xref: /freebsd-src/contrib/llvm-project/lldb/source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp (revision 0b57cec536236d46e3dba9bd041533462f33dbb7)
1 //===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "GDBRemoteRegisterContext.h"
10 
11 #include "lldb/Target/ExecutionContext.h"
12 #include "lldb/Target/Target.h"
13 #include "lldb/Utility/DataBufferHeap.h"
14 #include "lldb/Utility/DataExtractor.h"
15 #include "lldb/Utility/RegisterValue.h"
16 #include "lldb/Utility/Scalar.h"
17 #include "lldb/Utility/StreamString.h"
18 #include "ProcessGDBRemote.h"
19 #include "ProcessGDBRemoteLog.h"
20 #include "ThreadGDBRemote.h"
21 #include "Utility/ARM_DWARF_Registers.h"
22 #include "Utility/ARM_ehframe_Registers.h"
23 #include "lldb/Utility/StringExtractorGDBRemote.h"
24 
25 #include <memory>
26 
27 using namespace lldb;
28 using namespace lldb_private;
29 using namespace lldb_private::process_gdb_remote;
30 
31 // GDBRemoteRegisterContext constructor
32 GDBRemoteRegisterContext::GDBRemoteRegisterContext(
33     ThreadGDBRemote &thread, uint32_t concrete_frame_idx,
34     GDBRemoteDynamicRegisterInfo &reg_info, bool read_all_at_once)
35     : RegisterContext(thread, concrete_frame_idx), m_reg_info(reg_info),
36       m_reg_valid(), m_reg_data(), m_read_all_at_once(read_all_at_once) {
37   // Resize our vector of bools to contain one bool for every register. We will
38   // use these boolean values to know when a register value is valid in
39   // m_reg_data.
40   m_reg_valid.resize(reg_info.GetNumRegisters());
41 
42   // Make a heap based buffer that is big enough to store all registers
43   DataBufferSP reg_data_sp(
44       new DataBufferHeap(reg_info.GetRegisterDataByteSize(), 0));
45   m_reg_data.SetData(reg_data_sp);
46   m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
47 }
48 
49 // Destructor
50 GDBRemoteRegisterContext::~GDBRemoteRegisterContext() {}
51 
52 void GDBRemoteRegisterContext::InvalidateAllRegisters() {
53   SetAllRegisterValid(false);
54 }
55 
56 void GDBRemoteRegisterContext::SetAllRegisterValid(bool b) {
57   std::vector<bool>::iterator pos, end = m_reg_valid.end();
58   for (pos = m_reg_valid.begin(); pos != end; ++pos)
59     *pos = b;
60 }
61 
62 size_t GDBRemoteRegisterContext::GetRegisterCount() {
63   return m_reg_info.GetNumRegisters();
64 }
65 
66 const RegisterInfo *
67 GDBRemoteRegisterContext::GetRegisterInfoAtIndex(size_t reg) {
68   RegisterInfo *reg_info = m_reg_info.GetRegisterInfoAtIndex(reg);
69 
70   if (reg_info && reg_info->dynamic_size_dwarf_expr_bytes) {
71     const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture();
72     uint8_t reg_size = UpdateDynamicRegisterSize(arch, reg_info);
73     reg_info->byte_size = reg_size;
74   }
75   return reg_info;
76 }
77 
78 size_t GDBRemoteRegisterContext::GetRegisterSetCount() {
79   return m_reg_info.GetNumRegisterSets();
80 }
81 
82 const RegisterSet *GDBRemoteRegisterContext::GetRegisterSet(size_t reg_set) {
83   return m_reg_info.GetRegisterSet(reg_set);
84 }
85 
86 bool GDBRemoteRegisterContext::ReadRegister(const RegisterInfo *reg_info,
87                                             RegisterValue &value) {
88   // Read the register
89   if (ReadRegisterBytes(reg_info, m_reg_data)) {
90     const bool partial_data_ok = false;
91     Status error(value.SetValueFromData(
92         reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
93     return error.Success();
94   }
95   return false;
96 }
97 
98 bool GDBRemoteRegisterContext::PrivateSetRegisterValue(
99     uint32_t reg, llvm::ArrayRef<uint8_t> data) {
100   const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
101   if (reg_info == nullptr)
102     return false;
103 
104   // Invalidate if needed
105   InvalidateIfNeeded(false);
106 
107   const size_t reg_byte_size = reg_info->byte_size;
108   memcpy(const_cast<uint8_t *>(
109              m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)),
110          data.data(), std::min(data.size(), reg_byte_size));
111   bool success = data.size() >= reg_byte_size;
112   if (success) {
113     SetRegisterIsValid(reg, true);
114   } else if (data.size() > 0) {
115     // Only set register is valid to false if we copied some bytes, else leave
116     // it as it was.
117     SetRegisterIsValid(reg, false);
118   }
119   return success;
120 }
121 
122 bool GDBRemoteRegisterContext::PrivateSetRegisterValue(uint32_t reg,
123                                                        uint64_t new_reg_val) {
124   const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
125   if (reg_info == nullptr)
126     return false;
127 
128   // Early in process startup, we can get a thread that has an invalid byte
129   // order because the process hasn't been completely set up yet (see the ctor
130   // where the byte order is setfrom the process).  If that's the case, we
131   // can't set the value here.
132   if (m_reg_data.GetByteOrder() == eByteOrderInvalid) {
133     return false;
134   }
135 
136   // Invalidate if needed
137   InvalidateIfNeeded(false);
138 
139   DataBufferSP buffer_sp(new DataBufferHeap(&new_reg_val, sizeof(new_reg_val)));
140   DataExtractor data(buffer_sp, endian::InlHostByteOrder(), sizeof(void *));
141 
142   // If our register context and our register info disagree, which should never
143   // happen, don't overwrite past the end of the buffer.
144   if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
145     return false;
146 
147   // Grab a pointer to where we are going to put this register
148   uint8_t *dst = const_cast<uint8_t *>(
149       m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
150 
151   if (dst == nullptr)
152     return false;
153 
154   if (data.CopyByteOrderedData(0,                          // src offset
155                                reg_info->byte_size,        // src length
156                                dst,                        // dst
157                                reg_info->byte_size,        // dst length
158                                m_reg_data.GetByteOrder())) // dst byte order
159   {
160     SetRegisterIsValid(reg, true);
161     return true;
162   }
163   return false;
164 }
165 
166 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
167 bool GDBRemoteRegisterContext::GetPrimordialRegister(
168     const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
169   const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB];
170   const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin];
171 
172   if (DataBufferSP buffer_sp =
173           gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg))
174     return PrivateSetRegisterValue(
175         lldb_reg, llvm::ArrayRef<uint8_t>(buffer_sp->GetBytes(),
176                                           buffer_sp->GetByteSize()));
177   return false;
178 }
179 
180 bool GDBRemoteRegisterContext::ReadRegisterBytes(const RegisterInfo *reg_info,
181                                                  DataExtractor &data) {
182   ExecutionContext exe_ctx(CalculateThread());
183 
184   Process *process = exe_ctx.GetProcessPtr();
185   Thread *thread = exe_ctx.GetThreadPtr();
186   if (process == nullptr || thread == nullptr)
187     return false;
188 
189   GDBRemoteCommunicationClient &gdb_comm(
190       ((ProcessGDBRemote *)process)->GetGDBRemote());
191 
192   InvalidateIfNeeded(false);
193 
194   const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
195 
196   if (!GetRegisterIsValid(reg)) {
197     if (m_read_all_at_once) {
198       if (DataBufferSP buffer_sp =
199               gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())) {
200         memcpy(const_cast<uint8_t *>(m_reg_data.GetDataStart()),
201                buffer_sp->GetBytes(),
202                std::min(buffer_sp->GetByteSize(), m_reg_data.GetByteSize()));
203         if (buffer_sp->GetByteSize() >= m_reg_data.GetByteSize()) {
204           SetAllRegisterValid(true);
205           return true;
206         } else {
207           Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
208                                                                 GDBR_LOG_PACKETS));
209           if (log)
210             log->Printf ("error: GDBRemoteRegisterContext::ReadRegisterBytes tried to read the "
211                         "entire register context at once, expected at least %" PRId64 " bytes "
212                         "but only got %" PRId64 " bytes.", m_reg_data.GetByteSize(),
213                         buffer_sp->GetByteSize());
214         }
215       }
216       return false;
217     }
218     if (reg_info->value_regs) {
219       // Process this composite register request by delegating to the
220       // constituent primordial registers.
221 
222       // Index of the primordial register.
223       bool success = true;
224       for (uint32_t idx = 0; success; ++idx) {
225         const uint32_t prim_reg = reg_info->value_regs[idx];
226         if (prim_reg == LLDB_INVALID_REGNUM)
227           break;
228         // We have a valid primordial register as our constituent. Grab the
229         // corresponding register info.
230         const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg);
231         if (prim_reg_info == nullptr)
232           success = false;
233         else {
234           // Read the containing register if it hasn't already been read
235           if (!GetRegisterIsValid(prim_reg))
236             success = GetPrimordialRegister(prim_reg_info, gdb_comm);
237         }
238       }
239 
240       if (success) {
241         // If we reach this point, all primordial register requests have
242         // succeeded. Validate this composite register.
243         SetRegisterIsValid(reg_info, true);
244       }
245     } else {
246       // Get each register individually
247       GetPrimordialRegister(reg_info, gdb_comm);
248     }
249 
250     // Make sure we got a valid register value after reading it
251     if (!GetRegisterIsValid(reg))
252       return false;
253   }
254 
255   if (&data != &m_reg_data) {
256     assert(m_reg_data.GetByteSize() >=
257            reg_info->byte_offset + reg_info->byte_size);
258     // If our register context and our register info disagree, which should
259     // never happen, don't read past the end of the buffer.
260     if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
261       return false;
262 
263     // If we aren't extracting into our own buffer (which only happens when
264     // this function is called from ReadRegisterValue(uint32_t, Scalar&)) then
265     // we transfer bytes from our buffer into the data buffer that was passed
266     // in
267 
268     data.SetByteOrder(m_reg_data.GetByteOrder());
269     data.SetData(m_reg_data, reg_info->byte_offset, reg_info->byte_size);
270   }
271   return true;
272 }
273 
274 bool GDBRemoteRegisterContext::WriteRegister(const RegisterInfo *reg_info,
275                                              const RegisterValue &value) {
276   DataExtractor data;
277   if (value.GetData(data))
278     return WriteRegisterBytes(reg_info, data, 0);
279   return false;
280 }
281 
282 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
283 bool GDBRemoteRegisterContext::SetPrimordialRegister(
284     const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
285   StreamString packet;
286   StringExtractorGDBRemote response;
287   const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
288   // Invalidate just this register
289   SetRegisterIsValid(reg, false);
290 
291   return gdb_comm.WriteRegister(
292       m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin],
293       {m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
294        reg_info->byte_size});
295 }
296 
297 bool GDBRemoteRegisterContext::WriteRegisterBytes(const RegisterInfo *reg_info,
298                                                   DataExtractor &data,
299                                                   uint32_t data_offset) {
300   ExecutionContext exe_ctx(CalculateThread());
301 
302   Process *process = exe_ctx.GetProcessPtr();
303   Thread *thread = exe_ctx.GetThreadPtr();
304   if (process == nullptr || thread == nullptr)
305     return false;
306 
307   GDBRemoteCommunicationClient &gdb_comm(
308       ((ProcessGDBRemote *)process)->GetGDBRemote());
309 
310   assert(m_reg_data.GetByteSize() >=
311          reg_info->byte_offset + reg_info->byte_size);
312 
313   // If our register context and our register info disagree, which should never
314   // happen, don't overwrite past the end of the buffer.
315   if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
316     return false;
317 
318   // Grab a pointer to where we are going to put this register
319   uint8_t *dst = const_cast<uint8_t *>(
320       m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
321 
322   if (dst == nullptr)
323     return false;
324 
325   if (data.CopyByteOrderedData(data_offset,                // src offset
326                                reg_info->byte_size,        // src length
327                                dst,                        // dst
328                                reg_info->byte_size,        // dst length
329                                m_reg_data.GetByteOrder())) // dst byte order
330   {
331     GDBRemoteClientBase::Lock lock(gdb_comm, false);
332     if (lock) {
333       if (m_read_all_at_once) {
334         // Invalidate all register values
335         InvalidateIfNeeded(true);
336 
337         // Set all registers in one packet
338         if (gdb_comm.WriteAllRegisters(
339                 m_thread.GetProtocolID(),
340                 {m_reg_data.GetDataStart(), size_t(m_reg_data.GetByteSize())}))
341 
342         {
343           SetAllRegisterValid(false);
344           return true;
345         }
346       } else {
347         bool success = true;
348 
349         if (reg_info->value_regs) {
350           // This register is part of another register. In this case we read
351           // the actual register data for any "value_regs", and once all that
352           // data is read, we will have enough data in our register context
353           // bytes for the value of this register
354 
355           // Invalidate this composite register first.
356 
357           for (uint32_t idx = 0; success; ++idx) {
358             const uint32_t reg = reg_info->value_regs[idx];
359             if (reg == LLDB_INVALID_REGNUM)
360               break;
361             // We have a valid primordial register as our constituent. Grab the
362             // corresponding register info.
363             const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg);
364             if (value_reg_info == nullptr)
365               success = false;
366             else
367               success = SetPrimordialRegister(value_reg_info, gdb_comm);
368           }
369         } else {
370           // This is an actual register, write it
371           success = SetPrimordialRegister(reg_info, gdb_comm);
372         }
373 
374         // Check if writing this register will invalidate any other register
375         // values? If so, invalidate them
376         if (reg_info->invalidate_regs) {
377           for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
378                reg != LLDB_INVALID_REGNUM;
379                reg = reg_info->invalidate_regs[++idx]) {
380             SetRegisterIsValid(reg, false);
381           }
382         }
383 
384         return success;
385       }
386     } else {
387       Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
388                                                              GDBR_LOG_PACKETS));
389       if (log) {
390         if (log->GetVerbose()) {
391           StreamString strm;
392           gdb_comm.DumpHistory(strm);
393           log->Printf("error: failed to get packet sequence mutex, not sending "
394                       "write register for \"%s\":\n%s",
395                       reg_info->name, strm.GetData());
396         } else
397           log->Printf("error: failed to get packet sequence mutex, not sending "
398                       "write register for \"%s\"",
399                       reg_info->name);
400       }
401     }
402   }
403   return false;
404 }
405 
406 bool GDBRemoteRegisterContext::ReadAllRegisterValues(
407     RegisterCheckpoint &reg_checkpoint) {
408   ExecutionContext exe_ctx(CalculateThread());
409 
410   Process *process = exe_ctx.GetProcessPtr();
411   Thread *thread = exe_ctx.GetThreadPtr();
412   if (process == nullptr || thread == nullptr)
413     return false;
414 
415   GDBRemoteCommunicationClient &gdb_comm(
416       ((ProcessGDBRemote *)process)->GetGDBRemote());
417 
418   uint32_t save_id = 0;
419   if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) {
420     reg_checkpoint.SetID(save_id);
421     reg_checkpoint.GetData().reset();
422     return true;
423   } else {
424     reg_checkpoint.SetID(0); // Invalid save ID is zero
425     return ReadAllRegisterValues(reg_checkpoint.GetData());
426   }
427 }
428 
429 bool GDBRemoteRegisterContext::WriteAllRegisterValues(
430     const RegisterCheckpoint &reg_checkpoint) {
431   uint32_t save_id = reg_checkpoint.GetID();
432   if (save_id != 0) {
433     ExecutionContext exe_ctx(CalculateThread());
434 
435     Process *process = exe_ctx.GetProcessPtr();
436     Thread *thread = exe_ctx.GetThreadPtr();
437     if (process == nullptr || thread == nullptr)
438       return false;
439 
440     GDBRemoteCommunicationClient &gdb_comm(
441         ((ProcessGDBRemote *)process)->GetGDBRemote());
442 
443     return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id);
444   } else {
445     return WriteAllRegisterValues(reg_checkpoint.GetData());
446   }
447 }
448 
449 bool GDBRemoteRegisterContext::ReadAllRegisterValues(
450     lldb::DataBufferSP &data_sp) {
451   ExecutionContext exe_ctx(CalculateThread());
452 
453   Process *process = exe_ctx.GetProcessPtr();
454   Thread *thread = exe_ctx.GetThreadPtr();
455   if (process == nullptr || thread == nullptr)
456     return false;
457 
458   GDBRemoteCommunicationClient &gdb_comm(
459       ((ProcessGDBRemote *)process)->GetGDBRemote());
460 
461   const bool use_g_packet =
462       !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process);
463 
464   GDBRemoteClientBase::Lock lock(gdb_comm, false);
465   if (lock) {
466     if (gdb_comm.SyncThreadState(m_thread.GetProtocolID()))
467       InvalidateAllRegisters();
468 
469     if (use_g_packet &&
470         (data_sp = gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())))
471       return true;
472 
473     // We're going to read each register
474     // individually and store them as binary data in a buffer.
475     const RegisterInfo *reg_info;
476 
477     for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr;
478          i++) {
479       if (reg_info
480               ->value_regs) // skip registers that are slices of real registers
481         continue;
482       ReadRegisterBytes(reg_info, m_reg_data);
483       // ReadRegisterBytes saves the contents of the register in to the
484       // m_reg_data buffer
485     }
486     data_sp = std::make_shared<DataBufferHeap>(
487         m_reg_data.GetDataStart(), m_reg_info.GetRegisterDataByteSize());
488     return true;
489   } else {
490 
491     Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
492                                                            GDBR_LOG_PACKETS));
493     if (log) {
494       if (log->GetVerbose()) {
495         StreamString strm;
496         gdb_comm.DumpHistory(strm);
497         log->Printf("error: failed to get packet sequence mutex, not sending "
498                     "read all registers:\n%s",
499                     strm.GetData());
500       } else
501         log->Printf("error: failed to get packet sequence mutex, not sending "
502                     "read all registers");
503     }
504   }
505 
506   data_sp.reset();
507   return false;
508 }
509 
510 bool GDBRemoteRegisterContext::WriteAllRegisterValues(
511     const lldb::DataBufferSP &data_sp) {
512   if (!data_sp || data_sp->GetBytes() == nullptr || data_sp->GetByteSize() == 0)
513     return false;
514 
515   ExecutionContext exe_ctx(CalculateThread());
516 
517   Process *process = exe_ctx.GetProcessPtr();
518   Thread *thread = exe_ctx.GetThreadPtr();
519   if (process == nullptr || thread == nullptr)
520     return false;
521 
522   GDBRemoteCommunicationClient &gdb_comm(
523       ((ProcessGDBRemote *)process)->GetGDBRemote());
524 
525   const bool use_g_packet =
526       !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process);
527 
528   GDBRemoteClientBase::Lock lock(gdb_comm, false);
529   if (lock) {
530     // The data_sp contains the G response packet.
531     if (use_g_packet) {
532       if (gdb_comm.WriteAllRegisters(
533               m_thread.GetProtocolID(),
534               {data_sp->GetBytes(), size_t(data_sp->GetByteSize())}))
535         return true;
536 
537       uint32_t num_restored = 0;
538       // We need to manually go through all of the registers and restore them
539       // manually
540       DataExtractor restore_data(data_sp, m_reg_data.GetByteOrder(),
541                                  m_reg_data.GetAddressByteSize());
542 
543       const RegisterInfo *reg_info;
544 
545       // The g packet contents may either include the slice registers
546       // (registers defined in terms of other registers, e.g. eax is a subset
547       // of rax) or not.  The slice registers should NOT be in the g packet,
548       // but some implementations may incorrectly include them.
549       //
550       // If the slice registers are included in the packet, we must step over
551       // the slice registers when parsing the packet -- relying on the
552       // RegisterInfo byte_offset field would be incorrect. If the slice
553       // registers are not included, then using the byte_offset values into the
554       // data buffer is the best way to find individual register values.
555 
556       uint64_t size_including_slice_registers = 0;
557       uint64_t size_not_including_slice_registers = 0;
558       uint64_t size_by_highest_offset = 0;
559 
560       for (uint32_t reg_idx = 0;
561            (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr; ++reg_idx) {
562         size_including_slice_registers += reg_info->byte_size;
563         if (reg_info->value_regs == nullptr)
564           size_not_including_slice_registers += reg_info->byte_size;
565         if (reg_info->byte_offset >= size_by_highest_offset)
566           size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size;
567       }
568 
569       bool use_byte_offset_into_buffer;
570       if (size_by_highest_offset == restore_data.GetByteSize()) {
571         // The size of the packet agrees with the highest offset: + size in the
572         // register file
573         use_byte_offset_into_buffer = true;
574       } else if (size_not_including_slice_registers ==
575                  restore_data.GetByteSize()) {
576         // The size of the packet is the same as concatenating all of the
577         // registers sequentially, skipping the slice registers
578         use_byte_offset_into_buffer = true;
579       } else if (size_including_slice_registers == restore_data.GetByteSize()) {
580         // The slice registers are present in the packet (when they shouldn't
581         // be). Don't try to use the RegisterInfo byte_offset into the
582         // restore_data, it will point to the wrong place.
583         use_byte_offset_into_buffer = false;
584       } else {
585         // None of our expected sizes match the actual g packet data we're
586         // looking at. The most conservative approach here is to use the
587         // running total byte offset.
588         use_byte_offset_into_buffer = false;
589       }
590 
591       // In case our register definitions don't include the correct offsets,
592       // keep track of the size of each reg & compute offset based on that.
593       uint32_t running_byte_offset = 0;
594       for (uint32_t reg_idx = 0;
595            (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr;
596            ++reg_idx, running_byte_offset += reg_info->byte_size) {
597         // Skip composite aka slice registers (e.g. eax is a slice of rax).
598         if (reg_info->value_regs)
599           continue;
600 
601         const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
602 
603         uint32_t register_offset;
604         if (use_byte_offset_into_buffer) {
605           register_offset = reg_info->byte_offset;
606         } else {
607           register_offset = running_byte_offset;
608         }
609 
610         const uint32_t reg_byte_size = reg_info->byte_size;
611 
612         const uint8_t *restore_src =
613             restore_data.PeekData(register_offset, reg_byte_size);
614         if (restore_src) {
615           SetRegisterIsValid(reg, false);
616           if (gdb_comm.WriteRegister(
617                   m_thread.GetProtocolID(),
618                   reg_info->kinds[eRegisterKindProcessPlugin],
619                   {restore_src, reg_byte_size}))
620             ++num_restored;
621         }
622       }
623       return num_restored > 0;
624     } else {
625       // For the use_g_packet == false case, we're going to write each register
626       // individually.  The data buffer is binary data in this case, instead of
627       // ascii characters.
628 
629       bool arm64_debugserver = false;
630       if (m_thread.GetProcess().get()) {
631         const ArchSpec &arch =
632             m_thread.GetProcess()->GetTarget().GetArchitecture();
633         if (arch.IsValid() && arch.GetMachine() == llvm::Triple::aarch64 &&
634             arch.GetTriple().getVendor() == llvm::Triple::Apple &&
635             arch.GetTriple().getOS() == llvm::Triple::IOS) {
636           arm64_debugserver = true;
637         }
638       }
639       uint32_t num_restored = 0;
640       const RegisterInfo *reg_info;
641       for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr;
642            i++) {
643         if (reg_info->value_regs) // skip registers that are slices of real
644                                   // registers
645           continue;
646         // Skip the fpsr and fpcr floating point status/control register
647         // writing to work around a bug in an older version of debugserver that
648         // would lead to register context corruption when writing fpsr/fpcr.
649         if (arm64_debugserver && (strcmp(reg_info->name, "fpsr") == 0 ||
650                                   strcmp(reg_info->name, "fpcr") == 0)) {
651           continue;
652         }
653 
654         SetRegisterIsValid(reg_info, false);
655         if (gdb_comm.WriteRegister(m_thread.GetProtocolID(),
656                                    reg_info->kinds[eRegisterKindProcessPlugin],
657                                    {data_sp->GetBytes() + reg_info->byte_offset,
658                                     reg_info->byte_size}))
659           ++num_restored;
660       }
661       return num_restored > 0;
662     }
663   } else {
664     Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
665                                                            GDBR_LOG_PACKETS));
666     if (log) {
667       if (log->GetVerbose()) {
668         StreamString strm;
669         gdb_comm.DumpHistory(strm);
670         log->Printf("error: failed to get packet sequence mutex, not sending "
671                     "write all registers:\n%s",
672                     strm.GetData());
673       } else
674         log->Printf("error: failed to get packet sequence mutex, not sending "
675                     "write all registers");
676     }
677   }
678   return false;
679 }
680 
681 uint32_t GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber(
682     lldb::RegisterKind kind, uint32_t num) {
683   return m_reg_info.ConvertRegisterKindToRegisterNumber(kind, num);
684 }
685 
686 void GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) {
687   // For Advanced SIMD and VFP register mapping.
688   static uint32_t g_d0_regs[] = {26, 27, LLDB_INVALID_REGNUM};  // (s0, s1)
689   static uint32_t g_d1_regs[] = {28, 29, LLDB_INVALID_REGNUM};  // (s2, s3)
690   static uint32_t g_d2_regs[] = {30, 31, LLDB_INVALID_REGNUM};  // (s4, s5)
691   static uint32_t g_d3_regs[] = {32, 33, LLDB_INVALID_REGNUM};  // (s6, s7)
692   static uint32_t g_d4_regs[] = {34, 35, LLDB_INVALID_REGNUM};  // (s8, s9)
693   static uint32_t g_d5_regs[] = {36, 37, LLDB_INVALID_REGNUM};  // (s10, s11)
694   static uint32_t g_d6_regs[] = {38, 39, LLDB_INVALID_REGNUM};  // (s12, s13)
695   static uint32_t g_d7_regs[] = {40, 41, LLDB_INVALID_REGNUM};  // (s14, s15)
696   static uint32_t g_d8_regs[] = {42, 43, LLDB_INVALID_REGNUM};  // (s16, s17)
697   static uint32_t g_d9_regs[] = {44, 45, LLDB_INVALID_REGNUM};  // (s18, s19)
698   static uint32_t g_d10_regs[] = {46, 47, LLDB_INVALID_REGNUM}; // (s20, s21)
699   static uint32_t g_d11_regs[] = {48, 49, LLDB_INVALID_REGNUM}; // (s22, s23)
700   static uint32_t g_d12_regs[] = {50, 51, LLDB_INVALID_REGNUM}; // (s24, s25)
701   static uint32_t g_d13_regs[] = {52, 53, LLDB_INVALID_REGNUM}; // (s26, s27)
702   static uint32_t g_d14_regs[] = {54, 55, LLDB_INVALID_REGNUM}; // (s28, s29)
703   static uint32_t g_d15_regs[] = {56, 57, LLDB_INVALID_REGNUM}; // (s30, s31)
704   static uint32_t g_q0_regs[] = {
705       26, 27, 28, 29, LLDB_INVALID_REGNUM}; // (d0, d1) -> (s0, s1, s2, s3)
706   static uint32_t g_q1_regs[] = {
707       30, 31, 32, 33, LLDB_INVALID_REGNUM}; // (d2, d3) -> (s4, s5, s6, s7)
708   static uint32_t g_q2_regs[] = {
709       34, 35, 36, 37, LLDB_INVALID_REGNUM}; // (d4, d5) -> (s8, s9, s10, s11)
710   static uint32_t g_q3_regs[] = {
711       38, 39, 40, 41, LLDB_INVALID_REGNUM}; // (d6, d7) -> (s12, s13, s14, s15)
712   static uint32_t g_q4_regs[] = {
713       42, 43, 44, 45, LLDB_INVALID_REGNUM}; // (d8, d9) -> (s16, s17, s18, s19)
714   static uint32_t g_q5_regs[] = {
715       46, 47, 48, 49,
716       LLDB_INVALID_REGNUM}; // (d10, d11) -> (s20, s21, s22, s23)
717   static uint32_t g_q6_regs[] = {
718       50, 51, 52, 53,
719       LLDB_INVALID_REGNUM}; // (d12, d13) -> (s24, s25, s26, s27)
720   static uint32_t g_q7_regs[] = {
721       54, 55, 56, 57,
722       LLDB_INVALID_REGNUM}; // (d14, d15) -> (s28, s29, s30, s31)
723   static uint32_t g_q8_regs[] = {59, 60, LLDB_INVALID_REGNUM};  // (d16, d17)
724   static uint32_t g_q9_regs[] = {61, 62, LLDB_INVALID_REGNUM};  // (d18, d19)
725   static uint32_t g_q10_regs[] = {63, 64, LLDB_INVALID_REGNUM}; // (d20, d21)
726   static uint32_t g_q11_regs[] = {65, 66, LLDB_INVALID_REGNUM}; // (d22, d23)
727   static uint32_t g_q12_regs[] = {67, 68, LLDB_INVALID_REGNUM}; // (d24, d25)
728   static uint32_t g_q13_regs[] = {69, 70, LLDB_INVALID_REGNUM}; // (d26, d27)
729   static uint32_t g_q14_regs[] = {71, 72, LLDB_INVALID_REGNUM}; // (d28, d29)
730   static uint32_t g_q15_regs[] = {73, 74, LLDB_INVALID_REGNUM}; // (d30, d31)
731 
732   // This is our array of composite registers, with each element coming from
733   // the above register mappings.
734   static uint32_t *g_composites[] = {
735       g_d0_regs,  g_d1_regs,  g_d2_regs,  g_d3_regs,  g_d4_regs,  g_d5_regs,
736       g_d6_regs,  g_d7_regs,  g_d8_regs,  g_d9_regs,  g_d10_regs, g_d11_regs,
737       g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, g_q0_regs,  g_q1_regs,
738       g_q2_regs,  g_q3_regs,  g_q4_regs,  g_q5_regs,  g_q6_regs,  g_q7_regs,
739       g_q8_regs,  g_q9_regs,  g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs,
740       g_q14_regs, g_q15_regs};
741 
742   // clang-format off
743     static RegisterInfo g_register_infos[] = {
744 //   NAME     ALT     SZ   OFF  ENCODING          FORMAT          EH_FRAME             DWARF                GENERIC                 PROCESS PLUGIN  LLDB    VALUE REGS    INVALIDATE REGS SIZE EXPR SIZE LEN
745 //   ======   ======  ===  ===  =============     ==========      ===================  ===================  ======================  =============   ====    ==========    =============== ========= ========
746     { "r0",   "arg1",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r0,          dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,               0 },     nullptr,           nullptr,  nullptr,       0 },
747     { "r1",   "arg2",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r1,          dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,               1 },     nullptr,           nullptr,  nullptr,       0 },
748     { "r2",   "arg3",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r2,          dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,               2 },     nullptr,           nullptr,  nullptr,       0 },
749     { "r3",   "arg4",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r3,          dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,               3 },     nullptr,           nullptr,  nullptr,       0 },
750     { "r4",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r4,          dwarf_r4,            LLDB_INVALID_REGNUM,     4,               4 },     nullptr,           nullptr,  nullptr,       0 },
751     { "r5",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r5,          dwarf_r5,            LLDB_INVALID_REGNUM,     5,               5 },     nullptr,           nullptr,  nullptr,       0 },
752     { "r6",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r6,          dwarf_r6,            LLDB_INVALID_REGNUM,     6,               6 },     nullptr,           nullptr,  nullptr,       0 },
753     { "r7",     "fp",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r7,          dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,               7 },     nullptr,           nullptr,  nullptr,       0 },
754     { "r8",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r8,          dwarf_r8,            LLDB_INVALID_REGNUM,     8,               8 },     nullptr,           nullptr,  nullptr,       0 },
755     { "r9",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r9,          dwarf_r9,            LLDB_INVALID_REGNUM,     9,               9 },     nullptr,           nullptr,  nullptr,       0 },
756     { "r10", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r10,         dwarf_r10,           LLDB_INVALID_REGNUM,    10,              10 },     nullptr,           nullptr,  nullptr,       0 },
757     { "r11", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r11,         dwarf_r11,           LLDB_INVALID_REGNUM,    11,              11 },     nullptr,           nullptr,  nullptr,       0 },
758     { "r12", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r12,         dwarf_r12,           LLDB_INVALID_REGNUM,    12,              12 },     nullptr,           nullptr,  nullptr,       0 },
759     { "sp",     "r13",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_sp,          dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,              13 },     nullptr,           nullptr,  nullptr,       0 },
760     { "lr",     "r14",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_lr,          dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,              14 },     nullptr,           nullptr,  nullptr,       0 },
761     { "pc",     "r15",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_pc,          dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,              15 },     nullptr,           nullptr,  nullptr,       0 },
762     { "f0",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,              16 },     nullptr,           nullptr,  nullptr,       0 },
763     { "f1",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,              17 },     nullptr,           nullptr,  nullptr,       0 },
764     { "f2",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,              18 },     nullptr,           nullptr,  nullptr,       0 },
765     { "f3",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,              19 },     nullptr,           nullptr,  nullptr,       0 },
766     { "f4",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,              20 },     nullptr,           nullptr,  nullptr,       0 },
767     { "f5",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,              21 },     nullptr,           nullptr,  nullptr,       0 },
768     { "f6",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,              22 },     nullptr,           nullptr,  nullptr,       0 },
769     { "f7",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,              23 },     nullptr,           nullptr,  nullptr,       0 },
770     { "fps", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,              24 },     nullptr,           nullptr,  nullptr,       0 },
771     { "cpsr","flags",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_cpsr,        dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,              25 },     nullptr,           nullptr,  nullptr,       0 },
772     { "s0",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,              26 },     nullptr,           nullptr,  nullptr,       0 },
773     { "s1",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,              27 },     nullptr,           nullptr,  nullptr,       0 },
774     { "s2",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,              28 },     nullptr,           nullptr,  nullptr,       0 },
775     { "s3",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,              29 },     nullptr,           nullptr,  nullptr,       0 },
776     { "s4",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,              30 },     nullptr,           nullptr,  nullptr,       0 },
777     { "s5",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,              31 },     nullptr,           nullptr,  nullptr,       0 },
778     { "s6",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,              32 },     nullptr,           nullptr,  nullptr,       0 },
779     { "s7",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,              33 },     nullptr,           nullptr,  nullptr,       0 },
780     { "s8",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,              34 },     nullptr,           nullptr,  nullptr,       0 },
781     { "s9",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,              35 },     nullptr,           nullptr,  nullptr,       0 },
782     { "s10", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,              36 },     nullptr,           nullptr,  nullptr,       0 },
783     { "s11", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,              37 },     nullptr,           nullptr,  nullptr,       0 },
784     { "s12", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,              38 },     nullptr,           nullptr,  nullptr,       0 },
785     { "s13", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,              39 },     nullptr,           nullptr,  nullptr,       0 },
786     { "s14", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,              40 },     nullptr,           nullptr,  nullptr,       0 },
787     { "s15", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,              41 },     nullptr,           nullptr,  nullptr,       0 },
788     { "s16", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,              42 },     nullptr,           nullptr,  nullptr,       0 },
789     { "s17", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,              43 },     nullptr,           nullptr,  nullptr,       0 },
790     { "s18", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,              44 },     nullptr,           nullptr,  nullptr,       0 },
791     { "s19", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,              45 },     nullptr,           nullptr,  nullptr,       0 },
792     { "s20", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,              46 },     nullptr,           nullptr,  nullptr,       0 },
793     { "s21", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,              47 },     nullptr,           nullptr,  nullptr,       0 },
794     { "s22", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,              48 },     nullptr,           nullptr,  nullptr,       0 },
795     { "s23", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,              49 },     nullptr,           nullptr,  nullptr,       0 },
796     { "s24", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,              50 },     nullptr,           nullptr,  nullptr,       0 },
797     { "s25", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,              51 },     nullptr,           nullptr,  nullptr,       0 },
798     { "s26", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,              52 },     nullptr,           nullptr,  nullptr,       0 },
799     { "s27", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,              53 },     nullptr,           nullptr,  nullptr,       0 },
800     { "s28", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,              54 },     nullptr,           nullptr,  nullptr,       0 },
801     { "s29", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,              55 },     nullptr,           nullptr,  nullptr,       0 },
802     { "s30", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,              56 },     nullptr,           nullptr,  nullptr,       0 },
803     { "s31", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,              57 },     nullptr,           nullptr,  nullptr,       0 },
804     { "fpscr",nullptr,  4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,              58 },     nullptr,           nullptr,  nullptr,       0 },
805     { "d16", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,              59 },     nullptr,           nullptr,  nullptr,       0 },
806     { "d17", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,              60 },     nullptr,           nullptr,  nullptr,       0 },
807     { "d18", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,              61 },     nullptr,           nullptr,  nullptr,       0 },
808     { "d19", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,              62 },     nullptr,           nullptr,  nullptr,       0 },
809     { "d20", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,              63 },     nullptr,           nullptr,  nullptr,       0 },
810     { "d21", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,              64 },     nullptr,           nullptr,  nullptr,       0 },
811     { "d22", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,              65 },     nullptr,           nullptr,  nullptr,       0 },
812     { "d23", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,              66 },     nullptr,           nullptr,  nullptr,       0 },
813     { "d24", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,              67 },     nullptr,           nullptr,  nullptr,       0 },
814     { "d25", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,              68 },     nullptr,           nullptr,  nullptr,       0 },
815     { "d26", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,              69 },     nullptr,           nullptr,  nullptr,       0 },
816     { "d27", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,              70 },     nullptr,           nullptr,  nullptr,       0 },
817     { "d28", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,              71 },     nullptr,           nullptr,  nullptr,       0 },
818     { "d29", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,              72 },     nullptr,           nullptr,  nullptr,       0 },
819     { "d30", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,              73 },     nullptr,           nullptr,  nullptr,       0 },
820     { "d31", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,              74 },     nullptr,           nullptr,  nullptr,       0 },
821     { "d0",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,              75 },   g_d0_regs,           nullptr,  nullptr,       0 },
822     { "d1",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,              76 },   g_d1_regs,           nullptr,  nullptr,       0 },
823     { "d2",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,              77 },   g_d2_regs,           nullptr,  nullptr,       0 },
824     { "d3",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,              78 },   g_d3_regs,           nullptr,  nullptr,       0 },
825     { "d4",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,              79 },   g_d4_regs,           nullptr,  nullptr,       0 },
826     { "d5",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,              80 },   g_d5_regs,           nullptr,  nullptr,       0 },
827     { "d6",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,              81 },   g_d6_regs,           nullptr,  nullptr,       0 },
828     { "d7",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,              82 },   g_d7_regs,           nullptr,  nullptr,       0 },
829     { "d8",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,              83 },   g_d8_regs,           nullptr,  nullptr,       0 },
830     { "d9",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,              84 },   g_d9_regs,           nullptr,  nullptr,       0 },
831     { "d10", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,              85 },  g_d10_regs,           nullptr,  nullptr,       0 },
832     { "d11", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,              86 },  g_d11_regs,           nullptr,  nullptr,       0 },
833     { "d12", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,              87 },  g_d12_regs,           nullptr,  nullptr,       0 },
834     { "d13", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,              88 },  g_d13_regs,           nullptr,  nullptr,       0 },
835     { "d14", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,              89 },  g_d14_regs,           nullptr,  nullptr,       0 },
836     { "d15", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,              90 },  g_d15_regs,           nullptr,  nullptr,       0 },
837     { "q0",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,              91 },   g_q0_regs,           nullptr,  nullptr,       0 },
838     { "q1",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,              92 },   g_q1_regs,           nullptr,  nullptr,       0 },
839     { "q2",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,              93 },   g_q2_regs,           nullptr,  nullptr,       0 },
840     { "q3",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,              94 },   g_q3_regs,           nullptr,  nullptr,       0 },
841     { "q4",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,              95 },   g_q4_regs,           nullptr,  nullptr,       0 },
842     { "q5",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,              96 },   g_q5_regs,           nullptr,  nullptr,       0 },
843     { "q6",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,              97 },   g_q6_regs,           nullptr,  nullptr,       0 },
844     { "q7",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,              98 },   g_q7_regs,           nullptr,  nullptr,       0 },
845     { "q8",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,              99 },   g_q8_regs,           nullptr,  nullptr,       0 },
846     { "q9",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,             100 },   g_q9_regs,           nullptr,  nullptr,       0 },
847     { "q10", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,             101 },  g_q10_regs,           nullptr,  nullptr,       0 },
848     { "q11", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,             102 },  g_q11_regs,           nullptr,  nullptr,       0 },
849     { "q12", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,             103 },  g_q12_regs,           nullptr,  nullptr,       0 },
850     { "q13", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,             104 },  g_q13_regs,           nullptr,  nullptr,       0 },
851     { "q14", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,             105 },  g_q14_regs,           nullptr,  nullptr,       0 },
852     { "q15", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,             106 },  g_q15_regs,           nullptr,  nullptr,       0 }
853     };
854   // clang-format on
855 
856   static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
857   static ConstString gpr_reg_set("General Purpose Registers");
858   static ConstString sfp_reg_set("Software Floating Point Registers");
859   static ConstString vfp_reg_set("Floating Point Registers");
860   size_t i;
861   if (from_scratch) {
862     // Calculate the offsets of the registers
863     // Note that the layout of the "composite" registers (d0-d15 and q0-q15)
864     // which comes after the "primordial" registers is important.  This enables
865     // us to calculate the offset of the composite register by using the offset
866     // of its first primordial register.  For example, to calculate the offset
867     // of q0, use s0's offset.
868     if (g_register_infos[2].byte_offset == 0) {
869       uint32_t byte_offset = 0;
870       for (i = 0; i < num_registers; ++i) {
871         // For primordial registers, increment the byte_offset by the byte_size
872         // to arrive at the byte_offset for the next register.  Otherwise, we
873         // have a composite register whose offset can be calculated by
874         // consulting the offset of its first primordial register.
875         if (!g_register_infos[i].value_regs) {
876           g_register_infos[i].byte_offset = byte_offset;
877           byte_offset += g_register_infos[i].byte_size;
878         } else {
879           const uint32_t first_primordial_reg =
880               g_register_infos[i].value_regs[0];
881           g_register_infos[i].byte_offset =
882               g_register_infos[first_primordial_reg].byte_offset;
883         }
884       }
885     }
886     for (i = 0; i < num_registers; ++i) {
887       ConstString name;
888       ConstString alt_name;
889       if (g_register_infos[i].name && g_register_infos[i].name[0])
890         name.SetCString(g_register_infos[i].name);
891       if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
892         alt_name.SetCString(g_register_infos[i].alt_name);
893 
894       if (i <= 15 || i == 25)
895         AddRegister(g_register_infos[i], name, alt_name, gpr_reg_set);
896       else if (i <= 24)
897         AddRegister(g_register_infos[i], name, alt_name, sfp_reg_set);
898       else
899         AddRegister(g_register_infos[i], name, alt_name, vfp_reg_set);
900     }
901   } else {
902     // Add composite registers to our primordial registers, then.
903     const size_t num_composites = llvm::array_lengthof(g_composites);
904     const size_t num_dynamic_regs = GetNumRegisters();
905     const size_t num_common_regs = num_registers - num_composites;
906     RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;
907 
908     // First we need to validate that all registers that we already have match
909     // the non composite regs. If so, then we can add the registers, else we
910     // need to bail
911     bool match = true;
912     if (num_dynamic_regs == num_common_regs) {
913       for (i = 0; match && i < num_dynamic_regs; ++i) {
914         // Make sure all register names match
915         if (m_regs[i].name && g_register_infos[i].name) {
916           if (strcmp(m_regs[i].name, g_register_infos[i].name)) {
917             match = false;
918             break;
919           }
920         }
921 
922         // Make sure all register byte sizes match
923         if (m_regs[i].byte_size != g_register_infos[i].byte_size) {
924           match = false;
925           break;
926         }
927       }
928     } else {
929       // Wrong number of registers.
930       match = false;
931     }
932     // If "match" is true, then we can add extra registers.
933     if (match) {
934       for (i = 0; i < num_composites; ++i) {
935         ConstString name;
936         ConstString alt_name;
937         const uint32_t first_primordial_reg =
938             g_comp_register_infos[i].value_regs[0];
939         const char *reg_name = g_register_infos[first_primordial_reg].name;
940         if (reg_name && reg_name[0]) {
941           for (uint32_t j = 0; j < num_dynamic_regs; ++j) {
942             const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
943             // Find a matching primordial register info entry.
944             if (reg_info && reg_info->name &&
945                 ::strcasecmp(reg_info->name, reg_name) == 0) {
946               // The name matches the existing primordial entry. Find and
947               // assign the offset, and then add this composite register entry.
948               g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
949               name.SetCString(g_comp_register_infos[i].name);
950               AddRegister(g_comp_register_infos[i], name, alt_name,
951                           vfp_reg_set);
952             }
953           }
954         }
955       }
956     }
957   }
958 }
959