1 //===-- ClangExpressionParser.cpp -----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/AST/ASTContext.h" 10 #include "clang/AST/ASTDiagnostic.h" 11 #include "clang/AST/ExternalASTSource.h" 12 #include "clang/AST/PrettyPrinter.h" 13 #include "clang/Basic/Builtins.h" 14 #include "clang/Basic/DiagnosticIDs.h" 15 #include "clang/Basic/SourceLocation.h" 16 #include "clang/Basic/TargetInfo.h" 17 #include "clang/Basic/Version.h" 18 #include "clang/CodeGen/CodeGenAction.h" 19 #include "clang/CodeGen/ModuleBuilder.h" 20 #include "clang/Edit/Commit.h" 21 #include "clang/Edit/EditedSource.h" 22 #include "clang/Edit/EditsReceiver.h" 23 #include "clang/Frontend/CompilerInstance.h" 24 #include "clang/Frontend/CompilerInvocation.h" 25 #include "clang/Frontend/FrontendActions.h" 26 #include "clang/Frontend/FrontendDiagnostic.h" 27 #include "clang/Frontend/FrontendPluginRegistry.h" 28 #include "clang/Frontend/TextDiagnosticBuffer.h" 29 #include "clang/Frontend/TextDiagnosticPrinter.h" 30 #include "clang/Lex/Preprocessor.h" 31 #include "clang/Parse/ParseAST.h" 32 #include "clang/Rewrite/Core/Rewriter.h" 33 #include "clang/Rewrite/Frontend/FrontendActions.h" 34 #include "clang/Sema/CodeCompleteConsumer.h" 35 #include "clang/Sema/Sema.h" 36 #include "clang/Sema/SemaConsumer.h" 37 38 #include "llvm/ADT/StringRef.h" 39 #include "llvm/ExecutionEngine/ExecutionEngine.h" 40 #include "llvm/Support/CrashRecoveryContext.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/FileSystem.h" 43 #include "llvm/Support/TargetSelect.h" 44 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/Support/DynamicLibrary.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/Host.h" 50 #include "llvm/Support/MemoryBuffer.h" 51 #include "llvm/Support/Signals.h" 52 53 #include "ClangDiagnostic.h" 54 #include "ClangExpressionParser.h" 55 #include "ClangUserExpression.h" 56 57 #include "ASTUtils.h" 58 #include "ClangASTSource.h" 59 #include "ClangDiagnostic.h" 60 #include "ClangExpressionDeclMap.h" 61 #include "ClangExpressionHelper.h" 62 #include "ClangExpressionParser.h" 63 #include "ClangHost.h" 64 #include "ClangModulesDeclVendor.h" 65 #include "ClangPersistentVariables.h" 66 #include "IRDynamicChecks.h" 67 #include "IRForTarget.h" 68 #include "ModuleDependencyCollector.h" 69 70 #include "Plugins/TypeSystem/Clang/TypeSystemClang.h" 71 #include "lldb/Core/Debugger.h" 72 #include "lldb/Core/Disassembler.h" 73 #include "lldb/Core/Module.h" 74 #include "lldb/Core/StreamFile.h" 75 #include "lldb/Expression/IRExecutionUnit.h" 76 #include "lldb/Expression/IRInterpreter.h" 77 #include "lldb/Host/File.h" 78 #include "lldb/Host/HostInfo.h" 79 #include "lldb/Symbol/SymbolVendor.h" 80 #include "lldb/Target/ExecutionContext.h" 81 #include "lldb/Target/Language.h" 82 #include "lldb/Target/Process.h" 83 #include "lldb/Target/Target.h" 84 #include "lldb/Target/ThreadPlanCallFunction.h" 85 #include "lldb/Utility/DataBufferHeap.h" 86 #include "lldb/Utility/LLDBAssert.h" 87 #include "lldb/Utility/Log.h" 88 #include "lldb/Utility/ReproducerProvider.h" 89 #include "lldb/Utility/Stream.h" 90 #include "lldb/Utility/StreamString.h" 91 #include "lldb/Utility/StringList.h" 92 93 #include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h" 94 #include "Plugins/LanguageRuntime/RenderScript/RenderScriptRuntime/RenderScriptRuntime.h" 95 96 #include <cctype> 97 #include <memory> 98 99 using namespace clang; 100 using namespace llvm; 101 using namespace lldb_private; 102 103 //===----------------------------------------------------------------------===// 104 // Utility Methods for Clang 105 //===----------------------------------------------------------------------===// 106 107 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks { 108 ClangModulesDeclVendor &m_decl_vendor; 109 ClangPersistentVariables &m_persistent_vars; 110 clang::SourceManager &m_source_mgr; 111 StreamString m_error_stream; 112 bool m_has_errors = false; 113 114 public: 115 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor, 116 ClangPersistentVariables &persistent_vars, 117 clang::SourceManager &source_mgr) 118 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars), 119 m_source_mgr(source_mgr) {} 120 121 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path, 122 const clang::Module * /*null*/) override { 123 // Ignore modules that are imported in the wrapper code as these are not 124 // loaded by the user. 125 llvm::StringRef filename = 126 m_source_mgr.getPresumedLoc(import_location).getFilename(); 127 if (filename == ClangExpressionSourceCode::g_prefix_file_name) 128 return; 129 130 SourceModule module; 131 132 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) 133 module.path.push_back(ConstString(component.first->getName())); 134 135 StreamString error_stream; 136 137 ClangModulesDeclVendor::ModuleVector exported_modules; 138 if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream)) 139 m_has_errors = true; 140 141 for (ClangModulesDeclVendor::ModuleID module : exported_modules) 142 m_persistent_vars.AddHandLoadedClangModule(module); 143 } 144 145 bool hasErrors() { return m_has_errors; } 146 147 llvm::StringRef getErrorString() { return m_error_stream.GetString(); } 148 }; 149 150 static void AddAllFixIts(ClangDiagnostic *diag, const clang::Diagnostic &Info) { 151 for (auto &fix_it : Info.getFixItHints()) { 152 if (fix_it.isNull()) 153 continue; 154 diag->AddFixitHint(fix_it); 155 } 156 } 157 158 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer { 159 public: 160 ClangDiagnosticManagerAdapter(DiagnosticOptions &opts) { 161 DiagnosticOptions *options = new DiagnosticOptions(opts); 162 options->ShowPresumedLoc = true; 163 options->ShowLevel = false; 164 m_os = std::make_shared<llvm::raw_string_ostream>(m_output); 165 m_passthrough = 166 std::make_shared<clang::TextDiagnosticPrinter>(*m_os, options); 167 } 168 169 void ResetManager(DiagnosticManager *manager = nullptr) { 170 m_manager = manager; 171 } 172 173 /// Returns the last ClangDiagnostic message that the DiagnosticManager 174 /// received or a nullptr if the DiagnosticMangager hasn't seen any 175 /// Clang diagnostics yet. 176 ClangDiagnostic *MaybeGetLastClangDiag() const { 177 if (m_manager->Diagnostics().empty()) 178 return nullptr; 179 lldb_private::Diagnostic *diag = m_manager->Diagnostics().back().get(); 180 ClangDiagnostic *clang_diag = dyn_cast<ClangDiagnostic>(diag); 181 return clang_diag; 182 } 183 184 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, 185 const clang::Diagnostic &Info) override { 186 if (!m_manager) { 187 // We have no DiagnosticManager before/after parsing but we still could 188 // receive diagnostics (e.g., by the ASTImporter failing to copy decls 189 // when we move the expression result ot the ScratchASTContext). Let's at 190 // least log these diagnostics until we find a way to properly render 191 // them and display them to the user. 192 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 193 if (log) { 194 llvm::SmallVector<char, 32> diag_str; 195 Info.FormatDiagnostic(diag_str); 196 diag_str.push_back('\0'); 197 const char *plain_diag = diag_str.data(); 198 LLDB_LOG(log, "Received diagnostic outside parsing: {0}", plain_diag); 199 } 200 return; 201 } 202 203 // Update error/warning counters. 204 DiagnosticConsumer::HandleDiagnostic(DiagLevel, Info); 205 206 // Render diagnostic message to m_output. 207 m_output.clear(); 208 m_passthrough->HandleDiagnostic(DiagLevel, Info); 209 m_os->flush(); 210 211 lldb_private::DiagnosticSeverity severity; 212 bool make_new_diagnostic = true; 213 214 switch (DiagLevel) { 215 case DiagnosticsEngine::Level::Fatal: 216 case DiagnosticsEngine::Level::Error: 217 severity = eDiagnosticSeverityError; 218 break; 219 case DiagnosticsEngine::Level::Warning: 220 severity = eDiagnosticSeverityWarning; 221 break; 222 case DiagnosticsEngine::Level::Remark: 223 case DiagnosticsEngine::Level::Ignored: 224 severity = eDiagnosticSeverityRemark; 225 break; 226 case DiagnosticsEngine::Level::Note: 227 m_manager->AppendMessageToDiagnostic(m_output); 228 make_new_diagnostic = false; 229 230 // 'note:' diagnostics for errors and warnings can also contain Fix-Its. 231 // We add these Fix-Its to the last error diagnostic to make sure 232 // that we later have all Fix-Its related to an 'error' diagnostic when 233 // we apply them to the user expression. 234 auto *clang_diag = MaybeGetLastClangDiag(); 235 // If we don't have a previous diagnostic there is nothing to do. 236 // If the previous diagnostic already has its own Fix-Its, assume that 237 // the 'note:' Fix-It is just an alternative way to solve the issue and 238 // ignore these Fix-Its. 239 if (!clang_diag || clang_diag->HasFixIts()) 240 break; 241 // Ignore all Fix-Its that are not associated with an error. 242 if (clang_diag->GetSeverity() != eDiagnosticSeverityError) 243 break; 244 AddAllFixIts(clang_diag, Info); 245 break; 246 } 247 if (make_new_diagnostic) { 248 // ClangDiagnostic messages are expected to have no whitespace/newlines 249 // around them. 250 std::string stripped_output = 251 std::string(llvm::StringRef(m_output).trim()); 252 253 auto new_diagnostic = std::make_unique<ClangDiagnostic>( 254 stripped_output, severity, Info.getID()); 255 256 // Don't store away warning fixits, since the compiler doesn't have 257 // enough context in an expression for the warning to be useful. 258 // FIXME: Should we try to filter out FixIts that apply to our generated 259 // code, and not the user's expression? 260 if (severity == eDiagnosticSeverityError) 261 AddAllFixIts(new_diagnostic.get(), Info); 262 263 m_manager->AddDiagnostic(std::move(new_diagnostic)); 264 } 265 } 266 267 void BeginSourceFile(const LangOptions &LO, const Preprocessor *PP) override { 268 m_passthrough->BeginSourceFile(LO, PP); 269 } 270 271 void EndSourceFile() override { m_passthrough->EndSourceFile(); } 272 273 private: 274 DiagnosticManager *m_manager = nullptr; 275 std::shared_ptr<clang::TextDiagnosticPrinter> m_passthrough; 276 /// Output stream of m_passthrough. 277 std::shared_ptr<llvm::raw_string_ostream> m_os; 278 /// Output string filled by m_os. 279 std::string m_output; 280 }; 281 282 static void SetupModuleHeaderPaths(CompilerInstance *compiler, 283 std::vector<std::string> include_directories, 284 lldb::TargetSP target_sp) { 285 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 286 287 HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts(); 288 289 for (const std::string &dir : include_directories) { 290 search_opts.AddPath(dir, frontend::System, false, true); 291 LLDB_LOG(log, "Added user include dir: {0}", dir); 292 } 293 294 llvm::SmallString<128> module_cache; 295 const auto &props = ModuleList::GetGlobalModuleListProperties(); 296 props.GetClangModulesCachePath().GetPath(module_cache); 297 search_opts.ModuleCachePath = std::string(module_cache.str()); 298 LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str()); 299 300 search_opts.ResourceDir = GetClangResourceDir().GetPath(); 301 302 search_opts.ImplicitModuleMaps = true; 303 } 304 305 /// Iff the given identifier is a C++ keyword, remove it from the 306 /// identifier table (i.e., make the token a normal identifier). 307 static void RemoveCppKeyword(IdentifierTable &idents, llvm::StringRef token) { 308 // FIXME: 'using' is used by LLDB for local variables, so we can't remove 309 // this keyword without breaking this functionality. 310 if (token == "using") 311 return; 312 // GCC's '__null' is used by LLDB to define NULL/Nil/nil. 313 if (token == "__null") 314 return; 315 316 LangOptions cpp_lang_opts; 317 cpp_lang_opts.CPlusPlus = true; 318 cpp_lang_opts.CPlusPlus11 = true; 319 cpp_lang_opts.CPlusPlus20 = true; 320 321 clang::IdentifierInfo &ii = idents.get(token); 322 // The identifier has to be a C++-exclusive keyword. if not, then there is 323 // nothing to do. 324 if (!ii.isCPlusPlusKeyword(cpp_lang_opts)) 325 return; 326 // If the token is already an identifier, then there is nothing to do. 327 if (ii.getTokenID() == clang::tok::identifier) 328 return; 329 // Otherwise the token is a C++ keyword, so turn it back into a normal 330 // identifier. 331 ii.revertTokenIDToIdentifier(); 332 } 333 334 /// Remove all C++ keywords from the given identifier table. 335 static void RemoveAllCppKeywords(IdentifierTable &idents) { 336 #define KEYWORD(NAME, FLAGS) RemoveCppKeyword(idents, llvm::StringRef(#NAME)); 337 #include "clang/Basic/TokenKinds.def" 338 } 339 340 /// Configures Clang diagnostics for the expression parser. 341 static void SetupDefaultClangDiagnostics(CompilerInstance &compiler) { 342 // List of Clang warning groups that are not useful when parsing expressions. 343 const std::vector<const char *> groupsToIgnore = { 344 "unused-value", 345 "odr", 346 "unused-getter-return-value", 347 }; 348 for (const char *group : groupsToIgnore) { 349 compiler.getDiagnostics().setSeverityForGroup( 350 clang::diag::Flavor::WarningOrError, group, 351 clang::diag::Severity::Ignored, SourceLocation()); 352 } 353 } 354 355 //===----------------------------------------------------------------------===// 356 // Implementation of ClangExpressionParser 357 //===----------------------------------------------------------------------===// 358 359 ClangExpressionParser::ClangExpressionParser( 360 ExecutionContextScope *exe_scope, Expression &expr, 361 bool generate_debug_info, std::vector<std::string> include_directories, 362 std::string filename) 363 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(), 364 m_pp_callbacks(nullptr), 365 m_include_directories(std::move(include_directories)), 366 m_filename(std::move(filename)) { 367 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 368 369 // We can't compile expressions without a target. So if the exe_scope is 370 // null or doesn't have a target, then we just need to get out of here. I'll 371 // lldbassert and not make any of the compiler objects since 372 // I can't return errors directly from the constructor. Further calls will 373 // check if the compiler was made and 374 // bag out if it wasn't. 375 376 if (!exe_scope) { 377 lldbassert(exe_scope && 378 "Can't make an expression parser with a null scope."); 379 return; 380 } 381 382 lldb::TargetSP target_sp; 383 target_sp = exe_scope->CalculateTarget(); 384 if (!target_sp) { 385 lldbassert(target_sp.get() && 386 "Can't make an expression parser with a null target."); 387 return; 388 } 389 390 // 1. Create a new compiler instance. 391 m_compiler = std::make_unique<CompilerInstance>(); 392 393 // When capturing a reproducer, hook up the file collector with clang to 394 // collector modules and headers. 395 if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) { 396 repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>(); 397 m_compiler->setModuleDepCollector( 398 std::make_shared<ModuleDependencyCollectorAdaptor>( 399 fp.GetFileCollector())); 400 DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts(); 401 opts.IncludeSystemHeaders = true; 402 opts.IncludeModuleFiles = true; 403 } 404 405 // Make sure clang uses the same VFS as LLDB. 406 m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem()); 407 408 lldb::LanguageType frame_lang = 409 expr.Language(); // defaults to lldb::eLanguageTypeUnknown 410 bool overridden_target_opts = false; 411 lldb_private::LanguageRuntime *lang_rt = nullptr; 412 413 std::string abi; 414 ArchSpec target_arch; 415 target_arch = target_sp->GetArchitecture(); 416 417 const auto target_machine = target_arch.GetMachine(); 418 419 // If the expression is being evaluated in the context of an existing stack 420 // frame, we introspect to see if the language runtime is available. 421 422 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame(); 423 lldb::ProcessSP process_sp = exe_scope->CalculateProcess(); 424 425 // Make sure the user hasn't provided a preferred execution language with 426 // `expression --language X -- ...` 427 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown) 428 frame_lang = frame_sp->GetLanguage(); 429 430 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) { 431 lang_rt = process_sp->GetLanguageRuntime(frame_lang); 432 LLDB_LOGF(log, "Frame has language of type %s", 433 Language::GetNameForLanguageType(frame_lang)); 434 } 435 436 // 2. Configure the compiler with a set of default options that are 437 // appropriate for most situations. 438 if (target_arch.IsValid()) { 439 std::string triple = target_arch.GetTriple().str(); 440 m_compiler->getTargetOpts().Triple = triple; 441 LLDB_LOGF(log, "Using %s as the target triple", 442 m_compiler->getTargetOpts().Triple.c_str()); 443 } else { 444 // If we get here we don't have a valid target and just have to guess. 445 // Sometimes this will be ok to just use the host target triple (when we 446 // evaluate say "2+3", but other expressions like breakpoint conditions and 447 // other things that _are_ target specific really shouldn't just be using 448 // the host triple. In such a case the language runtime should expose an 449 // overridden options set (3), below. 450 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple(); 451 LLDB_LOGF(log, "Using default target triple of %s", 452 m_compiler->getTargetOpts().Triple.c_str()); 453 } 454 // Now add some special fixes for known architectures: Any arm32 iOS 455 // environment, but not on arm64 456 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos && 457 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos && 458 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) { 459 m_compiler->getTargetOpts().ABI = "apcs-gnu"; 460 } 461 // Supported subsets of x86 462 if (target_machine == llvm::Triple::x86 || 463 target_machine == llvm::Triple::x86_64) { 464 m_compiler->getTargetOpts().Features.push_back("+sse"); 465 m_compiler->getTargetOpts().Features.push_back("+sse2"); 466 } 467 468 // Set the target CPU to generate code for. This will be empty for any CPU 469 // that doesn't really need to make a special 470 // CPU string. 471 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU(); 472 473 // Set the target ABI 474 abi = GetClangTargetABI(target_arch); 475 if (!abi.empty()) 476 m_compiler->getTargetOpts().ABI = abi; 477 478 // 3. Now allow the runtime to provide custom configuration options for the 479 // target. In this case, a specialized language runtime is available and we 480 // can query it for extra options. For 99% of use cases, this will not be 481 // needed and should be provided when basic platform detection is not enough. 482 // FIXME: Generalize this. Only RenderScriptRuntime currently supports this 483 // currently. Hardcoding this isn't ideal but it's better than LanguageRuntime 484 // having knowledge of clang::TargetOpts. 485 if (auto *renderscript_rt = 486 llvm::dyn_cast_or_null<RenderScriptRuntime>(lang_rt)) 487 overridden_target_opts = 488 renderscript_rt->GetOverrideExprOptions(m_compiler->getTargetOpts()); 489 490 if (overridden_target_opts) 491 if (log && log->GetVerbose()) { 492 LLDB_LOGV( 493 log, "Using overridden target options for the expression evaluation"); 494 495 auto opts = m_compiler->getTargetOpts(); 496 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple); 497 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU); 498 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath); 499 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI); 500 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion); 501 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten"); 502 StringList::LogDump(log, opts.Features, "Features"); 503 } 504 505 // 4. Create and install the target on the compiler. 506 m_compiler->createDiagnostics(); 507 // Limit the number of error diagnostics we emit. 508 // A value of 0 means no limit for both LLDB and Clang. 509 m_compiler->getDiagnostics().setErrorLimit(target_sp->GetExprErrorLimit()); 510 511 auto target_info = TargetInfo::CreateTargetInfo( 512 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts); 513 if (log) { 514 LLDB_LOGF(log, "Using SIMD alignment: %d", 515 target_info->getSimdDefaultAlign()); 516 LLDB_LOGF(log, "Target datalayout string: '%s'", 517 target_info->getDataLayoutString()); 518 LLDB_LOGF(log, "Target ABI: '%s'", target_info->getABI().str().c_str()); 519 LLDB_LOGF(log, "Target vector alignment: %d", 520 target_info->getMaxVectorAlign()); 521 } 522 m_compiler->setTarget(target_info); 523 524 assert(m_compiler->hasTarget()); 525 526 // 5. Set language options. 527 lldb::LanguageType language = expr.Language(); 528 LangOptions &lang_opts = m_compiler->getLangOpts(); 529 530 switch (language) { 531 case lldb::eLanguageTypeC: 532 case lldb::eLanguageTypeC89: 533 case lldb::eLanguageTypeC99: 534 case lldb::eLanguageTypeC11: 535 // FIXME: the following language option is a temporary workaround, 536 // to "ask for C, get C++." 537 // For now, the expression parser must use C++ anytime the language is a C 538 // family language, because the expression parser uses features of C++ to 539 // capture values. 540 lang_opts.CPlusPlus = true; 541 break; 542 case lldb::eLanguageTypeObjC: 543 lang_opts.ObjC = true; 544 // FIXME: the following language option is a temporary workaround, 545 // to "ask for ObjC, get ObjC++" (see comment above). 546 lang_opts.CPlusPlus = true; 547 548 // Clang now sets as default C++14 as the default standard (with 549 // GNU extensions), so we do the same here to avoid mismatches that 550 // cause compiler error when evaluating expressions (e.g. nullptr not found 551 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see 552 // two lines below) so we decide to be consistent with that, but this could 553 // be re-evaluated in the future. 554 lang_opts.CPlusPlus11 = true; 555 break; 556 case lldb::eLanguageTypeC_plus_plus: 557 case lldb::eLanguageTypeC_plus_plus_11: 558 case lldb::eLanguageTypeC_plus_plus_14: 559 lang_opts.CPlusPlus11 = true; 560 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 561 LLVM_FALLTHROUGH; 562 case lldb::eLanguageTypeC_plus_plus_03: 563 lang_opts.CPlusPlus = true; 564 if (process_sp) 565 lang_opts.ObjC = 566 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr; 567 break; 568 case lldb::eLanguageTypeObjC_plus_plus: 569 case lldb::eLanguageTypeUnknown: 570 default: 571 lang_opts.ObjC = true; 572 lang_opts.CPlusPlus = true; 573 lang_opts.CPlusPlus11 = true; 574 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 575 break; 576 } 577 578 lang_opts.Bool = true; 579 lang_opts.WChar = true; 580 lang_opts.Blocks = true; 581 lang_opts.DebuggerSupport = 582 true; // Features specifically for debugger clients 583 if (expr.DesiredResultType() == Expression::eResultTypeId) 584 lang_opts.DebuggerCastResultToId = true; 585 586 lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str()) 587 .CharIsSignedByDefault(); 588 589 // Spell checking is a nice feature, but it ends up completing a lot of types 590 // that we didn't strictly speaking need to complete. As a result, we spend a 591 // long time parsing and importing debug information. 592 lang_opts.SpellChecking = false; 593 594 auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr); 595 if (clang_expr && clang_expr->DidImportCxxModules()) { 596 LLDB_LOG(log, "Adding lang options for importing C++ modules"); 597 598 lang_opts.Modules = true; 599 // We want to implicitly build modules. 600 lang_opts.ImplicitModules = true; 601 // To automatically import all submodules when we import 'std'. 602 lang_opts.ModulesLocalVisibility = false; 603 604 // We use the @import statements, so we need this: 605 // FIXME: We could use the modules-ts, but that currently doesn't work. 606 lang_opts.ObjC = true; 607 608 // Options we need to parse libc++ code successfully. 609 // FIXME: We should ask the driver for the appropriate default flags. 610 lang_opts.GNUMode = true; 611 lang_opts.GNUKeywords = true; 612 lang_opts.DoubleSquareBracketAttributes = true; 613 lang_opts.CPlusPlus11 = true; 614 615 // The Darwin libc expects this macro to be set. 616 lang_opts.GNUCVersion = 40201; 617 618 SetupModuleHeaderPaths(m_compiler.get(), m_include_directories, 619 target_sp); 620 } 621 622 if (process_sp && lang_opts.ObjC) { 623 if (auto *runtime = ObjCLanguageRuntime::Get(*process_sp)) { 624 if (runtime->GetRuntimeVersion() == 625 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2) 626 lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7)); 627 else 628 lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX, 629 VersionTuple(10, 7)); 630 631 if (runtime->HasNewLiteralsAndIndexing()) 632 lang_opts.DebuggerObjCLiteral = true; 633 } 634 } 635 636 lang_opts.ThreadsafeStatics = false; 637 lang_opts.AccessControl = false; // Debuggers get universal access 638 lang_opts.DollarIdents = true; // $ indicates a persistent variable name 639 // We enable all builtin functions beside the builtins from libc/libm (e.g. 640 // 'fopen'). Those libc functions are already correctly handled by LLDB, and 641 // additionally enabling them as expandable builtins is breaking Clang. 642 lang_opts.NoBuiltin = true; 643 644 // Set CodeGen options 645 m_compiler->getCodeGenOpts().EmitDeclMetadata = true; 646 m_compiler->getCodeGenOpts().InstrumentFunctions = false; 647 m_compiler->getCodeGenOpts().setFramePointer( 648 CodeGenOptions::FramePointerKind::All); 649 if (generate_debug_info) 650 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo); 651 else 652 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo); 653 654 // Disable some warnings. 655 SetupDefaultClangDiagnostics(*m_compiler); 656 657 // Inform the target of the language options 658 // 659 // FIXME: We shouldn't need to do this, the target should be immutable once 660 // created. This complexity should be lifted elsewhere. 661 m_compiler->getTarget().adjust(m_compiler->getDiagnostics(), 662 m_compiler->getLangOpts()); 663 664 // 6. Set up the diagnostic buffer for reporting errors 665 666 auto diag_mgr = new ClangDiagnosticManagerAdapter( 667 m_compiler->getDiagnostics().getDiagnosticOptions()); 668 m_compiler->getDiagnostics().setClient(diag_mgr); 669 670 // 7. Set up the source management objects inside the compiler 671 m_compiler->createFileManager(); 672 if (!m_compiler->hasSourceManager()) 673 m_compiler->createSourceManager(m_compiler->getFileManager()); 674 m_compiler->createPreprocessor(TU_Complete); 675 676 switch (language) { 677 case lldb::eLanguageTypeC: 678 case lldb::eLanguageTypeC89: 679 case lldb::eLanguageTypeC99: 680 case lldb::eLanguageTypeC11: 681 case lldb::eLanguageTypeObjC: 682 // This is not a C++ expression but we enabled C++ as explained above. 683 // Remove all C++ keywords from the PP so that the user can still use 684 // variables that have C++ keywords as names (e.g. 'int template;'). 685 RemoveAllCppKeywords(m_compiler->getPreprocessor().getIdentifierTable()); 686 break; 687 default: 688 break; 689 } 690 691 if (auto *clang_persistent_vars = llvm::cast<ClangPersistentVariables>( 692 target_sp->GetPersistentExpressionStateForLanguage( 693 lldb::eLanguageTypeC))) { 694 if (std::shared_ptr<ClangModulesDeclVendor> decl_vendor = 695 clang_persistent_vars->GetClangModulesDeclVendor()) { 696 std::unique_ptr<PPCallbacks> pp_callbacks( 697 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars, 698 m_compiler->getSourceManager())); 699 m_pp_callbacks = 700 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get()); 701 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks)); 702 } 703 } 704 705 // 8. Most of this we get from the CompilerInstance, but we also want to give 706 // the context an ExternalASTSource. 707 708 auto &PP = m_compiler->getPreprocessor(); 709 auto &builtin_context = PP.getBuiltinInfo(); 710 builtin_context.initializeBuiltins(PP.getIdentifierTable(), 711 m_compiler->getLangOpts()); 712 713 m_compiler->createASTContext(); 714 clang::ASTContext &ast_context = m_compiler->getASTContext(); 715 716 m_ast_context = std::make_unique<TypeSystemClang>( 717 "Expression ASTContext for '" + m_filename + "'", ast_context); 718 719 std::string module_name("$__lldb_module"); 720 721 m_llvm_context = std::make_unique<LLVMContext>(); 722 m_code_generator.reset(CreateLLVMCodeGen( 723 m_compiler->getDiagnostics(), module_name, 724 m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(), 725 m_compiler->getCodeGenOpts(), *m_llvm_context)); 726 } 727 728 ClangExpressionParser::~ClangExpressionParser() = default; 729 730 namespace { 731 732 /// \class CodeComplete 733 /// 734 /// A code completion consumer for the clang Sema that is responsible for 735 /// creating the completion suggestions when a user requests completion 736 /// of an incomplete `expr` invocation. 737 class CodeComplete : public CodeCompleteConsumer { 738 CodeCompletionTUInfo m_info; 739 740 std::string m_expr; 741 unsigned m_position = 0; 742 /// The printing policy we use when printing declarations for our completion 743 /// descriptions. 744 clang::PrintingPolicy m_desc_policy; 745 746 struct CompletionWithPriority { 747 CompletionResult::Completion completion; 748 /// See CodeCompletionResult::Priority; 749 unsigned Priority; 750 751 /// Establishes a deterministic order in a list of CompletionWithPriority. 752 /// The order returned here is the order in which the completions are 753 /// displayed to the user. 754 bool operator<(const CompletionWithPriority &o) const { 755 // High priority results should come first. 756 if (Priority != o.Priority) 757 return Priority > o.Priority; 758 759 // Identical priority, so just make sure it's a deterministic order. 760 return completion.GetUniqueKey() < o.completion.GetUniqueKey(); 761 } 762 }; 763 764 /// The stored completions. 765 /// Warning: These are in a non-deterministic order until they are sorted 766 /// and returned back to the caller. 767 std::vector<CompletionWithPriority> m_completions; 768 769 /// Returns true if the given character can be used in an identifier. 770 /// This also returns true for numbers because for completion we usually 771 /// just iterate backwards over iterators. 772 /// 773 /// Note: lldb uses '$' in its internal identifiers, so we also allow this. 774 static bool IsIdChar(char c) { 775 return c == '_' || std::isalnum(c) || c == '$'; 776 } 777 778 /// Returns true if the given character is used to separate arguments 779 /// in the command line of lldb. 780 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; } 781 782 /// Drops all tokens in front of the expression that are unrelated for 783 /// the completion of the cmd line. 'unrelated' means here that the token 784 /// is not interested for the lldb completion API result. 785 StringRef dropUnrelatedFrontTokens(StringRef cmd) const { 786 if (cmd.empty()) 787 return cmd; 788 789 // If we are at the start of a word, then all tokens are unrelated to 790 // the current completion logic. 791 if (IsTokenSeparator(cmd.back())) 792 return StringRef(); 793 794 // Remove all previous tokens from the string as they are unrelated 795 // to completing the current token. 796 StringRef to_remove = cmd; 797 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) { 798 to_remove = to_remove.drop_back(); 799 } 800 cmd = cmd.drop_front(to_remove.size()); 801 802 return cmd; 803 } 804 805 /// Removes the last identifier token from the given cmd line. 806 StringRef removeLastToken(StringRef cmd) const { 807 while (!cmd.empty() && IsIdChar(cmd.back())) { 808 cmd = cmd.drop_back(); 809 } 810 return cmd; 811 } 812 813 /// Attempts to merge the given completion from the given position into the 814 /// existing command. Returns the completion string that can be returned to 815 /// the lldb completion API. 816 std::string mergeCompletion(StringRef existing, unsigned pos, 817 StringRef completion) const { 818 StringRef existing_command = existing.substr(0, pos); 819 // We rewrite the last token with the completion, so let's drop that 820 // token from the command. 821 existing_command = removeLastToken(existing_command); 822 // We also should remove all previous tokens from the command as they 823 // would otherwise be added to the completion that already has the 824 // completion. 825 existing_command = dropUnrelatedFrontTokens(existing_command); 826 return existing_command.str() + completion.str(); 827 } 828 829 public: 830 /// Constructs a CodeComplete consumer that can be attached to a Sema. 831 /// 832 /// \param[out] expr 833 /// The whole expression string that we are currently parsing. This 834 /// string needs to be equal to the input the user typed, and NOT the 835 /// final code that Clang is parsing. 836 /// \param[out] position 837 /// The character position of the user cursor in the `expr` parameter. 838 /// 839 CodeComplete(clang::LangOptions ops, std::string expr, unsigned position) 840 : CodeCompleteConsumer(CodeCompleteOptions()), 841 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr), 842 m_position(position), m_desc_policy(ops) { 843 844 // Ensure that the printing policy is producing a description that is as 845 // short as possible. 846 m_desc_policy.SuppressScope = true; 847 m_desc_policy.SuppressTagKeyword = true; 848 m_desc_policy.FullyQualifiedName = false; 849 m_desc_policy.TerseOutput = true; 850 m_desc_policy.IncludeNewlines = false; 851 m_desc_policy.UseVoidForZeroParams = false; 852 m_desc_policy.Bool = true; 853 } 854 855 /// \name Code-completion filtering 856 /// Check if the result should be filtered out. 857 bool isResultFilteredOut(StringRef Filter, 858 CodeCompletionResult Result) override { 859 // This code is mostly copied from CodeCompleteConsumer. 860 switch (Result.Kind) { 861 case CodeCompletionResult::RK_Declaration: 862 return !( 863 Result.Declaration->getIdentifier() && 864 Result.Declaration->getIdentifier()->getName().startswith(Filter)); 865 case CodeCompletionResult::RK_Keyword: 866 return !StringRef(Result.Keyword).startswith(Filter); 867 case CodeCompletionResult::RK_Macro: 868 return !Result.Macro->getName().startswith(Filter); 869 case CodeCompletionResult::RK_Pattern: 870 return !StringRef(Result.Pattern->getAsString()).startswith(Filter); 871 } 872 // If we trigger this assert or the above switch yields a warning, then 873 // CodeCompletionResult has been enhanced with more kinds of completion 874 // results. Expand the switch above in this case. 875 assert(false && "Unknown completion result type?"); 876 // If we reach this, then we should just ignore whatever kind of unknown 877 // result we got back. We probably can't turn it into any kind of useful 878 // completion suggestion with the existing code. 879 return true; 880 } 881 882 private: 883 /// Generate the completion strings for the given CodeCompletionResult. 884 /// Note that this function has to process results that could come in 885 /// non-deterministic order, so this function should have no side effects. 886 /// To make this easier to enforce, this function and all its parameters 887 /// should always be const-qualified. 888 /// \return Returns llvm::None if no completion should be provided for the 889 /// given CodeCompletionResult. 890 llvm::Optional<CompletionWithPriority> 891 getCompletionForResult(const CodeCompletionResult &R) const { 892 std::string ToInsert; 893 std::string Description; 894 // Handle the different completion kinds that come from the Sema. 895 switch (R.Kind) { 896 case CodeCompletionResult::RK_Declaration: { 897 const NamedDecl *D = R.Declaration; 898 ToInsert = R.Declaration->getNameAsString(); 899 // If we have a function decl that has no arguments we want to 900 // complete the empty parantheses for the user. If the function has 901 // arguments, we at least complete the opening bracket. 902 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) { 903 if (F->getNumParams() == 0) 904 ToInsert += "()"; 905 else 906 ToInsert += "("; 907 raw_string_ostream OS(Description); 908 F->print(OS, m_desc_policy, false); 909 OS.flush(); 910 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) { 911 Description = V->getType().getAsString(m_desc_policy); 912 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) { 913 Description = F->getType().getAsString(m_desc_policy); 914 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) { 915 // If we try to complete a namespace, then we can directly append 916 // the '::'. 917 if (!N->isAnonymousNamespace()) 918 ToInsert += "::"; 919 } 920 break; 921 } 922 case CodeCompletionResult::RK_Keyword: 923 ToInsert = R.Keyword; 924 break; 925 case CodeCompletionResult::RK_Macro: 926 ToInsert = R.Macro->getName().str(); 927 break; 928 case CodeCompletionResult::RK_Pattern: 929 ToInsert = R.Pattern->getTypedText(); 930 break; 931 } 932 // We also filter some internal lldb identifiers here. The user 933 // shouldn't see these. 934 if (llvm::StringRef(ToInsert).startswith("$__lldb_")) 935 return llvm::None; 936 if (ToInsert.empty()) 937 return llvm::None; 938 // Merge the suggested Token into the existing command line to comply 939 // with the kind of result the lldb API expects. 940 std::string CompletionSuggestion = 941 mergeCompletion(m_expr, m_position, ToInsert); 942 943 CompletionResult::Completion completion(CompletionSuggestion, Description, 944 CompletionMode::Normal); 945 return {{completion, R.Priority}}; 946 } 947 948 public: 949 /// Adds the completions to the given CompletionRequest. 950 void GetCompletions(CompletionRequest &request) { 951 // Bring m_completions into a deterministic order and pass it on to the 952 // CompletionRequest. 953 llvm::sort(m_completions); 954 955 for (const CompletionWithPriority &C : m_completions) 956 request.AddCompletion(C.completion.GetCompletion(), 957 C.completion.GetDescription(), 958 C.completion.GetMode()); 959 } 960 961 /// \name Code-completion callbacks 962 /// Process the finalized code-completion results. 963 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context, 964 CodeCompletionResult *Results, 965 unsigned NumResults) override { 966 967 // The Sema put the incomplete token we try to complete in here during 968 // lexing, so we need to retrieve it here to know what we are completing. 969 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter(); 970 971 // Iterate over all the results. Filter out results we don't want and 972 // process the rest. 973 for (unsigned I = 0; I != NumResults; ++I) { 974 // Filter the results with the information from the Sema. 975 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I])) 976 continue; 977 978 CodeCompletionResult &R = Results[I]; 979 llvm::Optional<CompletionWithPriority> CompletionAndPriority = 980 getCompletionForResult(R); 981 if (!CompletionAndPriority) 982 continue; 983 m_completions.push_back(*CompletionAndPriority); 984 } 985 } 986 987 /// \param S the semantic-analyzer object for which code-completion is being 988 /// done. 989 /// 990 /// \param CurrentArg the index of the current argument. 991 /// 992 /// \param Candidates an array of overload candidates. 993 /// 994 /// \param NumCandidates the number of overload candidates 995 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg, 996 OverloadCandidate *Candidates, 997 unsigned NumCandidates, 998 SourceLocation OpenParLoc, 999 bool Braced) override { 1000 // At the moment we don't filter out any overloaded candidates. 1001 } 1002 1003 CodeCompletionAllocator &getAllocator() override { 1004 return m_info.getAllocator(); 1005 } 1006 1007 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; } 1008 }; 1009 } // namespace 1010 1011 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line, 1012 unsigned pos, unsigned typed_pos) { 1013 DiagnosticManager mgr; 1014 // We need the raw user expression here because that's what the CodeComplete 1015 // class uses to provide completion suggestions. 1016 // However, the `Text` method only gives us the transformed expression here. 1017 // To actually get the raw user input here, we have to cast our expression to 1018 // the LLVMUserExpression which exposes the right API. This should never fail 1019 // as we always have a ClangUserExpression whenever we call this. 1020 ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr); 1021 CodeComplete CC(m_compiler->getLangOpts(), llvm_expr->GetUserText(), 1022 typed_pos); 1023 // We don't need a code generator for parsing. 1024 m_code_generator.reset(); 1025 // Start parsing the expression with our custom code completion consumer. 1026 ParseInternal(mgr, &CC, line, pos); 1027 CC.GetCompletions(request); 1028 return true; 1029 } 1030 1031 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) { 1032 return ParseInternal(diagnostic_manager); 1033 } 1034 1035 unsigned 1036 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager, 1037 CodeCompleteConsumer *completion_consumer, 1038 unsigned completion_line, 1039 unsigned completion_column) { 1040 ClangDiagnosticManagerAdapter *adapter = 1041 static_cast<ClangDiagnosticManagerAdapter *>( 1042 m_compiler->getDiagnostics().getClient()); 1043 1044 adapter->ResetManager(&diagnostic_manager); 1045 1046 const char *expr_text = m_expr.Text(); 1047 1048 clang::SourceManager &source_mgr = m_compiler->getSourceManager(); 1049 bool created_main_file = false; 1050 1051 // Clang wants to do completion on a real file known by Clang's file manager, 1052 // so we have to create one to make this work. 1053 // TODO: We probably could also simulate to Clang's file manager that there 1054 // is a real file that contains our code. 1055 bool should_create_file = completion_consumer != nullptr; 1056 1057 // We also want a real file on disk if we generate full debug info. 1058 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() == 1059 codegenoptions::FullDebugInfo; 1060 1061 if (should_create_file) { 1062 int temp_fd = -1; 1063 llvm::SmallString<128> result_path; 1064 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) { 1065 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); 1066 std::string temp_source_path = tmpdir_file_spec.GetPath(); 1067 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); 1068 } else { 1069 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); 1070 } 1071 1072 if (temp_fd != -1) { 1073 lldb_private::NativeFile file(temp_fd, File::eOpenOptionWriteOnly, true); 1074 const size_t expr_text_len = strlen(expr_text); 1075 size_t bytes_written = expr_text_len; 1076 if (file.Write(expr_text, bytes_written).Success()) { 1077 if (bytes_written == expr_text_len) { 1078 file.Close(); 1079 if (auto fileEntry = m_compiler->getFileManager().getOptionalFileRef( 1080 result_path)) { 1081 source_mgr.setMainFileID(source_mgr.createFileID( 1082 *fileEntry, 1083 SourceLocation(), SrcMgr::C_User)); 1084 created_main_file = true; 1085 } 1086 } 1087 } 1088 } 1089 } 1090 1091 if (!created_main_file) { 1092 std::unique_ptr<MemoryBuffer> memory_buffer = 1093 MemoryBuffer::getMemBufferCopy(expr_text, m_filename); 1094 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); 1095 } 1096 1097 adapter->BeginSourceFile(m_compiler->getLangOpts(), 1098 &m_compiler->getPreprocessor()); 1099 1100 ClangExpressionHelper *type_system_helper = 1101 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1102 1103 // If we want to parse for code completion, we need to attach our code 1104 // completion consumer to the Sema and specify a completion position. 1105 // While parsing the Sema will call this consumer with the provided 1106 // completion suggestions. 1107 if (completion_consumer) { 1108 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID()); 1109 auto &PP = m_compiler->getPreprocessor(); 1110 // Lines and columns start at 1 in Clang, but code completion positions are 1111 // indexed from 0, so we need to add 1 to the line and column here. 1112 ++completion_line; 1113 ++completion_column; 1114 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column); 1115 } 1116 1117 ASTConsumer *ast_transformer = 1118 type_system_helper->ASTTransformer(m_code_generator.get()); 1119 1120 std::unique_ptr<clang::ASTConsumer> Consumer; 1121 if (ast_transformer) { 1122 Consumer = std::make_unique<ASTConsumerForwarder>(ast_transformer); 1123 } else if (m_code_generator) { 1124 Consumer = std::make_unique<ASTConsumerForwarder>(m_code_generator.get()); 1125 } else { 1126 Consumer = std::make_unique<ASTConsumer>(); 1127 } 1128 1129 clang::ASTContext &ast_context = m_compiler->getASTContext(); 1130 1131 m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context, 1132 *Consumer, TU_Complete, completion_consumer)); 1133 m_compiler->setASTConsumer(std::move(Consumer)); 1134 1135 if (ast_context.getLangOpts().Modules) { 1136 m_compiler->createASTReader(); 1137 m_ast_context->setSema(&m_compiler->getSema()); 1138 } 1139 1140 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); 1141 if (decl_map) { 1142 decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer()); 1143 decl_map->InstallDiagnosticManager(diagnostic_manager); 1144 1145 clang::ExternalASTSource *ast_source = decl_map->CreateProxy(); 1146 1147 if (ast_context.getExternalSource()) { 1148 auto module_wrapper = 1149 new ExternalASTSourceWrapper(ast_context.getExternalSource()); 1150 1151 auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source); 1152 1153 auto multiplexer = 1154 new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper); 1155 IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer); 1156 ast_context.setExternalSource(Source); 1157 } else { 1158 ast_context.setExternalSource(ast_source); 1159 } 1160 decl_map->InstallASTContext(*m_ast_context); 1161 } 1162 1163 // Check that the ASTReader is properly attached to ASTContext and Sema. 1164 if (ast_context.getLangOpts().Modules) { 1165 assert(m_compiler->getASTContext().getExternalSource() && 1166 "ASTContext doesn't know about the ASTReader?"); 1167 assert(m_compiler->getSema().getExternalSource() && 1168 "Sema doesn't know about the ASTReader?"); 1169 } 1170 1171 { 1172 llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema( 1173 &m_compiler->getSema()); 1174 ParseAST(m_compiler->getSema(), false, false); 1175 } 1176 1177 // Make sure we have no pointer to the Sema we are about to destroy. 1178 if (ast_context.getLangOpts().Modules) 1179 m_ast_context->setSema(nullptr); 1180 // Destroy the Sema. This is necessary because we want to emulate the 1181 // original behavior of ParseAST (which also destroys the Sema after parsing). 1182 m_compiler->setSema(nullptr); 1183 1184 adapter->EndSourceFile(); 1185 1186 unsigned num_errors = adapter->getNumErrors(); 1187 1188 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { 1189 num_errors++; 1190 diagnostic_manager.PutString(eDiagnosticSeverityError, 1191 "while importing modules:"); 1192 diagnostic_manager.AppendMessageToDiagnostic( 1193 m_pp_callbacks->getErrorString()); 1194 } 1195 1196 if (!num_errors) { 1197 type_system_helper->CommitPersistentDecls(); 1198 } 1199 1200 adapter->ResetManager(); 1201 1202 return num_errors; 1203 } 1204 1205 std::string 1206 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) { 1207 std::string abi; 1208 1209 if (target_arch.IsMIPS()) { 1210 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) { 1211 case ArchSpec::eMIPSABI_N64: 1212 abi = "n64"; 1213 break; 1214 case ArchSpec::eMIPSABI_N32: 1215 abi = "n32"; 1216 break; 1217 case ArchSpec::eMIPSABI_O32: 1218 abi = "o32"; 1219 break; 1220 default: 1221 break; 1222 } 1223 } 1224 return abi; 1225 } 1226 1227 /// Applies the given Fix-It hint to the given commit. 1228 static void ApplyFixIt(const FixItHint &fixit, clang::edit::Commit &commit) { 1229 // This is cobbed from clang::Rewrite::FixItRewriter. 1230 if (fixit.CodeToInsert.empty()) { 1231 if (fixit.InsertFromRange.isValid()) { 1232 commit.insertFromRange(fixit.RemoveRange.getBegin(), 1233 fixit.InsertFromRange, /*afterToken=*/false, 1234 fixit.BeforePreviousInsertions); 1235 return; 1236 } 1237 commit.remove(fixit.RemoveRange); 1238 return; 1239 } 1240 if (fixit.RemoveRange.isTokenRange() || 1241 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) { 1242 commit.replace(fixit.RemoveRange, fixit.CodeToInsert); 1243 return; 1244 } 1245 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert, 1246 /*afterToken=*/false, fixit.BeforePreviousInsertions); 1247 } 1248 1249 bool ClangExpressionParser::RewriteExpression( 1250 DiagnosticManager &diagnostic_manager) { 1251 clang::SourceManager &source_manager = m_compiler->getSourceManager(); 1252 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(), 1253 nullptr); 1254 clang::edit::Commit commit(editor); 1255 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts()); 1256 1257 class RewritesReceiver : public edit::EditsReceiver { 1258 Rewriter &rewrite; 1259 1260 public: 1261 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {} 1262 1263 void insert(SourceLocation loc, StringRef text) override { 1264 rewrite.InsertText(loc, text); 1265 } 1266 void replace(CharSourceRange range, StringRef text) override { 1267 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text); 1268 } 1269 }; 1270 1271 RewritesReceiver rewrites_receiver(rewriter); 1272 1273 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics(); 1274 size_t num_diags = diagnostics.size(); 1275 if (num_diags == 0) 1276 return false; 1277 1278 for (const auto &diag : diagnostic_manager.Diagnostics()) { 1279 const auto *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag.get()); 1280 if (!diagnostic) 1281 continue; 1282 if (!diagnostic->HasFixIts()) 1283 continue; 1284 for (const FixItHint &fixit : diagnostic->FixIts()) 1285 ApplyFixIt(fixit, commit); 1286 } 1287 1288 // FIXME - do we want to try to propagate specific errors here? 1289 if (!commit.isCommitable()) 1290 return false; 1291 else if (!editor.commit(commit)) 1292 return false; 1293 1294 // Now play all the edits, and stash the result in the diagnostic manager. 1295 editor.applyRewrites(rewrites_receiver); 1296 RewriteBuffer &main_file_buffer = 1297 rewriter.getEditBuffer(source_manager.getMainFileID()); 1298 1299 std::string fixed_expression; 1300 llvm::raw_string_ostream out_stream(fixed_expression); 1301 1302 main_file_buffer.write(out_stream); 1303 out_stream.flush(); 1304 diagnostic_manager.SetFixedExpression(fixed_expression); 1305 1306 return true; 1307 } 1308 1309 static bool FindFunctionInModule(ConstString &mangled_name, 1310 llvm::Module *module, const char *orig_name) { 1311 for (const auto &func : module->getFunctionList()) { 1312 const StringRef &name = func.getName(); 1313 if (name.contains(orig_name)) { 1314 mangled_name.SetString(name); 1315 return true; 1316 } 1317 } 1318 1319 return false; 1320 } 1321 1322 lldb_private::Status ClangExpressionParser::PrepareForExecution( 1323 lldb::addr_t &func_addr, lldb::addr_t &func_end, 1324 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx, 1325 bool &can_interpret, ExecutionPolicy execution_policy) { 1326 func_addr = LLDB_INVALID_ADDRESS; 1327 func_end = LLDB_INVALID_ADDRESS; 1328 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1329 1330 lldb_private::Status err; 1331 1332 std::unique_ptr<llvm::Module> llvm_module_up( 1333 m_code_generator->ReleaseModule()); 1334 1335 if (!llvm_module_up) { 1336 err.SetErrorToGenericError(); 1337 err.SetErrorString("IR doesn't contain a module"); 1338 return err; 1339 } 1340 1341 ConstString function_name; 1342 1343 if (execution_policy != eExecutionPolicyTopLevel) { 1344 // Find the actual name of the function (it's often mangled somehow) 1345 1346 if (!FindFunctionInModule(function_name, llvm_module_up.get(), 1347 m_expr.FunctionName())) { 1348 err.SetErrorToGenericError(); 1349 err.SetErrorStringWithFormat("Couldn't find %s() in the module", 1350 m_expr.FunctionName()); 1351 return err; 1352 } else { 1353 LLDB_LOGF(log, "Found function %s for %s", function_name.AsCString(), 1354 m_expr.FunctionName()); 1355 } 1356 } 1357 1358 SymbolContext sc; 1359 1360 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) { 1361 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything); 1362 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) { 1363 sc.target_sp = target_sp; 1364 } 1365 1366 LLVMUserExpression::IRPasses custom_passes; 1367 { 1368 auto lang = m_expr.Language(); 1369 LLDB_LOGF(log, "%s - Current expression language is %s\n", __FUNCTION__, 1370 Language::GetNameForLanguageType(lang)); 1371 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP(); 1372 if (process_sp && lang != lldb::eLanguageTypeUnknown) { 1373 auto runtime = process_sp->GetLanguageRuntime(lang); 1374 if (runtime) 1375 runtime->GetIRPasses(custom_passes); 1376 } 1377 } 1378 1379 if (custom_passes.EarlyPasses) { 1380 LLDB_LOGF(log, 1381 "%s - Running Early IR Passes from LanguageRuntime on " 1382 "expression module '%s'", 1383 __FUNCTION__, m_expr.FunctionName()); 1384 1385 custom_passes.EarlyPasses->run(*llvm_module_up); 1386 } 1387 1388 execution_unit_sp = std::make_shared<IRExecutionUnit>( 1389 m_llvm_context, // handed off here 1390 llvm_module_up, // handed off here 1391 function_name, exe_ctx.GetTargetSP(), sc, 1392 m_compiler->getTargetOpts().Features); 1393 1394 ClangExpressionHelper *type_system_helper = 1395 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1396 ClangExpressionDeclMap *decl_map = 1397 type_system_helper->DeclMap(); // result can be NULL 1398 1399 if (decl_map) { 1400 StreamString error_stream; 1401 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(), 1402 *execution_unit_sp, error_stream, 1403 function_name.AsCString()); 1404 1405 if (!ir_for_target.runOnModule(*execution_unit_sp->GetModule())) { 1406 err.SetErrorString(error_stream.GetString()); 1407 return err; 1408 } 1409 1410 Process *process = exe_ctx.GetProcessPtr(); 1411 1412 if (execution_policy != eExecutionPolicyAlways && 1413 execution_policy != eExecutionPolicyTopLevel) { 1414 lldb_private::Status interpret_error; 1415 1416 bool interpret_function_calls = 1417 !process ? false : process->CanInterpretFunctionCalls(); 1418 can_interpret = IRInterpreter::CanInterpret( 1419 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(), 1420 interpret_error, interpret_function_calls); 1421 1422 if (!can_interpret && execution_policy == eExecutionPolicyNever) { 1423 err.SetErrorStringWithFormat( 1424 "Can't evaluate the expression without a running target due to: %s", 1425 interpret_error.AsCString()); 1426 return err; 1427 } 1428 } 1429 1430 if (!process && execution_policy == eExecutionPolicyAlways) { 1431 err.SetErrorString("Expression needed to run in the target, but the " 1432 "target can't be run"); 1433 return err; 1434 } 1435 1436 if (!process && execution_policy == eExecutionPolicyTopLevel) { 1437 err.SetErrorString("Top-level code needs to be inserted into a runnable " 1438 "target, but the target can't be run"); 1439 return err; 1440 } 1441 1442 if (execution_policy == eExecutionPolicyAlways || 1443 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) { 1444 if (m_expr.NeedsValidation() && process) { 1445 if (!process->GetDynamicCheckers()) { 1446 ClangDynamicCheckerFunctions *dynamic_checkers = 1447 new ClangDynamicCheckerFunctions(); 1448 1449 DiagnosticManager install_diagnostics; 1450 1451 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) { 1452 if (install_diagnostics.Diagnostics().size()) 1453 err.SetErrorString(install_diagnostics.GetString().c_str()); 1454 else 1455 err.SetErrorString("couldn't install checkers, unknown error"); 1456 1457 return err; 1458 } 1459 1460 process->SetDynamicCheckers(dynamic_checkers); 1461 1462 LLDB_LOGF(log, "== [ClangExpressionParser::PrepareForExecution] " 1463 "Finished installing dynamic checkers =="); 1464 } 1465 1466 if (auto *checker_funcs = llvm::dyn_cast<ClangDynamicCheckerFunctions>( 1467 process->GetDynamicCheckers())) { 1468 IRDynamicChecks ir_dynamic_checks(*checker_funcs, 1469 function_name.AsCString()); 1470 1471 llvm::Module *module = execution_unit_sp->GetModule(); 1472 if (!module || !ir_dynamic_checks.runOnModule(*module)) { 1473 err.SetErrorToGenericError(); 1474 err.SetErrorString("Couldn't add dynamic checks to the expression"); 1475 return err; 1476 } 1477 1478 if (custom_passes.LatePasses) { 1479 LLDB_LOGF(log, 1480 "%s - Running Late IR Passes from LanguageRuntime on " 1481 "expression module '%s'", 1482 __FUNCTION__, m_expr.FunctionName()); 1483 1484 custom_passes.LatePasses->run(*module); 1485 } 1486 } 1487 } 1488 } 1489 1490 if (execution_policy == eExecutionPolicyAlways || 1491 execution_policy == eExecutionPolicyTopLevel || !can_interpret) { 1492 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1493 } 1494 } else { 1495 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1496 } 1497 1498 return err; 1499 } 1500 1501 lldb_private::Status ClangExpressionParser::RunStaticInitializers( 1502 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) { 1503 lldb_private::Status err; 1504 1505 lldbassert(execution_unit_sp.get()); 1506 lldbassert(exe_ctx.HasThreadScope()); 1507 1508 if (!execution_unit_sp.get()) { 1509 err.SetErrorString( 1510 "can't run static initializers for a NULL execution unit"); 1511 return err; 1512 } 1513 1514 if (!exe_ctx.HasThreadScope()) { 1515 err.SetErrorString("can't run static initializers without a thread"); 1516 return err; 1517 } 1518 1519 std::vector<lldb::addr_t> static_initializers; 1520 1521 execution_unit_sp->GetStaticInitializers(static_initializers); 1522 1523 for (lldb::addr_t static_initializer : static_initializers) { 1524 EvaluateExpressionOptions options; 1525 1526 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction( 1527 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(), 1528 llvm::ArrayRef<lldb::addr_t>(), options)); 1529 1530 DiagnosticManager execution_errors; 1531 lldb::ExpressionResults results = 1532 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan( 1533 exe_ctx, call_static_initializer, options, execution_errors); 1534 1535 if (results != lldb::eExpressionCompleted) { 1536 err.SetErrorStringWithFormat("couldn't run static initializer: %s", 1537 execution_errors.GetString().c_str()); 1538 return err; 1539 } 1540 } 1541 1542 return err; 1543 } 1544