xref: /freebsd-src/contrib/llvm-project/lldb/source/Expression/DWARFExpression.cpp (revision 8cc087a1eee9ec1ca9f7ac1e63ad51bdb5a682eb)
1 //===-- DWARFExpression.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "lldb/Expression/DWARFExpression.h"
10 
11 #include <cinttypes>
12 
13 #include <vector>
14 
15 #include "lldb/Core/Module.h"
16 #include "lldb/Core/Value.h"
17 #include "lldb/Core/dwarf.h"
18 #include "lldb/Utility/DataEncoder.h"
19 #include "lldb/Utility/Log.h"
20 #include "lldb/Utility/RegisterValue.h"
21 #include "lldb/Utility/Scalar.h"
22 #include "lldb/Utility/StreamString.h"
23 #include "lldb/Utility/VMRange.h"
24 
25 #include "lldb/Host/Host.h"
26 #include "lldb/Utility/Endian.h"
27 
28 #include "lldb/Symbol/Function.h"
29 
30 #include "lldb/Target/ABI.h"
31 #include "lldb/Target/ExecutionContext.h"
32 #include "lldb/Target/Process.h"
33 #include "lldb/Target/RegisterContext.h"
34 #include "lldb/Target/StackFrame.h"
35 #include "lldb/Target/StackID.h"
36 #include "lldb/Target/Target.h"
37 #include "lldb/Target/Thread.h"
38 
39 #include "Plugins/SymbolFile/DWARF/DWARFUnit.h"
40 
41 using namespace lldb;
42 using namespace lldb_private;
43 
44 static lldb::addr_t
45 ReadAddressFromDebugAddrSection(const DWARFUnit *dwarf_cu,
46                                 uint32_t index) {
47   uint32_t index_size = dwarf_cu->GetAddressByteSize();
48   dw_offset_t addr_base = dwarf_cu->GetAddrBase();
49   lldb::offset_t offset = addr_base + index * index_size;
50   const DWARFDataExtractor &data =
51       dwarf_cu->GetSymbolFileDWARF().GetDWARFContext().getOrLoadAddrData();
52   if (data.ValidOffsetForDataOfSize(offset, index_size))
53     return data.GetMaxU64_unchecked(&offset, index_size);
54   return LLDB_INVALID_ADDRESS;
55 }
56 
57 // DWARFExpression constructor
58 DWARFExpression::DWARFExpression() : m_module_wp(), m_data() {}
59 
60 DWARFExpression::DWARFExpression(lldb::ModuleSP module_sp,
61                                  const DataExtractor &data,
62                                  const DWARFUnit *dwarf_cu)
63     : m_module_wp(), m_data(data), m_dwarf_cu(dwarf_cu),
64       m_reg_kind(eRegisterKindDWARF) {
65   if (module_sp)
66     m_module_wp = module_sp;
67 }
68 
69 // Destructor
70 DWARFExpression::~DWARFExpression() = default;
71 
72 bool DWARFExpression::IsValid() const { return m_data.GetByteSize() > 0; }
73 
74 void DWARFExpression::UpdateValue(uint64_t const_value,
75                                   lldb::offset_t const_value_byte_size,
76                                   uint8_t addr_byte_size) {
77   if (!const_value_byte_size)
78     return;
79 
80   m_data.SetData(
81       DataBufferSP(new DataBufferHeap(&const_value, const_value_byte_size)));
82   m_data.SetByteOrder(endian::InlHostByteOrder());
83   m_data.SetAddressByteSize(addr_byte_size);
84 }
85 
86 void DWARFExpression::DumpLocation(Stream *s, const DataExtractor &data,
87                                    lldb::DescriptionLevel level,
88                                    ABI *abi) const {
89   llvm::DWARFExpression(data.GetAsLLVM(), data.GetAddressByteSize())
90       .print(s->AsRawOstream(), llvm::DIDumpOptions(),
91              abi ? &abi->GetMCRegisterInfo() : nullptr, nullptr);
92 }
93 
94 void DWARFExpression::SetLocationListAddresses(addr_t cu_file_addr,
95                                                addr_t func_file_addr) {
96   m_loclist_addresses = LoclistAddresses{cu_file_addr, func_file_addr};
97 }
98 
99 int DWARFExpression::GetRegisterKind() { return m_reg_kind; }
100 
101 void DWARFExpression::SetRegisterKind(RegisterKind reg_kind) {
102   m_reg_kind = reg_kind;
103 }
104 
105 bool DWARFExpression::IsLocationList() const {
106   return bool(m_loclist_addresses);
107 }
108 
109 namespace {
110 /// Implement enough of the DWARFObject interface in order to be able to call
111 /// DWARFLocationTable::dumpLocationList. We don't have access to a real
112 /// DWARFObject here because DWARFExpression is used in non-DWARF scenarios too.
113 class DummyDWARFObject final: public llvm::DWARFObject {
114 public:
115   DummyDWARFObject(bool IsLittleEndian) : IsLittleEndian(IsLittleEndian) {}
116 
117   bool isLittleEndian() const override { return IsLittleEndian; }
118 
119   llvm::Optional<llvm::RelocAddrEntry> find(const llvm::DWARFSection &Sec,
120                                             uint64_t Pos) const override {
121     return llvm::None;
122   }
123 private:
124   bool IsLittleEndian;
125 };
126 }
127 
128 void DWARFExpression::GetDescription(Stream *s, lldb::DescriptionLevel level,
129                                      addr_t location_list_base_addr,
130                                      ABI *abi) const {
131   if (IsLocationList()) {
132     // We have a location list
133     lldb::offset_t offset = 0;
134     std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
135         m_dwarf_cu->GetLocationTable(m_data);
136 
137     llvm::MCRegisterInfo *MRI = abi ? &abi->GetMCRegisterInfo() : nullptr;
138     llvm::DIDumpOptions DumpOpts;
139     DumpOpts.RecoverableErrorHandler = [&](llvm::Error E) {
140       s->AsRawOstream() << "error: " << toString(std::move(E));
141     };
142     loctable_up->dumpLocationList(
143         &offset, s->AsRawOstream(),
144         llvm::object::SectionedAddress{m_loclist_addresses->cu_file_addr}, MRI,
145         DummyDWARFObject(m_data.GetByteOrder() == eByteOrderLittle), nullptr,
146         DumpOpts, s->GetIndentLevel() + 2);
147   } else {
148     // We have a normal location that contains DW_OP location opcodes
149     DumpLocation(s, m_data, level, abi);
150   }
151 }
152 
153 static bool ReadRegisterValueAsScalar(RegisterContext *reg_ctx,
154                                       lldb::RegisterKind reg_kind,
155                                       uint32_t reg_num, Status *error_ptr,
156                                       Value &value) {
157   if (reg_ctx == nullptr) {
158     if (error_ptr)
159       error_ptr->SetErrorString("No register context in frame.\n");
160   } else {
161     uint32_t native_reg =
162         reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num);
163     if (native_reg == LLDB_INVALID_REGNUM) {
164       if (error_ptr)
165         error_ptr->SetErrorStringWithFormat("Unable to convert register "
166                                             "kind=%u reg_num=%u to a native "
167                                             "register number.\n",
168                                             reg_kind, reg_num);
169     } else {
170       const RegisterInfo *reg_info =
171           reg_ctx->GetRegisterInfoAtIndex(native_reg);
172       RegisterValue reg_value;
173       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
174         if (reg_value.GetScalarValue(value.GetScalar())) {
175           value.SetValueType(Value::ValueType::Scalar);
176           value.SetContext(Value::ContextType::RegisterInfo,
177                            const_cast<RegisterInfo *>(reg_info));
178           if (error_ptr)
179             error_ptr->Clear();
180           return true;
181         } else {
182           // If we get this error, then we need to implement a value buffer in
183           // the dwarf expression evaluation function...
184           if (error_ptr)
185             error_ptr->SetErrorStringWithFormat(
186                 "register %s can't be converted to a scalar value",
187                 reg_info->name);
188         }
189       } else {
190         if (error_ptr)
191           error_ptr->SetErrorStringWithFormat("register %s is not available",
192                                               reg_info->name);
193       }
194     }
195   }
196   return false;
197 }
198 
199 /// Return the length in bytes of the set of operands for \p op. No guarantees
200 /// are made on the state of \p data after this call.
201 static offset_t GetOpcodeDataSize(const DataExtractor &data,
202                                   const lldb::offset_t data_offset,
203                                   const uint8_t op) {
204   lldb::offset_t offset = data_offset;
205   switch (op) {
206   case DW_OP_addr:
207   case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3)
208     return data.GetAddressByteSize();
209 
210   // Opcodes with no arguments
211   case DW_OP_deref:                // 0x06
212   case DW_OP_dup:                  // 0x12
213   case DW_OP_drop:                 // 0x13
214   case DW_OP_over:                 // 0x14
215   case DW_OP_swap:                 // 0x16
216   case DW_OP_rot:                  // 0x17
217   case DW_OP_xderef:               // 0x18
218   case DW_OP_abs:                  // 0x19
219   case DW_OP_and:                  // 0x1a
220   case DW_OP_div:                  // 0x1b
221   case DW_OP_minus:                // 0x1c
222   case DW_OP_mod:                  // 0x1d
223   case DW_OP_mul:                  // 0x1e
224   case DW_OP_neg:                  // 0x1f
225   case DW_OP_not:                  // 0x20
226   case DW_OP_or:                   // 0x21
227   case DW_OP_plus:                 // 0x22
228   case DW_OP_shl:                  // 0x24
229   case DW_OP_shr:                  // 0x25
230   case DW_OP_shra:                 // 0x26
231   case DW_OP_xor:                  // 0x27
232   case DW_OP_eq:                   // 0x29
233   case DW_OP_ge:                   // 0x2a
234   case DW_OP_gt:                   // 0x2b
235   case DW_OP_le:                   // 0x2c
236   case DW_OP_lt:                   // 0x2d
237   case DW_OP_ne:                   // 0x2e
238   case DW_OP_lit0:                 // 0x30
239   case DW_OP_lit1:                 // 0x31
240   case DW_OP_lit2:                 // 0x32
241   case DW_OP_lit3:                 // 0x33
242   case DW_OP_lit4:                 // 0x34
243   case DW_OP_lit5:                 // 0x35
244   case DW_OP_lit6:                 // 0x36
245   case DW_OP_lit7:                 // 0x37
246   case DW_OP_lit8:                 // 0x38
247   case DW_OP_lit9:                 // 0x39
248   case DW_OP_lit10:                // 0x3A
249   case DW_OP_lit11:                // 0x3B
250   case DW_OP_lit12:                // 0x3C
251   case DW_OP_lit13:                // 0x3D
252   case DW_OP_lit14:                // 0x3E
253   case DW_OP_lit15:                // 0x3F
254   case DW_OP_lit16:                // 0x40
255   case DW_OP_lit17:                // 0x41
256   case DW_OP_lit18:                // 0x42
257   case DW_OP_lit19:                // 0x43
258   case DW_OP_lit20:                // 0x44
259   case DW_OP_lit21:                // 0x45
260   case DW_OP_lit22:                // 0x46
261   case DW_OP_lit23:                // 0x47
262   case DW_OP_lit24:                // 0x48
263   case DW_OP_lit25:                // 0x49
264   case DW_OP_lit26:                // 0x4A
265   case DW_OP_lit27:                // 0x4B
266   case DW_OP_lit28:                // 0x4C
267   case DW_OP_lit29:                // 0x4D
268   case DW_OP_lit30:                // 0x4E
269   case DW_OP_lit31:                // 0x4f
270   case DW_OP_reg0:                 // 0x50
271   case DW_OP_reg1:                 // 0x51
272   case DW_OP_reg2:                 // 0x52
273   case DW_OP_reg3:                 // 0x53
274   case DW_OP_reg4:                 // 0x54
275   case DW_OP_reg5:                 // 0x55
276   case DW_OP_reg6:                 // 0x56
277   case DW_OP_reg7:                 // 0x57
278   case DW_OP_reg8:                 // 0x58
279   case DW_OP_reg9:                 // 0x59
280   case DW_OP_reg10:                // 0x5A
281   case DW_OP_reg11:                // 0x5B
282   case DW_OP_reg12:                // 0x5C
283   case DW_OP_reg13:                // 0x5D
284   case DW_OP_reg14:                // 0x5E
285   case DW_OP_reg15:                // 0x5F
286   case DW_OP_reg16:                // 0x60
287   case DW_OP_reg17:                // 0x61
288   case DW_OP_reg18:                // 0x62
289   case DW_OP_reg19:                // 0x63
290   case DW_OP_reg20:                // 0x64
291   case DW_OP_reg21:                // 0x65
292   case DW_OP_reg22:                // 0x66
293   case DW_OP_reg23:                // 0x67
294   case DW_OP_reg24:                // 0x68
295   case DW_OP_reg25:                // 0x69
296   case DW_OP_reg26:                // 0x6A
297   case DW_OP_reg27:                // 0x6B
298   case DW_OP_reg28:                // 0x6C
299   case DW_OP_reg29:                // 0x6D
300   case DW_OP_reg30:                // 0x6E
301   case DW_OP_reg31:                // 0x6F
302   case DW_OP_nop:                  // 0x96
303   case DW_OP_push_object_address:  // 0x97 DWARF3
304   case DW_OP_form_tls_address:     // 0x9b DWARF3
305   case DW_OP_call_frame_cfa:       // 0x9c DWARF3
306   case DW_OP_stack_value:          // 0x9f DWARF4
307   case DW_OP_GNU_push_tls_address: // 0xe0 GNU extension
308     return 0;
309 
310   // Opcodes with a single 1 byte arguments
311   case DW_OP_const1u:     // 0x08 1 1-byte constant
312   case DW_OP_const1s:     // 0x09 1 1-byte constant
313   case DW_OP_pick:        // 0x15 1 1-byte stack index
314   case DW_OP_deref_size:  // 0x94 1 1-byte size of data retrieved
315   case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
316     return 1;
317 
318   // Opcodes with a single 2 byte arguments
319   case DW_OP_const2u: // 0x0a 1 2-byte constant
320   case DW_OP_const2s: // 0x0b 1 2-byte constant
321   case DW_OP_skip:    // 0x2f 1 signed 2-byte constant
322   case DW_OP_bra:     // 0x28 1 signed 2-byte constant
323   case DW_OP_call2:   // 0x98 1 2-byte offset of DIE (DWARF3)
324     return 2;
325 
326   // Opcodes with a single 4 byte arguments
327   case DW_OP_const4u: // 0x0c 1 4-byte constant
328   case DW_OP_const4s: // 0x0d 1 4-byte constant
329   case DW_OP_call4:   // 0x99 1 4-byte offset of DIE (DWARF3)
330     return 4;
331 
332   // Opcodes with a single 8 byte arguments
333   case DW_OP_const8u: // 0x0e 1 8-byte constant
334   case DW_OP_const8s: // 0x0f 1 8-byte constant
335     return 8;
336 
337   // All opcodes that have a single ULEB (signed or unsigned) argument
338   case DW_OP_addrx:           // 0xa1 1 ULEB128 index
339   case DW_OP_constu:          // 0x10 1 ULEB128 constant
340   case DW_OP_consts:          // 0x11 1 SLEB128 constant
341   case DW_OP_plus_uconst:     // 0x23 1 ULEB128 addend
342   case DW_OP_breg0:           // 0x70 1 ULEB128 register
343   case DW_OP_breg1:           // 0x71 1 ULEB128 register
344   case DW_OP_breg2:           // 0x72 1 ULEB128 register
345   case DW_OP_breg3:           // 0x73 1 ULEB128 register
346   case DW_OP_breg4:           // 0x74 1 ULEB128 register
347   case DW_OP_breg5:           // 0x75 1 ULEB128 register
348   case DW_OP_breg6:           // 0x76 1 ULEB128 register
349   case DW_OP_breg7:           // 0x77 1 ULEB128 register
350   case DW_OP_breg8:           // 0x78 1 ULEB128 register
351   case DW_OP_breg9:           // 0x79 1 ULEB128 register
352   case DW_OP_breg10:          // 0x7a 1 ULEB128 register
353   case DW_OP_breg11:          // 0x7b 1 ULEB128 register
354   case DW_OP_breg12:          // 0x7c 1 ULEB128 register
355   case DW_OP_breg13:          // 0x7d 1 ULEB128 register
356   case DW_OP_breg14:          // 0x7e 1 ULEB128 register
357   case DW_OP_breg15:          // 0x7f 1 ULEB128 register
358   case DW_OP_breg16:          // 0x80 1 ULEB128 register
359   case DW_OP_breg17:          // 0x81 1 ULEB128 register
360   case DW_OP_breg18:          // 0x82 1 ULEB128 register
361   case DW_OP_breg19:          // 0x83 1 ULEB128 register
362   case DW_OP_breg20:          // 0x84 1 ULEB128 register
363   case DW_OP_breg21:          // 0x85 1 ULEB128 register
364   case DW_OP_breg22:          // 0x86 1 ULEB128 register
365   case DW_OP_breg23:          // 0x87 1 ULEB128 register
366   case DW_OP_breg24:          // 0x88 1 ULEB128 register
367   case DW_OP_breg25:          // 0x89 1 ULEB128 register
368   case DW_OP_breg26:          // 0x8a 1 ULEB128 register
369   case DW_OP_breg27:          // 0x8b 1 ULEB128 register
370   case DW_OP_breg28:          // 0x8c 1 ULEB128 register
371   case DW_OP_breg29:          // 0x8d 1 ULEB128 register
372   case DW_OP_breg30:          // 0x8e 1 ULEB128 register
373   case DW_OP_breg31:          // 0x8f 1 ULEB128 register
374   case DW_OP_regx:            // 0x90 1 ULEB128 register
375   case DW_OP_fbreg:           // 0x91 1 SLEB128 offset
376   case DW_OP_piece:           // 0x93 1 ULEB128 size of piece addressed
377   case DW_OP_GNU_addr_index:  // 0xfb 1 ULEB128 index
378   case DW_OP_GNU_const_index: // 0xfc 1 ULEB128 index
379     data.Skip_LEB128(&offset);
380     return offset - data_offset;
381 
382   // All opcodes that have a 2 ULEB (signed or unsigned) arguments
383   case DW_OP_bregx:     // 0x92 2 ULEB128 register followed by SLEB128 offset
384   case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
385     data.Skip_LEB128(&offset);
386     data.Skip_LEB128(&offset);
387     return offset - data_offset;
388 
389   case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size
390                              // (DWARF4)
391   {
392     uint64_t block_len = data.Skip_LEB128(&offset);
393     offset += block_len;
394     return offset - data_offset;
395   }
396 
397   case DW_OP_GNU_entry_value:
398   case DW_OP_entry_value: // 0xa3 ULEB128 size + variable-length block
399   {
400     uint64_t subexpr_len = data.GetULEB128(&offset);
401     return (offset - data_offset) + subexpr_len;
402   }
403 
404   default:
405     break;
406   }
407   return LLDB_INVALID_OFFSET;
408 }
409 
410 lldb::addr_t DWARFExpression::GetLocation_DW_OP_addr(uint32_t op_addr_idx,
411                                                      bool &error) const {
412   error = false;
413   if (IsLocationList())
414     return LLDB_INVALID_ADDRESS;
415   lldb::offset_t offset = 0;
416   uint32_t curr_op_addr_idx = 0;
417   while (m_data.ValidOffset(offset)) {
418     const uint8_t op = m_data.GetU8(&offset);
419 
420     if (op == DW_OP_addr) {
421       const lldb::addr_t op_file_addr = m_data.GetAddress(&offset);
422       if (curr_op_addr_idx == op_addr_idx)
423         return op_file_addr;
424       else
425         ++curr_op_addr_idx;
426     } else if (op == DW_OP_GNU_addr_index || op == DW_OP_addrx) {
427       uint64_t index = m_data.GetULEB128(&offset);
428       if (curr_op_addr_idx == op_addr_idx) {
429         if (!m_dwarf_cu) {
430           error = true;
431           break;
432         }
433 
434         return ReadAddressFromDebugAddrSection(m_dwarf_cu, index);
435       } else
436         ++curr_op_addr_idx;
437     } else {
438       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
439       if (op_arg_size == LLDB_INVALID_OFFSET) {
440         error = true;
441         break;
442       }
443       offset += op_arg_size;
444     }
445   }
446   return LLDB_INVALID_ADDRESS;
447 }
448 
449 bool DWARFExpression::Update_DW_OP_addr(lldb::addr_t file_addr) {
450   if (IsLocationList())
451     return false;
452   lldb::offset_t offset = 0;
453   while (m_data.ValidOffset(offset)) {
454     const uint8_t op = m_data.GetU8(&offset);
455 
456     if (op == DW_OP_addr) {
457       const uint32_t addr_byte_size = m_data.GetAddressByteSize();
458       // We have to make a copy of the data as we don't know if this data is
459       // from a read only memory mapped buffer, so we duplicate all of the data
460       // first, then modify it, and if all goes well, we then replace the data
461       // for this expression
462 
463       // Make en encoder that contains a copy of the location expression data
464       // so we can write the address into the buffer using the correct byte
465       // order.
466       DataEncoder encoder(m_data.GetDataStart(), m_data.GetByteSize(),
467                           m_data.GetByteOrder(), addr_byte_size);
468 
469       // Replace the address in the new buffer
470       if (encoder.PutAddress(offset, file_addr) == UINT32_MAX)
471         return false;
472 
473       // All went well, so now we can reset the data using a shared pointer to
474       // the heap data so "m_data" will now correctly manage the heap data.
475       m_data.SetData(encoder.GetDataBuffer());
476       return true;
477     } else {
478       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
479       if (op_arg_size == LLDB_INVALID_OFFSET)
480         break;
481       offset += op_arg_size;
482     }
483   }
484   return false;
485 }
486 
487 bool DWARFExpression::ContainsThreadLocalStorage() const {
488   // We are assuming for now that any thread local variable will not have a
489   // location list. This has been true for all thread local variables we have
490   // seen so far produced by any compiler.
491   if (IsLocationList())
492     return false;
493   lldb::offset_t offset = 0;
494   while (m_data.ValidOffset(offset)) {
495     const uint8_t op = m_data.GetU8(&offset);
496 
497     if (op == DW_OP_form_tls_address || op == DW_OP_GNU_push_tls_address)
498       return true;
499     const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
500     if (op_arg_size == LLDB_INVALID_OFFSET)
501       return false;
502     else
503       offset += op_arg_size;
504   }
505   return false;
506 }
507 bool DWARFExpression::LinkThreadLocalStorage(
508     lldb::ModuleSP new_module_sp,
509     std::function<lldb::addr_t(lldb::addr_t file_addr)> const
510         &link_address_callback) {
511   // We are assuming for now that any thread local variable will not have a
512   // location list. This has been true for all thread local variables we have
513   // seen so far produced by any compiler.
514   if (IsLocationList())
515     return false;
516 
517   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
518   // We have to make a copy of the data as we don't know if this data is from a
519   // read only memory mapped buffer, so we duplicate all of the data first,
520   // then modify it, and if all goes well, we then replace the data for this
521   // expression.
522 
523   // Make en encoder that contains a copy of the location expression data so we
524   // can write the address into the buffer using the correct byte order.
525   DataEncoder encoder(m_data.GetDataStart(), m_data.GetByteSize(),
526                       m_data.GetByteOrder(), addr_byte_size);
527 
528   lldb::offset_t offset = 0;
529   lldb::offset_t const_offset = 0;
530   lldb::addr_t const_value = 0;
531   size_t const_byte_size = 0;
532   while (m_data.ValidOffset(offset)) {
533     const uint8_t op = m_data.GetU8(&offset);
534 
535     bool decoded_data = false;
536     switch (op) {
537     case DW_OP_const4u:
538       // Remember the const offset in case we later have a
539       // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
540       const_offset = offset;
541       const_value = m_data.GetU32(&offset);
542       decoded_data = true;
543       const_byte_size = 4;
544       break;
545 
546     case DW_OP_const8u:
547       // Remember the const offset in case we later have a
548       // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
549       const_offset = offset;
550       const_value = m_data.GetU64(&offset);
551       decoded_data = true;
552       const_byte_size = 8;
553       break;
554 
555     case DW_OP_form_tls_address:
556     case DW_OP_GNU_push_tls_address:
557       // DW_OP_form_tls_address and DW_OP_GNU_push_tls_address must be preceded
558       // by a file address on the stack. We assume that DW_OP_const4u or
559       // DW_OP_const8u is used for these values, and we check that the last
560       // opcode we got before either of these was DW_OP_const4u or
561       // DW_OP_const8u. If so, then we can link the value accodingly. For
562       // Darwin, the value in the DW_OP_const4u or DW_OP_const8u is the file
563       // address of a structure that contains a function pointer, the pthread
564       // key and the offset into the data pointed to by the pthread key. So we
565       // must link this address and also set the module of this expression to
566       // the new_module_sp so we can resolve the file address correctly
567       if (const_byte_size > 0) {
568         lldb::addr_t linked_file_addr = link_address_callback(const_value);
569         if (linked_file_addr == LLDB_INVALID_ADDRESS)
570           return false;
571         // Replace the address in the new buffer
572         if (encoder.PutUnsigned(const_offset, const_byte_size,
573                                 linked_file_addr) == UINT32_MAX)
574           return false;
575       }
576       break;
577 
578     default:
579       const_offset = 0;
580       const_value = 0;
581       const_byte_size = 0;
582       break;
583     }
584 
585     if (!decoded_data) {
586       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
587       if (op_arg_size == LLDB_INVALID_OFFSET)
588         return false;
589       else
590         offset += op_arg_size;
591     }
592   }
593 
594   // If we linked the TLS address correctly, update the module so that when the
595   // expression is evaluated it can resolve the file address to a load address
596   // and read the
597   // TLS data
598   m_module_wp = new_module_sp;
599   m_data.SetData(encoder.GetDataBuffer());
600   return true;
601 }
602 
603 bool DWARFExpression::LocationListContainsAddress(addr_t func_load_addr,
604                                                   lldb::addr_t addr) const {
605   if (func_load_addr == LLDB_INVALID_ADDRESS || addr == LLDB_INVALID_ADDRESS)
606     return false;
607 
608   if (!IsLocationList())
609     return false;
610 
611   return GetLocationExpression(func_load_addr, addr) != llvm::None;
612 }
613 
614 bool DWARFExpression::DumpLocationForAddress(Stream *s,
615                                              lldb::DescriptionLevel level,
616                                              addr_t func_load_addr,
617                                              addr_t address, ABI *abi) {
618   if (!IsLocationList()) {
619     DumpLocation(s, m_data, level, abi);
620     return true;
621   }
622   if (llvm::Optional<DataExtractor> expr =
623           GetLocationExpression(func_load_addr, address)) {
624     DumpLocation(s, *expr, level, abi);
625     return true;
626   }
627   return false;
628 }
629 
630 static bool Evaluate_DW_OP_entry_value(std::vector<Value> &stack,
631                                        ExecutionContext *exe_ctx,
632                                        RegisterContext *reg_ctx,
633                                        const DataExtractor &opcodes,
634                                        lldb::offset_t &opcode_offset,
635                                        Status *error_ptr, Log *log) {
636   // DW_OP_entry_value(sub-expr) describes the location a variable had upon
637   // function entry: this variable location is presumed to be optimized out at
638   // the current PC value.  The caller of the function may have call site
639   // information that describes an alternate location for the variable (e.g. a
640   // constant literal, or a spilled stack value) in the parent frame.
641   //
642   // Example (this is pseudo-code & pseudo-DWARF, but hopefully illustrative):
643   //
644   //     void child(int &sink, int x) {
645   //       ...
646   //       /* "x" gets optimized out. */
647   //
648   //       /* The location of "x" here is: DW_OP_entry_value($reg2). */
649   //       ++sink;
650   //     }
651   //
652   //     void parent() {
653   //       int sink;
654   //
655   //       /*
656   //        * The callsite information emitted here is:
657   //        *
658   //        * DW_TAG_call_site
659   //        *   DW_AT_return_pc ... (for "child(sink, 123);")
660   //        *   DW_TAG_call_site_parameter (for "sink")
661   //        *     DW_AT_location   ($reg1)
662   //        *     DW_AT_call_value ($SP - 8)
663   //        *   DW_TAG_call_site_parameter (for "x")
664   //        *     DW_AT_location   ($reg2)
665   //        *     DW_AT_call_value ($literal 123)
666   //        *
667   //        * DW_TAG_call_site
668   //        *   DW_AT_return_pc ... (for "child(sink, 456);")
669   //        *   ...
670   //        */
671   //       child(sink, 123);
672   //       child(sink, 456);
673   //     }
674   //
675   // When the program stops at "++sink" within `child`, the debugger determines
676   // the call site by analyzing the return address. Once the call site is found,
677   // the debugger determines which parameter is referenced by DW_OP_entry_value
678   // and evaluates the corresponding location for that parameter in `parent`.
679 
680   // 1. Find the function which pushed the current frame onto the stack.
681   if ((!exe_ctx || !exe_ctx->HasTargetScope()) || !reg_ctx) {
682     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no exe/reg context");
683     return false;
684   }
685 
686   StackFrame *current_frame = exe_ctx->GetFramePtr();
687   Thread *thread = exe_ctx->GetThreadPtr();
688   if (!current_frame || !thread) {
689     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current frame/thread");
690     return false;
691   }
692 
693   Target &target = exe_ctx->GetTargetRef();
694   StackFrameSP parent_frame = nullptr;
695   addr_t return_pc = LLDB_INVALID_ADDRESS;
696   uint32_t current_frame_idx = current_frame->GetFrameIndex();
697   uint32_t num_frames = thread->GetStackFrameCount();
698   for (uint32_t parent_frame_idx = current_frame_idx + 1;
699        parent_frame_idx < num_frames; ++parent_frame_idx) {
700     parent_frame = thread->GetStackFrameAtIndex(parent_frame_idx);
701     // Require a valid sequence of frames.
702     if (!parent_frame)
703       break;
704 
705     // Record the first valid return address, even if this is an inlined frame,
706     // in order to look up the associated call edge in the first non-inlined
707     // parent frame.
708     if (return_pc == LLDB_INVALID_ADDRESS) {
709       return_pc = parent_frame->GetFrameCodeAddress().GetLoadAddress(&target);
710       LLDB_LOG(log,
711                "Evaluate_DW_OP_entry_value: immediate ancestor with pc = {0:x}",
712                return_pc);
713     }
714 
715     // If we've found an inlined frame, skip it (these have no call site
716     // parameters).
717     if (parent_frame->IsInlined())
718       continue;
719 
720     // We've found the first non-inlined parent frame.
721     break;
722   }
723   if (!parent_frame || !parent_frame->GetRegisterContext()) {
724     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent frame with reg ctx");
725     return false;
726   }
727 
728   Function *parent_func =
729       parent_frame->GetSymbolContext(eSymbolContextFunction).function;
730   if (!parent_func) {
731     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent function");
732     return false;
733   }
734 
735   // 2. Find the call edge in the parent function responsible for creating the
736   //    current activation.
737   Function *current_func =
738       current_frame->GetSymbolContext(eSymbolContextFunction).function;
739   if (!current_func) {
740     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current function");
741     return false;
742   }
743 
744   CallEdge *call_edge = nullptr;
745   ModuleList &modlist = target.GetImages();
746   ExecutionContext parent_exe_ctx = *exe_ctx;
747   parent_exe_ctx.SetFrameSP(parent_frame);
748   if (!parent_frame->IsArtificial()) {
749     // If the parent frame is not artificial, the current activation may be
750     // produced by an ambiguous tail call. In this case, refuse to proceed.
751     call_edge = parent_func->GetCallEdgeForReturnAddress(return_pc, target);
752     if (!call_edge) {
753       LLDB_LOG(log,
754                "Evaluate_DW_OP_entry_value: no call edge for retn-pc = {0:x} "
755                "in parent frame {1}",
756                return_pc, parent_func->GetName());
757       return false;
758     }
759     Function *callee_func = call_edge->GetCallee(modlist, parent_exe_ctx);
760     if (callee_func != current_func) {
761       LLDB_LOG(log, "Evaluate_DW_OP_entry_value: ambiguous call sequence, "
762                     "can't find real parent frame");
763       return false;
764     }
765   } else {
766     // The StackFrameList solver machinery has deduced that an unambiguous tail
767     // call sequence that produced the current activation.  The first edge in
768     // the parent that points to the current function must be valid.
769     for (auto &edge : parent_func->GetTailCallingEdges()) {
770       if (edge->GetCallee(modlist, parent_exe_ctx) == current_func) {
771         call_edge = edge.get();
772         break;
773       }
774     }
775   }
776   if (!call_edge) {
777     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no unambiguous edge from parent "
778                   "to current function");
779     return false;
780   }
781 
782   // 3. Attempt to locate the DW_OP_entry_value expression in the set of
783   //    available call site parameters. If found, evaluate the corresponding
784   //    parameter in the context of the parent frame.
785   const uint32_t subexpr_len = opcodes.GetULEB128(&opcode_offset);
786   const void *subexpr_data = opcodes.GetData(&opcode_offset, subexpr_len);
787   if (!subexpr_data) {
788     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: subexpr could not be read");
789     return false;
790   }
791 
792   const CallSiteParameter *matched_param = nullptr;
793   for (const CallSiteParameter &param : call_edge->GetCallSiteParameters()) {
794     DataExtractor param_subexpr_extractor;
795     if (!param.LocationInCallee.GetExpressionData(param_subexpr_extractor))
796       continue;
797     lldb::offset_t param_subexpr_offset = 0;
798     const void *param_subexpr_data =
799         param_subexpr_extractor.GetData(&param_subexpr_offset, subexpr_len);
800     if (!param_subexpr_data ||
801         param_subexpr_extractor.BytesLeft(param_subexpr_offset) != 0)
802       continue;
803 
804     // At this point, the DW_OP_entry_value sub-expression and the callee-side
805     // expression in the call site parameter are known to have the same length.
806     // Check whether they are equal.
807     //
808     // Note that an equality check is sufficient: the contents of the
809     // DW_OP_entry_value subexpression are only used to identify the right call
810     // site parameter in the parent, and do not require any special handling.
811     if (memcmp(subexpr_data, param_subexpr_data, subexpr_len) == 0) {
812       matched_param = &param;
813       break;
814     }
815   }
816   if (!matched_param) {
817     LLDB_LOG(log,
818              "Evaluate_DW_OP_entry_value: no matching call site param found");
819     return false;
820   }
821 
822   // TODO: Add support for DW_OP_push_object_address within a DW_OP_entry_value
823   // subexpresion whenever llvm does.
824   Value result;
825   const DWARFExpression &param_expr = matched_param->LocationInCaller;
826   if (!param_expr.Evaluate(&parent_exe_ctx,
827                            parent_frame->GetRegisterContext().get(),
828                            /*loclist_base_load_addr=*/LLDB_INVALID_ADDRESS,
829                            /*initial_value_ptr=*/nullptr,
830                            /*object_address_ptr=*/nullptr, result, error_ptr)) {
831     LLDB_LOG(log,
832              "Evaluate_DW_OP_entry_value: call site param evaluation failed");
833     return false;
834   }
835 
836   stack.push_back(result);
837   return true;
838 }
839 
840 bool DWARFExpression::Evaluate(ExecutionContextScope *exe_scope,
841                                lldb::addr_t loclist_base_load_addr,
842                                const Value *initial_value_ptr,
843                                const Value *object_address_ptr, Value &result,
844                                Status *error_ptr) const {
845   ExecutionContext exe_ctx(exe_scope);
846   return Evaluate(&exe_ctx, nullptr, loclist_base_load_addr, initial_value_ptr,
847                   object_address_ptr, result, error_ptr);
848 }
849 
850 bool DWARFExpression::Evaluate(ExecutionContext *exe_ctx,
851                                RegisterContext *reg_ctx,
852                                lldb::addr_t func_load_addr,
853                                const Value *initial_value_ptr,
854                                const Value *object_address_ptr, Value &result,
855                                Status *error_ptr) const {
856   ModuleSP module_sp = m_module_wp.lock();
857 
858   if (IsLocationList()) {
859     addr_t pc;
860     StackFrame *frame = nullptr;
861     if (reg_ctx)
862       pc = reg_ctx->GetPC();
863     else {
864       frame = exe_ctx->GetFramePtr();
865       if (!frame)
866         return false;
867       RegisterContextSP reg_ctx_sp = frame->GetRegisterContext();
868       if (!reg_ctx_sp)
869         return false;
870       pc = reg_ctx_sp->GetPC();
871     }
872 
873     if (func_load_addr != LLDB_INVALID_ADDRESS) {
874       if (pc == LLDB_INVALID_ADDRESS) {
875         if (error_ptr)
876           error_ptr->SetErrorString("Invalid PC in frame.");
877         return false;
878       }
879 
880       if (llvm::Optional<DataExtractor> expr =
881               GetLocationExpression(func_load_addr, pc)) {
882         return DWARFExpression::Evaluate(
883             exe_ctx, reg_ctx, module_sp, *expr, m_dwarf_cu, m_reg_kind,
884             initial_value_ptr, object_address_ptr, result, error_ptr);
885       }
886     }
887     if (error_ptr)
888       error_ptr->SetErrorString("variable not available");
889     return false;
890   }
891 
892   // Not a location list, just a single expression.
893   return DWARFExpression::Evaluate(exe_ctx, reg_ctx, module_sp, m_data,
894                                    m_dwarf_cu, m_reg_kind, initial_value_ptr,
895                                    object_address_ptr, result, error_ptr);
896 }
897 
898 namespace {
899 /// The location description kinds described by the DWARF v5
900 /// specification.  Composite locations are handled out-of-band and
901 /// thus aren't part of the enum.
902 enum LocationDescriptionKind {
903   Empty,
904   Memory,
905   Register,
906   Implicit
907   /* Composite*/
908 };
909 /// Adjust value's ValueType according to the kind of location description.
910 void UpdateValueTypeFromLocationDescription(Log *log, const DWARFUnit *dwarf_cu,
911                                             LocationDescriptionKind kind,
912                                             Value *value = nullptr) {
913   // Note that this function is conflating DWARF expressions with
914   // DWARF location descriptions. Perhaps it would be better to define
915   // a wrapper for DWARFExpresssion::Eval() that deals with DWARF
916   // location descriptions (which consist of one or more DWARF
917   // expressions). But doing this would mean we'd also need factor the
918   // handling of DW_OP_(bit_)piece out of this function.
919   if (dwarf_cu && dwarf_cu->GetVersion() >= 4) {
920     const char *log_msg = "DWARF location description kind: %s";
921     switch (kind) {
922     case Empty:
923       LLDB_LOGF(log, log_msg, "Empty");
924       break;
925     case Memory:
926       LLDB_LOGF(log, log_msg, "Memory");
927       if (value->GetValueType() == Value::ValueType::Scalar)
928         value->SetValueType(Value::ValueType::LoadAddress);
929       break;
930     case Register:
931       LLDB_LOGF(log, log_msg, "Register");
932       value->SetValueType(Value::ValueType::Scalar);
933       break;
934     case Implicit:
935       LLDB_LOGF(log, log_msg, "Implicit");
936       if (value->GetValueType() == Value::ValueType::LoadAddress)
937         value->SetValueType(Value::ValueType::Scalar);
938       break;
939     }
940   }
941 }
942 } // namespace
943 
944 bool DWARFExpression::Evaluate(
945     ExecutionContext *exe_ctx, RegisterContext *reg_ctx,
946     lldb::ModuleSP module_sp, const DataExtractor &opcodes,
947     const DWARFUnit *dwarf_cu, const lldb::RegisterKind reg_kind,
948     const Value *initial_value_ptr, const Value *object_address_ptr,
949     Value &result, Status *error_ptr) {
950 
951   if (opcodes.GetByteSize() == 0) {
952     if (error_ptr)
953       error_ptr->SetErrorString(
954           "no location, value may have been optimized out");
955     return false;
956   }
957   std::vector<Value> stack;
958 
959   Process *process = nullptr;
960   StackFrame *frame = nullptr;
961 
962   if (exe_ctx) {
963     process = exe_ctx->GetProcessPtr();
964     frame = exe_ctx->GetFramePtr();
965   }
966   if (reg_ctx == nullptr && frame)
967     reg_ctx = frame->GetRegisterContext().get();
968 
969   if (initial_value_ptr)
970     stack.push_back(*initial_value_ptr);
971 
972   lldb::offset_t offset = 0;
973   Value tmp;
974   uint32_t reg_num;
975 
976   /// Insertion point for evaluating multi-piece expression.
977   uint64_t op_piece_offset = 0;
978   Value pieces; // Used for DW_OP_piece
979 
980   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
981   // A generic type is "an integral type that has the size of an address and an
982   // unspecified signedness". For now, just use the signedness of the operand.
983   // TODO: Implement a real typed stack, and store the genericness of the value
984   // there.
985   auto to_generic = [&](auto v) {
986     bool is_signed = std::is_signed<decltype(v)>::value;
987     return Scalar(llvm::APSInt(
988         llvm::APInt(8 * opcodes.GetAddressByteSize(), v, is_signed),
989         !is_signed));
990   };
991 
992   // The default kind is a memory location. This is updated by any
993   // operation that changes this, such as DW_OP_stack_value, and reset
994   // by composition operations like DW_OP_piece.
995   LocationDescriptionKind dwarf4_location_description_kind = Memory;
996 
997   while (opcodes.ValidOffset(offset)) {
998     const lldb::offset_t op_offset = offset;
999     const uint8_t op = opcodes.GetU8(&offset);
1000 
1001     if (log && log->GetVerbose()) {
1002       size_t count = stack.size();
1003       LLDB_LOGF(log, "Stack before operation has %" PRIu64 " values:",
1004                 (uint64_t)count);
1005       for (size_t i = 0; i < count; ++i) {
1006         StreamString new_value;
1007         new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
1008         stack[i].Dump(&new_value);
1009         LLDB_LOGF(log, "  %s", new_value.GetData());
1010       }
1011       LLDB_LOGF(log, "0x%8.8" PRIx64 ": %s", op_offset,
1012                 DW_OP_value_to_name(op));
1013     }
1014 
1015     switch (op) {
1016     // The DW_OP_addr operation has a single operand that encodes a machine
1017     // address and whose size is the size of an address on the target machine.
1018     case DW_OP_addr:
1019       stack.push_back(Scalar(opcodes.GetAddress(&offset)));
1020       stack.back().SetValueType(Value::ValueType::FileAddress);
1021       // Convert the file address to a load address, so subsequent
1022       // DWARF operators can operate on it.
1023       if (frame)
1024         stack.back().ConvertToLoadAddress(module_sp.get(),
1025                                           frame->CalculateTarget().get());
1026       break;
1027 
1028     // The DW_OP_addr_sect_offset4 is used for any location expressions in
1029     // shared libraries that have a location like:
1030     //  DW_OP_addr(0x1000)
1031     // If this address resides in a shared library, then this virtual address
1032     // won't make sense when it is evaluated in the context of a running
1033     // process where shared libraries have been slid. To account for this, this
1034     // new address type where we can store the section pointer and a 4 byte
1035     // offset.
1036     //      case DW_OP_addr_sect_offset4:
1037     //          {
1038     //              result_type = eResultTypeFileAddress;
1039     //              lldb::Section *sect = (lldb::Section
1040     //              *)opcodes.GetMaxU64(&offset, sizeof(void *));
1041     //              lldb::addr_t sect_offset = opcodes.GetU32(&offset);
1042     //
1043     //              Address so_addr (sect, sect_offset);
1044     //              lldb::addr_t load_addr = so_addr.GetLoadAddress();
1045     //              if (load_addr != LLDB_INVALID_ADDRESS)
1046     //              {
1047     //                  // We successfully resolve a file address to a load
1048     //                  // address.
1049     //                  stack.push_back(load_addr);
1050     //                  break;
1051     //              }
1052     //              else
1053     //              {
1054     //                  // We were able
1055     //                  if (error_ptr)
1056     //                      error_ptr->SetErrorStringWithFormat ("Section %s in
1057     //                      %s is not currently loaded.\n",
1058     //                      sect->GetName().AsCString(),
1059     //                      sect->GetModule()->GetFileSpec().GetFilename().AsCString());
1060     //                  return false;
1061     //              }
1062     //          }
1063     //          break;
1064 
1065     // OPCODE: DW_OP_deref
1066     // OPERANDS: none
1067     // DESCRIPTION: Pops the top stack entry and treats it as an address.
1068     // The value retrieved from that address is pushed. The size of the data
1069     // retrieved from the dereferenced address is the size of an address on the
1070     // target machine.
1071     case DW_OP_deref: {
1072       if (stack.empty()) {
1073         if (error_ptr)
1074           error_ptr->SetErrorString("Expression stack empty for DW_OP_deref.");
1075         return false;
1076       }
1077       Value::ValueType value_type = stack.back().GetValueType();
1078       switch (value_type) {
1079       case Value::ValueType::HostAddress: {
1080         void *src = (void *)stack.back().GetScalar().ULongLong();
1081         intptr_t ptr;
1082         ::memcpy(&ptr, src, sizeof(void *));
1083         stack.back().GetScalar() = ptr;
1084         stack.back().ClearContext();
1085       } break;
1086       case Value::ValueType::FileAddress: {
1087         auto file_addr = stack.back().GetScalar().ULongLong(
1088             LLDB_INVALID_ADDRESS);
1089         if (!module_sp) {
1090           if (error_ptr)
1091             error_ptr->SetErrorString(
1092                 "need module to resolve file address for DW_OP_deref");
1093           return false;
1094         }
1095         Address so_addr;
1096         if (!module_sp->ResolveFileAddress(file_addr, so_addr)) {
1097           if (error_ptr)
1098             error_ptr->SetErrorString(
1099                 "failed to resolve file address in module");
1100           return false;
1101         }
1102         addr_t load_Addr = so_addr.GetLoadAddress(exe_ctx->GetTargetPtr());
1103         if (load_Addr == LLDB_INVALID_ADDRESS) {
1104           if (error_ptr)
1105             error_ptr->SetErrorString("failed to resolve load address");
1106           return false;
1107         }
1108         stack.back().GetScalar() = load_Addr;
1109         // Fall through to load address promotion code below.
1110       } LLVM_FALLTHROUGH;
1111       case Value::ValueType::Scalar:
1112         // Promote Scalar to LoadAddress and fall through.
1113         stack.back().SetValueType(Value::ValueType::LoadAddress);
1114         LLVM_FALLTHROUGH;
1115       case Value::ValueType::LoadAddress:
1116         if (exe_ctx) {
1117           if (process) {
1118             lldb::addr_t pointer_addr =
1119                 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1120             Status error;
1121             lldb::addr_t pointer_value =
1122                 process->ReadPointerFromMemory(pointer_addr, error);
1123             if (pointer_value != LLDB_INVALID_ADDRESS) {
1124               if (ABISP abi_sp = process->GetABI())
1125                 pointer_value = abi_sp->FixCodeAddress(pointer_value);
1126               stack.back().GetScalar() = pointer_value;
1127               stack.back().ClearContext();
1128             } else {
1129               if (error_ptr)
1130                 error_ptr->SetErrorStringWithFormat(
1131                     "Failed to dereference pointer from 0x%" PRIx64
1132                     " for DW_OP_deref: %s\n",
1133                     pointer_addr, error.AsCString());
1134               return false;
1135             }
1136           } else {
1137             if (error_ptr)
1138               error_ptr->SetErrorString("NULL process for DW_OP_deref.\n");
1139             return false;
1140           }
1141         } else {
1142           if (error_ptr)
1143             error_ptr->SetErrorString(
1144                 "NULL execution context for DW_OP_deref.\n");
1145           return false;
1146         }
1147         break;
1148 
1149       case Value::ValueType::Invalid:
1150         if (error_ptr)
1151           error_ptr->SetErrorString("Invalid value type for DW_OP_deref.\n");
1152         return false;
1153       }
1154 
1155     } break;
1156 
1157     // OPCODE: DW_OP_deref_size
1158     // OPERANDS: 1
1159     //  1 - uint8_t that specifies the size of the data to dereference.
1160     // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top
1161     // stack entry and treats it as an address. The value retrieved from that
1162     // address is pushed. In the DW_OP_deref_size operation, however, the size
1163     // in bytes of the data retrieved from the dereferenced address is
1164     // specified by the single operand. This operand is a 1-byte unsigned
1165     // integral constant whose value may not be larger than the size of an
1166     // address on the target machine. The data retrieved is zero extended to
1167     // the size of an address on the target machine before being pushed on the
1168     // expression stack.
1169     case DW_OP_deref_size: {
1170       if (stack.empty()) {
1171         if (error_ptr)
1172           error_ptr->SetErrorString(
1173               "Expression stack empty for DW_OP_deref_size.");
1174         return false;
1175       }
1176       uint8_t size = opcodes.GetU8(&offset);
1177       Value::ValueType value_type = stack.back().GetValueType();
1178       switch (value_type) {
1179       case Value::ValueType::HostAddress: {
1180         void *src = (void *)stack.back().GetScalar().ULongLong();
1181         intptr_t ptr;
1182         ::memcpy(&ptr, src, sizeof(void *));
1183         // I can't decide whether the size operand should apply to the bytes in
1184         // their
1185         // lldb-host endianness or the target endianness.. I doubt this'll ever
1186         // come up but I'll opt for assuming big endian regardless.
1187         switch (size) {
1188         case 1:
1189           ptr = ptr & 0xff;
1190           break;
1191         case 2:
1192           ptr = ptr & 0xffff;
1193           break;
1194         case 3:
1195           ptr = ptr & 0xffffff;
1196           break;
1197         case 4:
1198           ptr = ptr & 0xffffffff;
1199           break;
1200         // the casts are added to work around the case where intptr_t is a 32
1201         // bit quantity;
1202         // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this
1203         // program.
1204         case 5:
1205           ptr = (intptr_t)ptr & 0xffffffffffULL;
1206           break;
1207         case 6:
1208           ptr = (intptr_t)ptr & 0xffffffffffffULL;
1209           break;
1210         case 7:
1211           ptr = (intptr_t)ptr & 0xffffffffffffffULL;
1212           break;
1213         default:
1214           break;
1215         }
1216         stack.back().GetScalar() = ptr;
1217         stack.back().ClearContext();
1218       } break;
1219       case Value::ValueType::Scalar:
1220       case Value::ValueType::LoadAddress:
1221         if (exe_ctx) {
1222           if (process) {
1223             lldb::addr_t pointer_addr =
1224                 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1225             uint8_t addr_bytes[sizeof(lldb::addr_t)];
1226             Status error;
1227             if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) ==
1228                 size) {
1229               DataExtractor addr_data(addr_bytes, sizeof(addr_bytes),
1230                                       process->GetByteOrder(), size);
1231               lldb::offset_t addr_data_offset = 0;
1232               switch (size) {
1233               case 1:
1234                 stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset);
1235                 break;
1236               case 2:
1237                 stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset);
1238                 break;
1239               case 4:
1240                 stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset);
1241                 break;
1242               case 8:
1243                 stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset);
1244                 break;
1245               default:
1246                 stack.back().GetScalar() =
1247                     addr_data.GetAddress(&addr_data_offset);
1248               }
1249               stack.back().ClearContext();
1250             } else {
1251               if (error_ptr)
1252                 error_ptr->SetErrorStringWithFormat(
1253                     "Failed to dereference pointer from 0x%" PRIx64
1254                     " for DW_OP_deref: %s\n",
1255                     pointer_addr, error.AsCString());
1256               return false;
1257             }
1258           } else {
1259             if (error_ptr)
1260               error_ptr->SetErrorString("NULL process for DW_OP_deref_size.\n");
1261             return false;
1262           }
1263         } else {
1264           if (error_ptr)
1265             error_ptr->SetErrorString(
1266                 "NULL execution context for DW_OP_deref_size.\n");
1267           return false;
1268         }
1269         break;
1270 
1271       case Value::ValueType::FileAddress:
1272       case Value::ValueType::Invalid:
1273         if (error_ptr)
1274           error_ptr->SetErrorString("Invalid value for DW_OP_deref_size.\n");
1275         return false;
1276       }
1277 
1278     } break;
1279 
1280     // OPCODE: DW_OP_xderef_size
1281     // OPERANDS: 1
1282     //  1 - uint8_t that specifies the size of the data to dereference.
1283     // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at
1284     // the top of the stack is treated as an address. The second stack entry is
1285     // treated as an "address space identifier" for those architectures that
1286     // support multiple address spaces. The top two stack elements are popped,
1287     // a data item is retrieved through an implementation-defined address
1288     // calculation and pushed as the new stack top. In the DW_OP_xderef_size
1289     // operation, however, the size in bytes of the data retrieved from the
1290     // dereferenced address is specified by the single operand. This operand is
1291     // a 1-byte unsigned integral constant whose value may not be larger than
1292     // the size of an address on the target machine. The data retrieved is zero
1293     // extended to the size of an address on the target machine before being
1294     // pushed on the expression stack.
1295     case DW_OP_xderef_size:
1296       if (error_ptr)
1297         error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size.");
1298       return false;
1299     // OPCODE: DW_OP_xderef
1300     // OPERANDS: none
1301     // DESCRIPTION: Provides an extended dereference mechanism. The entry at
1302     // the top of the stack is treated as an address. The second stack entry is
1303     // treated as an "address space identifier" for those architectures that
1304     // support multiple address spaces. The top two stack elements are popped,
1305     // a data item is retrieved through an implementation-defined address
1306     // calculation and pushed as the new stack top. The size of the data
1307     // retrieved from the dereferenced address is the size of an address on the
1308     // target machine.
1309     case DW_OP_xderef:
1310       if (error_ptr)
1311         error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef.");
1312       return false;
1313 
1314     // All DW_OP_constXXX opcodes have a single operand as noted below:
1315     //
1316     // Opcode           Operand 1
1317     // DW_OP_const1u    1-byte unsigned integer constant
1318     // DW_OP_const1s    1-byte signed integer constant
1319     // DW_OP_const2u    2-byte unsigned integer constant
1320     // DW_OP_const2s    2-byte signed integer constant
1321     // DW_OP_const4u    4-byte unsigned integer constant
1322     // DW_OP_const4s    4-byte signed integer constant
1323     // DW_OP_const8u    8-byte unsigned integer constant
1324     // DW_OP_const8s    8-byte signed integer constant
1325     // DW_OP_constu     unsigned LEB128 integer constant
1326     // DW_OP_consts     signed LEB128 integer constant
1327     case DW_OP_const1u:
1328       stack.push_back(to_generic(opcodes.GetU8(&offset)));
1329       break;
1330     case DW_OP_const1s:
1331       stack.push_back(to_generic((int8_t)opcodes.GetU8(&offset)));
1332       break;
1333     case DW_OP_const2u:
1334       stack.push_back(to_generic(opcodes.GetU16(&offset)));
1335       break;
1336     case DW_OP_const2s:
1337       stack.push_back(to_generic((int16_t)opcodes.GetU16(&offset)));
1338       break;
1339     case DW_OP_const4u:
1340       stack.push_back(to_generic(opcodes.GetU32(&offset)));
1341       break;
1342     case DW_OP_const4s:
1343       stack.push_back(to_generic((int32_t)opcodes.GetU32(&offset)));
1344       break;
1345     case DW_OP_const8u:
1346       stack.push_back(to_generic(opcodes.GetU64(&offset)));
1347       break;
1348     case DW_OP_const8s:
1349       stack.push_back(to_generic((int64_t)opcodes.GetU64(&offset)));
1350       break;
1351     // These should also use to_generic, but we can't do that due to a
1352     // producer-side bug in llvm. See llvm.org/pr48087.
1353     case DW_OP_constu:
1354       stack.push_back(Scalar(opcodes.GetULEB128(&offset)));
1355       break;
1356     case DW_OP_consts:
1357       stack.push_back(Scalar(opcodes.GetSLEB128(&offset)));
1358       break;
1359 
1360     // OPCODE: DW_OP_dup
1361     // OPERANDS: none
1362     // DESCRIPTION: duplicates the value at the top of the stack
1363     case DW_OP_dup:
1364       if (stack.empty()) {
1365         if (error_ptr)
1366           error_ptr->SetErrorString("Expression stack empty for DW_OP_dup.");
1367         return false;
1368       } else
1369         stack.push_back(stack.back());
1370       break;
1371 
1372     // OPCODE: DW_OP_drop
1373     // OPERANDS: none
1374     // DESCRIPTION: pops the value at the top of the stack
1375     case DW_OP_drop:
1376       if (stack.empty()) {
1377         if (error_ptr)
1378           error_ptr->SetErrorString("Expression stack empty for DW_OP_drop.");
1379         return false;
1380       } else
1381         stack.pop_back();
1382       break;
1383 
1384     // OPCODE: DW_OP_over
1385     // OPERANDS: none
1386     // DESCRIPTION: Duplicates the entry currently second in the stack at
1387     // the top of the stack.
1388     case DW_OP_over:
1389       if (stack.size() < 2) {
1390         if (error_ptr)
1391           error_ptr->SetErrorString(
1392               "Expression stack needs at least 2 items for DW_OP_over.");
1393         return false;
1394       } else
1395         stack.push_back(stack[stack.size() - 2]);
1396       break;
1397 
1398     // OPCODE: DW_OP_pick
1399     // OPERANDS: uint8_t index into the current stack
1400     // DESCRIPTION: The stack entry with the specified index (0 through 255,
1401     // inclusive) is pushed on the stack
1402     case DW_OP_pick: {
1403       uint8_t pick_idx = opcodes.GetU8(&offset);
1404       if (pick_idx < stack.size())
1405         stack.push_back(stack[stack.size() - 1 - pick_idx]);
1406       else {
1407         if (error_ptr)
1408           error_ptr->SetErrorStringWithFormat(
1409               "Index %u out of range for DW_OP_pick.\n", pick_idx);
1410         return false;
1411       }
1412     } break;
1413 
1414     // OPCODE: DW_OP_swap
1415     // OPERANDS: none
1416     // DESCRIPTION: swaps the top two stack entries. The entry at the top
1417     // of the stack becomes the second stack entry, and the second entry
1418     // becomes the top of the stack
1419     case DW_OP_swap:
1420       if (stack.size() < 2) {
1421         if (error_ptr)
1422           error_ptr->SetErrorString(
1423               "Expression stack needs at least 2 items for DW_OP_swap.");
1424         return false;
1425       } else {
1426         tmp = stack.back();
1427         stack.back() = stack[stack.size() - 2];
1428         stack[stack.size() - 2] = tmp;
1429       }
1430       break;
1431 
1432     // OPCODE: DW_OP_rot
1433     // OPERANDS: none
1434     // DESCRIPTION: Rotates the first three stack entries. The entry at
1435     // the top of the stack becomes the third stack entry, the second entry
1436     // becomes the top of the stack, and the third entry becomes the second
1437     // entry.
1438     case DW_OP_rot:
1439       if (stack.size() < 3) {
1440         if (error_ptr)
1441           error_ptr->SetErrorString(
1442               "Expression stack needs at least 3 items for DW_OP_rot.");
1443         return false;
1444       } else {
1445         size_t last_idx = stack.size() - 1;
1446         Value old_top = stack[last_idx];
1447         stack[last_idx] = stack[last_idx - 1];
1448         stack[last_idx - 1] = stack[last_idx - 2];
1449         stack[last_idx - 2] = old_top;
1450       }
1451       break;
1452 
1453     // OPCODE: DW_OP_abs
1454     // OPERANDS: none
1455     // DESCRIPTION: pops the top stack entry, interprets it as a signed
1456     // value and pushes its absolute value. If the absolute value can not be
1457     // represented, the result is undefined.
1458     case DW_OP_abs:
1459       if (stack.empty()) {
1460         if (error_ptr)
1461           error_ptr->SetErrorString(
1462               "Expression stack needs at least 1 item for DW_OP_abs.");
1463         return false;
1464       } else if (!stack.back().ResolveValue(exe_ctx).AbsoluteValue()) {
1465         if (error_ptr)
1466           error_ptr->SetErrorString(
1467               "Failed to take the absolute value of the first stack item.");
1468         return false;
1469       }
1470       break;
1471 
1472     // OPCODE: DW_OP_and
1473     // OPERANDS: none
1474     // DESCRIPTION: pops the top two stack values, performs a bitwise and
1475     // operation on the two, and pushes the result.
1476     case DW_OP_and:
1477       if (stack.size() < 2) {
1478         if (error_ptr)
1479           error_ptr->SetErrorString(
1480               "Expression stack needs at least 2 items for DW_OP_and.");
1481         return false;
1482       } else {
1483         tmp = stack.back();
1484         stack.pop_back();
1485         stack.back().ResolveValue(exe_ctx) =
1486             stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx);
1487       }
1488       break;
1489 
1490     // OPCODE: DW_OP_div
1491     // OPERANDS: none
1492     // DESCRIPTION: pops the top two stack values, divides the former second
1493     // entry by the former top of the stack using signed division, and pushes
1494     // the result.
1495     case DW_OP_div:
1496       if (stack.size() < 2) {
1497         if (error_ptr)
1498           error_ptr->SetErrorString(
1499               "Expression stack needs at least 2 items for DW_OP_div.");
1500         return false;
1501       } else {
1502         tmp = stack.back();
1503         if (tmp.ResolveValue(exe_ctx).IsZero()) {
1504           if (error_ptr)
1505             error_ptr->SetErrorString("Divide by zero.");
1506           return false;
1507         } else {
1508           stack.pop_back();
1509           stack.back() =
1510               stack.back().ResolveValue(exe_ctx) / tmp.ResolveValue(exe_ctx);
1511           if (!stack.back().ResolveValue(exe_ctx).IsValid()) {
1512             if (error_ptr)
1513               error_ptr->SetErrorString("Divide failed.");
1514             return false;
1515           }
1516         }
1517       }
1518       break;
1519 
1520     // OPCODE: DW_OP_minus
1521     // OPERANDS: none
1522     // DESCRIPTION: pops the top two stack values, subtracts the former top
1523     // of the stack from the former second entry, and pushes the result.
1524     case DW_OP_minus:
1525       if (stack.size() < 2) {
1526         if (error_ptr)
1527           error_ptr->SetErrorString(
1528               "Expression stack needs at least 2 items for DW_OP_minus.");
1529         return false;
1530       } else {
1531         tmp = stack.back();
1532         stack.pop_back();
1533         stack.back().ResolveValue(exe_ctx) =
1534             stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx);
1535       }
1536       break;
1537 
1538     // OPCODE: DW_OP_mod
1539     // OPERANDS: none
1540     // DESCRIPTION: pops the top two stack values and pushes the result of
1541     // the calculation: former second stack entry modulo the former top of the
1542     // stack.
1543     case DW_OP_mod:
1544       if (stack.size() < 2) {
1545         if (error_ptr)
1546           error_ptr->SetErrorString(
1547               "Expression stack needs at least 2 items for DW_OP_mod.");
1548         return false;
1549       } else {
1550         tmp = stack.back();
1551         stack.pop_back();
1552         stack.back().ResolveValue(exe_ctx) =
1553             stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx);
1554       }
1555       break;
1556 
1557     // OPCODE: DW_OP_mul
1558     // OPERANDS: none
1559     // DESCRIPTION: pops the top two stack entries, multiplies them
1560     // together, and pushes the result.
1561     case DW_OP_mul:
1562       if (stack.size() < 2) {
1563         if (error_ptr)
1564           error_ptr->SetErrorString(
1565               "Expression stack needs at least 2 items for DW_OP_mul.");
1566         return false;
1567       } else {
1568         tmp = stack.back();
1569         stack.pop_back();
1570         stack.back().ResolveValue(exe_ctx) =
1571             stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx);
1572       }
1573       break;
1574 
1575     // OPCODE: DW_OP_neg
1576     // OPERANDS: none
1577     // DESCRIPTION: pops the top stack entry, and pushes its negation.
1578     case DW_OP_neg:
1579       if (stack.empty()) {
1580         if (error_ptr)
1581           error_ptr->SetErrorString(
1582               "Expression stack needs at least 1 item for DW_OP_neg.");
1583         return false;
1584       } else {
1585         if (!stack.back().ResolveValue(exe_ctx).UnaryNegate()) {
1586           if (error_ptr)
1587             error_ptr->SetErrorString("Unary negate failed.");
1588           return false;
1589         }
1590       }
1591       break;
1592 
1593     // OPCODE: DW_OP_not
1594     // OPERANDS: none
1595     // DESCRIPTION: pops the top stack entry, and pushes its bitwise
1596     // complement
1597     case DW_OP_not:
1598       if (stack.empty()) {
1599         if (error_ptr)
1600           error_ptr->SetErrorString(
1601               "Expression stack needs at least 1 item for DW_OP_not.");
1602         return false;
1603       } else {
1604         if (!stack.back().ResolveValue(exe_ctx).OnesComplement()) {
1605           if (error_ptr)
1606             error_ptr->SetErrorString("Logical NOT failed.");
1607           return false;
1608         }
1609       }
1610       break;
1611 
1612     // OPCODE: DW_OP_or
1613     // OPERANDS: none
1614     // DESCRIPTION: pops the top two stack entries, performs a bitwise or
1615     // operation on the two, and pushes the result.
1616     case DW_OP_or:
1617       if (stack.size() < 2) {
1618         if (error_ptr)
1619           error_ptr->SetErrorString(
1620               "Expression stack needs at least 2 items for DW_OP_or.");
1621         return false;
1622       } else {
1623         tmp = stack.back();
1624         stack.pop_back();
1625         stack.back().ResolveValue(exe_ctx) =
1626             stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx);
1627       }
1628       break;
1629 
1630     // OPCODE: DW_OP_plus
1631     // OPERANDS: none
1632     // DESCRIPTION: pops the top two stack entries, adds them together, and
1633     // pushes the result.
1634     case DW_OP_plus:
1635       if (stack.size() < 2) {
1636         if (error_ptr)
1637           error_ptr->SetErrorString(
1638               "Expression stack needs at least 2 items for DW_OP_plus.");
1639         return false;
1640       } else {
1641         tmp = stack.back();
1642         stack.pop_back();
1643         stack.back().GetScalar() += tmp.GetScalar();
1644       }
1645       break;
1646 
1647     // OPCODE: DW_OP_plus_uconst
1648     // OPERANDS: none
1649     // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128
1650     // constant operand and pushes the result.
1651     case DW_OP_plus_uconst:
1652       if (stack.empty()) {
1653         if (error_ptr)
1654           error_ptr->SetErrorString(
1655               "Expression stack needs at least 1 item for DW_OP_plus_uconst.");
1656         return false;
1657       } else {
1658         const uint64_t uconst_value = opcodes.GetULEB128(&offset);
1659         // Implicit conversion from a UINT to a Scalar...
1660         stack.back().GetScalar() += uconst_value;
1661         if (!stack.back().GetScalar().IsValid()) {
1662           if (error_ptr)
1663             error_ptr->SetErrorString("DW_OP_plus_uconst failed.");
1664           return false;
1665         }
1666       }
1667       break;
1668 
1669     // OPCODE: DW_OP_shl
1670     // OPERANDS: none
1671     // DESCRIPTION:  pops the top two stack entries, shifts the former
1672     // second entry left by the number of bits specified by the former top of
1673     // the stack, and pushes the result.
1674     case DW_OP_shl:
1675       if (stack.size() < 2) {
1676         if (error_ptr)
1677           error_ptr->SetErrorString(
1678               "Expression stack needs at least 2 items for DW_OP_shl.");
1679         return false;
1680       } else {
1681         tmp = stack.back();
1682         stack.pop_back();
1683         stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx);
1684       }
1685       break;
1686 
1687     // OPCODE: DW_OP_shr
1688     // OPERANDS: none
1689     // DESCRIPTION: pops the top two stack entries, shifts the former second
1690     // entry right logically (filling with zero bits) by the number of bits
1691     // specified by the former top of the stack, and pushes the result.
1692     case DW_OP_shr:
1693       if (stack.size() < 2) {
1694         if (error_ptr)
1695           error_ptr->SetErrorString(
1696               "Expression stack needs at least 2 items for DW_OP_shr.");
1697         return false;
1698       } else {
1699         tmp = stack.back();
1700         stack.pop_back();
1701         if (!stack.back().ResolveValue(exe_ctx).ShiftRightLogical(
1702                 tmp.ResolveValue(exe_ctx))) {
1703           if (error_ptr)
1704             error_ptr->SetErrorString("DW_OP_shr failed.");
1705           return false;
1706         }
1707       }
1708       break;
1709 
1710     // OPCODE: DW_OP_shra
1711     // OPERANDS: none
1712     // DESCRIPTION: pops the top two stack entries, shifts the former second
1713     // entry right arithmetically (divide the magnitude by 2, keep the same
1714     // sign for the result) by the number of bits specified by the former top
1715     // of the stack, and pushes the result.
1716     case DW_OP_shra:
1717       if (stack.size() < 2) {
1718         if (error_ptr)
1719           error_ptr->SetErrorString(
1720               "Expression stack needs at least 2 items for DW_OP_shra.");
1721         return false;
1722       } else {
1723         tmp = stack.back();
1724         stack.pop_back();
1725         stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx);
1726       }
1727       break;
1728 
1729     // OPCODE: DW_OP_xor
1730     // OPERANDS: none
1731     // DESCRIPTION: pops the top two stack entries, performs the bitwise
1732     // exclusive-or operation on the two, and pushes the result.
1733     case DW_OP_xor:
1734       if (stack.size() < 2) {
1735         if (error_ptr)
1736           error_ptr->SetErrorString(
1737               "Expression stack needs at least 2 items for DW_OP_xor.");
1738         return false;
1739       } else {
1740         tmp = stack.back();
1741         stack.pop_back();
1742         stack.back().ResolveValue(exe_ctx) =
1743             stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx);
1744       }
1745       break;
1746 
1747     // OPCODE: DW_OP_skip
1748     // OPERANDS: int16_t
1749     // DESCRIPTION:  An unconditional branch. Its single operand is a 2-byte
1750     // signed integer constant. The 2-byte constant is the number of bytes of
1751     // the DWARF expression to skip forward or backward from the current
1752     // operation, beginning after the 2-byte constant.
1753     case DW_OP_skip: {
1754       int16_t skip_offset = (int16_t)opcodes.GetU16(&offset);
1755       lldb::offset_t new_offset = offset + skip_offset;
1756       if (opcodes.ValidOffset(new_offset))
1757         offset = new_offset;
1758       else {
1759         if (error_ptr)
1760           error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip.");
1761         return false;
1762       }
1763     } break;
1764 
1765     // OPCODE: DW_OP_bra
1766     // OPERANDS: int16_t
1767     // DESCRIPTION: A conditional branch. Its single operand is a 2-byte
1768     // signed integer constant. This operation pops the top of stack. If the
1769     // value popped is not the constant 0, the 2-byte constant operand is the
1770     // number of bytes of the DWARF expression to skip forward or backward from
1771     // the current operation, beginning after the 2-byte constant.
1772     case DW_OP_bra:
1773       if (stack.empty()) {
1774         if (error_ptr)
1775           error_ptr->SetErrorString(
1776               "Expression stack needs at least 1 item for DW_OP_bra.");
1777         return false;
1778       } else {
1779         tmp = stack.back();
1780         stack.pop_back();
1781         int16_t bra_offset = (int16_t)opcodes.GetU16(&offset);
1782         Scalar zero(0);
1783         if (tmp.ResolveValue(exe_ctx) != zero) {
1784           lldb::offset_t new_offset = offset + bra_offset;
1785           if (opcodes.ValidOffset(new_offset))
1786             offset = new_offset;
1787           else {
1788             if (error_ptr)
1789               error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra.");
1790             return false;
1791           }
1792         }
1793       }
1794       break;
1795 
1796     // OPCODE: DW_OP_eq
1797     // OPERANDS: none
1798     // DESCRIPTION: pops the top two stack values, compares using the
1799     // equals (==) operator.
1800     // STACK RESULT: push the constant value 1 onto the stack if the result
1801     // of the operation is true or the constant value 0 if the result of the
1802     // operation is false.
1803     case DW_OP_eq:
1804       if (stack.size() < 2) {
1805         if (error_ptr)
1806           error_ptr->SetErrorString(
1807               "Expression stack needs at least 2 items for DW_OP_eq.");
1808         return false;
1809       } else {
1810         tmp = stack.back();
1811         stack.pop_back();
1812         stack.back().ResolveValue(exe_ctx) =
1813             stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx);
1814       }
1815       break;
1816 
1817     // OPCODE: DW_OP_ge
1818     // OPERANDS: none
1819     // DESCRIPTION: pops the top two stack values, compares using the
1820     // greater than or equal to (>=) operator.
1821     // STACK RESULT: push the constant value 1 onto the stack if the result
1822     // of the operation is true or the constant value 0 if the result of the
1823     // operation is false.
1824     case DW_OP_ge:
1825       if (stack.size() < 2) {
1826         if (error_ptr)
1827           error_ptr->SetErrorString(
1828               "Expression stack needs at least 2 items for DW_OP_ge.");
1829         return false;
1830       } else {
1831         tmp = stack.back();
1832         stack.pop_back();
1833         stack.back().ResolveValue(exe_ctx) =
1834             stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx);
1835       }
1836       break;
1837 
1838     // OPCODE: DW_OP_gt
1839     // OPERANDS: none
1840     // DESCRIPTION: pops the top two stack values, compares using the
1841     // greater than (>) operator.
1842     // STACK RESULT: push the constant value 1 onto the stack if the result
1843     // of the operation is true or the constant value 0 if the result of the
1844     // operation is false.
1845     case DW_OP_gt:
1846       if (stack.size() < 2) {
1847         if (error_ptr)
1848           error_ptr->SetErrorString(
1849               "Expression stack needs at least 2 items for DW_OP_gt.");
1850         return false;
1851       } else {
1852         tmp = stack.back();
1853         stack.pop_back();
1854         stack.back().ResolveValue(exe_ctx) =
1855             stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx);
1856       }
1857       break;
1858 
1859     // OPCODE: DW_OP_le
1860     // OPERANDS: none
1861     // DESCRIPTION: pops the top two stack values, compares using the
1862     // less than or equal to (<=) operator.
1863     // STACK RESULT: push the constant value 1 onto the stack if the result
1864     // of the operation is true or the constant value 0 if the result of the
1865     // operation is false.
1866     case DW_OP_le:
1867       if (stack.size() < 2) {
1868         if (error_ptr)
1869           error_ptr->SetErrorString(
1870               "Expression stack needs at least 2 items for DW_OP_le.");
1871         return false;
1872       } else {
1873         tmp = stack.back();
1874         stack.pop_back();
1875         stack.back().ResolveValue(exe_ctx) =
1876             stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx);
1877       }
1878       break;
1879 
1880     // OPCODE: DW_OP_lt
1881     // OPERANDS: none
1882     // DESCRIPTION: pops the top two stack values, compares using the
1883     // less than (<) operator.
1884     // STACK RESULT: push the constant value 1 onto the stack if the result
1885     // of the operation is true or the constant value 0 if the result of the
1886     // operation is false.
1887     case DW_OP_lt:
1888       if (stack.size() < 2) {
1889         if (error_ptr)
1890           error_ptr->SetErrorString(
1891               "Expression stack needs at least 2 items for DW_OP_lt.");
1892         return false;
1893       } else {
1894         tmp = stack.back();
1895         stack.pop_back();
1896         stack.back().ResolveValue(exe_ctx) =
1897             stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx);
1898       }
1899       break;
1900 
1901     // OPCODE: DW_OP_ne
1902     // OPERANDS: none
1903     // DESCRIPTION: pops the top two stack values, compares using the
1904     // not equal (!=) operator.
1905     // STACK RESULT: push the constant value 1 onto the stack if the result
1906     // of the operation is true or the constant value 0 if the result of the
1907     // operation is false.
1908     case DW_OP_ne:
1909       if (stack.size() < 2) {
1910         if (error_ptr)
1911           error_ptr->SetErrorString(
1912               "Expression stack needs at least 2 items for DW_OP_ne.");
1913         return false;
1914       } else {
1915         tmp = stack.back();
1916         stack.pop_back();
1917         stack.back().ResolveValue(exe_ctx) =
1918             stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx);
1919       }
1920       break;
1921 
1922     // OPCODE: DW_OP_litn
1923     // OPERANDS: none
1924     // DESCRIPTION: encode the unsigned literal values from 0 through 31.
1925     // STACK RESULT: push the unsigned literal constant value onto the top
1926     // of the stack.
1927     case DW_OP_lit0:
1928     case DW_OP_lit1:
1929     case DW_OP_lit2:
1930     case DW_OP_lit3:
1931     case DW_OP_lit4:
1932     case DW_OP_lit5:
1933     case DW_OP_lit6:
1934     case DW_OP_lit7:
1935     case DW_OP_lit8:
1936     case DW_OP_lit9:
1937     case DW_OP_lit10:
1938     case DW_OP_lit11:
1939     case DW_OP_lit12:
1940     case DW_OP_lit13:
1941     case DW_OP_lit14:
1942     case DW_OP_lit15:
1943     case DW_OP_lit16:
1944     case DW_OP_lit17:
1945     case DW_OP_lit18:
1946     case DW_OP_lit19:
1947     case DW_OP_lit20:
1948     case DW_OP_lit21:
1949     case DW_OP_lit22:
1950     case DW_OP_lit23:
1951     case DW_OP_lit24:
1952     case DW_OP_lit25:
1953     case DW_OP_lit26:
1954     case DW_OP_lit27:
1955     case DW_OP_lit28:
1956     case DW_OP_lit29:
1957     case DW_OP_lit30:
1958     case DW_OP_lit31:
1959       stack.push_back(to_generic(op - DW_OP_lit0));
1960       break;
1961 
1962     // OPCODE: DW_OP_regN
1963     // OPERANDS: none
1964     // DESCRIPTION: Push the value in register n on the top of the stack.
1965     case DW_OP_reg0:
1966     case DW_OP_reg1:
1967     case DW_OP_reg2:
1968     case DW_OP_reg3:
1969     case DW_OP_reg4:
1970     case DW_OP_reg5:
1971     case DW_OP_reg6:
1972     case DW_OP_reg7:
1973     case DW_OP_reg8:
1974     case DW_OP_reg9:
1975     case DW_OP_reg10:
1976     case DW_OP_reg11:
1977     case DW_OP_reg12:
1978     case DW_OP_reg13:
1979     case DW_OP_reg14:
1980     case DW_OP_reg15:
1981     case DW_OP_reg16:
1982     case DW_OP_reg17:
1983     case DW_OP_reg18:
1984     case DW_OP_reg19:
1985     case DW_OP_reg20:
1986     case DW_OP_reg21:
1987     case DW_OP_reg22:
1988     case DW_OP_reg23:
1989     case DW_OP_reg24:
1990     case DW_OP_reg25:
1991     case DW_OP_reg26:
1992     case DW_OP_reg27:
1993     case DW_OP_reg28:
1994     case DW_OP_reg29:
1995     case DW_OP_reg30:
1996     case DW_OP_reg31: {
1997       dwarf4_location_description_kind = Register;
1998       reg_num = op - DW_OP_reg0;
1999 
2000       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
2001         stack.push_back(tmp);
2002       else
2003         return false;
2004     } break;
2005     // OPCODE: DW_OP_regx
2006     // OPERANDS:
2007     //      ULEB128 literal operand that encodes the register.
2008     // DESCRIPTION: Push the value in register on the top of the stack.
2009     case DW_OP_regx: {
2010       dwarf4_location_description_kind = Register;
2011       reg_num = opcodes.GetULEB128(&offset);
2012       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
2013         stack.push_back(tmp);
2014       else
2015         return false;
2016     } break;
2017 
2018     // OPCODE: DW_OP_bregN
2019     // OPERANDS:
2020     //      SLEB128 offset from register N
2021     // DESCRIPTION: Value is in memory at the address specified by register
2022     // N plus an offset.
2023     case DW_OP_breg0:
2024     case DW_OP_breg1:
2025     case DW_OP_breg2:
2026     case DW_OP_breg3:
2027     case DW_OP_breg4:
2028     case DW_OP_breg5:
2029     case DW_OP_breg6:
2030     case DW_OP_breg7:
2031     case DW_OP_breg8:
2032     case DW_OP_breg9:
2033     case DW_OP_breg10:
2034     case DW_OP_breg11:
2035     case DW_OP_breg12:
2036     case DW_OP_breg13:
2037     case DW_OP_breg14:
2038     case DW_OP_breg15:
2039     case DW_OP_breg16:
2040     case DW_OP_breg17:
2041     case DW_OP_breg18:
2042     case DW_OP_breg19:
2043     case DW_OP_breg20:
2044     case DW_OP_breg21:
2045     case DW_OP_breg22:
2046     case DW_OP_breg23:
2047     case DW_OP_breg24:
2048     case DW_OP_breg25:
2049     case DW_OP_breg26:
2050     case DW_OP_breg27:
2051     case DW_OP_breg28:
2052     case DW_OP_breg29:
2053     case DW_OP_breg30:
2054     case DW_OP_breg31: {
2055       reg_num = op - DW_OP_breg0;
2056 
2057       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2058                                     tmp)) {
2059         int64_t breg_offset = opcodes.GetSLEB128(&offset);
2060         tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2061         tmp.ClearContext();
2062         stack.push_back(tmp);
2063         stack.back().SetValueType(Value::ValueType::LoadAddress);
2064       } else
2065         return false;
2066     } break;
2067     // OPCODE: DW_OP_bregx
2068     // OPERANDS: 2
2069     //      ULEB128 literal operand that encodes the register.
2070     //      SLEB128 offset from register N
2071     // DESCRIPTION: Value is in memory at the address specified by register
2072     // N plus an offset.
2073     case DW_OP_bregx: {
2074       reg_num = opcodes.GetULEB128(&offset);
2075 
2076       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2077                                     tmp)) {
2078         int64_t breg_offset = opcodes.GetSLEB128(&offset);
2079         tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2080         tmp.ClearContext();
2081         stack.push_back(tmp);
2082         stack.back().SetValueType(Value::ValueType::LoadAddress);
2083       } else
2084         return false;
2085     } break;
2086 
2087     case DW_OP_fbreg:
2088       if (exe_ctx) {
2089         if (frame) {
2090           Scalar value;
2091           if (frame->GetFrameBaseValue(value, error_ptr)) {
2092             int64_t fbreg_offset = opcodes.GetSLEB128(&offset);
2093             value += fbreg_offset;
2094             stack.push_back(value);
2095             stack.back().SetValueType(Value::ValueType::LoadAddress);
2096           } else
2097             return false;
2098         } else {
2099           if (error_ptr)
2100             error_ptr->SetErrorString(
2101                 "Invalid stack frame in context for DW_OP_fbreg opcode.");
2102           return false;
2103         }
2104       } else {
2105         if (error_ptr)
2106           error_ptr->SetErrorString(
2107               "NULL execution context for DW_OP_fbreg.\n");
2108         return false;
2109       }
2110 
2111       break;
2112 
2113     // OPCODE: DW_OP_nop
2114     // OPERANDS: none
2115     // DESCRIPTION: A place holder. It has no effect on the location stack
2116     // or any of its values.
2117     case DW_OP_nop:
2118       break;
2119 
2120     // OPCODE: DW_OP_piece
2121     // OPERANDS: 1
2122     //      ULEB128: byte size of the piece
2123     // DESCRIPTION: The operand describes the size in bytes of the piece of
2124     // the object referenced by the DWARF expression whose result is at the top
2125     // of the stack. If the piece is located in a register, but does not occupy
2126     // the entire register, the placement of the piece within that register is
2127     // defined by the ABI.
2128     //
2129     // Many compilers store a single variable in sets of registers, or store a
2130     // variable partially in memory and partially in registers. DW_OP_piece
2131     // provides a way of describing how large a part of a variable a particular
2132     // DWARF expression refers to.
2133     case DW_OP_piece: {
2134       LocationDescriptionKind piece_locdesc = dwarf4_location_description_kind;
2135       // Reset for the next piece.
2136       dwarf4_location_description_kind = Memory;
2137 
2138       const uint64_t piece_byte_size = opcodes.GetULEB128(&offset);
2139 
2140       if (piece_byte_size > 0) {
2141         Value curr_piece;
2142 
2143         if (stack.empty()) {
2144           UpdateValueTypeFromLocationDescription(
2145               log, dwarf_cu, LocationDescriptionKind::Empty);
2146           // In a multi-piece expression, this means that the current piece is
2147           // not available. Fill with zeros for now by resizing the data and
2148           // appending it
2149           curr_piece.ResizeData(piece_byte_size);
2150           // Note that "0" is not a correct value for the unknown bits.
2151           // It would be better to also return a mask of valid bits together
2152           // with the expression result, so the debugger can print missing
2153           // members as "<optimized out>" or something.
2154           ::memset(curr_piece.GetBuffer().GetBytes(), 0, piece_byte_size);
2155           pieces.AppendDataToHostBuffer(curr_piece);
2156         } else {
2157           Status error;
2158           // Extract the current piece into "curr_piece"
2159           Value curr_piece_source_value(stack.back());
2160           stack.pop_back();
2161           UpdateValueTypeFromLocationDescription(log, dwarf_cu, piece_locdesc,
2162                                                  &curr_piece_source_value);
2163 
2164           const Value::ValueType curr_piece_source_value_type =
2165               curr_piece_source_value.GetValueType();
2166           switch (curr_piece_source_value_type) {
2167           case Value::ValueType::Invalid:
2168             return false;
2169           case Value::ValueType::LoadAddress:
2170             if (process) {
2171               if (curr_piece.ResizeData(piece_byte_size) == piece_byte_size) {
2172                 lldb::addr_t load_addr =
2173                     curr_piece_source_value.GetScalar().ULongLong(
2174                         LLDB_INVALID_ADDRESS);
2175                 if (process->ReadMemory(
2176                         load_addr, curr_piece.GetBuffer().GetBytes(),
2177                         piece_byte_size, error) != piece_byte_size) {
2178                   if (error_ptr)
2179                     error_ptr->SetErrorStringWithFormat(
2180                         "failed to read memory DW_OP_piece(%" PRIu64
2181                         ") from 0x%" PRIx64,
2182                         piece_byte_size, load_addr);
2183                   return false;
2184                 }
2185               } else {
2186                 if (error_ptr)
2187                   error_ptr->SetErrorStringWithFormat(
2188                       "failed to resize the piece memory buffer for "
2189                       "DW_OP_piece(%" PRIu64 ")",
2190                       piece_byte_size);
2191                 return false;
2192               }
2193             }
2194             break;
2195 
2196           case Value::ValueType::FileAddress:
2197           case Value::ValueType::HostAddress:
2198             if (error_ptr) {
2199               lldb::addr_t addr = curr_piece_source_value.GetScalar().ULongLong(
2200                   LLDB_INVALID_ADDRESS);
2201               error_ptr->SetErrorStringWithFormat(
2202                   "failed to read memory DW_OP_piece(%" PRIu64
2203                   ") from %s address 0x%" PRIx64,
2204                   piece_byte_size, curr_piece_source_value.GetValueType() ==
2205                                            Value::ValueType::FileAddress
2206                                        ? "file"
2207                                        : "host",
2208                   addr);
2209             }
2210             return false;
2211 
2212           case Value::ValueType::Scalar: {
2213             uint32_t bit_size = piece_byte_size * 8;
2214             uint32_t bit_offset = 0;
2215             Scalar &scalar = curr_piece_source_value.GetScalar();
2216             if (!scalar.ExtractBitfield(
2217                     bit_size, bit_offset)) {
2218               if (error_ptr)
2219                 error_ptr->SetErrorStringWithFormat(
2220                     "unable to extract %" PRIu64 " bytes from a %" PRIu64
2221                     " byte scalar value.",
2222                     piece_byte_size,
2223                     (uint64_t)curr_piece_source_value.GetScalar()
2224                         .GetByteSize());
2225               return false;
2226             }
2227             // Create curr_piece with bit_size. By default Scalar
2228             // grows to the nearest host integer type.
2229             llvm::APInt fail_value(1, 0, false);
2230             llvm::APInt ap_int = scalar.UInt128(fail_value);
2231             assert(ap_int.getBitWidth() >= bit_size);
2232             llvm::ArrayRef<uint64_t> buf{ap_int.getRawData(),
2233                                          ap_int.getNumWords()};
2234             curr_piece.GetScalar() = Scalar(llvm::APInt(bit_size, buf));
2235           } break;
2236           }
2237 
2238           // Check if this is the first piece?
2239           if (op_piece_offset == 0) {
2240             // This is the first piece, we should push it back onto the stack
2241             // so subsequent pieces will be able to access this piece and add
2242             // to it.
2243             if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2244               if (error_ptr)
2245                 error_ptr->SetErrorString("failed to append piece data");
2246               return false;
2247             }
2248           } else {
2249             // If this is the second or later piece there should be a value on
2250             // the stack.
2251             if (pieces.GetBuffer().GetByteSize() != op_piece_offset) {
2252               if (error_ptr)
2253                 error_ptr->SetErrorStringWithFormat(
2254                     "DW_OP_piece for offset %" PRIu64
2255                     " but top of stack is of size %" PRIu64,
2256                     op_piece_offset, pieces.GetBuffer().GetByteSize());
2257               return false;
2258             }
2259 
2260             if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2261               if (error_ptr)
2262                 error_ptr->SetErrorString("failed to append piece data");
2263               return false;
2264             }
2265           }
2266         }
2267         op_piece_offset += piece_byte_size;
2268       }
2269     } break;
2270 
2271     case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
2272       if (stack.size() < 1) {
2273         UpdateValueTypeFromLocationDescription(log, dwarf_cu,
2274                                                LocationDescriptionKind::Empty);
2275         // Reset for the next piece.
2276         dwarf4_location_description_kind = Memory;
2277         if (error_ptr)
2278           error_ptr->SetErrorString(
2279               "Expression stack needs at least 1 item for DW_OP_bit_piece.");
2280         return false;
2281       } else {
2282         UpdateValueTypeFromLocationDescription(
2283             log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
2284         // Reset for the next piece.
2285         dwarf4_location_description_kind = Memory;
2286         const uint64_t piece_bit_size = opcodes.GetULEB128(&offset);
2287         const uint64_t piece_bit_offset = opcodes.GetULEB128(&offset);
2288         switch (stack.back().GetValueType()) {
2289         case Value::ValueType::Invalid:
2290           return false;
2291         case Value::ValueType::Scalar: {
2292           if (!stack.back().GetScalar().ExtractBitfield(piece_bit_size,
2293                                                         piece_bit_offset)) {
2294             if (error_ptr)
2295               error_ptr->SetErrorStringWithFormat(
2296                   "unable to extract %" PRIu64 " bit value with %" PRIu64
2297                   " bit offset from a %" PRIu64 " bit scalar value.",
2298                   piece_bit_size, piece_bit_offset,
2299                   (uint64_t)(stack.back().GetScalar().GetByteSize() * 8));
2300             return false;
2301           }
2302         } break;
2303 
2304         case Value::ValueType::FileAddress:
2305         case Value::ValueType::LoadAddress:
2306         case Value::ValueType::HostAddress:
2307           if (error_ptr) {
2308             error_ptr->SetErrorStringWithFormat(
2309                 "unable to extract DW_OP_bit_piece(bit_size = %" PRIu64
2310                 ", bit_offset = %" PRIu64 ") from an address value.",
2311                 piece_bit_size, piece_bit_offset);
2312           }
2313           return false;
2314         }
2315       }
2316       break;
2317 
2318     // OPCODE: DW_OP_implicit_value
2319     // OPERANDS: 2
2320     //      ULEB128  size of the value block in bytes
2321     //      uint8_t* block bytes encoding value in target's memory
2322     //      representation
2323     // DESCRIPTION: Value is immediately stored in block in the debug info with
2324     // the memory representation of the target.
2325     case DW_OP_implicit_value: {
2326       dwarf4_location_description_kind = Implicit;
2327 
2328       const uint32_t len = opcodes.GetULEB128(&offset);
2329       const void *data = opcodes.GetData(&offset, len);
2330 
2331       if (!data) {
2332         LLDB_LOG(log, "Evaluate_DW_OP_implicit_value: could not be read data");
2333         LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2334                     DW_OP_value_to_name(op));
2335         return false;
2336       }
2337 
2338       Value result(data, len);
2339       stack.push_back(result);
2340       break;
2341     }
2342 
2343     case DW_OP_implicit_pointer: {
2344       dwarf4_location_description_kind = Implicit;
2345       LLDB_ERRORF(error_ptr, "Could not evaluate %s.", DW_OP_value_to_name(op));
2346       return false;
2347     }
2348 
2349     // OPCODE: DW_OP_push_object_address
2350     // OPERANDS: none
2351     // DESCRIPTION: Pushes the address of the object currently being
2352     // evaluated as part of evaluation of a user presented expression. This
2353     // object may correspond to an independent variable described by its own
2354     // DIE or it may be a component of an array, structure, or class whose
2355     // address has been dynamically determined by an earlier step during user
2356     // expression evaluation.
2357     case DW_OP_push_object_address:
2358       if (object_address_ptr)
2359         stack.push_back(*object_address_ptr);
2360       else {
2361         if (error_ptr)
2362           error_ptr->SetErrorString("DW_OP_push_object_address used without "
2363                                     "specifying an object address");
2364         return false;
2365       }
2366       break;
2367 
2368     // OPCODE: DW_OP_call2
2369     // OPERANDS:
2370     //      uint16_t compile unit relative offset of a DIE
2371     // DESCRIPTION: Performs subroutine calls during evaluation
2372     // of a DWARF expression. The operand is the 2-byte unsigned offset of a
2373     // debugging information entry in the current compilation unit.
2374     //
2375     // Operand interpretation is exactly like that for DW_FORM_ref2.
2376     //
2377     // This operation transfers control of DWARF expression evaluation to the
2378     // DW_AT_location attribute of the referenced DIE. If there is no such
2379     // attribute, then there is no effect. Execution of the DWARF expression of
2380     // a DW_AT_location attribute may add to and/or remove from values on the
2381     // stack. Execution returns to the point following the call when the end of
2382     // the attribute is reached. Values on the stack at the time of the call
2383     // may be used as parameters by the called expression and values left on
2384     // the stack by the called expression may be used as return values by prior
2385     // agreement between the calling and called expressions.
2386     case DW_OP_call2:
2387       if (error_ptr)
2388         error_ptr->SetErrorString("Unimplemented opcode DW_OP_call2.");
2389       return false;
2390     // OPCODE: DW_OP_call4
2391     // OPERANDS: 1
2392     //      uint32_t compile unit relative offset of a DIE
2393     // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF
2394     // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset of
2395     // a debugging information entry in  the current compilation unit.
2396     //
2397     // Operand interpretation DW_OP_call4 is exactly like that for
2398     // DW_FORM_ref4.
2399     //
2400     // This operation transfers control of DWARF expression evaluation to the
2401     // DW_AT_location attribute of the referenced DIE. If there is no such
2402     // attribute, then there is no effect. Execution of the DWARF expression of
2403     // a DW_AT_location attribute may add to and/or remove from values on the
2404     // stack. Execution returns to the point following the call when the end of
2405     // the attribute is reached. Values on the stack at the time of the call
2406     // may be used as parameters by the called expression and values left on
2407     // the stack by the called expression may be used as return values by prior
2408     // agreement between the calling and called expressions.
2409     case DW_OP_call4:
2410       if (error_ptr)
2411         error_ptr->SetErrorString("Unimplemented opcode DW_OP_call4.");
2412       return false;
2413 
2414     // OPCODE: DW_OP_stack_value
2415     // OPERANDS: None
2416     // DESCRIPTION: Specifies that the object does not exist in memory but
2417     // rather is a constant value.  The value from the top of the stack is the
2418     // value to be used.  This is the actual object value and not the location.
2419     case DW_OP_stack_value:
2420       dwarf4_location_description_kind = Implicit;
2421       if (stack.empty()) {
2422         if (error_ptr)
2423           error_ptr->SetErrorString(
2424               "Expression stack needs at least 1 item for DW_OP_stack_value.");
2425         return false;
2426       }
2427       stack.back().SetValueType(Value::ValueType::Scalar);
2428       break;
2429 
2430     // OPCODE: DW_OP_convert
2431     // OPERANDS: 1
2432     //      A ULEB128 that is either a DIE offset of a
2433     //      DW_TAG_base_type or 0 for the generic (pointer-sized) type.
2434     //
2435     // DESCRIPTION: Pop the top stack element, convert it to a
2436     // different type, and push the result.
2437     case DW_OP_convert: {
2438       if (stack.size() < 1) {
2439         if (error_ptr)
2440           error_ptr->SetErrorString(
2441               "Expression stack needs at least 1 item for DW_OP_convert.");
2442         return false;
2443       }
2444       const uint64_t die_offset = opcodes.GetULEB128(&offset);
2445       uint64_t bit_size;
2446       bool sign;
2447       if (die_offset == 0) {
2448         // The generic type has the size of an address on the target
2449         // machine and an unspecified signedness. Scalar has no
2450         // "unspecified signedness", so we use unsigned types.
2451         if (!module_sp) {
2452           if (error_ptr)
2453             error_ptr->SetErrorString("No module");
2454           return false;
2455         }
2456         sign = false;
2457         bit_size = module_sp->GetArchitecture().GetAddressByteSize() * 8;
2458         if (!bit_size) {
2459           if (error_ptr)
2460             error_ptr->SetErrorString("unspecified architecture");
2461           return false;
2462         }
2463       } else {
2464         // Retrieve the type DIE that the value is being converted to.
2465         // FIXME: the constness has annoying ripple effects.
2466         DWARFDIE die = const_cast<DWARFUnit *>(dwarf_cu)->GetDIE(die_offset);
2467         if (!die) {
2468           if (error_ptr)
2469             error_ptr->SetErrorString("Cannot resolve DW_OP_convert type DIE");
2470           return false;
2471         }
2472         uint64_t encoding =
2473             die.GetAttributeValueAsUnsigned(DW_AT_encoding, DW_ATE_hi_user);
2474         bit_size = die.GetAttributeValueAsUnsigned(DW_AT_byte_size, 0) * 8;
2475         if (!bit_size)
2476           bit_size = die.GetAttributeValueAsUnsigned(DW_AT_bit_size, 0);
2477         if (!bit_size) {
2478           if (error_ptr)
2479             error_ptr->SetErrorString("Unsupported type size in DW_OP_convert");
2480           return false;
2481         }
2482         switch (encoding) {
2483         case DW_ATE_signed:
2484         case DW_ATE_signed_char:
2485           sign = true;
2486           break;
2487         case DW_ATE_unsigned:
2488         case DW_ATE_unsigned_char:
2489           sign = false;
2490           break;
2491         default:
2492           if (error_ptr)
2493             error_ptr->SetErrorString("Unsupported encoding in DW_OP_convert");
2494           return false;
2495         }
2496       }
2497       Scalar &top = stack.back().ResolveValue(exe_ctx);
2498       top.TruncOrExtendTo(bit_size, sign);
2499       break;
2500     }
2501 
2502     // OPCODE: DW_OP_call_frame_cfa
2503     // OPERANDS: None
2504     // DESCRIPTION: Specifies a DWARF expression that pushes the value of
2505     // the canonical frame address consistent with the call frame information
2506     // located in .debug_frame (or in the FDEs of the eh_frame section).
2507     case DW_OP_call_frame_cfa:
2508       if (frame) {
2509         // Note that we don't have to parse FDEs because this DWARF expression
2510         // is commonly evaluated with a valid stack frame.
2511         StackID id = frame->GetStackID();
2512         addr_t cfa = id.GetCallFrameAddress();
2513         if (cfa != LLDB_INVALID_ADDRESS) {
2514           stack.push_back(Scalar(cfa));
2515           stack.back().SetValueType(Value::ValueType::LoadAddress);
2516         } else if (error_ptr)
2517           error_ptr->SetErrorString("Stack frame does not include a canonical "
2518                                     "frame address for DW_OP_call_frame_cfa "
2519                                     "opcode.");
2520       } else {
2521         if (error_ptr)
2522           error_ptr->SetErrorString("Invalid stack frame in context for "
2523                                     "DW_OP_call_frame_cfa opcode.");
2524         return false;
2525       }
2526       break;
2527 
2528     // OPCODE: DW_OP_form_tls_address (or the old pre-DWARFv3 vendor extension
2529     // opcode, DW_OP_GNU_push_tls_address)
2530     // OPERANDS: none
2531     // DESCRIPTION: Pops a TLS offset from the stack, converts it to
2532     // an address in the current thread's thread-local storage block, and
2533     // pushes it on the stack.
2534     case DW_OP_form_tls_address:
2535     case DW_OP_GNU_push_tls_address: {
2536       if (stack.size() < 1) {
2537         if (error_ptr) {
2538           if (op == DW_OP_form_tls_address)
2539             error_ptr->SetErrorString(
2540                 "DW_OP_form_tls_address needs an argument.");
2541           else
2542             error_ptr->SetErrorString(
2543                 "DW_OP_GNU_push_tls_address needs an argument.");
2544         }
2545         return false;
2546       }
2547 
2548       if (!exe_ctx || !module_sp) {
2549         if (error_ptr)
2550           error_ptr->SetErrorString("No context to evaluate TLS within.");
2551         return false;
2552       }
2553 
2554       Thread *thread = exe_ctx->GetThreadPtr();
2555       if (!thread) {
2556         if (error_ptr)
2557           error_ptr->SetErrorString("No thread to evaluate TLS within.");
2558         return false;
2559       }
2560 
2561       // Lookup the TLS block address for this thread and module.
2562       const addr_t tls_file_addr =
2563           stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
2564       const addr_t tls_load_addr =
2565           thread->GetThreadLocalData(module_sp, tls_file_addr);
2566 
2567       if (tls_load_addr == LLDB_INVALID_ADDRESS) {
2568         if (error_ptr)
2569           error_ptr->SetErrorString(
2570               "No TLS data currently exists for this thread.");
2571         return false;
2572       }
2573 
2574       stack.back().GetScalar() = tls_load_addr;
2575       stack.back().SetValueType(Value::ValueType::LoadAddress);
2576     } break;
2577 
2578     // OPCODE: DW_OP_addrx (DW_OP_GNU_addr_index is the legacy name.)
2579     // OPERANDS: 1
2580     //      ULEB128: index to the .debug_addr section
2581     // DESCRIPTION: Pushes an address to the stack from the .debug_addr
2582     // section with the base address specified by the DW_AT_addr_base attribute
2583     // and the 0 based index is the ULEB128 encoded index.
2584     case DW_OP_addrx:
2585     case DW_OP_GNU_addr_index: {
2586       if (!dwarf_cu) {
2587         if (error_ptr)
2588           error_ptr->SetErrorString("DW_OP_GNU_addr_index found without a "
2589                                     "compile unit being specified");
2590         return false;
2591       }
2592       uint64_t index = opcodes.GetULEB128(&offset);
2593       lldb::addr_t value = ReadAddressFromDebugAddrSection(dwarf_cu, index);
2594       stack.push_back(Scalar(value));
2595       stack.back().SetValueType(Value::ValueType::FileAddress);
2596     } break;
2597 
2598     // OPCODE: DW_OP_GNU_const_index
2599     // OPERANDS: 1
2600     //      ULEB128: index to the .debug_addr section
2601     // DESCRIPTION: Pushes an constant with the size of a machine address to
2602     // the stack from the .debug_addr section with the base address specified
2603     // by the DW_AT_addr_base attribute and the 0 based index is the ULEB128
2604     // encoded index.
2605     case DW_OP_GNU_const_index: {
2606       if (!dwarf_cu) {
2607         if (error_ptr)
2608           error_ptr->SetErrorString("DW_OP_GNU_const_index found without a "
2609                                     "compile unit being specified");
2610         return false;
2611       }
2612       uint64_t index = opcodes.GetULEB128(&offset);
2613       lldb::addr_t value = ReadAddressFromDebugAddrSection(dwarf_cu, index);
2614       stack.push_back(Scalar(value));
2615     } break;
2616 
2617     case DW_OP_GNU_entry_value:
2618     case DW_OP_entry_value: {
2619       if (!Evaluate_DW_OP_entry_value(stack, exe_ctx, reg_ctx, opcodes, offset,
2620                                       error_ptr, log)) {
2621         LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2622                     DW_OP_value_to_name(op));
2623         return false;
2624       }
2625       break;
2626     }
2627 
2628     default:
2629       if (error_ptr)
2630         error_ptr->SetErrorStringWithFormatv(
2631             "Unhandled opcode {0} in DWARFExpression", LocationAtom(op));
2632       return false;
2633     }
2634   }
2635 
2636   if (stack.empty()) {
2637     // Nothing on the stack, check if we created a piece value from DW_OP_piece
2638     // or DW_OP_bit_piece opcodes
2639     if (pieces.GetBuffer().GetByteSize()) {
2640       result = pieces;
2641       return true;
2642     }
2643     if (error_ptr)
2644       error_ptr->SetErrorString("Stack empty after evaluation.");
2645     return false;
2646   }
2647 
2648   UpdateValueTypeFromLocationDescription(
2649       log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
2650 
2651   if (log && log->GetVerbose()) {
2652     size_t count = stack.size();
2653     LLDB_LOGF(log,
2654               "Stack after operation has %" PRIu64 " values:", (uint64_t)count);
2655     for (size_t i = 0; i < count; ++i) {
2656       StreamString new_value;
2657       new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
2658       stack[i].Dump(&new_value);
2659       LLDB_LOGF(log, "  %s", new_value.GetData());
2660     }
2661   }
2662   result = stack.back();
2663   return true; // Return true on success
2664 }
2665 
2666 static DataExtractor ToDataExtractor(const llvm::DWARFLocationExpression &loc,
2667                                      ByteOrder byte_order, uint32_t addr_size) {
2668   auto buffer_sp =
2669       std::make_shared<DataBufferHeap>(loc.Expr.data(), loc.Expr.size());
2670   return DataExtractor(buffer_sp, byte_order, addr_size);
2671 }
2672 
2673 llvm::Optional<DataExtractor>
2674 DWARFExpression::GetLocationExpression(addr_t load_function_start,
2675                                        addr_t addr) const {
2676   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS);
2677 
2678   std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
2679       m_dwarf_cu->GetLocationTable(m_data);
2680   llvm::Optional<DataExtractor> result;
2681   uint64_t offset = 0;
2682   auto lookup_addr =
2683       [&](uint32_t index) -> llvm::Optional<llvm::object::SectionedAddress> {
2684     addr_t address = ReadAddressFromDebugAddrSection(m_dwarf_cu, index);
2685     if (address == LLDB_INVALID_ADDRESS)
2686       return llvm::None;
2687     return llvm::object::SectionedAddress{address};
2688   };
2689   auto process_list = [&](llvm::Expected<llvm::DWARFLocationExpression> loc) {
2690     if (!loc) {
2691       LLDB_LOG_ERROR(log, loc.takeError(), "{0}");
2692       return true;
2693     }
2694     if (loc->Range) {
2695       // This relocates low_pc and high_pc by adding the difference between the
2696       // function file address, and the actual address it is loaded in memory.
2697       addr_t slide = load_function_start - m_loclist_addresses->func_file_addr;
2698       loc->Range->LowPC += slide;
2699       loc->Range->HighPC += slide;
2700 
2701       if (loc->Range->LowPC <= addr && addr < loc->Range->HighPC)
2702         result = ToDataExtractor(*loc, m_data.GetByteOrder(),
2703                                  m_data.GetAddressByteSize());
2704     }
2705     return !result;
2706   };
2707   llvm::Error E = loctable_up->visitAbsoluteLocationList(
2708       offset, llvm::object::SectionedAddress{m_loclist_addresses->cu_file_addr},
2709       lookup_addr, process_list);
2710   if (E)
2711     LLDB_LOG_ERROR(log, std::move(E), "{0}");
2712   return result;
2713 }
2714 
2715 bool DWARFExpression::MatchesOperand(StackFrame &frame,
2716                                      const Instruction::Operand &operand) {
2717   using namespace OperandMatchers;
2718 
2719   RegisterContextSP reg_ctx_sp = frame.GetRegisterContext();
2720   if (!reg_ctx_sp) {
2721     return false;
2722   }
2723 
2724   DataExtractor opcodes;
2725   if (IsLocationList()) {
2726     SymbolContext sc = frame.GetSymbolContext(eSymbolContextFunction);
2727     if (!sc.function)
2728       return false;
2729 
2730     addr_t load_function_start =
2731         sc.function->GetAddressRange().GetBaseAddress().GetFileAddress();
2732     if (load_function_start == LLDB_INVALID_ADDRESS)
2733       return false;
2734 
2735     addr_t pc = frame.GetFrameCodeAddress().GetLoadAddress(
2736         frame.CalculateTarget().get());
2737 
2738     if (llvm::Optional<DataExtractor> expr = GetLocationExpression(load_function_start, pc))
2739       opcodes = std::move(*expr);
2740     else
2741       return false;
2742   } else
2743     opcodes = m_data;
2744 
2745 
2746   lldb::offset_t op_offset = 0;
2747   uint8_t opcode = opcodes.GetU8(&op_offset);
2748 
2749   if (opcode == DW_OP_fbreg) {
2750     int64_t offset = opcodes.GetSLEB128(&op_offset);
2751 
2752     DWARFExpression *fb_expr = frame.GetFrameBaseExpression(nullptr);
2753     if (!fb_expr) {
2754       return false;
2755     }
2756 
2757     auto recurse = [&frame, fb_expr](const Instruction::Operand &child) {
2758       return fb_expr->MatchesOperand(frame, child);
2759     };
2760 
2761     if (!offset &&
2762         MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2763                      recurse)(operand)) {
2764       return true;
2765     }
2766 
2767     return MatchUnaryOp(
2768         MatchOpType(Instruction::Operand::Type::Dereference),
2769         MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2770                       MatchImmOp(offset), recurse))(operand);
2771   }
2772 
2773   bool dereference = false;
2774   const RegisterInfo *reg = nullptr;
2775   int64_t offset = 0;
2776 
2777   if (opcode >= DW_OP_reg0 && opcode <= DW_OP_reg31) {
2778     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_reg0);
2779   } else if (opcode >= DW_OP_breg0 && opcode <= DW_OP_breg31) {
2780     offset = opcodes.GetSLEB128(&op_offset);
2781     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_breg0);
2782   } else if (opcode == DW_OP_regx) {
2783     uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2784     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2785   } else if (opcode == DW_OP_bregx) {
2786     uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2787     offset = opcodes.GetSLEB128(&op_offset);
2788     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2789   } else {
2790     return false;
2791   }
2792 
2793   if (!reg) {
2794     return false;
2795   }
2796 
2797   if (dereference) {
2798     if (!offset &&
2799         MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2800                      MatchRegOp(*reg))(operand)) {
2801       return true;
2802     }
2803 
2804     return MatchUnaryOp(
2805         MatchOpType(Instruction::Operand::Type::Dereference),
2806         MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2807                       MatchRegOp(*reg),
2808                       MatchImmOp(offset)))(operand);
2809   } else {
2810     return MatchRegOp(*reg)(operand);
2811   }
2812 }
2813