1 //===-- ValueObjectVariable.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/ValueObjectVariable.h" 10 11 #include "lldb/Core/Address.h" 12 #include "lldb/Core/AddressRange.h" 13 #include "lldb/Core/Module.h" 14 #include "lldb/Core/Value.h" 15 #include "lldb/Expression/DWARFExpression.h" 16 #include "lldb/Symbol/Declaration.h" 17 #include "lldb/Symbol/Function.h" 18 #include "lldb/Symbol/ObjectFile.h" 19 #include "lldb/Symbol/SymbolContext.h" 20 #include "lldb/Symbol/SymbolContextScope.h" 21 #include "lldb/Symbol/Type.h" 22 #include "lldb/Symbol/Variable.h" 23 #include "lldb/Target/ExecutionContext.h" 24 #include "lldb/Target/Process.h" 25 #include "lldb/Target/RegisterContext.h" 26 #include "lldb/Target/Target.h" 27 #include "lldb/Utility/DataExtractor.h" 28 #include "lldb/Utility/RegisterValue.h" 29 #include "lldb/Utility/Scalar.h" 30 #include "lldb/Utility/Status.h" 31 #include "lldb/lldb-private-enumerations.h" 32 #include "lldb/lldb-types.h" 33 34 #include "llvm/ADT/StringRef.h" 35 36 #include <assert.h> 37 #include <memory> 38 39 namespace lldb_private { 40 class ExecutionContextScope; 41 } 42 namespace lldb_private { 43 class StackFrame; 44 } 45 namespace lldb_private { 46 struct RegisterInfo; 47 } 48 using namespace lldb_private; 49 50 lldb::ValueObjectSP 51 ValueObjectVariable::Create(ExecutionContextScope *exe_scope, 52 const lldb::VariableSP &var_sp) { 53 auto manager_sp = ValueObjectManager::Create(); 54 return (new ValueObjectVariable(exe_scope, *manager_sp, var_sp))->GetSP(); 55 } 56 57 ValueObjectVariable::ValueObjectVariable(ExecutionContextScope *exe_scope, 58 ValueObjectManager &manager, 59 const lldb::VariableSP &var_sp) 60 : ValueObject(exe_scope, manager), m_variable_sp(var_sp) { 61 // Do not attempt to construct one of these objects with no variable! 62 assert(m_variable_sp.get() != nullptr); 63 m_name = var_sp->GetName(); 64 } 65 66 ValueObjectVariable::~ValueObjectVariable() {} 67 68 CompilerType ValueObjectVariable::GetCompilerTypeImpl() { 69 Type *var_type = m_variable_sp->GetType(); 70 if (var_type) 71 return var_type->GetForwardCompilerType(); 72 return CompilerType(); 73 } 74 75 ConstString ValueObjectVariable::GetTypeName() { 76 Type *var_type = m_variable_sp->GetType(); 77 if (var_type) 78 return var_type->GetName(); 79 return ConstString(); 80 } 81 82 ConstString ValueObjectVariable::GetDisplayTypeName() { 83 Type *var_type = m_variable_sp->GetType(); 84 if (var_type) 85 return var_type->GetForwardCompilerType().GetDisplayTypeName(); 86 return ConstString(); 87 } 88 89 ConstString ValueObjectVariable::GetQualifiedTypeName() { 90 Type *var_type = m_variable_sp->GetType(); 91 if (var_type) 92 return var_type->GetQualifiedName(); 93 return ConstString(); 94 } 95 96 size_t ValueObjectVariable::CalculateNumChildren(uint32_t max) { 97 CompilerType type(GetCompilerType()); 98 99 if (!type.IsValid()) 100 return 0; 101 102 ExecutionContext exe_ctx(GetExecutionContextRef()); 103 const bool omit_empty_base_classes = true; 104 auto child_count = type.GetNumChildren(omit_empty_base_classes, &exe_ctx); 105 return child_count <= max ? child_count : max; 106 } 107 108 uint64_t ValueObjectVariable::GetByteSize() { 109 ExecutionContext exe_ctx(GetExecutionContextRef()); 110 111 CompilerType type(GetCompilerType()); 112 113 if (!type.IsValid()) 114 return 0; 115 116 return type.GetByteSize(exe_ctx.GetBestExecutionContextScope()).getValueOr(0); 117 } 118 119 lldb::ValueType ValueObjectVariable::GetValueType() const { 120 if (m_variable_sp) 121 return m_variable_sp->GetScope(); 122 return lldb::eValueTypeInvalid; 123 } 124 125 bool ValueObjectVariable::UpdateValue() { 126 SetValueIsValid(false); 127 m_error.Clear(); 128 129 Variable *variable = m_variable_sp.get(); 130 DWARFExpression &expr = variable->LocationExpression(); 131 132 if (variable->GetLocationIsConstantValueData()) { 133 // expr doesn't contain DWARF bytes, it contains the constant variable 134 // value bytes themselves... 135 if (expr.GetExpressionData(m_data)) 136 m_value.SetContext(Value::eContextTypeVariable, variable); 137 else 138 m_error.SetErrorString("empty constant data"); 139 // constant bytes can't be edited - sorry 140 m_resolved_value.SetContext(Value::eContextTypeInvalid, nullptr); 141 } else { 142 lldb::addr_t loclist_base_load_addr = LLDB_INVALID_ADDRESS; 143 ExecutionContext exe_ctx(GetExecutionContextRef()); 144 145 Target *target = exe_ctx.GetTargetPtr(); 146 if (target) { 147 m_data.SetByteOrder(target->GetArchitecture().GetByteOrder()); 148 m_data.SetAddressByteSize(target->GetArchitecture().GetAddressByteSize()); 149 } 150 151 if (expr.IsLocationList()) { 152 SymbolContext sc; 153 variable->CalculateSymbolContext(&sc); 154 if (sc.function) 155 loclist_base_load_addr = 156 sc.function->GetAddressRange().GetBaseAddress().GetLoadAddress( 157 target); 158 } 159 Value old_value(m_value); 160 if (expr.Evaluate(&exe_ctx, nullptr, loclist_base_load_addr, nullptr, 161 nullptr, m_value, &m_error)) { 162 m_resolved_value = m_value; 163 m_value.SetContext(Value::eContextTypeVariable, variable); 164 165 CompilerType compiler_type = GetCompilerType(); 166 if (compiler_type.IsValid()) 167 m_value.SetCompilerType(compiler_type); 168 169 Value::ValueType value_type = m_value.GetValueType(); 170 171 // The size of the buffer within m_value can be less than the size 172 // prescribed by its type. E.g. this can happen when an expression only 173 // partially describes an object (say, because it contains DW_OP_piece). 174 // 175 // In this case, grow m_value to the expected size. An alternative way to 176 // handle this is to teach Value::GetValueAsData() and ValueObjectChild 177 // not to read past the end of a host buffer, but this gets impractically 178 // complicated as a Value's host buffer may be shared with a distant 179 // ancestor or sibling in the ValueObject hierarchy. 180 // 181 // FIXME: When we grow m_value, we should represent the added bits as 182 // undefined somehow instead of as 0's. 183 if (value_type == Value::eValueTypeHostAddress && 184 compiler_type.IsValid()) { 185 if (size_t value_buf_size = m_value.GetBuffer().GetByteSize()) { 186 size_t value_size = m_value.GetValueByteSize(&m_error, &exe_ctx); 187 if (m_error.Success() && value_buf_size < value_size) 188 m_value.ResizeData(value_size); 189 } 190 } 191 192 Process *process = exe_ctx.GetProcessPtr(); 193 const bool process_is_alive = process && process->IsAlive(); 194 195 switch (value_type) { 196 case Value::eValueTypeVector: 197 // fall through 198 case Value::eValueTypeScalar: 199 // The variable value is in the Scalar value inside the m_value. We can 200 // point our m_data right to it. 201 m_error = 202 m_value.GetValueAsData(&exe_ctx, m_data, GetModule().get()); 203 break; 204 205 case Value::eValueTypeFileAddress: 206 case Value::eValueTypeLoadAddress: 207 case Value::eValueTypeHostAddress: 208 // The DWARF expression result was an address in the inferior process. 209 // If this variable is an aggregate type, we just need the address as 210 // the main value as all child variable objects will rely upon this 211 // location and add an offset and then read their own values as needed. 212 // If this variable is a simple type, we read all data for it into 213 // m_data. Make sure this type has a value before we try and read it 214 215 // If we have a file address, convert it to a load address if we can. 216 if (value_type == Value::eValueTypeFileAddress && process_is_alive) 217 m_value.ConvertToLoadAddress(GetModule().get(), target); 218 219 if (!CanProvideValue()) { 220 // this value object represents an aggregate type whose children have 221 // values, but this object does not. So we say we are changed if our 222 // location has changed. 223 SetValueDidChange(value_type != old_value.GetValueType() || 224 m_value.GetScalar() != old_value.GetScalar()); 225 } else { 226 // Copy the Value and set the context to use our Variable so it can 227 // extract read its value into m_data appropriately 228 Value value(m_value); 229 value.SetContext(Value::eContextTypeVariable, variable); 230 m_error = 231 value.GetValueAsData(&exe_ctx, m_data, GetModule().get()); 232 233 SetValueDidChange(value_type != old_value.GetValueType() || 234 m_value.GetScalar() != old_value.GetScalar()); 235 } 236 break; 237 } 238 239 SetValueIsValid(m_error.Success()); 240 } else { 241 // could not find location, won't allow editing 242 m_resolved_value.SetContext(Value::eContextTypeInvalid, nullptr); 243 } 244 } 245 246 return m_error.Success(); 247 } 248 249 void ValueObjectVariable::DoUpdateChildrenAddressType(ValueObject &valobj) { 250 Value::ValueType value_type = valobj.GetValue().GetValueType(); 251 ExecutionContext exe_ctx(GetExecutionContextRef()); 252 Process *process = exe_ctx.GetProcessPtr(); 253 const bool process_is_alive = process && process->IsAlive(); 254 const uint32_t type_info = valobj.GetCompilerType().GetTypeInfo(); 255 const bool is_pointer_or_ref = 256 (type_info & (lldb::eTypeIsPointer | lldb::eTypeIsReference)) != 0; 257 258 switch (value_type) { 259 case Value::eValueTypeFileAddress: 260 // If this type is a pointer, then its children will be considered load 261 // addresses if the pointer or reference is dereferenced, but only if 262 // the process is alive. 263 // 264 // There could be global variables like in the following code: 265 // struct LinkedListNode { Foo* foo; LinkedListNode* next; }; 266 // Foo g_foo1; 267 // Foo g_foo2; 268 // LinkedListNode g_second_node = { &g_foo2, NULL }; 269 // LinkedListNode g_first_node = { &g_foo1, &g_second_node }; 270 // 271 // When we aren't running, we should be able to look at these variables 272 // using the "target variable" command. Children of the "g_first_node" 273 // always will be of the same address type as the parent. But children 274 // of the "next" member of LinkedListNode will become load addresses if 275 // we have a live process, or remain a file address if it was a file 276 // address. 277 if (process_is_alive && is_pointer_or_ref) 278 valobj.SetAddressTypeOfChildren(eAddressTypeLoad); 279 else 280 valobj.SetAddressTypeOfChildren(eAddressTypeFile); 281 break; 282 case Value::eValueTypeHostAddress: 283 // Same as above for load addresses, except children of pointer or refs 284 // are always load addresses. Host addresses are used to store freeze 285 // dried variables. If this type is a struct, the entire struct 286 // contents will be copied into the heap of the 287 // LLDB process, but we do not currently follow any pointers. 288 if (is_pointer_or_ref) 289 valobj.SetAddressTypeOfChildren(eAddressTypeLoad); 290 else 291 valobj.SetAddressTypeOfChildren(eAddressTypeHost); 292 break; 293 case Value::eValueTypeLoadAddress: 294 case Value::eValueTypeScalar: 295 case Value::eValueTypeVector: 296 valobj.SetAddressTypeOfChildren(eAddressTypeLoad); 297 break; 298 } 299 } 300 301 302 303 bool ValueObjectVariable::IsInScope() { 304 const ExecutionContextRef &exe_ctx_ref = GetExecutionContextRef(); 305 if (exe_ctx_ref.HasFrameRef()) { 306 ExecutionContext exe_ctx(exe_ctx_ref); 307 StackFrame *frame = exe_ctx.GetFramePtr(); 308 if (frame) { 309 return m_variable_sp->IsInScope(frame); 310 } else { 311 // This ValueObject had a frame at one time, but now we can't locate it, 312 // so return false since we probably aren't in scope. 313 return false; 314 } 315 } 316 // We have a variable that wasn't tied to a frame, which means it is a global 317 // and is always in scope. 318 return true; 319 } 320 321 lldb::ModuleSP ValueObjectVariable::GetModule() { 322 if (m_variable_sp) { 323 SymbolContextScope *sc_scope = m_variable_sp->GetSymbolContextScope(); 324 if (sc_scope) { 325 return sc_scope->CalculateSymbolContextModule(); 326 } 327 } 328 return lldb::ModuleSP(); 329 } 330 331 SymbolContextScope *ValueObjectVariable::GetSymbolContextScope() { 332 if (m_variable_sp) 333 return m_variable_sp->GetSymbolContextScope(); 334 return nullptr; 335 } 336 337 bool ValueObjectVariable::GetDeclaration(Declaration &decl) { 338 if (m_variable_sp) { 339 decl = m_variable_sp->GetDeclaration(); 340 return true; 341 } 342 return false; 343 } 344 345 const char *ValueObjectVariable::GetLocationAsCString() { 346 if (m_resolved_value.GetContextType() == Value::eContextTypeRegisterInfo) 347 return GetLocationAsCStringImpl(m_resolved_value, m_data); 348 else 349 return ValueObject::GetLocationAsCString(); 350 } 351 352 bool ValueObjectVariable::SetValueFromCString(const char *value_str, 353 Status &error) { 354 if (!UpdateValueIfNeeded()) { 355 error.SetErrorString("unable to update value before writing"); 356 return false; 357 } 358 359 if (m_resolved_value.GetContextType() == Value::eContextTypeRegisterInfo) { 360 RegisterInfo *reg_info = m_resolved_value.GetRegisterInfo(); 361 ExecutionContext exe_ctx(GetExecutionContextRef()); 362 RegisterContext *reg_ctx = exe_ctx.GetRegisterContext(); 363 RegisterValue reg_value; 364 if (!reg_info || !reg_ctx) { 365 error.SetErrorString("unable to retrieve register info"); 366 return false; 367 } 368 error = reg_value.SetValueFromString(reg_info, llvm::StringRef(value_str)); 369 if (error.Fail()) 370 return false; 371 if (reg_ctx->WriteRegister(reg_info, reg_value)) { 372 SetNeedsUpdate(); 373 return true; 374 } else { 375 error.SetErrorString("unable to write back to register"); 376 return false; 377 } 378 } else 379 return ValueObject::SetValueFromCString(value_str, error); 380 } 381 382 bool ValueObjectVariable::SetData(DataExtractor &data, Status &error) { 383 if (!UpdateValueIfNeeded()) { 384 error.SetErrorString("unable to update value before writing"); 385 return false; 386 } 387 388 if (m_resolved_value.GetContextType() == Value::eContextTypeRegisterInfo) { 389 RegisterInfo *reg_info = m_resolved_value.GetRegisterInfo(); 390 ExecutionContext exe_ctx(GetExecutionContextRef()); 391 RegisterContext *reg_ctx = exe_ctx.GetRegisterContext(); 392 RegisterValue reg_value; 393 if (!reg_info || !reg_ctx) { 394 error.SetErrorString("unable to retrieve register info"); 395 return false; 396 } 397 error = reg_value.SetValueFromData(reg_info, data, 0, true); 398 if (error.Fail()) 399 return false; 400 if (reg_ctx->WriteRegister(reg_info, reg_value)) { 401 SetNeedsUpdate(); 402 return true; 403 } else { 404 error.SetErrorString("unable to write back to register"); 405 return false; 406 } 407 } else 408 return ValueObject::SetData(data, error); 409 } 410