749 g_q2_regs, g_q3_regs, g_q4_regs, g_q5_regs, g_q6_regs, g_q7_regs, 750 g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, 751 g_q14_regs, g_q15_regs}; 752 753 // clang-format off 754 static RegisterInfo g_register_infos[] = { 755 // NAME ALT SZ OFF ENCODING FORMAT EH_FRAME DWARF GENERIC PROCESS PLUGIN LLDB VALUE REGS INVALIDATE REGS SIZE EXPR SIZE LEN 756 // ====== ====== === === ============= ========== =================== =================== ====================== ============= ==== ========== =============== ========= ======== 757 { "r0", "arg1", 4, 0, eEncodingUint, eFormatHex, { ehframe_r0, dwarf_r0, LLDB_REGNUM_GENERIC_ARG1,0, 0 }, nullptr, nullptr, nullptr, 0 }, 758 { "r1", "arg2", 4, 0, eEncodingUint, eFormatHex, { ehframe_r1, dwarf_r1, LLDB_REGNUM_GENERIC_ARG2,1, 1 }, nullptr, nullptr, nullptr, 0 }, 759 { "r2", "arg3", 4, 0, eEncodingUint, eFormatHex, { ehframe_r2, dwarf_r2, LLDB_REGNUM_GENERIC_ARG3,2, 2 }, nullptr, nullptr, nullptr, 0 }, 760 { "r3", "arg4", 4, 0, eEncodingUint, eFormatHex, { ehframe_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG4,3, 3 }, nullptr, nullptr, nullptr, 0 }, 761 { "r4", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r4, dwarf_r4, LLDB_INVALID_REGNUM, 4, 4 }, nullptr, nullptr, nullptr, 0 }, 762 { "r5", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r5, dwarf_r5, LLDB_INVALID_REGNUM, 5, 5 }, nullptr, nullptr, nullptr, 0 }, 763 { "r6", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r6, dwarf_r6, LLDB_INVALID_REGNUM, 6, 6 }, nullptr, nullptr, nullptr, 0 }, 764 { "r7", "fp", 4, 0, eEncodingUint, eFormatHex, { ehframe_r7, dwarf_r7, LLDB_REGNUM_GENERIC_FP, 7, 7 }, nullptr, nullptr, nullptr, 0 }, 765 { "r8", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r8, dwarf_r8, LLDB_INVALID_REGNUM, 8, 8 }, nullptr, nullptr, nullptr, 0 }, 766 { "r9", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r9, dwarf_r9, LLDB_INVALID_REGNUM, 9, 9 }, nullptr, nullptr, nullptr, 0 }, 767 { "r10", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r10, dwarf_r10, LLDB_INVALID_REGNUM, 10, 10 }, nullptr, nullptr, nullptr, 0 }, 768 { "r11", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r11, dwarf_r11, LLDB_INVALID_REGNUM, 11, 11 }, nullptr, nullptr, nullptr, 0 }, 769 { "r12", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r12, dwarf_r12, LLDB_INVALID_REGNUM, 12, 12 }, nullptr, nullptr, nullptr, 0 }, 770 { "sp", "r13", 4, 0, eEncodingUint, eFormatHex, { ehframe_sp, dwarf_sp, LLDB_REGNUM_GENERIC_SP, 13, 13 }, nullptr, nullptr, nullptr, 0 }, 771 { "lr", "r14", 4, 0, eEncodingUint, eFormatHex, { ehframe_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, 14, 14 }, nullptr, nullptr, nullptr, 0 }, 772 { "pc", "r15", 4, 0, eEncodingUint, eFormatHex, { ehframe_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, 15, 15 }, nullptr, nullptr, nullptr, 0 }, 773 { "f0", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 16, 16 }, nullptr, nullptr, nullptr, 0 }, 774 { "f1", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 17, 17 }, nullptr, nullptr, nullptr, 0 }, 775 { "f2", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 18, 18 }, nullptr, nullptr, nullptr, 0 }, 776 { "f3", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 19, 19 }, nullptr, nullptr, nullptr, 0 }, 777 { "f4", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 20, 20 }, nullptr, nullptr, nullptr, 0 }, 778 { "f5", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 21, 21 }, nullptr, nullptr, nullptr, 0 }, 779 { "f6", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 22, 22 }, nullptr, nullptr, nullptr, 0 }, 780 { "f7", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 23, 23 }, nullptr, nullptr, nullptr, 0 }, 781 { "fps", nullptr, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 24, 24 }, nullptr, nullptr, nullptr, 0 }, 782 { "cpsr","flags", 4, 0, eEncodingUint, eFormatHex, { ehframe_cpsr, dwarf_cpsr, LLDB_INVALID_REGNUM, 25, 25 }, nullptr, nullptr, nullptr, 0 }, 783 { "s0", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0, LLDB_INVALID_REGNUM, 26, 26 }, nullptr, nullptr, nullptr, 0 }, 784 { "s1", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1, LLDB_INVALID_REGNUM, 27, 27 }, nullptr, nullptr, nullptr, 0 }, 785 { "s2", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2, LLDB_INVALID_REGNUM, 28, 28 }, nullptr, nullptr, nullptr, 0 }, 786 { "s3", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3, LLDB_INVALID_REGNUM, 29, 29 }, nullptr, nullptr, nullptr, 0 }, 787 { "s4", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4, LLDB_INVALID_REGNUM, 30, 30 }, nullptr, nullptr, nullptr, 0 }, 788 { "s5", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5, LLDB_INVALID_REGNUM, 31, 31 }, nullptr, nullptr, nullptr, 0 }, 789 { "s6", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6, LLDB_INVALID_REGNUM, 32, 32 }, nullptr, nullptr, nullptr, 0 }, 790 { "s7", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7, LLDB_INVALID_REGNUM, 33, 33 }, nullptr, nullptr, nullptr, 0 }, 791 { "s8", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8, LLDB_INVALID_REGNUM, 34, 34 }, nullptr, nullptr, nullptr, 0 }, 792 { "s9", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9, LLDB_INVALID_REGNUM, 35, 35 }, nullptr, nullptr, nullptr, 0 }, 793 { "s10", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10, LLDB_INVALID_REGNUM, 36, 36 }, nullptr, nullptr, nullptr, 0 }, 794 { "s11", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11, LLDB_INVALID_REGNUM, 37, 37 }, nullptr, nullptr, nullptr, 0 }, 795 { "s12", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12, LLDB_INVALID_REGNUM, 38, 38 }, nullptr, nullptr, nullptr, 0 }, 796 { "s13", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13, LLDB_INVALID_REGNUM, 39, 39 }, nullptr, nullptr, nullptr, 0 }, 797 { "s14", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14, LLDB_INVALID_REGNUM, 40, 40 }, nullptr, nullptr, nullptr, 0 }, 798 { "s15", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15, LLDB_INVALID_REGNUM, 41, 41 }, nullptr, nullptr, nullptr, 0 }, 799 { "s16", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16, LLDB_INVALID_REGNUM, 42, 42 }, nullptr, nullptr, nullptr, 0 }, 800 { "s17", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17, LLDB_INVALID_REGNUM, 43, 43 }, nullptr, nullptr, nullptr, 0 }, 801 { "s18", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18, LLDB_INVALID_REGNUM, 44, 44 }, nullptr, nullptr, nullptr, 0 }, 802 { "s19", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19, LLDB_INVALID_REGNUM, 45, 45 }, nullptr, nullptr, nullptr, 0 }, 803 { "s20", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20, LLDB_INVALID_REGNUM, 46, 46 }, nullptr, nullptr, nullptr, 0 }, 804 { "s21", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21, LLDB_INVALID_REGNUM, 47, 47 }, nullptr, nullptr, nullptr, 0 }, 805 { "s22", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22, LLDB_INVALID_REGNUM, 48, 48 }, nullptr, nullptr, nullptr, 0 }, 806 { "s23", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23, LLDB_INVALID_REGNUM, 49, 49 }, nullptr, nullptr, nullptr, 0 }, 807 { "s24", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24, LLDB_INVALID_REGNUM, 50, 50 }, nullptr, nullptr, nullptr, 0 }, 808 { "s25", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25, LLDB_INVALID_REGNUM, 51, 51 }, nullptr, nullptr, nullptr, 0 }, 809 { "s26", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26, LLDB_INVALID_REGNUM, 52, 52 }, nullptr, nullptr, nullptr, 0 }, 810 { "s27", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27, LLDB_INVALID_REGNUM, 53, 53 }, nullptr, nullptr, nullptr, 0 }, 811 { "s28", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28, LLDB_INVALID_REGNUM, 54, 54 }, nullptr, nullptr, nullptr, 0 }, 812 { "s29", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29, LLDB_INVALID_REGNUM, 55, 55 }, nullptr, nullptr, nullptr, 0 }, 813 { "s30", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30, LLDB_INVALID_REGNUM, 56, 56 }, nullptr, nullptr, nullptr, 0 }, 814 { "s31", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31, LLDB_INVALID_REGNUM, 57, 57 }, nullptr, nullptr, nullptr, 0 }, 815 { "fpscr",nullptr, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 58, 58 }, nullptr, nullptr, nullptr, 0 }, 816 { "d16", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16, LLDB_INVALID_REGNUM, 59, 59 }, nullptr, nullptr, nullptr, 0 }, 817 { "d17", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17, LLDB_INVALID_REGNUM, 60, 60 }, nullptr, nullptr, nullptr, 0 }, 818 { "d18", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18, LLDB_INVALID_REGNUM, 61, 61 }, nullptr, nullptr, nullptr, 0 }, 819 { "d19", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19, LLDB_INVALID_REGNUM, 62, 62 }, nullptr, nullptr, nullptr, 0 }, 820 { "d20", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20, LLDB_INVALID_REGNUM, 63, 63 }, nullptr, nullptr, nullptr, 0 }, 821 { "d21", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21, LLDB_INVALID_REGNUM, 64, 64 }, nullptr, nullptr, nullptr, 0 }, 822 { "d22", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22, LLDB_INVALID_REGNUM, 65, 65 }, nullptr, nullptr, nullptr, 0 }, 823 { "d23", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23, LLDB_INVALID_REGNUM, 66, 66 }, nullptr, nullptr, nullptr, 0 }, 824 { "d24", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24, LLDB_INVALID_REGNUM, 67, 67 }, nullptr, nullptr, nullptr, 0 }, 825 { "d25", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25, LLDB_INVALID_REGNUM, 68, 68 }, nullptr, nullptr, nullptr, 0 }, 826 { "d26", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26, LLDB_INVALID_REGNUM, 69, 69 }, nullptr, nullptr, nullptr, 0 }, 827 { "d27", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27, LLDB_INVALID_REGNUM, 70, 70 }, nullptr, nullptr, nullptr, 0 }, 828 { "d28", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28, LLDB_INVALID_REGNUM, 71, 71 }, nullptr, nullptr, nullptr, 0 }, 829 { "d29", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29, LLDB_INVALID_REGNUM, 72, 72 }, nullptr, nullptr, nullptr, 0 }, 830 { "d30", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30, LLDB_INVALID_REGNUM, 73, 73 }, nullptr, nullptr, nullptr, 0 }, 831 { "d31", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31, LLDB_INVALID_REGNUM, 74, 74 }, nullptr, nullptr, nullptr, 0 }, 832 { "d0", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0, LLDB_INVALID_REGNUM, 75, 75 }, g_d0_regs, nullptr, nullptr, 0 }, 833 { "d1", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1, LLDB_INVALID_REGNUM, 76, 76 }, g_d1_regs, nullptr, nullptr, 0 }, 834 { "d2", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2, LLDB_INVALID_REGNUM, 77, 77 }, g_d2_regs, nullptr, nullptr, 0 }, 835 { "d3", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3, LLDB_INVALID_REGNUM, 78, 78 }, g_d3_regs, nullptr, nullptr, 0 }, 836 { "d4", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4, LLDB_INVALID_REGNUM, 79, 79 }, g_d4_regs, nullptr, nullptr, 0 }, 837 { "d5", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5, LLDB_INVALID_REGNUM, 80, 80 }, g_d5_regs, nullptr, nullptr, 0 }, 838 { "d6", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6, LLDB_INVALID_REGNUM, 81, 81 }, g_d6_regs, nullptr, nullptr, 0 }, 839 { "d7", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7, LLDB_INVALID_REGNUM, 82, 82 }, g_d7_regs, nullptr, nullptr, 0 }, 840 { "d8", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8, LLDB_INVALID_REGNUM, 83, 83 }, g_d8_regs, nullptr, nullptr, 0 }, 841 { "d9", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9, LLDB_INVALID_REGNUM, 84, 84 }, g_d9_regs, nullptr, nullptr, 0 }, 842 { "d10", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10, LLDB_INVALID_REGNUM, 85, 85 }, g_d10_regs, nullptr, nullptr, 0 }, 843 { "d11", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11, LLDB_INVALID_REGNUM, 86, 86 }, g_d11_regs, nullptr, nullptr, 0 }, 844 { "d12", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12, LLDB_INVALID_REGNUM, 87, 87 }, g_d12_regs, nullptr, nullptr, 0 }, 845 { "d13", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13, LLDB_INVALID_REGNUM, 88, 88 }, g_d13_regs, nullptr, nullptr, 0 }, 846 { "d14", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14, LLDB_INVALID_REGNUM, 89, 89 }, g_d14_regs, nullptr, nullptr, 0 }, 847 { "d15", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15, LLDB_INVALID_REGNUM, 90, 90 }, g_d15_regs, nullptr, nullptr, 0 }, 848 { "q0", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0, LLDB_INVALID_REGNUM, 91, 91 }, g_q0_regs, nullptr, nullptr, 0 }, 849 { "q1", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1, LLDB_INVALID_REGNUM, 92, 92 }, g_q1_regs, nullptr, nullptr, 0 }, 850 { "q2", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2, LLDB_INVALID_REGNUM, 93, 93 }, g_q2_regs, nullptr, nullptr, 0 }, 851 { "q3", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3, LLDB_INVALID_REGNUM, 94, 94 }, g_q3_regs, nullptr, nullptr, 0 }, 852 { "q4", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4, LLDB_INVALID_REGNUM, 95, 95 }, g_q4_regs, nullptr, nullptr, 0 }, 853 { "q5", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5, LLDB_INVALID_REGNUM, 96, 96 }, g_q5_regs, nullptr, nullptr, 0 }, 854 { "q6", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6, LLDB_INVALID_REGNUM, 97, 97 }, g_q6_regs, nullptr, nullptr, 0 }, 855 { "q7", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7, LLDB_INVALID_REGNUM, 98, 98 }, g_q7_regs, nullptr, nullptr, 0 }, 856 { "q8", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8, LLDB_INVALID_REGNUM, 99, 99 }, g_q8_regs, nullptr, nullptr, 0 }, 857 { "q9", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9, LLDB_INVALID_REGNUM, 100, 100 }, g_q9_regs, nullptr, nullptr, 0 }, 858 { "q10", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10, LLDB_INVALID_REGNUM, 101, 101 }, g_q10_regs, nullptr, nullptr, 0 }, 859 { "q11", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11, LLDB_INVALID_REGNUM, 102, 102 }, g_q11_regs, nullptr, nullptr, 0 }, 860 { "q12", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12, LLDB_INVALID_REGNUM, 103, 103 }, g_q12_regs, nullptr, nullptr, 0 }, 861 { "q13", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13, LLDB_INVALID_REGNUM, 104, 104 }, g_q13_regs, nullptr, nullptr, 0 }, 862 { "q14", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14, LLDB_INVALID_REGNUM, 105, 105 }, g_q14_regs, nullptr, nullptr, 0 }, 863 { "q15", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15, LLDB_INVALID_REGNUM, 106, 106 }, g_q15_regs, nullptr, nullptr, 0 } 864 }; 865 // clang-format on 866 867 static const uint32_t num_registers = llvm::array_lengthof(g_register_infos); 868 static ConstString gpr_reg_set("General Purpose Registers"); 869 static ConstString sfp_reg_set("Software Floating Point Registers"); 870 static ConstString vfp_reg_set("Floating Point Registers"); 871 size_t i; 872 if (from_scratch) { 873 // Calculate the offsets of the registers 874 // Note that the layout of the "composite" registers (d0-d15 and q0-q15) 875 // which comes after the "primordial" registers is important. This enables 876 // us to calculate the offset of the composite register by using the offset 877 // of its first primordial register. For example, to calculate the offset 878 // of q0, use s0's offset. 879 if (g_register_infos[2].byte_offset == 0) { 880 uint32_t byte_offset = 0; 881 for (i = 0; i < num_registers; ++i) { 882 // For primordial registers, increment the byte_offset by the byte_size 883 // to arrive at the byte_offset for the next register. Otherwise, we 884 // have a composite register whose offset can be calculated by 885 // consulting the offset of its first primordial register. 886 if (!g_register_infos[i].value_regs) { 887 g_register_infos[i].byte_offset = byte_offset; 888 byte_offset += g_register_infos[i].byte_size; 889 } else { 890 const uint32_t first_primordial_reg = 891 g_register_infos[i].value_regs[0]; 892 g_register_infos[i].byte_offset = 893 g_register_infos[first_primordial_reg].byte_offset; 894 } 895 } 896 } 897 for (i = 0; i < num_registers; ++i) { 898 ConstString name; 899 ConstString alt_name; 900 if (g_register_infos[i].name && g_register_infos[i].name[0]) 901 name.SetCString(g_register_infos[i].name); 902 if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0]) 903 alt_name.SetCString(g_register_infos[i].alt_name); 904 905 if (i <= 15 || i == 25) 906 AddRegister(g_register_infos[i], name, alt_name, gpr_reg_set); 907 else if (i <= 24) 908 AddRegister(g_register_infos[i], name, alt_name, sfp_reg_set); 909 else 910 AddRegister(g_register_infos[i], name, alt_name, vfp_reg_set); 911 } 912 } else { 913 // Add composite registers to our primordial registers, then. 914 const size_t num_composites = llvm::array_lengthof(g_composites); 915 const size_t num_dynamic_regs = GetNumRegisters(); 916 const size_t num_common_regs = num_registers - num_composites; 917 RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs; 918 919 // First we need to validate that all registers that we already have match 920 // the non composite regs. If so, then we can add the registers, else we 921 // need to bail 922 bool match = true; 923 if (num_dynamic_regs == num_common_regs) { 924 for (i = 0; match && i < num_dynamic_regs; ++i) { 925 // Make sure all register names match 926 if (m_regs[i].name && g_register_infos[i].name) { 927 if (strcmp(m_regs[i].name, g_register_infos[i].name)) { 928 match = false; 929 break; 930 } 931 } 932 933 // Make sure all register byte sizes match 934 if (m_regs[i].byte_size != g_register_infos[i].byte_size) { 935 match = false; 936 break; 937 } 938 } 939 } else { 940 // Wrong number of registers. 941 match = false; 942 } 943 // If "match" is true, then we can add extra registers. 944 if (match) { 945 for (i = 0; i < num_composites; ++i) { 946 ConstString name; 947 ConstString alt_name; 948 const uint32_t first_primordial_reg = 949 g_comp_register_infos[i].value_regs[0]; 950 const char *reg_name = g_register_infos[first_primordial_reg].name; 951 if (reg_name && reg_name[0]) { 952 for (uint32_t j = 0; j < num_dynamic_regs; ++j) { 953 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j); 954 // Find a matching primordial register info entry. 955 if (reg_info && reg_info->name && 956 ::strcasecmp(reg_info->name, reg_name) == 0) { 957 // The name matches the existing primordial entry. Find and 958 // assign the offset, and then add this composite register entry. 959 g_comp_register_infos[i].byte_offset = reg_info->byte_offset; 960 name.SetCString(g_comp_register_infos[i].name); 961 AddRegister(g_comp_register_infos[i], name, alt_name, 962 vfp_reg_set); 963 } 964 } 965 } 966 } 967 } 968 } 969 } 970