1 //===-- ClangExpressionParser.cpp -----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/AST/ASTContext.h" 10 #include "clang/AST/ASTDiagnostic.h" 11 #include "clang/AST/ExternalASTSource.h" 12 #include "clang/AST/PrettyPrinter.h" 13 #include "clang/Basic/Builtins.h" 14 #include "clang/Basic/DiagnosticIDs.h" 15 #include "clang/Basic/SourceLocation.h" 16 #include "clang/Basic/TargetInfo.h" 17 #include "clang/Basic/Version.h" 18 #include "clang/CodeGen/CodeGenAction.h" 19 #include "clang/CodeGen/ModuleBuilder.h" 20 #include "clang/Edit/Commit.h" 21 #include "clang/Edit/EditedSource.h" 22 #include "clang/Edit/EditsReceiver.h" 23 #include "clang/Frontend/CompilerInstance.h" 24 #include "clang/Frontend/CompilerInvocation.h" 25 #include "clang/Frontend/FrontendActions.h" 26 #include "clang/Frontend/FrontendDiagnostic.h" 27 #include "clang/Frontend/FrontendPluginRegistry.h" 28 #include "clang/Frontend/TextDiagnosticBuffer.h" 29 #include "clang/Frontend/TextDiagnosticPrinter.h" 30 #include "clang/Lex/Preprocessor.h" 31 #include "clang/Parse/ParseAST.h" 32 #include "clang/Rewrite/Core/Rewriter.h" 33 #include "clang/Rewrite/Frontend/FrontendActions.h" 34 #include "clang/Sema/CodeCompleteConsumer.h" 35 #include "clang/Sema/Sema.h" 36 #include "clang/Sema/SemaConsumer.h" 37 38 #include "llvm/ADT/StringRef.h" 39 #include "llvm/ExecutionEngine/ExecutionEngine.h" 40 #include "llvm/Support/CrashRecoveryContext.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/FileSystem.h" 43 #include "llvm/Support/TargetSelect.h" 44 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/Support/DynamicLibrary.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/Host.h" 50 #include "llvm/Support/MemoryBuffer.h" 51 #include "llvm/Support/Signals.h" 52 53 #include "ClangDiagnostic.h" 54 #include "ClangExpressionParser.h" 55 #include "ClangUserExpression.h" 56 57 #include "ASTUtils.h" 58 #include "ClangASTSource.h" 59 #include "ClangDiagnostic.h" 60 #include "ClangExpressionDeclMap.h" 61 #include "ClangExpressionHelper.h" 62 #include "ClangExpressionParser.h" 63 #include "ClangHost.h" 64 #include "ClangModulesDeclVendor.h" 65 #include "ClangPersistentVariables.h" 66 #include "IRDynamicChecks.h" 67 #include "IRForTarget.h" 68 #include "ModuleDependencyCollector.h" 69 70 #include "Plugins/TypeSystem/Clang/TypeSystemClang.h" 71 #include "lldb/Core/Debugger.h" 72 #include "lldb/Core/Disassembler.h" 73 #include "lldb/Core/Module.h" 74 #include "lldb/Core/StreamFile.h" 75 #include "lldb/Expression/IRExecutionUnit.h" 76 #include "lldb/Expression/IRInterpreter.h" 77 #include "lldb/Host/File.h" 78 #include "lldb/Host/HostInfo.h" 79 #include "lldb/Symbol/SymbolVendor.h" 80 #include "lldb/Target/ExecutionContext.h" 81 #include "lldb/Target/Language.h" 82 #include "lldb/Target/Process.h" 83 #include "lldb/Target/Target.h" 84 #include "lldb/Target/ThreadPlanCallFunction.h" 85 #include "lldb/Utility/DataBufferHeap.h" 86 #include "lldb/Utility/LLDBAssert.h" 87 #include "lldb/Utility/LLDBLog.h" 88 #include "lldb/Utility/Log.h" 89 #include "lldb/Utility/ReproducerProvider.h" 90 #include "lldb/Utility/Stream.h" 91 #include "lldb/Utility/StreamString.h" 92 #include "lldb/Utility/StringList.h" 93 94 #include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h" 95 #include "Plugins/LanguageRuntime/RenderScript/RenderScriptRuntime/RenderScriptRuntime.h" 96 97 #include <cctype> 98 #include <memory> 99 100 using namespace clang; 101 using namespace llvm; 102 using namespace lldb_private; 103 104 //===----------------------------------------------------------------------===// 105 // Utility Methods for Clang 106 //===----------------------------------------------------------------------===// 107 108 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks { 109 ClangModulesDeclVendor &m_decl_vendor; 110 ClangPersistentVariables &m_persistent_vars; 111 clang::SourceManager &m_source_mgr; 112 StreamString m_error_stream; 113 bool m_has_errors = false; 114 115 public: 116 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor, 117 ClangPersistentVariables &persistent_vars, 118 clang::SourceManager &source_mgr) 119 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars), 120 m_source_mgr(source_mgr) {} 121 122 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path, 123 const clang::Module * /*null*/) override { 124 // Ignore modules that are imported in the wrapper code as these are not 125 // loaded by the user. 126 llvm::StringRef filename = 127 m_source_mgr.getPresumedLoc(import_location).getFilename(); 128 if (filename == ClangExpressionSourceCode::g_prefix_file_name) 129 return; 130 131 SourceModule module; 132 133 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) 134 module.path.push_back(ConstString(component.first->getName())); 135 136 StreamString error_stream; 137 138 ClangModulesDeclVendor::ModuleVector exported_modules; 139 if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream)) 140 m_has_errors = true; 141 142 for (ClangModulesDeclVendor::ModuleID module : exported_modules) 143 m_persistent_vars.AddHandLoadedClangModule(module); 144 } 145 146 bool hasErrors() { return m_has_errors; } 147 148 llvm::StringRef getErrorString() { return m_error_stream.GetString(); } 149 }; 150 151 static void AddAllFixIts(ClangDiagnostic *diag, const clang::Diagnostic &Info) { 152 for (auto &fix_it : Info.getFixItHints()) { 153 if (fix_it.isNull()) 154 continue; 155 diag->AddFixitHint(fix_it); 156 } 157 } 158 159 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer { 160 public: 161 ClangDiagnosticManagerAdapter(DiagnosticOptions &opts) { 162 DiagnosticOptions *options = new DiagnosticOptions(opts); 163 options->ShowPresumedLoc = true; 164 options->ShowLevel = false; 165 m_os = std::make_shared<llvm::raw_string_ostream>(m_output); 166 m_passthrough = 167 std::make_shared<clang::TextDiagnosticPrinter>(*m_os, options); 168 } 169 170 void ResetManager(DiagnosticManager *manager = nullptr) { 171 m_manager = manager; 172 } 173 174 /// Returns the last ClangDiagnostic message that the DiagnosticManager 175 /// received or a nullptr if the DiagnosticMangager hasn't seen any 176 /// Clang diagnostics yet. 177 ClangDiagnostic *MaybeGetLastClangDiag() const { 178 if (m_manager->Diagnostics().empty()) 179 return nullptr; 180 lldb_private::Diagnostic *diag = m_manager->Diagnostics().back().get(); 181 ClangDiagnostic *clang_diag = dyn_cast<ClangDiagnostic>(diag); 182 return clang_diag; 183 } 184 185 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, 186 const clang::Diagnostic &Info) override { 187 if (!m_manager) { 188 // We have no DiagnosticManager before/after parsing but we still could 189 // receive diagnostics (e.g., by the ASTImporter failing to copy decls 190 // when we move the expression result ot the ScratchASTContext). Let's at 191 // least log these diagnostics until we find a way to properly render 192 // them and display them to the user. 193 Log *log = GetLog(LLDBLog::Expressions); 194 if (log) { 195 llvm::SmallVector<char, 32> diag_str; 196 Info.FormatDiagnostic(diag_str); 197 diag_str.push_back('\0'); 198 const char *plain_diag = diag_str.data(); 199 LLDB_LOG(log, "Received diagnostic outside parsing: {0}", plain_diag); 200 } 201 return; 202 } 203 204 // Update error/warning counters. 205 DiagnosticConsumer::HandleDiagnostic(DiagLevel, Info); 206 207 // Render diagnostic message to m_output. 208 m_output.clear(); 209 m_passthrough->HandleDiagnostic(DiagLevel, Info); 210 m_os->flush(); 211 212 lldb_private::DiagnosticSeverity severity; 213 bool make_new_diagnostic = true; 214 215 switch (DiagLevel) { 216 case DiagnosticsEngine::Level::Fatal: 217 case DiagnosticsEngine::Level::Error: 218 severity = eDiagnosticSeverityError; 219 break; 220 case DiagnosticsEngine::Level::Warning: 221 severity = eDiagnosticSeverityWarning; 222 break; 223 case DiagnosticsEngine::Level::Remark: 224 case DiagnosticsEngine::Level::Ignored: 225 severity = eDiagnosticSeverityRemark; 226 break; 227 case DiagnosticsEngine::Level::Note: 228 m_manager->AppendMessageToDiagnostic(m_output); 229 make_new_diagnostic = false; 230 231 // 'note:' diagnostics for errors and warnings can also contain Fix-Its. 232 // We add these Fix-Its to the last error diagnostic to make sure 233 // that we later have all Fix-Its related to an 'error' diagnostic when 234 // we apply them to the user expression. 235 auto *clang_diag = MaybeGetLastClangDiag(); 236 // If we don't have a previous diagnostic there is nothing to do. 237 // If the previous diagnostic already has its own Fix-Its, assume that 238 // the 'note:' Fix-It is just an alternative way to solve the issue and 239 // ignore these Fix-Its. 240 if (!clang_diag || clang_diag->HasFixIts()) 241 break; 242 // Ignore all Fix-Its that are not associated with an error. 243 if (clang_diag->GetSeverity() != eDiagnosticSeverityError) 244 break; 245 AddAllFixIts(clang_diag, Info); 246 break; 247 } 248 if (make_new_diagnostic) { 249 // ClangDiagnostic messages are expected to have no whitespace/newlines 250 // around them. 251 std::string stripped_output = 252 std::string(llvm::StringRef(m_output).trim()); 253 254 auto new_diagnostic = std::make_unique<ClangDiagnostic>( 255 stripped_output, severity, Info.getID()); 256 257 // Don't store away warning fixits, since the compiler doesn't have 258 // enough context in an expression for the warning to be useful. 259 // FIXME: Should we try to filter out FixIts that apply to our generated 260 // code, and not the user's expression? 261 if (severity == eDiagnosticSeverityError) 262 AddAllFixIts(new_diagnostic.get(), Info); 263 264 m_manager->AddDiagnostic(std::move(new_diagnostic)); 265 } 266 } 267 268 void BeginSourceFile(const LangOptions &LO, const Preprocessor *PP) override { 269 m_passthrough->BeginSourceFile(LO, PP); 270 } 271 272 void EndSourceFile() override { m_passthrough->EndSourceFile(); } 273 274 private: 275 DiagnosticManager *m_manager = nullptr; 276 std::shared_ptr<clang::TextDiagnosticPrinter> m_passthrough; 277 /// Output stream of m_passthrough. 278 std::shared_ptr<llvm::raw_string_ostream> m_os; 279 /// Output string filled by m_os. 280 std::string m_output; 281 }; 282 283 static void SetupModuleHeaderPaths(CompilerInstance *compiler, 284 std::vector<std::string> include_directories, 285 lldb::TargetSP target_sp) { 286 Log *log = GetLog(LLDBLog::Expressions); 287 288 HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts(); 289 290 for (const std::string &dir : include_directories) { 291 search_opts.AddPath(dir, frontend::System, false, true); 292 LLDB_LOG(log, "Added user include dir: {0}", dir); 293 } 294 295 llvm::SmallString<128> module_cache; 296 const auto &props = ModuleList::GetGlobalModuleListProperties(); 297 props.GetClangModulesCachePath().GetPath(module_cache); 298 search_opts.ModuleCachePath = std::string(module_cache.str()); 299 LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str()); 300 301 search_opts.ResourceDir = GetClangResourceDir().GetPath(); 302 303 search_opts.ImplicitModuleMaps = true; 304 } 305 306 /// Iff the given identifier is a C++ keyword, remove it from the 307 /// identifier table (i.e., make the token a normal identifier). 308 static void RemoveCppKeyword(IdentifierTable &idents, llvm::StringRef token) { 309 // FIXME: 'using' is used by LLDB for local variables, so we can't remove 310 // this keyword without breaking this functionality. 311 if (token == "using") 312 return; 313 // GCC's '__null' is used by LLDB to define NULL/Nil/nil. 314 if (token == "__null") 315 return; 316 317 LangOptions cpp_lang_opts; 318 cpp_lang_opts.CPlusPlus = true; 319 cpp_lang_opts.CPlusPlus11 = true; 320 cpp_lang_opts.CPlusPlus20 = true; 321 322 clang::IdentifierInfo &ii = idents.get(token); 323 // The identifier has to be a C++-exclusive keyword. if not, then there is 324 // nothing to do. 325 if (!ii.isCPlusPlusKeyword(cpp_lang_opts)) 326 return; 327 // If the token is already an identifier, then there is nothing to do. 328 if (ii.getTokenID() == clang::tok::identifier) 329 return; 330 // Otherwise the token is a C++ keyword, so turn it back into a normal 331 // identifier. 332 ii.revertTokenIDToIdentifier(); 333 } 334 335 /// Remove all C++ keywords from the given identifier table. 336 static void RemoveAllCppKeywords(IdentifierTable &idents) { 337 #define KEYWORD(NAME, FLAGS) RemoveCppKeyword(idents, llvm::StringRef(#NAME)); 338 #include "clang/Basic/TokenKinds.def" 339 } 340 341 /// Configures Clang diagnostics for the expression parser. 342 static void SetupDefaultClangDiagnostics(CompilerInstance &compiler) { 343 // List of Clang warning groups that are not useful when parsing expressions. 344 const std::vector<const char *> groupsToIgnore = { 345 "unused-value", 346 "odr", 347 "unused-getter-return-value", 348 }; 349 for (const char *group : groupsToIgnore) { 350 compiler.getDiagnostics().setSeverityForGroup( 351 clang::diag::Flavor::WarningOrError, group, 352 clang::diag::Severity::Ignored, SourceLocation()); 353 } 354 } 355 356 //===----------------------------------------------------------------------===// 357 // Implementation of ClangExpressionParser 358 //===----------------------------------------------------------------------===// 359 360 ClangExpressionParser::ClangExpressionParser( 361 ExecutionContextScope *exe_scope, Expression &expr, 362 bool generate_debug_info, std::vector<std::string> include_directories, 363 std::string filename) 364 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(), 365 m_pp_callbacks(nullptr), 366 m_include_directories(std::move(include_directories)), 367 m_filename(std::move(filename)) { 368 Log *log = GetLog(LLDBLog::Expressions); 369 370 // We can't compile expressions without a target. So if the exe_scope is 371 // null or doesn't have a target, then we just need to get out of here. I'll 372 // lldbassert and not make any of the compiler objects since 373 // I can't return errors directly from the constructor. Further calls will 374 // check if the compiler was made and 375 // bag out if it wasn't. 376 377 if (!exe_scope) { 378 lldbassert(exe_scope && 379 "Can't make an expression parser with a null scope."); 380 return; 381 } 382 383 lldb::TargetSP target_sp; 384 target_sp = exe_scope->CalculateTarget(); 385 if (!target_sp) { 386 lldbassert(target_sp.get() && 387 "Can't make an expression parser with a null target."); 388 return; 389 } 390 391 // 1. Create a new compiler instance. 392 m_compiler = std::make_unique<CompilerInstance>(); 393 394 // When capturing a reproducer, hook up the file collector with clang to 395 // collector modules and headers. 396 if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) { 397 repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>(); 398 m_compiler->setModuleDepCollector( 399 std::make_shared<ModuleDependencyCollectorAdaptor>( 400 fp.GetFileCollector())); 401 DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts(); 402 opts.IncludeSystemHeaders = true; 403 opts.IncludeModuleFiles = true; 404 } 405 406 // Make sure clang uses the same VFS as LLDB. 407 m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem()); 408 409 lldb::LanguageType frame_lang = 410 expr.Language(); // defaults to lldb::eLanguageTypeUnknown 411 bool overridden_target_opts = false; 412 lldb_private::LanguageRuntime *lang_rt = nullptr; 413 414 std::string abi; 415 ArchSpec target_arch; 416 target_arch = target_sp->GetArchitecture(); 417 418 const auto target_machine = target_arch.GetMachine(); 419 420 // If the expression is being evaluated in the context of an existing stack 421 // frame, we introspect to see if the language runtime is available. 422 423 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame(); 424 lldb::ProcessSP process_sp = exe_scope->CalculateProcess(); 425 426 // Make sure the user hasn't provided a preferred execution language with 427 // `expression --language X -- ...` 428 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown) 429 frame_lang = frame_sp->GetLanguage(); 430 431 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) { 432 lang_rt = process_sp->GetLanguageRuntime(frame_lang); 433 LLDB_LOGF(log, "Frame has language of type %s", 434 Language::GetNameForLanguageType(frame_lang)); 435 } 436 437 // 2. Configure the compiler with a set of default options that are 438 // appropriate for most situations. 439 if (target_arch.IsValid()) { 440 std::string triple = target_arch.GetTriple().str(); 441 m_compiler->getTargetOpts().Triple = triple; 442 LLDB_LOGF(log, "Using %s as the target triple", 443 m_compiler->getTargetOpts().Triple.c_str()); 444 } else { 445 // If we get here we don't have a valid target and just have to guess. 446 // Sometimes this will be ok to just use the host target triple (when we 447 // evaluate say "2+3", but other expressions like breakpoint conditions and 448 // other things that _are_ target specific really shouldn't just be using 449 // the host triple. In such a case the language runtime should expose an 450 // overridden options set (3), below. 451 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple(); 452 LLDB_LOGF(log, "Using default target triple of %s", 453 m_compiler->getTargetOpts().Triple.c_str()); 454 } 455 // Now add some special fixes for known architectures: Any arm32 iOS 456 // environment, but not on arm64 457 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos && 458 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos && 459 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) { 460 m_compiler->getTargetOpts().ABI = "apcs-gnu"; 461 } 462 // Supported subsets of x86 463 if (target_machine == llvm::Triple::x86 || 464 target_machine == llvm::Triple::x86_64) { 465 m_compiler->getTargetOpts().Features.push_back("+sse"); 466 m_compiler->getTargetOpts().Features.push_back("+sse2"); 467 } 468 469 // Set the target CPU to generate code for. This will be empty for any CPU 470 // that doesn't really need to make a special 471 // CPU string. 472 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU(); 473 474 // Set the target ABI 475 abi = GetClangTargetABI(target_arch); 476 if (!abi.empty()) 477 m_compiler->getTargetOpts().ABI = abi; 478 479 // 3. Now allow the runtime to provide custom configuration options for the 480 // target. In this case, a specialized language runtime is available and we 481 // can query it for extra options. For 99% of use cases, this will not be 482 // needed and should be provided when basic platform detection is not enough. 483 // FIXME: Generalize this. Only RenderScriptRuntime currently supports this 484 // currently. Hardcoding this isn't ideal but it's better than LanguageRuntime 485 // having knowledge of clang::TargetOpts. 486 if (auto *renderscript_rt = 487 llvm::dyn_cast_or_null<RenderScriptRuntime>(lang_rt)) 488 overridden_target_opts = 489 renderscript_rt->GetOverrideExprOptions(m_compiler->getTargetOpts()); 490 491 if (overridden_target_opts) 492 if (log && log->GetVerbose()) { 493 LLDB_LOGV( 494 log, "Using overridden target options for the expression evaluation"); 495 496 auto opts = m_compiler->getTargetOpts(); 497 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple); 498 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU); 499 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath); 500 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI); 501 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion); 502 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten"); 503 StringList::LogDump(log, opts.Features, "Features"); 504 } 505 506 // 4. Create and install the target on the compiler. 507 m_compiler->createDiagnostics(); 508 // Limit the number of error diagnostics we emit. 509 // A value of 0 means no limit for both LLDB and Clang. 510 m_compiler->getDiagnostics().setErrorLimit(target_sp->GetExprErrorLimit()); 511 512 auto target_info = TargetInfo::CreateTargetInfo( 513 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts); 514 if (log) { 515 LLDB_LOGF(log, "Using SIMD alignment: %d", 516 target_info->getSimdDefaultAlign()); 517 LLDB_LOGF(log, "Target datalayout string: '%s'", 518 target_info->getDataLayoutString()); 519 LLDB_LOGF(log, "Target ABI: '%s'", target_info->getABI().str().c_str()); 520 LLDB_LOGF(log, "Target vector alignment: %d", 521 target_info->getMaxVectorAlign()); 522 } 523 m_compiler->setTarget(target_info); 524 525 assert(m_compiler->hasTarget()); 526 527 // 5. Set language options. 528 lldb::LanguageType language = expr.Language(); 529 LangOptions &lang_opts = m_compiler->getLangOpts(); 530 531 switch (language) { 532 case lldb::eLanguageTypeC: 533 case lldb::eLanguageTypeC89: 534 case lldb::eLanguageTypeC99: 535 case lldb::eLanguageTypeC11: 536 // FIXME: the following language option is a temporary workaround, 537 // to "ask for C, get C++." 538 // For now, the expression parser must use C++ anytime the language is a C 539 // family language, because the expression parser uses features of C++ to 540 // capture values. 541 lang_opts.CPlusPlus = true; 542 break; 543 case lldb::eLanguageTypeObjC: 544 lang_opts.ObjC = true; 545 // FIXME: the following language option is a temporary workaround, 546 // to "ask for ObjC, get ObjC++" (see comment above). 547 lang_opts.CPlusPlus = true; 548 549 // Clang now sets as default C++14 as the default standard (with 550 // GNU extensions), so we do the same here to avoid mismatches that 551 // cause compiler error when evaluating expressions (e.g. nullptr not found 552 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see 553 // two lines below) so we decide to be consistent with that, but this could 554 // be re-evaluated in the future. 555 lang_opts.CPlusPlus11 = true; 556 break; 557 case lldb::eLanguageTypeC_plus_plus: 558 case lldb::eLanguageTypeC_plus_plus_11: 559 case lldb::eLanguageTypeC_plus_plus_14: 560 lang_opts.CPlusPlus11 = true; 561 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 562 LLVM_FALLTHROUGH; 563 case lldb::eLanguageTypeC_plus_plus_03: 564 lang_opts.CPlusPlus = true; 565 if (process_sp) 566 lang_opts.ObjC = 567 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr; 568 break; 569 case lldb::eLanguageTypeObjC_plus_plus: 570 case lldb::eLanguageTypeUnknown: 571 default: 572 lang_opts.ObjC = true; 573 lang_opts.CPlusPlus = true; 574 lang_opts.CPlusPlus11 = true; 575 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 576 break; 577 } 578 579 lang_opts.Bool = true; 580 lang_opts.WChar = true; 581 lang_opts.Blocks = true; 582 lang_opts.DebuggerSupport = 583 true; // Features specifically for debugger clients 584 if (expr.DesiredResultType() == Expression::eResultTypeId) 585 lang_opts.DebuggerCastResultToId = true; 586 587 lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str()) 588 .CharIsSignedByDefault(); 589 590 // Spell checking is a nice feature, but it ends up completing a lot of types 591 // that we didn't strictly speaking need to complete. As a result, we spend a 592 // long time parsing and importing debug information. 593 lang_opts.SpellChecking = false; 594 595 auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr); 596 if (clang_expr && clang_expr->DidImportCxxModules()) { 597 LLDB_LOG(log, "Adding lang options for importing C++ modules"); 598 599 lang_opts.Modules = true; 600 // We want to implicitly build modules. 601 lang_opts.ImplicitModules = true; 602 // To automatically import all submodules when we import 'std'. 603 lang_opts.ModulesLocalVisibility = false; 604 605 // We use the @import statements, so we need this: 606 // FIXME: We could use the modules-ts, but that currently doesn't work. 607 lang_opts.ObjC = true; 608 609 // Options we need to parse libc++ code successfully. 610 // FIXME: We should ask the driver for the appropriate default flags. 611 lang_opts.GNUMode = true; 612 lang_opts.GNUKeywords = true; 613 lang_opts.DoubleSquareBracketAttributes = true; 614 lang_opts.CPlusPlus11 = true; 615 616 // The Darwin libc expects this macro to be set. 617 lang_opts.GNUCVersion = 40201; 618 619 SetupModuleHeaderPaths(m_compiler.get(), m_include_directories, 620 target_sp); 621 } 622 623 if (process_sp && lang_opts.ObjC) { 624 if (auto *runtime = ObjCLanguageRuntime::Get(*process_sp)) { 625 if (runtime->GetRuntimeVersion() == 626 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2) 627 lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7)); 628 else 629 lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX, 630 VersionTuple(10, 7)); 631 632 if (runtime->HasNewLiteralsAndIndexing()) 633 lang_opts.DebuggerObjCLiteral = true; 634 } 635 } 636 637 lang_opts.ThreadsafeStatics = false; 638 lang_opts.AccessControl = false; // Debuggers get universal access 639 lang_opts.DollarIdents = true; // $ indicates a persistent variable name 640 // We enable all builtin functions beside the builtins from libc/libm (e.g. 641 // 'fopen'). Those libc functions are already correctly handled by LLDB, and 642 // additionally enabling them as expandable builtins is breaking Clang. 643 lang_opts.NoBuiltin = true; 644 645 // Set CodeGen options 646 m_compiler->getCodeGenOpts().EmitDeclMetadata = true; 647 m_compiler->getCodeGenOpts().InstrumentFunctions = false; 648 m_compiler->getCodeGenOpts().setFramePointer( 649 CodeGenOptions::FramePointerKind::All); 650 if (generate_debug_info) 651 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo); 652 else 653 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo); 654 655 // Disable some warnings. 656 SetupDefaultClangDiagnostics(*m_compiler); 657 658 // Inform the target of the language options 659 // 660 // FIXME: We shouldn't need to do this, the target should be immutable once 661 // created. This complexity should be lifted elsewhere. 662 m_compiler->getTarget().adjust(m_compiler->getDiagnostics(), 663 m_compiler->getLangOpts()); 664 665 // 6. Set up the diagnostic buffer for reporting errors 666 667 auto diag_mgr = new ClangDiagnosticManagerAdapter( 668 m_compiler->getDiagnostics().getDiagnosticOptions()); 669 m_compiler->getDiagnostics().setClient(diag_mgr); 670 671 // 7. Set up the source management objects inside the compiler 672 m_compiler->createFileManager(); 673 if (!m_compiler->hasSourceManager()) 674 m_compiler->createSourceManager(m_compiler->getFileManager()); 675 m_compiler->createPreprocessor(TU_Complete); 676 677 switch (language) { 678 case lldb::eLanguageTypeC: 679 case lldb::eLanguageTypeC89: 680 case lldb::eLanguageTypeC99: 681 case lldb::eLanguageTypeC11: 682 case lldb::eLanguageTypeObjC: 683 // This is not a C++ expression but we enabled C++ as explained above. 684 // Remove all C++ keywords from the PP so that the user can still use 685 // variables that have C++ keywords as names (e.g. 'int template;'). 686 RemoveAllCppKeywords(m_compiler->getPreprocessor().getIdentifierTable()); 687 break; 688 default: 689 break; 690 } 691 692 if (auto *clang_persistent_vars = llvm::cast<ClangPersistentVariables>( 693 target_sp->GetPersistentExpressionStateForLanguage( 694 lldb::eLanguageTypeC))) { 695 if (std::shared_ptr<ClangModulesDeclVendor> decl_vendor = 696 clang_persistent_vars->GetClangModulesDeclVendor()) { 697 std::unique_ptr<PPCallbacks> pp_callbacks( 698 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars, 699 m_compiler->getSourceManager())); 700 m_pp_callbacks = 701 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get()); 702 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks)); 703 } 704 } 705 706 // 8. Most of this we get from the CompilerInstance, but we also want to give 707 // the context an ExternalASTSource. 708 709 auto &PP = m_compiler->getPreprocessor(); 710 auto &builtin_context = PP.getBuiltinInfo(); 711 builtin_context.initializeBuiltins(PP.getIdentifierTable(), 712 m_compiler->getLangOpts()); 713 714 m_compiler->createASTContext(); 715 clang::ASTContext &ast_context = m_compiler->getASTContext(); 716 717 m_ast_context = std::make_unique<TypeSystemClang>( 718 "Expression ASTContext for '" + m_filename + "'", ast_context); 719 720 std::string module_name("$__lldb_module"); 721 722 m_llvm_context = std::make_unique<LLVMContext>(); 723 m_code_generator.reset(CreateLLVMCodeGen( 724 m_compiler->getDiagnostics(), module_name, 725 m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(), 726 m_compiler->getCodeGenOpts(), *m_llvm_context)); 727 } 728 729 ClangExpressionParser::~ClangExpressionParser() = default; 730 731 namespace { 732 733 /// \class CodeComplete 734 /// 735 /// A code completion consumer for the clang Sema that is responsible for 736 /// creating the completion suggestions when a user requests completion 737 /// of an incomplete `expr` invocation. 738 class CodeComplete : public CodeCompleteConsumer { 739 CodeCompletionTUInfo m_info; 740 741 std::string m_expr; 742 unsigned m_position = 0; 743 /// The printing policy we use when printing declarations for our completion 744 /// descriptions. 745 clang::PrintingPolicy m_desc_policy; 746 747 struct CompletionWithPriority { 748 CompletionResult::Completion completion; 749 /// See CodeCompletionResult::Priority; 750 unsigned Priority; 751 752 /// Establishes a deterministic order in a list of CompletionWithPriority. 753 /// The order returned here is the order in which the completions are 754 /// displayed to the user. 755 bool operator<(const CompletionWithPriority &o) const { 756 // High priority results should come first. 757 if (Priority != o.Priority) 758 return Priority > o.Priority; 759 760 // Identical priority, so just make sure it's a deterministic order. 761 return completion.GetUniqueKey() < o.completion.GetUniqueKey(); 762 } 763 }; 764 765 /// The stored completions. 766 /// Warning: These are in a non-deterministic order until they are sorted 767 /// and returned back to the caller. 768 std::vector<CompletionWithPriority> m_completions; 769 770 /// Returns true if the given character can be used in an identifier. 771 /// This also returns true for numbers because for completion we usually 772 /// just iterate backwards over iterators. 773 /// 774 /// Note: lldb uses '$' in its internal identifiers, so we also allow this. 775 static bool IsIdChar(char c) { 776 return c == '_' || std::isalnum(c) || c == '$'; 777 } 778 779 /// Returns true if the given character is used to separate arguments 780 /// in the command line of lldb. 781 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; } 782 783 /// Drops all tokens in front of the expression that are unrelated for 784 /// the completion of the cmd line. 'unrelated' means here that the token 785 /// is not interested for the lldb completion API result. 786 StringRef dropUnrelatedFrontTokens(StringRef cmd) const { 787 if (cmd.empty()) 788 return cmd; 789 790 // If we are at the start of a word, then all tokens are unrelated to 791 // the current completion logic. 792 if (IsTokenSeparator(cmd.back())) 793 return StringRef(); 794 795 // Remove all previous tokens from the string as they are unrelated 796 // to completing the current token. 797 StringRef to_remove = cmd; 798 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) { 799 to_remove = to_remove.drop_back(); 800 } 801 cmd = cmd.drop_front(to_remove.size()); 802 803 return cmd; 804 } 805 806 /// Removes the last identifier token from the given cmd line. 807 StringRef removeLastToken(StringRef cmd) const { 808 while (!cmd.empty() && IsIdChar(cmd.back())) { 809 cmd = cmd.drop_back(); 810 } 811 return cmd; 812 } 813 814 /// Attempts to merge the given completion from the given position into the 815 /// existing command. Returns the completion string that can be returned to 816 /// the lldb completion API. 817 std::string mergeCompletion(StringRef existing, unsigned pos, 818 StringRef completion) const { 819 StringRef existing_command = existing.substr(0, pos); 820 // We rewrite the last token with the completion, so let's drop that 821 // token from the command. 822 existing_command = removeLastToken(existing_command); 823 // We also should remove all previous tokens from the command as they 824 // would otherwise be added to the completion that already has the 825 // completion. 826 existing_command = dropUnrelatedFrontTokens(existing_command); 827 return existing_command.str() + completion.str(); 828 } 829 830 public: 831 /// Constructs a CodeComplete consumer that can be attached to a Sema. 832 /// 833 /// \param[out] expr 834 /// The whole expression string that we are currently parsing. This 835 /// string needs to be equal to the input the user typed, and NOT the 836 /// final code that Clang is parsing. 837 /// \param[out] position 838 /// The character position of the user cursor in the `expr` parameter. 839 /// 840 CodeComplete(clang::LangOptions ops, std::string expr, unsigned position) 841 : CodeCompleteConsumer(CodeCompleteOptions()), 842 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr), 843 m_position(position), m_desc_policy(ops) { 844 845 // Ensure that the printing policy is producing a description that is as 846 // short as possible. 847 m_desc_policy.SuppressScope = true; 848 m_desc_policy.SuppressTagKeyword = true; 849 m_desc_policy.FullyQualifiedName = false; 850 m_desc_policy.TerseOutput = true; 851 m_desc_policy.IncludeNewlines = false; 852 m_desc_policy.UseVoidForZeroParams = false; 853 m_desc_policy.Bool = true; 854 } 855 856 /// \name Code-completion filtering 857 /// Check if the result should be filtered out. 858 bool isResultFilteredOut(StringRef Filter, 859 CodeCompletionResult Result) override { 860 // This code is mostly copied from CodeCompleteConsumer. 861 switch (Result.Kind) { 862 case CodeCompletionResult::RK_Declaration: 863 return !( 864 Result.Declaration->getIdentifier() && 865 Result.Declaration->getIdentifier()->getName().startswith(Filter)); 866 case CodeCompletionResult::RK_Keyword: 867 return !StringRef(Result.Keyword).startswith(Filter); 868 case CodeCompletionResult::RK_Macro: 869 return !Result.Macro->getName().startswith(Filter); 870 case CodeCompletionResult::RK_Pattern: 871 return !StringRef(Result.Pattern->getAsString()).startswith(Filter); 872 } 873 // If we trigger this assert or the above switch yields a warning, then 874 // CodeCompletionResult has been enhanced with more kinds of completion 875 // results. Expand the switch above in this case. 876 assert(false && "Unknown completion result type?"); 877 // If we reach this, then we should just ignore whatever kind of unknown 878 // result we got back. We probably can't turn it into any kind of useful 879 // completion suggestion with the existing code. 880 return true; 881 } 882 883 private: 884 /// Generate the completion strings for the given CodeCompletionResult. 885 /// Note that this function has to process results that could come in 886 /// non-deterministic order, so this function should have no side effects. 887 /// To make this easier to enforce, this function and all its parameters 888 /// should always be const-qualified. 889 /// \return Returns llvm::None if no completion should be provided for the 890 /// given CodeCompletionResult. 891 llvm::Optional<CompletionWithPriority> 892 getCompletionForResult(const CodeCompletionResult &R) const { 893 std::string ToInsert; 894 std::string Description; 895 // Handle the different completion kinds that come from the Sema. 896 switch (R.Kind) { 897 case CodeCompletionResult::RK_Declaration: { 898 const NamedDecl *D = R.Declaration; 899 ToInsert = R.Declaration->getNameAsString(); 900 // If we have a function decl that has no arguments we want to 901 // complete the empty parantheses for the user. If the function has 902 // arguments, we at least complete the opening bracket. 903 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) { 904 if (F->getNumParams() == 0) 905 ToInsert += "()"; 906 else 907 ToInsert += "("; 908 raw_string_ostream OS(Description); 909 F->print(OS, m_desc_policy, false); 910 OS.flush(); 911 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) { 912 Description = V->getType().getAsString(m_desc_policy); 913 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) { 914 Description = F->getType().getAsString(m_desc_policy); 915 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) { 916 // If we try to complete a namespace, then we can directly append 917 // the '::'. 918 if (!N->isAnonymousNamespace()) 919 ToInsert += "::"; 920 } 921 break; 922 } 923 case CodeCompletionResult::RK_Keyword: 924 ToInsert = R.Keyword; 925 break; 926 case CodeCompletionResult::RK_Macro: 927 ToInsert = R.Macro->getName().str(); 928 break; 929 case CodeCompletionResult::RK_Pattern: 930 ToInsert = R.Pattern->getTypedText(); 931 break; 932 } 933 // We also filter some internal lldb identifiers here. The user 934 // shouldn't see these. 935 if (llvm::StringRef(ToInsert).startswith("$__lldb_")) 936 return llvm::None; 937 if (ToInsert.empty()) 938 return llvm::None; 939 // Merge the suggested Token into the existing command line to comply 940 // with the kind of result the lldb API expects. 941 std::string CompletionSuggestion = 942 mergeCompletion(m_expr, m_position, ToInsert); 943 944 CompletionResult::Completion completion(CompletionSuggestion, Description, 945 CompletionMode::Normal); 946 return {{completion, R.Priority}}; 947 } 948 949 public: 950 /// Adds the completions to the given CompletionRequest. 951 void GetCompletions(CompletionRequest &request) { 952 // Bring m_completions into a deterministic order and pass it on to the 953 // CompletionRequest. 954 llvm::sort(m_completions); 955 956 for (const CompletionWithPriority &C : m_completions) 957 request.AddCompletion(C.completion.GetCompletion(), 958 C.completion.GetDescription(), 959 C.completion.GetMode()); 960 } 961 962 /// \name Code-completion callbacks 963 /// Process the finalized code-completion results. 964 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context, 965 CodeCompletionResult *Results, 966 unsigned NumResults) override { 967 968 // The Sema put the incomplete token we try to complete in here during 969 // lexing, so we need to retrieve it here to know what we are completing. 970 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter(); 971 972 // Iterate over all the results. Filter out results we don't want and 973 // process the rest. 974 for (unsigned I = 0; I != NumResults; ++I) { 975 // Filter the results with the information from the Sema. 976 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I])) 977 continue; 978 979 CodeCompletionResult &R = Results[I]; 980 llvm::Optional<CompletionWithPriority> CompletionAndPriority = 981 getCompletionForResult(R); 982 if (!CompletionAndPriority) 983 continue; 984 m_completions.push_back(*CompletionAndPriority); 985 } 986 } 987 988 /// \param S the semantic-analyzer object for which code-completion is being 989 /// done. 990 /// 991 /// \param CurrentArg the index of the current argument. 992 /// 993 /// \param Candidates an array of overload candidates. 994 /// 995 /// \param NumCandidates the number of overload candidates 996 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg, 997 OverloadCandidate *Candidates, 998 unsigned NumCandidates, 999 SourceLocation OpenParLoc, 1000 bool Braced) override { 1001 // At the moment we don't filter out any overloaded candidates. 1002 } 1003 1004 CodeCompletionAllocator &getAllocator() override { 1005 return m_info.getAllocator(); 1006 } 1007 1008 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; } 1009 }; 1010 } // namespace 1011 1012 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line, 1013 unsigned pos, unsigned typed_pos) { 1014 DiagnosticManager mgr; 1015 // We need the raw user expression here because that's what the CodeComplete 1016 // class uses to provide completion suggestions. 1017 // However, the `Text` method only gives us the transformed expression here. 1018 // To actually get the raw user input here, we have to cast our expression to 1019 // the LLVMUserExpression which exposes the right API. This should never fail 1020 // as we always have a ClangUserExpression whenever we call this. 1021 ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr); 1022 CodeComplete CC(m_compiler->getLangOpts(), llvm_expr->GetUserText(), 1023 typed_pos); 1024 // We don't need a code generator for parsing. 1025 m_code_generator.reset(); 1026 // Start parsing the expression with our custom code completion consumer. 1027 ParseInternal(mgr, &CC, line, pos); 1028 CC.GetCompletions(request); 1029 return true; 1030 } 1031 1032 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) { 1033 return ParseInternal(diagnostic_manager); 1034 } 1035 1036 unsigned 1037 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager, 1038 CodeCompleteConsumer *completion_consumer, 1039 unsigned completion_line, 1040 unsigned completion_column) { 1041 ClangDiagnosticManagerAdapter *adapter = 1042 static_cast<ClangDiagnosticManagerAdapter *>( 1043 m_compiler->getDiagnostics().getClient()); 1044 1045 adapter->ResetManager(&diagnostic_manager); 1046 1047 const char *expr_text = m_expr.Text(); 1048 1049 clang::SourceManager &source_mgr = m_compiler->getSourceManager(); 1050 bool created_main_file = false; 1051 1052 // Clang wants to do completion on a real file known by Clang's file manager, 1053 // so we have to create one to make this work. 1054 // TODO: We probably could also simulate to Clang's file manager that there 1055 // is a real file that contains our code. 1056 bool should_create_file = completion_consumer != nullptr; 1057 1058 // We also want a real file on disk if we generate full debug info. 1059 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() == 1060 codegenoptions::FullDebugInfo; 1061 1062 if (should_create_file) { 1063 int temp_fd = -1; 1064 llvm::SmallString<128> result_path; 1065 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) { 1066 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); 1067 std::string temp_source_path = tmpdir_file_spec.GetPath(); 1068 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); 1069 } else { 1070 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); 1071 } 1072 1073 if (temp_fd != -1) { 1074 lldb_private::NativeFile file(temp_fd, File::eOpenOptionWriteOnly, true); 1075 const size_t expr_text_len = strlen(expr_text); 1076 size_t bytes_written = expr_text_len; 1077 if (file.Write(expr_text, bytes_written).Success()) { 1078 if (bytes_written == expr_text_len) { 1079 file.Close(); 1080 if (auto fileEntry = m_compiler->getFileManager().getOptionalFileRef( 1081 result_path)) { 1082 source_mgr.setMainFileID(source_mgr.createFileID( 1083 *fileEntry, 1084 SourceLocation(), SrcMgr::C_User)); 1085 created_main_file = true; 1086 } 1087 } 1088 } 1089 } 1090 } 1091 1092 if (!created_main_file) { 1093 std::unique_ptr<MemoryBuffer> memory_buffer = 1094 MemoryBuffer::getMemBufferCopy(expr_text, m_filename); 1095 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); 1096 } 1097 1098 adapter->BeginSourceFile(m_compiler->getLangOpts(), 1099 &m_compiler->getPreprocessor()); 1100 1101 ClangExpressionHelper *type_system_helper = 1102 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1103 1104 // If we want to parse for code completion, we need to attach our code 1105 // completion consumer to the Sema and specify a completion position. 1106 // While parsing the Sema will call this consumer with the provided 1107 // completion suggestions. 1108 if (completion_consumer) { 1109 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID()); 1110 auto &PP = m_compiler->getPreprocessor(); 1111 // Lines and columns start at 1 in Clang, but code completion positions are 1112 // indexed from 0, so we need to add 1 to the line and column here. 1113 ++completion_line; 1114 ++completion_column; 1115 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column); 1116 } 1117 1118 ASTConsumer *ast_transformer = 1119 type_system_helper->ASTTransformer(m_code_generator.get()); 1120 1121 std::unique_ptr<clang::ASTConsumer> Consumer; 1122 if (ast_transformer) { 1123 Consumer = std::make_unique<ASTConsumerForwarder>(ast_transformer); 1124 } else if (m_code_generator) { 1125 Consumer = std::make_unique<ASTConsumerForwarder>(m_code_generator.get()); 1126 } else { 1127 Consumer = std::make_unique<ASTConsumer>(); 1128 } 1129 1130 clang::ASTContext &ast_context = m_compiler->getASTContext(); 1131 1132 m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context, 1133 *Consumer, TU_Complete, completion_consumer)); 1134 m_compiler->setASTConsumer(std::move(Consumer)); 1135 1136 if (ast_context.getLangOpts().Modules) { 1137 m_compiler->createASTReader(); 1138 m_ast_context->setSema(&m_compiler->getSema()); 1139 } 1140 1141 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); 1142 if (decl_map) { 1143 decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer()); 1144 decl_map->InstallDiagnosticManager(diagnostic_manager); 1145 1146 clang::ExternalASTSource *ast_source = decl_map->CreateProxy(); 1147 1148 if (ast_context.getExternalSource()) { 1149 auto module_wrapper = 1150 new ExternalASTSourceWrapper(ast_context.getExternalSource()); 1151 1152 auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source); 1153 1154 auto multiplexer = 1155 new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper); 1156 IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer); 1157 ast_context.setExternalSource(Source); 1158 } else { 1159 ast_context.setExternalSource(ast_source); 1160 } 1161 decl_map->InstallASTContext(*m_ast_context); 1162 } 1163 1164 // Check that the ASTReader is properly attached to ASTContext and Sema. 1165 if (ast_context.getLangOpts().Modules) { 1166 assert(m_compiler->getASTContext().getExternalSource() && 1167 "ASTContext doesn't know about the ASTReader?"); 1168 assert(m_compiler->getSema().getExternalSource() && 1169 "Sema doesn't know about the ASTReader?"); 1170 } 1171 1172 { 1173 llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema( 1174 &m_compiler->getSema()); 1175 ParseAST(m_compiler->getSema(), false, false); 1176 } 1177 1178 // Make sure we have no pointer to the Sema we are about to destroy. 1179 if (ast_context.getLangOpts().Modules) 1180 m_ast_context->setSema(nullptr); 1181 // Destroy the Sema. This is necessary because we want to emulate the 1182 // original behavior of ParseAST (which also destroys the Sema after parsing). 1183 m_compiler->setSema(nullptr); 1184 1185 adapter->EndSourceFile(); 1186 1187 unsigned num_errors = adapter->getNumErrors(); 1188 1189 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { 1190 num_errors++; 1191 diagnostic_manager.PutString(eDiagnosticSeverityError, 1192 "while importing modules:"); 1193 diagnostic_manager.AppendMessageToDiagnostic( 1194 m_pp_callbacks->getErrorString()); 1195 } 1196 1197 if (!num_errors) { 1198 type_system_helper->CommitPersistentDecls(); 1199 } 1200 1201 adapter->ResetManager(); 1202 1203 return num_errors; 1204 } 1205 1206 std::string 1207 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) { 1208 std::string abi; 1209 1210 if (target_arch.IsMIPS()) { 1211 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) { 1212 case ArchSpec::eMIPSABI_N64: 1213 abi = "n64"; 1214 break; 1215 case ArchSpec::eMIPSABI_N32: 1216 abi = "n32"; 1217 break; 1218 case ArchSpec::eMIPSABI_O32: 1219 abi = "o32"; 1220 break; 1221 default: 1222 break; 1223 } 1224 } 1225 return abi; 1226 } 1227 1228 /// Applies the given Fix-It hint to the given commit. 1229 static void ApplyFixIt(const FixItHint &fixit, clang::edit::Commit &commit) { 1230 // This is cobbed from clang::Rewrite::FixItRewriter. 1231 if (fixit.CodeToInsert.empty()) { 1232 if (fixit.InsertFromRange.isValid()) { 1233 commit.insertFromRange(fixit.RemoveRange.getBegin(), 1234 fixit.InsertFromRange, /*afterToken=*/false, 1235 fixit.BeforePreviousInsertions); 1236 return; 1237 } 1238 commit.remove(fixit.RemoveRange); 1239 return; 1240 } 1241 if (fixit.RemoveRange.isTokenRange() || 1242 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) { 1243 commit.replace(fixit.RemoveRange, fixit.CodeToInsert); 1244 return; 1245 } 1246 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert, 1247 /*afterToken=*/false, fixit.BeforePreviousInsertions); 1248 } 1249 1250 bool ClangExpressionParser::RewriteExpression( 1251 DiagnosticManager &diagnostic_manager) { 1252 clang::SourceManager &source_manager = m_compiler->getSourceManager(); 1253 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(), 1254 nullptr); 1255 clang::edit::Commit commit(editor); 1256 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts()); 1257 1258 class RewritesReceiver : public edit::EditsReceiver { 1259 Rewriter &rewrite; 1260 1261 public: 1262 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {} 1263 1264 void insert(SourceLocation loc, StringRef text) override { 1265 rewrite.InsertText(loc, text); 1266 } 1267 void replace(CharSourceRange range, StringRef text) override { 1268 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text); 1269 } 1270 }; 1271 1272 RewritesReceiver rewrites_receiver(rewriter); 1273 1274 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics(); 1275 size_t num_diags = diagnostics.size(); 1276 if (num_diags == 0) 1277 return false; 1278 1279 for (const auto &diag : diagnostic_manager.Diagnostics()) { 1280 const auto *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag.get()); 1281 if (!diagnostic) 1282 continue; 1283 if (!diagnostic->HasFixIts()) 1284 continue; 1285 for (const FixItHint &fixit : diagnostic->FixIts()) 1286 ApplyFixIt(fixit, commit); 1287 } 1288 1289 // FIXME - do we want to try to propagate specific errors here? 1290 if (!commit.isCommitable()) 1291 return false; 1292 else if (!editor.commit(commit)) 1293 return false; 1294 1295 // Now play all the edits, and stash the result in the diagnostic manager. 1296 editor.applyRewrites(rewrites_receiver); 1297 RewriteBuffer &main_file_buffer = 1298 rewriter.getEditBuffer(source_manager.getMainFileID()); 1299 1300 std::string fixed_expression; 1301 llvm::raw_string_ostream out_stream(fixed_expression); 1302 1303 main_file_buffer.write(out_stream); 1304 out_stream.flush(); 1305 diagnostic_manager.SetFixedExpression(fixed_expression); 1306 1307 return true; 1308 } 1309 1310 static bool FindFunctionInModule(ConstString &mangled_name, 1311 llvm::Module *module, const char *orig_name) { 1312 for (const auto &func : module->getFunctionList()) { 1313 const StringRef &name = func.getName(); 1314 if (name.contains(orig_name)) { 1315 mangled_name.SetString(name); 1316 return true; 1317 } 1318 } 1319 1320 return false; 1321 } 1322 1323 lldb_private::Status ClangExpressionParser::PrepareForExecution( 1324 lldb::addr_t &func_addr, lldb::addr_t &func_end, 1325 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx, 1326 bool &can_interpret, ExecutionPolicy execution_policy) { 1327 func_addr = LLDB_INVALID_ADDRESS; 1328 func_end = LLDB_INVALID_ADDRESS; 1329 Log *log = GetLog(LLDBLog::Expressions); 1330 1331 lldb_private::Status err; 1332 1333 std::unique_ptr<llvm::Module> llvm_module_up( 1334 m_code_generator->ReleaseModule()); 1335 1336 if (!llvm_module_up) { 1337 err.SetErrorToGenericError(); 1338 err.SetErrorString("IR doesn't contain a module"); 1339 return err; 1340 } 1341 1342 ConstString function_name; 1343 1344 if (execution_policy != eExecutionPolicyTopLevel) { 1345 // Find the actual name of the function (it's often mangled somehow) 1346 1347 if (!FindFunctionInModule(function_name, llvm_module_up.get(), 1348 m_expr.FunctionName())) { 1349 err.SetErrorToGenericError(); 1350 err.SetErrorStringWithFormat("Couldn't find %s() in the module", 1351 m_expr.FunctionName()); 1352 return err; 1353 } else { 1354 LLDB_LOGF(log, "Found function %s for %s", function_name.AsCString(), 1355 m_expr.FunctionName()); 1356 } 1357 } 1358 1359 SymbolContext sc; 1360 1361 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) { 1362 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything); 1363 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) { 1364 sc.target_sp = target_sp; 1365 } 1366 1367 LLVMUserExpression::IRPasses custom_passes; 1368 { 1369 auto lang = m_expr.Language(); 1370 LLDB_LOGF(log, "%s - Current expression language is %s\n", __FUNCTION__, 1371 Language::GetNameForLanguageType(lang)); 1372 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP(); 1373 if (process_sp && lang != lldb::eLanguageTypeUnknown) { 1374 auto runtime = process_sp->GetLanguageRuntime(lang); 1375 if (runtime) 1376 runtime->GetIRPasses(custom_passes); 1377 } 1378 } 1379 1380 if (custom_passes.EarlyPasses) { 1381 LLDB_LOGF(log, 1382 "%s - Running Early IR Passes from LanguageRuntime on " 1383 "expression module '%s'", 1384 __FUNCTION__, m_expr.FunctionName()); 1385 1386 custom_passes.EarlyPasses->run(*llvm_module_up); 1387 } 1388 1389 execution_unit_sp = std::make_shared<IRExecutionUnit>( 1390 m_llvm_context, // handed off here 1391 llvm_module_up, // handed off here 1392 function_name, exe_ctx.GetTargetSP(), sc, 1393 m_compiler->getTargetOpts().Features); 1394 1395 ClangExpressionHelper *type_system_helper = 1396 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1397 ClangExpressionDeclMap *decl_map = 1398 type_system_helper->DeclMap(); // result can be NULL 1399 1400 if (decl_map) { 1401 StreamString error_stream; 1402 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(), 1403 *execution_unit_sp, error_stream, 1404 function_name.AsCString()); 1405 1406 if (!ir_for_target.runOnModule(*execution_unit_sp->GetModule())) { 1407 err.SetErrorString(error_stream.GetString()); 1408 return err; 1409 } 1410 1411 Process *process = exe_ctx.GetProcessPtr(); 1412 1413 if (execution_policy != eExecutionPolicyAlways && 1414 execution_policy != eExecutionPolicyTopLevel) { 1415 lldb_private::Status interpret_error; 1416 1417 bool interpret_function_calls = 1418 !process ? false : process->CanInterpretFunctionCalls(); 1419 can_interpret = IRInterpreter::CanInterpret( 1420 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(), 1421 interpret_error, interpret_function_calls); 1422 1423 if (!can_interpret && execution_policy == eExecutionPolicyNever) { 1424 err.SetErrorStringWithFormat( 1425 "Can't evaluate the expression without a running target due to: %s", 1426 interpret_error.AsCString()); 1427 return err; 1428 } 1429 } 1430 1431 if (!process && execution_policy == eExecutionPolicyAlways) { 1432 err.SetErrorString("Expression needed to run in the target, but the " 1433 "target can't be run"); 1434 return err; 1435 } 1436 1437 if (!process && execution_policy == eExecutionPolicyTopLevel) { 1438 err.SetErrorString("Top-level code needs to be inserted into a runnable " 1439 "target, but the target can't be run"); 1440 return err; 1441 } 1442 1443 if (execution_policy == eExecutionPolicyAlways || 1444 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) { 1445 if (m_expr.NeedsValidation() && process) { 1446 if (!process->GetDynamicCheckers()) { 1447 ClangDynamicCheckerFunctions *dynamic_checkers = 1448 new ClangDynamicCheckerFunctions(); 1449 1450 DiagnosticManager install_diagnostics; 1451 1452 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) { 1453 if (install_diagnostics.Diagnostics().size()) 1454 err.SetErrorString(install_diagnostics.GetString().c_str()); 1455 else 1456 err.SetErrorString("couldn't install checkers, unknown error"); 1457 1458 return err; 1459 } 1460 1461 process->SetDynamicCheckers(dynamic_checkers); 1462 1463 LLDB_LOGF(log, "== [ClangExpressionParser::PrepareForExecution] " 1464 "Finished installing dynamic checkers =="); 1465 } 1466 1467 if (auto *checker_funcs = llvm::dyn_cast<ClangDynamicCheckerFunctions>( 1468 process->GetDynamicCheckers())) { 1469 IRDynamicChecks ir_dynamic_checks(*checker_funcs, 1470 function_name.AsCString()); 1471 1472 llvm::Module *module = execution_unit_sp->GetModule(); 1473 if (!module || !ir_dynamic_checks.runOnModule(*module)) { 1474 err.SetErrorToGenericError(); 1475 err.SetErrorString("Couldn't add dynamic checks to the expression"); 1476 return err; 1477 } 1478 1479 if (custom_passes.LatePasses) { 1480 LLDB_LOGF(log, 1481 "%s - Running Late IR Passes from LanguageRuntime on " 1482 "expression module '%s'", 1483 __FUNCTION__, m_expr.FunctionName()); 1484 1485 custom_passes.LatePasses->run(*module); 1486 } 1487 } 1488 } 1489 } 1490 1491 if (execution_policy == eExecutionPolicyAlways || 1492 execution_policy == eExecutionPolicyTopLevel || !can_interpret) { 1493 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1494 } 1495 } else { 1496 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1497 } 1498 1499 return err; 1500 } 1501 1502 lldb_private::Status ClangExpressionParser::RunStaticInitializers( 1503 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) { 1504 lldb_private::Status err; 1505 1506 lldbassert(execution_unit_sp.get()); 1507 lldbassert(exe_ctx.HasThreadScope()); 1508 1509 if (!execution_unit_sp.get()) { 1510 err.SetErrorString( 1511 "can't run static initializers for a NULL execution unit"); 1512 return err; 1513 } 1514 1515 if (!exe_ctx.HasThreadScope()) { 1516 err.SetErrorString("can't run static initializers without a thread"); 1517 return err; 1518 } 1519 1520 std::vector<lldb::addr_t> static_initializers; 1521 1522 execution_unit_sp->GetStaticInitializers(static_initializers); 1523 1524 for (lldb::addr_t static_initializer : static_initializers) { 1525 EvaluateExpressionOptions options; 1526 1527 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction( 1528 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(), 1529 llvm::ArrayRef<lldb::addr_t>(), options)); 1530 1531 DiagnosticManager execution_errors; 1532 lldb::ExpressionResults results = 1533 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan( 1534 exe_ctx, call_static_initializer, options, execution_errors); 1535 1536 if (results != lldb::eExpressionCompleted) { 1537 err.SetErrorStringWithFormat("couldn't run static initializer: %s", 1538 execution_errors.GetString().c_str()); 1539 return err; 1540 } 1541 } 1542 1543 return err; 1544 } 1545