1 //===-- ClangExpressionParser.cpp -----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/AST/ASTContext.h" 10 #include "clang/AST/ASTDiagnostic.h" 11 #include "clang/AST/ExternalASTSource.h" 12 #include "clang/AST/PrettyPrinter.h" 13 #include "clang/Basic/Builtins.h" 14 #include "clang/Basic/DiagnosticIDs.h" 15 #include "clang/Basic/SourceLocation.h" 16 #include "clang/Basic/TargetInfo.h" 17 #include "clang/Basic/Version.h" 18 #include "clang/CodeGen/CodeGenAction.h" 19 #include "clang/CodeGen/ModuleBuilder.h" 20 #include "clang/Edit/Commit.h" 21 #include "clang/Edit/EditedSource.h" 22 #include "clang/Edit/EditsReceiver.h" 23 #include "clang/Frontend/CompilerInstance.h" 24 #include "clang/Frontend/CompilerInvocation.h" 25 #include "clang/Frontend/FrontendActions.h" 26 #include "clang/Frontend/FrontendDiagnostic.h" 27 #include "clang/Frontend/FrontendPluginRegistry.h" 28 #include "clang/Frontend/TextDiagnosticBuffer.h" 29 #include "clang/Frontend/TextDiagnosticPrinter.h" 30 #include "clang/Lex/Preprocessor.h" 31 #include "clang/Parse/ParseAST.h" 32 #include "clang/Rewrite/Core/Rewriter.h" 33 #include "clang/Rewrite/Frontend/FrontendActions.h" 34 #include "clang/Sema/CodeCompleteConsumer.h" 35 #include "clang/Sema/Sema.h" 36 #include "clang/Sema/SemaConsumer.h" 37 38 #include "llvm/ADT/StringRef.h" 39 #include "llvm/ExecutionEngine/ExecutionEngine.h" 40 #include "llvm/Support/CrashRecoveryContext.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/FileSystem.h" 43 #include "llvm/Support/TargetSelect.h" 44 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/Support/DynamicLibrary.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/Host.h" 50 #include "llvm/Support/MemoryBuffer.h" 51 #include "llvm/Support/Signals.h" 52 53 #include "ClangDiagnostic.h" 54 #include "ClangExpressionParser.h" 55 #include "ClangUserExpression.h" 56 57 #include "ASTUtils.h" 58 #include "ClangASTSource.h" 59 #include "ClangDiagnostic.h" 60 #include "ClangExpressionDeclMap.h" 61 #include "ClangExpressionHelper.h" 62 #include "ClangExpressionParser.h" 63 #include "ClangHost.h" 64 #include "ClangModulesDeclVendor.h" 65 #include "ClangPersistentVariables.h" 66 #include "IRDynamicChecks.h" 67 #include "IRForTarget.h" 68 #include "ModuleDependencyCollector.h" 69 70 #include "Plugins/TypeSystem/Clang/TypeSystemClang.h" 71 #include "lldb/Core/Debugger.h" 72 #include "lldb/Core/Disassembler.h" 73 #include "lldb/Core/Module.h" 74 #include "lldb/Core/StreamFile.h" 75 #include "lldb/Expression/IRExecutionUnit.h" 76 #include "lldb/Expression/IRInterpreter.h" 77 #include "lldb/Host/File.h" 78 #include "lldb/Host/HostInfo.h" 79 #include "lldb/Symbol/SymbolVendor.h" 80 #include "lldb/Target/ExecutionContext.h" 81 #include "lldb/Target/Language.h" 82 #include "lldb/Target/Process.h" 83 #include "lldb/Target/Target.h" 84 #include "lldb/Target/ThreadPlanCallFunction.h" 85 #include "lldb/Utility/DataBufferHeap.h" 86 #include "lldb/Utility/LLDBAssert.h" 87 #include "lldb/Utility/Log.h" 88 #include "lldb/Utility/ReproducerProvider.h" 89 #include "lldb/Utility/Stream.h" 90 #include "lldb/Utility/StreamString.h" 91 #include "lldb/Utility/StringList.h" 92 93 #include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h" 94 #include "Plugins/LanguageRuntime/RenderScript/RenderScriptRuntime/RenderScriptRuntime.h" 95 96 #include <cctype> 97 #include <memory> 98 99 using namespace clang; 100 using namespace llvm; 101 using namespace lldb_private; 102 103 //===----------------------------------------------------------------------===// 104 // Utility Methods for Clang 105 //===----------------------------------------------------------------------===// 106 107 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks { 108 ClangModulesDeclVendor &m_decl_vendor; 109 ClangPersistentVariables &m_persistent_vars; 110 clang::SourceManager &m_source_mgr; 111 StreamString m_error_stream; 112 bool m_has_errors = false; 113 114 public: 115 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor, 116 ClangPersistentVariables &persistent_vars, 117 clang::SourceManager &source_mgr) 118 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars), 119 m_source_mgr(source_mgr) {} 120 121 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path, 122 const clang::Module * /*null*/) override { 123 // Ignore modules that are imported in the wrapper code as these are not 124 // loaded by the user. 125 llvm::StringRef filename = 126 m_source_mgr.getPresumedLoc(import_location).getFilename(); 127 if (filename == ClangExpressionSourceCode::g_prefix_file_name) 128 return; 129 130 SourceModule module; 131 132 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) 133 module.path.push_back(ConstString(component.first->getName())); 134 135 StreamString error_stream; 136 137 ClangModulesDeclVendor::ModuleVector exported_modules; 138 if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream)) 139 m_has_errors = true; 140 141 for (ClangModulesDeclVendor::ModuleID module : exported_modules) 142 m_persistent_vars.AddHandLoadedClangModule(module); 143 } 144 145 bool hasErrors() { return m_has_errors; } 146 147 llvm::StringRef getErrorString() { return m_error_stream.GetString(); } 148 }; 149 150 static void AddAllFixIts(ClangDiagnostic *diag, const clang::Diagnostic &Info) { 151 for (auto &fix_it : Info.getFixItHints()) { 152 if (fix_it.isNull()) 153 continue; 154 diag->AddFixitHint(fix_it); 155 } 156 } 157 158 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer { 159 public: 160 ClangDiagnosticManagerAdapter(DiagnosticOptions &opts) { 161 DiagnosticOptions *options = new DiagnosticOptions(opts); 162 options->ShowPresumedLoc = true; 163 options->ShowLevel = false; 164 m_os = std::make_shared<llvm::raw_string_ostream>(m_output); 165 m_passthrough = 166 std::make_shared<clang::TextDiagnosticPrinter>(*m_os, options); 167 } 168 169 void ResetManager(DiagnosticManager *manager = nullptr) { 170 m_manager = manager; 171 } 172 173 /// Returns the last ClangDiagnostic message that the DiagnosticManager 174 /// received or a nullptr if the DiagnosticMangager hasn't seen any 175 /// Clang diagnostics yet. 176 ClangDiagnostic *MaybeGetLastClangDiag() const { 177 if (m_manager->Diagnostics().empty()) 178 return nullptr; 179 lldb_private::Diagnostic *diag = m_manager->Diagnostics().back().get(); 180 ClangDiagnostic *clang_diag = dyn_cast<ClangDiagnostic>(diag); 181 return clang_diag; 182 } 183 184 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, 185 const clang::Diagnostic &Info) override { 186 if (!m_manager) { 187 // We have no DiagnosticManager before/after parsing but we still could 188 // receive diagnostics (e.g., by the ASTImporter failing to copy decls 189 // when we move the expression result ot the ScratchASTContext). Let's at 190 // least log these diagnostics until we find a way to properly render 191 // them and display them to the user. 192 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 193 if (log) { 194 llvm::SmallVector<char, 32> diag_str; 195 Info.FormatDiagnostic(diag_str); 196 diag_str.push_back('\0'); 197 const char *plain_diag = diag_str.data(); 198 LLDB_LOG(log, "Received diagnostic outside parsing: {0}", plain_diag); 199 } 200 return; 201 } 202 203 // Update error/warning counters. 204 DiagnosticConsumer::HandleDiagnostic(DiagLevel, Info); 205 206 // Render diagnostic message to m_output. 207 m_output.clear(); 208 m_passthrough->HandleDiagnostic(DiagLevel, Info); 209 m_os->flush(); 210 211 lldb_private::DiagnosticSeverity severity; 212 bool make_new_diagnostic = true; 213 214 switch (DiagLevel) { 215 case DiagnosticsEngine::Level::Fatal: 216 case DiagnosticsEngine::Level::Error: 217 severity = eDiagnosticSeverityError; 218 break; 219 case DiagnosticsEngine::Level::Warning: 220 severity = eDiagnosticSeverityWarning; 221 break; 222 case DiagnosticsEngine::Level::Remark: 223 case DiagnosticsEngine::Level::Ignored: 224 severity = eDiagnosticSeverityRemark; 225 break; 226 case DiagnosticsEngine::Level::Note: 227 m_manager->AppendMessageToDiagnostic(m_output); 228 make_new_diagnostic = false; 229 230 // 'note:' diagnostics for errors and warnings can also contain Fix-Its. 231 // We add these Fix-Its to the last error diagnostic to make sure 232 // that we later have all Fix-Its related to an 'error' diagnostic when 233 // we apply them to the user expression. 234 auto *clang_diag = MaybeGetLastClangDiag(); 235 // If we don't have a previous diagnostic there is nothing to do. 236 // If the previous diagnostic already has its own Fix-Its, assume that 237 // the 'note:' Fix-It is just an alternative way to solve the issue and 238 // ignore these Fix-Its. 239 if (!clang_diag || clang_diag->HasFixIts()) 240 break; 241 // Ignore all Fix-Its that are not associated with an error. 242 if (clang_diag->GetSeverity() != eDiagnosticSeverityError) 243 break; 244 AddAllFixIts(clang_diag, Info); 245 break; 246 } 247 if (make_new_diagnostic) { 248 // ClangDiagnostic messages are expected to have no whitespace/newlines 249 // around them. 250 std::string stripped_output = 251 std::string(llvm::StringRef(m_output).trim()); 252 253 auto new_diagnostic = std::make_unique<ClangDiagnostic>( 254 stripped_output, severity, Info.getID()); 255 256 // Don't store away warning fixits, since the compiler doesn't have 257 // enough context in an expression for the warning to be useful. 258 // FIXME: Should we try to filter out FixIts that apply to our generated 259 // code, and not the user's expression? 260 if (severity == eDiagnosticSeverityError) 261 AddAllFixIts(new_diagnostic.get(), Info); 262 263 m_manager->AddDiagnostic(std::move(new_diagnostic)); 264 } 265 } 266 267 void BeginSourceFile(const LangOptions &LO, const Preprocessor *PP) override { 268 m_passthrough->BeginSourceFile(LO, PP); 269 } 270 271 void EndSourceFile() override { m_passthrough->EndSourceFile(); } 272 273 private: 274 DiagnosticManager *m_manager = nullptr; 275 std::shared_ptr<clang::TextDiagnosticPrinter> m_passthrough; 276 /// Output stream of m_passthrough. 277 std::shared_ptr<llvm::raw_string_ostream> m_os; 278 /// Output string filled by m_os. 279 std::string m_output; 280 }; 281 282 static void SetupModuleHeaderPaths(CompilerInstance *compiler, 283 std::vector<std::string> include_directories, 284 lldb::TargetSP target_sp) { 285 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 286 287 HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts(); 288 289 for (const std::string &dir : include_directories) { 290 search_opts.AddPath(dir, frontend::System, false, true); 291 LLDB_LOG(log, "Added user include dir: {0}", dir); 292 } 293 294 llvm::SmallString<128> module_cache; 295 const auto &props = ModuleList::GetGlobalModuleListProperties(); 296 props.GetClangModulesCachePath().GetPath(module_cache); 297 search_opts.ModuleCachePath = std::string(module_cache.str()); 298 LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str()); 299 300 search_opts.ResourceDir = GetClangResourceDir().GetPath(); 301 302 search_opts.ImplicitModuleMaps = true; 303 } 304 305 /// Iff the given identifier is a C++ keyword, remove it from the 306 /// identifier table (i.e., make the token a normal identifier). 307 static void RemoveCppKeyword(IdentifierTable &idents, llvm::StringRef token) { 308 // FIXME: 'using' is used by LLDB for local variables, so we can't remove 309 // this keyword without breaking this functionality. 310 if (token == "using") 311 return; 312 // GCC's '__null' is used by LLDB to define NULL/Nil/nil. 313 if (token == "__null") 314 return; 315 316 LangOptions cpp_lang_opts; 317 cpp_lang_opts.CPlusPlus = true; 318 cpp_lang_opts.CPlusPlus11 = true; 319 cpp_lang_opts.CPlusPlus20 = true; 320 321 clang::IdentifierInfo &ii = idents.get(token); 322 // The identifier has to be a C++-exclusive keyword. if not, then there is 323 // nothing to do. 324 if (!ii.isCPlusPlusKeyword(cpp_lang_opts)) 325 return; 326 // If the token is already an identifier, then there is nothing to do. 327 if (ii.getTokenID() == clang::tok::identifier) 328 return; 329 // Otherwise the token is a C++ keyword, so turn it back into a normal 330 // identifier. 331 ii.revertTokenIDToIdentifier(); 332 } 333 334 /// Remove all C++ keywords from the given identifier table. 335 static void RemoveAllCppKeywords(IdentifierTable &idents) { 336 #define KEYWORD(NAME, FLAGS) RemoveCppKeyword(idents, llvm::StringRef(#NAME)); 337 #include "clang/Basic/TokenKinds.def" 338 } 339 340 /// Configures Clang diagnostics for the expression parser. 341 static void SetupDefaultClangDiagnostics(CompilerInstance &compiler) { 342 // List of Clang warning groups that are not useful when parsing expressions. 343 const std::vector<const char *> groupsToIgnore = { 344 "unused-value", 345 "odr", 346 }; 347 for (const char *group : groupsToIgnore) { 348 compiler.getDiagnostics().setSeverityForGroup( 349 clang::diag::Flavor::WarningOrError, group, 350 clang::diag::Severity::Ignored, SourceLocation()); 351 } 352 } 353 354 //===----------------------------------------------------------------------===// 355 // Implementation of ClangExpressionParser 356 //===----------------------------------------------------------------------===// 357 358 ClangExpressionParser::ClangExpressionParser( 359 ExecutionContextScope *exe_scope, Expression &expr, 360 bool generate_debug_info, std::vector<std::string> include_directories, 361 std::string filename) 362 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(), 363 m_pp_callbacks(nullptr), 364 m_include_directories(std::move(include_directories)), 365 m_filename(std::move(filename)) { 366 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 367 368 // We can't compile expressions without a target. So if the exe_scope is 369 // null or doesn't have a target, then we just need to get out of here. I'll 370 // lldbassert and not make any of the compiler objects since 371 // I can't return errors directly from the constructor. Further calls will 372 // check if the compiler was made and 373 // bag out if it wasn't. 374 375 if (!exe_scope) { 376 lldbassert(exe_scope && 377 "Can't make an expression parser with a null scope."); 378 return; 379 } 380 381 lldb::TargetSP target_sp; 382 target_sp = exe_scope->CalculateTarget(); 383 if (!target_sp) { 384 lldbassert(target_sp.get() && 385 "Can't make an expression parser with a null target."); 386 return; 387 } 388 389 // 1. Create a new compiler instance. 390 m_compiler = std::make_unique<CompilerInstance>(); 391 392 // When capturing a reproducer, hook up the file collector with clang to 393 // collector modules and headers. 394 if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) { 395 repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>(); 396 m_compiler->setModuleDepCollector( 397 std::make_shared<ModuleDependencyCollectorAdaptor>( 398 fp.GetFileCollector())); 399 DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts(); 400 opts.IncludeSystemHeaders = true; 401 opts.IncludeModuleFiles = true; 402 } 403 404 // Make sure clang uses the same VFS as LLDB. 405 m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem()); 406 407 lldb::LanguageType frame_lang = 408 expr.Language(); // defaults to lldb::eLanguageTypeUnknown 409 bool overridden_target_opts = false; 410 lldb_private::LanguageRuntime *lang_rt = nullptr; 411 412 std::string abi; 413 ArchSpec target_arch; 414 target_arch = target_sp->GetArchitecture(); 415 416 const auto target_machine = target_arch.GetMachine(); 417 418 // If the expression is being evaluated in the context of an existing stack 419 // frame, we introspect to see if the language runtime is available. 420 421 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame(); 422 lldb::ProcessSP process_sp = exe_scope->CalculateProcess(); 423 424 // Make sure the user hasn't provided a preferred execution language with 425 // `expression --language X -- ...` 426 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown) 427 frame_lang = frame_sp->GetLanguage(); 428 429 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) { 430 lang_rt = process_sp->GetLanguageRuntime(frame_lang); 431 LLDB_LOGF(log, "Frame has language of type %s", 432 Language::GetNameForLanguageType(frame_lang)); 433 } 434 435 // 2. Configure the compiler with a set of default options that are 436 // appropriate for most situations. 437 if (target_arch.IsValid()) { 438 std::string triple = target_arch.GetTriple().str(); 439 m_compiler->getTargetOpts().Triple = triple; 440 LLDB_LOGF(log, "Using %s as the target triple", 441 m_compiler->getTargetOpts().Triple.c_str()); 442 } else { 443 // If we get here we don't have a valid target and just have to guess. 444 // Sometimes this will be ok to just use the host target triple (when we 445 // evaluate say "2+3", but other expressions like breakpoint conditions and 446 // other things that _are_ target specific really shouldn't just be using 447 // the host triple. In such a case the language runtime should expose an 448 // overridden options set (3), below. 449 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple(); 450 LLDB_LOGF(log, "Using default target triple of %s", 451 m_compiler->getTargetOpts().Triple.c_str()); 452 } 453 // Now add some special fixes for known architectures: Any arm32 iOS 454 // environment, but not on arm64 455 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos && 456 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos && 457 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) { 458 m_compiler->getTargetOpts().ABI = "apcs-gnu"; 459 } 460 // Supported subsets of x86 461 if (target_machine == llvm::Triple::x86 || 462 target_machine == llvm::Triple::x86_64) { 463 m_compiler->getTargetOpts().Features.push_back("+sse"); 464 m_compiler->getTargetOpts().Features.push_back("+sse2"); 465 } 466 467 // Set the target CPU to generate code for. This will be empty for any CPU 468 // that doesn't really need to make a special 469 // CPU string. 470 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU(); 471 472 // Set the target ABI 473 abi = GetClangTargetABI(target_arch); 474 if (!abi.empty()) 475 m_compiler->getTargetOpts().ABI = abi; 476 477 // 3. Now allow the runtime to provide custom configuration options for the 478 // target. In this case, a specialized language runtime is available and we 479 // can query it for extra options. For 99% of use cases, this will not be 480 // needed and should be provided when basic platform detection is not enough. 481 // FIXME: Generalize this. Only RenderScriptRuntime currently supports this 482 // currently. Hardcoding this isn't ideal but it's better than LanguageRuntime 483 // having knowledge of clang::TargetOpts. 484 if (auto *renderscript_rt = 485 llvm::dyn_cast_or_null<RenderScriptRuntime>(lang_rt)) 486 overridden_target_opts = 487 renderscript_rt->GetOverrideExprOptions(m_compiler->getTargetOpts()); 488 489 if (overridden_target_opts) 490 if (log && log->GetVerbose()) { 491 LLDB_LOGV( 492 log, "Using overridden target options for the expression evaluation"); 493 494 auto opts = m_compiler->getTargetOpts(); 495 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple); 496 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU); 497 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath); 498 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI); 499 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion); 500 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten"); 501 StringList::LogDump(log, opts.Features, "Features"); 502 } 503 504 // 4. Create and install the target on the compiler. 505 m_compiler->createDiagnostics(); 506 // Limit the number of error diagnostics we emit. 507 // A value of 0 means no limit for both LLDB and Clang. 508 m_compiler->getDiagnostics().setErrorLimit(target_sp->GetExprErrorLimit()); 509 510 auto target_info = TargetInfo::CreateTargetInfo( 511 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts); 512 if (log) { 513 LLDB_LOGF(log, "Using SIMD alignment: %d", 514 target_info->getSimdDefaultAlign()); 515 LLDB_LOGF(log, "Target datalayout string: '%s'", 516 target_info->getDataLayout().getStringRepresentation().c_str()); 517 LLDB_LOGF(log, "Target ABI: '%s'", target_info->getABI().str().c_str()); 518 LLDB_LOGF(log, "Target vector alignment: %d", 519 target_info->getMaxVectorAlign()); 520 } 521 m_compiler->setTarget(target_info); 522 523 assert(m_compiler->hasTarget()); 524 525 // 5. Set language options. 526 lldb::LanguageType language = expr.Language(); 527 LangOptions &lang_opts = m_compiler->getLangOpts(); 528 529 switch (language) { 530 case lldb::eLanguageTypeC: 531 case lldb::eLanguageTypeC89: 532 case lldb::eLanguageTypeC99: 533 case lldb::eLanguageTypeC11: 534 // FIXME: the following language option is a temporary workaround, 535 // to "ask for C, get C++." 536 // For now, the expression parser must use C++ anytime the language is a C 537 // family language, because the expression parser uses features of C++ to 538 // capture values. 539 lang_opts.CPlusPlus = true; 540 break; 541 case lldb::eLanguageTypeObjC: 542 lang_opts.ObjC = true; 543 // FIXME: the following language option is a temporary workaround, 544 // to "ask for ObjC, get ObjC++" (see comment above). 545 lang_opts.CPlusPlus = true; 546 547 // Clang now sets as default C++14 as the default standard (with 548 // GNU extensions), so we do the same here to avoid mismatches that 549 // cause compiler error when evaluating expressions (e.g. nullptr not found 550 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see 551 // two lines below) so we decide to be consistent with that, but this could 552 // be re-evaluated in the future. 553 lang_opts.CPlusPlus11 = true; 554 break; 555 case lldb::eLanguageTypeC_plus_plus: 556 case lldb::eLanguageTypeC_plus_plus_11: 557 case lldb::eLanguageTypeC_plus_plus_14: 558 lang_opts.CPlusPlus11 = true; 559 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 560 LLVM_FALLTHROUGH; 561 case lldb::eLanguageTypeC_plus_plus_03: 562 lang_opts.CPlusPlus = true; 563 if (process_sp) 564 lang_opts.ObjC = 565 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr; 566 break; 567 case lldb::eLanguageTypeObjC_plus_plus: 568 case lldb::eLanguageTypeUnknown: 569 default: 570 lang_opts.ObjC = true; 571 lang_opts.CPlusPlus = true; 572 lang_opts.CPlusPlus11 = true; 573 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 574 break; 575 } 576 577 lang_opts.Bool = true; 578 lang_opts.WChar = true; 579 lang_opts.Blocks = true; 580 lang_opts.DebuggerSupport = 581 true; // Features specifically for debugger clients 582 if (expr.DesiredResultType() == Expression::eResultTypeId) 583 lang_opts.DebuggerCastResultToId = true; 584 585 lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str()) 586 .CharIsSignedByDefault(); 587 588 // Spell checking is a nice feature, but it ends up completing a lot of types 589 // that we didn't strictly speaking need to complete. As a result, we spend a 590 // long time parsing and importing debug information. 591 lang_opts.SpellChecking = false; 592 593 auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr); 594 if (clang_expr && clang_expr->DidImportCxxModules()) { 595 LLDB_LOG(log, "Adding lang options for importing C++ modules"); 596 597 lang_opts.Modules = true; 598 // We want to implicitly build modules. 599 lang_opts.ImplicitModules = true; 600 // To automatically import all submodules when we import 'std'. 601 lang_opts.ModulesLocalVisibility = false; 602 603 // We use the @import statements, so we need this: 604 // FIXME: We could use the modules-ts, but that currently doesn't work. 605 lang_opts.ObjC = true; 606 607 // Options we need to parse libc++ code successfully. 608 // FIXME: We should ask the driver for the appropriate default flags. 609 lang_opts.GNUMode = true; 610 lang_opts.GNUKeywords = true; 611 lang_opts.DoubleSquareBracketAttributes = true; 612 lang_opts.CPlusPlus11 = true; 613 614 // The Darwin libc expects this macro to be set. 615 lang_opts.GNUCVersion = 40201; 616 617 SetupModuleHeaderPaths(m_compiler.get(), m_include_directories, 618 target_sp); 619 } 620 621 if (process_sp && lang_opts.ObjC) { 622 if (auto *runtime = ObjCLanguageRuntime::Get(*process_sp)) { 623 if (runtime->GetRuntimeVersion() == 624 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2) 625 lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7)); 626 else 627 lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX, 628 VersionTuple(10, 7)); 629 630 if (runtime->HasNewLiteralsAndIndexing()) 631 lang_opts.DebuggerObjCLiteral = true; 632 } 633 } 634 635 lang_opts.ThreadsafeStatics = false; 636 lang_opts.AccessControl = false; // Debuggers get universal access 637 lang_opts.DollarIdents = true; // $ indicates a persistent variable name 638 // We enable all builtin functions beside the builtins from libc/libm (e.g. 639 // 'fopen'). Those libc functions are already correctly handled by LLDB, and 640 // additionally enabling them as expandable builtins is breaking Clang. 641 lang_opts.NoBuiltin = true; 642 643 // Set CodeGen options 644 m_compiler->getCodeGenOpts().EmitDeclMetadata = true; 645 m_compiler->getCodeGenOpts().InstrumentFunctions = false; 646 m_compiler->getCodeGenOpts().setFramePointer( 647 CodeGenOptions::FramePointerKind::All); 648 if (generate_debug_info) 649 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo); 650 else 651 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo); 652 653 // Disable some warnings. 654 SetupDefaultClangDiagnostics(*m_compiler); 655 656 // Inform the target of the language options 657 // 658 // FIXME: We shouldn't need to do this, the target should be immutable once 659 // created. This complexity should be lifted elsewhere. 660 m_compiler->getTarget().adjust(m_compiler->getLangOpts()); 661 662 // 6. Set up the diagnostic buffer for reporting errors 663 664 auto diag_mgr = new ClangDiagnosticManagerAdapter( 665 m_compiler->getDiagnostics().getDiagnosticOptions()); 666 m_compiler->getDiagnostics().setClient(diag_mgr); 667 668 // 7. Set up the source management objects inside the compiler 669 m_compiler->createFileManager(); 670 if (!m_compiler->hasSourceManager()) 671 m_compiler->createSourceManager(m_compiler->getFileManager()); 672 m_compiler->createPreprocessor(TU_Complete); 673 674 switch (language) { 675 case lldb::eLanguageTypeC: 676 case lldb::eLanguageTypeC89: 677 case lldb::eLanguageTypeC99: 678 case lldb::eLanguageTypeC11: 679 case lldb::eLanguageTypeObjC: 680 // This is not a C++ expression but we enabled C++ as explained above. 681 // Remove all C++ keywords from the PP so that the user can still use 682 // variables that have C++ keywords as names (e.g. 'int template;'). 683 RemoveAllCppKeywords(m_compiler->getPreprocessor().getIdentifierTable()); 684 break; 685 default: 686 break; 687 } 688 689 if (ClangModulesDeclVendor *decl_vendor = 690 target_sp->GetClangModulesDeclVendor()) { 691 if (auto *clang_persistent_vars = llvm::cast<ClangPersistentVariables>( 692 target_sp->GetPersistentExpressionStateForLanguage( 693 lldb::eLanguageTypeC))) { 694 std::unique_ptr<PPCallbacks> pp_callbacks( 695 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars, 696 m_compiler->getSourceManager())); 697 m_pp_callbacks = 698 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get()); 699 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks)); 700 } 701 } 702 703 // 8. Most of this we get from the CompilerInstance, but we also want to give 704 // the context an ExternalASTSource. 705 706 auto &PP = m_compiler->getPreprocessor(); 707 auto &builtin_context = PP.getBuiltinInfo(); 708 builtin_context.initializeBuiltins(PP.getIdentifierTable(), 709 m_compiler->getLangOpts()); 710 711 m_compiler->createASTContext(); 712 clang::ASTContext &ast_context = m_compiler->getASTContext(); 713 714 m_ast_context = std::make_unique<TypeSystemClang>( 715 "Expression ASTContext for '" + m_filename + "'", ast_context); 716 717 std::string module_name("$__lldb_module"); 718 719 m_llvm_context = std::make_unique<LLVMContext>(); 720 m_code_generator.reset(CreateLLVMCodeGen( 721 m_compiler->getDiagnostics(), module_name, 722 m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(), 723 m_compiler->getCodeGenOpts(), *m_llvm_context)); 724 } 725 726 ClangExpressionParser::~ClangExpressionParser() {} 727 728 namespace { 729 730 /// \class CodeComplete 731 /// 732 /// A code completion consumer for the clang Sema that is responsible for 733 /// creating the completion suggestions when a user requests completion 734 /// of an incomplete `expr` invocation. 735 class CodeComplete : public CodeCompleteConsumer { 736 CodeCompletionTUInfo m_info; 737 738 std::string m_expr; 739 unsigned m_position = 0; 740 /// The printing policy we use when printing declarations for our completion 741 /// descriptions. 742 clang::PrintingPolicy m_desc_policy; 743 744 struct CompletionWithPriority { 745 CompletionResult::Completion completion; 746 /// See CodeCompletionResult::Priority; 747 unsigned Priority; 748 749 /// Establishes a deterministic order in a list of CompletionWithPriority. 750 /// The order returned here is the order in which the completions are 751 /// displayed to the user. 752 bool operator<(const CompletionWithPriority &o) const { 753 // High priority results should come first. 754 if (Priority != o.Priority) 755 return Priority > o.Priority; 756 757 // Identical priority, so just make sure it's a deterministic order. 758 return completion.GetUniqueKey() < o.completion.GetUniqueKey(); 759 } 760 }; 761 762 /// The stored completions. 763 /// Warning: These are in a non-deterministic order until they are sorted 764 /// and returned back to the caller. 765 std::vector<CompletionWithPriority> m_completions; 766 767 /// Returns true if the given character can be used in an identifier. 768 /// This also returns true for numbers because for completion we usually 769 /// just iterate backwards over iterators. 770 /// 771 /// Note: lldb uses '$' in its internal identifiers, so we also allow this. 772 static bool IsIdChar(char c) { 773 return c == '_' || std::isalnum(c) || c == '$'; 774 } 775 776 /// Returns true if the given character is used to separate arguments 777 /// in the command line of lldb. 778 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; } 779 780 /// Drops all tokens in front of the expression that are unrelated for 781 /// the completion of the cmd line. 'unrelated' means here that the token 782 /// is not interested for the lldb completion API result. 783 StringRef dropUnrelatedFrontTokens(StringRef cmd) const { 784 if (cmd.empty()) 785 return cmd; 786 787 // If we are at the start of a word, then all tokens are unrelated to 788 // the current completion logic. 789 if (IsTokenSeparator(cmd.back())) 790 return StringRef(); 791 792 // Remove all previous tokens from the string as they are unrelated 793 // to completing the current token. 794 StringRef to_remove = cmd; 795 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) { 796 to_remove = to_remove.drop_back(); 797 } 798 cmd = cmd.drop_front(to_remove.size()); 799 800 return cmd; 801 } 802 803 /// Removes the last identifier token from the given cmd line. 804 StringRef removeLastToken(StringRef cmd) const { 805 while (!cmd.empty() && IsIdChar(cmd.back())) { 806 cmd = cmd.drop_back(); 807 } 808 return cmd; 809 } 810 811 /// Attempts to merge the given completion from the given position into the 812 /// existing command. Returns the completion string that can be returned to 813 /// the lldb completion API. 814 std::string mergeCompletion(StringRef existing, unsigned pos, 815 StringRef completion) const { 816 StringRef existing_command = existing.substr(0, pos); 817 // We rewrite the last token with the completion, so let's drop that 818 // token from the command. 819 existing_command = removeLastToken(existing_command); 820 // We also should remove all previous tokens from the command as they 821 // would otherwise be added to the completion that already has the 822 // completion. 823 existing_command = dropUnrelatedFrontTokens(existing_command); 824 return existing_command.str() + completion.str(); 825 } 826 827 public: 828 /// Constructs a CodeComplete consumer that can be attached to a Sema. 829 /// 830 /// \param[out] expr 831 /// The whole expression string that we are currently parsing. This 832 /// string needs to be equal to the input the user typed, and NOT the 833 /// final code that Clang is parsing. 834 /// \param[out] position 835 /// The character position of the user cursor in the `expr` parameter. 836 /// 837 CodeComplete(clang::LangOptions ops, std::string expr, unsigned position) 838 : CodeCompleteConsumer(CodeCompleteOptions()), 839 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr), 840 m_position(position), m_desc_policy(ops) { 841 842 // Ensure that the printing policy is producing a description that is as 843 // short as possible. 844 m_desc_policy.SuppressScope = true; 845 m_desc_policy.SuppressTagKeyword = true; 846 m_desc_policy.FullyQualifiedName = false; 847 m_desc_policy.TerseOutput = true; 848 m_desc_policy.IncludeNewlines = false; 849 m_desc_policy.UseVoidForZeroParams = false; 850 m_desc_policy.Bool = true; 851 } 852 853 /// \name Code-completion filtering 854 /// Check if the result should be filtered out. 855 bool isResultFilteredOut(StringRef Filter, 856 CodeCompletionResult Result) override { 857 // This code is mostly copied from CodeCompleteConsumer. 858 switch (Result.Kind) { 859 case CodeCompletionResult::RK_Declaration: 860 return !( 861 Result.Declaration->getIdentifier() && 862 Result.Declaration->getIdentifier()->getName().startswith(Filter)); 863 case CodeCompletionResult::RK_Keyword: 864 return !StringRef(Result.Keyword).startswith(Filter); 865 case CodeCompletionResult::RK_Macro: 866 return !Result.Macro->getName().startswith(Filter); 867 case CodeCompletionResult::RK_Pattern: 868 return !StringRef(Result.Pattern->getAsString()).startswith(Filter); 869 } 870 // If we trigger this assert or the above switch yields a warning, then 871 // CodeCompletionResult has been enhanced with more kinds of completion 872 // results. Expand the switch above in this case. 873 assert(false && "Unknown completion result type?"); 874 // If we reach this, then we should just ignore whatever kind of unknown 875 // result we got back. We probably can't turn it into any kind of useful 876 // completion suggestion with the existing code. 877 return true; 878 } 879 880 private: 881 /// Generate the completion strings for the given CodeCompletionResult. 882 /// Note that this function has to process results that could come in 883 /// non-deterministic order, so this function should have no side effects. 884 /// To make this easier to enforce, this function and all its parameters 885 /// should always be const-qualified. 886 /// \return Returns llvm::None if no completion should be provided for the 887 /// given CodeCompletionResult. 888 llvm::Optional<CompletionWithPriority> 889 getCompletionForResult(const CodeCompletionResult &R) const { 890 std::string ToInsert; 891 std::string Description; 892 // Handle the different completion kinds that come from the Sema. 893 switch (R.Kind) { 894 case CodeCompletionResult::RK_Declaration: { 895 const NamedDecl *D = R.Declaration; 896 ToInsert = R.Declaration->getNameAsString(); 897 // If we have a function decl that has no arguments we want to 898 // complete the empty parantheses for the user. If the function has 899 // arguments, we at least complete the opening bracket. 900 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) { 901 if (F->getNumParams() == 0) 902 ToInsert += "()"; 903 else 904 ToInsert += "("; 905 raw_string_ostream OS(Description); 906 F->print(OS, m_desc_policy, false); 907 OS.flush(); 908 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) { 909 Description = V->getType().getAsString(m_desc_policy); 910 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) { 911 Description = F->getType().getAsString(m_desc_policy); 912 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) { 913 // If we try to complete a namespace, then we can directly append 914 // the '::'. 915 if (!N->isAnonymousNamespace()) 916 ToInsert += "::"; 917 } 918 break; 919 } 920 case CodeCompletionResult::RK_Keyword: 921 ToInsert = R.Keyword; 922 break; 923 case CodeCompletionResult::RK_Macro: 924 ToInsert = R.Macro->getName().str(); 925 break; 926 case CodeCompletionResult::RK_Pattern: 927 ToInsert = R.Pattern->getTypedText(); 928 break; 929 } 930 // We also filter some internal lldb identifiers here. The user 931 // shouldn't see these. 932 if (llvm::StringRef(ToInsert).startswith("$__lldb_")) 933 return llvm::None; 934 if (ToInsert.empty()) 935 return llvm::None; 936 // Merge the suggested Token into the existing command line to comply 937 // with the kind of result the lldb API expects. 938 std::string CompletionSuggestion = 939 mergeCompletion(m_expr, m_position, ToInsert); 940 941 CompletionResult::Completion completion(CompletionSuggestion, Description, 942 CompletionMode::Normal); 943 return {{completion, R.Priority}}; 944 } 945 946 public: 947 /// Adds the completions to the given CompletionRequest. 948 void GetCompletions(CompletionRequest &request) { 949 // Bring m_completions into a deterministic order and pass it on to the 950 // CompletionRequest. 951 llvm::sort(m_completions); 952 953 for (const CompletionWithPriority &C : m_completions) 954 request.AddCompletion(C.completion.GetCompletion(), 955 C.completion.GetDescription(), 956 C.completion.GetMode()); 957 } 958 959 /// \name Code-completion callbacks 960 /// Process the finalized code-completion results. 961 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context, 962 CodeCompletionResult *Results, 963 unsigned NumResults) override { 964 965 // The Sema put the incomplete token we try to complete in here during 966 // lexing, so we need to retrieve it here to know what we are completing. 967 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter(); 968 969 // Iterate over all the results. Filter out results we don't want and 970 // process the rest. 971 for (unsigned I = 0; I != NumResults; ++I) { 972 // Filter the results with the information from the Sema. 973 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I])) 974 continue; 975 976 CodeCompletionResult &R = Results[I]; 977 llvm::Optional<CompletionWithPriority> CompletionAndPriority = 978 getCompletionForResult(R); 979 if (!CompletionAndPriority) 980 continue; 981 m_completions.push_back(*CompletionAndPriority); 982 } 983 } 984 985 /// \param S the semantic-analyzer object for which code-completion is being 986 /// done. 987 /// 988 /// \param CurrentArg the index of the current argument. 989 /// 990 /// \param Candidates an array of overload candidates. 991 /// 992 /// \param NumCandidates the number of overload candidates 993 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg, 994 OverloadCandidate *Candidates, 995 unsigned NumCandidates, 996 SourceLocation OpenParLoc) override { 997 // At the moment we don't filter out any overloaded candidates. 998 } 999 1000 CodeCompletionAllocator &getAllocator() override { 1001 return m_info.getAllocator(); 1002 } 1003 1004 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; } 1005 }; 1006 } // namespace 1007 1008 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line, 1009 unsigned pos, unsigned typed_pos) { 1010 DiagnosticManager mgr; 1011 // We need the raw user expression here because that's what the CodeComplete 1012 // class uses to provide completion suggestions. 1013 // However, the `Text` method only gives us the transformed expression here. 1014 // To actually get the raw user input here, we have to cast our expression to 1015 // the LLVMUserExpression which exposes the right API. This should never fail 1016 // as we always have a ClangUserExpression whenever we call this. 1017 ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr); 1018 CodeComplete CC(m_compiler->getLangOpts(), llvm_expr->GetUserText(), 1019 typed_pos); 1020 // We don't need a code generator for parsing. 1021 m_code_generator.reset(); 1022 // Start parsing the expression with our custom code completion consumer. 1023 ParseInternal(mgr, &CC, line, pos); 1024 CC.GetCompletions(request); 1025 return true; 1026 } 1027 1028 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) { 1029 return ParseInternal(diagnostic_manager); 1030 } 1031 1032 unsigned 1033 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager, 1034 CodeCompleteConsumer *completion_consumer, 1035 unsigned completion_line, 1036 unsigned completion_column) { 1037 ClangDiagnosticManagerAdapter *adapter = 1038 static_cast<ClangDiagnosticManagerAdapter *>( 1039 m_compiler->getDiagnostics().getClient()); 1040 1041 adapter->ResetManager(&diagnostic_manager); 1042 1043 const char *expr_text = m_expr.Text(); 1044 1045 clang::SourceManager &source_mgr = m_compiler->getSourceManager(); 1046 bool created_main_file = false; 1047 1048 // Clang wants to do completion on a real file known by Clang's file manager, 1049 // so we have to create one to make this work. 1050 // TODO: We probably could also simulate to Clang's file manager that there 1051 // is a real file that contains our code. 1052 bool should_create_file = completion_consumer != nullptr; 1053 1054 // We also want a real file on disk if we generate full debug info. 1055 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() == 1056 codegenoptions::FullDebugInfo; 1057 1058 if (should_create_file) { 1059 int temp_fd = -1; 1060 llvm::SmallString<128> result_path; 1061 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) { 1062 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); 1063 std::string temp_source_path = tmpdir_file_spec.GetPath(); 1064 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); 1065 } else { 1066 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); 1067 } 1068 1069 if (temp_fd != -1) { 1070 lldb_private::NativeFile file(temp_fd, File::eOpenOptionWrite, true); 1071 const size_t expr_text_len = strlen(expr_text); 1072 size_t bytes_written = expr_text_len; 1073 if (file.Write(expr_text, bytes_written).Success()) { 1074 if (bytes_written == expr_text_len) { 1075 file.Close(); 1076 if (auto fileEntry = m_compiler->getFileManager().getOptionalFileRef( 1077 result_path)) { 1078 source_mgr.setMainFileID(source_mgr.createFileID( 1079 *fileEntry, 1080 SourceLocation(), SrcMgr::C_User)); 1081 created_main_file = true; 1082 } 1083 } 1084 } 1085 } 1086 } 1087 1088 if (!created_main_file) { 1089 std::unique_ptr<MemoryBuffer> memory_buffer = 1090 MemoryBuffer::getMemBufferCopy(expr_text, m_filename); 1091 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); 1092 } 1093 1094 adapter->BeginSourceFile(m_compiler->getLangOpts(), 1095 &m_compiler->getPreprocessor()); 1096 1097 ClangExpressionHelper *type_system_helper = 1098 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1099 1100 // If we want to parse for code completion, we need to attach our code 1101 // completion consumer to the Sema and specify a completion position. 1102 // While parsing the Sema will call this consumer with the provided 1103 // completion suggestions. 1104 if (completion_consumer) { 1105 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID()); 1106 auto &PP = m_compiler->getPreprocessor(); 1107 // Lines and columns start at 1 in Clang, but code completion positions are 1108 // indexed from 0, so we need to add 1 to the line and column here. 1109 ++completion_line; 1110 ++completion_column; 1111 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column); 1112 } 1113 1114 ASTConsumer *ast_transformer = 1115 type_system_helper->ASTTransformer(m_code_generator.get()); 1116 1117 std::unique_ptr<clang::ASTConsumer> Consumer; 1118 if (ast_transformer) { 1119 Consumer = std::make_unique<ASTConsumerForwarder>(ast_transformer); 1120 } else if (m_code_generator) { 1121 Consumer = std::make_unique<ASTConsumerForwarder>(m_code_generator.get()); 1122 } else { 1123 Consumer = std::make_unique<ASTConsumer>(); 1124 } 1125 1126 clang::ASTContext &ast_context = m_compiler->getASTContext(); 1127 1128 m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context, 1129 *Consumer, TU_Complete, completion_consumer)); 1130 m_compiler->setASTConsumer(std::move(Consumer)); 1131 1132 if (ast_context.getLangOpts().Modules) { 1133 m_compiler->createASTReader(); 1134 m_ast_context->setSema(&m_compiler->getSema()); 1135 } 1136 1137 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); 1138 if (decl_map) { 1139 decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer()); 1140 decl_map->InstallDiagnosticManager(diagnostic_manager); 1141 1142 clang::ExternalASTSource *ast_source = decl_map->CreateProxy(); 1143 1144 if (ast_context.getExternalSource()) { 1145 auto module_wrapper = 1146 new ExternalASTSourceWrapper(ast_context.getExternalSource()); 1147 1148 auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source); 1149 1150 auto multiplexer = 1151 new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper); 1152 IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer); 1153 ast_context.setExternalSource(Source); 1154 } else { 1155 ast_context.setExternalSource(ast_source); 1156 } 1157 decl_map->InstallASTContext(*m_ast_context); 1158 } 1159 1160 // Check that the ASTReader is properly attached to ASTContext and Sema. 1161 if (ast_context.getLangOpts().Modules) { 1162 assert(m_compiler->getASTContext().getExternalSource() && 1163 "ASTContext doesn't know about the ASTReader?"); 1164 assert(m_compiler->getSema().getExternalSource() && 1165 "Sema doesn't know about the ASTReader?"); 1166 } 1167 1168 { 1169 llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema( 1170 &m_compiler->getSema()); 1171 ParseAST(m_compiler->getSema(), false, false); 1172 } 1173 1174 // Make sure we have no pointer to the Sema we are about to destroy. 1175 if (ast_context.getLangOpts().Modules) 1176 m_ast_context->setSema(nullptr); 1177 // Destroy the Sema. This is necessary because we want to emulate the 1178 // original behavior of ParseAST (which also destroys the Sema after parsing). 1179 m_compiler->setSema(nullptr); 1180 1181 adapter->EndSourceFile(); 1182 1183 unsigned num_errors = adapter->getNumErrors(); 1184 1185 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { 1186 num_errors++; 1187 diagnostic_manager.PutString(eDiagnosticSeverityError, 1188 "while importing modules:"); 1189 diagnostic_manager.AppendMessageToDiagnostic( 1190 m_pp_callbacks->getErrorString()); 1191 } 1192 1193 if (!num_errors) { 1194 type_system_helper->CommitPersistentDecls(); 1195 } 1196 1197 adapter->ResetManager(); 1198 1199 return num_errors; 1200 } 1201 1202 std::string 1203 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) { 1204 std::string abi; 1205 1206 if (target_arch.IsMIPS()) { 1207 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) { 1208 case ArchSpec::eMIPSABI_N64: 1209 abi = "n64"; 1210 break; 1211 case ArchSpec::eMIPSABI_N32: 1212 abi = "n32"; 1213 break; 1214 case ArchSpec::eMIPSABI_O32: 1215 abi = "o32"; 1216 break; 1217 default: 1218 break; 1219 } 1220 } 1221 return abi; 1222 } 1223 1224 /// Applies the given Fix-It hint to the given commit. 1225 static void ApplyFixIt(const FixItHint &fixit, clang::edit::Commit &commit) { 1226 // This is cobbed from clang::Rewrite::FixItRewriter. 1227 if (fixit.CodeToInsert.empty()) { 1228 if (fixit.InsertFromRange.isValid()) { 1229 commit.insertFromRange(fixit.RemoveRange.getBegin(), 1230 fixit.InsertFromRange, /*afterToken=*/false, 1231 fixit.BeforePreviousInsertions); 1232 return; 1233 } 1234 commit.remove(fixit.RemoveRange); 1235 return; 1236 } 1237 if (fixit.RemoveRange.isTokenRange() || 1238 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) { 1239 commit.replace(fixit.RemoveRange, fixit.CodeToInsert); 1240 return; 1241 } 1242 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert, 1243 /*afterToken=*/false, fixit.BeforePreviousInsertions); 1244 } 1245 1246 bool ClangExpressionParser::RewriteExpression( 1247 DiagnosticManager &diagnostic_manager) { 1248 clang::SourceManager &source_manager = m_compiler->getSourceManager(); 1249 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(), 1250 nullptr); 1251 clang::edit::Commit commit(editor); 1252 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts()); 1253 1254 class RewritesReceiver : public edit::EditsReceiver { 1255 Rewriter &rewrite; 1256 1257 public: 1258 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {} 1259 1260 void insert(SourceLocation loc, StringRef text) override { 1261 rewrite.InsertText(loc, text); 1262 } 1263 void replace(CharSourceRange range, StringRef text) override { 1264 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text); 1265 } 1266 }; 1267 1268 RewritesReceiver rewrites_receiver(rewriter); 1269 1270 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics(); 1271 size_t num_diags = diagnostics.size(); 1272 if (num_diags == 0) 1273 return false; 1274 1275 for (const auto &diag : diagnostic_manager.Diagnostics()) { 1276 const auto *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag.get()); 1277 if (!diagnostic) 1278 continue; 1279 if (!diagnostic->HasFixIts()) 1280 continue; 1281 for (const FixItHint &fixit : diagnostic->FixIts()) 1282 ApplyFixIt(fixit, commit); 1283 } 1284 1285 // FIXME - do we want to try to propagate specific errors here? 1286 if (!commit.isCommitable()) 1287 return false; 1288 else if (!editor.commit(commit)) 1289 return false; 1290 1291 // Now play all the edits, and stash the result in the diagnostic manager. 1292 editor.applyRewrites(rewrites_receiver); 1293 RewriteBuffer &main_file_buffer = 1294 rewriter.getEditBuffer(source_manager.getMainFileID()); 1295 1296 std::string fixed_expression; 1297 llvm::raw_string_ostream out_stream(fixed_expression); 1298 1299 main_file_buffer.write(out_stream); 1300 out_stream.flush(); 1301 diagnostic_manager.SetFixedExpression(fixed_expression); 1302 1303 return true; 1304 } 1305 1306 static bool FindFunctionInModule(ConstString &mangled_name, 1307 llvm::Module *module, const char *orig_name) { 1308 for (const auto &func : module->getFunctionList()) { 1309 const StringRef &name = func.getName(); 1310 if (name.find(orig_name) != StringRef::npos) { 1311 mangled_name.SetString(name); 1312 return true; 1313 } 1314 } 1315 1316 return false; 1317 } 1318 1319 lldb_private::Status ClangExpressionParser::PrepareForExecution( 1320 lldb::addr_t &func_addr, lldb::addr_t &func_end, 1321 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx, 1322 bool &can_interpret, ExecutionPolicy execution_policy) { 1323 func_addr = LLDB_INVALID_ADDRESS; 1324 func_end = LLDB_INVALID_ADDRESS; 1325 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1326 1327 lldb_private::Status err; 1328 1329 std::unique_ptr<llvm::Module> llvm_module_up( 1330 m_code_generator->ReleaseModule()); 1331 1332 if (!llvm_module_up) { 1333 err.SetErrorToGenericError(); 1334 err.SetErrorString("IR doesn't contain a module"); 1335 return err; 1336 } 1337 1338 ConstString function_name; 1339 1340 if (execution_policy != eExecutionPolicyTopLevel) { 1341 // Find the actual name of the function (it's often mangled somehow) 1342 1343 if (!FindFunctionInModule(function_name, llvm_module_up.get(), 1344 m_expr.FunctionName())) { 1345 err.SetErrorToGenericError(); 1346 err.SetErrorStringWithFormat("Couldn't find %s() in the module", 1347 m_expr.FunctionName()); 1348 return err; 1349 } else { 1350 LLDB_LOGF(log, "Found function %s for %s", function_name.AsCString(), 1351 m_expr.FunctionName()); 1352 } 1353 } 1354 1355 SymbolContext sc; 1356 1357 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) { 1358 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything); 1359 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) { 1360 sc.target_sp = target_sp; 1361 } 1362 1363 LLVMUserExpression::IRPasses custom_passes; 1364 { 1365 auto lang = m_expr.Language(); 1366 LLDB_LOGF(log, "%s - Current expression language is %s\n", __FUNCTION__, 1367 Language::GetNameForLanguageType(lang)); 1368 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP(); 1369 if (process_sp && lang != lldb::eLanguageTypeUnknown) { 1370 auto runtime = process_sp->GetLanguageRuntime(lang); 1371 if (runtime) 1372 runtime->GetIRPasses(custom_passes); 1373 } 1374 } 1375 1376 if (custom_passes.EarlyPasses) { 1377 LLDB_LOGF(log, 1378 "%s - Running Early IR Passes from LanguageRuntime on " 1379 "expression module '%s'", 1380 __FUNCTION__, m_expr.FunctionName()); 1381 1382 custom_passes.EarlyPasses->run(*llvm_module_up); 1383 } 1384 1385 execution_unit_sp = std::make_shared<IRExecutionUnit>( 1386 m_llvm_context, // handed off here 1387 llvm_module_up, // handed off here 1388 function_name, exe_ctx.GetTargetSP(), sc, 1389 m_compiler->getTargetOpts().Features); 1390 1391 ClangExpressionHelper *type_system_helper = 1392 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1393 ClangExpressionDeclMap *decl_map = 1394 type_system_helper->DeclMap(); // result can be NULL 1395 1396 if (decl_map) { 1397 StreamString error_stream; 1398 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(), 1399 *execution_unit_sp, error_stream, 1400 function_name.AsCString()); 1401 1402 if (!ir_for_target.runOnModule(*execution_unit_sp->GetModule())) { 1403 err.SetErrorString(error_stream.GetString()); 1404 return err; 1405 } 1406 1407 Process *process = exe_ctx.GetProcessPtr(); 1408 1409 if (execution_policy != eExecutionPolicyAlways && 1410 execution_policy != eExecutionPolicyTopLevel) { 1411 lldb_private::Status interpret_error; 1412 1413 bool interpret_function_calls = 1414 !process ? false : process->CanInterpretFunctionCalls(); 1415 can_interpret = IRInterpreter::CanInterpret( 1416 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(), 1417 interpret_error, interpret_function_calls); 1418 1419 if (!can_interpret && execution_policy == eExecutionPolicyNever) { 1420 err.SetErrorStringWithFormat( 1421 "Can't evaluate the expression without a running target due to: %s", 1422 interpret_error.AsCString()); 1423 return err; 1424 } 1425 } 1426 1427 if (!process && execution_policy == eExecutionPolicyAlways) { 1428 err.SetErrorString("Expression needed to run in the target, but the " 1429 "target can't be run"); 1430 return err; 1431 } 1432 1433 if (!process && execution_policy == eExecutionPolicyTopLevel) { 1434 err.SetErrorString("Top-level code needs to be inserted into a runnable " 1435 "target, but the target can't be run"); 1436 return err; 1437 } 1438 1439 if (execution_policy == eExecutionPolicyAlways || 1440 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) { 1441 if (m_expr.NeedsValidation() && process) { 1442 if (!process->GetDynamicCheckers()) { 1443 ClangDynamicCheckerFunctions *dynamic_checkers = 1444 new ClangDynamicCheckerFunctions(); 1445 1446 DiagnosticManager install_diagnostics; 1447 1448 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) { 1449 if (install_diagnostics.Diagnostics().size()) 1450 err.SetErrorString(install_diagnostics.GetString().c_str()); 1451 else 1452 err.SetErrorString("couldn't install checkers, unknown error"); 1453 1454 return err; 1455 } 1456 1457 process->SetDynamicCheckers(dynamic_checkers); 1458 1459 LLDB_LOGF(log, "== [ClangExpressionParser::PrepareForExecution] " 1460 "Finished installing dynamic checkers =="); 1461 } 1462 1463 if (auto *checker_funcs = llvm::dyn_cast<ClangDynamicCheckerFunctions>( 1464 process->GetDynamicCheckers())) { 1465 IRDynamicChecks ir_dynamic_checks(*checker_funcs, 1466 function_name.AsCString()); 1467 1468 llvm::Module *module = execution_unit_sp->GetModule(); 1469 if (!module || !ir_dynamic_checks.runOnModule(*module)) { 1470 err.SetErrorToGenericError(); 1471 err.SetErrorString("Couldn't add dynamic checks to the expression"); 1472 return err; 1473 } 1474 1475 if (custom_passes.LatePasses) { 1476 LLDB_LOGF(log, 1477 "%s - Running Late IR Passes from LanguageRuntime on " 1478 "expression module '%s'", 1479 __FUNCTION__, m_expr.FunctionName()); 1480 1481 custom_passes.LatePasses->run(*module); 1482 } 1483 } 1484 } 1485 } 1486 1487 if (execution_policy == eExecutionPolicyAlways || 1488 execution_policy == eExecutionPolicyTopLevel || !can_interpret) { 1489 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1490 } 1491 } else { 1492 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1493 } 1494 1495 return err; 1496 } 1497 1498 lldb_private::Status ClangExpressionParser::RunStaticInitializers( 1499 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) { 1500 lldb_private::Status err; 1501 1502 lldbassert(execution_unit_sp.get()); 1503 lldbassert(exe_ctx.HasThreadScope()); 1504 1505 if (!execution_unit_sp.get()) { 1506 err.SetErrorString( 1507 "can't run static initializers for a NULL execution unit"); 1508 return err; 1509 } 1510 1511 if (!exe_ctx.HasThreadScope()) { 1512 err.SetErrorString("can't run static initializers without a thread"); 1513 return err; 1514 } 1515 1516 std::vector<lldb::addr_t> static_initializers; 1517 1518 execution_unit_sp->GetStaticInitializers(static_initializers); 1519 1520 for (lldb::addr_t static_initializer : static_initializers) { 1521 EvaluateExpressionOptions options; 1522 1523 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction( 1524 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(), 1525 llvm::ArrayRef<lldb::addr_t>(), options)); 1526 1527 DiagnosticManager execution_errors; 1528 lldb::ExpressionResults results = 1529 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan( 1530 exe_ctx, call_static_initializer, options, execution_errors); 1531 1532 if (results != lldb::eExpressionCompleted) { 1533 err.SetErrorStringWithFormat("couldn't run static initializer: %s", 1534 execution_errors.GetString().c_str()); 1535 return err; 1536 } 1537 } 1538 1539 return err; 1540 } 1541