1 //===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "GDBRemoteRegisterContext.h" 10 11 #include "lldb/Target/ExecutionContext.h" 12 #include "lldb/Target/Target.h" 13 #include "lldb/Utility/DataBufferHeap.h" 14 #include "lldb/Utility/DataExtractor.h" 15 #include "lldb/Utility/RegisterValue.h" 16 #include "lldb/Utility/Scalar.h" 17 #include "lldb/Utility/StreamString.h" 18 #include "ProcessGDBRemote.h" 19 #include "ProcessGDBRemoteLog.h" 20 #include "ThreadGDBRemote.h" 21 #include "Utility/ARM_DWARF_Registers.h" 22 #include "Utility/ARM_ehframe_Registers.h" 23 #include "lldb/Utility/StringExtractorGDBRemote.h" 24 25 #include <memory> 26 27 using namespace lldb; 28 using namespace lldb_private; 29 using namespace lldb_private::process_gdb_remote; 30 31 // GDBRemoteRegisterContext constructor 32 GDBRemoteRegisterContext::GDBRemoteRegisterContext( 33 ThreadGDBRemote &thread, uint32_t concrete_frame_idx, 34 GDBRemoteDynamicRegisterInfo ®_info, bool read_all_at_once) 35 : RegisterContext(thread, concrete_frame_idx), m_reg_info(reg_info), 36 m_reg_valid(), m_reg_data(), m_read_all_at_once(read_all_at_once) { 37 // Resize our vector of bools to contain one bool for every register. We will 38 // use these boolean values to know when a register value is valid in 39 // m_reg_data. 40 m_reg_valid.resize(reg_info.GetNumRegisters()); 41 42 // Make a heap based buffer that is big enough to store all registers 43 DataBufferSP reg_data_sp( 44 new DataBufferHeap(reg_info.GetRegisterDataByteSize(), 0)); 45 m_reg_data.SetData(reg_data_sp); 46 m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder()); 47 } 48 49 // Destructor 50 GDBRemoteRegisterContext::~GDBRemoteRegisterContext() {} 51 52 void GDBRemoteRegisterContext::InvalidateAllRegisters() { 53 SetAllRegisterValid(false); 54 } 55 56 void GDBRemoteRegisterContext::SetAllRegisterValid(bool b) { 57 std::vector<bool>::iterator pos, end = m_reg_valid.end(); 58 for (pos = m_reg_valid.begin(); pos != end; ++pos) 59 *pos = b; 60 } 61 62 size_t GDBRemoteRegisterContext::GetRegisterCount() { 63 return m_reg_info.GetNumRegisters(); 64 } 65 66 const RegisterInfo * 67 GDBRemoteRegisterContext::GetRegisterInfoAtIndex(size_t reg) { 68 RegisterInfo *reg_info = m_reg_info.GetRegisterInfoAtIndex(reg); 69 70 if (reg_info && reg_info->dynamic_size_dwarf_expr_bytes) { 71 const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture(); 72 uint8_t reg_size = UpdateDynamicRegisterSize(arch, reg_info); 73 reg_info->byte_size = reg_size; 74 } 75 return reg_info; 76 } 77 78 size_t GDBRemoteRegisterContext::GetRegisterSetCount() { 79 return m_reg_info.GetNumRegisterSets(); 80 } 81 82 const RegisterSet *GDBRemoteRegisterContext::GetRegisterSet(size_t reg_set) { 83 return m_reg_info.GetRegisterSet(reg_set); 84 } 85 86 bool GDBRemoteRegisterContext::ReadRegister(const RegisterInfo *reg_info, 87 RegisterValue &value) { 88 // Read the register 89 if (ReadRegisterBytes(reg_info, m_reg_data)) { 90 const bool partial_data_ok = false; 91 Status error(value.SetValueFromData( 92 reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok)); 93 return error.Success(); 94 } 95 return false; 96 } 97 98 bool GDBRemoteRegisterContext::PrivateSetRegisterValue( 99 uint32_t reg, llvm::ArrayRef<uint8_t> data) { 100 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg); 101 if (reg_info == nullptr) 102 return false; 103 104 // Invalidate if needed 105 InvalidateIfNeeded(false); 106 107 const size_t reg_byte_size = reg_info->byte_size; 108 memcpy(const_cast<uint8_t *>( 109 m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), 110 data.data(), std::min(data.size(), reg_byte_size)); 111 bool success = data.size() >= reg_byte_size; 112 if (success) { 113 SetRegisterIsValid(reg, true); 114 } else if (data.size() > 0) { 115 // Only set register is valid to false if we copied some bytes, else leave 116 // it as it was. 117 SetRegisterIsValid(reg, false); 118 } 119 return success; 120 } 121 122 bool GDBRemoteRegisterContext::PrivateSetRegisterValue(uint32_t reg, 123 uint64_t new_reg_val) { 124 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg); 125 if (reg_info == nullptr) 126 return false; 127 128 // Early in process startup, we can get a thread that has an invalid byte 129 // order because the process hasn't been completely set up yet (see the ctor 130 // where the byte order is setfrom the process). If that's the case, we 131 // can't set the value here. 132 if (m_reg_data.GetByteOrder() == eByteOrderInvalid) { 133 return false; 134 } 135 136 // Invalidate if needed 137 InvalidateIfNeeded(false); 138 139 DataBufferSP buffer_sp(new DataBufferHeap(&new_reg_val, sizeof(new_reg_val))); 140 DataExtractor data(buffer_sp, endian::InlHostByteOrder(), sizeof(void *)); 141 142 // If our register context and our register info disagree, which should never 143 // happen, don't overwrite past the end of the buffer. 144 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 145 return false; 146 147 // Grab a pointer to where we are going to put this register 148 uint8_t *dst = const_cast<uint8_t *>( 149 m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); 150 151 if (dst == nullptr) 152 return false; 153 154 if (data.CopyByteOrderedData(0, // src offset 155 reg_info->byte_size, // src length 156 dst, // dst 157 reg_info->byte_size, // dst length 158 m_reg_data.GetByteOrder())) // dst byte order 159 { 160 SetRegisterIsValid(reg, true); 161 return true; 162 } 163 return false; 164 } 165 166 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes(). 167 bool GDBRemoteRegisterContext::GetPrimordialRegister( 168 const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) { 169 const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB]; 170 const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin]; 171 172 if (DataBufferSP buffer_sp = 173 gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg)) 174 return PrivateSetRegisterValue( 175 lldb_reg, llvm::ArrayRef<uint8_t>(buffer_sp->GetBytes(), 176 buffer_sp->GetByteSize())); 177 return false; 178 } 179 180 bool GDBRemoteRegisterContext::ReadRegisterBytes(const RegisterInfo *reg_info, 181 DataExtractor &data) { 182 ExecutionContext exe_ctx(CalculateThread()); 183 184 Process *process = exe_ctx.GetProcessPtr(); 185 Thread *thread = exe_ctx.GetThreadPtr(); 186 if (process == nullptr || thread == nullptr) 187 return false; 188 189 GDBRemoteCommunicationClient &gdb_comm( 190 ((ProcessGDBRemote *)process)->GetGDBRemote()); 191 192 InvalidateIfNeeded(false); 193 194 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 195 196 if (!GetRegisterIsValid(reg)) { 197 if (m_read_all_at_once) { 198 if (DataBufferSP buffer_sp = 199 gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())) { 200 memcpy(const_cast<uint8_t *>(m_reg_data.GetDataStart()), 201 buffer_sp->GetBytes(), 202 std::min(buffer_sp->GetByteSize(), m_reg_data.GetByteSize())); 203 if (buffer_sp->GetByteSize() >= m_reg_data.GetByteSize()) { 204 SetAllRegisterValid(true); 205 return true; 206 } else { 207 Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD | 208 GDBR_LOG_PACKETS)); 209 if (log) 210 log->Printf ("error: GDBRemoteRegisterContext::ReadRegisterBytes tried to read the " 211 "entire register context at once, expected at least %" PRId64 " bytes " 212 "but only got %" PRId64 " bytes.", m_reg_data.GetByteSize(), 213 buffer_sp->GetByteSize()); 214 } 215 } 216 return false; 217 } 218 if (reg_info->value_regs) { 219 // Process this composite register request by delegating to the 220 // constituent primordial registers. 221 222 // Index of the primordial register. 223 bool success = true; 224 for (uint32_t idx = 0; success; ++idx) { 225 const uint32_t prim_reg = reg_info->value_regs[idx]; 226 if (prim_reg == LLDB_INVALID_REGNUM) 227 break; 228 // We have a valid primordial register as our constituent. Grab the 229 // corresponding register info. 230 const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg); 231 if (prim_reg_info == nullptr) 232 success = false; 233 else { 234 // Read the containing register if it hasn't already been read 235 if (!GetRegisterIsValid(prim_reg)) 236 success = GetPrimordialRegister(prim_reg_info, gdb_comm); 237 } 238 } 239 240 if (success) { 241 // If we reach this point, all primordial register requests have 242 // succeeded. Validate this composite register. 243 SetRegisterIsValid(reg_info, true); 244 } 245 } else { 246 // Get each register individually 247 GetPrimordialRegister(reg_info, gdb_comm); 248 } 249 250 // Make sure we got a valid register value after reading it 251 if (!GetRegisterIsValid(reg)) 252 return false; 253 } 254 255 if (&data != &m_reg_data) { 256 assert(m_reg_data.GetByteSize() >= 257 reg_info->byte_offset + reg_info->byte_size); 258 // If our register context and our register info disagree, which should 259 // never happen, don't read past the end of the buffer. 260 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 261 return false; 262 263 // If we aren't extracting into our own buffer (which only happens when 264 // this function is called from ReadRegisterValue(uint32_t, Scalar&)) then 265 // we transfer bytes from our buffer into the data buffer that was passed 266 // in 267 268 data.SetByteOrder(m_reg_data.GetByteOrder()); 269 data.SetData(m_reg_data, reg_info->byte_offset, reg_info->byte_size); 270 } 271 return true; 272 } 273 274 bool GDBRemoteRegisterContext::WriteRegister(const RegisterInfo *reg_info, 275 const RegisterValue &value) { 276 DataExtractor data; 277 if (value.GetData(data)) 278 return WriteRegisterBytes(reg_info, data, 0); 279 return false; 280 } 281 282 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes(). 283 bool GDBRemoteRegisterContext::SetPrimordialRegister( 284 const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) { 285 StreamString packet; 286 StringExtractorGDBRemote response; 287 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 288 // Invalidate just this register 289 SetRegisterIsValid(reg, false); 290 291 return gdb_comm.WriteRegister( 292 m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin], 293 {m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size), 294 reg_info->byte_size}); 295 } 296 297 bool GDBRemoteRegisterContext::WriteRegisterBytes(const RegisterInfo *reg_info, 298 DataExtractor &data, 299 uint32_t data_offset) { 300 ExecutionContext exe_ctx(CalculateThread()); 301 302 Process *process = exe_ctx.GetProcessPtr(); 303 Thread *thread = exe_ctx.GetThreadPtr(); 304 if (process == nullptr || thread == nullptr) 305 return false; 306 307 GDBRemoteCommunicationClient &gdb_comm( 308 ((ProcessGDBRemote *)process)->GetGDBRemote()); 309 310 assert(m_reg_data.GetByteSize() >= 311 reg_info->byte_offset + reg_info->byte_size); 312 313 // If our register context and our register info disagree, which should never 314 // happen, don't overwrite past the end of the buffer. 315 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) 316 return false; 317 318 // Grab a pointer to where we are going to put this register 319 uint8_t *dst = const_cast<uint8_t *>( 320 m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); 321 322 if (dst == nullptr) 323 return false; 324 325 if (data.CopyByteOrderedData(data_offset, // src offset 326 reg_info->byte_size, // src length 327 dst, // dst 328 reg_info->byte_size, // dst length 329 m_reg_data.GetByteOrder())) // dst byte order 330 { 331 GDBRemoteClientBase::Lock lock(gdb_comm, false); 332 if (lock) { 333 if (m_read_all_at_once) { 334 // Invalidate all register values 335 InvalidateIfNeeded(true); 336 337 // Set all registers in one packet 338 if (gdb_comm.WriteAllRegisters( 339 m_thread.GetProtocolID(), 340 {m_reg_data.GetDataStart(), size_t(m_reg_data.GetByteSize())})) 341 342 { 343 SetAllRegisterValid(false); 344 return true; 345 } 346 } else { 347 bool success = true; 348 349 if (reg_info->value_regs) { 350 // This register is part of another register. In this case we read 351 // the actual register data for any "value_regs", and once all that 352 // data is read, we will have enough data in our register context 353 // bytes for the value of this register 354 355 // Invalidate this composite register first. 356 357 for (uint32_t idx = 0; success; ++idx) { 358 const uint32_t reg = reg_info->value_regs[idx]; 359 if (reg == LLDB_INVALID_REGNUM) 360 break; 361 // We have a valid primordial register as our constituent. Grab the 362 // corresponding register info. 363 const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg); 364 if (value_reg_info == nullptr) 365 success = false; 366 else 367 success = SetPrimordialRegister(value_reg_info, gdb_comm); 368 } 369 } else { 370 // This is an actual register, write it 371 success = SetPrimordialRegister(reg_info, gdb_comm); 372 } 373 374 // Check if writing this register will invalidate any other register 375 // values? If so, invalidate them 376 if (reg_info->invalidate_regs) { 377 for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0]; 378 reg != LLDB_INVALID_REGNUM; 379 reg = reg_info->invalidate_regs[++idx]) { 380 SetRegisterIsValid(reg, false); 381 } 382 } 383 384 return success; 385 } 386 } else { 387 Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD | 388 GDBR_LOG_PACKETS)); 389 if (log) { 390 if (log->GetVerbose()) { 391 StreamString strm; 392 gdb_comm.DumpHistory(strm); 393 log->Printf("error: failed to get packet sequence mutex, not sending " 394 "write register for \"%s\":\n%s", 395 reg_info->name, strm.GetData()); 396 } else 397 log->Printf("error: failed to get packet sequence mutex, not sending " 398 "write register for \"%s\"", 399 reg_info->name); 400 } 401 } 402 } 403 return false; 404 } 405 406 bool GDBRemoteRegisterContext::ReadAllRegisterValues( 407 RegisterCheckpoint ®_checkpoint) { 408 ExecutionContext exe_ctx(CalculateThread()); 409 410 Process *process = exe_ctx.GetProcessPtr(); 411 Thread *thread = exe_ctx.GetThreadPtr(); 412 if (process == nullptr || thread == nullptr) 413 return false; 414 415 GDBRemoteCommunicationClient &gdb_comm( 416 ((ProcessGDBRemote *)process)->GetGDBRemote()); 417 418 uint32_t save_id = 0; 419 if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) { 420 reg_checkpoint.SetID(save_id); 421 reg_checkpoint.GetData().reset(); 422 return true; 423 } else { 424 reg_checkpoint.SetID(0); // Invalid save ID is zero 425 return ReadAllRegisterValues(reg_checkpoint.GetData()); 426 } 427 } 428 429 bool GDBRemoteRegisterContext::WriteAllRegisterValues( 430 const RegisterCheckpoint ®_checkpoint) { 431 uint32_t save_id = reg_checkpoint.GetID(); 432 if (save_id != 0) { 433 ExecutionContext exe_ctx(CalculateThread()); 434 435 Process *process = exe_ctx.GetProcessPtr(); 436 Thread *thread = exe_ctx.GetThreadPtr(); 437 if (process == nullptr || thread == nullptr) 438 return false; 439 440 GDBRemoteCommunicationClient &gdb_comm( 441 ((ProcessGDBRemote *)process)->GetGDBRemote()); 442 443 return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id); 444 } else { 445 return WriteAllRegisterValues(reg_checkpoint.GetData()); 446 } 447 } 448 449 bool GDBRemoteRegisterContext::ReadAllRegisterValues( 450 lldb::DataBufferSP &data_sp) { 451 ExecutionContext exe_ctx(CalculateThread()); 452 453 Process *process = exe_ctx.GetProcessPtr(); 454 Thread *thread = exe_ctx.GetThreadPtr(); 455 if (process == nullptr || thread == nullptr) 456 return false; 457 458 GDBRemoteCommunicationClient &gdb_comm( 459 ((ProcessGDBRemote *)process)->GetGDBRemote()); 460 461 const bool use_g_packet = 462 !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process); 463 464 GDBRemoteClientBase::Lock lock(gdb_comm, false); 465 if (lock) { 466 if (gdb_comm.SyncThreadState(m_thread.GetProtocolID())) 467 InvalidateAllRegisters(); 468 469 if (use_g_packet && 470 (data_sp = gdb_comm.ReadAllRegisters(m_thread.GetProtocolID()))) 471 return true; 472 473 // We're going to read each register 474 // individually and store them as binary data in a buffer. 475 const RegisterInfo *reg_info; 476 477 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr; 478 i++) { 479 if (reg_info 480 ->value_regs) // skip registers that are slices of real registers 481 continue; 482 ReadRegisterBytes(reg_info, m_reg_data); 483 // ReadRegisterBytes saves the contents of the register in to the 484 // m_reg_data buffer 485 } 486 data_sp = std::make_shared<DataBufferHeap>( 487 m_reg_data.GetDataStart(), m_reg_info.GetRegisterDataByteSize()); 488 return true; 489 } else { 490 491 Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD | 492 GDBR_LOG_PACKETS)); 493 if (log) { 494 if (log->GetVerbose()) { 495 StreamString strm; 496 gdb_comm.DumpHistory(strm); 497 log->Printf("error: failed to get packet sequence mutex, not sending " 498 "read all registers:\n%s", 499 strm.GetData()); 500 } else 501 log->Printf("error: failed to get packet sequence mutex, not sending " 502 "read all registers"); 503 } 504 } 505 506 data_sp.reset(); 507 return false; 508 } 509 510 bool GDBRemoteRegisterContext::WriteAllRegisterValues( 511 const lldb::DataBufferSP &data_sp) { 512 if (!data_sp || data_sp->GetBytes() == nullptr || data_sp->GetByteSize() == 0) 513 return false; 514 515 ExecutionContext exe_ctx(CalculateThread()); 516 517 Process *process = exe_ctx.GetProcessPtr(); 518 Thread *thread = exe_ctx.GetThreadPtr(); 519 if (process == nullptr || thread == nullptr) 520 return false; 521 522 GDBRemoteCommunicationClient &gdb_comm( 523 ((ProcessGDBRemote *)process)->GetGDBRemote()); 524 525 const bool use_g_packet = 526 !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process); 527 528 GDBRemoteClientBase::Lock lock(gdb_comm, false); 529 if (lock) { 530 // The data_sp contains the G response packet. 531 if (use_g_packet) { 532 if (gdb_comm.WriteAllRegisters( 533 m_thread.GetProtocolID(), 534 {data_sp->GetBytes(), size_t(data_sp->GetByteSize())})) 535 return true; 536 537 uint32_t num_restored = 0; 538 // We need to manually go through all of the registers and restore them 539 // manually 540 DataExtractor restore_data(data_sp, m_reg_data.GetByteOrder(), 541 m_reg_data.GetAddressByteSize()); 542 543 const RegisterInfo *reg_info; 544 545 // The g packet contents may either include the slice registers 546 // (registers defined in terms of other registers, e.g. eax is a subset 547 // of rax) or not. The slice registers should NOT be in the g packet, 548 // but some implementations may incorrectly include them. 549 // 550 // If the slice registers are included in the packet, we must step over 551 // the slice registers when parsing the packet -- relying on the 552 // RegisterInfo byte_offset field would be incorrect. If the slice 553 // registers are not included, then using the byte_offset values into the 554 // data buffer is the best way to find individual register values. 555 556 uint64_t size_including_slice_registers = 0; 557 uint64_t size_not_including_slice_registers = 0; 558 uint64_t size_by_highest_offset = 0; 559 560 for (uint32_t reg_idx = 0; 561 (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr; ++reg_idx) { 562 size_including_slice_registers += reg_info->byte_size; 563 if (reg_info->value_regs == nullptr) 564 size_not_including_slice_registers += reg_info->byte_size; 565 if (reg_info->byte_offset >= size_by_highest_offset) 566 size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size; 567 } 568 569 bool use_byte_offset_into_buffer; 570 if (size_by_highest_offset == restore_data.GetByteSize()) { 571 // The size of the packet agrees with the highest offset: + size in the 572 // register file 573 use_byte_offset_into_buffer = true; 574 } else if (size_not_including_slice_registers == 575 restore_data.GetByteSize()) { 576 // The size of the packet is the same as concatenating all of the 577 // registers sequentially, skipping the slice registers 578 use_byte_offset_into_buffer = true; 579 } else if (size_including_slice_registers == restore_data.GetByteSize()) { 580 // The slice registers are present in the packet (when they shouldn't 581 // be). Don't try to use the RegisterInfo byte_offset into the 582 // restore_data, it will point to the wrong place. 583 use_byte_offset_into_buffer = false; 584 } else { 585 // None of our expected sizes match the actual g packet data we're 586 // looking at. The most conservative approach here is to use the 587 // running total byte offset. 588 use_byte_offset_into_buffer = false; 589 } 590 591 // In case our register definitions don't include the correct offsets, 592 // keep track of the size of each reg & compute offset based on that. 593 uint32_t running_byte_offset = 0; 594 for (uint32_t reg_idx = 0; 595 (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr; 596 ++reg_idx, running_byte_offset += reg_info->byte_size) { 597 // Skip composite aka slice registers (e.g. eax is a slice of rax). 598 if (reg_info->value_regs) 599 continue; 600 601 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 602 603 uint32_t register_offset; 604 if (use_byte_offset_into_buffer) { 605 register_offset = reg_info->byte_offset; 606 } else { 607 register_offset = running_byte_offset; 608 } 609 610 const uint32_t reg_byte_size = reg_info->byte_size; 611 612 const uint8_t *restore_src = 613 restore_data.PeekData(register_offset, reg_byte_size); 614 if (restore_src) { 615 SetRegisterIsValid(reg, false); 616 if (gdb_comm.WriteRegister( 617 m_thread.GetProtocolID(), 618 reg_info->kinds[eRegisterKindProcessPlugin], 619 {restore_src, reg_byte_size})) 620 ++num_restored; 621 } 622 } 623 return num_restored > 0; 624 } else { 625 // For the use_g_packet == false case, we're going to write each register 626 // individually. The data buffer is binary data in this case, instead of 627 // ascii characters. 628 629 bool arm64_debugserver = false; 630 if (m_thread.GetProcess().get()) { 631 const ArchSpec &arch = 632 m_thread.GetProcess()->GetTarget().GetArchitecture(); 633 if (arch.IsValid() && arch.GetMachine() == llvm::Triple::aarch64 && 634 arch.GetTriple().getVendor() == llvm::Triple::Apple && 635 arch.GetTriple().getOS() == llvm::Triple::IOS) { 636 arm64_debugserver = true; 637 } 638 } 639 uint32_t num_restored = 0; 640 const RegisterInfo *reg_info; 641 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr; 642 i++) { 643 if (reg_info->value_regs) // skip registers that are slices of real 644 // registers 645 continue; 646 // Skip the fpsr and fpcr floating point status/control register 647 // writing to work around a bug in an older version of debugserver that 648 // would lead to register context corruption when writing fpsr/fpcr. 649 if (arm64_debugserver && (strcmp(reg_info->name, "fpsr") == 0 || 650 strcmp(reg_info->name, "fpcr") == 0)) { 651 continue; 652 } 653 654 SetRegisterIsValid(reg_info, false); 655 if (gdb_comm.WriteRegister(m_thread.GetProtocolID(), 656 reg_info->kinds[eRegisterKindProcessPlugin], 657 {data_sp->GetBytes() + reg_info->byte_offset, 658 reg_info->byte_size})) 659 ++num_restored; 660 } 661 return num_restored > 0; 662 } 663 } else { 664 Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD | 665 GDBR_LOG_PACKETS)); 666 if (log) { 667 if (log->GetVerbose()) { 668 StreamString strm; 669 gdb_comm.DumpHistory(strm); 670 log->Printf("error: failed to get packet sequence mutex, not sending " 671 "write all registers:\n%s", 672 strm.GetData()); 673 } else 674 log->Printf("error: failed to get packet sequence mutex, not sending " 675 "write all registers"); 676 } 677 } 678 return false; 679 } 680 681 uint32_t GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber( 682 lldb::RegisterKind kind, uint32_t num) { 683 return m_reg_info.ConvertRegisterKindToRegisterNumber(kind, num); 684 } 685 686 void GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) { 687 // For Advanced SIMD and VFP register mapping. 688 static uint32_t g_d0_regs[] = {26, 27, LLDB_INVALID_REGNUM}; // (s0, s1) 689 static uint32_t g_d1_regs[] = {28, 29, LLDB_INVALID_REGNUM}; // (s2, s3) 690 static uint32_t g_d2_regs[] = {30, 31, LLDB_INVALID_REGNUM}; // (s4, s5) 691 static uint32_t g_d3_regs[] = {32, 33, LLDB_INVALID_REGNUM}; // (s6, s7) 692 static uint32_t g_d4_regs[] = {34, 35, LLDB_INVALID_REGNUM}; // (s8, s9) 693 static uint32_t g_d5_regs[] = {36, 37, LLDB_INVALID_REGNUM}; // (s10, s11) 694 static uint32_t g_d6_regs[] = {38, 39, LLDB_INVALID_REGNUM}; // (s12, s13) 695 static uint32_t g_d7_regs[] = {40, 41, LLDB_INVALID_REGNUM}; // (s14, s15) 696 static uint32_t g_d8_regs[] = {42, 43, LLDB_INVALID_REGNUM}; // (s16, s17) 697 static uint32_t g_d9_regs[] = {44, 45, LLDB_INVALID_REGNUM}; // (s18, s19) 698 static uint32_t g_d10_regs[] = {46, 47, LLDB_INVALID_REGNUM}; // (s20, s21) 699 static uint32_t g_d11_regs[] = {48, 49, LLDB_INVALID_REGNUM}; // (s22, s23) 700 static uint32_t g_d12_regs[] = {50, 51, LLDB_INVALID_REGNUM}; // (s24, s25) 701 static uint32_t g_d13_regs[] = {52, 53, LLDB_INVALID_REGNUM}; // (s26, s27) 702 static uint32_t g_d14_regs[] = {54, 55, LLDB_INVALID_REGNUM}; // (s28, s29) 703 static uint32_t g_d15_regs[] = {56, 57, LLDB_INVALID_REGNUM}; // (s30, s31) 704 static uint32_t g_q0_regs[] = { 705 26, 27, 28, 29, LLDB_INVALID_REGNUM}; // (d0, d1) -> (s0, s1, s2, s3) 706 static uint32_t g_q1_regs[] = { 707 30, 31, 32, 33, LLDB_INVALID_REGNUM}; // (d2, d3) -> (s4, s5, s6, s7) 708 static uint32_t g_q2_regs[] = { 709 34, 35, 36, 37, LLDB_INVALID_REGNUM}; // (d4, d5) -> (s8, s9, s10, s11) 710 static uint32_t g_q3_regs[] = { 711 38, 39, 40, 41, LLDB_INVALID_REGNUM}; // (d6, d7) -> (s12, s13, s14, s15) 712 static uint32_t g_q4_regs[] = { 713 42, 43, 44, 45, LLDB_INVALID_REGNUM}; // (d8, d9) -> (s16, s17, s18, s19) 714 static uint32_t g_q5_regs[] = { 715 46, 47, 48, 49, 716 LLDB_INVALID_REGNUM}; // (d10, d11) -> (s20, s21, s22, s23) 717 static uint32_t g_q6_regs[] = { 718 50, 51, 52, 53, 719 LLDB_INVALID_REGNUM}; // (d12, d13) -> (s24, s25, s26, s27) 720 static uint32_t g_q7_regs[] = { 721 54, 55, 56, 57, 722 LLDB_INVALID_REGNUM}; // (d14, d15) -> (s28, s29, s30, s31) 723 static uint32_t g_q8_regs[] = {59, 60, LLDB_INVALID_REGNUM}; // (d16, d17) 724 static uint32_t g_q9_regs[] = {61, 62, LLDB_INVALID_REGNUM}; // (d18, d19) 725 static uint32_t g_q10_regs[] = {63, 64, LLDB_INVALID_REGNUM}; // (d20, d21) 726 static uint32_t g_q11_regs[] = {65, 66, LLDB_INVALID_REGNUM}; // (d22, d23) 727 static uint32_t g_q12_regs[] = {67, 68, LLDB_INVALID_REGNUM}; // (d24, d25) 728 static uint32_t g_q13_regs[] = {69, 70, LLDB_INVALID_REGNUM}; // (d26, d27) 729 static uint32_t g_q14_regs[] = {71, 72, LLDB_INVALID_REGNUM}; // (d28, d29) 730 static uint32_t g_q15_regs[] = {73, 74, LLDB_INVALID_REGNUM}; // (d30, d31) 731 732 // This is our array of composite registers, with each element coming from 733 // the above register mappings. 734 static uint32_t *g_composites[] = { 735 g_d0_regs, g_d1_regs, g_d2_regs, g_d3_regs, g_d4_regs, g_d5_regs, 736 g_d6_regs, g_d7_regs, g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, 737 g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, g_q0_regs, g_q1_regs, 738 g_q2_regs, g_q3_regs, g_q4_regs, g_q5_regs, g_q6_regs, g_q7_regs, 739 g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, 740 g_q14_regs, g_q15_regs}; 741 742 // clang-format off 743 static RegisterInfo g_register_infos[] = { 744 // NAME ALT SZ OFF ENCODING FORMAT EH_FRAME DWARF GENERIC PROCESS PLUGIN LLDB VALUE REGS INVALIDATE REGS SIZE EXPR SIZE LEN 745 // ====== ====== === === ============= ========== =================== =================== ====================== ============= ==== ========== =============== ========= ======== 746 { "r0", "arg1", 4, 0, eEncodingUint, eFormatHex, { ehframe_r0, dwarf_r0, LLDB_REGNUM_GENERIC_ARG1,0, 0 }, nullptr, nullptr, nullptr, 0 }, 747 { "r1", "arg2", 4, 0, eEncodingUint, eFormatHex, { ehframe_r1, dwarf_r1, LLDB_REGNUM_GENERIC_ARG2,1, 1 }, nullptr, nullptr, nullptr, 0 }, 748 { "r2", "arg3", 4, 0, eEncodingUint, eFormatHex, { ehframe_r2, dwarf_r2, LLDB_REGNUM_GENERIC_ARG3,2, 2 }, nullptr, nullptr, nullptr, 0 }, 749 { "r3", "arg4", 4, 0, eEncodingUint, eFormatHex, { ehframe_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG4,3, 3 }, nullptr, nullptr, nullptr, 0 }, 750 { "r4", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r4, dwarf_r4, LLDB_INVALID_REGNUM, 4, 4 }, nullptr, nullptr, nullptr, 0 }, 751 { "r5", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r5, dwarf_r5, LLDB_INVALID_REGNUM, 5, 5 }, nullptr, nullptr, nullptr, 0 }, 752 { "r6", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r6, dwarf_r6, LLDB_INVALID_REGNUM, 6, 6 }, nullptr, nullptr, nullptr, 0 }, 753 { "r7", "fp", 4, 0, eEncodingUint, eFormatHex, { ehframe_r7, dwarf_r7, LLDB_REGNUM_GENERIC_FP, 7, 7 }, nullptr, nullptr, nullptr, 0 }, 754 { "r8", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r8, dwarf_r8, LLDB_INVALID_REGNUM, 8, 8 }, nullptr, nullptr, nullptr, 0 }, 755 { "r9", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r9, dwarf_r9, LLDB_INVALID_REGNUM, 9, 9 }, nullptr, nullptr, nullptr, 0 }, 756 { "r10", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r10, dwarf_r10, LLDB_INVALID_REGNUM, 10, 10 }, nullptr, nullptr, nullptr, 0 }, 757 { "r11", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r11, dwarf_r11, LLDB_INVALID_REGNUM, 11, 11 }, nullptr, nullptr, nullptr, 0 }, 758 { "r12", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r12, dwarf_r12, LLDB_INVALID_REGNUM, 12, 12 }, nullptr, nullptr, nullptr, 0 }, 759 { "sp", "r13", 4, 0, eEncodingUint, eFormatHex, { ehframe_sp, dwarf_sp, LLDB_REGNUM_GENERIC_SP, 13, 13 }, nullptr, nullptr, nullptr, 0 }, 760 { "lr", "r14", 4, 0, eEncodingUint, eFormatHex, { ehframe_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, 14, 14 }, nullptr, nullptr, nullptr, 0 }, 761 { "pc", "r15", 4, 0, eEncodingUint, eFormatHex, { ehframe_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, 15, 15 }, nullptr, nullptr, nullptr, 0 }, 762 { "f0", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 16, 16 }, nullptr, nullptr, nullptr, 0 }, 763 { "f1", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 17, 17 }, nullptr, nullptr, nullptr, 0 }, 764 { "f2", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 18, 18 }, nullptr, nullptr, nullptr, 0 }, 765 { "f3", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 19, 19 }, nullptr, nullptr, nullptr, 0 }, 766 { "f4", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 20, 20 }, nullptr, nullptr, nullptr, 0 }, 767 { "f5", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 21, 21 }, nullptr, nullptr, nullptr, 0 }, 768 { "f6", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 22, 22 }, nullptr, nullptr, nullptr, 0 }, 769 { "f7", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 23, 23 }, nullptr, nullptr, nullptr, 0 }, 770 { "fps", nullptr, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 24, 24 }, nullptr, nullptr, nullptr, 0 }, 771 { "cpsr","flags", 4, 0, eEncodingUint, eFormatHex, { ehframe_cpsr, dwarf_cpsr, LLDB_INVALID_REGNUM, 25, 25 }, nullptr, nullptr, nullptr, 0 }, 772 { "s0", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0, LLDB_INVALID_REGNUM, 26, 26 }, nullptr, nullptr, nullptr, 0 }, 773 { "s1", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1, LLDB_INVALID_REGNUM, 27, 27 }, nullptr, nullptr, nullptr, 0 }, 774 { "s2", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2, LLDB_INVALID_REGNUM, 28, 28 }, nullptr, nullptr, nullptr, 0 }, 775 { "s3", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3, LLDB_INVALID_REGNUM, 29, 29 }, nullptr, nullptr, nullptr, 0 }, 776 { "s4", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4, LLDB_INVALID_REGNUM, 30, 30 }, nullptr, nullptr, nullptr, 0 }, 777 { "s5", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5, LLDB_INVALID_REGNUM, 31, 31 }, nullptr, nullptr, nullptr, 0 }, 778 { "s6", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6, LLDB_INVALID_REGNUM, 32, 32 }, nullptr, nullptr, nullptr, 0 }, 779 { "s7", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7, LLDB_INVALID_REGNUM, 33, 33 }, nullptr, nullptr, nullptr, 0 }, 780 { "s8", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8, LLDB_INVALID_REGNUM, 34, 34 }, nullptr, nullptr, nullptr, 0 }, 781 { "s9", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9, LLDB_INVALID_REGNUM, 35, 35 }, nullptr, nullptr, nullptr, 0 }, 782 { "s10", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10, LLDB_INVALID_REGNUM, 36, 36 }, nullptr, nullptr, nullptr, 0 }, 783 { "s11", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11, LLDB_INVALID_REGNUM, 37, 37 }, nullptr, nullptr, nullptr, 0 }, 784 { "s12", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12, LLDB_INVALID_REGNUM, 38, 38 }, nullptr, nullptr, nullptr, 0 }, 785 { "s13", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13, LLDB_INVALID_REGNUM, 39, 39 }, nullptr, nullptr, nullptr, 0 }, 786 { "s14", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14, LLDB_INVALID_REGNUM, 40, 40 }, nullptr, nullptr, nullptr, 0 }, 787 { "s15", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15, LLDB_INVALID_REGNUM, 41, 41 }, nullptr, nullptr, nullptr, 0 }, 788 { "s16", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16, LLDB_INVALID_REGNUM, 42, 42 }, nullptr, nullptr, nullptr, 0 }, 789 { "s17", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17, LLDB_INVALID_REGNUM, 43, 43 }, nullptr, nullptr, nullptr, 0 }, 790 { "s18", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18, LLDB_INVALID_REGNUM, 44, 44 }, nullptr, nullptr, nullptr, 0 }, 791 { "s19", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19, LLDB_INVALID_REGNUM, 45, 45 }, nullptr, nullptr, nullptr, 0 }, 792 { "s20", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20, LLDB_INVALID_REGNUM, 46, 46 }, nullptr, nullptr, nullptr, 0 }, 793 { "s21", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21, LLDB_INVALID_REGNUM, 47, 47 }, nullptr, nullptr, nullptr, 0 }, 794 { "s22", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22, LLDB_INVALID_REGNUM, 48, 48 }, nullptr, nullptr, nullptr, 0 }, 795 { "s23", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23, LLDB_INVALID_REGNUM, 49, 49 }, nullptr, nullptr, nullptr, 0 }, 796 { "s24", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24, LLDB_INVALID_REGNUM, 50, 50 }, nullptr, nullptr, nullptr, 0 }, 797 { "s25", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25, LLDB_INVALID_REGNUM, 51, 51 }, nullptr, nullptr, nullptr, 0 }, 798 { "s26", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26, LLDB_INVALID_REGNUM, 52, 52 }, nullptr, nullptr, nullptr, 0 }, 799 { "s27", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27, LLDB_INVALID_REGNUM, 53, 53 }, nullptr, nullptr, nullptr, 0 }, 800 { "s28", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28, LLDB_INVALID_REGNUM, 54, 54 }, nullptr, nullptr, nullptr, 0 }, 801 { "s29", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29, LLDB_INVALID_REGNUM, 55, 55 }, nullptr, nullptr, nullptr, 0 }, 802 { "s30", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30, LLDB_INVALID_REGNUM, 56, 56 }, nullptr, nullptr, nullptr, 0 }, 803 { "s31", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31, LLDB_INVALID_REGNUM, 57, 57 }, nullptr, nullptr, nullptr, 0 }, 804 { "fpscr",nullptr, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 58, 58 }, nullptr, nullptr, nullptr, 0 }, 805 { "d16", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16, LLDB_INVALID_REGNUM, 59, 59 }, nullptr, nullptr, nullptr, 0 }, 806 { "d17", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17, LLDB_INVALID_REGNUM, 60, 60 }, nullptr, nullptr, nullptr, 0 }, 807 { "d18", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18, LLDB_INVALID_REGNUM, 61, 61 }, nullptr, nullptr, nullptr, 0 }, 808 { "d19", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19, LLDB_INVALID_REGNUM, 62, 62 }, nullptr, nullptr, nullptr, 0 }, 809 { "d20", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20, LLDB_INVALID_REGNUM, 63, 63 }, nullptr, nullptr, nullptr, 0 }, 810 { "d21", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21, LLDB_INVALID_REGNUM, 64, 64 }, nullptr, nullptr, nullptr, 0 }, 811 { "d22", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22, LLDB_INVALID_REGNUM, 65, 65 }, nullptr, nullptr, nullptr, 0 }, 812 { "d23", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23, LLDB_INVALID_REGNUM, 66, 66 }, nullptr, nullptr, nullptr, 0 }, 813 { "d24", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24, LLDB_INVALID_REGNUM, 67, 67 }, nullptr, nullptr, nullptr, 0 }, 814 { "d25", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25, LLDB_INVALID_REGNUM, 68, 68 }, nullptr, nullptr, nullptr, 0 }, 815 { "d26", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26, LLDB_INVALID_REGNUM, 69, 69 }, nullptr, nullptr, nullptr, 0 }, 816 { "d27", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27, LLDB_INVALID_REGNUM, 70, 70 }, nullptr, nullptr, nullptr, 0 }, 817 { "d28", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28, LLDB_INVALID_REGNUM, 71, 71 }, nullptr, nullptr, nullptr, 0 }, 818 { "d29", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29, LLDB_INVALID_REGNUM, 72, 72 }, nullptr, nullptr, nullptr, 0 }, 819 { "d30", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30, LLDB_INVALID_REGNUM, 73, 73 }, nullptr, nullptr, nullptr, 0 }, 820 { "d31", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31, LLDB_INVALID_REGNUM, 74, 74 }, nullptr, nullptr, nullptr, 0 }, 821 { "d0", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0, LLDB_INVALID_REGNUM, 75, 75 }, g_d0_regs, nullptr, nullptr, 0 }, 822 { "d1", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1, LLDB_INVALID_REGNUM, 76, 76 }, g_d1_regs, nullptr, nullptr, 0 }, 823 { "d2", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2, LLDB_INVALID_REGNUM, 77, 77 }, g_d2_regs, nullptr, nullptr, 0 }, 824 { "d3", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3, LLDB_INVALID_REGNUM, 78, 78 }, g_d3_regs, nullptr, nullptr, 0 }, 825 { "d4", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4, LLDB_INVALID_REGNUM, 79, 79 }, g_d4_regs, nullptr, nullptr, 0 }, 826 { "d5", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5, LLDB_INVALID_REGNUM, 80, 80 }, g_d5_regs, nullptr, nullptr, 0 }, 827 { "d6", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6, LLDB_INVALID_REGNUM, 81, 81 }, g_d6_regs, nullptr, nullptr, 0 }, 828 { "d7", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7, LLDB_INVALID_REGNUM, 82, 82 }, g_d7_regs, nullptr, nullptr, 0 }, 829 { "d8", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8, LLDB_INVALID_REGNUM, 83, 83 }, g_d8_regs, nullptr, nullptr, 0 }, 830 { "d9", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9, LLDB_INVALID_REGNUM, 84, 84 }, g_d9_regs, nullptr, nullptr, 0 }, 831 { "d10", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10, LLDB_INVALID_REGNUM, 85, 85 }, g_d10_regs, nullptr, nullptr, 0 }, 832 { "d11", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11, LLDB_INVALID_REGNUM, 86, 86 }, g_d11_regs, nullptr, nullptr, 0 }, 833 { "d12", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12, LLDB_INVALID_REGNUM, 87, 87 }, g_d12_regs, nullptr, nullptr, 0 }, 834 { "d13", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13, LLDB_INVALID_REGNUM, 88, 88 }, g_d13_regs, nullptr, nullptr, 0 }, 835 { "d14", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14, LLDB_INVALID_REGNUM, 89, 89 }, g_d14_regs, nullptr, nullptr, 0 }, 836 { "d15", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15, LLDB_INVALID_REGNUM, 90, 90 }, g_d15_regs, nullptr, nullptr, 0 }, 837 { "q0", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0, LLDB_INVALID_REGNUM, 91, 91 }, g_q0_regs, nullptr, nullptr, 0 }, 838 { "q1", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1, LLDB_INVALID_REGNUM, 92, 92 }, g_q1_regs, nullptr, nullptr, 0 }, 839 { "q2", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2, LLDB_INVALID_REGNUM, 93, 93 }, g_q2_regs, nullptr, nullptr, 0 }, 840 { "q3", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3, LLDB_INVALID_REGNUM, 94, 94 }, g_q3_regs, nullptr, nullptr, 0 }, 841 { "q4", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4, LLDB_INVALID_REGNUM, 95, 95 }, g_q4_regs, nullptr, nullptr, 0 }, 842 { "q5", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5, LLDB_INVALID_REGNUM, 96, 96 }, g_q5_regs, nullptr, nullptr, 0 }, 843 { "q6", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6, LLDB_INVALID_REGNUM, 97, 97 }, g_q6_regs, nullptr, nullptr, 0 }, 844 { "q7", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7, LLDB_INVALID_REGNUM, 98, 98 }, g_q7_regs, nullptr, nullptr, 0 }, 845 { "q8", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8, LLDB_INVALID_REGNUM, 99, 99 }, g_q8_regs, nullptr, nullptr, 0 }, 846 { "q9", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9, LLDB_INVALID_REGNUM, 100, 100 }, g_q9_regs, nullptr, nullptr, 0 }, 847 { "q10", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10, LLDB_INVALID_REGNUM, 101, 101 }, g_q10_regs, nullptr, nullptr, 0 }, 848 { "q11", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11, LLDB_INVALID_REGNUM, 102, 102 }, g_q11_regs, nullptr, nullptr, 0 }, 849 { "q12", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12, LLDB_INVALID_REGNUM, 103, 103 }, g_q12_regs, nullptr, nullptr, 0 }, 850 { "q13", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13, LLDB_INVALID_REGNUM, 104, 104 }, g_q13_regs, nullptr, nullptr, 0 }, 851 { "q14", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14, LLDB_INVALID_REGNUM, 105, 105 }, g_q14_regs, nullptr, nullptr, 0 }, 852 { "q15", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15, LLDB_INVALID_REGNUM, 106, 106 }, g_q15_regs, nullptr, nullptr, 0 } 853 }; 854 // clang-format on 855 856 static const uint32_t num_registers = llvm::array_lengthof(g_register_infos); 857 static ConstString gpr_reg_set("General Purpose Registers"); 858 static ConstString sfp_reg_set("Software Floating Point Registers"); 859 static ConstString vfp_reg_set("Floating Point Registers"); 860 size_t i; 861 if (from_scratch) { 862 // Calculate the offsets of the registers 863 // Note that the layout of the "composite" registers (d0-d15 and q0-q15) 864 // which comes after the "primordial" registers is important. This enables 865 // us to calculate the offset of the composite register by using the offset 866 // of its first primordial register. For example, to calculate the offset 867 // of q0, use s0's offset. 868 if (g_register_infos[2].byte_offset == 0) { 869 uint32_t byte_offset = 0; 870 for (i = 0; i < num_registers; ++i) { 871 // For primordial registers, increment the byte_offset by the byte_size 872 // to arrive at the byte_offset for the next register. Otherwise, we 873 // have a composite register whose offset can be calculated by 874 // consulting the offset of its first primordial register. 875 if (!g_register_infos[i].value_regs) { 876 g_register_infos[i].byte_offset = byte_offset; 877 byte_offset += g_register_infos[i].byte_size; 878 } else { 879 const uint32_t first_primordial_reg = 880 g_register_infos[i].value_regs[0]; 881 g_register_infos[i].byte_offset = 882 g_register_infos[first_primordial_reg].byte_offset; 883 } 884 } 885 } 886 for (i = 0; i < num_registers; ++i) { 887 ConstString name; 888 ConstString alt_name; 889 if (g_register_infos[i].name && g_register_infos[i].name[0]) 890 name.SetCString(g_register_infos[i].name); 891 if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0]) 892 alt_name.SetCString(g_register_infos[i].alt_name); 893 894 if (i <= 15 || i == 25) 895 AddRegister(g_register_infos[i], name, alt_name, gpr_reg_set); 896 else if (i <= 24) 897 AddRegister(g_register_infos[i], name, alt_name, sfp_reg_set); 898 else 899 AddRegister(g_register_infos[i], name, alt_name, vfp_reg_set); 900 } 901 } else { 902 // Add composite registers to our primordial registers, then. 903 const size_t num_composites = llvm::array_lengthof(g_composites); 904 const size_t num_dynamic_regs = GetNumRegisters(); 905 const size_t num_common_regs = num_registers - num_composites; 906 RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs; 907 908 // First we need to validate that all registers that we already have match 909 // the non composite regs. If so, then we can add the registers, else we 910 // need to bail 911 bool match = true; 912 if (num_dynamic_regs == num_common_regs) { 913 for (i = 0; match && i < num_dynamic_regs; ++i) { 914 // Make sure all register names match 915 if (m_regs[i].name && g_register_infos[i].name) { 916 if (strcmp(m_regs[i].name, g_register_infos[i].name)) { 917 match = false; 918 break; 919 } 920 } 921 922 // Make sure all register byte sizes match 923 if (m_regs[i].byte_size != g_register_infos[i].byte_size) { 924 match = false; 925 break; 926 } 927 } 928 } else { 929 // Wrong number of registers. 930 match = false; 931 } 932 // If "match" is true, then we can add extra registers. 933 if (match) { 934 for (i = 0; i < num_composites; ++i) { 935 ConstString name; 936 ConstString alt_name; 937 const uint32_t first_primordial_reg = 938 g_comp_register_infos[i].value_regs[0]; 939 const char *reg_name = g_register_infos[first_primordial_reg].name; 940 if (reg_name && reg_name[0]) { 941 for (uint32_t j = 0; j < num_dynamic_regs; ++j) { 942 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j); 943 // Find a matching primordial register info entry. 944 if (reg_info && reg_info->name && 945 ::strcasecmp(reg_info->name, reg_name) == 0) { 946 // The name matches the existing primordial entry. Find and 947 // assign the offset, and then add this composite register entry. 948 g_comp_register_infos[i].byte_offset = reg_info->byte_offset; 949 name.SetCString(g_comp_register_infos[i].name); 950 AddRegister(g_comp_register_infos[i], name, alt_name, 951 vfp_reg_set); 952 } 953 } 954 } 955 } 956 } 957 } 958 } 959