1 //===-- ValueObject.cpp -----------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/ValueObject.h" 10 11 #include "lldb/Core/Address.h" 12 #include "lldb/Core/Module.h" 13 #include "lldb/Core/ValueObjectCast.h" 14 #include "lldb/Core/ValueObjectChild.h" 15 #include "lldb/Core/ValueObjectConstResult.h" 16 #include "lldb/Core/ValueObjectDynamicValue.h" 17 #include "lldb/Core/ValueObjectMemory.h" 18 #include "lldb/Core/ValueObjectSyntheticFilter.h" 19 #include "lldb/DataFormatters/DataVisualization.h" 20 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 21 #include "lldb/DataFormatters/FormatManager.h" 22 #include "lldb/DataFormatters/StringPrinter.h" 23 #include "lldb/DataFormatters/TypeFormat.h" 24 #include "lldb/DataFormatters/TypeSummary.h" 25 #include "lldb/DataFormatters/TypeValidator.h" 26 #include "lldb/DataFormatters/ValueObjectPrinter.h" 27 #include "lldb/Expression/ExpressionVariable.h" 28 #include "lldb/Symbol/ClangASTContext.h" 29 #include "lldb/Symbol/CompileUnit.h" 30 #include "lldb/Symbol/CompilerType.h" 31 #include "lldb/Symbol/Declaration.h" 32 #include "lldb/Symbol/SymbolContext.h" 33 #include "lldb/Symbol/Type.h" 34 #include "lldb/Symbol/Variable.h" 35 #include "lldb/Target/ExecutionContext.h" 36 #include "lldb/Target/Language.h" 37 #include "lldb/Target/LanguageRuntime.h" 38 #include "lldb/Target/Process.h" 39 #include "lldb/Target/StackFrame.h" 40 #include "lldb/Target/Target.h" 41 #include "lldb/Target/Thread.h" 42 #include "lldb/Target/ThreadList.h" 43 #include "lldb/Utility/DataBuffer.h" 44 #include "lldb/Utility/DataBufferHeap.h" 45 #include "lldb/Utility/Flags.h" 46 #include "lldb/Utility/Log.h" 47 #include "lldb/Utility/Logging.h" 48 #include "lldb/Utility/Scalar.h" 49 #include "lldb/Utility/SharingPtr.h" 50 #include "lldb/Utility/Stream.h" 51 #include "lldb/Utility/StreamString.h" 52 #include "lldb/lldb-private-types.h" 53 54 #include "llvm/Support/Compiler.h" 55 56 #include <algorithm> 57 #include <cstdint> 58 #include <cstdlib> 59 #include <memory> 60 #include <tuple> 61 62 #include <assert.h> 63 #include <inttypes.h> 64 #include <stdio.h> 65 #include <string.h> 66 67 namespace lldb_private { 68 class ExecutionContextScope; 69 } 70 namespace lldb_private { 71 class SymbolContextScope; 72 } 73 74 using namespace lldb; 75 using namespace lldb_private; 76 77 static user_id_t g_value_obj_uid = 0; 78 79 // ValueObject constructor 80 ValueObject::ValueObject(ValueObject &parent) 81 : UserID(++g_value_obj_uid), // Unique identifier for every value object 82 m_parent(&parent), m_root(nullptr), 83 m_update_point(parent.GetUpdatePoint()), m_name(), m_data(), m_value(), 84 m_error(), m_value_str(), m_old_value_str(), m_location_str(), 85 m_summary_str(), m_object_desc_str(), m_validation_result(), 86 m_manager(parent.GetManager()), m_children(), m_synthetic_children(), 87 m_dynamic_value(nullptr), m_synthetic_value(nullptr), 88 m_deref_valobj(nullptr), m_format(eFormatDefault), 89 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 90 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 91 m_type_validator_sp(), m_user_id_of_forced_summary(), 92 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 93 m_value_checksum(), 94 m_preferred_display_language(lldb::eLanguageTypeUnknown), 95 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 96 m_children_count_valid(false), m_old_value_valid(false), 97 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 98 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 99 m_is_getting_summary(false), 100 m_did_calculate_complete_objc_class_type(false), 101 m_is_synthetic_children_generated( 102 parent.m_is_synthetic_children_generated) { 103 m_manager->ManageObject(this); 104 } 105 106 // ValueObject constructor 107 ValueObject::ValueObject(ExecutionContextScope *exe_scope, 108 AddressType child_ptr_or_ref_addr_type) 109 : UserID(++g_value_obj_uid), // Unique identifier for every value object 110 m_parent(nullptr), m_root(nullptr), m_update_point(exe_scope), m_name(), 111 m_data(), m_value(), m_error(), m_value_str(), m_old_value_str(), 112 m_location_str(), m_summary_str(), m_object_desc_str(), 113 m_validation_result(), m_manager(), m_children(), m_synthetic_children(), 114 m_dynamic_value(nullptr), m_synthetic_value(nullptr), 115 m_deref_valobj(nullptr), m_format(eFormatDefault), 116 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 117 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 118 m_type_validator_sp(), m_user_id_of_forced_summary(), 119 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 120 m_value_checksum(), 121 m_preferred_display_language(lldb::eLanguageTypeUnknown), 122 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 123 m_children_count_valid(false), m_old_value_valid(false), 124 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 125 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 126 m_is_getting_summary(false), 127 m_did_calculate_complete_objc_class_type(false), 128 m_is_synthetic_children_generated(false) { 129 m_manager = new ValueObjectManager(); 130 m_manager->ManageObject(this); 131 } 132 133 // Destructor 134 ValueObject::~ValueObject() {} 135 136 bool ValueObject::UpdateValueIfNeeded(bool update_format) { 137 138 bool did_change_formats = false; 139 140 if (update_format) 141 did_change_formats = UpdateFormatsIfNeeded(); 142 143 // If this is a constant value, then our success is predicated on whether we 144 // have an error or not 145 if (GetIsConstant()) { 146 // if you are constant, things might still have changed behind your back 147 // (e.g. you are a frozen object and things have changed deeper than you 148 // cared to freeze-dry yourself) in this case, your value has not changed, 149 // but "computed" entries might have, so you might now have a different 150 // summary, or a different object description. clear these so we will 151 // recompute them 152 if (update_format && !did_change_formats) 153 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | 154 eClearUserVisibleDataItemsDescription); 155 return m_error.Success(); 156 } 157 158 bool first_update = IsChecksumEmpty(); 159 160 if (NeedsUpdating()) { 161 m_update_point.SetUpdated(); 162 163 // Save the old value using swap to avoid a string copy which also will 164 // clear our m_value_str 165 if (m_value_str.empty()) { 166 m_old_value_valid = false; 167 } else { 168 m_old_value_valid = true; 169 m_old_value_str.swap(m_value_str); 170 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 171 } 172 173 ClearUserVisibleData(); 174 175 if (IsInScope()) { 176 const bool value_was_valid = GetValueIsValid(); 177 SetValueDidChange(false); 178 179 m_error.Clear(); 180 181 // Call the pure virtual function to update the value 182 183 bool need_compare_checksums = false; 184 llvm::SmallVector<uint8_t, 16> old_checksum; 185 186 if (!first_update && CanProvideValue()) { 187 need_compare_checksums = true; 188 old_checksum.resize(m_value_checksum.size()); 189 std::copy(m_value_checksum.begin(), m_value_checksum.end(), 190 old_checksum.begin()); 191 } 192 193 bool success = UpdateValue(); 194 195 SetValueIsValid(success); 196 197 if (success) { 198 const uint64_t max_checksum_size = 128; 199 m_data.Checksum(m_value_checksum, max_checksum_size); 200 } else { 201 need_compare_checksums = false; 202 m_value_checksum.clear(); 203 } 204 205 assert(!need_compare_checksums || 206 (!old_checksum.empty() && !m_value_checksum.empty())); 207 208 if (first_update) 209 SetValueDidChange(false); 210 else if (!m_value_did_change && !success) { 211 // The value wasn't gotten successfully, so we mark this as changed if 212 // the value used to be valid and now isn't 213 SetValueDidChange(value_was_valid); 214 } else if (need_compare_checksums) { 215 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], 216 m_value_checksum.size())); 217 } 218 219 } else { 220 m_error.SetErrorString("out of scope"); 221 } 222 } 223 return m_error.Success(); 224 } 225 226 bool ValueObject::UpdateFormatsIfNeeded() { 227 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_DATAFORMATTERS)); 228 LLDB_LOGF(log, 229 "[%s %p] checking for FormatManager revisions. ValueObject " 230 "rev: %d - Global rev: %d", 231 GetName().GetCString(), static_cast<void *>(this), 232 m_last_format_mgr_revision, 233 DataVisualization::GetCurrentRevision()); 234 235 bool any_change = false; 236 237 if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) { 238 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 239 any_change = true; 240 241 SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues)); 242 SetSummaryFormat( 243 DataVisualization::GetSummaryFormat(*this, GetDynamicValueType())); 244 #ifndef LLDB_DISABLE_PYTHON 245 SetSyntheticChildren( 246 DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType())); 247 #endif 248 SetValidator(DataVisualization::GetValidator(*this, GetDynamicValueType())); 249 } 250 251 return any_change; 252 } 253 254 void ValueObject::SetNeedsUpdate() { 255 m_update_point.SetNeedsUpdate(); 256 // We have to clear the value string here so ConstResult children will notice 257 // if their values are changed by hand (i.e. with SetValueAsCString). 258 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 259 } 260 261 void ValueObject::ClearDynamicTypeInformation() { 262 m_children_count_valid = false; 263 m_did_calculate_complete_objc_class_type = false; 264 m_last_format_mgr_revision = 0; 265 m_override_type = CompilerType(); 266 SetValueFormat(lldb::TypeFormatImplSP()); 267 SetSummaryFormat(lldb::TypeSummaryImplSP()); 268 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 269 } 270 271 CompilerType ValueObject::MaybeCalculateCompleteType() { 272 CompilerType compiler_type(GetCompilerTypeImpl()); 273 274 if (m_did_calculate_complete_objc_class_type) { 275 if (m_override_type.IsValid()) 276 return m_override_type; 277 else 278 return compiler_type; 279 } 280 281 m_did_calculate_complete_objc_class_type = true; 282 283 ProcessSP process_sp( 284 GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 285 286 if (!process_sp) 287 return compiler_type; 288 289 if (auto *runtime = 290 process_sp->GetLanguageRuntime(GetObjectRuntimeLanguage())) { 291 if (llvm::Optional<CompilerType> complete_type = 292 runtime->GetRuntimeType(compiler_type)) { 293 m_override_type = complete_type.getValue(); 294 if (m_override_type.IsValid()) 295 return m_override_type; 296 } 297 } 298 return compiler_type; 299 } 300 301 CompilerType ValueObject::GetCompilerType() { 302 return MaybeCalculateCompleteType(); 303 } 304 305 TypeImpl ValueObject::GetTypeImpl() { return TypeImpl(GetCompilerType()); } 306 307 DataExtractor &ValueObject::GetDataExtractor() { 308 UpdateValueIfNeeded(false); 309 return m_data; 310 } 311 312 const Status &ValueObject::GetError() { 313 UpdateValueIfNeeded(false); 314 return m_error; 315 } 316 317 ConstString ValueObject::GetName() const { return m_name; } 318 319 const char *ValueObject::GetLocationAsCString() { 320 return GetLocationAsCStringImpl(m_value, m_data); 321 } 322 323 const char *ValueObject::GetLocationAsCStringImpl(const Value &value, 324 const DataExtractor &data) { 325 if (UpdateValueIfNeeded(false)) { 326 if (m_location_str.empty()) { 327 StreamString sstr; 328 329 Value::ValueType value_type = value.GetValueType(); 330 331 switch (value_type) { 332 case Value::eValueTypeScalar: 333 case Value::eValueTypeVector: 334 if (value.GetContextType() == Value::eContextTypeRegisterInfo) { 335 RegisterInfo *reg_info = value.GetRegisterInfo(); 336 if (reg_info) { 337 if (reg_info->name) 338 m_location_str = reg_info->name; 339 else if (reg_info->alt_name) 340 m_location_str = reg_info->alt_name; 341 if (m_location_str.empty()) 342 m_location_str = (reg_info->encoding == lldb::eEncodingVector) 343 ? "vector" 344 : "scalar"; 345 } 346 } 347 if (m_location_str.empty()) 348 m_location_str = 349 (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 350 break; 351 352 case Value::eValueTypeLoadAddress: 353 case Value::eValueTypeFileAddress: 354 case Value::eValueTypeHostAddress: { 355 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 356 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, 357 value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 358 m_location_str = sstr.GetString(); 359 } break; 360 } 361 } 362 } 363 return m_location_str.c_str(); 364 } 365 366 Value &ValueObject::GetValue() { return m_value; } 367 368 const Value &ValueObject::GetValue() const { return m_value; } 369 370 bool ValueObject::ResolveValue(Scalar &scalar) { 371 if (UpdateValueIfNeeded( 372 false)) // make sure that you are up to date before returning anything 373 { 374 ExecutionContext exe_ctx(GetExecutionContextRef()); 375 Value tmp_value(m_value); 376 scalar = tmp_value.ResolveValue(&exe_ctx); 377 if (scalar.IsValid()) { 378 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 379 if (bitfield_bit_size) 380 return scalar.ExtractBitfield(bitfield_bit_size, 381 GetBitfieldBitOffset()); 382 return true; 383 } 384 } 385 return false; 386 } 387 388 bool ValueObject::IsLogicalTrue(Status &error) { 389 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 390 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 391 switch (is_logical_true) { 392 case eLazyBoolYes: 393 case eLazyBoolNo: 394 return (is_logical_true == true); 395 case eLazyBoolCalculate: 396 break; 397 } 398 } 399 400 Scalar scalar_value; 401 402 if (!ResolveValue(scalar_value)) { 403 error.SetErrorString("failed to get a scalar result"); 404 return false; 405 } 406 407 bool ret; 408 ret = scalar_value.ULongLong(1) != 0; 409 error.Clear(); 410 return ret; 411 } 412 413 bool ValueObject::GetValueIsValid() const { return m_value_is_valid; } 414 415 void ValueObject::SetValueIsValid(bool b) { m_value_is_valid = b; } 416 417 bool ValueObject::GetValueDidChange() { return m_value_did_change; } 418 419 void ValueObject::SetValueDidChange(bool value_changed) { 420 m_value_did_change = value_changed; 421 } 422 423 ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) { 424 ValueObjectSP child_sp; 425 // We may need to update our value if we are dynamic 426 if (IsPossibleDynamicType()) 427 UpdateValueIfNeeded(false); 428 if (idx < GetNumChildren()) { 429 // Check if we have already made the child value object? 430 if (can_create && !m_children.HasChildAtIndex(idx)) { 431 // No we haven't created the child at this index, so lets have our 432 // subclass do it and cache the result for quick future access. 433 m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0)); 434 } 435 436 ValueObject *child = m_children.GetChildAtIndex(idx); 437 if (child != nullptr) 438 return child->GetSP(); 439 } 440 return child_sp; 441 } 442 443 lldb::ValueObjectSP 444 ValueObject::GetChildAtIndexPath(llvm::ArrayRef<size_t> idxs, 445 size_t *index_of_error) { 446 if (idxs.size() == 0) 447 return GetSP(); 448 ValueObjectSP root(GetSP()); 449 for (size_t idx : idxs) { 450 root = root->GetChildAtIndex(idx, true); 451 if (!root) { 452 if (index_of_error) 453 *index_of_error = idx; 454 return root; 455 } 456 } 457 return root; 458 } 459 460 lldb::ValueObjectSP ValueObject::GetChildAtIndexPath( 461 llvm::ArrayRef<std::pair<size_t, bool>> idxs, size_t *index_of_error) { 462 if (idxs.size() == 0) 463 return GetSP(); 464 ValueObjectSP root(GetSP()); 465 for (std::pair<size_t, bool> idx : idxs) { 466 root = root->GetChildAtIndex(idx.first, idx.second); 467 if (!root) { 468 if (index_of_error) 469 *index_of_error = idx.first; 470 return root; 471 } 472 } 473 return root; 474 } 475 476 lldb::ValueObjectSP 477 ValueObject::GetChildAtNamePath(llvm::ArrayRef<ConstString> names, 478 ConstString *name_of_error) { 479 if (names.size() == 0) 480 return GetSP(); 481 ValueObjectSP root(GetSP()); 482 for (ConstString name : names) { 483 root = root->GetChildMemberWithName(name, true); 484 if (!root) { 485 if (name_of_error) 486 *name_of_error = name; 487 return root; 488 } 489 } 490 return root; 491 } 492 493 lldb::ValueObjectSP ValueObject::GetChildAtNamePath( 494 llvm::ArrayRef<std::pair<ConstString, bool>> names, 495 ConstString *name_of_error) { 496 if (names.size() == 0) 497 return GetSP(); 498 ValueObjectSP root(GetSP()); 499 for (std::pair<ConstString, bool> name : names) { 500 root = root->GetChildMemberWithName(name.first, name.second); 501 if (!root) { 502 if (name_of_error) 503 *name_of_error = name.first; 504 return root; 505 } 506 } 507 return root; 508 } 509 510 size_t ValueObject::GetIndexOfChildWithName(ConstString name) { 511 bool omit_empty_base_classes = true; 512 return GetCompilerType().GetIndexOfChildWithName(name.GetCString(), 513 omit_empty_base_classes); 514 } 515 516 ValueObjectSP ValueObject::GetChildMemberWithName(ConstString name, 517 bool can_create) { 518 // when getting a child by name, it could be buried inside some base classes 519 // (which really aren't part of the expression path), so we need a vector of 520 // indexes that can get us down to the correct child 521 ValueObjectSP child_sp; 522 523 // We may need to update our value if we are dynamic 524 if (IsPossibleDynamicType()) 525 UpdateValueIfNeeded(false); 526 527 std::vector<uint32_t> child_indexes; 528 bool omit_empty_base_classes = true; 529 const size_t num_child_indexes = 530 GetCompilerType().GetIndexOfChildMemberWithName( 531 name.GetCString(), omit_empty_base_classes, child_indexes); 532 if (num_child_indexes > 0) { 533 std::vector<uint32_t>::const_iterator pos = child_indexes.begin(); 534 std::vector<uint32_t>::const_iterator end = child_indexes.end(); 535 536 child_sp = GetChildAtIndex(*pos, can_create); 537 for (++pos; pos != end; ++pos) { 538 if (child_sp) { 539 ValueObjectSP new_child_sp(child_sp->GetChildAtIndex(*pos, can_create)); 540 child_sp = new_child_sp; 541 } else { 542 child_sp.reset(); 543 } 544 } 545 } 546 return child_sp; 547 } 548 549 size_t ValueObject::GetNumChildren(uint32_t max) { 550 UpdateValueIfNeeded(); 551 552 if (max < UINT32_MAX) { 553 if (m_children_count_valid) { 554 size_t children_count = m_children.GetChildrenCount(); 555 return children_count <= max ? children_count : max; 556 } else 557 return CalculateNumChildren(max); 558 } 559 560 if (!m_children_count_valid) { 561 SetNumChildren(CalculateNumChildren()); 562 } 563 return m_children.GetChildrenCount(); 564 } 565 566 bool ValueObject::MightHaveChildren() { 567 bool has_children = false; 568 const uint32_t type_info = GetTypeInfo(); 569 if (type_info) { 570 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference)) 571 has_children = true; 572 } else { 573 has_children = GetNumChildren() > 0; 574 } 575 return has_children; 576 } 577 578 // Should only be called by ValueObject::GetNumChildren() 579 void ValueObject::SetNumChildren(size_t num_children) { 580 m_children_count_valid = true; 581 m_children.SetChildrenCount(num_children); 582 } 583 584 void ValueObject::SetName(ConstString name) { m_name = name; } 585 586 ValueObject *ValueObject::CreateChildAtIndex(size_t idx, 587 bool synthetic_array_member, 588 int32_t synthetic_index) { 589 ValueObject *valobj = nullptr; 590 591 bool omit_empty_base_classes = true; 592 bool ignore_array_bounds = synthetic_array_member; 593 std::string child_name_str; 594 uint32_t child_byte_size = 0; 595 int32_t child_byte_offset = 0; 596 uint32_t child_bitfield_bit_size = 0; 597 uint32_t child_bitfield_bit_offset = 0; 598 bool child_is_base_class = false; 599 bool child_is_deref_of_parent = false; 600 uint64_t language_flags = 0; 601 602 const bool transparent_pointers = !synthetic_array_member; 603 CompilerType child_compiler_type; 604 605 ExecutionContext exe_ctx(GetExecutionContextRef()); 606 607 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex( 608 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes, 609 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 610 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 611 child_is_deref_of_parent, this, language_flags); 612 if (child_compiler_type) { 613 if (synthetic_index) 614 child_byte_offset += child_byte_size * synthetic_index; 615 616 ConstString child_name; 617 if (!child_name_str.empty()) 618 child_name.SetCString(child_name_str.c_str()); 619 620 valobj = new ValueObjectChild( 621 *this, child_compiler_type, child_name, child_byte_size, 622 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 623 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 624 language_flags); 625 } 626 627 return valobj; 628 } 629 630 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 631 std::string &destination, 632 lldb::LanguageType lang) { 633 return GetSummaryAsCString(summary_ptr, destination, 634 TypeSummaryOptions().SetLanguage(lang)); 635 } 636 637 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 638 std::string &destination, 639 const TypeSummaryOptions &options) { 640 destination.clear(); 641 642 // ideally we would like to bail out if passing NULL, but if we do so we end 643 // up not providing the summary for function pointers anymore 644 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 645 return false; 646 647 m_is_getting_summary = true; 648 649 TypeSummaryOptions actual_options(options); 650 651 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 652 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 653 654 // this is a hot path in code and we prefer to avoid setting this string all 655 // too often also clearing out other information that we might care to see in 656 // a crash log. might be useful in very specific situations though. 657 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. 658 Summary provider's description is %s", 659 GetTypeName().GetCString(), 660 GetName().GetCString(), 661 summary_ptr->GetDescription().c_str());*/ 662 663 if (UpdateValueIfNeeded(false) && summary_ptr) { 664 if (HasSyntheticValue()) 665 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on 666 // the synthetic children being 667 // up-to-date (e.g. ${svar%#}) 668 summary_ptr->FormatObject(this, destination, actual_options); 669 } 670 m_is_getting_summary = false; 671 return !destination.empty(); 672 } 673 674 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) { 675 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) { 676 TypeSummaryOptions summary_options; 677 summary_options.SetLanguage(lang); 678 GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str, 679 summary_options); 680 } 681 if (m_summary_str.empty()) 682 return nullptr; 683 return m_summary_str.c_str(); 684 } 685 686 bool ValueObject::GetSummaryAsCString(std::string &destination, 687 const TypeSummaryOptions &options) { 688 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options); 689 } 690 691 bool ValueObject::IsCStringContainer(bool check_pointer) { 692 CompilerType pointee_or_element_compiler_type; 693 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type)); 694 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 695 pointee_or_element_compiler_type.IsCharType()); 696 if (!is_char_arr_ptr) 697 return false; 698 if (!check_pointer) 699 return true; 700 if (type_flags.Test(eTypeIsArray)) 701 return true; 702 addr_t cstr_address = LLDB_INVALID_ADDRESS; 703 AddressType cstr_address_type = eAddressTypeInvalid; 704 cstr_address = GetAddressOf(true, &cstr_address_type); 705 return (cstr_address != LLDB_INVALID_ADDRESS); 706 } 707 708 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx, 709 uint32_t item_count) { 710 CompilerType pointee_or_element_compiler_type; 711 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type); 712 const bool is_pointer_type = type_info & eTypeIsPointer; 713 const bool is_array_type = type_info & eTypeIsArray; 714 if (!(is_pointer_type || is_array_type)) 715 return 0; 716 717 if (item_count == 0) 718 return 0; 719 720 ExecutionContext exe_ctx(GetExecutionContextRef()); 721 722 llvm::Optional<uint64_t> item_type_size = 723 pointee_or_element_compiler_type.GetByteSize( 724 exe_ctx.GetBestExecutionContextScope()); 725 if (!item_type_size) 726 return 0; 727 const uint64_t bytes = item_count * *item_type_size; 728 const uint64_t offset = item_idx * *item_type_size; 729 730 if (item_idx == 0 && item_count == 1) // simply a deref 731 { 732 if (is_pointer_type) { 733 Status error; 734 ValueObjectSP pointee_sp = Dereference(error); 735 if (error.Fail() || pointee_sp.get() == nullptr) 736 return 0; 737 return pointee_sp->GetData(data, error); 738 } else { 739 ValueObjectSP child_sp = GetChildAtIndex(0, true); 740 if (child_sp.get() == nullptr) 741 return 0; 742 Status error; 743 return child_sp->GetData(data, error); 744 } 745 return true; 746 } else /* (items > 1) */ 747 { 748 Status error; 749 lldb_private::DataBufferHeap *heap_buf_ptr = nullptr; 750 lldb::DataBufferSP data_sp(heap_buf_ptr = 751 new lldb_private::DataBufferHeap()); 752 753 AddressType addr_type; 754 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) 755 : GetAddressOf(true, &addr_type); 756 757 switch (addr_type) { 758 case eAddressTypeFile: { 759 ModuleSP module_sp(GetModule()); 760 if (module_sp) { 761 addr = addr + offset; 762 Address so_addr; 763 module_sp->ResolveFileAddress(addr, so_addr); 764 ExecutionContext exe_ctx(GetExecutionContextRef()); 765 Target *target = exe_ctx.GetTargetPtr(); 766 if (target) { 767 heap_buf_ptr->SetByteSize(bytes); 768 size_t bytes_read = target->ReadMemory( 769 so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 770 if (error.Success()) { 771 data.SetData(data_sp); 772 return bytes_read; 773 } 774 } 775 } 776 } break; 777 case eAddressTypeLoad: { 778 ExecutionContext exe_ctx(GetExecutionContextRef()); 779 Process *process = exe_ctx.GetProcessPtr(); 780 if (process) { 781 heap_buf_ptr->SetByteSize(bytes); 782 size_t bytes_read = process->ReadMemory( 783 addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 784 if (error.Success() || bytes_read > 0) { 785 data.SetData(data_sp); 786 return bytes_read; 787 } 788 } 789 } break; 790 case eAddressTypeHost: { 791 auto max_bytes = 792 GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 793 if (max_bytes && *max_bytes > offset) { 794 size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes); 795 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 796 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 797 break; 798 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read); 799 data.SetData(data_sp); 800 return bytes_read; 801 } 802 } break; 803 case eAddressTypeInvalid: 804 break; 805 } 806 } 807 return 0; 808 } 809 810 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) { 811 UpdateValueIfNeeded(false); 812 ExecutionContext exe_ctx(GetExecutionContextRef()); 813 error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 814 if (error.Fail()) { 815 if (m_data.GetByteSize()) { 816 data = m_data; 817 error.Clear(); 818 return data.GetByteSize(); 819 } else { 820 return 0; 821 } 822 } 823 data.SetAddressByteSize(m_data.GetAddressByteSize()); 824 data.SetByteOrder(m_data.GetByteOrder()); 825 return data.GetByteSize(); 826 } 827 828 bool ValueObject::SetData(DataExtractor &data, Status &error) { 829 error.Clear(); 830 // Make sure our value is up to date first so that our location and location 831 // type is valid. 832 if (!UpdateValueIfNeeded(false)) { 833 error.SetErrorString("unable to read value"); 834 return false; 835 } 836 837 uint64_t count = 0; 838 const Encoding encoding = GetCompilerType().GetEncoding(count); 839 840 const size_t byte_size = GetByteSize(); 841 842 Value::ValueType value_type = m_value.GetValueType(); 843 844 switch (value_type) { 845 case Value::eValueTypeScalar: { 846 Status set_error = 847 m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 848 849 if (!set_error.Success()) { 850 error.SetErrorStringWithFormat("unable to set scalar value: %s", 851 set_error.AsCString()); 852 return false; 853 } 854 } break; 855 case Value::eValueTypeLoadAddress: { 856 // If it is a load address, then the scalar value is the storage location 857 // of the data, and we have to shove this value down to that load location. 858 ExecutionContext exe_ctx(GetExecutionContextRef()); 859 Process *process = exe_ctx.GetProcessPtr(); 860 if (process) { 861 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 862 size_t bytes_written = process->WriteMemory( 863 target_addr, data.GetDataStart(), byte_size, error); 864 if (!error.Success()) 865 return false; 866 if (bytes_written != byte_size) { 867 error.SetErrorString("unable to write value to memory"); 868 return false; 869 } 870 } 871 } break; 872 case Value::eValueTypeHostAddress: { 873 // If it is a host address, then we stuff the scalar as a DataBuffer into 874 // the Value's data. 875 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 876 m_data.SetData(buffer_sp, 0); 877 data.CopyByteOrderedData(0, byte_size, 878 const_cast<uint8_t *>(m_data.GetDataStart()), 879 byte_size, m_data.GetByteOrder()); 880 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 881 } break; 882 case Value::eValueTypeFileAddress: 883 case Value::eValueTypeVector: 884 break; 885 } 886 887 // If we have reached this point, then we have successfully changed the 888 // value. 889 SetNeedsUpdate(); 890 return true; 891 } 892 893 static bool CopyStringDataToBufferSP(const StreamString &source, 894 lldb::DataBufferSP &destination) { 895 destination = std::make_shared<DataBufferHeap>(source.GetSize() + 1, 0); 896 memcpy(destination->GetBytes(), source.GetString().data(), source.GetSize()); 897 return true; 898 } 899 900 std::pair<size_t, bool> 901 ValueObject::ReadPointedString(lldb::DataBufferSP &buffer_sp, Status &error, 902 uint32_t max_length, bool honor_array, 903 Format item_format) { 904 bool was_capped = false; 905 StreamString s; 906 ExecutionContext exe_ctx(GetExecutionContextRef()); 907 Target *target = exe_ctx.GetTargetPtr(); 908 909 if (!target) { 910 s << "<no target to read from>"; 911 error.SetErrorString("no target to read from"); 912 CopyStringDataToBufferSP(s, buffer_sp); 913 return {0, was_capped}; 914 } 915 916 if (max_length == 0) 917 max_length = target->GetMaximumSizeOfStringSummary(); 918 919 size_t bytes_read = 0; 920 size_t total_bytes_read = 0; 921 922 CompilerType compiler_type = GetCompilerType(); 923 CompilerType elem_or_pointee_compiler_type; 924 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type)); 925 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 926 elem_or_pointee_compiler_type.IsCharType()) { 927 addr_t cstr_address = LLDB_INVALID_ADDRESS; 928 AddressType cstr_address_type = eAddressTypeInvalid; 929 930 size_t cstr_len = 0; 931 bool capped_data = false; 932 const bool is_array = type_flags.Test(eTypeIsArray); 933 if (is_array) { 934 // We have an array 935 uint64_t array_size = 0; 936 if (compiler_type.IsArrayType(nullptr, &array_size, nullptr)) { 937 cstr_len = array_size; 938 if (cstr_len > max_length) { 939 capped_data = true; 940 cstr_len = max_length; 941 } 942 } 943 cstr_address = GetAddressOf(true, &cstr_address_type); 944 } else { 945 // We have a pointer 946 cstr_address = GetPointerValue(&cstr_address_type); 947 } 948 949 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) { 950 if (cstr_address_type == eAddressTypeHost && is_array) { 951 const char *cstr = GetDataExtractor().PeekCStr(0); 952 if (cstr == nullptr) { 953 s << "<invalid address>"; 954 error.SetErrorString("invalid address"); 955 CopyStringDataToBufferSP(s, buffer_sp); 956 return {0, was_capped}; 957 } 958 buffer_sp = std::make_shared<DataBufferHeap>(cstr_len, 0); 959 memcpy(buffer_sp->GetBytes(), cstr, cstr_len); 960 return {cstr_len, was_capped}; 961 } else { 962 s << "<invalid address>"; 963 error.SetErrorString("invalid address"); 964 CopyStringDataToBufferSP(s, buffer_sp); 965 return {0, was_capped}; 966 } 967 } 968 969 Address cstr_so_addr(cstr_address); 970 DataExtractor data; 971 if (cstr_len > 0 && honor_array) { 972 // I am using GetPointeeData() here to abstract the fact that some 973 // ValueObjects are actually frozen pointers in the host but the pointed- 974 // to data lives in the debuggee, and GetPointeeData() automatically 975 // takes care of this 976 GetPointeeData(data, 0, cstr_len); 977 978 if ((bytes_read = data.GetByteSize()) > 0) { 979 total_bytes_read = bytes_read; 980 for (size_t offset = 0; offset < bytes_read; offset++) 981 s.Printf("%c", *data.PeekData(offset, 1)); 982 if (capped_data) 983 was_capped = true; 984 } 985 } else { 986 cstr_len = max_length; 987 const size_t k_max_buf_size = 64; 988 989 size_t offset = 0; 990 991 int cstr_len_displayed = -1; 992 bool capped_cstr = false; 993 // I am using GetPointeeData() here to abstract the fact that some 994 // ValueObjects are actually frozen pointers in the host but the pointed- 995 // to data lives in the debuggee, and GetPointeeData() automatically 996 // takes care of this 997 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) { 998 total_bytes_read += bytes_read; 999 const char *cstr = data.PeekCStr(0); 1000 size_t len = strnlen(cstr, k_max_buf_size); 1001 if (cstr_len_displayed < 0) 1002 cstr_len_displayed = len; 1003 1004 if (len == 0) 1005 break; 1006 cstr_len_displayed += len; 1007 if (len > bytes_read) 1008 len = bytes_read; 1009 if (len > cstr_len) 1010 len = cstr_len; 1011 1012 for (size_t offset = 0; offset < bytes_read; offset++) 1013 s.Printf("%c", *data.PeekData(offset, 1)); 1014 1015 if (len < k_max_buf_size) 1016 break; 1017 1018 if (len >= cstr_len) { 1019 capped_cstr = true; 1020 break; 1021 } 1022 1023 cstr_len -= len; 1024 offset += len; 1025 } 1026 1027 if (cstr_len_displayed >= 0) { 1028 if (capped_cstr) 1029 was_capped = true; 1030 } 1031 } 1032 } else { 1033 error.SetErrorString("not a string object"); 1034 s << "<not a string object>"; 1035 } 1036 CopyStringDataToBufferSP(s, buffer_sp); 1037 return {total_bytes_read, was_capped}; 1038 } 1039 1040 std::pair<TypeValidatorResult, std::string> ValueObject::GetValidationStatus() { 1041 if (!UpdateValueIfNeeded(true)) 1042 return {TypeValidatorResult::Success, 1043 ""}; // not the validator's job to discuss update problems 1044 1045 if (m_validation_result.hasValue()) 1046 return m_validation_result.getValue(); 1047 1048 if (!m_type_validator_sp) 1049 return {TypeValidatorResult::Success, ""}; // no validator no failure 1050 1051 auto outcome = m_type_validator_sp->FormatObject(this); 1052 1053 return (m_validation_result = {outcome.m_result, outcome.m_message}) 1054 .getValue(); 1055 } 1056 1057 const char *ValueObject::GetObjectDescription() { 1058 if (!UpdateValueIfNeeded(true)) 1059 return nullptr; 1060 1061 // Return cached value. 1062 if (!m_object_desc_str.empty()) 1063 return m_object_desc_str.c_str(); 1064 1065 ExecutionContext exe_ctx(GetExecutionContextRef()); 1066 Process *process = exe_ctx.GetProcessPtr(); 1067 if (!process) 1068 return nullptr; 1069 1070 // Returns the object description produced by one language runtime. 1071 auto get_object_description = [&](LanguageType language) -> const char * { 1072 if (LanguageRuntime *runtime = process->GetLanguageRuntime(language)) { 1073 StreamString s; 1074 if (runtime->GetObjectDescription(s, *this)) { 1075 m_object_desc_str.append(s.GetString()); 1076 return m_object_desc_str.c_str(); 1077 } 1078 } 1079 return nullptr; 1080 }; 1081 1082 // Try the native language runtime first. 1083 LanguageType native_language = GetObjectRuntimeLanguage(); 1084 if (const char *desc = get_object_description(native_language)) 1085 return desc; 1086 1087 // Try the Objective-C language runtime. This fallback is necessary 1088 // for Objective-C++ and mixed Objective-C / C++ programs. 1089 if (Language::LanguageIsCFamily(native_language)) 1090 return get_object_description(eLanguageTypeObjC); 1091 return nullptr; 1092 } 1093 1094 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format, 1095 std::string &destination) { 1096 if (UpdateValueIfNeeded(false)) 1097 return format.FormatObject(this, destination); 1098 else 1099 return false; 1100 } 1101 1102 bool ValueObject::GetValueAsCString(lldb::Format format, 1103 std::string &destination) { 1104 return GetValueAsCString(TypeFormatImpl_Format(format), destination); 1105 } 1106 1107 const char *ValueObject::GetValueAsCString() { 1108 if (UpdateValueIfNeeded(true)) { 1109 lldb::TypeFormatImplSP format_sp; 1110 lldb::Format my_format = GetFormat(); 1111 if (my_format == lldb::eFormatDefault) { 1112 if (m_type_format_sp) 1113 format_sp = m_type_format_sp; 1114 else { 1115 if (m_is_bitfield_for_scalar) 1116 my_format = eFormatUnsigned; 1117 else { 1118 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) { 1119 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1120 if (reg_info) 1121 my_format = reg_info->format; 1122 } else { 1123 my_format = GetValue().GetCompilerType().GetFormat(); 1124 } 1125 } 1126 } 1127 } 1128 if (my_format != m_last_format || m_value_str.empty()) { 1129 m_last_format = my_format; 1130 if (!format_sp) 1131 format_sp = std::make_shared<TypeFormatImpl_Format>(my_format); 1132 if (GetValueAsCString(*format_sp.get(), m_value_str)) { 1133 if (!m_value_did_change && m_old_value_valid) { 1134 // The value was gotten successfully, so we consider the value as 1135 // changed if the value string differs 1136 SetValueDidChange(m_old_value_str != m_value_str); 1137 } 1138 } 1139 } 1140 } 1141 if (m_value_str.empty()) 1142 return nullptr; 1143 return m_value_str.c_str(); 1144 } 1145 1146 // if > 8bytes, 0 is returned. this method should mostly be used to read 1147 // address values out of pointers 1148 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) { 1149 // If our byte size is zero this is an aggregate type that has children 1150 if (CanProvideValue()) { 1151 Scalar scalar; 1152 if (ResolveValue(scalar)) { 1153 if (success) 1154 *success = true; 1155 return scalar.ULongLong(fail_value); 1156 } 1157 // fallthrough, otherwise... 1158 } 1159 1160 if (success) 1161 *success = false; 1162 return fail_value; 1163 } 1164 1165 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) { 1166 // If our byte size is zero this is an aggregate type that has children 1167 if (CanProvideValue()) { 1168 Scalar scalar; 1169 if (ResolveValue(scalar)) { 1170 if (success) 1171 *success = true; 1172 return scalar.SLongLong(fail_value); 1173 } 1174 // fallthrough, otherwise... 1175 } 1176 1177 if (success) 1178 *success = false; 1179 return fail_value; 1180 } 1181 1182 // if any more "special cases" are added to 1183 // ValueObject::DumpPrintableRepresentation() please keep this call up to date 1184 // by returning true for your new special cases. We will eventually move to 1185 // checking this call result before trying to display special cases 1186 bool ValueObject::HasSpecialPrintableRepresentation( 1187 ValueObjectRepresentationStyle val_obj_display, Format custom_format) { 1188 Flags flags(GetTypeInfo()); 1189 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1190 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1191 if (IsCStringContainer(true) && 1192 (custom_format == eFormatCString || custom_format == eFormatCharArray || 1193 custom_format == eFormatChar || custom_format == eFormatVectorOfChar)) 1194 return true; 1195 1196 if (flags.Test(eTypeIsArray)) { 1197 if ((custom_format == eFormatBytes) || 1198 (custom_format == eFormatBytesWithASCII)) 1199 return true; 1200 1201 if ((custom_format == eFormatVectorOfChar) || 1202 (custom_format == eFormatVectorOfFloat32) || 1203 (custom_format == eFormatVectorOfFloat64) || 1204 (custom_format == eFormatVectorOfSInt16) || 1205 (custom_format == eFormatVectorOfSInt32) || 1206 (custom_format == eFormatVectorOfSInt64) || 1207 (custom_format == eFormatVectorOfSInt8) || 1208 (custom_format == eFormatVectorOfUInt128) || 1209 (custom_format == eFormatVectorOfUInt16) || 1210 (custom_format == eFormatVectorOfUInt32) || 1211 (custom_format == eFormatVectorOfUInt64) || 1212 (custom_format == eFormatVectorOfUInt8)) 1213 return true; 1214 } 1215 } 1216 return false; 1217 } 1218 1219 bool ValueObject::DumpPrintableRepresentation( 1220 Stream &s, ValueObjectRepresentationStyle val_obj_display, 1221 Format custom_format, PrintableRepresentationSpecialCases special, 1222 bool do_dump_error) { 1223 1224 Flags flags(GetTypeInfo()); 1225 1226 bool allow_special = 1227 (special == ValueObject::PrintableRepresentationSpecialCases::eAllow); 1228 const bool only_special = false; 1229 1230 if (allow_special) { 1231 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1232 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1233 // when being asked to get a printable display an array or pointer type 1234 // directly, try to "do the right thing" 1235 1236 if (IsCStringContainer(true) && 1237 (custom_format == eFormatCString || 1238 custom_format == eFormatCharArray || custom_format == eFormatChar || 1239 custom_format == 1240 eFormatVectorOfChar)) // print char[] & char* directly 1241 { 1242 Status error; 1243 lldb::DataBufferSP buffer_sp; 1244 std::pair<size_t, bool> read_string = ReadPointedString( 1245 buffer_sp, error, 0, (custom_format == eFormatVectorOfChar) || 1246 (custom_format == eFormatCharArray)); 1247 lldb_private::formatters::StringPrinter:: 1248 ReadBufferAndDumpToStreamOptions options(*this); 1249 options.SetData(DataExtractor( 1250 buffer_sp, lldb::eByteOrderInvalid, 1251 8)); // none of this matters for a string - pass some defaults 1252 options.SetStream(&s); 1253 options.SetPrefixToken(nullptr); 1254 options.SetQuote('"'); 1255 options.SetSourceSize(buffer_sp->GetByteSize()); 1256 options.SetIsTruncated(read_string.second); 1257 formatters::StringPrinter::ReadBufferAndDumpToStream< 1258 lldb_private::formatters::StringPrinter::StringElementType::ASCII>( 1259 options); 1260 return !error.Fail(); 1261 } 1262 1263 if (custom_format == eFormatEnum) 1264 return false; 1265 1266 // this only works for arrays, because I have no way to know when the 1267 // pointed memory ends, and no special \0 end of data marker 1268 if (flags.Test(eTypeIsArray)) { 1269 if ((custom_format == eFormatBytes) || 1270 (custom_format == eFormatBytesWithASCII)) { 1271 const size_t count = GetNumChildren(); 1272 1273 s << '['; 1274 for (size_t low = 0; low < count; low++) { 1275 1276 if (low) 1277 s << ','; 1278 1279 ValueObjectSP child = GetChildAtIndex(low, true); 1280 if (!child.get()) { 1281 s << "<invalid child>"; 1282 continue; 1283 } 1284 child->DumpPrintableRepresentation( 1285 s, ValueObject::eValueObjectRepresentationStyleValue, 1286 custom_format); 1287 } 1288 1289 s << ']'; 1290 1291 return true; 1292 } 1293 1294 if ((custom_format == eFormatVectorOfChar) || 1295 (custom_format == eFormatVectorOfFloat32) || 1296 (custom_format == eFormatVectorOfFloat64) || 1297 (custom_format == eFormatVectorOfSInt16) || 1298 (custom_format == eFormatVectorOfSInt32) || 1299 (custom_format == eFormatVectorOfSInt64) || 1300 (custom_format == eFormatVectorOfSInt8) || 1301 (custom_format == eFormatVectorOfUInt128) || 1302 (custom_format == eFormatVectorOfUInt16) || 1303 (custom_format == eFormatVectorOfUInt32) || 1304 (custom_format == eFormatVectorOfUInt64) || 1305 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes 1306 // with ASCII or any vector 1307 // format should be printed 1308 // directly 1309 { 1310 const size_t count = GetNumChildren(); 1311 1312 Format format = FormatManager::GetSingleItemFormat(custom_format); 1313 1314 s << '['; 1315 for (size_t low = 0; low < count; low++) { 1316 1317 if (low) 1318 s << ','; 1319 1320 ValueObjectSP child = GetChildAtIndex(low, true); 1321 if (!child.get()) { 1322 s << "<invalid child>"; 1323 continue; 1324 } 1325 child->DumpPrintableRepresentation( 1326 s, ValueObject::eValueObjectRepresentationStyleValue, format); 1327 } 1328 1329 s << ']'; 1330 1331 return true; 1332 } 1333 } 1334 1335 if ((custom_format == eFormatBoolean) || 1336 (custom_format == eFormatBinary) || (custom_format == eFormatChar) || 1337 (custom_format == eFormatCharPrintable) || 1338 (custom_format == eFormatComplexFloat) || 1339 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) || 1340 (custom_format == eFormatHexUppercase) || 1341 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) || 1342 (custom_format == eFormatOSType) || 1343 (custom_format == eFormatUnicode16) || 1344 (custom_format == eFormatUnicode32) || 1345 (custom_format == eFormatUnsigned) || 1346 (custom_format == eFormatPointer) || 1347 (custom_format == eFormatComplexInteger) || 1348 (custom_format == eFormatComplex) || 1349 (custom_format == eFormatDefault)) // use the [] operator 1350 return false; 1351 } 1352 } 1353 1354 if (only_special) 1355 return false; 1356 1357 bool var_success = false; 1358 1359 { 1360 llvm::StringRef str; 1361 1362 // this is a local stream that we are using to ensure that the data pointed 1363 // to by cstr survives long enough for us to copy it to its destination - 1364 // it is necessary to have this temporary storage area for cases where our 1365 // desired output is not backed by some other longer-term storage 1366 StreamString strm; 1367 1368 if (custom_format != eFormatInvalid) 1369 SetFormat(custom_format); 1370 1371 switch (val_obj_display) { 1372 case eValueObjectRepresentationStyleValue: 1373 str = GetValueAsCString(); 1374 break; 1375 1376 case eValueObjectRepresentationStyleSummary: 1377 str = GetSummaryAsCString(); 1378 break; 1379 1380 case eValueObjectRepresentationStyleLanguageSpecific: 1381 str = GetObjectDescription(); 1382 break; 1383 1384 case eValueObjectRepresentationStyleLocation: 1385 str = GetLocationAsCString(); 1386 break; 1387 1388 case eValueObjectRepresentationStyleChildrenCount: 1389 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1390 str = strm.GetString(); 1391 break; 1392 1393 case eValueObjectRepresentationStyleType: 1394 str = GetTypeName().GetStringRef(); 1395 break; 1396 1397 case eValueObjectRepresentationStyleName: 1398 str = GetName().GetStringRef(); 1399 break; 1400 1401 case eValueObjectRepresentationStyleExpressionPath: 1402 GetExpressionPath(strm, false); 1403 str = strm.GetString(); 1404 break; 1405 } 1406 1407 if (str.empty()) { 1408 if (val_obj_display == eValueObjectRepresentationStyleValue) 1409 str = GetSummaryAsCString(); 1410 else if (val_obj_display == eValueObjectRepresentationStyleSummary) { 1411 if (!CanProvideValue()) { 1412 strm.Printf("%s @ %s", GetTypeName().AsCString(), 1413 GetLocationAsCString()); 1414 str = strm.GetString(); 1415 } else 1416 str = GetValueAsCString(); 1417 } 1418 } 1419 1420 if (!str.empty()) 1421 s << str; 1422 else { 1423 if (m_error.Fail()) { 1424 if (do_dump_error) 1425 s.Printf("<%s>", m_error.AsCString()); 1426 else 1427 return false; 1428 } else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1429 s.PutCString("<no summary available>"); 1430 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1431 s.PutCString("<no value available>"); 1432 else if (val_obj_display == 1433 eValueObjectRepresentationStyleLanguageSpecific) 1434 s.PutCString("<not a valid Objective-C object>"); // edit this if we 1435 // have other runtimes 1436 // that support a 1437 // description 1438 else 1439 s.PutCString("<no printable representation>"); 1440 } 1441 1442 // we should only return false here if we could not do *anything* even if 1443 // we have an error message as output, that's a success from our callers' 1444 // perspective, so return true 1445 var_success = true; 1446 1447 if (custom_format != eFormatInvalid) 1448 SetFormat(eFormatDefault); 1449 } 1450 1451 return var_success; 1452 } 1453 1454 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address, 1455 AddressType *address_type) { 1456 // Can't take address of a bitfield 1457 if (IsBitfield()) 1458 return LLDB_INVALID_ADDRESS; 1459 1460 if (!UpdateValueIfNeeded(false)) 1461 return LLDB_INVALID_ADDRESS; 1462 1463 switch (m_value.GetValueType()) { 1464 case Value::eValueTypeScalar: 1465 case Value::eValueTypeVector: 1466 if (scalar_is_load_address) { 1467 if (address_type) 1468 *address_type = eAddressTypeLoad; 1469 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1470 } 1471 break; 1472 1473 case Value::eValueTypeLoadAddress: 1474 case Value::eValueTypeFileAddress: { 1475 if (address_type) 1476 *address_type = m_value.GetValueAddressType(); 1477 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1478 } break; 1479 case Value::eValueTypeHostAddress: { 1480 if (address_type) 1481 *address_type = m_value.GetValueAddressType(); 1482 return LLDB_INVALID_ADDRESS; 1483 } break; 1484 } 1485 if (address_type) 1486 *address_type = eAddressTypeInvalid; 1487 return LLDB_INVALID_ADDRESS; 1488 } 1489 1490 addr_t ValueObject::GetPointerValue(AddressType *address_type) { 1491 addr_t address = LLDB_INVALID_ADDRESS; 1492 if (address_type) 1493 *address_type = eAddressTypeInvalid; 1494 1495 if (!UpdateValueIfNeeded(false)) 1496 return address; 1497 1498 switch (m_value.GetValueType()) { 1499 case Value::eValueTypeScalar: 1500 case Value::eValueTypeVector: 1501 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1502 break; 1503 1504 case Value::eValueTypeHostAddress: 1505 case Value::eValueTypeLoadAddress: 1506 case Value::eValueTypeFileAddress: { 1507 lldb::offset_t data_offset = 0; 1508 address = m_data.GetPointer(&data_offset); 1509 } break; 1510 } 1511 1512 if (address_type) 1513 *address_type = GetAddressTypeOfChildren(); 1514 1515 return address; 1516 } 1517 1518 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) { 1519 error.Clear(); 1520 // Make sure our value is up to date first so that our location and location 1521 // type is valid. 1522 if (!UpdateValueIfNeeded(false)) { 1523 error.SetErrorString("unable to read value"); 1524 return false; 1525 } 1526 1527 uint64_t count = 0; 1528 const Encoding encoding = GetCompilerType().GetEncoding(count); 1529 1530 const size_t byte_size = GetByteSize(); 1531 1532 Value::ValueType value_type = m_value.GetValueType(); 1533 1534 if (value_type == Value::eValueTypeScalar) { 1535 // If the value is already a scalar, then let the scalar change itself: 1536 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size); 1537 } else if (byte_size <= 16) { 1538 // If the value fits in a scalar, then make a new scalar and again let the 1539 // scalar code do the conversion, then figure out where to put the new 1540 // value. 1541 Scalar new_scalar; 1542 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size); 1543 if (error.Success()) { 1544 switch (value_type) { 1545 case Value::eValueTypeLoadAddress: { 1546 // If it is a load address, then the scalar value is the storage 1547 // location of the data, and we have to shove this value down to that 1548 // load location. 1549 ExecutionContext exe_ctx(GetExecutionContextRef()); 1550 Process *process = exe_ctx.GetProcessPtr(); 1551 if (process) { 1552 addr_t target_addr = 1553 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1554 size_t bytes_written = process->WriteScalarToMemory( 1555 target_addr, new_scalar, byte_size, error); 1556 if (!error.Success()) 1557 return false; 1558 if (bytes_written != byte_size) { 1559 error.SetErrorString("unable to write value to memory"); 1560 return false; 1561 } 1562 } 1563 } break; 1564 case Value::eValueTypeHostAddress: { 1565 // If it is a host address, then we stuff the scalar as a DataBuffer 1566 // into the Value's data. 1567 DataExtractor new_data; 1568 new_data.SetByteOrder(m_data.GetByteOrder()); 1569 1570 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 1571 m_data.SetData(buffer_sp, 0); 1572 bool success = new_scalar.GetData(new_data); 1573 if (success) { 1574 new_data.CopyByteOrderedData( 1575 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()), 1576 byte_size, m_data.GetByteOrder()); 1577 } 1578 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1579 1580 } break; 1581 case Value::eValueTypeFileAddress: 1582 case Value::eValueTypeScalar: 1583 case Value::eValueTypeVector: 1584 break; 1585 } 1586 } else { 1587 return false; 1588 } 1589 } else { 1590 // We don't support setting things bigger than a scalar at present. 1591 error.SetErrorString("unable to write aggregate data type"); 1592 return false; 1593 } 1594 1595 // If we have reached this point, then we have successfully changed the 1596 // value. 1597 SetNeedsUpdate(); 1598 return true; 1599 } 1600 1601 bool ValueObject::GetDeclaration(Declaration &decl) { 1602 decl.Clear(); 1603 return false; 1604 } 1605 1606 ConstString ValueObject::GetTypeName() { 1607 return GetCompilerType().GetConstTypeName(); 1608 } 1609 1610 ConstString ValueObject::GetDisplayTypeName() { return GetTypeName(); } 1611 1612 ConstString ValueObject::GetQualifiedTypeName() { 1613 return GetCompilerType().GetConstQualifiedTypeName(); 1614 } 1615 1616 LanguageType ValueObject::GetObjectRuntimeLanguage() { 1617 return GetCompilerType().GetMinimumLanguage(); 1618 } 1619 1620 void ValueObject::AddSyntheticChild(ConstString key, 1621 ValueObject *valobj) { 1622 m_synthetic_children[key] = valobj; 1623 } 1624 1625 ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const { 1626 ValueObjectSP synthetic_child_sp; 1627 std::map<ConstString, ValueObject *>::const_iterator pos = 1628 m_synthetic_children.find(key); 1629 if (pos != m_synthetic_children.end()) 1630 synthetic_child_sp = pos->second->GetSP(); 1631 return synthetic_child_sp; 1632 } 1633 1634 uint32_t 1635 ValueObject::GetTypeInfo(CompilerType *pointee_or_element_compiler_type) { 1636 return GetCompilerType().GetTypeInfo(pointee_or_element_compiler_type); 1637 } 1638 1639 bool ValueObject::IsPointerType() { return GetCompilerType().IsPointerType(); } 1640 1641 bool ValueObject::IsArrayType() { 1642 return GetCompilerType().IsArrayType(nullptr, nullptr, nullptr); 1643 } 1644 1645 bool ValueObject::IsScalarType() { return GetCompilerType().IsScalarType(); } 1646 1647 bool ValueObject::IsIntegerType(bool &is_signed) { 1648 return GetCompilerType().IsIntegerType(is_signed); 1649 } 1650 1651 bool ValueObject::IsPointerOrReferenceType() { 1652 return GetCompilerType().IsPointerOrReferenceType(); 1653 } 1654 1655 bool ValueObject::IsPossibleDynamicType() { 1656 ExecutionContext exe_ctx(GetExecutionContextRef()); 1657 Process *process = exe_ctx.GetProcessPtr(); 1658 if (process) 1659 return process->IsPossibleDynamicValue(*this); 1660 else 1661 return GetCompilerType().IsPossibleDynamicType(nullptr, true, true); 1662 } 1663 1664 bool ValueObject::IsRuntimeSupportValue() { 1665 Process *process(GetProcessSP().get()); 1666 if (!process) 1667 return false; 1668 1669 // We trust the the compiler did the right thing and marked runtime support 1670 // values as artificial. 1671 if (!GetVariable() || !GetVariable()->IsArtificial()) 1672 return false; 1673 1674 if (auto *runtime = process->GetLanguageRuntime(GetVariable()->GetLanguage())) 1675 if (runtime->IsWhitelistedRuntimeValue(GetName())) 1676 return false; 1677 1678 return true; 1679 } 1680 1681 bool ValueObject::IsNilReference() { 1682 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1683 return language->IsNilReference(*this); 1684 } 1685 return false; 1686 } 1687 1688 bool ValueObject::IsUninitializedReference() { 1689 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1690 return language->IsUninitializedReference(*this); 1691 } 1692 return false; 1693 } 1694 1695 // This allows you to create an array member using and index that doesn't not 1696 // fall in the normal bounds of the array. Many times structure can be defined 1697 // as: struct Collection { 1698 // uint32_t item_count; 1699 // Item item_array[0]; 1700 // }; 1701 // The size of the "item_array" is 1, but many times in practice there are more 1702 // items in "item_array". 1703 1704 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index, 1705 bool can_create) { 1706 ValueObjectSP synthetic_child_sp; 1707 if (IsPointerType() || IsArrayType()) { 1708 char index_str[64]; 1709 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 1710 ConstString index_const_str(index_str); 1711 // Check if we have already created a synthetic array member in this valid 1712 // object. If we have we will re-use it. 1713 synthetic_child_sp = GetSyntheticChild(index_const_str); 1714 if (!synthetic_child_sp) { 1715 ValueObject *synthetic_child; 1716 // We haven't made a synthetic array member for INDEX yet, so lets make 1717 // one and cache it for any future reference. 1718 synthetic_child = CreateChildAtIndex(0, true, index); 1719 1720 // Cache the value if we got one back... 1721 if (synthetic_child) { 1722 AddSyntheticChild(index_const_str, synthetic_child); 1723 synthetic_child_sp = synthetic_child->GetSP(); 1724 synthetic_child_sp->SetName(ConstString(index_str)); 1725 synthetic_child_sp->m_is_array_item_for_pointer = true; 1726 } 1727 } 1728 } 1729 return synthetic_child_sp; 1730 } 1731 1732 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to, 1733 bool can_create) { 1734 ValueObjectSP synthetic_child_sp; 1735 if (IsScalarType()) { 1736 char index_str[64]; 1737 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 1738 ConstString index_const_str(index_str); 1739 // Check if we have already created a synthetic array member in this valid 1740 // object. If we have we will re-use it. 1741 synthetic_child_sp = GetSyntheticChild(index_const_str); 1742 if (!synthetic_child_sp) { 1743 uint32_t bit_field_size = to - from + 1; 1744 uint32_t bit_field_offset = from; 1745 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 1746 bit_field_offset = 1747 GetByteSize() * 8 - bit_field_size - bit_field_offset; 1748 // We haven't made a synthetic array member for INDEX yet, so lets make 1749 // one and cache it for any future reference. 1750 ValueObjectChild *synthetic_child = new ValueObjectChild( 1751 *this, GetCompilerType(), index_const_str, GetByteSize(), 0, 1752 bit_field_size, bit_field_offset, false, false, eAddressTypeInvalid, 1753 0); 1754 1755 // Cache the value if we got one back... 1756 if (synthetic_child) { 1757 AddSyntheticChild(index_const_str, synthetic_child); 1758 synthetic_child_sp = synthetic_child->GetSP(); 1759 synthetic_child_sp->SetName(ConstString(index_str)); 1760 synthetic_child_sp->m_is_bitfield_for_scalar = true; 1761 } 1762 } 1763 } 1764 return synthetic_child_sp; 1765 } 1766 1767 ValueObjectSP ValueObject::GetSyntheticChildAtOffset( 1768 uint32_t offset, const CompilerType &type, bool can_create, 1769 ConstString name_const_str) { 1770 1771 ValueObjectSP synthetic_child_sp; 1772 1773 if (name_const_str.IsEmpty()) { 1774 char name_str[64]; 1775 snprintf(name_str, sizeof(name_str), "@%i", offset); 1776 name_const_str.SetCString(name_str); 1777 } 1778 1779 // Check if we have already created a synthetic array member in this valid 1780 // object. If we have we will re-use it. 1781 synthetic_child_sp = GetSyntheticChild(name_const_str); 1782 1783 if (synthetic_child_sp.get()) 1784 return synthetic_child_sp; 1785 1786 if (!can_create) 1787 return {}; 1788 1789 ExecutionContext exe_ctx(GetExecutionContextRef()); 1790 llvm::Optional<uint64_t> size = 1791 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1792 if (!size) 1793 return {}; 1794 ValueObjectChild *synthetic_child = 1795 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1796 false, false, eAddressTypeInvalid, 0); 1797 if (synthetic_child) { 1798 AddSyntheticChild(name_const_str, synthetic_child); 1799 synthetic_child_sp = synthetic_child->GetSP(); 1800 synthetic_child_sp->SetName(name_const_str); 1801 synthetic_child_sp->m_is_child_at_offset = true; 1802 } 1803 return synthetic_child_sp; 1804 } 1805 1806 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset, 1807 const CompilerType &type, 1808 bool can_create, 1809 ConstString name_const_str) { 1810 ValueObjectSP synthetic_child_sp; 1811 1812 if (name_const_str.IsEmpty()) { 1813 char name_str[128]; 1814 snprintf(name_str, sizeof(name_str), "base%s@%i", 1815 type.GetTypeName().AsCString("<unknown>"), offset); 1816 name_const_str.SetCString(name_str); 1817 } 1818 1819 // Check if we have already created a synthetic array member in this valid 1820 // object. If we have we will re-use it. 1821 synthetic_child_sp = GetSyntheticChild(name_const_str); 1822 1823 if (synthetic_child_sp.get()) 1824 return synthetic_child_sp; 1825 1826 if (!can_create) 1827 return {}; 1828 1829 const bool is_base_class = true; 1830 1831 ExecutionContext exe_ctx(GetExecutionContextRef()); 1832 llvm::Optional<uint64_t> size = 1833 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1834 if (!size) 1835 return {}; 1836 ValueObjectChild *synthetic_child = 1837 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1838 is_base_class, false, eAddressTypeInvalid, 0); 1839 if (synthetic_child) { 1840 AddSyntheticChild(name_const_str, synthetic_child); 1841 synthetic_child_sp = synthetic_child->GetSP(); 1842 synthetic_child_sp->SetName(name_const_str); 1843 } 1844 return synthetic_child_sp; 1845 } 1846 1847 // your expression path needs to have a leading . or -> (unless it somehow 1848 // "looks like" an array, in which case it has a leading [ symbol). while the [ 1849 // is meaningful and should be shown to the user, . and -> are just parser 1850 // design, but by no means added information for the user.. strip them off 1851 static const char *SkipLeadingExpressionPathSeparators(const char *expression) { 1852 if (!expression || !expression[0]) 1853 return expression; 1854 if (expression[0] == '.') 1855 return expression + 1; 1856 if (expression[0] == '-' && expression[1] == '>') 1857 return expression + 2; 1858 return expression; 1859 } 1860 1861 ValueObjectSP 1862 ValueObject::GetSyntheticExpressionPathChild(const char *expression, 1863 bool can_create) { 1864 ValueObjectSP synthetic_child_sp; 1865 ConstString name_const_string(expression); 1866 // Check if we have already created a synthetic array member in this valid 1867 // object. If we have we will re-use it. 1868 synthetic_child_sp = GetSyntheticChild(name_const_string); 1869 if (!synthetic_child_sp) { 1870 // We haven't made a synthetic array member for expression yet, so lets 1871 // make one and cache it for any future reference. 1872 synthetic_child_sp = GetValueForExpressionPath( 1873 expression, nullptr, nullptr, 1874 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal( 1875 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 1876 None)); 1877 1878 // Cache the value if we got one back... 1879 if (synthetic_child_sp.get()) { 1880 // FIXME: this causes a "real" child to end up with its name changed to 1881 // the contents of expression 1882 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 1883 synthetic_child_sp->SetName( 1884 ConstString(SkipLeadingExpressionPathSeparators(expression))); 1885 } 1886 } 1887 return synthetic_child_sp; 1888 } 1889 1890 void ValueObject::CalculateSyntheticValue(bool use_synthetic) { 1891 if (!use_synthetic) 1892 return; 1893 1894 TargetSP target_sp(GetTargetSP()); 1895 if (target_sp && !target_sp->GetEnableSyntheticValue()) { 1896 m_synthetic_value = nullptr; 1897 return; 1898 } 1899 1900 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 1901 1902 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 1903 return; 1904 1905 if (m_synthetic_children_sp.get() == nullptr) 1906 return; 1907 1908 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 1909 return; 1910 1911 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 1912 } 1913 1914 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) { 1915 if (use_dynamic == eNoDynamicValues) 1916 return; 1917 1918 if (!m_dynamic_value && !IsDynamic()) { 1919 ExecutionContext exe_ctx(GetExecutionContextRef()); 1920 Process *process = exe_ctx.GetProcessPtr(); 1921 if (process && process->IsPossibleDynamicValue(*this)) { 1922 ClearDynamicTypeInformation(); 1923 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic); 1924 } 1925 } 1926 } 1927 1928 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) { 1929 if (use_dynamic == eNoDynamicValues) 1930 return ValueObjectSP(); 1931 1932 if (!IsDynamic() && m_dynamic_value == nullptr) { 1933 CalculateDynamicValue(use_dynamic); 1934 } 1935 if (m_dynamic_value) 1936 return m_dynamic_value->GetSP(); 1937 else 1938 return ValueObjectSP(); 1939 } 1940 1941 ValueObjectSP ValueObject::GetStaticValue() { return GetSP(); } 1942 1943 lldb::ValueObjectSP ValueObject::GetNonSyntheticValue() { return GetSP(); } 1944 1945 ValueObjectSP ValueObject::GetSyntheticValue(bool use_synthetic) { 1946 if (!use_synthetic) 1947 return ValueObjectSP(); 1948 1949 CalculateSyntheticValue(use_synthetic); 1950 1951 if (m_synthetic_value) 1952 return m_synthetic_value->GetSP(); 1953 else 1954 return ValueObjectSP(); 1955 } 1956 1957 bool ValueObject::HasSyntheticValue() { 1958 UpdateFormatsIfNeeded(); 1959 1960 if (m_synthetic_children_sp.get() == nullptr) 1961 return false; 1962 1963 CalculateSyntheticValue(true); 1964 1965 return m_synthetic_value != nullptr; 1966 } 1967 1968 bool ValueObject::GetBaseClassPath(Stream &s) { 1969 if (IsBaseClass()) { 1970 bool parent_had_base_class = 1971 GetParent() && GetParent()->GetBaseClassPath(s); 1972 CompilerType compiler_type = GetCompilerType(); 1973 std::string cxx_class_name; 1974 bool this_had_base_class = 1975 ClangASTContext::GetCXXClassName(compiler_type, cxx_class_name); 1976 if (this_had_base_class) { 1977 if (parent_had_base_class) 1978 s.PutCString("::"); 1979 s.PutCString(cxx_class_name); 1980 } 1981 return parent_had_base_class || this_had_base_class; 1982 } 1983 return false; 1984 } 1985 1986 ValueObject *ValueObject::GetNonBaseClassParent() { 1987 if (GetParent()) { 1988 if (GetParent()->IsBaseClass()) 1989 return GetParent()->GetNonBaseClassParent(); 1990 else 1991 return GetParent(); 1992 } 1993 return nullptr; 1994 } 1995 1996 bool ValueObject::IsBaseClass(uint32_t &depth) { 1997 if (!IsBaseClass()) { 1998 depth = 0; 1999 return false; 2000 } 2001 if (GetParent()) { 2002 GetParent()->IsBaseClass(depth); 2003 depth = depth + 1; 2004 return true; 2005 } 2006 // TODO: a base of no parent? weird.. 2007 depth = 1; 2008 return true; 2009 } 2010 2011 void ValueObject::GetExpressionPath(Stream &s, bool qualify_cxx_base_classes, 2012 GetExpressionPathFormat epformat) { 2013 // synthetic children do not actually "exist" as part of the hierarchy, and 2014 // sometimes they are consed up in ways that don't make sense from an 2015 // underlying language/API standpoint. So, use a special code path here to 2016 // return something that can hopefully be used in expression 2017 if (m_is_synthetic_children_generated) { 2018 UpdateValueIfNeeded(); 2019 2020 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) { 2021 if (IsPointerOrReferenceType()) { 2022 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"), 2023 GetValueAsUnsigned(0)); 2024 return; 2025 } else { 2026 uint64_t load_addr = 2027 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2028 if (load_addr != LLDB_INVALID_ADDRESS) { 2029 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"), 2030 load_addr); 2031 return; 2032 } 2033 } 2034 } 2035 2036 if (CanProvideValue()) { 2037 s.Printf("((%s)%s)", GetTypeName().AsCString("void"), 2038 GetValueAsCString()); 2039 return; 2040 } 2041 2042 return; 2043 } 2044 2045 const bool is_deref_of_parent = IsDereferenceOfParent(); 2046 2047 if (is_deref_of_parent && 2048 epformat == eGetExpressionPathFormatDereferencePointers) { 2049 // this is the original format of GetExpressionPath() producing code like 2050 // *(a_ptr).memberName, which is entirely fine, until you put this into 2051 // StackFrame::GetValueForVariableExpressionPath() which prefers to see 2052 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings 2053 // in this latter format 2054 s.PutCString("*("); 2055 } 2056 2057 ValueObject *parent = GetParent(); 2058 2059 if (parent) 2060 parent->GetExpressionPath(s, qualify_cxx_base_classes, epformat); 2061 2062 // if we are a deref_of_parent just because we are synthetic array members 2063 // made up to allow ptr[%d] syntax to work in variable printing, then add our 2064 // name ([%d]) to the expression path 2065 if (m_is_array_item_for_pointer && 2066 epformat == eGetExpressionPathFormatHonorPointers) 2067 s.PutCString(m_name.AsCString()); 2068 2069 if (!IsBaseClass()) { 2070 if (!is_deref_of_parent) { 2071 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2072 if (non_base_class_parent && 2073 !non_base_class_parent->GetName().IsEmpty()) { 2074 CompilerType non_base_class_parent_compiler_type = 2075 non_base_class_parent->GetCompilerType(); 2076 if (non_base_class_parent_compiler_type) { 2077 if (parent && parent->IsDereferenceOfParent() && 2078 epformat == eGetExpressionPathFormatHonorPointers) { 2079 s.PutCString("->"); 2080 } else { 2081 const uint32_t non_base_class_parent_type_info = 2082 non_base_class_parent_compiler_type.GetTypeInfo(); 2083 2084 if (non_base_class_parent_type_info & eTypeIsPointer) { 2085 s.PutCString("->"); 2086 } else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2087 !(non_base_class_parent_type_info & eTypeIsArray)) { 2088 s.PutChar('.'); 2089 } 2090 } 2091 } 2092 } 2093 2094 const char *name = GetName().GetCString(); 2095 if (name) { 2096 if (qualify_cxx_base_classes) { 2097 if (GetBaseClassPath(s)) 2098 s.PutCString("::"); 2099 } 2100 s.PutCString(name); 2101 } 2102 } 2103 } 2104 2105 if (is_deref_of_parent && 2106 epformat == eGetExpressionPathFormatDereferencePointers) { 2107 s.PutChar(')'); 2108 } 2109 } 2110 2111 ValueObjectSP ValueObject::GetValueForExpressionPath( 2112 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2113 ExpressionPathEndResultType *final_value_type, 2114 const GetValueForExpressionPathOptions &options, 2115 ExpressionPathAftermath *final_task_on_target) { 2116 2117 ExpressionPathScanEndReason dummy_reason_to_stop = 2118 ValueObject::eExpressionPathScanEndReasonUnknown; 2119 ExpressionPathEndResultType dummy_final_value_type = 2120 ValueObject::eExpressionPathEndResultTypeInvalid; 2121 ExpressionPathAftermath dummy_final_task_on_target = 2122 ValueObject::eExpressionPathAftermathNothing; 2123 2124 ValueObjectSP ret_val = GetValueForExpressionPath_Impl( 2125 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2126 final_value_type ? final_value_type : &dummy_final_value_type, options, 2127 final_task_on_target ? final_task_on_target 2128 : &dummy_final_task_on_target); 2129 2130 if (!final_task_on_target || 2131 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2132 return ret_val; 2133 2134 if (ret_val.get() && 2135 ((final_value_type ? *final_value_type : dummy_final_value_type) == 2136 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress 2137 // of plain objects 2138 { 2139 if ((final_task_on_target ? *final_task_on_target 2140 : dummy_final_task_on_target) == 2141 ValueObject::eExpressionPathAftermathDereference) { 2142 Status error; 2143 ValueObjectSP final_value = ret_val->Dereference(error); 2144 if (error.Fail() || !final_value.get()) { 2145 if (reason_to_stop) 2146 *reason_to_stop = 2147 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2148 if (final_value_type) 2149 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2150 return ValueObjectSP(); 2151 } else { 2152 if (final_task_on_target) 2153 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2154 return final_value; 2155 } 2156 } 2157 if (*final_task_on_target == 2158 ValueObject::eExpressionPathAftermathTakeAddress) { 2159 Status error; 2160 ValueObjectSP final_value = ret_val->AddressOf(error); 2161 if (error.Fail() || !final_value.get()) { 2162 if (reason_to_stop) 2163 *reason_to_stop = 2164 ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2165 if (final_value_type) 2166 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2167 return ValueObjectSP(); 2168 } else { 2169 if (final_task_on_target) 2170 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2171 return final_value; 2172 } 2173 } 2174 } 2175 return ret_val; // final_task_on_target will still have its original value, so 2176 // you know I did not do it 2177 } 2178 2179 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl( 2180 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2181 ExpressionPathEndResultType *final_result, 2182 const GetValueForExpressionPathOptions &options, 2183 ExpressionPathAftermath *what_next) { 2184 ValueObjectSP root = GetSP(); 2185 2186 if (!root) 2187 return nullptr; 2188 2189 llvm::StringRef remainder = expression; 2190 2191 while (true) { 2192 llvm::StringRef temp_expression = remainder; 2193 2194 CompilerType root_compiler_type = root->GetCompilerType(); 2195 CompilerType pointee_compiler_type; 2196 Flags pointee_compiler_type_info; 2197 2198 Flags root_compiler_type_info( 2199 root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2200 if (pointee_compiler_type) 2201 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2202 2203 if (temp_expression.empty()) { 2204 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2205 return root; 2206 } 2207 2208 switch (temp_expression.front()) { 2209 case '-': { 2210 temp_expression = temp_expression.drop_front(); 2211 if (options.m_check_dot_vs_arrow_syntax && 2212 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2213 // use -> on a 2214 // non-pointer and I 2215 // must catch the error 2216 { 2217 *reason_to_stop = 2218 ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2219 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2220 return ValueObjectSP(); 2221 } 2222 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to 2223 // extract an ObjC IVar 2224 // when this is forbidden 2225 root_compiler_type_info.Test(eTypeIsPointer) && 2226 options.m_no_fragile_ivar) { 2227 *reason_to_stop = 2228 ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2229 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2230 return ValueObjectSP(); 2231 } 2232 if (!temp_expression.startswith(">")) { 2233 *reason_to_stop = 2234 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2235 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2236 return ValueObjectSP(); 2237 } 2238 } 2239 LLVM_FALLTHROUGH; 2240 case '.': // or fallthrough from -> 2241 { 2242 if (options.m_check_dot_vs_arrow_syntax && 2243 temp_expression.front() == '.' && 2244 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2245 // use . on a pointer 2246 // and I must catch the 2247 // error 2248 { 2249 *reason_to_stop = 2250 ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2251 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2252 return nullptr; 2253 } 2254 temp_expression = temp_expression.drop_front(); // skip . or > 2255 2256 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1); 2257 ConstString child_name; 2258 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just 2259 // expand this last layer 2260 { 2261 child_name.SetString(temp_expression); 2262 ValueObjectSP child_valobj_sp = 2263 root->GetChildMemberWithName(child_name, true); 2264 2265 if (child_valobj_sp.get()) // we know we are done, so just return 2266 { 2267 *reason_to_stop = 2268 ValueObject::eExpressionPathScanEndReasonEndOfString; 2269 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2270 return child_valobj_sp; 2271 } else { 2272 switch (options.m_synthetic_children_traversal) { 2273 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2274 None: 2275 break; 2276 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2277 FromSynthetic: 2278 if (root->IsSynthetic()) { 2279 child_valobj_sp = root->GetNonSyntheticValue(); 2280 if (child_valobj_sp.get()) 2281 child_valobj_sp = 2282 child_valobj_sp->GetChildMemberWithName(child_name, true); 2283 } 2284 break; 2285 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2286 ToSynthetic: 2287 if (!root->IsSynthetic()) { 2288 child_valobj_sp = root->GetSyntheticValue(); 2289 if (child_valobj_sp.get()) 2290 child_valobj_sp = 2291 child_valobj_sp->GetChildMemberWithName(child_name, true); 2292 } 2293 break; 2294 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2295 Both: 2296 if (root->IsSynthetic()) { 2297 child_valobj_sp = root->GetNonSyntheticValue(); 2298 if (child_valobj_sp.get()) 2299 child_valobj_sp = 2300 child_valobj_sp->GetChildMemberWithName(child_name, true); 2301 } else { 2302 child_valobj_sp = root->GetSyntheticValue(); 2303 if (child_valobj_sp.get()) 2304 child_valobj_sp = 2305 child_valobj_sp->GetChildMemberWithName(child_name, true); 2306 } 2307 break; 2308 } 2309 } 2310 2311 // if we are here and options.m_no_synthetic_children is true, 2312 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2313 // branch, and return an error 2314 if (child_valobj_sp.get()) // if it worked, just return 2315 { 2316 *reason_to_stop = 2317 ValueObject::eExpressionPathScanEndReasonEndOfString; 2318 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2319 return child_valobj_sp; 2320 } else { 2321 *reason_to_stop = 2322 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2323 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2324 return nullptr; 2325 } 2326 } else // other layers do expand 2327 { 2328 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos); 2329 2330 child_name.SetString(temp_expression.slice(0, next_sep_pos)); 2331 2332 ValueObjectSP child_valobj_sp = 2333 root->GetChildMemberWithName(child_name, true); 2334 if (child_valobj_sp.get()) // store the new root and move on 2335 { 2336 root = child_valobj_sp; 2337 remainder = next_separator; 2338 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2339 continue; 2340 } else { 2341 switch (options.m_synthetic_children_traversal) { 2342 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2343 None: 2344 break; 2345 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2346 FromSynthetic: 2347 if (root->IsSynthetic()) { 2348 child_valobj_sp = root->GetNonSyntheticValue(); 2349 if (child_valobj_sp.get()) 2350 child_valobj_sp = 2351 child_valobj_sp->GetChildMemberWithName(child_name, true); 2352 } 2353 break; 2354 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2355 ToSynthetic: 2356 if (!root->IsSynthetic()) { 2357 child_valobj_sp = root->GetSyntheticValue(); 2358 if (child_valobj_sp.get()) 2359 child_valobj_sp = 2360 child_valobj_sp->GetChildMemberWithName(child_name, true); 2361 } 2362 break; 2363 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2364 Both: 2365 if (root->IsSynthetic()) { 2366 child_valobj_sp = root->GetNonSyntheticValue(); 2367 if (child_valobj_sp.get()) 2368 child_valobj_sp = 2369 child_valobj_sp->GetChildMemberWithName(child_name, true); 2370 } else { 2371 child_valobj_sp = root->GetSyntheticValue(); 2372 if (child_valobj_sp.get()) 2373 child_valobj_sp = 2374 child_valobj_sp->GetChildMemberWithName(child_name, true); 2375 } 2376 break; 2377 } 2378 } 2379 2380 // if we are here and options.m_no_synthetic_children is true, 2381 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2382 // branch, and return an error 2383 if (child_valobj_sp.get()) // if it worked, move on 2384 { 2385 root = child_valobj_sp; 2386 remainder = next_separator; 2387 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2388 continue; 2389 } else { 2390 *reason_to_stop = 2391 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2392 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2393 return nullptr; 2394 } 2395 } 2396 break; 2397 } 2398 case '[': { 2399 if (!root_compiler_type_info.Test(eTypeIsArray) && 2400 !root_compiler_type_info.Test(eTypeIsPointer) && 2401 !root_compiler_type_info.Test( 2402 eTypeIsVector)) // if this is not a T[] nor a T* 2403 { 2404 if (!root_compiler_type_info.Test( 2405 eTypeIsScalar)) // if this is not even a scalar... 2406 { 2407 if (options.m_synthetic_children_traversal == 2408 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2409 None) // ...only chance left is synthetic 2410 { 2411 *reason_to_stop = 2412 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2413 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2414 return ValueObjectSP(); 2415 } 2416 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar, 2417 // check that we can 2418 // expand bitfields 2419 { 2420 *reason_to_stop = 2421 ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2422 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2423 return ValueObjectSP(); 2424 } 2425 } 2426 if (temp_expression[1] == 2427 ']') // if this is an unbounded range it only works for arrays 2428 { 2429 if (!root_compiler_type_info.Test(eTypeIsArray)) { 2430 *reason_to_stop = 2431 ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2432 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2433 return nullptr; 2434 } else // even if something follows, we cannot expand unbounded ranges, 2435 // just let the caller do it 2436 { 2437 *reason_to_stop = 2438 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2439 *final_result = 2440 ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2441 return root; 2442 } 2443 } 2444 2445 size_t close_bracket_position = temp_expression.find(']', 1); 2446 if (close_bracket_position == 2447 llvm::StringRef::npos) // if there is no ], this is a syntax error 2448 { 2449 *reason_to_stop = 2450 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2451 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2452 return nullptr; 2453 } 2454 2455 llvm::StringRef bracket_expr = 2456 temp_expression.slice(1, close_bracket_position); 2457 2458 // If this was an empty expression it would have been caught by the if 2459 // above. 2460 assert(!bracket_expr.empty()); 2461 2462 if (!bracket_expr.contains('-')) { 2463 // if no separator, this is of the form [N]. Note that this cannot be 2464 // an unbounded range of the form [], because that case was handled 2465 // above with an unconditional return. 2466 unsigned long index = 0; 2467 if (bracket_expr.getAsInteger(0, index)) { 2468 *reason_to_stop = 2469 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2470 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2471 return nullptr; 2472 } 2473 2474 // from here on we do have a valid index 2475 if (root_compiler_type_info.Test(eTypeIsArray)) { 2476 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 2477 if (!child_valobj_sp) 2478 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 2479 if (!child_valobj_sp) 2480 if (root->HasSyntheticValue() && 2481 root->GetSyntheticValue()->GetNumChildren() > index) 2482 child_valobj_sp = 2483 root->GetSyntheticValue()->GetChildAtIndex(index, true); 2484 if (child_valobj_sp) { 2485 root = child_valobj_sp; 2486 remainder = 2487 temp_expression.substr(close_bracket_position + 1); // skip ] 2488 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2489 continue; 2490 } else { 2491 *reason_to_stop = 2492 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2493 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2494 return nullptr; 2495 } 2496 } else if (root_compiler_type_info.Test(eTypeIsPointer)) { 2497 if (*what_next == 2498 ValueObject:: 2499 eExpressionPathAftermathDereference && // if this is a 2500 // ptr-to-scalar, I 2501 // am accessing it 2502 // by index and I 2503 // would have 2504 // deref'ed anyway, 2505 // then do it now 2506 // and use this as 2507 // a bitfield 2508 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2509 Status error; 2510 root = root->Dereference(error); 2511 if (error.Fail() || !root) { 2512 *reason_to_stop = 2513 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2514 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2515 return nullptr; 2516 } else { 2517 *what_next = eExpressionPathAftermathNothing; 2518 continue; 2519 } 2520 } else { 2521 if (root->GetCompilerType().GetMinimumLanguage() == 2522 eLanguageTypeObjC && 2523 pointee_compiler_type_info.AllClear(eTypeIsPointer) && 2524 root->HasSyntheticValue() && 2525 (options.m_synthetic_children_traversal == 2526 GetValueForExpressionPathOptions:: 2527 SyntheticChildrenTraversal::ToSynthetic || 2528 options.m_synthetic_children_traversal == 2529 GetValueForExpressionPathOptions:: 2530 SyntheticChildrenTraversal::Both)) { 2531 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 2532 } else 2533 root = root->GetSyntheticArrayMember(index, true); 2534 if (!root) { 2535 *reason_to_stop = 2536 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2537 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2538 return nullptr; 2539 } else { 2540 remainder = 2541 temp_expression.substr(close_bracket_position + 1); // skip ] 2542 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2543 continue; 2544 } 2545 } 2546 } else if (root_compiler_type_info.Test(eTypeIsScalar)) { 2547 root = root->GetSyntheticBitFieldChild(index, index, true); 2548 if (!root) { 2549 *reason_to_stop = 2550 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2551 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2552 return nullptr; 2553 } else // we do not know how to expand members of bitfields, so we 2554 // just return and let the caller do any further processing 2555 { 2556 *reason_to_stop = ValueObject:: 2557 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2558 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2559 return root; 2560 } 2561 } else if (root_compiler_type_info.Test(eTypeIsVector)) { 2562 root = root->GetChildAtIndex(index, true); 2563 if (!root) { 2564 *reason_to_stop = 2565 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2566 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2567 return ValueObjectSP(); 2568 } else { 2569 remainder = 2570 temp_expression.substr(close_bracket_position + 1); // skip ] 2571 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2572 continue; 2573 } 2574 } else if (options.m_synthetic_children_traversal == 2575 GetValueForExpressionPathOptions:: 2576 SyntheticChildrenTraversal::ToSynthetic || 2577 options.m_synthetic_children_traversal == 2578 GetValueForExpressionPathOptions:: 2579 SyntheticChildrenTraversal::Both) { 2580 if (root->HasSyntheticValue()) 2581 root = root->GetSyntheticValue(); 2582 else if (!root->IsSynthetic()) { 2583 *reason_to_stop = 2584 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2585 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2586 return nullptr; 2587 } 2588 // if we are here, then root itself is a synthetic VO.. should be 2589 // good to go 2590 2591 if (!root) { 2592 *reason_to_stop = 2593 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2594 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2595 return nullptr; 2596 } 2597 root = root->GetChildAtIndex(index, true); 2598 if (!root) { 2599 *reason_to_stop = 2600 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2601 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2602 return nullptr; 2603 } else { 2604 remainder = 2605 temp_expression.substr(close_bracket_position + 1); // skip ] 2606 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2607 continue; 2608 } 2609 } else { 2610 *reason_to_stop = 2611 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2612 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2613 return nullptr; 2614 } 2615 } else { 2616 // we have a low and a high index 2617 llvm::StringRef sleft, sright; 2618 unsigned long low_index, high_index; 2619 std::tie(sleft, sright) = bracket_expr.split('-'); 2620 if (sleft.getAsInteger(0, low_index) || 2621 sright.getAsInteger(0, high_index)) { 2622 *reason_to_stop = 2623 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2624 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2625 return nullptr; 2626 } 2627 2628 if (low_index > high_index) // swap indices if required 2629 std::swap(low_index, high_index); 2630 2631 if (root_compiler_type_info.Test( 2632 eTypeIsScalar)) // expansion only works for scalars 2633 { 2634 root = root->GetSyntheticBitFieldChild(low_index, high_index, true); 2635 if (!root) { 2636 *reason_to_stop = 2637 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2638 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2639 return nullptr; 2640 } else { 2641 *reason_to_stop = ValueObject:: 2642 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2643 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2644 return root; 2645 } 2646 } else if (root_compiler_type_info.Test( 2647 eTypeIsPointer) && // if this is a ptr-to-scalar, I am 2648 // accessing it by index and I would 2649 // have deref'ed anyway, then do it 2650 // now and use this as a bitfield 2651 *what_next == 2652 ValueObject::eExpressionPathAftermathDereference && 2653 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2654 Status error; 2655 root = root->Dereference(error); 2656 if (error.Fail() || !root) { 2657 *reason_to_stop = 2658 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2659 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2660 return nullptr; 2661 } else { 2662 *what_next = ValueObject::eExpressionPathAftermathNothing; 2663 continue; 2664 } 2665 } else { 2666 *reason_to_stop = 2667 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2668 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 2669 return root; 2670 } 2671 } 2672 break; 2673 } 2674 default: // some non-separator is in the way 2675 { 2676 *reason_to_stop = 2677 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2678 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2679 return nullptr; 2680 } 2681 } 2682 } 2683 } 2684 2685 void ValueObject::LogValueObject(Log *log) { 2686 if (log) 2687 return LogValueObject(log, DumpValueObjectOptions(*this)); 2688 } 2689 2690 void ValueObject::LogValueObject(Log *log, 2691 const DumpValueObjectOptions &options) { 2692 if (log) { 2693 StreamString s; 2694 Dump(s, options); 2695 if (s.GetSize()) 2696 log->PutCString(s.GetData()); 2697 } 2698 } 2699 2700 void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); } 2701 2702 void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) { 2703 ValueObjectPrinter printer(this, &s, options); 2704 printer.PrintValueObject(); 2705 } 2706 2707 ValueObjectSP ValueObject::CreateConstantValue(ConstString name) { 2708 ValueObjectSP valobj_sp; 2709 2710 if (UpdateValueIfNeeded(false) && m_error.Success()) { 2711 ExecutionContext exe_ctx(GetExecutionContextRef()); 2712 2713 DataExtractor data; 2714 data.SetByteOrder(m_data.GetByteOrder()); 2715 data.SetAddressByteSize(m_data.GetAddressByteSize()); 2716 2717 if (IsBitfield()) { 2718 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 2719 m_error = v.GetValueAsData(&exe_ctx, data, GetModule().get()); 2720 } else 2721 m_error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 2722 2723 valobj_sp = ValueObjectConstResult::Create( 2724 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data, 2725 GetAddressOf()); 2726 } 2727 2728 if (!valobj_sp) { 2729 ExecutionContext exe_ctx(GetExecutionContextRef()); 2730 valobj_sp = ValueObjectConstResult::Create( 2731 exe_ctx.GetBestExecutionContextScope(), m_error); 2732 } 2733 return valobj_sp; 2734 } 2735 2736 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable( 2737 lldb::DynamicValueType dynValue, bool synthValue) { 2738 ValueObjectSP result_sp(GetSP()); 2739 2740 switch (dynValue) { 2741 case lldb::eDynamicCanRunTarget: 2742 case lldb::eDynamicDontRunTarget: { 2743 if (!result_sp->IsDynamic()) { 2744 if (result_sp->GetDynamicValue(dynValue)) 2745 result_sp = result_sp->GetDynamicValue(dynValue); 2746 } 2747 } break; 2748 case lldb::eNoDynamicValues: { 2749 if (result_sp->IsDynamic()) { 2750 if (result_sp->GetStaticValue()) 2751 result_sp = result_sp->GetStaticValue(); 2752 } 2753 } break; 2754 } 2755 2756 if (synthValue) { 2757 if (!result_sp->IsSynthetic()) { 2758 if (result_sp->GetSyntheticValue()) 2759 result_sp = result_sp->GetSyntheticValue(); 2760 } 2761 } else { 2762 if (result_sp->IsSynthetic()) { 2763 if (result_sp->GetNonSyntheticValue()) 2764 result_sp = result_sp->GetNonSyntheticValue(); 2765 } 2766 } 2767 2768 return result_sp; 2769 } 2770 2771 ValueObjectSP ValueObject::Dereference(Status &error) { 2772 if (m_deref_valobj) 2773 return m_deref_valobj->GetSP(); 2774 2775 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 2776 if (is_pointer_or_reference_type) { 2777 bool omit_empty_base_classes = true; 2778 bool ignore_array_bounds = false; 2779 2780 std::string child_name_str; 2781 uint32_t child_byte_size = 0; 2782 int32_t child_byte_offset = 0; 2783 uint32_t child_bitfield_bit_size = 0; 2784 uint32_t child_bitfield_bit_offset = 0; 2785 bool child_is_base_class = false; 2786 bool child_is_deref_of_parent = false; 2787 const bool transparent_pointers = false; 2788 CompilerType compiler_type = GetCompilerType(); 2789 CompilerType child_compiler_type; 2790 uint64_t language_flags; 2791 2792 ExecutionContext exe_ctx(GetExecutionContextRef()); 2793 2794 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex( 2795 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 2796 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 2797 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 2798 child_is_deref_of_parent, this, language_flags); 2799 if (child_compiler_type && child_byte_size) { 2800 ConstString child_name; 2801 if (!child_name_str.empty()) 2802 child_name.SetCString(child_name_str.c_str()); 2803 2804 m_deref_valobj = new ValueObjectChild( 2805 *this, child_compiler_type, child_name, child_byte_size, 2806 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 2807 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 2808 language_flags); 2809 } 2810 } else if (HasSyntheticValue()) { 2811 m_deref_valobj = 2812 GetSyntheticValue() 2813 ->GetChildMemberWithName(ConstString("$$dereference$$"), true) 2814 .get(); 2815 } 2816 2817 if (m_deref_valobj) { 2818 error.Clear(); 2819 return m_deref_valobj->GetSP(); 2820 } else { 2821 StreamString strm; 2822 GetExpressionPath(strm, true); 2823 2824 if (is_pointer_or_reference_type) 2825 error.SetErrorStringWithFormat("dereference failed: (%s) %s", 2826 GetTypeName().AsCString("<invalid type>"), 2827 strm.GetData()); 2828 else 2829 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", 2830 GetTypeName().AsCString("<invalid type>"), 2831 strm.GetData()); 2832 return ValueObjectSP(); 2833 } 2834 } 2835 2836 ValueObjectSP ValueObject::AddressOf(Status &error) { 2837 if (m_addr_of_valobj_sp) 2838 return m_addr_of_valobj_sp; 2839 2840 AddressType address_type = eAddressTypeInvalid; 2841 const bool scalar_is_load_address = false; 2842 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type); 2843 error.Clear(); 2844 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) { 2845 switch (address_type) { 2846 case eAddressTypeInvalid: { 2847 StreamString expr_path_strm; 2848 GetExpressionPath(expr_path_strm, true); 2849 error.SetErrorStringWithFormat("'%s' is not in memory", 2850 expr_path_strm.GetData()); 2851 } break; 2852 2853 case eAddressTypeFile: 2854 case eAddressTypeLoad: { 2855 CompilerType compiler_type = GetCompilerType(); 2856 if (compiler_type) { 2857 std::string name(1, '&'); 2858 name.append(m_name.AsCString("")); 2859 ExecutionContext exe_ctx(GetExecutionContextRef()); 2860 m_addr_of_valobj_sp = ValueObjectConstResult::Create( 2861 exe_ctx.GetBestExecutionContextScope(), 2862 compiler_type.GetPointerType(), ConstString(name.c_str()), addr, 2863 eAddressTypeInvalid, m_data.GetAddressByteSize()); 2864 } 2865 } break; 2866 default: 2867 break; 2868 } 2869 } else { 2870 StreamString expr_path_strm; 2871 GetExpressionPath(expr_path_strm, true); 2872 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", 2873 expr_path_strm.GetData()); 2874 } 2875 2876 return m_addr_of_valobj_sp; 2877 } 2878 2879 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) { 2880 return ValueObjectCast::Create(*this, GetName(), compiler_type); 2881 } 2882 2883 lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) { 2884 return ValueObjectCast::Create(*this, new_name, GetCompilerType()); 2885 } 2886 2887 ValueObjectSP ValueObject::CastPointerType(const char *name, 2888 CompilerType &compiler_type) { 2889 ValueObjectSP valobj_sp; 2890 AddressType address_type; 2891 addr_t ptr_value = GetPointerValue(&address_type); 2892 2893 if (ptr_value != LLDB_INVALID_ADDRESS) { 2894 Address ptr_addr(ptr_value); 2895 ExecutionContext exe_ctx(GetExecutionContextRef()); 2896 valobj_sp = ValueObjectMemory::Create( 2897 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type); 2898 } 2899 return valobj_sp; 2900 } 2901 2902 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) { 2903 ValueObjectSP valobj_sp; 2904 AddressType address_type; 2905 addr_t ptr_value = GetPointerValue(&address_type); 2906 2907 if (ptr_value != LLDB_INVALID_ADDRESS) { 2908 Address ptr_addr(ptr_value); 2909 ExecutionContext exe_ctx(GetExecutionContextRef()); 2910 valobj_sp = ValueObjectMemory::Create( 2911 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp); 2912 } 2913 return valobj_sp; 2914 } 2915 2916 ValueObject::EvaluationPoint::EvaluationPoint() 2917 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) {} 2918 2919 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope, 2920 bool use_selected) 2921 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) { 2922 ExecutionContext exe_ctx(exe_scope); 2923 TargetSP target_sp(exe_ctx.GetTargetSP()); 2924 if (target_sp) { 2925 m_exe_ctx_ref.SetTargetSP(target_sp); 2926 ProcessSP process_sp(exe_ctx.GetProcessSP()); 2927 if (!process_sp) 2928 process_sp = target_sp->GetProcessSP(); 2929 2930 if (process_sp) { 2931 m_mod_id = process_sp->GetModID(); 2932 m_exe_ctx_ref.SetProcessSP(process_sp); 2933 2934 ThreadSP thread_sp(exe_ctx.GetThreadSP()); 2935 2936 if (!thread_sp) { 2937 if (use_selected) 2938 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 2939 } 2940 2941 if (thread_sp) { 2942 m_exe_ctx_ref.SetThreadSP(thread_sp); 2943 2944 StackFrameSP frame_sp(exe_ctx.GetFrameSP()); 2945 if (!frame_sp) { 2946 if (use_selected) 2947 frame_sp = thread_sp->GetSelectedFrame(); 2948 } 2949 if (frame_sp) 2950 m_exe_ctx_ref.SetFrameSP(frame_sp); 2951 } 2952 } 2953 } 2954 } 2955 2956 ValueObject::EvaluationPoint::EvaluationPoint( 2957 const ValueObject::EvaluationPoint &rhs) 2958 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref), m_needs_update(true) {} 2959 2960 ValueObject::EvaluationPoint::~EvaluationPoint() {} 2961 2962 // This function checks the EvaluationPoint against the current process state. 2963 // If the current state matches the evaluation point, or the evaluation point 2964 // is already invalid, then we return false, meaning "no change". If the 2965 // current state is different, we update our state, and return true meaning 2966 // "yes, change". If we did see a change, we also set m_needs_update to true, 2967 // so future calls to NeedsUpdate will return true. exe_scope will be set to 2968 // the current execution context scope. 2969 2970 bool ValueObject::EvaluationPoint::SyncWithProcessState( 2971 bool accept_invalid_exe_ctx) { 2972 // Start with the target, if it is NULL, then we're obviously not going to 2973 // get any further: 2974 const bool thread_and_frame_only_if_stopped = true; 2975 ExecutionContext exe_ctx( 2976 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 2977 2978 if (exe_ctx.GetTargetPtr() == nullptr) 2979 return false; 2980 2981 // If we don't have a process nothing can change. 2982 Process *process = exe_ctx.GetProcessPtr(); 2983 if (process == nullptr) 2984 return false; 2985 2986 // If our stop id is the current stop ID, nothing has changed: 2987 ProcessModID current_mod_id = process->GetModID(); 2988 2989 // If the current stop id is 0, either we haven't run yet, or the process 2990 // state has been cleared. In either case, we aren't going to be able to sync 2991 // with the process state. 2992 if (current_mod_id.GetStopID() == 0) 2993 return false; 2994 2995 bool changed = false; 2996 const bool was_valid = m_mod_id.IsValid(); 2997 if (was_valid) { 2998 if (m_mod_id == current_mod_id) { 2999 // Everything is already up to date in this object, no need to update the 3000 // execution context scope. 3001 changed = false; 3002 } else { 3003 m_mod_id = current_mod_id; 3004 m_needs_update = true; 3005 changed = true; 3006 } 3007 } 3008 3009 // Now re-look up the thread and frame in case the underlying objects have 3010 // gone away & been recreated. That way we'll be sure to return a valid 3011 // exe_scope. If we used to have a thread or a frame but can't find it 3012 // anymore, then mark ourselves as invalid. 3013 3014 if (!accept_invalid_exe_ctx) { 3015 if (m_exe_ctx_ref.HasThreadRef()) { 3016 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP()); 3017 if (thread_sp) { 3018 if (m_exe_ctx_ref.HasFrameRef()) { 3019 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP()); 3020 if (!frame_sp) { 3021 // We used to have a frame, but now it is gone 3022 SetInvalid(); 3023 changed = was_valid; 3024 } 3025 } 3026 } else { 3027 // We used to have a thread, but now it is gone 3028 SetInvalid(); 3029 changed = was_valid; 3030 } 3031 } 3032 } 3033 3034 return changed; 3035 } 3036 3037 void ValueObject::EvaluationPoint::SetUpdated() { 3038 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 3039 if (process_sp) 3040 m_mod_id = process_sp->GetModID(); 3041 m_needs_update = false; 3042 } 3043 3044 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) { 3045 if ((clear_mask & eClearUserVisibleDataItemsValue) == 3046 eClearUserVisibleDataItemsValue) 3047 m_value_str.clear(); 3048 3049 if ((clear_mask & eClearUserVisibleDataItemsLocation) == 3050 eClearUserVisibleDataItemsLocation) 3051 m_location_str.clear(); 3052 3053 if ((clear_mask & eClearUserVisibleDataItemsSummary) == 3054 eClearUserVisibleDataItemsSummary) 3055 m_summary_str.clear(); 3056 3057 if ((clear_mask & eClearUserVisibleDataItemsDescription) == 3058 eClearUserVisibleDataItemsDescription) 3059 m_object_desc_str.clear(); 3060 3061 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == 3062 eClearUserVisibleDataItemsSyntheticChildren) { 3063 if (m_synthetic_value) 3064 m_synthetic_value = nullptr; 3065 } 3066 3067 if ((clear_mask & eClearUserVisibleDataItemsValidator) == 3068 eClearUserVisibleDataItemsValidator) 3069 m_validation_result.reset(); 3070 } 3071 3072 SymbolContextScope *ValueObject::GetSymbolContextScope() { 3073 if (m_parent) { 3074 if (!m_parent->IsPointerOrReferenceType()) 3075 return m_parent->GetSymbolContextScope(); 3076 } 3077 return nullptr; 3078 } 3079 3080 lldb::ValueObjectSP 3081 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name, 3082 llvm::StringRef expression, 3083 const ExecutionContext &exe_ctx) { 3084 return CreateValueObjectFromExpression(name, expression, exe_ctx, 3085 EvaluateExpressionOptions()); 3086 } 3087 3088 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression( 3089 llvm::StringRef name, llvm::StringRef expression, 3090 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) { 3091 lldb::ValueObjectSP retval_sp; 3092 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 3093 if (!target_sp) 3094 return retval_sp; 3095 if (expression.empty()) 3096 return retval_sp; 3097 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(), 3098 retval_sp, options); 3099 if (retval_sp && !name.empty()) 3100 retval_sp->SetName(ConstString(name)); 3101 return retval_sp; 3102 } 3103 3104 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress( 3105 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, 3106 CompilerType type) { 3107 if (type) { 3108 CompilerType pointer_type(type.GetPointerType()); 3109 if (pointer_type) { 3110 lldb::DataBufferSP buffer( 3111 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t))); 3112 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create( 3113 exe_ctx.GetBestExecutionContextScope(), pointer_type, 3114 ConstString(name), buffer, exe_ctx.GetByteOrder(), 3115 exe_ctx.GetAddressByteSize())); 3116 if (ptr_result_valobj_sp) { 3117 ptr_result_valobj_sp->GetValue().SetValueType( 3118 Value::eValueTypeLoadAddress); 3119 Status err; 3120 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 3121 if (ptr_result_valobj_sp && !name.empty()) 3122 ptr_result_valobj_sp->SetName(ConstString(name)); 3123 } 3124 return ptr_result_valobj_sp; 3125 } 3126 } 3127 return lldb::ValueObjectSP(); 3128 } 3129 3130 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData( 3131 llvm::StringRef name, const DataExtractor &data, 3132 const ExecutionContext &exe_ctx, CompilerType type) { 3133 lldb::ValueObjectSP new_value_sp; 3134 new_value_sp = ValueObjectConstResult::Create( 3135 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data, 3136 LLDB_INVALID_ADDRESS); 3137 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 3138 if (new_value_sp && !name.empty()) 3139 new_value_sp->SetName(ConstString(name)); 3140 return new_value_sp; 3141 } 3142 3143 ModuleSP ValueObject::GetModule() { 3144 ValueObject *root(GetRoot()); 3145 if (root != this) 3146 return root->GetModule(); 3147 return lldb::ModuleSP(); 3148 } 3149 3150 ValueObject *ValueObject::GetRoot() { 3151 if (m_root) 3152 return m_root; 3153 return (m_root = FollowParentChain([](ValueObject *vo) -> bool { 3154 return (vo->m_parent != nullptr); 3155 })); 3156 } 3157 3158 ValueObject * 3159 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) { 3160 ValueObject *vo = this; 3161 while (vo) { 3162 if (!f(vo)) 3163 break; 3164 vo = vo->m_parent; 3165 } 3166 return vo; 3167 } 3168 3169 AddressType ValueObject::GetAddressTypeOfChildren() { 3170 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) { 3171 ValueObject *root(GetRoot()); 3172 if (root != this) 3173 return root->GetAddressTypeOfChildren(); 3174 } 3175 return m_address_type_of_ptr_or_ref_children; 3176 } 3177 3178 lldb::DynamicValueType ValueObject::GetDynamicValueType() { 3179 ValueObject *with_dv_info = this; 3180 while (with_dv_info) { 3181 if (with_dv_info->HasDynamicValueTypeInfo()) 3182 return with_dv_info->GetDynamicValueTypeImpl(); 3183 with_dv_info = with_dv_info->m_parent; 3184 } 3185 return lldb::eNoDynamicValues; 3186 } 3187 3188 lldb::Format ValueObject::GetFormat() const { 3189 const ValueObject *with_fmt_info = this; 3190 while (with_fmt_info) { 3191 if (with_fmt_info->m_format != lldb::eFormatDefault) 3192 return with_fmt_info->m_format; 3193 with_fmt_info = with_fmt_info->m_parent; 3194 } 3195 return m_format; 3196 } 3197 3198 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() { 3199 lldb::LanguageType type = m_preferred_display_language; 3200 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) { 3201 if (GetRoot()) { 3202 if (GetRoot() == this) { 3203 if (StackFrameSP frame_sp = GetFrameSP()) { 3204 const SymbolContext &sc( 3205 frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 3206 if (CompileUnit *cu = sc.comp_unit) 3207 type = cu->GetLanguage(); 3208 } 3209 } else { 3210 type = GetRoot()->GetPreferredDisplayLanguage(); 3211 } 3212 } 3213 } 3214 return (m_preferred_display_language = type); // only compute it once 3215 } 3216 3217 void ValueObject::SetPreferredDisplayLanguage(lldb::LanguageType lt) { 3218 m_preferred_display_language = lt; 3219 } 3220 3221 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) { 3222 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 3223 SetPreferredDisplayLanguage(lt); 3224 } 3225 3226 bool ValueObject::CanProvideValue() { 3227 // we need to support invalid types as providers of values because some bare- 3228 // board debugging scenarios have no notion of types, but still manage to 3229 // have raw numeric values for things like registers. sigh. 3230 const CompilerType &type(GetCompilerType()); 3231 return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 3232 } 3233 3234 bool ValueObject::IsChecksumEmpty() { return m_value_checksum.empty(); } 3235 3236 ValueObjectSP ValueObject::Persist() { 3237 if (!UpdateValueIfNeeded()) 3238 return nullptr; 3239 3240 TargetSP target_sp(GetTargetSP()); 3241 if (!target_sp) 3242 return nullptr; 3243 3244 PersistentExpressionState *persistent_state = 3245 target_sp->GetPersistentExpressionStateForLanguage( 3246 GetPreferredDisplayLanguage()); 3247 3248 if (!persistent_state) 3249 return nullptr; 3250 3251 auto prefix = persistent_state->GetPersistentVariablePrefix(); 3252 ConstString name = 3253 persistent_state->GetNextPersistentVariableName(*target_sp, prefix); 3254 3255 ValueObjectSP const_result_sp = 3256 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name); 3257 3258 ExpressionVariableSP clang_var_sp = 3259 persistent_state->CreatePersistentVariable(const_result_sp); 3260 clang_var_sp->m_live_sp = clang_var_sp->m_frozen_sp; 3261 clang_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 3262 3263 return clang_var_sp->GetValueObject(); 3264 } 3265 3266 bool ValueObject::IsSyntheticChildrenGenerated() { 3267 return m_is_synthetic_children_generated; 3268 } 3269 3270 void ValueObject::SetSyntheticChildrenGenerated(bool b) { 3271 m_is_synthetic_children_generated = b; 3272 } 3273 3274 uint64_t ValueObject::GetLanguageFlags() { return m_language_flags; } 3275 3276 void ValueObject::SetLanguageFlags(uint64_t flags) { m_language_flags = flags; } 3277 3278 ValueObjectManager::ValueObjectManager(lldb::ValueObjectSP in_valobj_sp, 3279 lldb::DynamicValueType use_dynamic, 3280 bool use_synthetic) : m_root_valobj_sp(), 3281 m_user_valobj_sp(), m_use_dynamic(use_dynamic), m_stop_id(UINT32_MAX), 3282 m_use_synthetic(use_synthetic) { 3283 if (!in_valobj_sp) 3284 return; 3285 // If the user passes in a value object that is dynamic or synthetic, then 3286 // water it down to the static type. 3287 m_root_valobj_sp = in_valobj_sp->GetQualifiedRepresentationIfAvailable(lldb::eNoDynamicValues, false); 3288 } 3289 3290 bool ValueObjectManager::IsValid() const { 3291 if (!m_root_valobj_sp) 3292 return false; 3293 lldb::TargetSP target_sp = GetTargetSP(); 3294 if (target_sp) 3295 return target_sp->IsValid(); 3296 return false; 3297 } 3298 3299 lldb::ValueObjectSP ValueObjectManager::GetSP() { 3300 lldb::ProcessSP process_sp = GetProcessSP(); 3301 if (!process_sp) 3302 return lldb::ValueObjectSP(); 3303 3304 const uint32_t current_stop_id = process_sp->GetLastNaturalStopID(); 3305 if (current_stop_id == m_stop_id) 3306 return m_user_valobj_sp; 3307 3308 m_stop_id = current_stop_id; 3309 3310 if (!m_root_valobj_sp) { 3311 m_user_valobj_sp.reset(); 3312 return m_root_valobj_sp; 3313 } 3314 3315 m_user_valobj_sp = m_root_valobj_sp; 3316 3317 if (m_use_dynamic != lldb::eNoDynamicValues) { 3318 lldb::ValueObjectSP dynamic_sp = m_user_valobj_sp->GetDynamicValue(m_use_dynamic); 3319 if (dynamic_sp) 3320 m_user_valobj_sp = dynamic_sp; 3321 } 3322 3323 if (m_use_synthetic) { 3324 lldb::ValueObjectSP synthetic_sp = m_user_valobj_sp->GetSyntheticValue(m_use_synthetic); 3325 if (synthetic_sp) 3326 m_user_valobj_sp = synthetic_sp; 3327 } 3328 3329 return m_user_valobj_sp; 3330 } 3331 3332 void ValueObjectManager::SetUseDynamic(lldb::DynamicValueType use_dynamic) { 3333 if (use_dynamic != m_use_dynamic) { 3334 m_use_dynamic = use_dynamic; 3335 m_user_valobj_sp.reset(); 3336 m_stop_id = UINT32_MAX; 3337 } 3338 } 3339 3340 void ValueObjectManager::SetUseSynthetic(bool use_synthetic) { 3341 if (m_use_synthetic != use_synthetic) { 3342 m_use_synthetic = use_synthetic; 3343 m_user_valobj_sp.reset(); 3344 m_stop_id = UINT32_MAX; 3345 } 3346 } 3347 3348 lldb::TargetSP ValueObjectManager::GetTargetSP() const { 3349 if (!m_root_valobj_sp) 3350 return m_root_valobj_sp->GetTargetSP(); 3351 return lldb::TargetSP(); 3352 } 3353 3354 lldb::ProcessSP ValueObjectManager::GetProcessSP() const { 3355 if (m_root_valobj_sp) 3356 return m_root_valobj_sp->GetProcessSP(); 3357 return lldb::ProcessSP(); 3358 } 3359 3360 lldb::ThreadSP ValueObjectManager::GetThreadSP() const { 3361 if (m_root_valobj_sp) 3362 return m_root_valobj_sp->GetThreadSP(); 3363 return lldb::ThreadSP(); 3364 } 3365 3366 lldb::StackFrameSP ValueObjectManager::GetFrameSP() const { 3367 if (m_root_valobj_sp) 3368 return m_root_valobj_sp->GetFrameSP(); 3369 return lldb::StackFrameSP(); 3370 } 3371