1 //===-- IRMemoryMap.cpp -----------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Expression/IRMemoryMap.h" 10 #include "lldb/Target/MemoryRegionInfo.h" 11 #include "lldb/Target/Process.h" 12 #include "lldb/Target/Target.h" 13 #include "lldb/Utility/DataBufferHeap.h" 14 #include "lldb/Utility/DataExtractor.h" 15 #include "lldb/Utility/LLDBAssert.h" 16 #include "lldb/Utility/Log.h" 17 #include "lldb/Utility/Scalar.h" 18 #include "lldb/Utility/Status.h" 19 20 using namespace lldb_private; 21 22 IRMemoryMap::IRMemoryMap(lldb::TargetSP target_sp) : m_target_wp(target_sp) { 23 if (target_sp) 24 m_process_wp = target_sp->GetProcessSP(); 25 } 26 27 IRMemoryMap::~IRMemoryMap() { 28 lldb::ProcessSP process_sp = m_process_wp.lock(); 29 30 if (process_sp) { 31 AllocationMap::iterator iter; 32 33 Status err; 34 35 while ((iter = m_allocations.begin()) != m_allocations.end()) { 36 err.Clear(); 37 if (iter->second.m_leak) 38 m_allocations.erase(iter); 39 else 40 Free(iter->first, err); 41 } 42 } 43 } 44 45 lldb::addr_t IRMemoryMap::FindSpace(size_t size) { 46 // The FindSpace algorithm's job is to find a region of memory that the 47 // underlying process is unlikely to be using. 48 // 49 // The memory returned by this function will never be written to. The only 50 // point is that it should not shadow process memory if possible, so that 51 // expressions processing real values from the process do not use the wrong 52 // data. 53 // 54 // If the process can in fact allocate memory (CanJIT() lets us know this) 55 // then this can be accomplished just be allocating memory in the inferior. 56 // Then no guessing is required. 57 58 lldb::TargetSP target_sp = m_target_wp.lock(); 59 lldb::ProcessSP process_sp = m_process_wp.lock(); 60 61 const bool process_is_alive = process_sp && process_sp->IsAlive(); 62 63 lldb::addr_t ret = LLDB_INVALID_ADDRESS; 64 if (size == 0) 65 return ret; 66 67 if (process_is_alive && process_sp->CanJIT()) { 68 Status alloc_error; 69 70 ret = process_sp->AllocateMemory(size, lldb::ePermissionsReadable | 71 lldb::ePermissionsWritable, 72 alloc_error); 73 74 if (!alloc_error.Success()) 75 return LLDB_INVALID_ADDRESS; 76 else 77 return ret; 78 } 79 80 // At this point we know that we need to hunt. 81 // 82 // First, go to the end of the existing allocations we've made if there are 83 // any allocations. Otherwise start at the beginning of memory. 84 85 if (m_allocations.empty()) { 86 ret = 0x0; 87 } else { 88 auto back = m_allocations.rbegin(); 89 lldb::addr_t addr = back->first; 90 size_t alloc_size = back->second.m_size; 91 ret = llvm::alignTo(addr + alloc_size, 4096); 92 } 93 94 // Now, if it's possible to use the GetMemoryRegionInfo API to detect mapped 95 // regions, walk forward through memory until a region is found that has 96 // adequate space for our allocation. 97 if (process_is_alive) { 98 const uint64_t end_of_memory = process_sp->GetAddressByteSize() == 8 99 ? 0xffffffffffffffffull 100 : 0xffffffffull; 101 102 lldbassert(process_sp->GetAddressByteSize() == 4 || 103 end_of_memory != 0xffffffffull); 104 105 MemoryRegionInfo region_info; 106 Status err = process_sp->GetMemoryRegionInfo(ret, region_info); 107 if (err.Success()) { 108 while (true) { 109 if (region_info.GetReadable() != MemoryRegionInfo::OptionalBool::eNo || 110 region_info.GetWritable() != MemoryRegionInfo::OptionalBool::eNo || 111 region_info.GetExecutable() != 112 MemoryRegionInfo::OptionalBool::eNo) { 113 if (region_info.GetRange().GetRangeEnd() - 1 >= end_of_memory) { 114 ret = LLDB_INVALID_ADDRESS; 115 break; 116 } else { 117 ret = region_info.GetRange().GetRangeEnd(); 118 } 119 } else if (ret + size < region_info.GetRange().GetRangeEnd()) { 120 return ret; 121 } else { 122 // ret stays the same. We just need to walk a bit further. 123 } 124 125 err = process_sp->GetMemoryRegionInfo( 126 region_info.GetRange().GetRangeEnd(), region_info); 127 if (err.Fail()) { 128 lldbassert(0 && "GetMemoryRegionInfo() succeeded, then failed"); 129 ret = LLDB_INVALID_ADDRESS; 130 break; 131 } 132 } 133 } 134 } 135 136 // We've tried our algorithm, and it didn't work. Now we have to reset back 137 // to the end of the allocations we've already reported, or use a 'sensible' 138 // default if this is our first allocation. 139 140 if (m_allocations.empty()) { 141 uint32_t address_byte_size = GetAddressByteSize(); 142 if (address_byte_size != UINT32_MAX) { 143 switch (address_byte_size) { 144 case 8: 145 ret = 0xffffffff00000000ull; 146 break; 147 case 4: 148 ret = 0xee000000ull; 149 break; 150 default: 151 break; 152 } 153 } 154 } else { 155 auto back = m_allocations.rbegin(); 156 lldb::addr_t addr = back->first; 157 size_t alloc_size = back->second.m_size; 158 ret = llvm::alignTo(addr + alloc_size, 4096); 159 } 160 161 return ret; 162 } 163 164 IRMemoryMap::AllocationMap::iterator 165 IRMemoryMap::FindAllocation(lldb::addr_t addr, size_t size) { 166 if (addr == LLDB_INVALID_ADDRESS) 167 return m_allocations.end(); 168 169 AllocationMap::iterator iter = m_allocations.lower_bound(addr); 170 171 if (iter == m_allocations.end() || iter->first > addr) { 172 if (iter == m_allocations.begin()) 173 return m_allocations.end(); 174 iter--; 175 } 176 177 if (iter->first <= addr && iter->first + iter->second.m_size >= addr + size) 178 return iter; 179 180 return m_allocations.end(); 181 } 182 183 bool IRMemoryMap::IntersectsAllocation(lldb::addr_t addr, size_t size) const { 184 if (addr == LLDB_INVALID_ADDRESS) 185 return false; 186 187 AllocationMap::const_iterator iter = m_allocations.lower_bound(addr); 188 189 // Since we only know that the returned interval begins at a location greater 190 // than or equal to where the given interval begins, it's possible that the 191 // given interval intersects either the returned interval or the previous 192 // interval. Thus, we need to check both. Note that we only need to check 193 // these two intervals. Since all intervals are disjoint it is not possible 194 // that an adjacent interval does not intersect, but a non-adjacent interval 195 // does intersect. 196 if (iter != m_allocations.end()) { 197 if (AllocationsIntersect(addr, size, iter->second.m_process_start, 198 iter->second.m_size)) 199 return true; 200 } 201 202 if (iter != m_allocations.begin()) { 203 --iter; 204 if (AllocationsIntersect(addr, size, iter->second.m_process_start, 205 iter->second.m_size)) 206 return true; 207 } 208 209 return false; 210 } 211 212 bool IRMemoryMap::AllocationsIntersect(lldb::addr_t addr1, size_t size1, 213 lldb::addr_t addr2, size_t size2) { 214 // Given two half open intervals [A, B) and [X, Y), the only 6 permutations 215 // that satisfy A<B and X<Y are the following: 216 // A B X Y 217 // A X B Y (intersects) 218 // A X Y B (intersects) 219 // X A B Y (intersects) 220 // X A Y B (intersects) 221 // X Y A B 222 // The first is B <= X, and the last is Y <= A. So the condition is !(B <= X 223 // || Y <= A)), or (X < B && A < Y) 224 return (addr2 < (addr1 + size1)) && (addr1 < (addr2 + size2)); 225 } 226 227 lldb::ByteOrder IRMemoryMap::GetByteOrder() { 228 lldb::ProcessSP process_sp = m_process_wp.lock(); 229 230 if (process_sp) 231 return process_sp->GetByteOrder(); 232 233 lldb::TargetSP target_sp = m_target_wp.lock(); 234 235 if (target_sp) 236 return target_sp->GetArchitecture().GetByteOrder(); 237 238 return lldb::eByteOrderInvalid; 239 } 240 241 uint32_t IRMemoryMap::GetAddressByteSize() { 242 lldb::ProcessSP process_sp = m_process_wp.lock(); 243 244 if (process_sp) 245 return process_sp->GetAddressByteSize(); 246 247 lldb::TargetSP target_sp = m_target_wp.lock(); 248 249 if (target_sp) 250 return target_sp->GetArchitecture().GetAddressByteSize(); 251 252 return UINT32_MAX; 253 } 254 255 ExecutionContextScope *IRMemoryMap::GetBestExecutionContextScope() const { 256 lldb::ProcessSP process_sp = m_process_wp.lock(); 257 258 if (process_sp) 259 return process_sp.get(); 260 261 lldb::TargetSP target_sp = m_target_wp.lock(); 262 263 if (target_sp) 264 return target_sp.get(); 265 266 return nullptr; 267 } 268 269 IRMemoryMap::Allocation::Allocation(lldb::addr_t process_alloc, 270 lldb::addr_t process_start, size_t size, 271 uint32_t permissions, uint8_t alignment, 272 AllocationPolicy policy) 273 : m_process_alloc(process_alloc), m_process_start(process_start), 274 m_size(size), m_policy(policy), m_leak(false), m_permissions(permissions), 275 m_alignment(alignment) { 276 switch (policy) { 277 default: 278 llvm_unreachable("Invalid AllocationPolicy"); 279 case eAllocationPolicyHostOnly: 280 case eAllocationPolicyMirror: 281 m_data.SetByteSize(size); 282 break; 283 case eAllocationPolicyProcessOnly: 284 break; 285 } 286 } 287 288 lldb::addr_t IRMemoryMap::Malloc(size_t size, uint8_t alignment, 289 uint32_t permissions, AllocationPolicy policy, 290 bool zero_memory, Status &error) { 291 lldb_private::Log *log( 292 lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 293 error.Clear(); 294 295 lldb::ProcessSP process_sp; 296 lldb::addr_t allocation_address = LLDB_INVALID_ADDRESS; 297 lldb::addr_t aligned_address = LLDB_INVALID_ADDRESS; 298 299 size_t allocation_size; 300 301 if (size == 0) { 302 // FIXME: Malloc(0) should either return an invalid address or assert, in 303 // order to cut down on unnecessary allocations. 304 allocation_size = alignment; 305 } else { 306 // Round up the requested size to an aligned value. 307 allocation_size = llvm::alignTo(size, alignment); 308 309 // The process page cache does not see the requested alignment. We can't 310 // assume its result will be any more than 1-byte aligned. To work around 311 // this, request `alignment - 1` additional bytes. 312 allocation_size += alignment - 1; 313 } 314 315 switch (policy) { 316 default: 317 error.SetErrorToGenericError(); 318 error.SetErrorString("Couldn't malloc: invalid allocation policy"); 319 return LLDB_INVALID_ADDRESS; 320 case eAllocationPolicyHostOnly: 321 allocation_address = FindSpace(allocation_size); 322 if (allocation_address == LLDB_INVALID_ADDRESS) { 323 error.SetErrorToGenericError(); 324 error.SetErrorString("Couldn't malloc: address space is full"); 325 return LLDB_INVALID_ADDRESS; 326 } 327 break; 328 case eAllocationPolicyMirror: 329 process_sp = m_process_wp.lock(); 330 if (log) 331 log->Printf("IRMemoryMap::%s process_sp=0x%" PRIx64 332 ", process_sp->CanJIT()=%s, process_sp->IsAlive()=%s", 333 __FUNCTION__, (lldb::addr_t)process_sp.get(), 334 process_sp && process_sp->CanJIT() ? "true" : "false", 335 process_sp && process_sp->IsAlive() ? "true" : "false"); 336 if (process_sp && process_sp->CanJIT() && process_sp->IsAlive()) { 337 if (!zero_memory) 338 allocation_address = 339 process_sp->AllocateMemory(allocation_size, permissions, error); 340 else 341 allocation_address = 342 process_sp->CallocateMemory(allocation_size, permissions, error); 343 344 if (!error.Success()) 345 return LLDB_INVALID_ADDRESS; 346 } else { 347 if (log) 348 log->Printf("IRMemoryMap::%s switching to eAllocationPolicyHostOnly " 349 "due to failed condition (see previous expr log message)", 350 __FUNCTION__); 351 policy = eAllocationPolicyHostOnly; 352 allocation_address = FindSpace(allocation_size); 353 if (allocation_address == LLDB_INVALID_ADDRESS) { 354 error.SetErrorToGenericError(); 355 error.SetErrorString("Couldn't malloc: address space is full"); 356 return LLDB_INVALID_ADDRESS; 357 } 358 } 359 break; 360 case eAllocationPolicyProcessOnly: 361 process_sp = m_process_wp.lock(); 362 if (process_sp) { 363 if (process_sp->CanJIT() && process_sp->IsAlive()) { 364 if (!zero_memory) 365 allocation_address = 366 process_sp->AllocateMemory(allocation_size, permissions, error); 367 else 368 allocation_address = 369 process_sp->CallocateMemory(allocation_size, permissions, error); 370 371 if (!error.Success()) 372 return LLDB_INVALID_ADDRESS; 373 } else { 374 error.SetErrorToGenericError(); 375 error.SetErrorString( 376 "Couldn't malloc: process doesn't support allocating memory"); 377 return LLDB_INVALID_ADDRESS; 378 } 379 } else { 380 error.SetErrorToGenericError(); 381 error.SetErrorString("Couldn't malloc: process doesn't exist, and this " 382 "memory must be in the process"); 383 return LLDB_INVALID_ADDRESS; 384 } 385 break; 386 } 387 388 lldb::addr_t mask = alignment - 1; 389 aligned_address = (allocation_address + mask) & (~mask); 390 391 m_allocations.emplace( 392 std::piecewise_construct, std::forward_as_tuple(aligned_address), 393 std::forward_as_tuple(allocation_address, aligned_address, 394 allocation_size, permissions, alignment, policy)); 395 396 if (zero_memory) { 397 Status write_error; 398 std::vector<uint8_t> zero_buf(size, 0); 399 WriteMemory(aligned_address, zero_buf.data(), size, write_error); 400 } 401 402 if (log) { 403 const char *policy_string; 404 405 switch (policy) { 406 default: 407 policy_string = "<invalid policy>"; 408 break; 409 case eAllocationPolicyHostOnly: 410 policy_string = "eAllocationPolicyHostOnly"; 411 break; 412 case eAllocationPolicyProcessOnly: 413 policy_string = "eAllocationPolicyProcessOnly"; 414 break; 415 case eAllocationPolicyMirror: 416 policy_string = "eAllocationPolicyMirror"; 417 break; 418 } 419 420 log->Printf("IRMemoryMap::Malloc (%" PRIu64 ", 0x%" PRIx64 ", 0x%" PRIx64 421 ", %s) -> 0x%" PRIx64, 422 (uint64_t)allocation_size, (uint64_t)alignment, 423 (uint64_t)permissions, policy_string, aligned_address); 424 } 425 426 return aligned_address; 427 } 428 429 void IRMemoryMap::Leak(lldb::addr_t process_address, Status &error) { 430 error.Clear(); 431 432 AllocationMap::iterator iter = m_allocations.find(process_address); 433 434 if (iter == m_allocations.end()) { 435 error.SetErrorToGenericError(); 436 error.SetErrorString("Couldn't leak: allocation doesn't exist"); 437 return; 438 } 439 440 Allocation &allocation = iter->second; 441 442 allocation.m_leak = true; 443 } 444 445 void IRMemoryMap::Free(lldb::addr_t process_address, Status &error) { 446 error.Clear(); 447 448 AllocationMap::iterator iter = m_allocations.find(process_address); 449 450 if (iter == m_allocations.end()) { 451 error.SetErrorToGenericError(); 452 error.SetErrorString("Couldn't free: allocation doesn't exist"); 453 return; 454 } 455 456 Allocation &allocation = iter->second; 457 458 switch (allocation.m_policy) { 459 default: 460 case eAllocationPolicyHostOnly: { 461 lldb::ProcessSP process_sp = m_process_wp.lock(); 462 if (process_sp) { 463 if (process_sp->CanJIT() && process_sp->IsAlive()) 464 process_sp->DeallocateMemory( 465 allocation.m_process_alloc); // FindSpace allocated this for real 466 } 467 468 break; 469 } 470 case eAllocationPolicyMirror: 471 case eAllocationPolicyProcessOnly: { 472 lldb::ProcessSP process_sp = m_process_wp.lock(); 473 if (process_sp) 474 process_sp->DeallocateMemory(allocation.m_process_alloc); 475 } 476 } 477 478 if (lldb_private::Log *log = 479 lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)) { 480 log->Printf("IRMemoryMap::Free (0x%" PRIx64 ") freed [0x%" PRIx64 481 "..0x%" PRIx64 ")", 482 (uint64_t)process_address, iter->second.m_process_start, 483 iter->second.m_process_start + iter->second.m_size); 484 } 485 486 m_allocations.erase(iter); 487 } 488 489 bool IRMemoryMap::GetAllocSize(lldb::addr_t address, size_t &size) { 490 AllocationMap::iterator iter = FindAllocation(address, size); 491 if (iter == m_allocations.end()) 492 return false; 493 494 Allocation &al = iter->second; 495 496 if (address > (al.m_process_start + al.m_size)) { 497 size = 0; 498 return false; 499 } 500 501 if (address > al.m_process_start) { 502 int dif = address - al.m_process_start; 503 size = al.m_size - dif; 504 return true; 505 } 506 507 size = al.m_size; 508 return true; 509 } 510 511 void IRMemoryMap::WriteMemory(lldb::addr_t process_address, 512 const uint8_t *bytes, size_t size, 513 Status &error) { 514 error.Clear(); 515 516 AllocationMap::iterator iter = FindAllocation(process_address, size); 517 518 if (iter == m_allocations.end()) { 519 lldb::ProcessSP process_sp = m_process_wp.lock(); 520 521 if (process_sp) { 522 process_sp->WriteMemory(process_address, bytes, size, error); 523 return; 524 } 525 526 error.SetErrorToGenericError(); 527 error.SetErrorString("Couldn't write: no allocation contains the target " 528 "range and the process doesn't exist"); 529 return; 530 } 531 532 Allocation &allocation = iter->second; 533 534 uint64_t offset = process_address - allocation.m_process_start; 535 536 lldb::ProcessSP process_sp; 537 538 switch (allocation.m_policy) { 539 default: 540 error.SetErrorToGenericError(); 541 error.SetErrorString("Couldn't write: invalid allocation policy"); 542 return; 543 case eAllocationPolicyHostOnly: 544 if (!allocation.m_data.GetByteSize()) { 545 error.SetErrorToGenericError(); 546 error.SetErrorString("Couldn't write: data buffer is empty"); 547 return; 548 } 549 ::memcpy(allocation.m_data.GetBytes() + offset, bytes, size); 550 break; 551 case eAllocationPolicyMirror: 552 if (!allocation.m_data.GetByteSize()) { 553 error.SetErrorToGenericError(); 554 error.SetErrorString("Couldn't write: data buffer is empty"); 555 return; 556 } 557 ::memcpy(allocation.m_data.GetBytes() + offset, bytes, size); 558 process_sp = m_process_wp.lock(); 559 if (process_sp) { 560 process_sp->WriteMemory(process_address, bytes, size, error); 561 if (!error.Success()) 562 return; 563 } 564 break; 565 case eAllocationPolicyProcessOnly: 566 process_sp = m_process_wp.lock(); 567 if (process_sp) { 568 process_sp->WriteMemory(process_address, bytes, size, error); 569 if (!error.Success()) 570 return; 571 } 572 break; 573 } 574 575 if (lldb_private::Log *log = 576 lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)) { 577 log->Printf("IRMemoryMap::WriteMemory (0x%" PRIx64 ", 0x%" PRIx64 578 ", 0x%" PRId64 ") went to [0x%" PRIx64 "..0x%" PRIx64 ")", 579 (uint64_t)process_address, (uint64_t)bytes, (uint64_t)size, 580 (uint64_t)allocation.m_process_start, 581 (uint64_t)allocation.m_process_start + 582 (uint64_t)allocation.m_size); 583 } 584 } 585 586 void IRMemoryMap::WriteScalarToMemory(lldb::addr_t process_address, 587 Scalar &scalar, size_t size, 588 Status &error) { 589 error.Clear(); 590 591 if (size == UINT32_MAX) 592 size = scalar.GetByteSize(); 593 594 if (size > 0) { 595 uint8_t buf[32]; 596 const size_t mem_size = 597 scalar.GetAsMemoryData(buf, size, GetByteOrder(), error); 598 if (mem_size > 0) { 599 return WriteMemory(process_address, buf, mem_size, error); 600 } else { 601 error.SetErrorToGenericError(); 602 error.SetErrorString( 603 "Couldn't write scalar: failed to get scalar as memory data"); 604 } 605 } else { 606 error.SetErrorToGenericError(); 607 error.SetErrorString("Couldn't write scalar: its size was zero"); 608 } 609 return; 610 } 611 612 void IRMemoryMap::WritePointerToMemory(lldb::addr_t process_address, 613 lldb::addr_t address, Status &error) { 614 error.Clear(); 615 616 Scalar scalar(address); 617 618 WriteScalarToMemory(process_address, scalar, GetAddressByteSize(), error); 619 } 620 621 void IRMemoryMap::ReadMemory(uint8_t *bytes, lldb::addr_t process_address, 622 size_t size, Status &error) { 623 error.Clear(); 624 625 AllocationMap::iterator iter = FindAllocation(process_address, size); 626 627 if (iter == m_allocations.end()) { 628 lldb::ProcessSP process_sp = m_process_wp.lock(); 629 630 if (process_sp) { 631 process_sp->ReadMemory(process_address, bytes, size, error); 632 return; 633 } 634 635 lldb::TargetSP target_sp = m_target_wp.lock(); 636 637 if (target_sp) { 638 Address absolute_address(process_address); 639 target_sp->ReadMemory(absolute_address, false, bytes, size, error); 640 return; 641 } 642 643 error.SetErrorToGenericError(); 644 error.SetErrorString("Couldn't read: no allocation contains the target " 645 "range, and neither the process nor the target exist"); 646 return; 647 } 648 649 Allocation &allocation = iter->second; 650 651 uint64_t offset = process_address - allocation.m_process_start; 652 653 if (offset > allocation.m_size) { 654 error.SetErrorToGenericError(); 655 error.SetErrorString("Couldn't read: data is not in the allocation"); 656 return; 657 } 658 659 lldb::ProcessSP process_sp; 660 661 switch (allocation.m_policy) { 662 default: 663 error.SetErrorToGenericError(); 664 error.SetErrorString("Couldn't read: invalid allocation policy"); 665 return; 666 case eAllocationPolicyHostOnly: 667 if (!allocation.m_data.GetByteSize()) { 668 error.SetErrorToGenericError(); 669 error.SetErrorString("Couldn't read: data buffer is empty"); 670 return; 671 } 672 if (allocation.m_data.GetByteSize() < offset + size) { 673 error.SetErrorToGenericError(); 674 error.SetErrorString("Couldn't read: not enough underlying data"); 675 return; 676 } 677 678 ::memcpy(bytes, allocation.m_data.GetBytes() + offset, size); 679 break; 680 case eAllocationPolicyMirror: 681 process_sp = m_process_wp.lock(); 682 if (process_sp) { 683 process_sp->ReadMemory(process_address, bytes, size, error); 684 if (!error.Success()) 685 return; 686 } else { 687 if (!allocation.m_data.GetByteSize()) { 688 error.SetErrorToGenericError(); 689 error.SetErrorString("Couldn't read: data buffer is empty"); 690 return; 691 } 692 ::memcpy(bytes, allocation.m_data.GetBytes() + offset, size); 693 } 694 break; 695 case eAllocationPolicyProcessOnly: 696 process_sp = m_process_wp.lock(); 697 if (process_sp) { 698 process_sp->ReadMemory(process_address, bytes, size, error); 699 if (!error.Success()) 700 return; 701 } 702 break; 703 } 704 705 if (lldb_private::Log *log = 706 lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)) { 707 log->Printf("IRMemoryMap::ReadMemory (0x%" PRIx64 ", 0x%" PRIx64 708 ", 0x%" PRId64 ") came from [0x%" PRIx64 "..0x%" PRIx64 ")", 709 (uint64_t)process_address, (uint64_t)bytes, (uint64_t)size, 710 (uint64_t)allocation.m_process_start, 711 (uint64_t)allocation.m_process_start + 712 (uint64_t)allocation.m_size); 713 } 714 } 715 716 void IRMemoryMap::ReadScalarFromMemory(Scalar &scalar, 717 lldb::addr_t process_address, 718 size_t size, Status &error) { 719 error.Clear(); 720 721 if (size > 0) { 722 DataBufferHeap buf(size, 0); 723 ReadMemory(buf.GetBytes(), process_address, size, error); 724 725 if (!error.Success()) 726 return; 727 728 DataExtractor extractor(buf.GetBytes(), buf.GetByteSize(), GetByteOrder(), 729 GetAddressByteSize()); 730 731 lldb::offset_t offset = 0; 732 733 switch (size) { 734 default: 735 error.SetErrorToGenericError(); 736 error.SetErrorStringWithFormat( 737 "Couldn't read scalar: unsupported size %" PRIu64, (uint64_t)size); 738 return; 739 case 1: 740 scalar = extractor.GetU8(&offset); 741 break; 742 case 2: 743 scalar = extractor.GetU16(&offset); 744 break; 745 case 4: 746 scalar = extractor.GetU32(&offset); 747 break; 748 case 8: 749 scalar = extractor.GetU64(&offset); 750 break; 751 } 752 } else { 753 error.SetErrorToGenericError(); 754 error.SetErrorString("Couldn't read scalar: its size was zero"); 755 } 756 return; 757 } 758 759 void IRMemoryMap::ReadPointerFromMemory(lldb::addr_t *address, 760 lldb::addr_t process_address, 761 Status &error) { 762 error.Clear(); 763 764 Scalar pointer_scalar; 765 ReadScalarFromMemory(pointer_scalar, process_address, GetAddressByteSize(), 766 error); 767 768 if (!error.Success()) 769 return; 770 771 *address = pointer_scalar.ULongLong(); 772 773 return; 774 } 775 776 void IRMemoryMap::GetMemoryData(DataExtractor &extractor, 777 lldb::addr_t process_address, size_t size, 778 Status &error) { 779 error.Clear(); 780 781 if (size > 0) { 782 AllocationMap::iterator iter = FindAllocation(process_address, size); 783 784 if (iter == m_allocations.end()) { 785 error.SetErrorToGenericError(); 786 error.SetErrorStringWithFormat( 787 "Couldn't find an allocation containing [0x%" PRIx64 "..0x%" PRIx64 788 ")", 789 process_address, process_address + size); 790 return; 791 } 792 793 Allocation &allocation = iter->second; 794 795 switch (allocation.m_policy) { 796 default: 797 error.SetErrorToGenericError(); 798 error.SetErrorString( 799 "Couldn't get memory data: invalid allocation policy"); 800 return; 801 case eAllocationPolicyProcessOnly: 802 error.SetErrorToGenericError(); 803 error.SetErrorString( 804 "Couldn't get memory data: memory is only in the target"); 805 return; 806 case eAllocationPolicyMirror: { 807 lldb::ProcessSP process_sp = m_process_wp.lock(); 808 809 if (!allocation.m_data.GetByteSize()) { 810 error.SetErrorToGenericError(); 811 error.SetErrorString("Couldn't get memory data: data buffer is empty"); 812 return; 813 } 814 if (process_sp) { 815 process_sp->ReadMemory(allocation.m_process_start, 816 allocation.m_data.GetBytes(), 817 allocation.m_data.GetByteSize(), error); 818 if (!error.Success()) 819 return; 820 uint64_t offset = process_address - allocation.m_process_start; 821 extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size, 822 GetByteOrder(), GetAddressByteSize()); 823 return; 824 } 825 } break; 826 case eAllocationPolicyHostOnly: 827 if (!allocation.m_data.GetByteSize()) { 828 error.SetErrorToGenericError(); 829 error.SetErrorString("Couldn't get memory data: data buffer is empty"); 830 return; 831 } 832 uint64_t offset = process_address - allocation.m_process_start; 833 extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size, 834 GetByteOrder(), GetAddressByteSize()); 835 return; 836 } 837 } else { 838 error.SetErrorToGenericError(); 839 error.SetErrorString("Couldn't get memory data: its size was zero"); 840 return; 841 } 842 } 843